Age | Commit message (Collapse) | Author |
|
commit e42b9d8b9ea2672811285e6a7654887ff64d23f3 upstream.
[BUG]
With the following file extent layout, defrag would do unnecessary IO
and result more on-disk space usage.
# mkfs.btrfs -f $dev
# mount $dev $mnt
# xfs_io -f -c "pwrite 0 40m" $mnt/foobar
# sync
# xfs_io -f -c "pwrite 40m 16k" $mnt/foobar
# sync
Above command would lead to the following file extent layout:
item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53
generation 7 type 1 (regular)
extent data disk byte 298844160 nr 41943040
extent data offset 0 nr 41943040 ram 41943040
extent compression 0 (none)
item 7 key (257 EXTENT_DATA 41943040) itemoff 15763 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 13631488 nr 16384
extent data offset 0 nr 16384 ram 16384
extent compression 0 (none)
Which is mostly fine. We can allow the final 16K to be merged with the
previous 40M, but it's upon the end users' preference.
But if we defrag the file using the default parameters, it would result
worse file layout:
# btrfs filesystem defrag $mnt/foobar
# sync
item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53
generation 7 type 1 (regular)
extent data disk byte 298844160 nr 41943040
extent data offset 0 nr 8650752 ram 41943040
extent compression 0 (none)
item 7 key (257 EXTENT_DATA 8650752) itemoff 15763 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 340787200 nr 33292288
extent data offset 0 nr 33292288 ram 33292288
extent compression 0 (none)
item 8 key (257 EXTENT_DATA 41943040) itemoff 15710 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 13631488 nr 16384
extent data offset 0 nr 16384 ram 16384
extent compression 0 (none)
Note the original 40M extent is still there, but a new 32M extent is
created for no benefit at all.
[CAUSE]
There is an existing check to make sure we won't defrag a large enough
extent (the threshold is by default 32M).
But the check is using the length to the end of the extent:
range_len = em->len - (cur - em->start);
/* Skip too large extent */
if (range_len >= extent_thresh)
goto next;
This means, for the first 8MiB of the extent, the range_len is always
smaller than the default threshold, and would not be defragged.
But after the first 8MiB, the remaining part would fit the requirement,
and be defragged.
Such different behavior inside the same extent caused the above problem,
and we should avoid different defrag decision inside the same extent.
[FIX]
Instead of using @range_len, just use @em->len, so that we have a
consistent decision among the same file extent.
Now with this fix, we won't touch the extent, thus not making it any
worse.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 0cb5950f3f3b ("btrfs: fix deadlock when reserving space during defrag")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5571e41ec6e56e35f34ae9f5b3a335ef510e0ade upstream.
While running the CI for an unrelated change I hit the following panic
with generic/648 on btrfs_holes_spacecache.
assertion failed: block_start != EXTENT_MAP_HOLE, in fs/btrfs/extent_io.c:1385
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:1385!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 2695096 Comm: fsstress Kdump: loaded Tainted: G W 6.8.0-rc2+ #1
RIP: 0010:__extent_writepage_io.constprop.0+0x4c1/0x5c0
Call Trace:
<TASK>
extent_write_cache_pages+0x2ac/0x8f0
extent_writepages+0x87/0x110
do_writepages+0xd5/0x1f0
filemap_fdatawrite_wbc+0x63/0x90
__filemap_fdatawrite_range+0x5c/0x80
btrfs_fdatawrite_range+0x1f/0x50
btrfs_write_out_cache+0x507/0x560
btrfs_write_dirty_block_groups+0x32a/0x420
commit_cowonly_roots+0x21b/0x290
btrfs_commit_transaction+0x813/0x1360
btrfs_sync_file+0x51a/0x640
__x64_sys_fdatasync+0x52/0x90
do_syscall_64+0x9c/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
This happens because we fail to write out the free space cache in one
instance, come back around and attempt to write it again. However on
the second pass through we go to call btrfs_get_extent() on the inode to
get the extent mapping. Because this is a new block group, and with the
free space inode we always search the commit root to avoid deadlocking
with the tree, we find nothing and return a EXTENT_MAP_HOLE for the
requested range.
This happens because the first time we try to write the space cache out
we hit an error, and on an error we drop the extent mapping. This is
normal for normal files, but the free space cache inode is special. We
always expect the extent map to be correct. Thus the second time
through we end up with a bogus extent map.
Since we're deprecating this feature, the most straightforward way to
fix this is to simply skip dropping the extent map range for this failed
range.
I shortened the test by using error injection to stress the area to make
it easier to reproduce. With this patch in place we no longer panic
with my error injection test.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1bd96c92c6a0a4d43815eb685c15aa4b78879dc9 upstream.
Currently we allow an encoded write against inodes that have the NODATASUM
flag set, either because they are NOCOW files or they were created while
the filesystem was mounted with "-o nodatasum". This results in having
compressed extents without corresponding checksums, which is a filesystem
inconsistency reported by 'btrfs check'.
For example, running btrfs/281 with MOUNT_OPTIONS="-o nodatacow" triggers
this and 'btrfs check' errors out with:
[1/7] checking root items
[2/7] checking extents
[3/7] checking free space tree
[4/7] checking fs roots
root 256 inode 257 errors 1040, bad file extent, some csum missing
root 256 inode 258 errors 1040, bad file extent, some csum missing
ERROR: errors found in fs roots
(...)
So reject encoded writes if the target inode has NODATASUM set.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit feefe1f49d26bad9d8997096e3a200280fa7b1c5 upstream.
Currently when doing a write to a file we always reserve metadata space
for inserting data checksums. However we don't need to do it if we have
a nodatacow file (-o nodatacow mount option or chattr +C) or if checksums
are disabled (-o nodatasum mount option), as in that case we are only
adding unnecessary pressure to metadata reservations.
For example on x86_64, with the default node size of 16K, a 4K buffered
write into a nodatacow file is reserving 655360 bytes of metadata space,
as it's accounting for checksums. After this change, which stops reserving
space for checksums if we have a nodatacow file or checksums are disabled,
we only need to reserve 393216 bytes of metadata.
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f884a9f9e59206a2d41f265e7e403f080d10b493 upstream.
When some ioctl flags are checked we return EOPNOTSUPP, like for
BTRFS_SCRUB_SUPPORTED_FLAGS, BTRFS_SUBVOL_CREATE_ARGS_MASK or fallocate
modes. The EINVAL is supposed to be for a supported but invalid
values or combination of options. Fix that when checking send flags so
it's consistent with the rest.
CC: stable@vger.kernel.org # 4.14+
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5rryOLzp3EKq8RTbjMHMHeaJubfpsVLF6H4qJnKCUR1w@mail.gmail.com/
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a8df35619948bd8363d330c20a90c9a7fbff28c0 upstream.
If a subvolume still exists, forbid deleting its qgroup 0/subvolid.
This behavior generally leads to incorrect behavior in squotas and
doesn't have a legitimate purpose.
Fixes: cecbb533b5fc ("btrfs: record simple quota deltas in delayed refs")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e03ee2fe873eb68c1f9ba5112fee70303ebf9dfb upstream.
[BUG]
There is a syzbot crash, triggered by the ASSERT() during subvolume
creation:
assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319
------------[ cut here ]------------
kernel BUG at fs/btrfs/disk-io.c:1319!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60
<TASK>
btrfs_get_new_fs_root+0xd3/0xf0
create_subvol+0xd02/0x1650
btrfs_mksubvol+0xe95/0x12b0
__btrfs_ioctl_snap_create+0x2f9/0x4f0
btrfs_ioctl_snap_create+0x16b/0x200
btrfs_ioctl+0x35f0/0x5cf0
__x64_sys_ioctl+0x19d/0x210
do_syscall_64+0x3f/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
---[ end trace 0000000000000000 ]---
[CAUSE]
During create_subvol(), after inserting root item for the newly created
subvolume, we would trigger btrfs_get_new_fs_root() to get the
btrfs_root of that subvolume.
The idea here is, we have preallocated an anonymous device number for
the subvolume, thus we can assign it to the new subvolume.
But there is really nothing preventing things like backref walk to read
the new subvolume.
If that happens before we call btrfs_get_new_fs_root(), the subvolume
would be read out, with a new anonymous device number assigned already.
In that case, we would trigger ASSERT(), as we really expect no one to
read out that subvolume (which is not yet accessible from the fs).
But things like backref walk is still possible to trigger the read on
the subvolume.
Thus our assumption on the ASSERT() is not correct in the first place.
[FIX]
Fix it by removing the ASSERT(), and just free the @anon_dev, reset it
to 0, and continue.
If the subvolume tree is read out by something else, it should have
already get a new anon_dev assigned thus we only need to free the
preallocated one.
Reported-by: Chenyuan Yang <chenyuan0y@gmail.com>
Fixes: 2dfb1e43f57d ("btrfs: preallocate anon block device at first phase of snapshot creation")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0c309d66dacddf8ce939b891d9ead4a8e21ad6f0 upstream.
Creating a qgroup 0/subvolid leads to various races and it isn't
helpful, because you can't specify a subvol id when creating a subvol,
so you can't be sure it will be the right one. Any requirements on the
automatic subvol can be gratified by using a higher level qgroup and the
inheritance parameters of subvol creation.
Fixes: cecbb533b5fc ("btrfs: record simple quota deltas in delayed refs")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2f6397e448e689adf57e6788c90f913abd7e1af8 upstream.
Since commit 28270e25c69a ("btrfs: always reserve space for delayed refs
when starting transaction") we started not only to reserve metadata space
for the delayed refs a caller of btrfs_start_transaction() might generate
but also to try to fully refill the delayed refs block reserve, because
there are several case where we generate delayed refs and haven't reserved
space for them, relying on the global block reserve. Relying too much on
the global block reserve is not always safe, and can result in hitting
-ENOSPC during transaction commits or worst, in rare cases, being unable
to mount a filesystem that needs to do orphan cleanup or anything that
requires modifying the filesystem during mount, and has no more
unallocated space and the metadata space is nearly full. This was
explained in detail in that commit's change log.
However the gap between the reserved amount and the size of the delayed
refs block reserve can be huge, so attempting to reserve space for such
a gap can result in allocating many metadata block groups that end up
not being used. After a recent patch, with the subject:
"btrfs: add new unused block groups to the list of unused block groups"
We started to add new block groups that are unused to the list of unused
block groups, to avoid having them around for a very long time in case
they are never used, because a block group is only added to the list of
unused block groups when we deallocate the last extent or when mounting
the filesystem and the block group has 0 bytes used. This is not a problem
introduced by the commit mentioned earlier, it always existed as our
metadata space reservations are, most of the time, pessimistic and end up
not using all the space they reserved, so we can occasionally end up with
one or two unused metadata block groups for a long period. However after
that commit mentioned earlier, we are just more pessimistic in the
metadata space reservations when starting a transaction and therefore the
issue is more likely to happen.
This however is not always enough because we might create unused metadata
block groups when reserving metadata space at a high rate if there's
always a gap in the delayed refs block reserve and the cleaner kthread
isn't triggered often enough or is busy with other work (running delayed
iputs, cleaning deleted roots, etc), not to mention the block group's
allocated space is only usable for a new block group after the transaction
used to remove it is committed.
A user reported that he's getting a lot of allocated metadata block groups
but the usage percentage of metadata space was very low compared to the
total allocated space, specially after running a series of block group
relocations.
So for now stop trying to refill the gap in the delayed refs block reserve
and reserve space only for the delayed refs we are expected to generate
when starting a transaction.
CC: stable@vger.kernel.org # 6.7+
Reported-by: Ivan Shapovalov <intelfx@intelfx.name>
Link: https://lore.kernel.org/linux-btrfs/9cdbf0ca9cdda1b4c84e15e548af7d7f9f926382.camel@intelfx.name/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H6802ayLHUJFztzZAVzBLJAGdFx=6FHNNy87+obZXXZpQ@mail.gmail.com/
Tested-by: Ivan Shapovalov <intelfx@intelfx.name>
Reported-by: Heddxh <g311571057@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAE93xANEby6RezOD=zcofENYZOT-wpYygJyauyUAZkLv6XVFOA@mail.gmail.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 12c5128f101bfa47a08e4c0e1a75cfa2d0872bcd upstream.
Space reservations for metadata are, most of the time, pessimistic as we
reserve space for worst possible cases - where tree heights are at the
maximum possible height (8), we need to COW every extent buffer in a tree
path, need to split extent buffers, etc.
For data, we generally reserve the exact amount of space we are going to
allocate. The exception here is when using compression, in which case we
reserve space matching the uncompressed size, as the compression only
happens at writeback time and in the worst possible case we need that
amount of space in case the data is not compressible.
This means that when there's not available space in the corresponding
space_info object, we may need to allocate a new block group, and then
that block group might not be used after all. In this case the block
group is never added to the list of unused block groups and ends up
never being deleted - except if we unmount and mount again the fs, as
when reading block groups from disk we add unused ones to the list of
unused block groups (fs_info->unused_bgs). Otherwise a block group is
only added to the list of unused block groups when we deallocate the
last extent from it, so if no extent is ever allocated, the block group
is kept around forever.
This also means that if we have a bunch of tasks reserving space in
parallel we can end up allocating many block groups that end up never
being used or kept around for too long without being used, which has
the potential to result in ENOSPC failures in case for example we over
allocate too many metadata block groups and then end up in a state
without enough unallocated space to allocate a new data block group.
This is more likely to happen with metadata reservations as of kernel
6.7, namely since commit 28270e25c69a ("btrfs: always reserve space for
delayed refs when starting transaction"), because we started to always
reserve space for delayed references when starting a transaction handle
for a non-zero number of items, and also to try to reserve space to fill
the gap between the delayed block reserve's reserved space and its size.
So to avoid this, when finishing the creation a new block group, add the
block group to the list of unused block groups if it's still unused at
that time. This way the next time the cleaner kthread runs, it will delete
the block group if it's still unused and not needed to satisfy existing
space reservations.
Reported-by: Ivan Shapovalov <intelfx@intelfx.name>
Link: https://lore.kernel.org/linux-btrfs/9cdbf0ca9cdda1b4c84e15e548af7d7f9f926382.camel@intelfx.name/
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f4a9f219411f318ae60d6ff7f129082a75686c6c upstream.
Before deleting a block group that is in the list of unused block groups
(fs_info->unused_bgs), we check if the block group became used before
deleting it, as extents from it may have been allocated after it was added
to the list.
However even if the block group was not yet used, there may be tasks that
have only reserved space and have not yet allocated extents, and they
might be relying on the availability of the unused block group in order
to allocate extents. The reservation works first by increasing the
"bytes_may_use" field of the corresponding space_info object (which may
first require flushing delayed items, allocating a new block group, etc),
and only later a task does the actual allocation of extents.
For metadata we usually don't end up using all reserved space, as we are
pessimistic and typically account for the worst cases (need to COW every
single node in a path of a tree at maximum possible height, etc). For
data we usually reserve the exact amount of space we're going to allocate
later, except when using compression where we always reserve space based
on the uncompressed size, as compression is only triggered when writeback
starts so we don't know in advance how much space we'll actually need, or
if the data is compressible.
So don't delete an unused block group if the total size of its space_info
object minus the block group's size is less then the sum of used space and
space that may be used (space_info->bytes_may_use), as that means we have
tasks that reserved space and may need to allocate extents from the block
group. In this case, besides skipping the deletion, re-add the block group
to the list of unused block groups so that it may be reconsidered later,
in case the tasks that reserved space end up not needing to allocate
extents from it.
Allowing the deletion of the block group while we have reserved space, can
result in tasks failing to allocate metadata extents (-ENOSPC) while under
a transaction handle, resulting in a transaction abort, or failure during
writeback for the case of data extents.
CC: stable@vger.kernel.org # 6.0+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1693d5442c458ae8d5b0d58463b873cd879569ed upstream.
Add a helper function to determine if a block group is being used and make
use of it at btrfs_delete_unused_bgs(). This helper will also be used in
future code changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 02444f2ac26eae6385a65fcd66915084d15dffba ]
Writing sequentially to a huge file on btrfs on a SMR HDD revealed a
decline of the performance (220 MiB/s to 30 MiB/s after 500 minutes).
The performance goes down because of increased latency of the extent
allocation, which is induced by a traversing of a lot of full block groups.
So, this patch optimizes the ffe_ctl->hint_byte by choosing a block group
with sufficient size from the active block group list, which does not
contain full block groups.
After applying the patch, the performance is maintained well.
Fixes: 2eda57089ea3 ("btrfs: zoned: implement sequential extent allocation")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b271fee9a41ca1474d30639fd6cc912c9901d0f8 ]
Factor out prepare_allocation_zoned() for further extension. While at
it, optimize the if-branch a bit.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Stable-dep-of: 02444f2ac26e ("btrfs: zoned: optimize hint byte for zoned allocator")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 7081929ab2572920e94d70be3d332e5c9f97095a upstream.
If the source file descriptor to the snapshot ioctl refers to a deleted
subvolume, we get the following abort:
BTRFS: Transaction aborted (error -2)
WARNING: CPU: 0 PID: 833 at fs/btrfs/transaction.c:1875 create_pending_snapshot+0x1040/0x1190 [btrfs]
Modules linked in: pata_acpi btrfs ata_piix libata scsi_mod virtio_net blake2b_generic xor net_failover virtio_rng failover scsi_common rng_core raid6_pq libcrc32c
CPU: 0 PID: 833 Comm: t_snapshot_dele Not tainted 6.7.0-rc6 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
RIP: 0010:create_pending_snapshot+0x1040/0x1190 [btrfs]
RSP: 0018:ffffa09c01337af8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff9982053e7c78 RCX: 0000000000000027
RDX: ffff99827dc20848 RSI: 0000000000000001 RDI: ffff99827dc20840
RBP: ffffa09c01337c00 R08: 0000000000000000 R09: ffffa09c01337998
R10: 0000000000000003 R11: ffffffffb96da248 R12: fffffffffffffffe
R13: ffff99820535bb28 R14: ffff99820b7bd000 R15: ffff99820381ea80
FS: 00007fe20aadabc0(0000) GS:ffff99827dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000559a120b502f CR3: 00000000055b6000 CR4: 00000000000006f0
Call Trace:
<TASK>
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? __warn+0x81/0x130
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? report_bug+0x171/0x1a0
? handle_bug+0x3a/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? create_pending_snapshot+0x1040/0x1190 [btrfs]
create_pending_snapshots+0x92/0xc0 [btrfs]
btrfs_commit_transaction+0x66b/0xf40 [btrfs]
btrfs_mksubvol+0x301/0x4d0 [btrfs]
btrfs_mksnapshot+0x80/0xb0 [btrfs]
__btrfs_ioctl_snap_create+0x1c2/0x1d0 [btrfs]
btrfs_ioctl_snap_create_v2+0xc4/0x150 [btrfs]
btrfs_ioctl+0x8a6/0x2650 [btrfs]
? kmem_cache_free+0x22/0x340
? do_sys_openat2+0x97/0xe0
__x64_sys_ioctl+0x97/0xd0
do_syscall_64+0x46/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7fe20abe83af
RSP: 002b:00007ffe6eff1360 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fe20abe83af
RDX: 00007ffe6eff23c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000000 R09: 00007fe20ad16cd0
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe6eff13c0 R14: 00007fe20ad45000 R15: 0000559a120b6d58
</TASK>
---[ end trace 0000000000000000 ]---
BTRFS: error (device vdc: state A) in create_pending_snapshot:1875: errno=-2 No such entry
BTRFS info (device vdc: state EA): forced readonly
BTRFS warning (device vdc: state EA): Skipping commit of aborted transaction.
BTRFS: error (device vdc: state EA) in cleanup_transaction:2055: errno=-2 No such entry
This happens because create_pending_snapshot() initializes the new root
item as a copy of the source root item. This includes the refs field,
which is 0 for a deleted subvolume. The call to btrfs_insert_root()
therefore inserts a root with refs == 0. btrfs_get_new_fs_root() then
finds the root and returns -ENOENT if refs == 0, which causes
create_pending_snapshot() to abort.
Fix it by checking the source root's refs before attempting the
snapshot, but after locking subvol_sem to avoid racing with deletion.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 173431b274a9a54fc10b273b46e67f46bcf62d2e upstream.
Add extra sanity check for btrfs_ioctl_defrag_range_args::flags.
This is not really to enhance fuzzing tests, but as a preparation for
future expansion on btrfs_ioctl_defrag_range_args.
In the future we're going to add new members, allowing more fine tuning
for btrfs defrag. Without the -ENONOTSUPP error, there would be no way
to detect if the kernel supports those new defrag features.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a208b3f132b48e1f94f620024e66fea635925877 upstream.
There's a warning in btrfs_issue_discard() when the range is not aligned
to 512 bytes, originally added in 4d89d377bbb0 ("btrfs:
btrfs_issue_discard ensure offset/length are aligned to sector
boundaries"). We can't do sub-sector writes anyway so the adjustment is
the only thing that we can do and the warning is unnecessary.
CC: stable@vger.kernel.org # 4.19+
Reported-by: syzbot+4a4f1eba14eb5c3417d1@syzkaller.appspotmail.com
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f398e70dd69e6ceea71463a5380e6118f219197e upstream.
The error message should accurately reflect the size rather than the
type.
Fixes: f82d1c7ca8ae ("btrfs: tree-checker: Add EXTENT_ITEM and METADATA_ITEM check")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f03e274a8b29d1d1c1bbd7f764766cb5ca537ab7 upstream.
As clearing REF_VERIFY mount option indicates there were some errors in a
ref-verify process, a ref cache is not relevant anymore and should be
freed.
btrfs_free_ref_cache() requires REF_VERIFY option being set so call
it just before clearing the mount option.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
Reported-by: syzbot+be14ed7728594dc8bd42@syzkaller.appspotmail.com
Fixes: fd708b81d972 ("Btrfs: add a extent ref verify tool")
CC: stable@vger.kernel.org # 5.4+
Closes: https://lore.kernel.org/lkml/000000000000e5a65c05ee832054@google.com/
Reported-by: syzbot+c563a3c79927971f950f@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/lkml/0000000000007fe09705fdc6086c@google.com/
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
being deleted
commit 3324d0547861b16cf436d54abba7052e0c8aa9de upstream.
Sweet Tea spotted a race between subvolume deletion and snapshotting
that can result in the root item for the snapshot having the
BTRFS_ROOT_SUBVOL_DEAD flag set. The race is:
Thread 1 | Thread 2
----------------------------------------------|----------
btrfs_delete_subvolume |
btrfs_set_root_flags(BTRFS_ROOT_SUBVOL_DEAD)|
|btrfs_mksubvol
| down_read(subvol_sem)
| create_snapshot
| ...
| create_pending_snapshot
| copy root item from source
down_write(subvol_sem) |
This flag is only checked in send and swap activate, which this would
cause to fail mysteriously.
create_snapshot() now checks the root refs to reject a deleted
subvolume, so we can fix this by locking subvol_sem earlier so that the
BTRFS_ROOT_SUBVOL_DEAD flag and the root refs are updated atomically.
CC: stable@vger.kernel.org # 4.14+
Reported-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b18f3b60b35a8c01c9a2a0f0d6424c6d73971dc3 upstream.
The btrfs CI reported a lockdep warning as follows by running generic
generic/129.
WARNING: possible circular locking dependency detected
6.7.0-rc5+ #1 Not tainted
------------------------------------------------------
kworker/u5:5/793427 is trying to acquire lock:
ffff88813256d028 (&cache->lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x5e/0x130
but task is already holding lock:
ffff88810a23a318 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x34/0x130
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}:
...
-> #0 (&cache->lock){+.+.}-{2:2}:
...
This is because we take fs_info->zone_active_bgs_lock after a block_group's
lock in btrfs_zone_activate() while doing the opposite in other places.
Fix the issue by expanding the fs_info->zone_active_bgs_lock's critical
section and taking it before a block_group's lock.
Fixes: a7e1ac7bdc5a ("btrfs: zoned: reserve zones for an active metadata/system block group")
CC: stable@vger.kernel.org # 6.6
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f546c4282673497a06ecb6190b50ae7f6c85b02f ]
[BUG]
There is a bug report that, on a ext4-converted btrfs, scrub leads to
various problems, including:
- "unable to find chunk map" errors
BTRFS info (device vdb): scrub: started on devid 1
BTRFS critical (device vdb): unable to find chunk map for logical 2214744064 length 4096
BTRFS critical (device vdb): unable to find chunk map for logical 2214744064 length 45056
This would lead to unrepariable errors.
- Use-after-free KASAN reports:
==================================================================
BUG: KASAN: slab-use-after-free in __blk_rq_map_sg+0x18f/0x7c0
Read of size 8 at addr ffff8881013c9040 by task btrfs/909
CPU: 0 PID: 909 Comm: btrfs Not tainted 6.7.0-x64v3-dbg #11 c50636e9419a8354555555245df535e380563b2b
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 2023.11-2 12/24/2023
Call Trace:
<TASK>
dump_stack_lvl+0x43/0x60
print_report+0xcf/0x640
kasan_report+0xa6/0xd0
__blk_rq_map_sg+0x18f/0x7c0
virtblk_prep_rq.isra.0+0x215/0x6a0 [virtio_blk 19a65eeee9ae6fcf02edfad39bb9ddee07dcdaff]
virtio_queue_rqs+0xc4/0x310 [virtio_blk 19a65eeee9ae6fcf02edfad39bb9ddee07dcdaff]
blk_mq_flush_plug_list.part.0+0x780/0x860
__blk_flush_plug+0x1ba/0x220
blk_finish_plug+0x3b/0x60
submit_initial_group_read+0x10a/0x290 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
flush_scrub_stripes+0x38e/0x430 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
scrub_stripe+0x82a/0xae0 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
scrub_chunk+0x178/0x200 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
scrub_enumerate_chunks+0x4bc/0xa30 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
btrfs_scrub_dev+0x398/0x810 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
btrfs_ioctl+0x4b9/0x3020 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
__x64_sys_ioctl+0xbd/0x100
do_syscall_64+0x5d/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7f47e5e0952b
- Crash, mostly due to above use-after-free
[CAUSE]
The converted fs has the following data chunk layout:
item 2 key (FIRST_CHUNK_TREE CHUNK_ITEM 2214658048) itemoff 16025 itemsize 80
length 86016 owner 2 stripe_len 65536 type DATA|single
For above logical bytenr 2214744064, it's at the chunk end
(2214658048 + 86016 = 2214744064).
This means btrfs_submit_bio() would split the bio, and trigger endio
function for both of the two halves.
However scrub_submit_initial_read() would only expect the endio function
to be called once, not any more.
This means the first endio function would already free the bbio::bio,
leaving the bvec freed, thus the 2nd endio call would lead to
use-after-free.
[FIX]
- Make sure scrub_read_endio() only updates bits in its range
Since we may read less than 64K at the end of the chunk, we should not
touch the bits beyond chunk boundary.
- Make sure scrub_submit_initial_read() only to read the chunk range
This is done by calculating the real number of sectors we need to
read, and add sector-by-sector to the bio.
Thankfully the scrub read repair path won't need extra fixes:
- scrub_stripe_submit_repair_read()
With above fixes, we won't update error bit for range beyond chunk,
thus scrub_stripe_submit_repair_read() should never submit any read
beyond the chunk.
Reported-by: Rongrong <i@rong.moe>
Fixes: e02ee89baa66 ("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure")
Tested-by: Rongrong <i@rong.moe>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 2b0122aaa800b021e36027d7f29e206f87c761d6 upstream.
The value set as scrub_speed_max accepts size with suffixes
(k/m/g/t/p/e) but we should still validate it for trailing characters,
similar to what we do with chunk_size_store.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: David Disseldorp <ddiss@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"One more fix that verifies that the snapshot source is a root, same
check is also done in user space but should be done by the ioctl as
well"
* tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: do not allow non subvolume root targets for snapshot
|
|
Our btrfs subvolume snapshot <source> <destination> utility enforces
that <source> is the root of the subvolume, however this isn't enforced
in the kernel. Update the kernel to also enforce this limitation to
avoid problems with other users of this ioctl that don't have the
appropriate checks in place.
Reported-by: Martin Michaelis <code@mgjm.de>
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Some fixes to quota accounting code, mostly around error handling and
correctness:
- free reserves on various error paths, after IO errors or
transaction abort
- don't clear reserved range at the folio release time, it'll be
properly cleared after final write
- fix integer overflow due to int used when passing around size of
freed reservations
- fix a regression in squota accounting that missed some cases with
delayed refs"
* tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: ensure releasing squota reserve on head refs
btrfs: don't clear qgroup reserved bit in release_folio
btrfs: free qgroup pertrans reserve on transaction abort
btrfs: fix qgroup_free_reserved_data int overflow
btrfs: free qgroup reserve when ORDERED_IOERR is set
|
|
A reservation goes through a 3 step lifetime:
- generated during delalloc
- released/counted by ordered_extent allocation
- freed by running delayed ref
That third step depends on must_insert_reserved on the head ref, so the
head ref with that field set owns the reservation. Once you prepare to
run the head ref, must_insert_reserved is unset, which means that
running the ref must free the reservation, whether or not it succeeds,
or else the reservation is leaked. That results in either a risk of
spurious ENOSPC if the fs stays writeable or a warning on unmount if it
is readonly.
The existing squota code was aware of these invariants, but missed a few
cases. Improve it by adding a helper function to use in the cleanup
paths and call it from the existing early returns in running delayed
refs. This also simplifies btrfs_record_squota_delta and struct
btrfs_quota_delta.
This fixes (or at least improves the reliability of) generic/475 with
"mkfs -O squota". On my machine, that test failed ~4/10 times without
this patch and passed 100/100 times with it.
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The EXTENT_QGROUP_RESERVED bit is used to "lock" regions of the file for
duplicate reservations. That is two writes to that range in one
transaction shouldn't create two reservations, as the reservation will
only be freed once when the write finally goes down. Therefore, it is
never OK to clear that bit without freeing the associated qgroup
reserve. At this point, we don't want to be freeing the reserve, so mask
off the bit.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we abort a transaction, we never run the code that frees the pertrans
qgroup reservation. This results in warnings on unmount as that
reservation has been leaked. The leak isn't a huge issue since the fs is
read-only, but it's better to clean it up when we know we can/should. Do
it during the cleanup_transaction step of aborting.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The reserved data counter and input parameter is a u64, but we
inadvertently accumulate it in an int. Overflowing that int results in
freeing the wrong amount of data and breaking reserve accounting.
Unfortunately, this overflow rot spreads from there, as the qgroup
release/free functions rely on returning an int to take advantage of
negative values for error codes.
Therefore, the full fix is to return the "released" or "freed" amount by
a u64 argument and to return 0 or negative error code via the return
value.
Most of the call sites simply ignore the return value, though some
of them handle the error and count the returned bytes. Change all of
them accordingly.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
An ordered extent completing is a critical moment in qgroup reserve
handling, as the ownership of the reservation is handed off from the
ordered extent to the delayed ref. In the happy path we release (unlock)
but do not free (decrement counter) the reservation, and the delayed ref
drives the free. However, on an error, we don't create a delayed ref,
since there is no ref to add. Therefore, free on the error path.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few fixes and message updates:
- for simple quotas, handle the case when a snapshot is created and
the target qgroup already exists
- fix a warning when file descriptor given to send ioctl is not
writable
- fix off-by-one condition when checking chunk maps
- free pages when page array allocation fails during compression
read, other cases were handled
- fix memory leak on error handling path in ref-verify debugging
feature
- copy missing struct member 'version' in 64/32bit compat send ioctl
- tree-checker verifies inline backref ordering
- print messages to syslog on first mount and last unmount
- update error messages when reading chunk maps"
* tag 'for-6.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: send: ensure send_fd is writable
btrfs: free the allocated memory if btrfs_alloc_page_array() fails
btrfs: fix 64bit compat send ioctl arguments not initializing version member
btrfs: make error messages more clear when getting a chunk map
btrfs: fix off-by-one when checking chunk map includes logical address
btrfs: ref-verify: fix memory leaks in btrfs_ref_tree_mod()
btrfs: add dmesg output for first mount and last unmount of a filesystem
btrfs: do not abort transaction if there is already an existing qgroup
btrfs: tree-checker: add type and sequence check for inline backrefs
|
|
kernel_write() requires the caller to ensure that the file is writable.
Let's do that directly after looking up the ->send_fd.
We don't need a separate bailout path because the "out" path already
does fput() if ->send_filp is non-NULL.
This has no security impact for two reasons:
- the ioctl requires CAP_SYS_ADMIN
- __kernel_write() bails out on read-only files - but only since 5.8,
see commit a01ac27be472 ("fs: check FMODE_WRITE in __kernel_write")
Reported-and-tested-by: syzbot+12e098239d20385264d3@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=12e098239d20385264d3
Fixes: 31db9f7c23fb ("Btrfs: introduce BTRFS_IOC_SEND for btrfs send/receive")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
If btrfs_alloc_page_array() fail to allocate all pages but part of the
slots, then the partially allocated pages would be leaked in function
btrfs_submit_compressed_read().
[CAUSE]
As explicitly stated, if btrfs_alloc_page_array() returned -ENOMEM,
caller is responsible to free the partially allocated pages.
For the existing call sites, most of them are fine:
- btrfs_raid_bio::stripe_pages
Handled by free_raid_bio().
- extent_buffer::pages[]
Handled btrfs_release_extent_buffer_pages().
- scrub_stripe::pages[]
Handled by release_scrub_stripe().
But there is one exception in btrfs_submit_compressed_read(), if
btrfs_alloc_page_array() failed, we didn't cleanup the array and freed
the array pointer directly.
Initially there is still the error handling in commit dd137dd1f2d7
("btrfs: factor out allocating an array of pages"), but later in commit
544fe4a903ce ("btrfs: embed a btrfs_bio into struct compressed_bio"),
the error handling is removed, leading to the possible memory leak.
[FIX]
This patch would add back the error handling first, then to prevent such
situation from happening again, also
Make btrfs_alloc_page_array() to free the allocated pages as a extra
safety net, then we don't need to add the error handling to
btrfs_submit_compressed_read().
Fixes: 544fe4a903ce ("btrfs: embed a btrfs_bio into struct compressed_bio")
CC: stable@vger.kernel.org # 6.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When the send protocol versioning was added in 5.16 e77fbf990316
("btrfs: send: prepare for v2 protocol"), the 32/64bit compat code was
not updated (added by 2351f431f727 ("btrfs: fix send ioctl on 32bit with
64bit kernel")), missing the version struct member. The compat code is
probably rarely used, nobody reported any bugs.
Found by tool https://github.com/jirislaby/clang-struct .
Fixes: e77fbf990316 ("btrfs: send: prepare for v2 protocol")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When getting a chunk map, at btrfs_get_chunk_map(), we do some sanity
checks to verify we found a chunk map and that map found covers the
logical address the caller passed in. However the messages aren't very
clear in the sense that don't mention the issue is with a chunk map and
one of them prints the 'length' argument as if it were the end offset of
the requested range (while the in the string format we use %llu-%llu
which suggests a range, and the second %llu-%llu is actually a range for
the chunk map). So improve these two details in the error messages.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
At btrfs_get_chunk_map() we get the extent map for the chunk that contains
the given logical address stored in the 'logical' argument. Then we do
sanity checks to verify the extent map contains the logical address. One
of these checks verifies if the extent map covers a range with an end
offset behind the target logical address - however this check has an
off-by-one error since it will consider an extent map whose start offset
plus its length matches the target logical address as inclusive, while
the fact is that the last byte it covers is behind the target logical
address (by 1).
So fix this condition by using '<=' rather than '<' when comparing the
extent map's "start + length" against the target logical address.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In btrfs_ref_tree_mod(), when !parent 're' was allocated through
kmalloc(). In the following code, if an error occurs, the execution will
be redirected to 'out' or 'out_unlock' and the function will be exited.
However, on some of the paths, 're' are not deallocated and may lead to
memory leaks.
For example: lookup_block_entry() for 'be' returns NULL, the out label
will be invoked. During that flow ref and 'ra' are freed but not 're',
which can potentially lead to a memory leak.
CC: stable@vger.kernel.org # 5.10+
Reported-and-tested-by: syzbot+d66de4cbf532749df35f@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=d66de4cbf532749df35f
Signed-off-by: Bragatheswaran Manickavel <bragathemanick0908@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is a feature request to add dmesg output when unmounting a btrfs.
There are several alternative methods to do the same thing, but with
their own problems:
- Use eBPF to watch btrfs_put_super()/open_ctree()
Not end user friendly, they have to dip their head into the source
code.
- Watch for directory /sys/fs/<uuid>/
This is way more simple, but still requires some simple device -> uuid
lookups. And a script needs to use inotify to watch /sys/fs/.
Compared to all these, directly outputting the information into dmesg
would be the most simple one, with both device and UUID included.
And since we're here, also add the output when mounting a filesystem for
the first time for parity. A more fine grained monitoring of subvolume
mounts should be done by another layer, like audit.
Now mounting a btrfs with all default mkfs options would look like this:
[81.906566] BTRFS info (device dm-8): first mount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2
[81.907494] BTRFS info (device dm-8): using crc32c (crc32c-intel) checksum algorithm
[81.908258] BTRFS info (device dm-8): using free space tree
[81.912644] BTRFS info (device dm-8): auto enabling async discard
[81.913277] BTRFS info (device dm-8): checking UUID tree
[91.668256] BTRFS info (device dm-8): last unmount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2
CC: stable@vger.kernel.org # 5.4+
Link: https://github.com/kdave/btrfs-progs/issues/689
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Syzbot reported a regression that after commit 6ed05643ddb1 ("btrfs:
create qgroup earlier in snapshot creation") we can trigger transaction
abort during snapshot creation:
BTRFS: Transaction aborted (error -17)
WARNING: CPU: 0 PID: 5057 at fs/btrfs/transaction.c:1778 create_pending_snapshot+0x25f4/0x2b70 fs/btrfs/transaction.c:1778
Modules linked in:
CPU: 0 PID: 5057 Comm: syz-executor225 Not tainted 6.6.0-syzkaller-15365-g305230142ae0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
RIP: 0010:create_pending_snapshot+0x25f4/0x2b70 fs/btrfs/transaction.c:1778
Call Trace:
<TASK>
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1967
btrfs_commit_transaction+0xf1c/0x3730 fs/btrfs/transaction.c:2440
create_snapshot+0x4a5/0x7e0 fs/btrfs/ioctl.c:845
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:995
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1041
__btrfs_ioctl_snap_create+0x344/0x460 fs/btrfs/ioctl.c:1294
btrfs_ioctl_snap_create+0x13c/0x190 fs/btrfs/ioctl.c:1321
btrfs_ioctl+0xbbf/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7f2f791127b9
</TASK>
[CAUSE]
The error number is -EEXIST, which can happen for qgroup if there is
already an existing qgroup and then we're trying to create a snapshot
for it.
[FIX]
In that case, we can continue creating the snapshot, although it may
lead to qgroup inconsistency, it's not so critical to abort the current
transaction.
So in this case, we can just ignore the non-critical errors, mostly -EEXIST
(there is already a qgroup).
Reported-by: syzbot+4d81015bc10889fd12ea@syzkaller.appspotmail.com
Fixes: 6ed05643ddb1 ("btrfs: create qgroup earlier in snapshot creation")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
There is a bug report that ntfs2btrfs had a bug that it can lead to
transaction abort and the filesystem flips to read-only.
[CAUSE]
For inline backref items, kernel has a strict requirement for their
ordered, they must follow the following rules:
- All btrfs_extent_inline_ref::type should be in an ascending order
- Within the same type, the items should follow a descending order by
their sequence number
For EXTENT_DATA_REF type, the sequence number is result from
hash_extent_data_ref().
For other types, their sequence numbers are
btrfs_extent_inline_ref::offset.
Thus if there is any code not following above rules, the resulted
inline backrefs can prevent the kernel to locate the needed inline
backref and lead to transaction abort.
[FIX]
Ntrfs2btrfs has already fixed the problem, and btrfs-progs has added the
ability to detect such problems.
For kernel, let's be more noisy and be more specific about the order, so
that the next time kernel hits such problem we would reject it in the
first place, without leading to transaction abort.
Link: https://github.com/kdave/btrfs-progs/pull/622
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix potential overflow in returned value from SEARCH_TREE_V2
ioctl on 32bit architecture
- zoned mode fixes:
- drop unnecessary write pointer check for RAID0/RAID1/RAID10
profiles, now it works because of raid-stripe-tree
- wait for finishing the zone when direct IO needs a new
allocation
- simple quota fixes:
- pass correct owning root pointer when cleaning up an
aborted transaction
- fix leaking some structures when processing delayed refs
- change key type number of BTRFS_EXTENT_OWNER_REF_KEY,
reorder it before inline refs that are supposed to be
sorted, keeping the original number would complicate a lot
of things; this change needs an updated version of
btrfs-progs to work and filesystems need to be recreated
- fix error pointer dereference after failure to allocate fs
devices
- fix race between accounting qgroup extents and removing a
qgroup
* tag 'for-6.7-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: make OWNER_REF_KEY type value smallest among inline refs
btrfs: fix qgroup record leaks when using simple quotas
btrfs: fix race between accounting qgroup extents and removing a qgroup
btrfs: fix error pointer dereference after failure to allocate fs devices
btrfs: make found_logical_ret parameter mandatory for function queue_scrub_stripe()
btrfs: get correct owning_root when dropping snapshot
btrfs: zoned: wait for data BG to be finished on direct IO allocation
btrfs: zoned: drop no longer valid write pointer check
btrfs: directly return 0 on no error code in btrfs_insert_raid_extent()
btrfs: use u64 for buffer sizes in the tree search ioctls
|
|
When using simple quotas we are not supposed to allocate qgroup records
when adding delayed references. However we allocate them if either mode
of quotas is enabled (the new simple one or the old one), but then we
never free them because running the accounting, which frees the records,
is only run when using the old quotas (at btrfs_qgroup_account_extents()),
resulting in a memory leak of the records allocated when adding delayed
references.
Fix this by allocating the records only if the old quotas mode is enabled.
Also fix btrfs_qgroup_trace_extent_nolock() to return 1 if the old quotas
mode is not enabled - meaning the caller has to free the record.
Fixes: 182940f4f4db ("btrfs: qgroup: add new quota mode for simple quotas")
Reported-by: syzbot+d3ddc6dcc6386dea398b@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000004769106097f9a34@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When doing qgroup accounting for an extent, we take the spinlock
fs_info->qgroup_lock and then add qgroups to the local list (iterator)
named "qgroups". These qgroups are found in the fs_info->qgroup_tree
rbtree. After we're done, we unlock fs_info->qgroup_lock and then call
qgroup_iterator_nested_clean(), which will iterate over all the qgroups
added to the local list "qgroups" and then delete them from the list.
Deleting a qgroup from the list can however result in a use-after-free
if a qgroup remove operation happens after we unlock fs_info->qgroup_lock
and before or while we are at qgroup_iterator_nested_clean().
Fix this by calling qgroup_iterator_nested_clean() while still holding
the lock fs_info->qgroup_lock - we don't need it under the 'out' label
since before taking the lock the "qgroups" list is always empty. This
guarantees safety because btrfs_remove_qgroup() takes that lock before
removing a qgroup from the rbtree fs_info->qgroup_tree.
This was reported by syzbot with the following stack traces:
BUG: KASAN: slab-use-after-free in __list_del_entry_valid_or_report+0x2f/0x130 lib/list_debug.c:49
Read of size 8 at addr ffff888027e420b0 by task kworker/u4:3/48
CPU: 1 PID: 48 Comm: kworker/u4:3 Not tainted 6.6.0-syzkaller-10396-g4652b8e4f3ff #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
Workqueue: btrfs-qgroup-rescan btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:364 [inline]
print_report+0x163/0x540 mm/kasan/report.c:475
kasan_report+0x175/0x1b0 mm/kasan/report.c:588
__list_del_entry_valid_or_report+0x2f/0x130 lib/list_debug.c:49
__list_del_entry_valid include/linux/list.h:124 [inline]
__list_del_entry include/linux/list.h:215 [inline]
list_del_init include/linux/list.h:287 [inline]
qgroup_iterator_nested_clean fs/btrfs/qgroup.c:2623 [inline]
btrfs_qgroup_account_extent+0x18b/0x1150 fs/btrfs/qgroup.c:2883
qgroup_rescan_leaf fs/btrfs/qgroup.c:3543 [inline]
btrfs_qgroup_rescan_worker+0x1078/0x1c60 fs/btrfs/qgroup.c:3604
btrfs_work_helper+0x37c/0xbd0 fs/btrfs/async-thread.c:315
process_one_work kernel/workqueue.c:2630 [inline]
process_scheduled_works+0x90f/0x1400 kernel/workqueue.c:2703
worker_thread+0xa5f/0xff0 kernel/workqueue.c:2784
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
</TASK>
Allocated by task 6355:
kasan_save_stack mm/kasan/common.c:45 [inline]
kasan_set_track+0x4f/0x70 mm/kasan/common.c:52
____kasan_kmalloc mm/kasan/common.c:374 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:383
kmalloc include/linux/slab.h:600 [inline]
kzalloc include/linux/slab.h:721 [inline]
btrfs_quota_enable+0xee9/0x2060 fs/btrfs/qgroup.c:1209
btrfs_ioctl_quota_ctl+0x143/0x190 fs/btrfs/ioctl.c:3705
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Freed by task 6355:
kasan_save_stack mm/kasan/common.c:45 [inline]
kasan_set_track+0x4f/0x70 mm/kasan/common.c:52
kasan_save_free_info+0x28/0x40 mm/kasan/generic.c:522
____kasan_slab_free+0xd6/0x120 mm/kasan/common.c:236
kasan_slab_free include/linux/kasan.h:164 [inline]
slab_free_hook mm/slub.c:1800 [inline]
slab_free_freelist_hook mm/slub.c:1826 [inline]
slab_free mm/slub.c:3809 [inline]
__kmem_cache_free+0x263/0x3a0 mm/slub.c:3822
btrfs_remove_qgroup+0x764/0x8c0 fs/btrfs/qgroup.c:1787
btrfs_ioctl_qgroup_create+0x185/0x1e0 fs/btrfs/ioctl.c:3811
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Last potentially related work creation:
kasan_save_stack+0x3f/0x60 mm/kasan/common.c:45
__kasan_record_aux_stack+0xad/0xc0 mm/kasan/generic.c:492
__call_rcu_common kernel/rcu/tree.c:2667 [inline]
call_rcu+0x167/0xa70 kernel/rcu/tree.c:2781
kthread_worker_fn+0x4ba/0xa90 kernel/kthread.c:823
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
Second to last potentially related work creation:
kasan_save_stack+0x3f/0x60 mm/kasan/common.c:45
__kasan_record_aux_stack+0xad/0xc0 mm/kasan/generic.c:492
__call_rcu_common kernel/rcu/tree.c:2667 [inline]
call_rcu+0x167/0xa70 kernel/rcu/tree.c:2781
kthread_worker_fn+0x4ba/0xa90 kernel/kthread.c:823
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
The buggy address belongs to the object at ffff888027e42000
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 176 bytes inside of
freed 512-byte region [ffff888027e42000, ffff888027e42200)
The buggy address belongs to the physical page:
page:ffffea00009f9000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x27e40
head:ffffea00009f9000 order:2 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0xfff00000000840(slab|head|node=0|zone=1|lastcpupid=0x7ff)
page_type: 0xffffffff()
raw: 00fff00000000840 ffff888012c41c80 ffffea0000a5ba00 dead000000000002
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 2, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 4514, tgid 4514 (udevadm), ts 24598439480, free_ts 23755696267
set_page_owner include/linux/page_owner.h:31 [inline]
post_alloc_hook+0x1e6/0x210 mm/page_alloc.c:1536
prep_new_page mm/page_alloc.c:1543 [inline]
get_page_from_freelist+0x31db/0x3360 mm/page_alloc.c:3170
__alloc_pages+0x255/0x670 mm/page_alloc.c:4426
alloc_slab_page+0x6a/0x160 mm/slub.c:1870
allocate_slab mm/slub.c:2017 [inline]
new_slab+0x84/0x2f0 mm/slub.c:2070
___slab_alloc+0xc85/0x1310 mm/slub.c:3223
__slab_alloc mm/slub.c:3322 [inline]
__slab_alloc_node mm/slub.c:3375 [inline]
slab_alloc_node mm/slub.c:3468 [inline]
__kmem_cache_alloc_node+0x19d/0x270 mm/slub.c:3517
kmalloc_trace+0x2a/0xe0 mm/slab_common.c:1098
kmalloc include/linux/slab.h:600 [inline]
kzalloc include/linux/slab.h:721 [inline]
kernfs_fop_open+0x3e7/0xcc0 fs/kernfs/file.c:670
do_dentry_open+0x8fd/0x1590 fs/open.c:948
do_open fs/namei.c:3622 [inline]
path_openat+0x2845/0x3280 fs/namei.c:3779
do_filp_open+0x234/0x490 fs/namei.c:3809
do_sys_openat2+0x13e/0x1d0 fs/open.c:1440
do_sys_open fs/open.c:1455 [inline]
__do_sys_openat fs/open.c:1471 [inline]
__se_sys_openat fs/open.c:1466 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1466
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
page last free stack trace:
reset_page_owner include/linux/page_owner.h:24 [inline]
free_pages_prepare mm/page_alloc.c:1136 [inline]
free_unref_page_prepare+0x8c3/0x9f0 mm/page_alloc.c:2312
free_unref_page+0x37/0x3f0 mm/page_alloc.c:2405
discard_slab mm/slub.c:2116 [inline]
__unfreeze_partials+0x1dc/0x220 mm/slub.c:2655
put_cpu_partial+0x17b/0x250 mm/slub.c:2731
__slab_free+0x2b6/0x390 mm/slub.c:3679
qlink_free mm/kasan/quarantine.c:166 [inline]
qlist_free_all+0x75/0xe0 mm/kasan/quarantine.c:185
kasan_quarantine_reduce+0x14b/0x160 mm/kasan/quarantine.c:292
__kasan_slab_alloc+0x23/0x70 mm/kasan/common.c:305
kasan_slab_alloc include/linux/kasan.h:188 [inline]
slab_post_alloc_hook+0x67/0x3d0 mm/slab.h:762
slab_alloc_node mm/slub.c:3478 [inline]
slab_alloc mm/slub.c:3486 [inline]
__kmem_cache_alloc_lru mm/slub.c:3493 [inline]
kmem_cache_alloc+0x104/0x2c0 mm/slub.c:3502
getname_flags+0xbc/0x4f0 fs/namei.c:140
do_sys_openat2+0xd2/0x1d0 fs/open.c:1434
do_sys_open fs/open.c:1455 [inline]
__do_sys_openat fs/open.c:1471 [inline]
__se_sys_openat fs/open.c:1466 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1466
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Memory state around the buggy address:
ffff888027e41f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888027e42000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff888027e42080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888027e42100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888027e42180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Reported-by: syzbot+e0b615318f8fcfc01ceb@syzkaller.appspotmail.com
Fixes: dce28769a33a ("btrfs: qgroup: use qgroup_iterator_nested to in qgroup_update_refcnt()")
CC: stable@vger.kernel.org # 6.6
Link: https://lore.kernel.org/linux-btrfs/00000000000091a5b2060936bf6d@google.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
At device_list_add() we allocate a btrfs_fs_devices structure and then
before checking if the allocation failed (pointer is ERR_PTR(-ENOMEM)),
we dereference the error pointer in a memcpy() argument if the feature
BTRFS_FEATURE_INCOMPAT_METADATA_UUID is enabled.
Fix this by checking for an allocation error before trying the memcpy().
Fixes: f7361d8c3fc3 ("btrfs: sipmlify uuid parameters of alloc_fs_devices()")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
queue_scrub_stripe()
[BUG]
There is a compilation warning reported on commit ae76d8e3e135 ("btrfs:
scrub: fix grouping of read IO"), where gcc (14.0.0 20231022 experimental)
is reporting the following uninitialized variable:
fs/btrfs/scrub.c: In function ‘scrub_simple_mirror.isra’:
fs/btrfs/scrub.c:2075:29: error: ‘found_logical’ may be used uninitialized [-Werror=maybe-uninitialized[https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmaybe-uninitialized]]
2075 | cur_logical = found_logical + BTRFS_STRIPE_LEN;
fs/btrfs/scrub.c:2040:21: note: ‘found_logical’ was declared here
2040 | u64 found_logical;
| ^~~~~~~~~~~~~
[CAUSE]
This is a false alert, as @found_logical is passed as parameter
@found_logical_ret of function queue_scrub_stripe().
As long as queue_scrub_stripe() returned 0, we would update
@found_logical_ret. And if queue_scrub_stripe() returned >0 or <0, the
caller would not utilized @found_logical, thus there should be nothing
wrong.
Although the triggering gcc is still experimental, it looks like the
extra check on "if (found_logical_ret)" can sometimes confuse the
compiler.
Meanwhile the only caller of queue_scrub_stripe() is always passing a
valid pointer, there is no need for such check at all.
[FIX]
Although the report itself is a false alert, we can still make it more
explicit by:
- Replace the check for @found_logical_ret with ASSERT()
- Initialize @found_logical to U64_MAX
- Add one extra ASSERT() to make sure @found_logical got updated
Link: https://lore.kernel.org/linux-btrfs/87fs1x1p93.fsf@gentoo.org/
Fixes: ae76d8e3e135 ("btrfs: scrub: fix grouping of read IO")
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Dave reported a bug where we were aborting the transaction while trying
to cleanup the squota reservation for an extent.
This turned out to be because we're doing btrfs_header_owner(next) in
do_walk_down when we decide to free the block. However in this code
block we haven't explicitly read next, so it could be stale. We would
then get whatever garbage happened to be in the pages at this point.
The commit that introduced that is "btrfs: track owning root in
btrfs_ref".
Fix this by saving the owner_root when we do the
btrfs_lookup_extent_info(). We always do this in do_walk_down, it is
how we make the decision of whether or not to delete the block. This is
cheap because we've already done the extent item lookup at this point,
so it's straightforward to just grab the owner root as well.
Then we can use this when deleting the metadata block without needing to
force a read of the extent buffer to find the owner.
This fixes the problem that Dave reported.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Running the fio command below on a ZNS device results in "Resource
temporarily unavailable" error.
$ sudo fio --name=w --directory=/mnt --filesize=1GB --bs=16MB --numjobs=16 \
--rw=write --ioengine=libaio --iodepth=128 --direct=1
fio: io_u error on file /mnt/w.2.0: Resource temporarily unavailable: write offset=117440512, buflen=16777216
fio: io_u error on file /mnt/w.2.0: Resource temporarily unavailable: write offset=134217728, buflen=16777216
...
This happens because -EAGAIN error returned from btrfs_reserve_extent()
called from btrfs_new_extent_direct() is spilling over to the userland.
btrfs_reserve_extent() returns -EAGAIN when there is no active zone
available. Then, the caller should wait for some other on-going IO to
finish a zone and retry the allocation.
This logic is already implemented for buffered write in cow_file_range(),
but it is missing for the direct IO counterpart. Implement the same logic
for it.
Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Fixes: 2ce543f47843 ("btrfs: zoned: wait until zone is finished when allocation didn't progress")
CC: stable@vger.kernel.org # 6.1+
Tested-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is a check of the write pointer vs the zone size to reject an invalid
write pointer. However, as of now, we have RAID0/RAID10 on the zoned
mode, we can have a block group whose size is larger than the zone size.
As an equivalent check against the block group's zone_capacity is already
there, we can just drop this invalid check.
Fixes: 568220fa9657 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's more obvious to return a literal zero instead of "return ret;".
Plus Smatch complains that ret could be uninitialized if the
ordered_extent->bioc_list list is empty and this silences that warning.
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|