Age | Commit message (Collapse) | Author |
|
[ Upstream commit bff5baf8aa37a97293725a16c03f49872249c07e ]
The setting of return code ret should be based on the error code
passed into function end_extent_writepage and not on ret. Thanks
to Liu Bo for spotting this mistake in the original fix I submitted.
Detected by CoverityScan, CID#1414312 ("Logically dead code")
Fixes: 5dca6eea91653e ("Btrfs: mark mapping with error flag to report errors to userspace")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0dde10bed2c44a4024eb446cc72fe4e0cb97ec06 upstream.
There is no need for the extra pair of parentheses, remove it. This
fixes the following warning when building with clang:
fs/btrfs/tree-log.c:3694:10: warning: equality comparison with extraneous
parentheses [-Wparentheses-equality]
if ((i == (nr - 1)))
~~^~~~~~~~~~~
Also remove the unnecessary parentheses around the substraction.
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: David Sterba <dsterba@suse.com>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit be2d253cc98244765323a7c94cc1ac5cd5a17072 ]
If the call to btrfs_qgroup_reserve_data() failed, we were leaking an
extent map structure. The failure can happen either due to an -ENOMEM
condition or, when quotas are enabled, due to -EDQUOT for example.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e1cbfd7bf6dabdac561c75d08357571f44040a45 ]
Normally we don't have inline extents followed by regular extents, but
there's currently at least one harmless case where this happens. For
example, when the page size is 4Kb and compression is enabled:
$ mkfs.btrfs -f /dev/sdb
$ mount -o compress /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xaa 0 4K" -c "fsync" /mnt/foobar
$ xfs_io -c "pwrite -S 0xbb 8K 4K" -c "fsync" /mnt/foobar
In this case we get a compressed inline extent, representing 4Kb of
data, followed by a hole extent and then a regular data extent. The
inline extent was not expanded/converted to a regular extent exactly
because it represents 4Kb of data. This does not cause any apparent
problem (such as the issue solved by commit e1699d2d7bf6
("btrfs: add missing memset while reading compressed inline extents"))
except trigger an unexpected case in the incremental send code path
that makes us issue an operation to write a hole when it's not needed,
resulting in more writes at the receiver and wasting space at the
receiver.
So teach the incremental send code to deal with this particular case.
The issue can be currently triggered by running fstests btrfs/137 with
compression enabled (MOUNT_OPTIONS="-o compress" ./check btrfs/137).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1c81ba237bcecad9bc885a1ddcf02d725ea38482 ]
When using compression, if we fail to insert an inline extent we
incorrectly end up attempting to free the reserved data space twice,
once through extent_clear_unlock_delalloc(), because we pass it the
flag EXTENT_DO_ACCOUNTING, and once through a direct call to
btrfs_free_reserved_data_space_noquota(). This results in a trace
like the following:
[ 834.576240] ------------[ cut here ]------------
[ 834.576825] WARNING: CPU: 2 PID: 486 at fs/btrfs/extent-tree.c:4316 btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs]
[ 834.579501] Modules linked in: btrfs crc32c_generic xor raid6_pq ppdev i2c_piix4 acpi_cpufreq psmouse tpm_tis parport_pc pcspkr serio_raw tpm_tis_core sg parport evdev i2c_core tpm button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio scsi_mod e1000 floppy [last unloaded: btrfs]
[ 834.592116] CPU: 2 PID: 486 Comm: kworker/u32:4 Not tainted 4.10.0-rc8-btrfs-next-37+ #2
[ 834.593316] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 834.595273] Workqueue: btrfs-delalloc btrfs_delalloc_helper [btrfs]
[ 834.596103] Call Trace:
[ 834.596103] dump_stack+0x67/0x90
[ 834.596103] __warn+0xc2/0xdd
[ 834.596103] warn_slowpath_null+0x1d/0x1f
[ 834.596103] btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs]
[ 834.596103] compress_file_range.constprop.42+0x2fa/0x3fc [btrfs]
[ 834.596103] ? submit_compressed_extents+0x3a7/0x3a7 [btrfs]
[ 834.596103] async_cow_start+0x32/0x4d [btrfs]
[ 834.596103] btrfs_scrubparity_helper+0x187/0x3e7 [btrfs]
[ 834.596103] btrfs_delalloc_helper+0xe/0x10 [btrfs]
[ 834.596103] process_one_work+0x273/0x4e4
[ 834.596103] worker_thread+0x1eb/0x2ca
[ 834.596103] ? rescuer_thread+0x2b6/0x2b6
[ 834.596103] kthread+0x100/0x108
[ 834.596103] ? __list_del_entry+0x22/0x22
[ 834.596103] ret_from_fork+0x2e/0x40
[ 834.611656] ---[ end trace 719902fe6bdef08f ]---
So fix this by not calling directly btrfs_free_reserved_data_space_noquota()
if an error happened.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 14506127979a5a3d0c5d9b4cc76ce9d4ec23b717 ]
If your filesystem has, eg, data:raid0 metadata:raid1, and you run "btrfs
balance -dconvert=raid1", the meta.target field will be uninitialized.
That's otherwise ok, as it's unused except for this warning.
Thus, let's use the existing set of raid levels for the comparison.
As a side effect, non-convert balances will now nag about data>metadata.
Signed-off-by: Adam Borowski <kilobyte@angband.pl>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fd649f10c3d21ee9d7542c609f29978bdf73ab94 upstream.
Commit 4fde46f0cc71 ("Btrfs: free the stale device") introduced
btrfs_free_stale_device which iterates the device lists for all
registered btrfs filesystems and deletes those devices which aren't
mounted. In a btrfs_devices structure has only 1 device attached to it
and it is unused then btrfs_free_stale_devices will proceed to also free
the btrfs_fs_devices struct itself. Currently this leads to a use after
free since list_for_each_entry will try to perform a check on the
already freed memory to see if it has to terminate the loop.
The fix is to use 'break' when we know we are freeing the current
fs_devs.
Fixes: 4fde46f0cc71 ("Btrfs: free the stale device")
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 92e222df7b8f05c565009c7383321b593eca488b upstream.
In case of using DUP, we search for enough unallocated disk space on a
device to hold two stripes.
The devices_info[ndevs-1].max_avail that holds the amount of unallocated
space found is directly assigned to stripe_size, while it's actually
twice the stripe size.
Later on in the code, an unconditional division of stripe_size by
dev_stripes corrects the value, but in the meantime there's a check to
see if the stripe_size does not exceed max_chunk_size. Since during this
check stripe_size is twice the amount as intended, the check will reduce
the stripe_size to max_chunk_size if the actual correct to be used
stripe_size is more than half the amount of max_chunk_size.
The unconditional division later tries to correct stripe_size, but will
actually make sure we can't allocate more than half the max_chunk_size.
Fix this by moving the division by dev_stripes before the max chunk size
check, so it always contains the right value, instead of putting a duct
tape division in further on to get it fixed again.
Since in all other cases than DUP, dev_stripes is 1, this change only
affects DUP.
Other attempts in the past were made to fix this:
* 37db63a400 "Btrfs: fix max chunk size check in chunk allocator" tried
to fix the same problem, but still resulted in part of the code acting
on a wrongly doubled stripe_size value.
* 86db25785a "Btrfs: fix max chunk size on raid5/6" unintentionally
broke this fix again.
The real problem was already introduced with the rest of the code in
73c5de0051.
The user visible result however will be that the max chunk size for DUP
will suddenly double, while it's actually acting according to the limits
in the code again like it was 5 years ago.
Reported-by: Naohiro Aota <naohiro.aota@wdc.com>
Link: https://www.spinics.net/lists/linux-btrfs/msg69752.html
Fixes: 73c5de0051 ("btrfs: quasi-round-robin for chunk allocation")
Fixes: 86db25785a ("Btrfs: fix max chunk size on raid5/6")
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d7d824966530acfe32b94d1ed672e6fe1638cd68 upstream.
When changing a file's acl mask, btrfs_set_acl() will first set the
group bits of i_mode to the value of the mask, and only then set the
actual extended attribute representing the new acl.
If the second part fails (due to lack of space, for example) and the
file had no acl attribute to begin with, the system will from now on
assume that the mask permission bits are actual group permission bits,
potentially granting access to the wrong users.
Prevent this by restoring the original mode bits if __btrfs_set_acl
fails.
Signed-off-by: Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c8bcbfbd239ed60a6562964b58034ac8a25f4c31 ]
The name char array passed to btrfs_search_path_in_tree is of size
BTRFS_INO_LOOKUP_PATH_MAX (4080). So the actual accessible char indexes
are in the range of [0, 4079]. Currently the code uses the define but this
represents an off-by-one.
Implications:
Size of btrfs_ioctl_ino_lookup_args is 4096, so the new byte will be
written to extra space, not some padding that could be provided by the
allocator.
btrfs-progs store the arguments on stack, but kernel does own copy of
the ioctl buffer and the off-by-one overwrite does not affect userspace,
but the ending 0 might be lost.
Kernel ioctl buffer is allocated dynamically so we're overwriting
somebody else's memory, and the ioctl is privileged if args.objectid is
not 256. Which is in most cases, but resolving a subvolume stored in
another directory will trigger that path.
Before this patch the buffer was one byte larger, but then the -1 was
not added.
Fixes: ac8e9819d71f907 ("Btrfs: add search and inode lookup ioctls")
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ added implications ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 900c9981680067573671ecc5cbfa7c5770be3a40 upstream.
The highest objectid, which is assigned to new inode, is decided at
the time of initializing fs roots. However, in cases where log replay
gets processed, the btree which fs root owns might be changed, so we
have to search it again for the highest objectid, otherwise creating
new inode would end up with -EEXIST.
cc: <stable@vger.kernel.org> v4.4-rc6+
Fixes: f32e48e92596 ("Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots")
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e8f1bc1493855e32b7a2a019decc3c353d94daf6 upstream.
This regression is introduced in
commit 3d48d9810de4 ("btrfs: Handle uninitialised inode eviction").
There are two problems,
a) it is ->destroy_inode() that does the final free on inode, not
->evict_inode(),
b) clear_inode() must be called before ->evict_inode() returns.
This could end up hitting BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
in evict() because I_CLEAR is set in clear_inode().
Fixes: commit 3d48d9810de4 ("btrfs: Handle uninitialised inode eviction")
Cc: <stable@vger.kernel.org> # v4.7-rc6+
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 55237a5f2431a72435e3ed39e4306e973c0446b7 upstream.
It's possible that btrfs_sync_log() bails out after one of the two
btrfs_write_marked_extents() which convert extent state's state bit into
EXTENT_NEED_WAIT from EXTENT_DIRTY/EXTENT_NEW, however only EXTENT_DIRTY
and EXTENT_NEW are searched by free_log_tree() so that those extent states
with EXTENT_NEED_WAIT lead to memory leak.
cc: <stable@vger.kernel.org>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1846430c24d66e85cc58286b3319c82cd54debb2 upstream.
In cases that the whole fs flips into readonly status due to failures in
critical sections, then log tree's blocks are still dirty, and this leads
to a crash during umount time, the crash is about use-after-free,
umount
-> close_ctree
-> stop workers
-> iput(btree_inode)
-> iput_final
-> write_inode_now
-> ...
-> queue job on stop'd workers
cc: <stable@vger.kernel.org> v3.12+
Fixes: 681ae50917df ("Btrfs: cleanup reserved space when freeing tree log on error")
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e89166990f11c3f21e1649d760dd35f9e410321c upstream.
@cur_offset is not set back to what it should be (@cow_start) if
btrfs_next_leaf() returns something wrong, and the range [cow_start,
cur_offset) remains locked forever.
cc: <stable@vger.kernel.org>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f3038ee3a3f1017a1cbe9907e31fa12d366c5dcb upstream.
This function was introduced by 247e743cbe6e ("Btrfs: Use async helpers
to deal with pages that have been improperly dirtied") and it didn't do
any error handling then. This function might very well fail in ENOMEM
situation, yet it's not handled, this could lead to inconsistent state.
So let's handle the failure by setting the mapping error bit.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit b77000ed558daa3bef0899d29bf171b8c9b5e6a8 ]
If we fail to prepare our pages for whatever reason (out of memory in
our case) we need to make sure to drop the block_group->data_rwsem,
otherwise hilarity ensues.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add label and use existing unlocking code ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 457ae7268b29c33dee1c0feb143a15f6029d177b ]
This isn't super serious because you need CAP_ADMIN to run this code.
I added this integer overflow check last year but apparently I am
rubbish at writing integer overflow checks... There are two issues.
First, access_ok() works on unsigned long type and not u64 so on 32 bit
systems the access_ok() could be checking a truncated size. The other
issue is that we should be using a stricter limit so we don't overflow
the kzalloc() setting ctx->clone_roots later in the function after the
access_ok():
alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
Fixes: f5ecec3ce21f ("btrfs: send: silence an integer overflow warning")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ added comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9ca2e97fa3c3216200afe35a3b111ec51cc796d2 ]
If 'btrfs_alloc_path()' fails, we must free the resources already
allocated, as done in the other error handling paths in this function.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e1699d2d7bf6e6cce3e1baff19f9dd4595a58664 ]
This is a story about 4 distinct (and very old) btrfs bugs.
Commit c8b978188c ("Btrfs: Add zlib compression support") added
three data corruption bugs for inline extents (bugs #1-3).
Commit 93c82d5750 ("Btrfs: zero page past end of inline file items")
fixed bug #1: uncompressed inline extents followed by a hole and more
extents could get non-zero data in the hole as they were read. The fix
was to add a memset in btrfs_get_extent to zero out the hole.
Commit 166ae5a418 ("btrfs: fix inline compressed read err corruption")
fixed bug #2: compressed inline extents which contained non-zero bytes
might be replaced with zero bytes in some cases. This patch removed an
unhelpful memset from uncompress_inline, but the case where memset is
required was missed.
There is also a memset in the decompression code, but this only covers
decompressed data that is shorter than the ram_bytes from the extent
ref record. This memset doesn't cover the region between the end of the
decompressed data and the end of the page. It has also moved around a
few times over the years, so there's no single patch to refer to.
This patch fixes bug #3: compressed inline extents followed by a hole
and more extents could get non-zero data in the hole as they were read
(i.e. bug #3 is the same as bug #1, but s/uncompressed/compressed/).
The fix is the same: zero out the hole in the compressed case too,
by putting a memset back in uncompress_inline, but this time with
correct parameters.
The last and oldest bug, bug #0, is the cause of the offending inline
extent/hole/extent pattern. Bug #0 is a subtle and mostly-harmless quirk
of behavior somewhere in the btrfs write code. In a few special cases,
an inline extent and hole are allowed to persist where they normally
would be combined with later extents in the file.
A fast reproducer for bug #0 is presented below. A few offending extents
are also created in the wild during large rsync transfers with the -S
flag. A Linux kernel build (git checkout; make allyesconfig; make -j8)
will produce a handful of offending files as well. Once an offending
file is created, it can present different content to userspace each
time it is read.
Bug #0 is at least 4 and possibly 8 years old. I verified every vX.Y
kernel back to v3.5 has this behavior. There are fossil records of this
bug's effects in commits all the way back to v2.6.32. I have no reason
to believe bug #0 wasn't present at the beginning of btrfs compression
support in v2.6.29, but I can't easily test kernels that old to be sure.
It is not clear whether bug #0 is worth fixing. A fix would likely
require injecting extra reads into currently write-only paths, and most
of the exceptional cases caused by bug #0 are already handled now.
Whether we like them or not, bug #0's inline extents followed by holes
are part of the btrfs de-facto disk format now, and we need to be able
to read them without data corruption or an infoleak. So enough about
bug #0, let's get back to bug #3 (this patch).
An example of on-disk structure leading to data corruption found in
the wild:
item 61 key (606890 INODE_ITEM 0) itemoff 9662 itemsize 160
inode generation 50 transid 50 size 47424 nbytes 49141
block group 0 mode 100644 links 1 uid 0 gid 0
rdev 0 flags 0x0(none)
item 62 key (606890 INODE_REF 603050) itemoff 9642 itemsize 20
inode ref index 3 namelen 10 name: DB_File.so
item 63 key (606890 EXTENT_DATA 0) itemoff 8280 itemsize 1362
inline extent data size 1341 ram 4085 compress(zlib)
item 64 key (606890 EXTENT_DATA 4096) itemoff 8227 itemsize 53
extent data disk byte 5367308288 nr 20480
extent data offset 0 nr 45056 ram 45056
extent compression(zlib)
Different data appears in userspace during each read of the 11 bytes
between 4085 and 4096. The extent in item 63 is not long enough to
fill the first page of the file, so a memset is required to fill the
space between item 63 (ending at 4085) and item 64 (beginning at 4096)
with zero.
Here is a reproducer from Liu Bo, which demonstrates another method
of creating the same inline extent and hole pattern:
Using 'page_poison=on' kernel command line (or enable
CONFIG_PAGE_POISONING) run the following:
# touch foo
# chattr +c foo
# xfs_io -f -c "pwrite -W 0 1000" foo
# xfs_io -f -c "falloc 4 8188" foo
# od -x foo
# echo 3 >/proc/sys/vm/drop_caches
# od -x foo
This produce the following on my box:
Correct output: file contains 1000 data bytes followed
by zeros:
0000000 cdcd cdcd cdcd cdcd cdcd cdcd cdcd cdcd
*
0001740 cdcd cdcd cdcd cdcd 0000 0000 0000 0000
0001760 0000 0000 0000 0000 0000 0000 0000 0000
*
0020000
Actual output: the data after the first 1000 bytes
will be different each run:
0000000 cdcd cdcd cdcd cdcd cdcd cdcd cdcd cdcd
*
0001740 cdcd cdcd cdcd cdcd 6c63 7400 635f 006d
0001760 5f74 6f43 7400 435f 0053 5f74 7363 7400
0002000 435f 0056 5f74 6164 7400 645f 0062 5f74
(...)
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e19182c0fff451e3744c1107d98f072e7ca377a0 upstream.
If btrfs_del_root fails in btrfs_drop_snapshot, we'll pick up the
error but then return 0 anyway due to mixing err and ret.
Fixes: 79787eaab4612 ("btrfs: replace many BUG_ONs with proper error handling")
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8e138e0d92c6c9d3d481674fb14e3439b495be37 upstream.
We discovered a box that had double allocations, and suspected the space
cache may be to blame. While auditing the write out path I noticed that
if we've already setup the space cache we will just carry on. This
means that any error we hit after cache_save_setup before we go to
actually write the cache out we won't reset the inode generation, so
whatever was already written will be considered correct, except it'll be
stale. Fix this by _always_ resetting the generation on the block group
inode, this way we only ever have valid or invalid cache.
With this patch I was no longer able to reproduce cache corruption with
dm-log-writes and my bpf error injection tool.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 73ba39ab9307340dc98ec3622891314bbc09cc2e ]
In function btrfs_uuid_tree_iterate(), errno is assigned to variable ret
on errors. However, it directly returns 0. It may be better to return
ret. This patch also removes the warning, because the caller already
prints a warning.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=188731
Signed-off-by: Pan Bian <bianpan2016@163.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
[ edited subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4dd9920d991745c4a16f53a8f615f706fbe4b3f7 ]
Under certain situations, an incremental send operation can fail due to a
premature attempt to create a new top level inode (a direct child of the
subvolume/snapshot root) whose name collides with another inode that was
removed from the send snapshot.
Consider the following example scenario.
Parent snapshot:
. (ino 256, gen 8)
|---- a1/ (ino 257, gen 9)
|---- a2/ (ino 258, gen 9)
Send snapshot:
. (ino 256, gen 3)
|---- a2/ (ino 257, gen 7)
In this scenario, when receiving the incremental send stream, the btrfs
receive command fails like this (ran in verbose mode, -vv argument):
rmdir a1
mkfile o257-7-0
rename o257-7-0 -> a2
ERROR: rename o257-7-0 -> a2 failed: Is a directory
What happens when computing the incremental send stream is:
1) An operation to remove the directory with inode number 257 and
generation 9 is issued.
2) An operation to create the inode with number 257 and generation 7 is
issued. This creates the inode with an orphanized name of "o257-7-0".
3) An operation rename the new inode 257 to its final name, "a2", is
issued. This is incorrect because inode 258, which has the same name
and it's a child of the same parent (root inode 256), was not yet
processed and therefore no rmdir operation for it was yet issued.
The rename operation is issued because we fail to detect that the
name of the new inode 257 collides with inode 258, because their
parent, a subvolume/snapshot root (inode 256) has a different
generation in both snapshots.
So fix this by ignoring the generation value of a parent directory that
matches a root inode (number 256) when we are checking if the name of the
inode currently being processed collides with the name of some other
inode that was not yet processed.
We can achieve this scenario of different inodes with the same number but
different generation values either by mounting a filesystem with the inode
cache option (-o inode_cache) or by creating and sending snapshots across
different filesystems, like in the following example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/a1
$ mkdir /mnt/a2
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/a2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs receive /mnt -f /tmp/1.snap
# Take note that once the filesystem is created, its current
# generation has value 7 so the inode from the second snapshot has
# a generation value of 7. And after receiving the first snapshot
# the filesystem is at a generation value of 10, because the call to
# create the second snapshot bumps the generation to 8 (the snapshot
# creation ioctl does a transaction commit), the receive command calls
# the snapshot creation ioctl to create the first snapshot, which bumps
# the filesystem's generation to 9, and finally when the receive
# operation finishes it calls an ioctl to transition the first snapshot
# (snap1) from RW mode to RO mode, which does another transaction commit
# and bumps the filesystem's generation to 10.
$ rm -f /tmp/1.snap
$ btrfs send /mnt/snap1 -f /tmp/1.snap
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.snap
$ umount /mnt
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ btrfs receive /mnt /tmp/1.snap
# Receive of snapshot snap2 used to fail.
$ btrfs receive /mnt /tmp/2.snap
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[Rewrote changelog to be more precise and clear]
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a967efb30b3afa3d858edd6a17f544f9e9e46eea ]
KASAN reports that there is a use-after-free case of bio in btrfs_map_bio.
If we need to submit IOs to several disks at a time, the original bio
would get cloned and mapped to the destination disk, but we really should
use the original bio instead of a cloned bio to do the sanity check
because cloned bios are likely to be freed by its endio.
Reported-by: Diego <diegocg@gmail.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 97bf5a5589aa3a59c60aa775fc12ec0483fc5002 ]
Commit 2dabb3248453 ("Btrfs: Direct I/O read: Work on sectorsized blocks")
introduced this bug during iterating bio pages in dio read's endio hook,
and it could end up with segment fault of the dio reading task.
So the reason is 'if (nr_sectors--)', and it makes the code assume that
there is one more block in the same page, so page offset is increased and
the bio which is created to repair the bad block then has an incorrect
bvec.bv_offset, and a later access of the page content would throw a
segmentation fault.
This also adds ASSERT to check page offset against page size.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6d6d282932d1a609e60dc4467677e0e863682f57 upstream.
`btrfs sub set-default` succeeds to set an ID which isn't corresponding to any
fs/file tree. If such the bad ID is set to a filesystem, we can't mount this
filesystem without specifying `subvol` or `subvolid` mount options.
Fixes: 6ef5ed0d386b ("Btrfs: add ioctl and incompat flag to set the default mount subvol")
Signed-off-by: Satoru Takeuchi <satoru.takeuchi@gmail.com>
Reviewed-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 78ad4ce014d025f41b8dde3a81876832ead643cf upstream.
btrfs_cmp_data_prepare() (almost) always returns 0 i.e. ignoring errors
from gather_extent_pages(). While the pages are freed by
btrfs_cmp_data_free(), cmp->num_pages still has > 0. Then,
btrfs_extent_same() try to access the already freed pages causing faults
(or violates PageLocked assertion).
This patch just return the error as is so that the caller stop the process.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Fixes: f441460202cb ("btrfs: fix deadlock with extent-same and readpage")
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bb166d7207432d3c7d10c45dc052f12ba3a2121d upstream.
__del_reloc_root should be called before freeing up reloc_root->node.
If not, calling __del_reloc_root() dereference reloc_root->node, causing
the system BUG.
Fixes: 6bdf131fac23 ("Btrfs: don't leak reloc root nodes on error")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6c6b5a39c4bf3dbd8cf629c9f5450e983c19dbb9 upstream.
Several distributions mount the "proper root" as ro during initrd and
then remount it as rw before pivot_root(2). Thus, if a rescan had been
aborted by a previous shutdown, the rescan would never be resumed.
This issue would manifest itself as several btrfs ioctl(2)s causing the
entire machine to hang when btrfs_qgroup_wait_for_completion was hit
(due to the fs_info->qgroup_rescan_running flag being set but the rescan
itself not being resumed). Notably, Docker's btrfs storage driver makes
regular use of BTRFS_QUOTA_CTL_DISABLE and BTRFS_IOC_QUOTA_RESCAN_WAIT
(causing this problem to be manifested on boot for some machines).
Cc: Jeff Mahoney <jeffm@suse.com>
Fixes: b382a324b60f ("Btrfs: fix qgroup rescan resume on mount")
Signed-off-by: Aleksa Sarai <asarai@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 17024ad0a0fdfcfe53043afb969b813d3e020c21 upstream.
If a lot of metadata is reserved for outstanding delayed allocations, we
rely on shrink_delalloc() to reclaim metadata space in order to fulfill
reservation tickets. However, shrink_delalloc() has a shortcut where if
it determines that space can be overcommitted, it will stop early. This
made sense before the ticketed enospc system, but now it means that
shrink_delalloc() will often not reclaim enough space to fulfill any
tickets, leading to an early ENOSPC. (Reservation tickets don't care
about being able to overcommit, they need every byte accounted for.)
Fix it by getting rid of the shortcut so that shrink_delalloc() reclaims
all of the metadata it is supposed to. This fixes early ENOSPCs we were
seeing when doing a btrfs receive to populate a new filesystem, as well
as early ENOSPCs Christoph saw when doing a big cp -r onto Btrfs.
Fixes: 957780eb2788 ("Btrfs: introduce ticketed enospc infrastructure")
Tested-by: Christoph Anton Mitterer <mail@christoph.anton.mitterer.name>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c2931667c83ded6504b3857e99cc45b21fa496fb ]
Currently how btrfs dio deals with split dio write is not good
enough if dio write is split into several segments due to the
lack of contiguous space, a large dio write like 'dd bs=1G count=1'
can end up with incorrect outstanding_extents counter and endio
would complain loudly with an assertion.
This fixes the problem by compensating the outstanding_extents
counter in inode if a large dio write gets split.
Reported-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 781feef7e6befafd4d9787d1f7ada1f9ccd504e4 ]
While checking INODE_REF/INODE_EXTREF for a corner case, we may acquire a
different inode's log_mutex with holding the current inode's log_mutex, and
lockdep has complained this with a possilble deadlock warning.
Fix this by using mutex_lock_nested() when processing the other inode's
log_mutex.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e321f8a801d7b4c40da8005257b05b9c2b51b072 ]
If @block_group is not @used_bg, it'll try to get @used_bg's lock without
droping @block_group 's lock and lockdep has throwed a scary deadlock warning
about it.
Fix it by using down_read_nested.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b7f8a09f8097db776b8d160862540e4fc1f51296 upstream.
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.
Fix the problem by moving posix_acl_update_mode() out of
__btrfs_set_acl() into btrfs_set_acl(). That way the function will not be
called when inheriting ACLs which is what we want as it prevents SGID
bit clearing and the mode has been properly set by posix_acl_create()
anyway.
Fixes: 073931017b49d9458aa351605b43a7e34598caef
CC: linux-btrfs@vger.kernel.org
CC: David Sterba <dsterba@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 91298eec05cd8d4e828cf7ee5d4a6334f70cf69a ]
For such a file mapping,
[0-4k][hole][8k-12k]
In NO_HOLES mode, we don't have the [hole] extent any more.
Commit c1aa45759e90 ("Btrfs: fix shrinking truncate when the no_holes feature is enabled")
fixed disk isize not being updated in NO_HOLES mode when data is not flushed.
However, even if data has been flushed, we can still have trouble
in updating disk isize since we updated disk isize to 'start' of
the last evicted extent.
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 97dcdea076ecef41ea4aaa23d4397c2f622e4265 ]
The following deadlock is seen when executing generic/113 test,
---------------------------------------------------------+----------------------------------------------------
Direct I/O task Fast fsync task
---------------------------------------------------------+----------------------------------------------------
btrfs_direct_IO
__blockdev_direct_IO
do_blockdev_direct_IO
do_direct_IO
btrfs_get_blocks_direct
while (blocks needs to written)
get_more_blocks (first iteration)
btrfs_get_blocks_direct
btrfs_create_dio_extent
down_read(&BTRFS_I(inode) >dio_sem)
Create and add extent map and ordered extent
up_read(&BTRFS_I(inode) >dio_sem)
btrfs_sync_file
btrfs_log_dentry_safe
btrfs_log_inode_parent
btrfs_log_inode
btrfs_log_changed_extents
down_write(&BTRFS_I(inode) >dio_sem)
Collect new extent maps and ordered extents
wait for ordered extent completion
get_more_blocks (second iteration)
btrfs_get_blocks_direct
btrfs_create_dio_extent
down_read(&BTRFS_I(inode) >dio_sem)
--------------------------------------------------------------------------------------------------------------
In the above description, Btrfs direct I/O code path has not yet started
submitting bios for file range covered by the initial ordered
extent. Meanwhile, The fast fsync task obtains the write semaphore and
waits for I/O on the ordered extent to get completed. However, the
Direct I/O task is now blocked on obtaining the read semaphore.
To resolve the deadlock, this commit modifies the Direct I/O code path
to obtain the read semaphore before invoking
__blockdev_direct_IO(). The semaphore is then given up after
__blockdev_direct_IO() returns. This allows the Direct I/O code to
complete I/O on all the ordered extents it creates.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d41519a69b35b10af7fda867fb9100df24fdf403 upstream.
On sparc, if we have an alloca() like situation, as is the case with
SHASH_DESC_ON_STACK(), we can end up referencing deallocated stack
memory. The result can be that the value is clobbered if a trap
or interrupt arrives at just the right instruction.
It only occurs if the function ends returning a value from that
alloca() area and that value can be placed into the return value
register using a single instruction.
For example, in lib/libcrc32c.c:crc32c() we end up with a return
sequence like:
return %i7+8
lduw [%o5+16], %o0 ! MEM[(u32 *)__shash_desc.1_10 + 16B],
%o5 holds the base of the on-stack area allocated for the shash
descriptor. But the return released the stack frame and the
register window.
So if an intererupt arrives between 'return' and 'lduw', then
the value read at %o5+16 can be corrupted.
Add a data compiler barrier to work around this problem. This is
exactly what the gcc fix will end up doing as well, and it absolutely
should not change the code generated for other cpus (unless gcc
on them has the same bug :-)
With crucial insight from Eric Sandeen.
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 896533a7da929136d0432713f02a3edffece2826 upstream.
If we fail to add the space_info kobject, we'll leak the memory
for the percpu counter.
Fixes: 6ab0a2029c (btrfs: publish allocation data in sysfs)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cc2b702c52094b637a351d7491ac5200331d0445 upstream.
Variables start_idx and end_idx are supposed to hold a page index
derived from the file offsets. The int type is not the right one though,
offsets larger than 1 << 44 will get silently trimmed off the high bits.
(1 << 44 is 16TiB)
What can go wrong, if start is below the boundary and end gets trimmed:
- if there's a page after start, we'll find it (radix_tree_gang_lookup_slot)
- the final check "if (page->index <= end_idx)" will unexpectedly fail
The function will return false, ie. "there's no page in the range",
although there is at least one.
btrfs_page_exists_in_range is used to prevent races in:
* in hole punching, where we make sure there are not pages in the
truncated range, otherwise we'll wait for them to finish and redo
truncation, but we're going to replace the pages with holes anyway so
the only problem is the intermediate state
* lock_extent_direct: we want to make sure there are no pages before we
lock and start DIO, to prevent stale data reads
For practical occurence of the bug, there are several constaints. The
file must be quite large, the affected range must cross the 16TiB
boundary and the internal state of the file pages and pending operations
must match. Also, we must not have started any ordered data in the
range, otherwise we don't even reach the buggy function check.
DIO locking tries hard in several places to avoid deadlocks with
buffered IO and avoids waiting for ranges. The worst consequence seems
to be stale data read.
CC: Liu Bo <bo.li.liu@oracle.com>
Fixes: fc4adbff823f7 ("btrfs: Drop EXTENT_UPTODATE check in hole punching and direct locking")
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 93407472a21b82f39c955ea7787e5bc7da100642 upstream.
Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs
branch.
This patch also fixes multiple checkpatch warnings: WARNING: Prefer
'unsigned int' to bare use of 'unsigned'
Thanks to Andrew Morton for suggesting more appropriate function instead
of macro.
[geliangtang@gmail.com: truncate: use i_blocksize()]
Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com
Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2a362249187a8d0f6d942d6e1d763d150a296f47 upstream.
Commit 4c63c2454ef incorrectly assumed that returning -ENOIOCTLCMD would
cause the native ioctl to be called. The ->compat_ioctl callback is
expected to handle all ioctls, not just compat variants. As a result,
when using 32-bit userspace on 64-bit kernels, everything except those
three ioctls would return -ENOTTY.
Fixes: 4c63c2454ef ("btrfs: bugfix: handle FS_IOC32_{GETFLAGS,SETFLAGS,GETVERSION} in btrfs_ioctl")
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 57b59ed2e5b91e958843609c7884794e29e6c4cb upstream.
Subvolume directory inodes can't have ACLs.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1fdf41941b8010691679638f8d0c8d08cfee7726 upstream.
When you snapshot a subvolume containing a subvolume, you get a
placeholder directory where the subvolume would be. These directory
inodes have ->i_ops set to btrfs_dir_ro_inode_operations. Previously,
these i_ops didn't include the xattr operation callbacks. The conversion
to xattr_handlers missed this case, leading to bogus attempts to set
xattrs on these inodes. This manifested itself as failures when running
delayed inodes.
To fix this, clear IOP_XATTR in ->i_opflags on these inodes.
Fixes: 6c6ef9f26e59 ("xattr: Stop calling {get,set,remove}xattr inode operations")
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Reported-by: Chris Murphy <lists@colorremedies.com>
Tested-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 67ade058ef2c65a3e56878af9c293ec76722a2e5 upstream.
As Jeff explained in c2951f32d36c ("btrfs: remove old tree_root dirent
processing in btrfs_real_readdir()"), supporting this old format is no
longer necessary since the Btrfs magic number has been updated since we
changed to the current format. There are other places where we still
handle this old format, but since this is part of a fix that is going to
stable, I'm only removing this one for now.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aa7c8da35d1905d80e840d075f07d26ec90144b5 upstream.
In __btrfs_run_delayed_refs, the error path when run_delayed_extent_op
fails sets locked_ref->processing = 0 but doesn't re-increment
delayed_refs->num_heads_ready. As a result, we end up triggering
the WARN_ON in btrfs_select_ref_head.
Fixes: d7df2c796d7 (Btrfs: attach delayed ref updates to delayed ref heads)
Reported-by: Jon Nelson <jnelson-suse@jamponi.net>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d0280996437081dd12ed1e982ac8aeaa62835ec4 upstream.
In __btrfs_run_delayed_refs, when we put back a delayed ref that's too
new, we have already dropped the lock on locked_ref when we set
->processing = 0.
This patch keeps the lock to cover that assignment.
Fixes: d7df2c796d7 (Btrfs: attach delayed ref updates to delayed ref heads)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ac0c7cf8be00f269f82964cf7b144ca3edc5dbc4 upstream.
Enabling btrfs tracepoints leads to instant crash, as reported. The wq
callbacks could free the memory and the tracepoints started to
dereference the members to get to fs_info.
The proposed fix https://marc.info/?l=linux-btrfs&m=148172436722606&w=2
removed the tracepoints but we could preserve them by passing only the
required data in a safe way.
Fixes: bc074524e123 ("btrfs: prefix fsid to all trace events")
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8d9eddad19467b008e0c881bc3133d7da94b7ec1 upstream.
We were setting the qgroup_rescan_running flag to true only after the
rescan worker started (which is a task run by a queue). So if a user
space task starts a rescan and immediately after asks to wait for the
rescan worker to finish, this second call might happen before the rescan
worker task starts running, in which case the rescan wait ioctl returns
immediatley, not waiting for the rescan worker to finish.
This was making the fstest btrfs/022 fail very often.
Fixes: d2c609b834d6 (btrfs: properly track when rescan worker is running)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f177d73949bf758542ca15a1c1945bd2e802cc65 upstream.
We can not simply use the owner field from an extent buffer's header to
get the id of the respective tree when the extent buffer is from a
relocation tree. When we create the root for a relocation tree we leave
(on purpose) the owner field with the same value as the subvolume's tree
root (we do this at ctree.c:btrfs_copy_root()). So we must ignore extent
buffers from relocation trees, which have the BTRFS_HEADER_FLAG_RELOC
flag set, because otherwise we will always consider the extent buffer
as not being the root of the tree (the root of original subvolume tree
is always different from the root of the respective relocation tree).
This lead to assertion failures when running with the integrity checker
enabled (CONFIG_BTRFS_FS_CHECK_INTEGRITY=y) such as the following:
[ 643.393409] BTRFS critical (device sdg): corrupt leaf, non-root leaf's nritems is 0: block=38506496, root=260, slot=0
[ 643.397609] BTRFS info (device sdg): leaf 38506496 total ptrs 0 free space 3995
[ 643.407075] assertion failed: 0, file: fs/btrfs/disk-io.c, line: 4078
[ 643.408425] ------------[ cut here ]------------
[ 643.409112] kernel BUG at fs/btrfs/ctree.h:3419!
[ 643.409773] invalid opcode: 0000 [#1] PREEMPT SMP
[ 643.410447] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq ppdev psmouse acpi_cpufreq parport_pc evdev parport tpm_tis tpm_tis_core pcspkr serio_raw i2c_piix4 sg tpm i2c_core button processor loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring scsi_mod virtio e1000 floppy
[ 643.414356] CPU: 11 PID: 32726 Comm: btrfs Not tainted 4.8.0-rc8-btrfs-next-35+ #1
[ 643.414356] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 643.414356] task: ffff880145e95b00 task.stack: ffff88014826c000
[ 643.414356] RIP: 0010:[<ffffffffa0352759>] [<ffffffffa0352759>] assfail.constprop.41+0x1c/0x1e [btrfs]
[ 643.414356] RSP: 0018:ffff88014826fa28 EFLAGS: 00010292
[ 643.414356] RAX: 0000000000000039 RBX: ffff88014e2d7c38 RCX: 0000000000000001
[ 643.414356] RDX: ffff88023f4d2f58 RSI: ffffffff81806c63 RDI: 00000000ffffffff
[ 643.414356] RBP: ffff88014826fa28 R08: 0000000000000001 R09: 0000000000000000
[ 643.414356] R10: ffff88014826f918 R11: ffffffff82f3c5ed R12: ffff880172910000
[ 643.414356] R13: ffff880233992230 R14: ffff8801a68a3310 R15: fffffffffffffff8
[ 643.414356] FS: 00007f9ca305e8c0(0000) GS:ffff88023f4c0000(0000) knlGS:0000000000000000
[ 643.414356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 643.414356] CR2: 00007f9ca3071000 CR3: 000000015d01b000 CR4: 00000000000006e0
[ 643.414356] Stack:
[ 643.414356] ffff88014826fa50 ffffffffa02d655a 000000000000000a ffff88014e2d7c38
[ 643.414356] 0000000000000000 ffff88014826faa8 ffffffffa02b72f3 ffff88014826fab8
[ 643.414356] 00ffffffa03228e4 0000000000000000 0000000000000000 ffff8801bbd4e000
[ 643.414356] Call Trace:
[ 643.414356] [<ffffffffa02d655a>] btrfs_mark_buffer_dirty+0xdf/0xe5 [btrfs]
[ 643.414356] [<ffffffffa02b72f3>] btrfs_copy_root+0x18a/0x1d1 [btrfs]
[ 643.414356] [<ffffffffa0322921>] create_reloc_root+0x72/0x1ba [btrfs]
[ 643.414356] [<ffffffffa03267c2>] btrfs_init_reloc_root+0x7b/0xa7 [btrfs]
[ 643.414356] [<ffffffffa02d9e44>] record_root_in_trans+0xdf/0xed [btrfs]
[ 643.414356] [<ffffffffa02db04e>] btrfs_record_root_in_trans+0x50/0x6a [btrfs]
[ 643.414356] [<ffffffffa030ad2b>] create_subvol+0x472/0x773 [btrfs]
[ 643.414356] [<ffffffffa030b406>] btrfs_mksubvol+0x3da/0x463 [btrfs]
[ 643.414356] [<ffffffffa030b406>] ? btrfs_mksubvol+0x3da/0x463 [btrfs]
[ 643.414356] [<ffffffff810781ac>] ? preempt_count_add+0x65/0x68
[ 643.414356] [<ffffffff811a6e97>] ? __mnt_want_write+0x62/0x77
[ 643.414356] [<ffffffffa030b55d>] btrfs_ioctl_snap_create_transid+0xce/0x187 [btrfs]
[ 643.414356] [<ffffffffa030b67d>] btrfs_ioctl_snap_create+0x67/0x81 [btrfs]
[ 643.414356] [<ffffffffa030ecfd>] btrfs_ioctl+0x508/0x20dd [btrfs]
[ 643.414356] [<ffffffff81293e39>] ? __this_cpu_preempt_check+0x13/0x15
[ 643.414356] [<ffffffff81155eca>] ? handle_mm_fault+0x976/0x9ab
[ 643.414356] [<ffffffff81091300>] ? arch_local_irq_save+0x9/0xc
[ 643.414356] [<ffffffff8119a2b0>] vfs_ioctl+0x18/0x34
[ 643.414356] [<ffffffff8119a8e8>] do_vfs_ioctl+0x581/0x600
[ 643.414356] [<ffffffff814b9552>] ? entry_SYSCALL_64_fastpath+0x5/0xa8
[ 643.414356] [<ffffffff81093fe9>] ? trace_hardirqs_on_caller+0x17b/0x197
[ 643.414356] [<ffffffff8119a9be>] SyS_ioctl+0x57/0x79
[ 643.414356] [<ffffffff814b9565>] entry_SYSCALL_64_fastpath+0x18/0xa8
[ 643.414356] [<ffffffff81091b08>] ? trace_hardirqs_off_caller+0x3f/0xaa
[ 643.414356] Code: 89 83 88 00 00 00 31 c0 5b 41 5c 41 5d 5d c3 55 89 f1 48 c7 c2 98 bc 35 a0 48 89 fe 48 c7 c7 05 be 35 a0 48 89 e5 e8 13 46 dd e0 <0f> 0b 55 89 f1 48 c7 c2 9f d3 35 a0 48 89 fe 48 c7 c7 7a d5 35
[ 643.414356] RIP [<ffffffffa0352759>] assfail.constprop.41+0x1c/0x1e [btrfs]
[ 643.414356] RSP <ffff88014826fa28>
[ 643.468267] ---[ end trace 6a1b3fb1a9d7d6e3 ]---
This can be easily reproduced by running xfstests with the integrity
checker enabled.
Fixes: 1ba98d086fe3 (Btrfs: detect corruption when non-root leaf has zero item)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|