summaryrefslogtreecommitdiff
path: root/fs/btrfs/inode.c
AgeCommit message (Collapse)Author
2025-07-10btrfs: use btrfs_record_snapshot_destroy() during rmdirFilipe Manana
[ Upstream commit 157501b0469969fc1ba53add5049575aadd79d80 ] We are setting the parent directory's last_unlink_trans directly which may result in a concurrent task starting to log the directory not see the update and therefore can log the directory after we removed a child directory which had a snapshot within instead of falling back to a transaction commit. Replaying such a log tree would result in a mount failure since we can't currently delete snapshots (and subvolumes) during log replay. This is the type of failure described in commit 1ec9a1ae1e30 ("Btrfs: fix unreplayable log after snapshot delete + parent dir fsync"). Fix this by using btrfs_record_snapshot_destroy() which updates the last_unlink_trans field while holding the inode's log_mutex lock. Fixes: 44f714dae50a ("Btrfs: improve performance on fsync against new inode after rename/unlink") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-07-10btrfs: propagate last_unlink_trans earlier when doing a rmdirFilipe Manana
[ Upstream commit c466e33e729a0ee017d10d919cba18f503853c60 ] In case the removed directory had a snapshot that was deleted, we are propagating its inode's last_unlink_trans to the parent directory after we removed the entry from the parent directory. This leaves a small race window where someone can log the parent directory after we removed the entry and before we updated last_unlink_trans, and as a result if we ever try to replay such a log tree, we will fail since we will attempt to remove a snapshot during log replay, which is currently not possible and results in the log replay (and mount) to fail. This is the type of failure described in commit 1ec9a1ae1e30 ("Btrfs: fix unreplayable log after snapshot delete + parent dir fsync"). So fix this by propagating the last_unlink_trans to the parent directory before we remove the entry from it. Fixes: 44f714dae50a ("Btrfs: improve performance on fsync against new inode after rename/unlink") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-07-06btrfs: zoned: fix extent range end unlock in cow_file_range()Naohiro Aota
[ Upstream commit 5a4041f2c47247575a6c2e53ce14f7b0ac946c33 ] Running generic/751 on the for-next branch often results in a hang like below. They are both stack by locking an extent. This suggests someone forget to unlock an extent. INFO: task kworker/u128:1:12 blocked for more than 323 seconds. Not tainted 6.13.0-BTRFS-ZNS+ #503 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u128:1 state:D stack:0 pid:12 tgid:12 ppid:2 flags:0x00004000 Workqueue: btrfs-fixup btrfs_work_helper [btrfs] Call Trace: <TASK> __schedule+0x534/0xdd0 schedule+0x39/0x140 __lock_extent+0x31b/0x380 [btrfs] ? __pfx_autoremove_wake_function+0x10/0x10 btrfs_writepage_fixup_worker+0xf1/0x3a0 [btrfs] btrfs_work_helper+0xff/0x480 [btrfs] ? lock_release+0x178/0x2c0 process_one_work+0x1ee/0x570 ? srso_return_thunk+0x5/0x5f worker_thread+0x1d1/0x3b0 ? __pfx_worker_thread+0x10/0x10 kthread+0x10b/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> INFO: task kworker/u134:0:184 blocked for more than 323 seconds. Not tainted 6.13.0-BTRFS-ZNS+ #503 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u134:0 state:D stack:0 pid:184 tgid:184 ppid:2 flags:0x00004000 Workqueue: writeback wb_workfn (flush-btrfs-4) Call Trace: <TASK> __schedule+0x534/0xdd0 schedule+0x39/0x140 __lock_extent+0x31b/0x380 [btrfs] ? __pfx_autoremove_wake_function+0x10/0x10 find_lock_delalloc_range+0xdb/0x260 [btrfs] writepage_delalloc+0x12f/0x500 [btrfs] ? srso_return_thunk+0x5/0x5f extent_write_cache_pages+0x232/0x840 [btrfs] btrfs_writepages+0x72/0x130 [btrfs] do_writepages+0xe7/0x260 ? srso_return_thunk+0x5/0x5f ? lock_acquire+0xd2/0x300 ? srso_return_thunk+0x5/0x5f ? find_held_lock+0x2b/0x80 ? wbc_attach_and_unlock_inode.part.0+0x102/0x250 ? wbc_attach_and_unlock_inode.part.0+0x102/0x250 __writeback_single_inode+0x5c/0x4b0 writeback_sb_inodes+0x22d/0x550 __writeback_inodes_wb+0x4c/0xe0 wb_writeback+0x2f6/0x3f0 wb_workfn+0x32a/0x510 process_one_work+0x1ee/0x570 ? srso_return_thunk+0x5/0x5f worker_thread+0x1d1/0x3b0 ? __pfx_worker_thread+0x10/0x10 kthread+0x10b/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> This happens because we have another success path for the zoned mode. When there is no active zone available, btrfs_reserve_extent() returns -EAGAIN. In this case, we have two reactions. (1) If the given range is never allocated, we can only wait for someone to finish a zone, so wait on BTRFS_FS_NEED_ZONE_FINISH bit and retry afterward. (2) Or, if some allocations are already done, we must bail out and let the caller to send IOs for the allocation. This is because these IOs may be necessary to finish a zone. The commit 06f364284794 ("btrfs: do proper folio cleanup when cow_file_range() failed") moved the unlock code from the inside of the loop to the outside. So, previously, the allocated extents are unlocked just after the allocation and so before returning from the function. However, they are no longer unlocked on the case (2) above. That caused the hang issue. Fix the issue by modifying the 'end' to the end of the allocated range. Then, we can exit the loop and the same unlock code can properly handle the case. Reported-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Fixes: 06f364284794 ("btrfs: do proper folio cleanup when cow_file_range() failed") CC: stable@vger.kernel.org Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-07-06btrfs: do proper folio cleanup when cow_file_range() failedQu Wenruo
[ Upstream commit 06f364284794f149d2abc167c11d556cf20c954b ] [BUG] When testing with COW fixup marked as BUG_ON() (this is involved with the new pin_user_pages*() change, which should not result new out-of-band dirty pages), I hit a crash triggered by the BUG_ON() from hitting COW fixup path. This BUG_ON() happens just after a failed btrfs_run_delalloc_range(): BTRFS error (device dm-2): failed to run delalloc range, root 348 ino 405 folio 65536 submit_bitmap 6-15 start 90112 len 106496: -28 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:1444! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 UID: 0 PID: 434621 Comm: kworker/u24:8 Tainted: G OE 6.12.0-rc7-custom+ #86 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : extent_writepage_io+0x2d4/0x308 [btrfs] lr : extent_writepage_io+0x2d4/0x308 [btrfs] Call trace: extent_writepage_io+0x2d4/0x308 [btrfs] extent_writepage+0x218/0x330 [btrfs] extent_write_cache_pages+0x1d4/0x4b0 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x180/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: aa1403e1 9402f3ef aa1403e0 9402f36f (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] That failure is mostly from cow_file_range(), where we can hit -ENOSPC. Although the -ENOSPC is already a bug related to our space reservation code, let's just focus on the error handling. For example, we have the following dirty range [0, 64K) of an inode, with 4K sector size and 4K page size: 0 16K 32K 48K 64K |///////////////////////////////////////| |#######################################| Where |///| means page are still dirty, and |###| means the extent io tree has EXTENT_DELALLOC flag. - Enter extent_writepage() for page 0 - Enter btrfs_run_delalloc_range() for range [0, 64K) - Enter cow_file_range() for range [0, 64K) - Function btrfs_reserve_extent() only reserved one 16K extent So we created extent map and ordered extent for range [0, 16K) 0 16K 32K 48K 64K |////////|//////////////////////////////| |<- OE ->|##############################| And range [0, 16K) has its delalloc flag cleared. But since we haven't yet submit any bio, involved 4 pages are still dirty. - Function btrfs_reserve_extent() returns with -ENOSPC Now we have to run error cleanup, which will clear all EXTENT_DELALLOC* flags and clear the dirty flags for the remaining ranges: 0 16K 32K 48K 64K |////////| | | | | Note that range [0, 16K) still has its pages dirty. - Some time later, writeback is triggered again for the range [0, 16K) since the page range still has dirty flags. - btrfs_run_delalloc_range() will do nothing because there is no EXTENT_DELALLOC flag. - extent_writepage_io() finds page 0 has no ordered flag Which falls into the COW fixup path, triggering the BUG_ON(). Unfortunately this error handling bug dates back to the introduction of btrfs. Thankfully with the abuse of COW fixup, at least it won't crash the kernel. [FIX] Instead of immediately unlocking the extent and folios, we keep the extent and folios locked until either erroring out or the whole delalloc range finished. When the whole delalloc range finished without error, we just unlock the whole range with PAGE_SET_ORDERED (and PAGE_UNLOCK for !keep_locked cases), with EXTENT_DELALLOC and EXTENT_LOCKED cleared. And the involved folios will be properly submitted, with their dirty flags cleared during submission. For the error path, it will be a little more complex: - The range with ordered extent allocated (range (1)) We only clear the EXTENT_DELALLOC and EXTENT_LOCKED, as the remaining flags are cleaned up by btrfs_mark_ordered_io_finished()->btrfs_finish_one_ordered(). For folios we finish the IO (clear dirty, start writeback and immediately finish the writeback) and unlock the folios. - The range with reserved extent but no ordered extent (range(2)) - The range we never touched (range(3)) For both range (2) and range(3) the behavior is not changed. Now even if cow_file_range() failed halfway with some successfully reserved extents/ordered extents, we will keep all folios clean, so there will be no future writeback triggered on them. CC: stable@vger.kernel.org Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-07-06btrfs: fix a race between renames and directory loggingFilipe Manana
commit 3ca864de852bc91007b32d2a0d48993724f4abad upstream. We have a race between a rename and directory inode logging that if it happens and we crash/power fail before the rename completes, the next time the filesystem is mounted, the log replay code will end up deleting the file that was being renamed. This is best explained following a step by step analysis of an interleaving of steps that lead into this situation. Consider the initial conditions: 1) We are at transaction N; 2) We have directories A and B created in a past transaction (< N); 3) We have inode X corresponding to a file that has 2 hardlinks, one in directory A and the other in directory B, so we'll name them as "A/foo_link1" and "B/foo_link2". Both hard links were persisted in a past transaction (< N); 4) We have inode Y corresponding to a file that as a single hard link and is located in directory A, we'll name it as "A/bar". This file was also persisted in a past transaction (< N). The steps leading to a file loss are the following and for all of them we are under transaction N: 1) Link "A/foo_link1" is removed, so inode's X last_unlink_trans field is updated to N, through btrfs_unlink() -> btrfs_record_unlink_dir(); 2) Task A starts a rename for inode Y, with the goal of renaming from "A/bar" to "A/baz", so we enter btrfs_rename(); 3) Task A inserts the new BTRFS_INODE_REF_KEY for inode Y by calling btrfs_insert_inode_ref(); 4) Because the rename happens in the same directory, we don't set the last_unlink_trans field of directoty A's inode to the current transaction id, that is, we don't cal btrfs_record_unlink_dir(); 5) Task A then removes the entries from directory A (BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY items) when calling __btrfs_unlink_inode() (actually the dir index item is added as a delayed item, but the effect is the same); 6) Now before task A adds the new entry "A/baz" to directory A by calling btrfs_add_link(), another task, task B is logging inode X; 7) Task B starts a fsync of inode X and after logging inode X, at btrfs_log_inode_parent() it calls btrfs_log_all_parents(), since inode X has a last_unlink_trans value of N, set at in step 1; 8) At btrfs_log_all_parents() we search for all parent directories of inode X using the commit root, so we find directories A and B and log them. Bu when logging direct A, we don't have a dir index item for inode Y anymore, neither the old name "A/bar" nor for the new name "A/baz" since the rename has deleted the old name but has not yet inserted the new name - task A hasn't called yet btrfs_add_link() to do that. Note that logging directory A doesn't fallback to a transaction commit because its last_unlink_trans has a lower value than the current transaction's id (see step 4); 9) Task B finishes logging directories A and B and gets back to btrfs_sync_file() where it calls btrfs_sync_log() to persist the log tree; 10) Task B successfully persisted the log tree, btrfs_sync_log() completed with success, and a power failure happened. We have a log tree without any directory entry for inode Y, so the log replay code deletes the entry for inode Y, name "A/bar", from the subvolume tree since it doesn't exist in the log tree and the log tree is authorative for its index (we logged a BTRFS_DIR_LOG_INDEX_KEY item that covers the index range for the dentry that corresponds to "A/bar"). Since there's no other hard link for inode Y and the log replay code deletes the name "A/bar", the file is lost. The issue wouldn't happen if task B synced the log only after task A called btrfs_log_new_name(), which would update the log with the new name for inode Y ("A/bar"). Fix this by pinning the log root during renames before removing the old directory entry, and unpinning after btrfs_log_new_name() is called. Fixes: 259c4b96d78d ("btrfs: stop doing unnecessary log updates during a rename") CC: stable@vger.kernel.org # 5.18+ Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-06btrfs: use unsigned types for constants defined as bit shiftsDavid Sterba
[ Upstream commit 05a6ec865d091fe8244657df8063f74e704d1711 ] The unsigned type is a recommended practice (CWE-190, CWE-194) for bit shifts to avoid problems with potential unwanted sign extensions. Although there are no such cases in btrfs codebase, follow the recommendation. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> Stable-dep-of: 1f2889f5594a ("btrfs: fix qgroup reservation leak on failure to allocate ordered extent") Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-07-06btrfs: factor out nocow ordered extent and extent map generation into a helperQu Wenruo
[ Upstream commit 10326fdcb3ace2f2dcbc8b9fc50b87e5cab93345 ] Currently we're doing all the ordered extent and extent map generation inside a while() loop of run_delalloc_nocow(). This makes it pretty hard to read, nor doing proper error handling. So move that part of code into a helper, nocow_one_range(). This should not change anything, but there is a tiny timing change where btrfs_dec_nocow_writers() is only called after nocow_one_range() helper exits. This timing change is small, and makes error handling easier, thus should be fine. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Stable-dep-of: 1f2889f5594a ("btrfs: fix qgroup reservation leak on failure to allocate ordered extent") Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-06-19btrfs: fix invalid data space release when truncating block in NOCOW modeFilipe Manana
[ Upstream commit d3914d6030aa6be2993dfc223d096ff93018c236 ] If when truncating a block we fail to reserve data space and then we proceed anyway because we can do a NOCOW write, if we later get an error when trying to get the folio from the inode's mapping, we end up releasing data space that we haven't reserved, screwing up the bytes_may_use counter from the data space_info, eventually resulting in an underflow when all other reservations done by other tasks are released, if any, or right away if there are no other reservations at the moment. This is because when we get an error when trying to grab the block's folio we call btrfs_delalloc_release_space(), which releases metadata (which we have reserved) and data (which we haven't reserved). Fix this by calling btrfs_delalloc_release_space() only if we did reserve data space, that is, if we aren't falling back to NOCOW, meaning the local variable @only_release_metadata has a false value, otherwise release only metadata by calling btrfs_delalloc_release_metadata(). Fixes: 6d4572a9d71d ("btrfs: allow btrfs_truncate_block() to fallback to nocow for data space reservation") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-05-22btrfs: fix folio leak in submit_one_async_extent()Boris Burkov
commit a0fd1c6098633f9a95fc2f636383546c82b704c3 upstream. If btrfs_reserve_extent() fails while submitting an async_extent for a compressed write, then we fail to call free_async_extent_pages() on the async_extent and leak its folios. A likely cause for such a failure would be btrfs_reserve_extent() failing to find a large enough contiguous free extent for the compressed extent. I was able to reproduce this by: 1. mount with compress-force=zstd:3 2. fallocating most of a filesystem to a big file 3. fragmenting the remaining free space 4. trying to copy in a file which zstd would generate large compressed extents for (vmlinux worked well for this) Step 4. hits the memory leak and can be repeated ad nauseam to eventually exhaust the system memory. Fix this by detecting the case where we fallback to uncompressed submission for a compressed async_extent and ensuring that we call free_async_extent_pages(). Fixes: 131a821a243f ("btrfs: fallback if compressed IO fails for ENOSPC") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Co-developed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-09btrfs: fix COW handling in run_delalloc_nocow()Dave Chen
commit be3f1938d3e6ea8186f0de3dd95245dda4f22c1e upstream. In run_delalloc_nocow(), when the found btrfs_key's offset > cur_offset, it indicates a gap between the current processing region and the next file extent. The original code would directly jump to the "must_cow" label, which increments the slot and forces a fallback to COW. This behavior might skip an extent item and result in an overestimated COW fallback range. This patch modifies the logic so that when a gap is detected: - If no COW range is already being recorded (cow_start is unset), cow_start is set to cur_offset. - cur_offset is then advanced to the beginning of the next extent. - Instead of jumping to "must_cow", control flows directly to "next_slot" so that the same extent item can be reexamined properly. The change ensures that we accurately account for the extent gap and avoid accidentally extending the range that needs to fallback to COW. CC: stable@vger.kernel.org # 6.6+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Dave Chen <davechen@synology.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-02-27btrfs: fix double accounting race when btrfs_run_delalloc_range() failedQu Wenruo
[ Upstream commit 72dad8e377afa50435940adfb697e070d3556670 ] [BUG] When running btrfs with block size (4K) smaller than page size (64K, aarch64), there is a very high chance to crash the kernel at generic/750, with the following messages: (before the call traces, there are 3 extra debug messages added) BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental BTRFS info (device dm-3): checking UUID tree hrtimer: interrupt took 5451385 ns BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs] CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs] lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] Call trace: can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P) can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L) btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs] extent_writepage+0x10c/0x3b8 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x160 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x74/0xa0 start_delalloc_inodes+0x17c/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x17c/0x288 [btrfs] shrink_delalloc+0x11c/0x280 [btrfs] flush_space+0x288/0x328 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x228/0x680 worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0 CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write) pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : process_one_work+0x110/0x680 lr : worker_thread+0x1bc/0x360 Call trace: process_one_work+0x110/0x680 (P) worker_thread+0x1bc/0x360 (L) worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 2-3 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: 0x275bb9540000 from 0xffff800080000000 PHYS_OFFSET: 0xffff8fbba0000000 CPU features: 0x100,00000070,00801250,8201720b [CAUSE] The above warning is triggered immediately after the delalloc range failure, this happens in the following sequence: - Range [1568K, 1636K) is dirty 1536K 1568K 1600K 1636K 1664K | |/////////|////////| | Where 1536K, 1600K and 1664K are page boundaries (64K page size) - Enter extent_writepage() for page 1536K - Enter run_delalloc_nocow() with locked page 1536K and range [1568K, 1636K) This is due to the inode having preallocated extents. - Enter cow_file_range() with locked page 1536K and range [1568K, 1636K) - btrfs_reserve_extent() only reserved two extents The main loop of cow_file_range() only reserved two data extents, Now we have: 1536K 1568K 1600K 1636K 1664K | |<-->|<--->|/|///////| | 1584K 1596K Range [1568K, 1596K) has an ordered extent reserved. - btrfs_reserve_extent() failed inside cow_file_range() for file offset 1596K This is already a bug in our space reservation code, but for now let's focus on the error handling path. Now cow_file_range() returned -ENOSPC. - btrfs_run_delalloc_range() do error cleanup <<< ROOT CAUSE Call btrfs_cleanup_ordered_extents() with locked folio 1536K and range [1568K, 1636K) Function btrfs_cleanup_ordered_extents() normally needs to skip the ranges inside the folio, as it will normally be cleaned up by extent_writepage(). Such split error handling is already problematic in the first place. What's worse is the folio range skipping itself, which is not taking subpage cases into consideration at all, it will only skip the range if the page start >= the range start. In our case, the page start < the range start, since for subpage cases we can have delalloc ranges inside the folio but not covering the folio. So it doesn't skip the page range at all. This means all the ordered extents, both [1568K, 1584K) and [1584K, 1596K) will be marked as IOERR. And these two ordered extents have no more pending ios, they are marked finished, and *QUEUED* to be deleted from the io tree. - extent_writepage() do error cleanup Call btrfs_mark_ordered_io_finished() for the range [1536K, 1600K). Although ranges [1568K, 1584K) and [1584K, 1596K) are finished, the deletion from io tree is async, it may or may not happen at this time. If the ranges have not yet been removed, we will do double cleaning on those ranges, triggering the above ordered extent warnings. In theory there are other bugs, like the cleanup in extent_writepage() can cause double accounting on ranges that are submitted asynchronously (compression for example). But that's much harder to trigger because normally we do not mix regular and compression delalloc ranges. [FIX] The folio range split is already buggy and not subpage compatible, it was introduced a long time ago where subpage support was not even considered. So instead of splitting the ordered extents cleanup into the folio range and out of folio range, do all the cleanup inside writepage_delalloc(). - Pass @NULL as locked_folio for btrfs_cleanup_ordered_extents() in btrfs_run_delalloc_range() - Skip the btrfs_cleanup_ordered_extents() if writepage_delalloc() failed So all ordered extents are only cleaned up by btrfs_run_delalloc_range(). - Handle the ranges that already have ordered extents allocated If part of the folio already has ordered extent allocated, and btrfs_run_delalloc_range() failed, we also need to cleanup that range. Now we have a concentrated error handling for ordered extents during btrfs_run_delalloc_range(). Fixes: d1051d6ebf8e ("btrfs: Fix error handling in btrfs_cleanup_ordered_extents") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Stable-dep-of: 8bf334beb349 ("btrfs: fix double accounting race when extent_writepage_io() failed") Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-02-17btrfs: avoid monopolizing a core when activating a swap fileFilipe Manana
commit 2c8507c63f5498d4ee4af404a8e44ceae4345056 upstream. This commit re-attempts the backport of the change to the linux-6.12.y branch. Commit 9f372e86b9bd ("btrfs: avoid monopolizing a core when activating a swap file") on this branch was reverted. During swap activation we iterate over the extents of a file and we can have many thousands of them, so we can end up in a busy loop monopolizing a core. Avoid this by doing a voluntary reschedule after processing each extent. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Koichiro Den <koichiro.den@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-02-17Revert "btrfs: avoid monopolizing a core when activating a swap file"Koichiro Den
This reverts commit 9f372e86b9bd1914df58c8f6e30939b7a224c6b0. The backport for linux-6.12.y, commit 9f372e86b9bd ("btrfs: avoid monopolizing a core when activating a swap file"), inserted cond_resched() in the wrong location. Revert it now; a subsequent commit will re-backport the original patch. Fixes: 9f372e86b9bd ("btrfs: avoid monopolizing a core when activating a swap file") # linux-6.12.y Signed-off-by: Koichiro Den <koichiro.den@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-02-08btrfs: do proper folio cleanup when run_delalloc_nocow() failedQu Wenruo
commit c2b47df81c8e20a8e8cd94f0d7df211137ae94ed upstream. [BUG] With CONFIG_DEBUG_VM set, test case generic/476 has some chance to crash with the following VM_BUG_ON_FOLIO(): BTRFS error (device dm-3): cow_file_range failed, start 1146880 end 1253375 len 106496 ret -28 BTRFS error (device dm-3): run_delalloc_nocow failed, start 1146880 end 1253375 len 106496 ret -28 page: refcount:4 mapcount:0 mapping:00000000592787cc index:0x12 pfn:0x10664 aops:btrfs_aops [btrfs] ino:101 dentry name(?):"f1774" flags: 0x2fffff80004028(uptodate|lru|private|node=0|zone=2|lastcpupid=0xfffff) page dumped because: VM_BUG_ON_FOLIO(!folio_test_locked(folio)) ------------[ cut here ]------------ kernel BUG at mm/page-writeback.c:2992! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 2 UID: 0 PID: 3943513 Comm: kworker/u24:15 Tainted: G OE 6.12.0-rc7-custom+ #87 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : folio_clear_dirty_for_io+0x128/0x258 lr : folio_clear_dirty_for_io+0x128/0x258 Call trace: folio_clear_dirty_for_io+0x128/0x258 btrfs_folio_clamp_clear_dirty+0x80/0xd0 [btrfs] __process_folios_contig+0x154/0x268 [btrfs] extent_clear_unlock_delalloc+0x5c/0x80 [btrfs] run_delalloc_nocow+0x5f8/0x760 [btrfs] btrfs_run_delalloc_range+0xa8/0x220 [btrfs] writepage_delalloc+0x230/0x4c8 [btrfs] extent_writepage+0xb8/0x358 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x178/0x3a8 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: 910a8021 a90363f7 a9046bf9 94012379 (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] The first two lines of extra debug messages show the problem is caused by the error handling of run_delalloc_nocow(). E.g. we have the following dirtied range (4K blocksize 4K page size): 0 16K 32K |//////////////////////////////////////| | Pre-allocated | And the range [0, 16K) has a preallocated extent. - Enter run_delalloc_nocow() for range [0, 16K) Which found range [0, 16K) is preallocated, can do the proper NOCOW write. - Enter fallback_to_fow() for range [16K, 32K) Since the range [16K, 32K) is not backed by preallocated extent, we have to go COW. - cow_file_range() failed for range [16K, 32K) So cow_file_range() will do the clean up by clearing folio dirty, unlock the folios. Now the folios in range [16K, 32K) is unlocked. - Enter extent_clear_unlock_delalloc() from run_delalloc_nocow() Which is called with PAGE_START_WRITEBACK to start page writeback. But folios can only be marked writeback when it's properly locked, thus this triggered the VM_BUG_ON_FOLIO(). Furthermore there is another hidden but common bug that run_delalloc_nocow() is not clearing the folio dirty flags in its error handling path. This is the common bug shared between run_delalloc_nocow() and cow_file_range(). [FIX] - Clear folio dirty for range [@start, @cur_offset) Introduce a helper, cleanup_dirty_folios(), which will find and lock the folio in the range, clear the dirty flag and start/end the writeback, with the extra handling for the @locked_folio. - Introduce a helper to clear folio dirty, start and end writeback - Introduce a helper to record the last failed COW range end This is to trace which range we should skip, to avoid double unlocking. - Skip the failed COW range for the error handling CC: stable@vger.kernel.org Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-01-17fs/writeback: convert wbc_account_cgroup_owner to take a folioPankaj Raghav
[ Upstream commit 30dac24e14b52e1787572d1d4e06eeabe8a63630 ] Most of the callers of wbc_account_cgroup_owner() are converting a folio to page before calling the function. wbc_account_cgroup_owner() is converting the page back to a folio to call mem_cgroup_css_from_folio(). Convert wbc_account_cgroup_owner() to take a folio instead of a page, and convert all callers to pass a folio directly except f2fs. Convert the page to folio for all the callers from f2fs as they were the only callers calling wbc_account_cgroup_owner() with a page. As f2fs is already in the process of converting to folios, these call sites might also soon be calling wbc_account_cgroup_owner() with a folio directly in the future. No functional changes. Only compile tested. Signed-off-by: Pankaj Raghav <p.raghav@samsung.com> Link: https://lore.kernel.org/r/20240926140121.203821-1-kernel@pankajraghav.com Acked-by: David Sterba <dsterba@suse.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org> Stable-dep-of: 51d20d1dacbe ("iomap: fix zero padding data issue in concurrent append writes") Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-01-09btrfs: allow swap activation to be interruptibleFilipe Manana
[ Upstream commit 9a45022a0efadd99bcc58f7f1cc2b6fb3b808c40 ] During swap activation we iterate over the extents of a file, then do several checks for each extent, some of which may take some significant time such as checking if an extent is shared. Since a file can have many thousands of extents, this can be a very slow operation and it's currently not interruptible. I had a bug during development of a previous patch that resulted in an infinite loop when iterating the extents, so a core was busy looping and I couldn't cancel the operation, which is very annoying and requires a reboot. So make the loop interruptible by checking for fatal signals at the end of each iteration and stopping immediately if there is one. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-01-02btrfs: fix swap file activation failure due to extents that used to be sharedFilipe Manana
commit 03018e5d8508254534511d40fb57bc150e6a87f2 upstream. When activating a swap file, to determine if an extent is shared we use can_nocow_extent(), which ends up at btrfs_cross_ref_exist(). That helper is meant to be quick because it's used in the NOCOW write path, when flushing delalloc and when doing a direct IO write, however it does return some false positives, meaning it may indicate that an extent is shared even if it's no longer the case. For the write path this is fine, we just do a unnecessary COW operation instead of doing a more rigorous check which would be too heavy (calling btrfs_is_data_extent_shared()). However when activating a swap file, the false positives simply result in a failure, which is confusing for users/applications. One particular case where this happens is when a data extent only has 1 reference but that reference is not inlined in the extent item located in the extent tree - this happens when we create more than 33 references for an extent and then delete those 33 references plus every other non-inline reference except one. The function check_committed_ref() assumes that if the size of an extent item doesn't match the size of struct btrfs_extent_item plus the size of an inline reference (plus an owner reference in case simple quotas are enabled), then the extent is shared - that is not the case however, we can have a single reference but it's not inlined - the reason we do this is to be fast and avoid inspecting non-inline references which may be located in another leaf of the extent tree, slowing down write paths. The following test script reproduces the bug: $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi NUM_CLONES=50 umount $DEV &> /dev/null run_test() { local sync_after_add_reflinks=$1 local sync_after_remove_reflinks=$2 mkfs.btrfs -f $DEV > /dev/null #mkfs.xfs -f $DEV > /dev/null mount $DEV $MNT touch $MNT/foo chmod 0600 $MNT/foo # On btrfs the file must be NOCOW. chattr +C $MNT/foo &> /dev/null xfs_io -s -c "pwrite -b 1M 0 1M" $MNT/foo mkswap $MNT/foo for ((i = 1; i <= $NUM_CLONES; i++)); do touch $MNT/foo_clone_$i chmod 0600 $MNT/foo_clone_$i # On btrfs the file must be NOCOW. chattr +C $MNT/foo_clone_$i &> /dev/null cp --reflink=always $MNT/foo $MNT/foo_clone_$i done if [ $sync_after_add_reflinks -ne 0 ]; then # Flush delayed refs and commit current transaction. sync -f $MNT fi # Remove the original file and all clones except the last. rm -f $MNT/foo for ((i = 1; i < $NUM_CLONES; i++)); do rm -f $MNT/foo_clone_$i done if [ $sync_after_remove_reflinks -ne 0 ]; then # Flush delayed refs and commit current transaction. sync -f $MNT fi # Now use the last clone as a swap file. It should work since # its extent are not shared anymore. swapon $MNT/foo_clone_${NUM_CLONES} swapoff $MNT/foo_clone_${NUM_CLONES} umount $MNT } echo -e "\nTest without sync after creating and removing clones" run_test 0 0 echo -e "\nTest with sync after creating clones" run_test 1 0 echo -e "\nTest with sync after removing clones" run_test 0 1 echo -e "\nTest with sync after creating and removing clones" run_test 1 1 Running the test: $ ./test.sh Test without sync after creating and removing clones wrote 1048576/1048576 bytes at offset 0 1 MiB, 1 ops; 0.0017 sec (556.793 MiB/sec and 556.7929 ops/sec) Setting up swapspace version 1, size = 1020 KiB (1044480 bytes) no label, UUID=a6b9c29e-5ef4-4689-a8ac-bc199c750f02 swapon: /mnt/sdi/foo_clone_50: swapon failed: Invalid argument swapoff: /mnt/sdi/foo_clone_50: swapoff failed: Invalid argument Test with sync after creating clones wrote 1048576/1048576 bytes at offset 0 1 MiB, 1 ops; 0.0036 sec (271.739 MiB/sec and 271.7391 ops/sec) Setting up swapspace version 1, size = 1020 KiB (1044480 bytes) no label, UUID=5e9008d6-1f7a-4948-a1b4-3f30aba20a33 swapon: /mnt/sdi/foo_clone_50: swapon failed: Invalid argument swapoff: /mnt/sdi/foo_clone_50: swapoff failed: Invalid argument Test with sync after removing clones wrote 1048576/1048576 bytes at offset 0 1 MiB, 1 ops; 0.0103 sec (96.665 MiB/sec and 96.6651 ops/sec) Setting up swapspace version 1, size = 1020 KiB (1044480 bytes) no label, UUID=916c2740-fa9f-4385-9f06-29c3f89e4764 Test with sync after creating and removing clones wrote 1048576/1048576 bytes at offset 0 1 MiB, 1 ops; 0.0031 sec (314.268 MiB/sec and 314.2678 ops/sec) Setting up swapspace version 1, size = 1020 KiB (1044480 bytes) no label, UUID=06aab1dd-4d90-49c0-bd9f-3a8db4e2f912 swapon: /mnt/sdi/foo_clone_50: swapon failed: Invalid argument swapoff: /mnt/sdi/foo_clone_50: swapoff failed: Invalid argument Fix this by reworking btrfs_swap_activate() to instead of using extent maps and checking for shared extents with can_nocow_extent(), iterate over the inode's file extent items and use the accurate btrfs_is_data_extent_shared(). CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-01-02btrfs: avoid monopolizing a core when activating a swap fileFilipe Manana
commit 2c8507c63f5498d4ee4af404a8e44ceae4345056 upstream. During swap activation we iterate over the extents of a file and we can have many thousands of them, so we can end up in a busy loop monopolizing a core. Avoid this by doing a voluntary reschedule after processing each extent. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-01-02btrfs: fix race with memory mapped writes when activating swap fileFilipe Manana
commit 0525064bb82e50d59543b62b9d41a606198a4a44 upstream. When activating the swap file we flush all delalloc and wait for ordered extent completion, so that we don't miss any delalloc and extents before we check that the file's extent layout is usable for a swap file and activate the swap file. We are called with the inode's VFS lock acquired, so we won't race with buffered and direct IO writes, however we can still race with memory mapped writes since they don't acquire the inode's VFS lock. The race window is between flushing all delalloc and locking the whole file's extent range, since memory mapped writes lock an extent range with the length of a page. Fix this by acquiring the inode's mmap lock before we flush delalloc. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-12-14btrfs: fix missing snapshot drew unlock when root is dead during swap activationFilipe Manana
[ Upstream commit 9c803c474c6c002d8ade68ebe99026cc39c37f85 ] When activating a swap file we acquire the root's snapshot drew lock and then check if the root is dead, failing and returning with -EPERM if it's dead but without unlocking the root's snapshot lock. Fix this by adding the missing unlock. Fixes: 60021bd754c6 ("btrfs: prevent subvol with swapfile from being deleted") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-09btrfs: fix use-after-free in btrfs_encoded_read_endio()Johannes Thumshirn
[ Upstream commit 05b36b04d74a517d6675bf2f90829ff1ac7e28dc ] Shinichiro reported the following use-after free that sometimes is happening in our CI system when running fstests' btrfs/284 on a TCMU runner device: BUG: KASAN: slab-use-after-free in lock_release+0x708/0x780 Read of size 8 at addr ffff888106a83f18 by task kworker/u80:6/219 CPU: 8 UID: 0 PID: 219 Comm: kworker/u80:6 Not tainted 6.12.0-rc6-kts+ #15 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] Call Trace: <TASK> dump_stack_lvl+0x6e/0xa0 ? lock_release+0x708/0x780 print_report+0x174/0x505 ? lock_release+0x708/0x780 ? __virt_addr_valid+0x224/0x410 ? lock_release+0x708/0x780 kasan_report+0xda/0x1b0 ? lock_release+0x708/0x780 ? __wake_up+0x44/0x60 lock_release+0x708/0x780 ? __pfx_lock_release+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? lock_is_held_type+0x9a/0x110 _raw_spin_unlock_irqrestore+0x1f/0x60 __wake_up+0x44/0x60 btrfs_encoded_read_endio+0x14b/0x190 [btrfs] btrfs_check_read_bio+0x8d9/0x1360 [btrfs] ? lock_release+0x1b0/0x780 ? trace_lock_acquire+0x12f/0x1a0 ? __pfx_btrfs_check_read_bio+0x10/0x10 [btrfs] ? process_one_work+0x7e3/0x1460 ? lock_acquire+0x31/0xc0 ? process_one_work+0x7e3/0x1460 process_one_work+0x85c/0x1460 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x16c/0x240 worker_thread+0x5e6/0xfc0 ? __pfx_worker_thread+0x10/0x10 kthread+0x2c3/0x3a0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 3661: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_encoded_read_regular_fill_pages+0x16c/0x6d0 [btrfs] send_extent_data+0xf0f/0x24a0 [btrfs] process_extent+0x48a/0x1830 [btrfs] changed_cb+0x178b/0x2ea0 [btrfs] btrfs_ioctl_send+0x3bf9/0x5c20 [btrfs] _btrfs_ioctl_send+0x117/0x330 [btrfs] btrfs_ioctl+0x184a/0x60a0 [btrfs] __x64_sys_ioctl+0x12e/0x1a0 do_syscall_64+0x95/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 3661: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x70 __kasan_slab_free+0x4f/0x70 kfree+0x143/0x490 btrfs_encoded_read_regular_fill_pages+0x531/0x6d0 [btrfs] send_extent_data+0xf0f/0x24a0 [btrfs] process_extent+0x48a/0x1830 [btrfs] changed_cb+0x178b/0x2ea0 [btrfs] btrfs_ioctl_send+0x3bf9/0x5c20 [btrfs] _btrfs_ioctl_send+0x117/0x330 [btrfs] btrfs_ioctl+0x184a/0x60a0 [btrfs] __x64_sys_ioctl+0x12e/0x1a0 do_syscall_64+0x95/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff888106a83f00 which belongs to the cache kmalloc-rnd-07-96 of size 96 The buggy address is located 24 bytes inside of freed 96-byte region [ffff888106a83f00, ffff888106a83f60) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888106a83800 pfn:0x106a83 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff) page_type: f5(slab) raw: 0017ffffc0000000 ffff888100053680 ffffea0004917200 0000000000000004 raw: ffff888106a83800 0000000080200019 00000001f5000000 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888106a83e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ffff888106a83e80: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc >ffff888106a83f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ^ ffff888106a83f80: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ffff888106a84000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Further analyzing the trace and the crash dump's vmcore file shows that the wake_up() call in btrfs_encoded_read_endio() is calling wake_up() on the wait_queue that is in the private data passed to the end_io handler. Commit 4ff47df40447 ("btrfs: move priv off stack in btrfs_encoded_read_regular_fill_pages()") moved 'struct btrfs_encoded_read_private' off the stack. Before that commit one can see a corruption of the private data when analyzing the vmcore after a crash: *(struct btrfs_encoded_read_private *)0xffff88815626eec8 = { .wait = (wait_queue_head_t){ .lock = (spinlock_t){ .rlock = (struct raw_spinlock){ .raw_lock = (arch_spinlock_t){ .val = (atomic_t){ .counter = (int)-2005885696, }, .locked = (u8)0, .pending = (u8)157, .locked_pending = (u16)40192, .tail = (u16)34928, }, .magic = (unsigned int)536325682, .owner_cpu = (unsigned int)29, .owner = (void *)__SCT__tp_func_btrfs_transaction_commit+0x0 = 0x0, .dep_map = (struct lockdep_map){ .key = (struct lock_class_key *)0xffff8881575a3b6c, .class_cache = (struct lock_class *[2]){ 0xffff8882a71985c0, 0xffffea00066f5d40 }, .name = (const char *)0xffff88815626f100 = "", .wait_type_outer = (u8)37, .wait_type_inner = (u8)178, .lock_type = (u8)154, }, }, .__padding = (u8 [24]){ 0, 157, 112, 136, 50, 174, 247, 31, 29 }, .dep_map = (struct lockdep_map){ .key = (struct lock_class_key *)0xffff8881575a3b6c, .class_cache = (struct lock_class *[2]){ 0xffff8882a71985c0, 0xffffea00066f5d40 }, .name = (const char *)0xffff88815626f100 = "", .wait_type_outer = (u8)37, .wait_type_inner = (u8)178, .lock_type = (u8)154, }, }, .head = (struct list_head){ .next = (struct list_head *)0x112cca, .prev = (struct list_head *)0x47, }, }, .pending = (atomic_t){ .counter = (int)-1491499288, }, .status = (blk_status_t)130, } Here we can see several indicators of in-memory data corruption, e.g. the large negative atomic values of ->pending or ->wait->lock->rlock->raw_lock->val, as well as the bogus spinlock magic 0x1ff7ae32 (decimal 536325682 above) instead of 0xdead4ead or the bogus pointer values for ->wait->head. To fix this, change atomic_dec_return() to atomic_dec_and_test() to fix the corruption, as atomic_dec_return() is defined as two instructions on x86_64, whereas atomic_dec_and_test() is defined as a single atomic operation. This can lead to a situation where counter value is already decremented but the if statement in btrfs_encoded_read_endio() is not completely processed, i.e. the 0 test has not completed. If another thread continues executing btrfs_encoded_read_regular_fill_pages() the atomic_dec_return() there can see an already updated ->pending counter and continues by freeing the private data. Continuing in the endio handler the test for 0 succeeds and the wait_queue is woken up, resulting in a use-after-free. Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com> Suggested-by: Damien Le Moal <Damien.LeMoal@wdc.com> Fixes: 1881fba89bd5 ("btrfs: add BTRFS_IOC_ENCODED_READ ioctl") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-09btrfs: move priv off stack in btrfs_encoded_read_regular_fill_pages()Mark Harmstone
[ Upstream commit 68d3b27e05c7ca5545e88465f5e2be6eda0e11df ] Change btrfs_encoded_read_regular_fill_pages() so that the priv struct is allocated rather than stored on the stack, in preparation for adding an asynchronous mode to the function. Signed-off-by: Mark Harmstone <maharmstone@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Stable-dep-of: 05b36b04d74a ("btrfs: fix use-after-free in btrfs_encoded_read_endio()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-09btrfs: change btrfs_encoded_read() so that reading of extent is done by callerMark Harmstone
[ Upstream commit 26efd44796c6dd7a64f039a0dda6d558eac97a3e ] Change the behaviour of btrfs_encoded_read() so that if it needs to read an extent from disk, it leaves the extent and inode locked and returns -EIOCBQUEUED. The caller is then responsible for doing the I/O via btrfs_encoded_read_regular() and unlocking the extent and inode. Signed-off-by: Mark Harmstone <maharmstone@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Stable-dep-of: 05b36b04d74a ("btrfs: fix use-after-free in btrfs_encoded_read_endio()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-09btrfs: drop unused parameter file_offset from ↵David Sterba
btrfs_encoded_read_regular_fill_pages() [ Upstream commit 590168edbe6317ca9f4066215fb099f43ffe745c ] The file_offset parameter used to be passed to encoded read struct but was removed in commit b665affe93d8 ("btrfs: remove unused members from struct btrfs_encoded_read_private"). Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Stable-dep-of: 05b36b04d74a ("btrfs: fix use-after-free in btrfs_encoded_read_endio()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08Merge tag 'for-6.12-rc6-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more one-liners that fix some user visible problems: - use correct range when clearing qgroup reservations after COW - properly reset freed delayed ref list head - fix ro/rw subvolume mounts to be backward compatible with old and new mount API" * tag 'for-6.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix the length of reserved qgroup to free btrfs: reinitialize delayed ref list after deleting it from the list btrfs: fix per-subvolume RO/RW flags with new mount API
2024-11-07btrfs: fix the length of reserved qgroup to freeHaisu Wang
The dealloc flag may be cleared and the extent won't reach the disk in cow_file_range when errors path. The reserved qgroup space is freed in commit 30479f31d44d ("btrfs: fix qgroup reserve leaks in cow_file_range"). However, the length of untouched region to free needs to be adjusted with the correct remaining region size. Fixes: 30479f31d44d ("btrfs: fix qgroup reserve leaks in cow_file_range") CC: stable@vger.kernel.org # 6.11+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Haisu Wang <haisuwang@tencent.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-24Merge tag 'for-6.12-rc4-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - mount option fixes: - fix handling of compression mount options on remount - reject rw remount in case there are options that don't work in read-write mode (like rescue options) - fix zone accounting of unusable space - fix in-memory corruption when merging extent maps - fix delalloc range locking for sector < page - use more convenient default value of drop subtree threshold, clean more subvolumes without the fallback to marking quotas inconsistent - fix smatch warning about incorrect value passed to ERR_PTR * tag 'for-6.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix passing 0 to ERR_PTR in btrfs_search_dir_index_item() btrfs: reject ro->rw reconfiguration if there are hard ro requirements btrfs: fix read corruption due to race with extent map merging btrfs: fix the delalloc range locking if sector size < page size btrfs: qgroup: set a more sane default value for subtree drop threshold btrfs: clear force-compress on remount when compress mount option is given btrfs: zoned: fix zone unusable accounting for freed reserved extent
2024-10-22btrfs: fix passing 0 to ERR_PTR in btrfs_search_dir_index_item()Yue Haibing
The ret may be zero in btrfs_search_dir_index_item() and should not passed to ERR_PTR(). Now btrfs_unlink_subvol() is the only caller to this, reconstructed it to check ERR_PTR(-ENOENT) while ret >= 0. This fixes smatch warnings: fs/btrfs/dir-item.c:353 btrfs_search_dir_index_item() warn: passing zero to 'ERR_PTR' Fixes: 9dcbe16fccbb ("btrfs: use btrfs_for_each_slot in btrfs_search_dir_index_item") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Yue Haibing <yuehaibing@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-04Merge tag 'for-6.12-rc1-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - in incremental send, fix invalid clone operation for file that got its size decreased - fix __counted_by() annotation of send path cache entries, we do not store the terminating NUL - fix a longstanding bug in relocation (and quite hard to hit by chance), drop back reference cache that can get out of sync after transaction commit - wait for fixup worker kthread before finishing umount - add missing raid-stripe-tree extent for NOCOW files, zoned mode cannot have NOCOW files but RST is meant to be a standalone feature - handle transaction start error during relocation, avoid potential NULL pointer dereference of relocation control structure (reported by syzbot) - disable module-wide rate limiting of debug level messages - minor fix to tracepoint definition (reported by checkpatch.pl) * tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: disable rate limiting when debug enabled btrfs: wait for fixup workers before stopping cleaner kthread during umount btrfs: fix a NULL pointer dereference when failed to start a new trasacntion btrfs: send: fix invalid clone operation for file that got its size decreased btrfs: tracepoints: end assignment with semicolon at btrfs_qgroup_extent event class btrfs: drop the backref cache during relocation if we commit btrfs: also add stripe entries for NOCOW writes btrfs: send: fix buffer overflow detection when copying path to cache entry
2024-10-02move asm/unaligned.h to linux/unaligned.hAl Viro
asm/unaligned.h is always an include of asm-generic/unaligned.h; might as well move that thing to linux/unaligned.h and include that - there's nothing arch-specific in that header. auto-generated by the following: for i in `git grep -l -w asm/unaligned.h`; do sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i done for i in `git grep -l -w asm-generic/unaligned.h`; do sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i done git mv include/asm-generic/unaligned.h include/linux/unaligned.h git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-01btrfs: also add stripe entries for NOCOW writesJohannes Thumshirn
NOCOW writes do not generate stripe_extent entries in the RAID stripe tree, as the RAID stripe-tree feature initially was designed with a zoned filesystem in mind and on a zoned filesystem, we do not allow NOCOW writes. But the RAID stripe-tree feature is independent from the zoned feature, so we must also do NOCOW writes for RAID stripe-tree filesystems. Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert btrfs_decompress() to take a folioLi Zetao
The old page API is being gradually replaced and converted to use folio to improve code readability and avoid repeated conversion between page and folio. Based on the previous patch, the compression path can be directly used in folio without converting to page. Signed-off-by: Li Zetao <lizetao1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert try_release_extent_mapping() to take a folioLi Zetao
The old page API is being gradually replaced and converted to use folio to improve code readability and avoid repeated conversion between page and folio. And page_to_inode() can be replaced with folio_to_inode() now. Signed-off-by: Li Zetao <lizetao1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert clear_page_extent_mapped() to take a folioLi Zetao
The old page API is being gradually replaced and converted to use folio to improve code readability and avoid repeated conversion between page and folio. Now clear_page_extent_mapped() can deal with a folio directly, so change its name to clear_folio_extent_mapped(). Signed-off-by: Li Zetao <lizetao1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: drop transaction parameter from btrfs_add_inode_defrag()David Sterba
There's only one caller inode_should_defrag() that passes NULL to btrfs_add_inode_defrag() so we can drop it an simplify the code. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: rename __extent_writepage() and drop double underscoresDavid Sterba
The function does not follow the pattern where the underscores would be justified, so rename it. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: rename btrfs_submit_bio() to btrfs_submit_bbio()David Sterba
The function name is a bit misleading as it submits the btrfs_bio (bbio), rename it so we can use btrfs_submit_bio() when an actual bio is submitted. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: add comment about locking in cow_file_range_inline()Boris Burkov
Add a comment to document the complicated locked_page unlock logic in cow_file_range_inline. The specifically tricky part is that a caller just up the stack converts ret == 0 to ret == 1 and then another caller far up the callstack handles ret == 1 as a success, AND returns without cleanup in that case, both of which "feel" unnatural and led to the original bug. Try to document that somewhat specific callstack logic here to explain the weird un-setting of locked_folio on success. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert extent_range_clear_dirty_for_io() to use a folioJosef Bacik
Instead of getting a page and using that to clear dirty for io, use the folio helper and use the appropriate folio functions. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert insert_inline_extent() to use a folioJosef Bacik
We only use a page to copy in the data for the inline extent. Use a folio for this instead. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert btrfs_set_range_writeback() to use a folioJosef Bacik
We already use a lot of functions here that use folios, update the function to use __filemap_get_folio instead of find_get_page and then use the folio directly. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert wait_subpage_spinlock() to only use a folioJosef Bacik
Currently this already uses a folio for most things, update it to take a folio and update all the page usage with the corresponding folio usage. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert btrfs_get_extent() to take a folioJosef Bacik
We only pass this into read_inline_extent, change it to take a folio and update the callers. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert read_inline_extent() to use a folioJosef Bacik
Instead of using a page, use a folio instead, take a folio as an argument, and update the callers appropriately. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert uncompress_inline() to take a folioJosef Bacik
Update uncompress_inline to take a folio and update it's usage accordingly. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert struct btrfs_writepage_fixup to use a folioJosef Bacik
Now the fixup creator and consumer use folios, change this to use a folio as well. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert btrfs_writepage_cow_fixup() to use folioJosef Bacik
Instead of a page, use a folio for btrfs_writepage_cow_fixup. We already have a folio at the only caller, and the fixup worker uses folios. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert btrfs_writepage_fixup_worker() to use a folioJosef Bacik
This function heavily messes with pages, instead update it to use a folio. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert submit_uncompressed_range() to take a folioJosef Bacik
This mostly uses folios already, update it to take a folio and update the rest of the function to use the folio instead of the page. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert struct async_chunk to hold a folioJosef Bacik
Instead of passing in the page for ->locked_page, make it hold a locked_folio and then update the users of async_chunk to act accordingly. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>