Age | Commit message (Collapse) | Author |
|
For the future large folio support, our filemap can have folios with
different sizes, thus we can no longer rely on a fixed blocks_per_page
value.
To prepare for that future, here we do:
- Remove btrfs_fs_info::sectors_per_page
- Introduce a helper, btrfs_blocks_per_folio()
Which uses the folio size to calculate the number of blocks for each
folio.
- Migrate the existing btrfs_fs_info::sectors_per_page to use that
helper
There are some exceptions:
* Metadata nodesize < page size support
In the future, even if we support large folios, we will only
allocate a folio that matches our nodesize.
Thus we won't have a folio covering multiple metadata unless
nodesize < page size.
* Existing subpage bitmap dump
We use a single unsigned long to store the bitmap.
That means until we change the bitmap dumping code, our upper limit
for folio size will only be 256K (4K block size, 64 bit unsigned
long).
* btrfs_is_subpage() check
This will be migrated into a future patch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
At btrfs_do_readpage() if we get an extent map for a prealloc extent we
end up assigning twice to the 'block_start' variable, first the value
returned by extent_map_block_start() and then EXTENT_MAP_HOLE. This is
pointless so make it more clear by using an if-else statement and doing
only one assignment. Also, while at it, move the declaration of
'block_start' into the while loop's scope, since it's not used outside of
it and the related 'disk_bytenr' is also declared in this scope.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In that function we call set_extent_buffer_uptodate() or
clear_extent_buffer_uptodate(), which will already update the uptodate
flag for all the involved extent buffer folios.
Thus there is no need to update the folio uptodate flags again.
Just remove the open-coded part.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Remove references to the page lock and page->mapping. Also btrfs folios
can never be swizzled into swap (mentioned in extent_write_cache_pages()).
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix stale page cache after race between readahead and direct IO write
- fix hole expansion when writing at an offset beyond EOF, the range
will not be zeroed
- use proper way to calculate offsets in folio ranges
* tag 'for-6.14-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix hole expansion when writing at an offset beyond EOF
btrfs: fix stale page cache after race between readahead and direct IO write
btrfs: fix two misuses of folio_shift()
|
|
After commit ac325fc2aad5 ("btrfs: do not hold the extent lock for entire
read") we can now trigger a race between a task doing a direct IO write
and readahead. When this race is triggered it results in tasks getting
stale data when they attempt do a buffered read (including the task that
did the direct IO write).
This race can be sporadically triggered with test case generic/418, failing
like this:
$ ./check generic/418
FSTYP -- btrfs
PLATFORM -- Linux/x86_64 debian0 6.13.0-rc7-btrfs-next-185+ #17 SMP PREEMPT_DYNAMIC Mon Feb 3 12:28:46 WET 2025
MKFS_OPTIONS -- /dev/sdc
MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1
generic/418 14s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/418.out.bad)
--- tests/generic/418.out 2020-06-10 19:29:03.850519863 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/418.out.bad 2025-02-03 15:42:36.974609476 +0000
@@ -1,2 +1,5 @@
QA output created by 418
+cmpbuf: offset 0: Expected: 0x1, got 0x0
+[6:0] FAIL - comparison failed, offset 24576
+diotest -wp -b 4096 -n 8 -i 4 failed at loop 3
Silence is golden
...
(Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/generic/418.out /home/fdmanana/git/hub/xfstests/results//generic/418.out.bad' to see the entire diff)
Ran: generic/418
Failures: generic/418
Failed 1 of 1 tests
The race happens like this:
1) A file has a prealloc extent for the range [16K, 28K);
2) Task A starts a direct IO write against file range [24K, 28K).
At the start of the direct IO write it invalidates the page cache at
__iomap_dio_rw() with kiocb_invalidate_pages() for the 4K page at file
offset 24K;
3) Task A enters btrfs_dio_iomap_begin() and locks the extent range
[24K, 28K);
4) Task B starts a readahead for file range [16K, 28K), entering
btrfs_readahead().
First it attempts to read the page at offset 16K by entering
btrfs_do_readpage(), where it calls get_extent_map(), locks the range
[16K, 20K) and gets the extent map for the range [16K, 28K), caching
it into the 'em_cached' variable declared in the local stack of
btrfs_readahead(), and then unlocks the range [16K, 20K).
Since the extent map has the prealloc flag, at btrfs_do_readpage() we
zero out the page's content and don't submit any bio to read the page
from the extent.
Then it attempts to read the page at offset 20K entering
btrfs_do_readpage() where we reuse the previously cached extent map
(decided by get_extent_map()) since it spans the page's range and
it's still in the inode's extent map tree.
Just like for the previous page, we zero out the page's content since
the extent map has the prealloc flag set.
Then it attempts to read the page at offset 24K entering
btrfs_do_readpage() where we reuse the previously cached extent map
(decided by get_extent_map()) since it spans the page's range and
it's still in the inode's extent map tree.
Just like for the previous pages, we zero out the page's content since
the extent map has the prealloc flag set. Note that we didn't lock the
extent range [24K, 28K), so we didn't synchronize with the ongoing
direct IO write being performed by task A;
5) Task A enters btrfs_create_dio_extent() and creates an ordered extent
for the range [24K, 28K), with the flags BTRFS_ORDERED_DIRECT and
BTRFS_ORDERED_PREALLOC set;
6) Task A unlocks the range [24K, 28K) at btrfs_dio_iomap_begin();
7) The ordered extent enters btrfs_finish_one_ordered() and locks the
range [24K, 28K);
8) Task A enters fs/iomap/direct-io.c:iomap_dio_complete() and it tries
to invalidate the page at offset 24K by calling
kiocb_invalidate_post_direct_write(), resulting in a call chain that
ends up at btrfs_release_folio().
The btrfs_release_folio() call ends up returning false because the range
for the page at file offset 24K is currently locked by the task doing
the ordered extent completion in the previous step (7), so we have:
btrfs_release_folio() ->
__btrfs_release_folio() ->
try_release_extent_mapping() ->
try_release_extent_state()
This last function checking that the range is locked and returning false
and propagating it up to btrfs_release_folio().
So this results in a failure to invalidate the page and
kiocb_invalidate_post_direct_write() triggers this message logged in
dmesg:
Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!
After this we leave the page cache with stale data for the file range
[24K, 28K), filled with zeroes instead of the data written by direct IO
write (all bytes with a 0x01 value), so any task attempting to read with
buffered IO, including the task that did the direct IO write, will get
all bytes in the range with a 0x00 value instead of the written data.
Fix this by locking the range, with btrfs_lock_and_flush_ordered_range(),
at the two callers of btrfs_do_readpage() instead of doing it at
get_extent_map(), just like we did before commit ac325fc2aad5 ("btrfs: do
not hold the extent lock for entire read"), and unlocking the range after
all the calls to btrfs_do_readpage(). This way we never reuse a cached
extent map without flushing any pending ordered extents from a concurrent
direct IO write.
Fixes: ac325fc2aad5 ("btrfs: do not hold the extent lock for entire read")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It is meaningless to shift a byte count by folio_shift(). The folio index
is in units of PAGE_SIZE, not folio_size(). We can use folio_contains()
to make this work for arbitrary-order folios, so remove the assertion
that the folios are of order 0.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs.
- "Allocate and free frozen pages" from Matthew Wilcox reorganizes
the page allocator so we end up with the ability to allocate and
free zero-refcount pages. So that callers (ie, slab) can avoid a
refcount inc & dec
- "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to
use large folios other than PMD-sized ones
- "Fix mm/rodata_test" from Petr Tesarik performs some maintenance
and fixes for this small built-in kernel selftest
- "mas_anode_descend() related cleanup" from Wei Yang tidies up part
of the mapletree code
- "mm: fix format issues and param types" from Keren Sun implements a
few minor code cleanups
- "simplify split calculation" from Wei Yang provides a few fixes and
a test for the mapletree code
- "mm/vma: make more mmap logic userland testable" from Lorenzo
Stoakes continues the work of moving vma-related code into the
(relatively) new mm/vma.c
- "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David
Hildenbrand cleans up and rationalizes handling of gfp flags in the
page allocator
- "readahead: Reintroduce fix for improper RA window sizing" from Jan
Kara is a second attempt at fixing a readahead window sizing issue.
It should reduce the amount of unnecessary reading
- "synchronously scan and reclaim empty user PTE pages" from Qi Zheng
addresses an issue where "huge" amounts of pte pagetables are
accumulated:
https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/
Qi's series addresses this windup by synchronously freeing PTE
memory within the context of madvise(MADV_DONTNEED)
- "selftest/mm: Remove warnings found by adding compiler flags" from
Muhammad Usama Anjum fixes some build warnings in the selftests
code when optional compiler warnings are enabled
- "mm: don't use __GFP_HARDWALL when migrating remote pages" from
David Hildenbrand tightens the allocator's observance of
__GFP_HARDWALL
- "pkeys kselftests improvements" from Kevin Brodsky implements
various fixes and cleanups in the MM selftests code, mainly
pertaining to the pkeys tests
- "mm/damon: add sample modules" from SeongJae Park enhances DAMON to
estimate application working set size
- "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn
provides some cleanups to memcg's hugetlb charging logic
- "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song
removes the global swap cgroup lock. A speedup of 10% for a
tmpfs-based kernel build was demonstrated
- "zram: split page type read/write handling" from Sergey Senozhatsky
has several fixes and cleaups for zram in the area of
zram_write_page(). A watchdog softlockup warning was eliminated
- "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin
Brodsky cleans up the pagetable destructor implementations. A rare
use-after-free race is fixed
- "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes
simplifies and cleans up the debugging code in the VMA merging
logic
- "Account page tables at all levels" from Kevin Brodsky cleans up
and regularizes the pagetable ctor/dtor handling. This results in
improvements in accounting accuracy
- "mm/damon: replace most damon_callback usages in sysfs with new
core functions" from SeongJae Park cleans up and generalizes
DAMON's sysfs file interface logic
- "mm/damon: enable page level properties based monitoring" from
SeongJae Park increases the amount of information which is
presented in response to DAMOS actions
- "mm/damon: remove DAMON debugfs interface" from SeongJae Park
removes DAMON's long-deprecated debugfs interfaces. Thus the
migration to sysfs is completed
- "mm/hugetlb: Refactor hugetlb allocation resv accounting" from
Peter Xu cleans up and generalizes the hugetlb reservation
accounting
- "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino
removes a never-used feature of the alloc_pages_bulk() interface
- "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park
extends DAMOS filters to support not only exclusion (rejecting),
but also inclusion (allowing) behavior
- "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi
introduces a new memory descriptor for zswap.zpool that currently
overlaps with struct page for now. This is part of the effort to
reduce the size of struct page and to enable dynamic allocation of
memory descriptors
- "mm, swap: rework of swap allocator locks" from Kairui Song redoes
and simplifies the swap allocator locking. A speedup of 400% was
demonstrated for one workload. As was a 35% reduction for kernel
build time with swap-on-zram
- "mm: update mips to use do_mmap(), make mmap_region() internal"
from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that
mmap_region() can be made MM-internal
- "mm/mglru: performance optimizations" from Yu Zhao fixes a few
MGLRU regressions and otherwise improves MGLRU performance
- "Docs/mm/damon: add tuning guide and misc updates" from SeongJae
Park updates DAMON documentation
- "Cleanup for memfd_create()" from Isaac Manjarres does that thing
- "mm: hugetlb+THP folio and migration cleanups" from David
Hildenbrand provides various cleanups in the areas of hugetlb
folios, THP folios and migration
- "Uncached buffered IO" from Jens Axboe implements the new
RWF_DONTCACHE flag which provides synchronous dropbehind for
pagecache reading and writing. To permite userspace to address
issues with massive buildup of useless pagecache when
reading/writing fast devices
- "selftests/mm: virtual_address_range: Reduce memory" from Thomas
Weißschuh fixes and optimizes some of the MM selftests"
* tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits)
mm/compaction: fix UBSAN shift-out-of-bounds warning
s390/mm: add missing ctor/dtor on page table upgrade
kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags()
tools: add VM_WARN_ON_VMG definition
mm/damon/core: use str_high_low() helper in damos_wmark_wait_us()
seqlock: add missing parameter documentation for raw_seqcount_try_begin()
mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh
mm/page_alloc: remove the incorrect and misleading comment
zram: remove zcomp_stream_put() from write_incompressible_page()
mm: separate move/undo parts from migrate_pages_batch()
mm/kfence: use str_write_read() helper in get_access_type()
selftests/mm/mkdirty: fix memory leak in test_uffdio_copy()
kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags()
selftests/mm: virtual_address_range: avoid reading from VM_IO mappings
selftests/mm: vm_util: split up /proc/self/smaps parsing
selftests/mm: virtual_address_range: unmap chunks after validation
selftests/mm: virtual_address_range: mmap() without PROT_WRITE
selftests/memfd/memfd_test: fix possible NULL pointer dereference
mm: add FGP_DONTCACHE folio creation flag
mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue
...
|
|
The previous commit removed the page_list argument from
alloc_pages_bulk_noprof() along with the alloc_pages_bulk_list() function.
Now that only the *_array() flavour of the API remains, we can do the
following renaming (along with the _noprof() ones):
alloc_pages_bulk_array -> alloc_pages_bulk
alloc_pages_bulk_array_mempolicy -> alloc_pages_bulk_mempolicy
alloc_pages_bulk_array_node -> alloc_pages_bulk_node
Link: https://lkml.kernel.org/r/275a3bbc0be20fbe9002297d60045e67ab3d4ada.1734991165.git.luizcap@redhat.com
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Yunsheng Lin <linyunsheng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All the error handling bugs I hit so far are all -ENOSPC from either:
- cow_file_range()
- run_delalloc_nocow()
- submit_uncompressed_range()
Previously when those functions failed, there was no error message at
all, making the debugging much harder.
So here we introduce extra error messages for:
- cow_file_range()
- run_delalloc_nocow()
- submit_uncompressed_range()
- writepage_delalloc() when btrfs_run_delalloc_range() failed
- extent_writepage() when extent_writepage_io() failed
One example of the new debug error messages is the following one:
run fstests generic/750 at 2024-12-08 12:41:41
BTRFS: device fsid 461b25f5-e240-4543-8deb-e7c2bd01a6d3 devid 1 transid 8 /dev/mapper/test-scratch1 (253:4) scanned by mount (2436600)
BTRFS info (device dm-4): first mount of filesystem 461b25f5-e240-4543-8deb-e7c2bd01a6d3
BTRFS info (device dm-4): using crc32c (crc32c-arm64) checksum algorithm
BTRFS info (device dm-4): forcing free space tree for sector size 4096 with page size 65536
BTRFS info (device dm-4): using free-space-tree
BTRFS warning (device dm-4): read-write for sector size 4096 with page size 65536 is experimental
BTRFS info (device dm-4): checking UUID tree
BTRFS error (device dm-4): cow_file_range failed, root=363 inode=412 start=503808 len=98304: -28
BTRFS error (device dm-4): run_delalloc_nocow failed, root=363 inode=412 start=503808 len=98304: -28
BTRFS error (device dm-4): failed to run delalloc range, root=363 ino=412 folio=458752 submit_bitmap=11-15 start=503808 len=98304: -28
Which shows an error from cow_file_range() which is called inside a
nocow write attempt, along with the extra bitmap from
writepage_delalloc().
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
If submit_one_sector() failed inside extent_writepage_io() for sector
size < page size cases (e.g. 4K sector size and 64K page size), then
we can hit double ordered extent accounting error.
This should be very rare, as submit_one_sector() only fails when we
failed to grab the extent map, and such extent map should exist inside
the memory and has been pinned.
[CAUSE]
For example we have the following folio layout:
0 4K 32K 48K 60K 64K
|//| |//////| |///|
Where |///| is the dirty range we need to writeback. The 3 different
dirty ranges are submitted for regular COW.
Now we hit the following sequence:
- submit_one_sector() returned 0 for [0, 4K)
- submit_one_sector() returned 0 for [32K, 48K)
- submit_one_sector() returned error for [60K, 64K)
- btrfs_mark_ordered_io_finished() called for the whole folio
This will mark the following ranges as finished:
* [0, 4K)
* [32K, 48K)
Both ranges have their IO already submitted, this cleanup will
lead to double accounting.
* [60K, 64K)
That's the correct cleanup.
The only good news is, this error is only theoretical, as the target
extent map is always pinned, thus we should directly grab it from
memory, other than reading it from the disk.
[FIX]
Instead of calling btrfs_mark_ordered_io_finished() for the whole folio
range, which can touch ranges we should not touch, instead
move the error handling inside extent_writepage_io().
So that we can cleanup exact sectors that ought to be submitted but failed.
This provides much more accurate cleanup, avoiding the double accounting.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
When running btrfs with block size (4K) smaller than page size (64K,
aarch64), there is a very high chance to crash the kernel at
generic/750, with the following messages:
(before the call traces, there are 3 extra debug messages added)
BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental
BTRFS info (device dm-3): checking UUID tree
hrtimer: interrupt took 5451385 ns
BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28
BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28
BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28
------------[ cut here ]------------
WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs]
CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs]
lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs]
Call trace:
can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P)
can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L)
btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs]
extent_writepage+0x10c/0x3b8 [btrfs]
extent_write_cache_pages+0x21c/0x4e8 [btrfs]
btrfs_writepages+0x94/0x160 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x74/0xa0
start_delalloc_inodes+0x17c/0x3b0 [btrfs]
btrfs_start_delalloc_roots+0x17c/0x288 [btrfs]
shrink_delalloc+0x11c/0x280 [btrfs]
flush_space+0x288/0x328 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x228/0x680
worker_thread+0x1bc/0x360
kthread+0x100/0x118
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0
CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write)
pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : process_one_work+0x110/0x680
lr : worker_thread+0x1bc/0x360
Call trace:
process_one_work+0x110/0x680 (P)
worker_thread+0x1bc/0x360 (L)
worker_thread+0x1bc/0x360
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception
SMP: stopping secondary CPUs
SMP: failed to stop secondary CPUs 2-3
Dumping ftrace buffer:
(ftrace buffer empty)
Kernel Offset: 0x275bb9540000 from 0xffff800080000000
PHYS_OFFSET: 0xffff8fbba0000000
CPU features: 0x100,00000070,00801250,8201720b
[CAUSE]
The above warning is triggered immediately after the delalloc range
failure, this happens in the following sequence:
- Range [1568K, 1636K) is dirty
1536K 1568K 1600K 1636K 1664K
| |/////////|////////| |
Where 1536K, 1600K and 1664K are page boundaries (64K page size)
- Enter extent_writepage() for page 1536K
- Enter run_delalloc_nocow() with locked page 1536K and range
[1568K, 1636K)
This is due to the inode having preallocated extents.
- Enter cow_file_range() with locked page 1536K and range
[1568K, 1636K)
- btrfs_reserve_extent() only reserved two extents
The main loop of cow_file_range() only reserved two data extents,
Now we have:
1536K 1568K 1600K 1636K 1664K
| |<-->|<--->|/|///////| |
1584K 1596K
Range [1568K, 1596K) has an ordered extent reserved.
- btrfs_reserve_extent() failed inside cow_file_range() for file offset
1596K
This is already a bug in our space reservation code, but for now let's
focus on the error handling path.
Now cow_file_range() returned -ENOSPC.
- btrfs_run_delalloc_range() do error cleanup <<< ROOT CAUSE
Call btrfs_cleanup_ordered_extents() with locked folio 1536K and range
[1568K, 1636K)
Function btrfs_cleanup_ordered_extents() normally needs to skip the
ranges inside the folio, as it will normally be cleaned up by
extent_writepage().
Such split error handling is already problematic in the first place.
What's worse is the folio range skipping itself, which is not taking
subpage cases into consideration at all, it will only skip the range
if the page start >= the range start.
In our case, the page start < the range start, since for subpage cases
we can have delalloc ranges inside the folio but not covering the
folio.
So it doesn't skip the page range at all.
This means all the ordered extents, both [1568K, 1584K) and
[1584K, 1596K) will be marked as IOERR.
And these two ordered extents have no more pending ios, they are marked
finished, and *QUEUED* to be deleted from the io tree.
- extent_writepage() do error cleanup
Call btrfs_mark_ordered_io_finished() for the range [1536K, 1600K).
Although ranges [1568K, 1584K) and [1584K, 1596K) are finished, the
deletion from io tree is async, it may or may not happen at this
time.
If the ranges have not yet been removed, we will do double cleaning on
those ranges, triggering the above ordered extent warnings.
In theory there are other bugs, like the cleanup in extent_writepage()
can cause double accounting on ranges that are submitted asynchronously
(compression for example).
But that's much harder to trigger because normally we do not mix regular
and compression delalloc ranges.
[FIX]
The folio range split is already buggy and not subpage compatible, it
was introduced a long time ago where subpage support was not even considered.
So instead of splitting the ordered extents cleanup into the folio range
and out of folio range, do all the cleanup inside writepage_delalloc().
- Pass @NULL as locked_folio for btrfs_cleanup_ordered_extents() in
btrfs_run_delalloc_range()
- Skip the btrfs_cleanup_ordered_extents() if writepage_delalloc()
failed
So all ordered extents are only cleaned up by
btrfs_run_delalloc_range().
- Handle the ranges that already have ordered extents allocated
If part of the folio already has ordered extent allocated, and
btrfs_run_delalloc_range() failed, we also need to cleanup that range.
Now we have a concentrated error handling for ordered extents during
btrfs_run_delalloc_range().
Fixes: d1051d6ebf8e ("btrfs: Fix error handling in btrfs_cleanup_ordered_extents")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
lock_delalloc_folios()
Same pattern in both functions, we really only use index, start_index is
redundant.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There are only 2 WAIT_* values left for wait parameter, we can encode
this to the function name if the waiting functionality is split.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Another conversion to folio API, use the folio locking directly instead
of back and forth page <-> folio conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The check function pattern is supposed to return true/false, currently
there's only one error code.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Use the folio API, remove page_folio/folio_page conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Continue page to folio updates, sync what the function does with it's
name.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Using the kmem cache freeing directly is clear enough, we don't need to
wrap it. All the users are in the same file.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The simple helper can be inlined, no need for the separate function.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
As extent_writepage() is internal helper we should use our inode type,
so change it from struct inode.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The double underscore naming scheme does not apply here, there's only
only get_extent_map(). As the definition is changed also pass the struct
btrfs_inode.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function set_page_extent_mapped() is now a simple wrapper so use the
folio helper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Drop the leading underscores in '__unlock_for_delalloc()' and rename it
to 'unlock_delalloc_folio()'. This also ensures naming parity with
'lock_delalloc_folios()'.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Commit 449813515d3e ("block, fs: Restore the per-bio/request data
lifetime fields") restored write-hint support in btrfs. But that is
applicable only for direct IO. This patch supports passing
write-hint for buffered IO from btrfs file system to block layer
by filling bi_write_hint of struct bio in alloc_new_bio().
There's an ongoing discussion which devices can use that,
https://lore.kernel.org/all/20240910150200.6589-6-joshi.k@samsung.com,
in SCSI there's support using sd_group_number() and
sd_setup_rw32_cmnd().
The hint goes from the application directly to the block device so it's
up to the application to set up everything properly to utilize the
different hint classes.
Link: https://lore.kernel.org/all/20240910150200.6589-6-joshi.k@samsung.com
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jing Xia <j.xia@samsung.com>
[ Add more context and use case. ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_get_extent() will only return an PTR_ERR() or a valid
extent map pointer. It will not return NULL.
Thus the usage of PTR_ERR_OR_ZERO() inside submit_one_sector() is not
needed, use plain PTR_ERR() instead, and that is the only usage of
PTR_ERR_OR_ZERO() after btrfs_get_extent().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Changes outside of btrfs: add io_uring command flag to track a dying
task (the rest will go via the block git tree).
User visible changes:
- wire encoded read (ioctl) to io_uring commands, this can be used on
itself, in the future this will allow 'send' to be asynchronous. As
a consequence, the encoded read ioctl can also work in non-blocking
mode
- new ioctl to wait for cleaned subvolumes, no need to use the
generic and root-only SEARCH_TREE ioctl, will be used by "btrfs
subvol sync"
- recognize different paths/symlinks for the same devices and don't
report them during rescanning, this can be observed with LVM or DM
- seeding device use case change, the sprout device (the one
capturing new writes) will not clear the read-only status of the
super block; this prevents accumulating space from deleted
snapshots
Performance improvements:
- reduce lock contention when traversing extent buffers
- reduce extent tree lock contention when searching for inline
backref
- switch from rb-trees to xarray for delayed ref tracking,
improvements due to better cache locality, branching factors and
more compact data structures
- enable extent map shrinker again (prevent memory exhaustion under
some types of IO load), reworked to run in a single worker thread
(there used to be problems causing long stalls under memory
pressure)
Core changes:
- raid-stripe-tree feature updates:
- make device replace and scrub work
- implement partial deletion of stripe extents
- new selftests
- split the config option BTRFS_DEBUG and add EXPERIMENTAL for
features that are experimental or with known problems so we don't
misuse debugging config for that
- subpage mode updates (sector < page):
- update compression implementations
- update writepage, writeback
- continued folio API conversions:
- buffered writes
- make buffered write copy one page at a time, preparatory work for
future integration with large folios, may cause performance drop
- proper locking of root item regarding starting send
- error handling improvements
- code cleanups and refactoring:
- dead code removal
- unused parameter reduction
- lockdep assertions"
* tag 'for-6.13-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (119 commits)
btrfs: send: check for read-only send root under critical section
btrfs: send: check for dead send root under critical section
btrfs: remove check for NULL fs_info at btrfs_folio_end_lock_bitmap()
btrfs: fix warning on PTR_ERR() against NULL device at btrfs_control_ioctl()
btrfs: fix a typo in btrfs_use_zone_append
btrfs: avoid superfluous calls to free_extent_map() in btrfs_encoded_read()
btrfs: simplify logic to decrement snapshot counter at btrfs_mksnapshot()
btrfs: remove hole from struct btrfs_delayed_node
btrfs: update stale comment for struct btrfs_delayed_ref_node::add_list
btrfs: add new ioctl to wait for cleaned subvolumes
btrfs: simplify range tracking in cow_file_range()
btrfs: remove conditional path allocation in btrfs_read_locked_inode()
btrfs: push cleanup into btrfs_read_locked_inode()
io_uring/cmd: let cmds to know about dying task
btrfs: add struct io_btrfs_cmd as type for io_uring_cmd_to_pdu()
btrfs: add io_uring command for encoded reads (ENCODED_READ ioctl)
btrfs: move priv off stack in btrfs_encoded_read_regular_fill_pages()
btrfs: don't sleep in btrfs_encoded_read() if IOCB_NOWAIT is set
btrfs: change btrfs_encoded_read() so that reading of extent is done by caller
btrfs: remove pointless iocb::ki_pos addition in btrfs_encoded_read()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"Features:
- Fixup and improve NLM and kNFSD file lock callbacks
Last year both GFS2 and OCFS2 had some work done to make their
locking more robust when exported over NFS. Unfortunately, part of
that work caused both NLM (for NFS v3 exports) and kNFSD (for
NFSv4.1+ exports) to no longer send lock notifications to clients
This in itself is not a huge problem because most NFS clients will
still poll the server in order to acquire a conflicted lock
It's important for NLM and kNFSD that they do not block their
kernel threads inside filesystem's file_lock implementations
because that can produce deadlocks. We used to make sure of this by
only trusting that posix_lock_file() can correctly handle blocking
lock calls asynchronously, so the lock managers would only setup
their file_lock requests for async callbacks if the filesystem did
not define its own lock() file operation
However, when GFS2 and OCFS2 grew the capability to correctly
handle blocking lock requests asynchronously, they started
signalling this behavior with EXPORT_OP_ASYNC_LOCK, and the check
for also trusting posix_lock_file() was inadvertently dropped, so
now most filesystems no longer produce lock notifications when
exported over NFS
Fix this by using an fop_flag which greatly simplifies the problem
and grooms the way for future uses by both filesystems and lock
managers alike
- Add a sysctl to delete the dentry when a file is removed instead of
making it a negative dentry
Commit 681ce8623567 ("vfs: Delete the associated dentry when
deleting a file") introduced an unconditional deletion of the
associated dentry when a file is removed. However, this led to
performance regressions in specific benchmarks, such as
ilebench.sum_operations/s, prompting a revert in commit
4a4be1ad3a6e ("Revert "vfs: Delete the associated dentry when
deleting a file""). This reintroduces the concept conditionally
through a sysctl
- Expand the statmount() system call:
* Report the filesystem subtype in a new fs_subtype field to
e.g., report fuse filesystem subtypes
* Report the superblock source in a new sb_source field
* Add a new way to return filesystem specific mount options in an
option array that returns filesystem specific mount options
separated by zero bytes and unescaped. This allows caller's to
retrieve filesystem specific mount options and immediately pass
them to e.g., fsconfig() without having to unescape or split
them
* Report security (LSM) specific mount options in a separate
security option array. We don't lump them together with
filesystem specific mount options as security mount options are
generic and most users aren't interested in them
The format is the same as for the filesystem specific mount
option array
- Support relative paths in fsconfig()'s FSCONFIG_SET_STRING command
- Optimize acl_permission_check() to avoid costly {g,u}id ownership
checks if possible
- Use smp_mb__after_spinlock() to avoid full smp_mb() in evict()
- Add synchronous wakeup support for ep_poll_callback.
Currently, epoll only uses wake_up() to wake up task. But sometimes
there are epoll users which want to use the synchronous wakeup flag
to give a hint to the scheduler, e.g., the Android binder driver.
So add a wake_up_sync() define, and use wake_up_sync() when sync is
true in ep_poll_callback()
Fixes:
- Fix kernel documentation for inode_insert5() and iget5_locked()
- Annotate racy epoll check on file->f_ep
- Make F_DUPFD_QUERY associative
- Avoid filename buffer overrun in initramfs
- Don't let statmount() return empty strings
- Add a cond_resched() to dump_user_range() to avoid hogging the CPU
- Don't query the device logical blocksize multiple times for hfsplus
- Make filemap_read() check that the offset is positive or zero
Cleanups:
- Various typo fixes
- Cleanup wbc_attach_fdatawrite_inode()
- Add __releases annotation to wbc_attach_and_unlock_inode()
- Add hugetlbfs tracepoints
- Fix various vfs kernel doc parameters
- Remove obsolete TODO comment from io_cancel()
- Convert wbc_account_cgroup_owner() to take a folio
- Fix comments for BANDWITH_INTERVAL and wb_domain_writeout_add()
- Reorder struct posix_acl to save 8 bytes
- Annotate struct posix_acl with __counted_by()
- Replace one-element array with flexible array member in freevxfs
- Use idiomatic atomic64_inc_return() in alloc_mnt_ns()"
* tag 'vfs-6.13.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (35 commits)
statmount: retrieve security mount options
vfs: make evict() use smp_mb__after_spinlock instead of smp_mb
statmount: add flag to retrieve unescaped options
fs: add the ability for statmount() to report the sb_source
writeback: wbc_attach_fdatawrite_inode out of line
writeback: add a __releases annoation to wbc_attach_and_unlock_inode
fs: add the ability for statmount() to report the fs_subtype
fs: don't let statmount return empty strings
fs:aio: Remove TODO comment suggesting hash or array usage in io_cancel()
hfsplus: don't query the device logical block size multiple times
freevxfs: Replace one-element array with flexible array member
fs: optimize acl_permission_check()
initramfs: avoid filename buffer overrun
fs/writeback: convert wbc_account_cgroup_owner to take a folio
acl: Annotate struct posix_acl with __counted_by()
acl: Realign struct posix_acl to save 8 bytes
epoll: Add synchronous wakeup support for ep_poll_callback
coredump: add cond_resched() to dump_user_range
mm/page-writeback.c: Fix comment of wb_domain_writeout_add()
mm/page-writeback.c: Update comment for BANDWIDTH_INTERVAL
...
|
|
When fgp_flags and gfp_flags are zero, use filemap_get_folio(A, B)
instead of __filemap_get_folio(A, B, 0, 0)—no need for the extra
arguments 0, 0.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since there is no user of reader locks, rename the writer locks into a
more generic name, by removing the "_writer" part from the name.
And also rename btrfs_subpage::writer into btrfs_subpage::locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since commit d7172f52e993 ("btrfs: use per-buffer locking for
extent_buffer reading"), metadata read no longer relies on the subpage
reader locking.
This means we do not need to maintain a different metadata/data split
for locking, so we can convert the existing reader lock users by:
- add_ra_bio_pages()
Convert to btrfs_folio_set_writer_lock()
- end_folio_read()
Convert to btrfs_folio_end_writer_lock()
- begin_folio_read()
Convert to btrfs_folio_set_writer_lock()
- folio_range_has_eb()
Remove the subpage->readers checks, since it is always 0.
- Remove btrfs_subpage_start_reader() and btrfs_subpage_end_reader()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's pointless to initialize the has_first_key field of the stack local
btrfs_tree_parent_check structure at btrfs_tree_parent_check() and at
btrfs_qgroup_trace_subtree() since all fields not explicitly initialized
are zeroed out. In the case of the first function it's a bit odd because
we are assigning 0 and the field is of type bool, however not incorrect
since a 0 is converted to false.
Just remove the explicit initializations due to their redundancy.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The parameter was added in 8ff8466d29efc2 ("btrfs: support subpage for
extent buffer page release") for page but hasn't been used since, so we
can drop it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The mask parameter used for allocations got unified to GFP_NOFS and
removed from relevant functions in 1d1268004430 ("btrfs: drop gfp from
parameter extent state helpers").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_set_range_writeback() was originally a callback for
metadata and data, to mark a range with writeback flag.
Then it was converted into a common function call for both metadata and
data.
From the very beginning, the function had been only called on a full page,
later converted to handle range inside a page.
But it never needed to handle multiple pages, and since commit
8189197425e7 ("btrfs: refactor __extent_writepage_io() to do
sector-by-sector submission") the function was only called on a
sector-by-sector basis.
This makes the function unnecessary, and can be converted to a simple
btrfs_folio_set_writeback() call instead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Fix some confusing spelling errors that were currently identified,
the details are as follows:
block-group.c: 2800: uncompressible ==> incompressible
extent-tree.c: 3131: EXTEMT ==> EXTENT
extent_io.c: 3124: utlizing ==> utilizing
extent_map.c: 1323: ealier ==> earlier
extent_map.c: 1325: possiblity ==> possibility
fiemap.c: 189: emmitted ==> emitted
fiemap.c: 197: emmitted ==> emitted
fiemap.c: 203: emmitted ==> emitted
transaction.h: 36: trasaction ==> transaction
volumes.c: 5312: filesysmte ==> filesystem
zoned.c: 1977: trasnsaction ==> transaction
Signed-off-by: Shen Lichuan <shenlichuan@vivo.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently we only mark sectors as locked if there is a *NEW* delalloc
range for it.
But NEW delalloc range is not the same as dirty sectors we want to
submit, e.g:
0 32K 64K 96K 128K
| |////////||///////| |////|
120K
For above 64K page size case, writepage_delalloc() for page 0 will find
and lock the delalloc range [32K, 96K), which is beyond the page
boundary.
Then when writepage_delalloc() is called for the page 64K, since [64K,
96K) is already locked, only [120K, 128K) will be locked.
This means, although range [64K, 96K) is dirty and will be submitted
later by extent_writepage_io(), it will not be marked as locked.
This is fine for now, as we call btrfs_folio_end_writer_lock_bitmap() to
free every non-compressed sector, and compression is only allowed for
full page range.
But this is not safe for future sector perfect compression support, as
this can lead to double folio unlock:
Thread A | Thread B
---------------------------------------+--------------------------------
| submit_one_async_extent()
| |- extent_clear_unlock_delalloc()
extent_writepage() | |- btrfs_folio_end_writer_lock()
|- btrfs_folio_end_writer_lock_bitmap()| |- btrfs_subpage_end_and_test_writer()
| | | |- atomic_sub_and_test()
| | | /* Now the atomic value is 0 */
|- if (atomic_read() == 0) | |
|- folio_unlock() | |- folio_unlock()
The root cause is the above range [64K, 96K) is dirtied and should also
be locked but it isn't.
So to make everything more consistent and prepare for the incoming
sector perfect compression, mark all dirty sectors as locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently for subpage (sector size < page size) cases, we reuse subpage
locked bitmap to find out all delalloc ranges we have locked, and run
all those found ranges.
However such reuse is not perfect, e.g.:
0 32K 64K 96K 128K
| |////////||///////| |////|
120K
For above range, writepage_delalloc() for page 0 will handle the range
[32K, 96k), note delalloc range can be beyond the page boundary.
But writepage_delalloc() for page 64K will only handle range [120K,
128K), as the previous run on page 0 has already handled range [64K,
96K).
Meanwhile for the writeback we should expect range [64K, 96K) to also be
locked, this leads to the mismatch from locked bitmap and delalloc
range.
This is not causing problems yet, but it's still an inconsistent
behavior.
So instead of relying on the subpage locked bitmap, move the delalloc
range search using local @delalloc_bitmap, so that we can remove the
existing btrfs_folio_find_writer_locked().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function extent_writepage_io() will submit the dirty sectors inside
the page for the write.
But recently to co-operate with the incoming subpage compression
enhancement, a new bitmap is introduced to
btrfs_bio_ctrl::submit_bitmap, to only avoid a subset of the dirty
range.
This is because we can have the following cases with 64K page size:
0 16K 32K 48K 64K
| |/////////| |/|
52K
For range [16K, 32K), we queue the dirty range for compression, which is
ran in a delayed workqueue.
Then for range [48K, 52K), we go through the regular submission path.
In that case, our btrfs_bio_ctrl::submit_bitmap will exclude the range
[16K, 32K).
The dirty flags for the range [16K, 32K) is only cleared when the
compression is done, by the extent_clear_unlock_delalloc() call inside
submit_one_async_extent().
This patch fix the false alert by removing the
btrfs_folio_assert_not_dirty() check, since it's no longer correct for
subpage compression cases.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[PROBLEM]
If sector perfect compression is enabled for sector size < page size
case, the following case can lead dirty ranges not being written back:
0 32K 64K 96K 128K
| |///////||//////| |/|
124K
In above example, the page size is 64K, and we need to write back above
two pages.
- Submit for page 0 (main thread)
We found delalloc range [32K, 96K), which can be compressed.
So we queue an async range for [32K, 96K).
This means, the page unlock/clearing dirty/setting writeback will
all happen in a workqueue context.
- The compression is done, and compressed range is submitted (workqueue)
Since the compression is done in asynchronously, the compression can
be done before the main thread to submit for page 64K.
Now the whole range [32K, 96K), involving two pages, will be marked
writeback.
- Submit for page 64K (main thread)
extent_write_cache_pages() got its wbc->sync_mode is WB_SYNC_NONE,
so it skips the writeback wait.
And unlock the page and exit. This means the dirty range [124K, 128K)
will never be submitted, until next writeback happens for page 64K.
This will never happen for previous kernels because:
- For sector size == page size case
Since one page is one sector, if a page is marked writeback it will
not have dirty flags.
So this corner case will never hit.
- For sector size < page size case
We never do subpage compression, a range can only be submitted for
compression if the range is fully page aligned.
This change makes the subpage behavior mostly the same as non-subpage
cases.
[ENHANCEMENT]
Instead of relying WB_SYNC_NONE check only, if it's a subpage case, then
always wait for writeback flags.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Most of the callers of wbc_account_cgroup_owner() are converting a folio
to page before calling the function. wbc_account_cgroup_owner() is
converting the page back to a folio to call mem_cgroup_css_from_folio().
Convert wbc_account_cgroup_owner() to take a folio instead of a page,
and convert all callers to pass a folio directly except f2fs.
Convert the page to folio for all the callers from f2fs as they were the
only callers calling wbc_account_cgroup_owner() with a page. As f2fs is
already in the process of converting to folios, these call sites might
also soon be calling wbc_account_cgroup_owner() with a folio directly in
the future.
No functional changes. Only compile tested.
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Link: https://lore.kernel.org/r/20240926140121.203821-1-kernel@pankajraghav.com
Acked-by: David Sterba <dsterba@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Inside lock_delalloc_folios(), there are several problems related to
sector size < page size handling:
- Set the writer locks without checking if the folio is still valid
We call btrfs_folio_start_writer_lock() just like it's folio_lock().
But since the folio may not even be the folio of the current mapping,
we can easily screw up the folio->private.
- The range is not clamped inside the page
This means we can over write other bitmaps if the start/len is not
properly handled, and trigger the btrfs_subpage_assert().
- @processed_end is always rounded up to page end
If the delalloc range is not page aligned, and we need to retry
(returning -EAGAIN), then we will unlock to the page end.
Thankfully this is not a huge problem, as now
btrfs_folio_end_writer_lock() can handle range larger than the locked
range, and only unlock what is already locked.
Fix all these problems by:
- Lock and check the folio first, then call
btrfs_folio_set_writer_lock()
So that if we got a folio not belonging to the inode, we won't
touch folio->private.
- Properly truncate the range inside the page
- Update @processed_end to the locked range end
Fixes: 1e1de38792e0 ("btrfs: make process_one_page() to handle subpage locking")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This commit is a replay of commit 6252690f7e1b ("btrfs: fix invalid
mapping of extent xarray state"). We need to call
btrfs_folio_clear_dirty() before btrfs_set_range_writeback(), so that
xarray DIRTY tag is cleared.
With a refactoring commit 8189197425e7 ("btrfs: refactor
__extent_writepage_io() to do sector-by-sector submission"), it screwed
up and the order is reversed and causing the same hang. Fix the ordering
now in submit_one_sector().
Fixes: 8189197425e7 ("btrfs: refactor __extent_writepage_io() to do sector-by-sector submission")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[SUBPAGE COMPRESSION LIMITS]
Currently inside writepage_delalloc(), if a delalloc range is going to
be submitted asynchronously (inline or compression, the page
dirty/writeback/unlock are all handled in at different time, not at the
submission time), then we return 1 and extent_writepage() will skip the
submission.
This is fine if every sector matches page size, but if a sector is
smaller than page size (aka, subpage case), then it can be very
problematic, for example for the following 64K page:
0 16K 32K 48K 64K
|/| |///////| |/|
| |
4K 52K
Where |/| is the dirty range we need to submit.
In the above case, we need the following different handling for the 3
ranges:
- [0, 4K) needs to be submitted for regular write
A single sector cannot be compressed.
- [16K, 32K) needs to be submitted for compressed write
- [48K, 52K) needs to be submitted for regular write.
Above, if we try to submit [16K, 32K) for compressed write, we will
return 1 and immediately, and without submitting the remaining
[48K, 52K) range.
Furthermore, since extent_writepage() will exit without unlocking any
sectors, the submitted range [0, 4K) will not have sector unlocked.
That's the reason why for now subpage is only allowed for full page
range.
[ENHANCEMENT]
- Introduce a submission bitmap at btrfs_bio_ctrl::submit_bitmap
This records which sectors will be submitted by extent_writepage_io().
This allows us to track which sectors needs to be submitted thus later
to be properly unlocked.
For asynchronously submitted range (inline/compression), the
corresponding bits will be cleared from that bitmap.
- Only return 1 if no sector needs to be submitted in
writepage_delalloc()
- Only submit sectors marked by submission bitmap inside
extent_writepage_io()
So we won't touch the asynchronously submitted part.
- Introduce btrfs_folio_end_writer_lock_bitmap() helper
This will only unlock the involved sectors specified by @bitmap
parameter, to avoid touching the range asynchronously submitted.
Please note that, since subpage compression is still limited to page
aligned range, this change is only a preparation for future sector
perfect compression support for subpage.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_folio_unlock_writer() is already calling
btrfs_folio_end_writer_lock() to do the heavy lifting work, the only
missing 0 writer check.
Thus there is no need to keep two different functions, move the 0 writer
check into btrfs_folio_end_writer_lock(), and remove
btrfs_folio_unlock_writer().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_folio_end_all_writers() is only utilized in
extent_writepage() as a way to unlock all subpage range (for both
successful submission and error handling).
Meanwhile we have a similar function, btrfs_folio_end_writer_lock().
The difference is, btrfs_folio_end_writer_lock() expects a range that is
a subset of the already locked range.
This limit on btrfs_folio_end_writer_lock() is a little overkilled,
preventing it from being utilized for error paths.
So here we enhance btrfs_folio_end_writer_lock() to accept a superset of
the locked range, and only end the locked subset.
This means we can replace btrfs_folio_end_all_writers() with
btrfs_folio_end_writer_lock() instead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And page_to_inode() can be replaced with folio_to_inode() now.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use folio_pos() instead of page_offset(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|