summaryrefslogtreecommitdiff
path: root/drivers/net/dsa/sja1105/sja1105_main.c
AgeCommit message (Collapse)Author
2021-02-16net: dsa: sja1105: fix configuration of source address learningVladimir Oltean
Due to a mistake, the driver always sets the address learning flag to the previously stored value, and not to the currently configured one. The bug is visible only in standalone ports mode, because when the port is bridged, the issue is masked by .port_stp_state_set which overwrites the address learning state to the proper value. Fixes: 4d9423549501 ("net: dsa: sja1105: offload bridge port flags to device") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-15net: dsa: sja1105: make devlink property best_effort_vlan_filtering true by ↵Vladimir Oltean
default The sja1105 driver has a limitation, extensively described under Documentation/networking/dsa/sja1105.rst and Documentation/networking/devlink/sja1105.rst, which says that when the ports are under a bridge with vlan_filtering=1, traffic to and from the network stack is not possible, unless the driver-specific best_effort_vlan_filtering devlink parameter is enabled. For users, this creates a 'wtf' moment. They need to go to the documentation and find about the existence of this property, then maybe install devlink and set it to true. Having best_effort_vlan_filtering enabled by the kernel by default delays that 'wtf' moment (maybe up to the point that it never even happens). The user doesn't need to care that the driver supports addressing the ports individually by retagging VLAN IDs until he/she needs to use more than 32 VLAN IDs (since there can be at most 32 retagging rules). Only then do they need to think whether they need the full VLAN table, at the expense of no individual port addressing, or not. But the odds that an sja1105 user will need more than 32 VLANs terminated by the CPU is probably low. And, if we were to follow the principle that more advanced use cases should require more advanced preparation steps, then it makes more sense for ping to 'just work' while CPU termination of > 32 VLAN IDs to require a bit more forethought and possibly a driver-specific devlink param. So we should be able to safely change the default here, and make this driver act just a little bit more sanely out of the box. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14net: dsa: propagate extack to .port_vlan_filteringVladimir Oltean
Some drivers can't dynamically change the VLAN filtering option, or impose some restrictions, it would be nice to propagate this info through netlink instead of printing it to a kernel log that might never be read. Also netlink extack includes the module that emitted the message, which means that it's easier to figure out which ones are driver-generated errors as opposed to command misuse. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14net: dsa: propagate extack to .port_vlan_addVladimir Oltean
Allow drivers to communicate their restrictions to user space directly, instead of printing to the kernel log. Where the conversion would have been lossy and things like VLAN ID could no longer be conveyed (due to the lack of support for printf format specifier in netlink extack), I chose to keep the messages in full form to the kernel log only, and leave it up to individual driver maintainers to move more messages to extack. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-12net: dsa: sja1105: offload bridge port flags to deviceVladimir Oltean
The chip can configure unicast flooding, broadcast flooding and learning. Learning is per port, while flooding is per {ingress, egress} port pair and we need to configure the same value for all possible ingress ports towards the requested one. While multicast flooding is not officially supported, we can hack it by using a feature of the second generation (P/Q/R/S) devices, which is that FDB entries are maskable, and multicast addresses always have an odd first octet. So by putting a match-all for 00:01:00:00:00:00 addr and 00:01:00:00:00:00 mask at the end of the FDB, we make sure that it is always checked last, and does not take precedence in front of any other MDB. So it behaves effectively as an unknown multicast entry. For the first generation switches, this feature is not available, so unknown multicast will always be treated the same as unknown unicast. So the only thing we can do is request the user to offload the settings for these 2 flags in tandem, i.e. ip link set swp2 type bridge_slave flood off Error: sja1105: This chip cannot configure multicast flooding independently of unicast. ip link set swp2 type bridge_slave flood off mcast_flood off ip link set swp2 type bridge_slave mcast_flood on Error: sja1105: This chip cannot configure multicast flooding independently of unicast. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-01-15net: dsa: set configure_vlan_while_not_filtering to true by defaultVladimir Oltean
As explained in commit 54a0ed0df496 ("net: dsa: provide an option for drivers to always receive bridge VLANs"), DSA has historically been skipping VLAN switchdev operations when the bridge wasn't in vlan_filtering mode, but the reason why it was doing that has never been clear. So the configure_vlan_while_not_filtering option is there merely to preserve functionality for existing drivers. It isn't some behavior that drivers should opt into. Ideally, when all drivers leave this flag set, we can delete the dsa_port_skip_vlan_configuration() function. New drivers always seem to omit setting this flag, for some reason. So let's reverse the logic: the DSA core sets it by default to true before the .setup() callback, and legacy drivers can turn it off. This way, new drivers get the new behavior by default, unless they explicitly set the flag to false, which is more obvious during review. Remove the assignment from drivers which were setting it to true, and add the assignment to false for the drivers that didn't previously have it. This way, it should be easier to see how many we have left. The following drivers: lan9303, mv88e6060 were skipped from setting this flag to false, because they didn't have any VLAN offload ops in the first place. The Broadcom Starfighter 2 driver calls the common b53_switch_alloc and therefore also inherits the configure_vlan_while_not_filtering=true behavior. Also, print a message through netlink extack every time a VLAN has been skipped. This is mildly annoying on purpose, so that (a) it is at least clear that VLANs are being skipped - the legacy behavior in itself is confusing, and the extack should be much more difficult to miss, unlike kernel logs - and (b) people have one more incentive to convert to the new behavior. No behavior change except for the added prints is intended at this time. $ ip link add br0 type bridge vlan_filtering 0 $ ip link set sw0p2 master br0 [ 60.315148] br0: port 1(sw0p2) entered blocking state [ 60.320350] br0: port 1(sw0p2) entered disabled state [ 60.327839] device sw0p2 entered promiscuous mode [ 60.334905] br0: port 1(sw0p2) entered blocking state [ 60.340142] br0: port 1(sw0p2) entered forwarding state Warning: dsa_core: skipping configuration of VLAN. # This was the pvid $ bridge vlan add dev sw0p2 vid 100 Warning: dsa_core: skipping configuration of VLAN. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20210115231919.43834-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-11net: dsa: remove the transactional logic from VLAN objectsVladimir Oltean
It should be the driver's business to logically separate its VLAN offloading into a preparation and a commit phase, and some drivers don't need / can't do this. So remove the transactional shim from DSA and let drivers propagate errors directly from the .port_vlan_add callback. It would appear that the code has worse error handling now than it had before. DSA is the only in-kernel user of switchdev that offloads one switchdev object to more than one port: for every VLAN object offloaded to a user port, that VLAN is also offloaded to the CPU port. So the "prepare for user port -> check for errors -> prepare for CPU port -> check for errors -> commit for user port -> commit for CPU port" sequence appears to make more sense than the one we are using now: "offload to user port -> check for errors -> offload to CPU port -> check for errors", but it is really a compromise. In the new way, we can catch errors from the commit phase that we previously had to ignore. But we have our hands tied and cannot do any rollback now: if we add a VLAN on the CPU port and it fails, we can't do the rollback by simply deleting it from the user port, because the switchdev API is not so nice with us: it could have simply been there already, even with the same flags. So we don't even attempt to rollback anything on addition error, just leave whatever VLANs managed to get offloaded right where they are. This should not be a problem at all in practice. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-11net: dsa: remove the transactional logic from MDB entriesVladimir Oltean
For many drivers, the .port_mdb_prepare callback was not a good opportunity to avoid any error condition, and they would suppress errors found during the actual commit phase. Where a logical separation between the prepare and the commit phase existed, the function that used to implement the .port_mdb_prepare callback still exists, but now it is called directly from .port_mdb_add, which was modified to return an int code. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Jiri Pirko <jiri@nvidia.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek Reviewed-by: Linus Wallei <linus.walleij@linaro.org> # RTL8366 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-11net: switchdev: remove the transaction structure from port attributesVladimir Oltean
Since the introduction of the switchdev API, port attributes were transmitted to drivers for offloading using a two-step transactional model, with a prepare phase that was supposed to catch all errors, and a commit phase that was supposed to never fail. Some classes of failures can never be avoided, like hardware access, or memory allocation. In the latter case, merely attempting to move the memory allocation to the preparation phase makes it impossible to avoid memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused transaction item queue") which has removed the unused mechanism of passing on the allocated memory between one phase and another. It is time we admit that separating the preparation from the commit phase is something that is best left for the driver to decide, and not something that should be baked into the API, especially since there are no switchdev callers that depend on this. This patch removes the struct switchdev_trans member from switchdev port attribute notifier structures, and converts drivers to not look at this member. In part, this patch contains a revert of my previous commit 2e554a7a5d8a ("net: dsa: propagate switchdev vlan_filtering prepare phase to drivers"). For the most part, the conversion was trivial except for: - Rocker's world implementation based on Broadcom OF-DPA had an odd implementation of ofdpa_port_attr_bridge_flags_set. The conversion was done mechanically, by pasting the implementation twice, then only keeping the code that would get executed during prepare phase on top, then only keeping the code that gets executed during the commit phase on bottom, then simplifying the resulting code until this was obtained. - DSA's offloading of STP state, bridge flags, VLAN filtering and multicast router could be converted right away. But the ageing time could not, so a shim was introduced and this was left for a further commit. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Jiri Pirko <jiri@nvidia.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek Reviewed-by: Linus Walleij <linus.walleij@linaro.org> # RTL8366RB Reviewed-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-11net: switchdev: remove vid_begin -> vid_end range from VLAN objectsVladimir Oltean
The call path of a switchdev VLAN addition to the bridge looks something like this today: nbp_vlan_init | __br_vlan_set_default_pvid | | | | | br_afspec | | | | | | | v | | | br_process_vlan_info | | | | | | | v | | | br_vlan_info | | | / \ / | | / \ / | | / \ / | | / \ / v v v v v nbp_vlan_add br_vlan_add ------+ | ^ ^ | | | / | | | | / / / | \ br_vlan_get_master/ / v \ ^ / / br_vlan_add_existing \ | / / | \ | / / / \ | / / / \ | / / / \ | / / / v | | v / __vlan_add / / | / / | / v | / __vlan_vid_add | / \ | / v v v br_switchdev_port_vlan_add The ranges UAPI was introduced to the bridge in commit bdced7ef7838 ("bridge: support for multiple vlans and vlan ranges in setlink and dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec) have always been passed one by one, through struct bridge_vlan_info tmp_vinfo, to br_vlan_info. So the range never went too far in depth. Then Scott Feldman introduced the switchdev_port_bridge_setlink function in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink"). That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made full use of the range. But switchdev_port_bridge_setlink was called like this: br_setlink -> br_afspec -> switchdev_port_bridge_setlink Basically, the switchdev and the bridge code were not tightly integrated. Then commit 41c498b9359e ("bridge: restore br_setlink back to original") came, and switchdev drivers were required to implement .ndo_bridge_setlink = switchdev_port_bridge_setlink for a while. In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op first in __vlan_vid_add/del") finally made switchdev penetrate the br_vlan_info() barrier and start to develop the call path we have today. But remember, br_vlan_info() still receives VLANs one by one. Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit 29ab586c3d83 ("net: switchdev: Remove bridge bypass support from switchdev") so that drivers would not implement .ndo_bridge_setlink any longer. The switchdev_port_bridge_setlink also got deleted. This refactoring removed the parallel bridge_setlink implementation from switchdev, and left the only switchdev VLAN objects to be the ones offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add (the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about bridge VLANs")). That is to say, today the switchdev VLAN object ranges are not used in the kernel. Refactoring the above call path is a bit complicated, when the bridge VLAN call path is already a bit complicated. Let's go off and finish the job of commit 29ab586c3d83 by deleting the bogus iteration through the VLAN ranges from the drivers. Some aspects of this feature never made too much sense in the first place. For example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID flag supposed to mean, when a port can obviously have a single pvid? This particular configuration _is_ denied as of commit 6623c60dc28e ("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API perspective, the driver still has to play pretend, and only offload the vlan->vid_end as pvid. And the addition of a switchdev VLAN object can modify the flags of another, completely unrelated, switchdev VLAN object! (a VLAN that is PVID will invalidate the PVID flag from whatever other VLAN had previously been offloaded with switchdev and had that flag. Yet switchdev never notifies about that change, drivers are supposed to guess). Nonetheless, having a VLAN range in the API makes error handling look scarier than it really is - unwinding on errors and all of that. When in reality, no one really calls this API with more than one VLAN. It is all unnecessary complexity. And despite appearing pretentious (two-phase transactional model and all), the switchdev API is really sloppy because the VLAN addition and removal operations are not paired with one another (you can add a VLAN 100 times and delete it just once). The bridge notifies through switchdev of a VLAN addition not only when the flags of an existing VLAN change, but also when nothing changes. There are switchdev drivers out there who don't like adding a VLAN that has already been added, and those checks don't really belong at driver level. But the fact that the API contains ranges is yet another factor that prevents this from being addressed in the future. Of the existing switchdev pieces of hardware, it appears that only Mellanox Spectrum supports offloading more than one VLAN at a time, through mlxsw_sp_port_vlan_set. I have kept that code internal to the driver, because there is some more bookkeeping that makes use of it, but I deleted it from the switchdev API. But since the switchdev support for ranges has already been de facto deleted by a Mellanox employee and nobody noticed for 4 years, I'm going to assume it's not a biggie. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-05net: dsa: sja1105: Use kzalloc for allocating only one thingZheng Yongjun
Use kzalloc rather than kcalloc(1,...) The semantic patch that makes this change is as follows: (http://coccinelle.lip6.fr/) // <smpl> @@ @@ - kcalloc(1, + kzalloc( ...) // </smpl> Signed-off-by: Zheng Yongjun <zhengyongjun3@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-10-05net: dsa: propagate switchdev vlan_filtering prepare phase to driversVladimir Oltean
A driver may refuse to enable VLAN filtering for any reason beyond what the DSA framework cares about, such as: - having tc-flower rules that rely on the switch being VLAN-aware - the particular switch does not support VLAN, even if the driver does (the DSA framework just checks for the presence of the .port_vlan_add and .port_vlan_del pointers) - simply not supporting this configuration to be toggled at runtime Currently, when a driver rejects a configuration it cannot support, it does this from the commit phase, which triggers various warnings in switchdev. So propagate the prepare phase to drivers, to give them the ability to refuse invalid configurations cleanly and avoid the warnings. Since we need to modify all function prototypes and check for the prepare phase from within the drivers, take that opportunity and move the existing driver restrictions within the prepare phase where that is possible and easy. Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Cc: Hauke Mehrtens <hauke@hauke-m.de> Cc: Woojung Huh <woojung.huh@microchip.com> Cc: Microchip Linux Driver Support <UNGLinuxDriver@microchip.com> Cc: Sean Wang <sean.wang@mediatek.com> Cc: Landen Chao <Landen.Chao@mediatek.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Vivien Didelot <vivien.didelot@gmail.com> Cc: Jonathan McDowell <noodles@earth.li> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-25net: dsa: sja1105: implement .devlink_info_getVladimir Oltean
Return the driver name and ASIC ID so that generic user space application are able to know they're looking at sja1105 devlink regions when pretty-printing them. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-25net: dsa: sja1105: move devlink param code to sja1105_devlink.cVladimir Oltean
We'll have more devlink code soon. Group it together in a separate translation object. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-20net: dsa: tag_8021q: add VLANs to the master interface tooVladimir Oltean
The whole purpose of tag_8021q is to send VLAN-tagged traffic to the CPU, from which the driver can decode the source port and switch id. Currently this only works if the VLAN filtering on the master is disabled. Change that by explicitly adding code to tag_8021q.c to add the VLANs corresponding to the tags to the filter of the master interface. Because we now need to call vlan_vid_add, then we also need to hold the RTNL mutex. Propagate that requirement to the callers of dsa_8021q_setup and modify the existing call sites as appropriate. Note that one call path, sja1105_best_effort_vlan_filtering_set -> sja1105_vlan_filtering -> sja1105_setup_8021q_tagging, was already holding this lock. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-11net: dsa: tag_8021q: add a context structureVladimir Oltean
While working on another tag_8021q driver implementation, some things became apparent: - It is not mandatory for a DSA driver to offload the tag_8021q VLANs by using the VLAN table per se. For example, it can add custom TCAM rules that simply encapsulate RX traffic, and redirect & decapsulate rules for TX traffic. For such a driver, it makes no sense to receive the tag_8021q configuration through the same callback as it receives the VLAN configuration from the bridge and the 8021q modules. - Currently, sja1105 (the only tag_8021q user) sets a priv->expect_dsa_8021q variable to distinguish between the bridge calling, and tag_8021q calling. That can be improved, to say the least. - The crosschip bridging operations are, in fact, stateful already. The list of crosschip_links must be kept by the caller and passed to the relevant tag_8021q functions. So it would be nice if the tag_8021q configuration was more self-contained. This patch attempts to do that. Create a struct dsa_8021q_context which encapsulates a struct dsa_switch, and has 2 function pointers for adding and deleting a VLAN. These will replace the previous channel to the driver, which was through the .port_vlan_add and .port_vlan_del callbacks of dsa_switch_ops. Also put the list of crosschip_links into this dsa_8021q_context. Drivers that don't support cross-chip bridging can simply omit to initialize this list, as long as they dont call any cross-chip function. The sja1105_vlan_add and sja1105_vlan_del functions are refactored into a smaller sja1105_vlan_add_one, which now has 2 entry points: - sja1105_vlan_add, from struct dsa_switch_ops - sja1105_dsa_8021q_vlan_add, from the tag_8021q ops But even this change is fairly trivial. It just reflects the fact that for sja1105, the VLANs from these 2 channels end up in the same hardware table. However that is not necessarily true in the general sense (and that's the reason for making this change). The rest of the patch is mostly plain refactoring of "ds" -> "ctx". The dsa_8021q_context structure needs to be propagated because adding a VLAN is now done through the ops function pointers inside of it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-11net: dsa: tag_8021q: setup tagging via a single function callVladimir Oltean
There is no point in calling dsa_port_setup_8021q_tagging for each individual port. Additionally, it will become more difficult to do that when we'll have a context structure to tag_8021q (next patch). So refactor this now. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-24net: dsa: sja1105: Do not use address of compatible member in ↵Nathan Chancellor
sja1105_check_device_id Clang warns: drivers/net/dsa/sja1105/sja1105_main.c:3418:38: warning: address of array 'match->compatible' will always evaluate to 'true' [-Wpointer-bool-conversion] for (match = sja1105_dt_ids; match->compatible; match++) { ~~~ ~~~~~~~^~~~~~~~~~ 1 warning generated. We should check the value of the first character in compatible to see if it is empty or not. This matches how the rest of the tree iterates over IDs. Fixes: 0b0e299720bb ("net: dsa: sja1105: use detected device id instead of DT one on mismatch") Link: https://github.com/ClangBuiltLinux/linux/issues/1139 Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-05net: dsa: sja1105: use detected device id instead of DT one on mismatchVladimir Oltean
Although we can detect the chip revision 100% at runtime, it is useful to specify it in the device tree compatible string too, because otherwise there would be no way to assess the correctness of device tree bindings statically, without booting a board (only some switch versions have internal RGMII delays and/or an SGMII port). But for testing the P/Q/R/S support, what I have is a reworked board with the SJA1105T replaced by a pin-compatible SJA1105Q, and I don't want to keep a separate device tree blob just for this one-off board. Since just the chip has been replaced, its RGMII delay setup is inherently the same (meaning: delays added by the PHY on the slave ports, and by PCB traces on the fixed-link CPU port). For this board, I'd rather have the driver shout at me, but go ahead and use what it found even if it doesn't match what it's been told is there. [ 2.970826] sja1105 spi0.1: Device tree specifies chip SJA1105T but found SJA1105Q, please fix it! [ 2.980010] sja1105 spi0.1: Probed switch chip: SJA1105Q [ 3.005082] sja1105 spi0.1: Enabled switch tagging Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-29net:qos: police action offloading parameter 'burst' change to the original valuePo Liu
Since 'tcfp_burst' with TICK factor, driver side always need to recover it to the original value, this patch moves the generic calculation and recover to the 'burst' original value before offloading to device driver. Signed-off-by: Po Liu <po.liu@nxp.com> Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-29net: dsa: sja1105: avoid invalid state in sja1105_vlan_filteringVladimir Oltean
Be there 2 switches spi/spi2.0 and spi/spi2.1 in a cross-chip setup, both under the same VLAN-filtering bridge, both in the SJA1105_VLAN_BEST_EFFORT state. If we try to change the VLAN state of one of the switches (to SJA1105_VLAN_FILTERING_FULL) we get the following error: devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value false cmode runtime [ 38.325683] sja1105 spi2.1: Not allowed to overcommit frame memory. L2 memory partitions and VL memory partitions share the same space. The sum of all 16 memory partitions is not allowed to be larger than 929 128-byte blocks (or 910 with retagging). Please adjust l2-forwarding-parameters-table.part_spc and/or vl-forwarding-parameters-table.partspc. [ 38.356803] sja1105 spi2.1: Invalid config, cannot upload This is because the spi/spi2.1 switch doesn't support tagging anymore in the SJA1105_VLAN_FILTERING_FULL state, so it doesn't need to have any retagging rules defined. Great, so it can use more frame memory (retagging consumes extra memory). But the built-in low-level static config checker from the sja1105 driver says "not so fast, you've increased the frame memory to non-retagging values, but you still kept the retagging rules in the static config". So we need to rebuild the VLAN table immediately before re-uploading the static config, operation which will take care, based on the new VLAN state, of removing the retagging rules. Fixes: 3f01c91aab92 ("net: dsa: sja1105: implement VLAN retagging for dsa_8021q sub-VLANs") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-28net: dsa: sja1105: offload the Credit-Based Shaper qdiscVladimir Oltean
SJA1105, being AVB/TSN switches, provide hardware assist for the Credit-Based Shaper as described in the IEEE 8021Q-2018 document. First generation has 10 shapers, freely assignable to any of the 4 external ports and 8 traffic classes, and second generation has 16 shapers. The Credit-Based Shaper tables are accessed through the dynamic reconfiguration interface, so we have to restore them manually after a switch reset. The tables are backed up by the static config only on P/Q/R/S, and we don't want to add custom code only for that family, since the procedure that is in place now works for both. Tested with the following commands: data_rate_kbps=67000 port_transmit_rate_kbps=1000000 idleslope=$data_rate_kbps sendslope=$(($idleslope - $port_transmit_rate_kbps)) locredit=$((-0x80000000)) hicredit=$((0x7fffffff)) tc qdisc add dev swp2 root handle 1: mqprio hw 0 num_tc 8 \ map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 tc qdisc replace dev swp2 parent 1:1 cbs \ idleslope $idleslope \ sendslope $sendslope \ hicredit $hicredit \ locredit $locredit \ offload 1 Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: implement VLAN retagging for dsa_8021q sub-VLANsVladimir Oltean
Expand the delta commit procedure for VLANs with additional logic for treating bridge_vlans in the newly introduced operating mode, SJA1105_VLAN_BEST_EFFORT. For every bridge VLAN on every user port, a sub-VLAN index is calculated and retagging rules are installed towards a dsa_8021q rx_vid that encodes that sub-VLAN index. This way, the tagger can identify the original VLANs. Extra care is taken for VLANs to still work as intended in cross-chip scenarios. Retagging may have unintended consequences for these because a sub-VLAN encoding that works for the CPU does not make any sense for a front-panel port. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: implement a common frame memory partitioning functionVladimir Oltean
There are 2 different features that require some reserved frame memory space: VLAN retagging and virtual links. Create a central function that modifies the static config and ensures frame memory is never overcommitted. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: add a new best_effort_vlan_filtering devlink parameterVladimir Oltean
This devlink parameter enables the handling of DSA tags when enslaved to a bridge with vlan_filtering=1. There are very good reasons to want this, but there are also very good reasons for not enabling it by default. So a devlink param named best_effort_vlan_filtering, currently driver-specific and exported only by sja1105, is used to configure this. In practice, this is perhaps the way that most users are going to use the switch in. It assumes that no more than 7 VLANs are needed per port. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: tag_sja1105: implement sub-VLAN decodingVladimir Oltean
Create a subvlan_map as part of each port's tagger private structure. This keeps reverse mappings of bridge-to-dsa_8021q VLAN retagging rules. Note that as of this patch, this piece of code is never engaged, due to the fact that the driver hasn't installed any retagging rule, so we'll always see packets with a subvlan code of 0 (untagged). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: prepare tagger for handling DSA tags and VLAN simultaneouslyVladimir Oltean
In VLAN-unaware mode, sja1105 uses VLAN tags with a custom TPID of 0xdadb. While in the yet-to-be introduced best_effort_vlan_filtering mode, it needs to work with normal VLAN TPID values. A complication arises when we must transmit a VLAN-tagged packet to the switch when it's in VLAN-aware mode. We need to construct a packet with 2 VLAN tags, and the switch will use the outer header for routing and pop it on egress. But sadly, here the 2 hardware generations don't behave the same: - E/T switches won't pop an ETH_P_8021AD tag on egress, it seems (packets will remain double-tagged). - P/Q/R/S switches will drop a packet with 2 ETH_P_8021Q tags (it looks like it tries to prevent VLAN hopping). But looks like the reverse is also true: - E/T switches have no problem popping the outer tag from packets with 2 ETH_P_8021Q tags. - P/Q/R/S will have no problem popping a single tag even if that is ETH_P_8021AD. So it is clear that if we want the hardware to work with dsa_8021q tagging in VLAN-aware mode, we need to send different TPIDs depending on revision. Keep that information in priv->info->qinq_tpid. The per-port tagger structure will hold an xmit_tpid value that depends not only upon the qinq_tpid, but also upon the VLAN awareness state itself (in case we must transmit using 0xdadb). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: exit sja1105_vlan_filtering when called multiple timesVladimir Oltean
VLAN filtering is a global property for sja1105, and that means that we rely on the DSA core to not call us more than once. But we need to introduce some per-port state for the tagger, namely the xmit_tpid, and the best place to do that is where the xmit_tpid changes, namely in sja1105_vlan_filtering. So at the moment, exit early from the function to avoid unnecessarily resetting the switch for each port call. Then we'll change the xmit_tpid prior to the early exit in the next patch. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: allow VLAN configuration from the bridge in all statesVladimir Oltean
Let the DSA core call our .port_vlan_add methods every time the bridge layer requests so. We will deal internally with saving/restoring VLANs depending on our VLAN awareness state. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: save/restore VLANs using a delta commit methodVladimir Oltean
Managing the VLAN table that is present in hardware will become very difficult once we add a third operating state (best_effort_vlan_filtering). That is because correct cleanup (not too little, not too much) becomes virtually impossible, when VLANs can be added from the bridge layer, from dsa_8021q for basic tagging, for cross-chip bridging, as well as retagging rules for sub-VLANs and cross-chip sub-VLANs. So we need to rethink VLAN interaction with the switch in a more scalable way. In preparation for that, use the priv->expect_dsa_8021q boolean to classify any VLAN request received through .port_vlan_add or .port_vlan_del towards either one of 2 internal lists: bridge VLANs and dsa_8021q VLANs. Then, implement a central sja1105_build_vlan_table method that creates a VLAN configuration from scratch based on the 2 lists of VLANs kept by the driver, and based on the VLAN awareness state. Currently, if we are VLAN-unaware, install the dsa_8021q VLANs, otherwise the bridge VLANs. Then, implement a delta commit procedure that identifies which VLANs from this new configuration are actually different from the config previously committed to hardware. We apply the delta through the dynamic configuration interface (we don't reset the switch). The result is that the hardware should see the exact sequence of operations as before this patch. This also helps remove the "br" argument passed to dsa_8021q_crosschip_bridge_join, which it was only using to figure out whether it should commit the configuration back to us or not, based on the VLAN awareness state of the bridge. We can simplify that, by always allowing those VLANs inside of our dsa_8021q_vlans list, and committing those to hardware when necessary. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: deny alterations of dsa_8021q VLANs from the bridgeVladimir Oltean
At the moment, this can never happen. The 2 modes that we operate in do not permit that: - SJA1105_VLAN_UNAWARE: we are guarded from bridge VLANs added by the user by the DSA core. We will later lift this restriction by setting ds->vlan_bridge_vtu = true, and that is where we'll need it. - SJA1105_VLAN_FILTERING_FULL: in this mode, dsa_8021q configuration is disabled. So the user is free to add these VLANs in the 1024-3071 range. The reason for the patch is that we'll introduce a third VLAN awareness state, where both dsa_8021q as well as the bridge are going to call our .port_vlan_add and .port_vlan_del methods. For that, we need a good way to discriminate between the 2. The easiest (and less intrusive way for upper layers) is to recognize the fact that dsa_8021q configurations are always driven by our driver - we _know_ when a .port_vlan_add method will be called from dsa_8021q because _we_ initiated it. So introduce an expect_dsa_8021q boolean which is only used, at the moment, for blacklisting VLANs in range 1024-3071 in the modes when dsa_8021q is active. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-12net: dsa: sja1105: keep the VLAN awareness state in a driver variableVladimir Oltean
Soon we'll add a third operating mode to the driver. Introduce a vlan_state to make things more easy to manage, and use it where applicable. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-10net: dsa: sja1105: implement cross-chip bridging operationsVladimir Oltean
sja1105 uses dsa_8021q for DSA tagging, a format which is VLAN at heart and which is compatible with cascading. A complete description of this tagging format is in net/dsa/tag_8021q.c, but a quick summary is that each external-facing port tags incoming frames with a unique pvid, and this special VLAN is transmitted as tagged towards the inside of the system, and as untagged towards the exterior. The tag encodes the switch id and the source port index. This means that cross-chip bridging for dsa_8021q only entails adding the dsa_8021q pvids of one switch to the RX filter of the other switches. Everything else falls naturally into place, as long as the bottom-end of ports (the leaves in the tree) is comprised exclusively of dsa_8021q-compatible (i.e. sja1105 switches). Otherwise, there would be a chance that a front-panel switch transmits a packet tagged with a dsa_8021q header, header which it wouldn't be able to remove, and which would hence "leak" out. The only use case I tested (due to lack of board availability) was when the sja1105 switches are part of disjoint trees (however, this doesn't change the fact that multiple sja1105 switches still need unique switch identifiers in such a system). But in principle, even "true" single-tree setups (with DSA links) should work just as fine, except for a small change which I can't test: dsa_towards_port should be used instead of dsa_upstream_port (I made the assumption that the routing port that any sja1105 should use towards its neighbours is the CPU port. That might not hold true in other setups). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-07net: dsa: sja1105: implement tc-gate using time-triggered virtual linksVladimir Oltean
Restrict the TTEthernet hardware support on this switch to operate as closely as possible to IEEE 802.1Qci as possible. This means that it can perform PTP-time-based ingress admission control on streams identified by {DMAC, VID, PCP}, which is useful when trying to ensure the determinism of traffic scheduled via IEEE 802.1Qbv. The oddity comes from the fact that in hardware (and in TTEthernet at large), virtual links always need a full-blown action, including not only the type of policing, but also the list of destination ports. So in practice, a single tc-gate action will result in all packets getting dropped. Additional actions (either "trap" or "redirect") need to be specified in the same filter rule such that the conforming packets are actually forwarded somewhere. Apart from the VL Lookup, Policing and Forwarding tables which need to be programmed for each flow (virtual link), the Schedule engine also needs to be told to open/close the admission gates for each individual virtual link. A fairly accurate (and detailed) description of how that works is already present in sja1105_tas.c, since it is already used to trigger the egress gates for the tc-taprio offload (IEEE 802.1Qbv). Key point here, we remember that the schedule engine supports 8 "subschedules" (execution threads that iterate through the global schedule in parallel, and that no 2 hardware threads must execute a schedule entry at the same time). For tc-taprio, each egress port used one of these 8 subschedules, leaving a total of 4 subschedules unused. In principle we could have allocated 1 subschedule for the tc-gate offload of each ingress port, but actually the schedules of all virtual links installed on each ingress port would have needed to be merged together, before they could have been programmed to hardware. So simplify our life and just merge the entire tc-gate configuration, for all virtual links on all ingress ports, into a single subschedule. Be sure to check that against the usual hardware scheduling conflicts, and program it to hardware alongside any tc-taprio subschedule that may be present. The following scenarios were tested: 1. Quantitative testing: tc qdisc add dev swp2 clsact tc filter add dev swp2 ingress flower skip_sw \ dst_mac 42:be:24:9b:76:20 \ action gate index 1 base-time 0 \ sched-entry OPEN 1200 -1 -1 \ sched-entry CLOSE 1200 -1 -1 \ action trap ping 192.168.1.2 -f PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data. ............................. --- 192.168.1.2 ping statistics --- 948 packets transmitted, 467 received, 50.7384% packet loss, time 9671ms 2. Qualitative testing (with a phase-aligned schedule - the clocks are synchronized by ptp4l, not shown here): Receiver (sja1105): tc qdisc add dev swp2 clsact now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \ sec=$(echo $now | awk -F. '{print $1}') && \ base_time="$(((sec + 2) * 1000000000))" && \ echo "base time ${base_time}" tc filter add dev swp2 ingress flower skip_sw \ dst_mac 42:be:24:9b:76:20 \ action gate base-time ${base_time} \ sched-entry OPEN 60000 -1 -1 \ sched-entry CLOSE 40000 -1 -1 \ action trap Sender (enetc): now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \ sec=$(echo $now | awk -F. '{print $1}') && \ base_time="$(((sec + 2) * 1000000000))" && \ echo "base time ${base_time}" tc qdisc add dev eno0 parent root taprio \ num_tc 8 \ map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ base-time ${base_time} \ sched-entry S 01 50000 \ sched-entry S 00 50000 \ flags 2 ping -A 192.168.1.1 PING 192.168.1.1 (192.168.1.1): 56 data bytes ... ^C --- 192.168.1.1 ping statistics --- 1425 packets transmitted, 1424 packets received, 0% packet loss round-trip min/avg/max = 0.322/0.361/0.990 ms And just for comparison, with the tc-taprio schedule deleted: ping -A 192.168.1.1 PING 192.168.1.1 (192.168.1.1): 56 data bytes ... ^C --- 192.168.1.1 ping statistics --- 33 packets transmitted, 19 packets received, 42% packet loss round-trip min/avg/max = 0.336/0.464/0.597 ms Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-07net: dsa: sja1105: support flow-based redirection via virtual linksVladimir Oltean
Implement tc-flower offloads for redirect, trap and drop using non-critical virtual links. Commands which were tested to work are: # Send frames received on swp2 with a DA of 42:be:24:9b:76:20 to the # CPU and to swp3. This type of key (DA only) when the port's VLAN # awareness state is off. tc qdisc add dev swp2 clsact tc filter add dev swp2 ingress flower skip_sw dst_mac 42:be:24:9b:76:20 \ action mirred egress redirect dev swp3 \ action trap # Drop frames received on swp2 with a DA of 42:be:24:9b:76:20, a VID # of 100 and a PCP of 0. tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \ dst_mac 42:be:24:9b:76:20 vlan_id 100 vlan_prio 0 action drop Under the hood, all rules match on DMAC, VID and PCP, but when VLAN filtering is disabled, those are set internally by the driver to the port-based defaults. Because we would be put in an awkward situation if the user were to change the VLAN filtering state while there are active rules (packets would no longer match on the specified keys), we simply deny changing vlan_filtering unless the list of flows offloaded via virtual links is empty. Then the user can re-add new rules. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30net: dsa: sja1105: add broadcast and per-traffic class policersVladimir Oltean
This patch adds complete support for manipulating the L2 Policing Tables from this switch. There are 45 table entries, one entry per each port and traffic class, and one dedicated entry for broadcast traffic for each ingress port. Policing entries are shareable, and we use this functionality to support shared block filters. We are modeling broadcast policers as simple tc-flower matches on dst_mac. As for the traffic class policers, the switch only deduces the traffic class from the VLAN PCP field, so it makes sense to model this as a tc-flower match on vlan_prio. How to limit broadcast traffic coming from all front-panel ports to a cumulated total of 10 Mbit/s: tc qdisc add dev sw0p0 ingress_block 1 clsact tc qdisc add dev sw0p1 ingress_block 1 clsact tc qdisc add dev sw0p2 ingress_block 1 clsact tc qdisc add dev sw0p3 ingress_block 1 clsact tc filter add block 1 flower skip_sw dst_mac ff:ff:ff:ff:ff:ff \ action police rate 10mbit burst 64k How to limit traffic with VLAN PCP 0 (also includes untagged traffic) to 100 Mbit/s on port 0 only: tc filter add dev sw0p0 ingress protocol 802.1Q flower skip_sw \ vlan_prio 0 action police rate 100mbit burst 64k The broadcast, VLAN PCP and port policers are compatible with one another (can be installed at the same time on a port). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30net: dsa: sja1105: add configuration of port policersVladimir Oltean
This adds partial configuration support for the L2 Policing Table. Out of the 45 policing entries, only 5 are used (one for each port), in a shared manner. All 8 traffic classes, and the broadcast policer, are redirected to a common instance which belongs to the ingress port. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27net: dsa: sja1105: implement the port MTU callbacksVladimir Oltean
On this switch, the frame length enforcements are performed by the ingress policers. There are 2 types of those: regular L2 (also called best-effort) and Virtual Link policers (an ARINC664/AFDX concept for defining L2 streams with certain QoS abilities). To avoid future confusion, I prefer to call the reset reason "Best-effort policers", even though the VL policers are not yet supported. We also need to change the setup of the initial static config, such that DSA calls to .change_mtu (which are expensive) become no-ops and don't reset the switch 5 times. A driver-level decision is to unconditionally allow single VLAN-tagged traffic on all ports. The CPU port must accept an additional VLAN header for the DSA tag, which is again a driver-level decision. The policers actually count bytes not only from the SDU, but also from the Ethernet header and FCS, so those need to be accounted for as well. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23net: dsa: sja1105: configure the PTP_CLK pin as EXT_TS or PER_OUTVladimir Oltean
The SJA1105 switch family has a PTP_CLK pin which emits a signal with fixed 50% duty cycle, but variable frequency and programmable start time. On the second generation (P/Q/R/S) switches, this pin supports even more functionality. The use case described by the hardware documents talks about synchronization via oneshot pulses: given 2 sja1105 switches, arbitrarily designated as a master and a slave, the master emits a single pulse on PTP_CLK, while the slave is configured to timestamp this pulse received on its PTP_CLK pin (which must obviously be configured as input). The difference between the timestamps then exactly becomes the slave offset to the master. The only trouble with the above is that the hardware is very much tied into this use case only, and not very generic beyond that: - When emitting a oneshot pulse, instead of being told when to emit it, the switch just does it "now" and tells you later what time it was, via the PTPSYNCTS register. [ Incidentally, this is the same register that the slave uses to collect the ext_ts timestamp from, too. ] - On the sync slave, there is no interrupt mechanism on reception of a new extts, and no FIFO to buffer them, because in the foreseen use case, software is in control of both the master and the slave pins, so it "knows" when there's something to collect. These 2 problems mean that: - We don't support (at least yet) the quirky oneshot mode exposed by the hardware, just normal periodic output. - We abuse the hardware a little bit when we expose generic extts. Because there's no interrupt mechanism, we need to poll at double the frequency we expect to receive a pulse. Currently that means a non-configurable "twice a second". Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23net: dsa: sja1105: unconditionally set DESTMETA and SRCMETA in AVB tableVladimir Oltean
These fields configure the destination and source MAC address that the switch will put in the Ethernet frames sent towards the CPU port that contain RX timestamps for PTP. These fields do not enable the feature itself, that is configured via SEND_META0 and SEND_META1 in the General Params table. The implication of this patch is that the AVB Params table will always be present in the static config. Which doesn't really hurt. This is needed because in a future patch, we will add another field from this table, CAS_MASTER, for configuring the PTP_CLK pin function. That can be configured irrespective of whether RX timestamping is enabled or not, so always having this table present is going to simplify things a bit. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-20net: dsa: sja1105: Add support for the SGMII portVladimir Oltean
SJA1105 switches R and S have one SerDes port with an 802.3z quasi-compatible PCS, hardwired on port 4. The other ports are still MII/RMII/RGMII. The PCS performs rate adaptation to lower link speeds; the MAC on this port is hardwired at gigabit. Only full duplex is supported. The SGMII port can be configured as part of the static config tables, as well as through a dedicated SPI address region for its pseudo-clause-22 registers. However it looks like the static configuration is not able to change some out-of-reset values (like the value of MII_BMCR), so at the end of the day, having code for it is utterly pointless. We are just going to use the pseudo-C22 interface. Because the PCS gets reset when the switch resets, we have to add even more restoration logic to sja1105_static_config_reload, otherwise the SGMII port breaks after operations such as enabling PTP timestamping which require a switch reset. >From PHYLINK perspective, the switch supports *only* SGMII (it doesn't support 1000Base-X). It also doesn't expose access to the raw config word for in-band AN in registers MII_ADV/MII_LPA. It is able to work in the following modes: - Forced speed - SGMII in-band AN slave (speed received from PHY) - SGMII in-band AN master (acting as a PHY) The latter mode is not supported by this patch. It is even unclear to me how that would be described. There is some code for it left in the patch, but 'an_master' is always passed as false. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-19net: dsa: sja1105: Avoid error message for unknown PHY mode on disabled portsVladimir Oltean
When sja1105_init_mii_settings iterates over the port list, it prints this message for disabled ports, because they don't have a valid phy-mode: [ 4.778702] sja1105 spi2.0: Unsupported PHY mode unknown! Suggested-by: Andrew Lunn <andrew@lunn.ch> Suggested-by: Vivien Didelot <vivien.didelot@gmail.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-14net: dsa: sja1105: move MAC configuration to .phylink_mac_link_upVladimir Oltean
The switches supported so far by the driver only have non-SerDes ports, so they should be configured in the PHYLINK callback that provides the resolved PHY link parameters. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller
Minor overlapping changes, nothing serious. Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: dsa: sja1105: add 100baseT1_Full supportOleksij Rempel
Validate 100baseT1_Full to make this driver work with TJA1102 PHY. Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de> Acked-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: dsa: sja1105: Don't destroy not-yet-created xmit_workerVladimir Oltean
Fixes the following NULL pointer dereference on PHY connect error path teardown: [ 2.291010] sja1105 spi0.1: Probed switch chip: SJA1105T [ 2.310044] sja1105 spi0.1: Enabled switch tagging [ 2.314970] fsl-gianfar soc:ethernet@2d90000 eth2: error -19 setting up slave phy [ 2.322463] 8<--- cut here --- [ 2.325497] Unable to handle kernel NULL pointer dereference at virtual address 00000018 [ 2.333555] pgd = (ptrval) [ 2.336241] [00000018] *pgd=00000000 [ 2.339797] Internal error: Oops: 5 [#1] SMP ARM [ 2.344384] Modules linked in: [ 2.347420] CPU: 1 PID: 64 Comm: kworker/1:1 Not tainted 5.5.0-rc5 #1 [ 2.353820] Hardware name: Freescale LS1021A [ 2.358070] Workqueue: events deferred_probe_work_func [ 2.363182] PC is at kthread_destroy_worker+0x4/0x74 [ 2.368117] LR is at sja1105_teardown+0x70/0xb4 [ 2.372617] pc : [<c036cdd4>] lr : [<c0b89238>] psr: 60000013 [ 2.378845] sp : eeac3d30 ip : eeab1900 fp : eef45480 [ 2.384036] r10: eef4549c r9 : 00000001 r8 : 00000000 [ 2.389227] r7 : eef527c0 r6 : 00000034 r5 : ed8ddd0c r4 : ed8ddc40 [ 2.395714] r3 : 00000000 r2 : 00000000 r1 : eef4549c r0 : 00000000 [ 2.402204] Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none [ 2.409297] Control: 10c5387d Table: 8020406a DAC: 00000051 [ 2.415008] Process kworker/1:1 (pid: 64, stack limit = 0x(ptrval)) [ 2.421237] Stack: (0xeeac3d30 to 0xeeac4000) [ 2.612635] [<c036cdd4>] (kthread_destroy_worker) from [<c0b89238>] (sja1105_teardown+0x70/0xb4) [ 2.621379] [<c0b89238>] (sja1105_teardown) from [<c10717fc>] (dsa_switch_teardown.part.1+0x48/0x74) [ 2.630467] [<c10717fc>] (dsa_switch_teardown.part.1) from [<c1072438>] (dsa_register_switch+0x8b0/0xbf4) [ 2.639984] [<c1072438>] (dsa_register_switch) from [<c0b89c30>] (sja1105_probe+0x2ac/0x464) [ 2.648378] [<c0b89c30>] (sja1105_probe) from [<c0b11a5c>] (spi_drv_probe+0x7c/0xa0) [ 2.656081] [<c0b11a5c>] (spi_drv_probe) from [<c0a26ab8>] (really_probe+0x208/0x480) [ 2.663871] [<c0a26ab8>] (really_probe) from [<c0a26f0c>] (driver_probe_device+0x78/0x1c4) [ 2.672093] [<c0a26f0c>] (driver_probe_device) from [<c0a24c48>] (bus_for_each_drv+0x80/0xc4) [ 2.680574] [<c0a24c48>] (bus_for_each_drv) from [<c0a26810>] (__device_attach+0xd0/0x168) [ 2.688794] [<c0a26810>] (__device_attach) from [<c0a259d8>] (bus_probe_device+0x84/0x8c) [ 2.696927] [<c0a259d8>] (bus_probe_device) from [<c0a25f24>] (deferred_probe_work_func+0x84/0xc4) [ 2.705842] [<c0a25f24>] (deferred_probe_work_func) from [<c03667b0>] (process_one_work+0x22c/0x560) [ 2.714926] [<c03667b0>] (process_one_work) from [<c0366d8c>] (worker_thread+0x2a8/0x5d4) [ 2.723059] [<c0366d8c>] (worker_thread) from [<c036cf94>] (kthread+0x150/0x154) [ 2.730416] [<c036cf94>] (kthread) from [<c03010e8>] (ret_from_fork+0x14/0x2c) Checking for NULL pointer is correct because the per-port xmit kernel threads are created in sja1105_probe immediately after calling dsa_register_switch. Fixes: a68578c20a96 ("net: dsa: Make deferred_xmit private to sja1105") Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-27net: dsa: propagate resolved link config via mac_link_up()Russell King
Propagate the resolved link configuration down via DSA's phylink_mac_link_up() operation to allow split PCS/MAC to work. Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-19Merge ra.kernel.org:/pub/scm/linux/kernel/git/netdev/netDavid S. Miller
2020-01-17net: dsa: sja1105: Don't error out on disabled ports with no phy-modeVladimir Oltean
The sja1105_parse_ports_node function was tested only on device trees where all ports were enabled. Fix this check so that the driver continues to probe only with the ports where status is not "disabled", as expected. Fixes: 8aa9ebccae87 ("net: dsa: Introduce driver for NXP SJA1105 5-port L2 switch") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-08net: dsa: Get information about stacked DSA protocolFlorian Fainelli
It is possible to stack multiple DSA switches in a way that they are not part of the tree (disjoint) but the DSA master of a switch is a DSA slave of another. When that happens switch drivers may have to know this is the case so as to determine whether their tagging protocol has a remove chance of working. This is useful for specific switch drivers such as b53 where devices have been known to be stacked in the wild without the Broadcom tag protocol supporting that feature. This allows b53 to continue supporting those devices by forcing the disabling of Broadcom tags on the outermost switches if necessary. The get_tag_protocol() function is therefore updated to gain an additional enum dsa_tag_protocol argument which denotes the current tagging protocol used by the DSA master we are attached to, else DSA_TAG_PROTO_NONE for the top of the dsa_switch_tree. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>