summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/i915_active.c
AgeCommit message (Collapse)Author
2019-10-04drm/i915: Coordinate i915_active with its own mutexChris Wilson
Forgo the struct_mutex serialisation for i915_active, and interpose its own mutex handling for active/retire. This is a multi-layered sleight-of-hand. First, we had to ensure that no active/retire callbacks accidentally inverted the mutex ordering rules, nor assumed that they were themselves serialised by struct_mutex. More challenging though, is the rule over updating elements of the active rbtree. Instead of the whole i915_active now being serialised by struct_mutex, allocations/rotations of the tree are serialised by the i915_active.mutex and individual nodes are serialised by the caller using the i915_timeline.mutex (we need to use nested spinlocks to interact with the dma_fence callback lists). The pain point here is that instead of a single mutex around execbuf, we now have to take a mutex for active tracker (one for each vma, context, etc) and a couple of spinlocks for each fence update. The improvement in fine grained locking allowing for multiple concurrent clients (eventually!) should be worth it in typical loads. v2: Add some comments that barely elucidate anything :( Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-6-chris@chris-wilson.co.uk
2019-10-04drm/i915: Push the i915_active.retire into a workerChris Wilson
As we need to use a mutex to serialise i915_active activation (because we want to allow the callback to sleep), we need to push the i915_active.retire into a worker callback in case we get need to retire from an atomic context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-5-chris@chris-wilson.co.uk
2019-10-04drm/i915: Pull i915_vma_pin under the vm->mutexChris Wilson
Replace the struct_mutex requirement for pinning the i915_vma with the local vm->mutex instead. Note that the vm->mutex is tainted by the shrinker (we require unbinding from inside fs-reclaim) and so we cannot allocate while holding that mutex. Instead we have to preallocate workers to do allocate and apply the PTE updates after we have we reserved their slot in the drm_mm (using fences to order the PTE writes with the GPU work and with later unbind). In adding the asynchronous vma binding, one subtle requirement is to avoid coupling the binding fence into the backing object->resv. That is the asynchronous binding only applies to the vma timeline itself and not to the pages as that is a more global timeline (the binding of one vma does not need to be ordered with another vma, nor does the implicit GEM fencing depend on a vma, only on writes to the backing store). Keeping the vma binding distinct from the backing store timelines is verified by a number of async gem_exec_fence and gem_exec_schedule tests. The way we do this is quite simple, we keep the fence for the vma binding separate and only wait on it as required, and never add it to the obj->resv itself. Another consequence in reducing the locking around the vma is the destruction of the vma is no longer globally serialised by struct_mutex. A natural solution would be to add a kref to i915_vma, but that requires decoupling the reference cycles, possibly by introducing a new i915_mm_pages object that is own by both obj->mm and vma->pages. However, we have not taken that route due to the overshadowing lmem/ttm discussions, and instead play a series of complicated games with trylocks to (hopefully) ensure that only one destruction path is called! v2: Add some commentary, and some helpers to reduce patch churn. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-4-chris@chris-wilson.co.uk
2019-09-20drm/i915: Mark i915_request.timeline as a volatile, rcu pointerChris Wilson
The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-08-27drm/i915: Only activate i915_active debugobject onceChris Wilson
The point of debug_object_activate is to mark the first, and only the first, acquisition. The object then remains active until the last release. However, we marked up all successful first acquires even though we allowed concurrent parties to try and acquire the i915_active simultaneously (serialised by the i915_active.mutex). Testcase: igt/gem_mmap_gtt/fault-concurrent Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Matthew Auld <matthew.auld@intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190827132631.18627-1-chris@chris-wilson.co.uk
2019-08-19drm/i915: i915_active.retire() is optionalChris Wilson
Check that i915_active.retire() exists before calling. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190819075835.20065-6-chris@chris-wilson.co.uk
2019-08-16drm/i915: Markup expected timeline locks for i915_activeChris Wilson
As every i915_active_request should be serialised by a dedicated lock, i915_active consists of a tree of locks; one for each node. Markup up the i915_active_request with what lock is supposed to be guarding it so that we can verify that the serialised updated are indeed serialised. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190816121000.8507-2-chris@chris-wilson.co.uk
2019-08-14drm/i915: Serialise read/write of the barrier's engineChris Wilson
We use the request pointer inside the i915_active_node as the indicator of the barrier's status; we mark it as used during i915_request_add_active_barriers(), and search for an available barrier in reuse_idle_barrier(). That check must be carefully serialised to ensure we do use an engine for the barrier and not just a random pointer. (Along the other reuse path, we are fully serialised by the timeline->mutex.) The acquisition of the barrier itself is ordered through the strong memory barrier in llist_del_all(). Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111397 Fixes: d8af05ff38ae ("drm/i915: Allow sharing the idle-barrier from other kernel requests") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190813200905.11369-1-chris@chris-wilson.co.uk
2019-08-09drm/i915: Lift timeline into intel_contextChris Wilson
Move the timeline from being inside the intel_ring to intel_context itself. This saves much pointer dancing and makes the relations of the context to its timeline much clearer. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190809182518.20486-4-chris@chris-wilson.co.uk
2019-08-02drm/i915: Allow sharing the idle-barrier from other kernel requestsChris Wilson
By placing our idle-barriers in the i915_active fence tree, we expose those for reuse by other components that are issuing requests along the kernel_context. Reusing the proto-barrier active_node is perfectly fine as the new request implies a context-switch, and so an opportune point to run the idle-barrier. However, the proto-barrier is not equivalent to a normal active_node and care must be taken to avoid dereferencing the ERR_PTR used as its request marker. v2: Comment the more egregious cheek v3: A glossary! Reported-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Fixes: ce476c80b8bf ("drm/i915: Keep contexts pinned until after the next kernel context switch") Fixes: a9877da2d629 ("drm/i915/oa: Reconfigure contexts on the fly") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190802100015.1281-1-chris@chris-wilson.co.uk
2019-07-26drm/i915: Do not rely on for loop caching the maskTvrtko Ursulin
for_each_engine_masked caches the engine mask but what does the caller know. Cache it explicitly for clarity and while at it correct the type to match. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190725125056.11942-1-tvrtko.ursulin@linux.intel.com
2019-07-26drm/i915: Capture vma contents outside of spinlockChris Wilson
Currently we use the engine->active.lock to ensure that the request is not retired as we capture the data. However, we only need to ensure that the vma are not removed prior to use acquiring their contents, and since we have already relinquished our stop-machine protection, we assume that the user will not be overwriting the contents before we are able to record them. In order to capture the vma outside of the spinlock, we acquire a reference and mark the vma as active to prevent it from being unbound. However, since it is tricky allocate an entry in the fence tree (doing so would require taking a mutex) while inside the engine spinlock, we use an atomic bit and special case the handling for i915_active_wait. The core benefit is that we can use some non-atomic methods for mapping the device pages, we can remove the slow compression phase out of atomic context (i.e. stop antagonising the nmi-watchdog), and no we longer need large reserves of atomic pages. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111215 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.william.auld@gmail.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190725223843.8971-1-chris@chris-wilson.co.uk
2019-07-03drm/i915: Markup potential lock for i915_activeChris Wilson
Make the lockchains more deterministic via i915_active by flagging the potential lock. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190703091726.11690-7-chris@chris-wilson.co.uk
2019-07-02drm/i915: Report if i915_active is still busy upon waitingChris Wilson
If we try to wait on an i915_active from within a critical section, it will remain busy (such as if we are shrinking from within i915_active_ref). Report the failure so that we do not proceed thinking it is idle. Extracted from a future patch "drm/i915: Coordinate i915_active with its own mutex". Fixes: 12c255b5dad1 ("drm/i915: Provide an i915_active.acquire callback") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Matthew Auld <matthew.auld@intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190702092117.1707-1-chris@chris-wilson.co.uk
2019-06-21drm/i915: Provide an i915_active.acquire callbackChris Wilson
If we introduce a callback for i915_active that is only called the first time we use the i915_active and is symmetrically paired with the i915_active.retire callback, we can replace the open-coded and non-atomic implementations -- which will be very fragile (i.e. broken) upon removing the struct_mutex serialisation. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190621183801.23252-4-chris@chris-wilson.co.uk
2019-06-21drm/i915: Track i915_active using debugobjectsChris Wilson
Provide runtime asserts and tracking of i915_active via debugobjects. For example, this should allow us to check that the i915_active is only active when we expect it to be and is never freed too early. One consequence is that, for simplicity, we no longer allow i915_active to be on-stack which only affected the selftests. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190621183801.23252-2-chris@chris-wilson.co.uk
2019-06-18drm/i915: Keep engine alive as we retire the contextChris Wilson
Though we pin the context first before taking the pm wakeref, during retire we need to unpin before dropping the pm wakeref (breaking the "natural" onion). During the unpin, we may need to attach a cleanup operation on to the engine wakeref, ergo we want to keep the engine awake until after the unpin. v2: Push the engine wakeref into the barrier so we keep the onion unwind ordering in the request itself Fixes: ce476c80b8bf ("drm/i915: Keep contexts pinned until after the next kernel context switch") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190618074153.16055-1-chris@chris-wilson.co.uk
2019-06-14drm/i915: Keep contexts pinned until after the next kernel context switchChris Wilson
We need to keep the context image pinned in memory until after the GPU has finished writing into it. Since it continues to write as we signal the final breadcrumb, we need to keep it pinned until the request after it is complete. Currently we know the order in which requests execute on each engine, and so to remove that presumption we need to identify a request/context-switch we know must occur after our completion. Any request queued after the signal must imply a context switch, for simplicity we use a fresh request from the kernel context. The sequence of operations for keeping the context pinned until saved is: - On context activation, we preallocate a node for each physical engine the context may operate on. This is to avoid allocations during unpinning, which may be from inside FS_RECLAIM context (aka the shrinker) - On context deactivation on retirement of the last active request (which is before we know the context has been saved), we add the preallocated node onto a barrier list on each engine - On engine idling, we emit a switch to kernel context. When this switch completes, we know that all previous contexts must have been saved, and so on retiring this request we can finally unpin all the contexts that were marked as deactivated prior to the switch. We can enhance this in future by flushing all the idle contexts on a regular heartbeat pulse of a switch to kernel context, which will also be used to check for hung engines. v2: intel_context_active_acquire/_release Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-1-chris@chris-wilson.co.uk
2019-03-06drm/i915: Use i915_global_register()Chris Wilson
Rather than manually add every new global into each hook, use i915_global_register() function and keep a list of registered globals to invoke instead. However, I haven't found a way for random drivers to add an .init table to avoid having to manually add ourselves to i915_globals_init() each time. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190305213830.18094-1-chris@chris-wilson.co.uk Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2019-02-28drm/i915: Make request allocation caches globalChris Wilson
As kmem_caches share the same properties (size, allocation/free behaviour) for all potential devices, we can use global caches. While this potential has worse fragmentation behaviour (one can argue that different devices would have different activity lifetimes, but you can also argue that activity is temporal across the system) it is the default behaviour of the system at large to amalgamate matching caches. The benefit for us is much reduced pointer dancing along the frequent allocation paths. v2: Defer shrinking until after a global grace period for futureproofing multiple consumers of the slab caches, similar to the current strategy for avoiding shrinking too early. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190228102035.5857-1-chris@chris-wilson.co.uk
2019-02-11drm/i915: Protect i915_active iterators from the shrinkerChris Wilson
If we allocate while iterating the rbtree of active nodes, we may hit the shrinker and so retire the i915_active, reaping the rbtree. Modifying the rbtree as we iterate is not good behaviour, so acquire the i915_active first to keep the tree intact whenever we allocate. Fixes: a42375af0a30 ("drm/i915: Release the active tracker tree upon idling") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190208134704.23039-1-chris@chris-wilson.co.uk Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2019-02-05drm/i915: Pull i915_gem_active into the i915_active familyChris Wilson
Looking forward, we need to break the struct_mutex dependency on i915_gem_active. In the meantime, external use of i915_gem_active is quite beguiling, little do new users suspect that it implies a barrier as each request it tracks must be ordered wrt the previous one. As one of many, it can be used to track activity across multiple timelines, a shared fence, which fits our unordered request submission much better. We need to steer external users away from the singular, exclusive fence imposed by i915_gem_active to i915_active instead. As part of that process, we move i915_gem_active out of i915_request.c into i915_active.c to start separating the two concepts, and rename it to i915_active_request (both to tie it to the concept of tracking just one request, and to give it a longer, less appealing name). Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190205130005.2807-5-chris@chris-wilson.co.uk
2019-02-05drm/i915: Allocate active tracking nodes from a slabcacheChris Wilson
Wrap the active tracking for a GPU references in a slabcache for faster allocations, and hopefully better fragmentation reduction. v3: Nothing device specific left, it's just a slabcache that we can make global. v4: Include i915_active.h and don't put the initfunc under DEBUG_GEM Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190205130005.2807-4-chris@chris-wilson.co.uk
2019-02-05drm/i915: Release the active tracker tree upon idlingChris Wilson
As soon as we detect that the active tracker is idle and we prepare to call the retire callback, release the storage for our tree of per-timeline nodes. We expect these to be infrequently used and quick to allocate, so there is little benefit in keeping the tree cached and we would prefer to return the pages back to the system in a timely fashion. This also means that when we finalize the struct as a whole, we know as the activity tracker must be idle, the tree has already been released. Indeed we can reduce i915_active_fini() just to the assertions that there is nothing to do. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190205130005.2807-3-chris@chris-wilson.co.uk
2019-02-05drm/i915: Generalise GPU activity trackingChris Wilson
We currently track GPU memory usage inside VMA, such that we never release memory used by the GPU until after it has finished accessing it. However, we may want to track other resources aside from VMA, or we may want to split a VMA into multiple independent regions and track each separately. For this purpose, generalise our request tracking (akin to struct reservation_object) so that we can embed it into other objects. v2: Tweak error handling during selftest setup. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190205130005.2807-2-chris@chris-wilson.co.uk