Age | Commit message (Collapse) | Author |
|
Port files to rely on file_ref reference to improve scaling and gain
overflow protection.
- We continue to WARN during get_file() in case a file that is already
marked dead is revived as get_file() is only valid if the caller
already holds a reference to the file. This hasn't changed just the
check changes.
- The semantics for epoll and ttm's dmabuf usage have changed. Both
epoll and ttm synchronize with __fput() to prevent the underlying file
from beeing freed.
(1) epoll
Explaining epoll is straightforward using a simple diagram.
Essentially, the mutex of the epoll instance needs to be taken in both
__fput() and around epi_fget() preventing the file from being freed
while it is polled or preventing the file from being resurrected.
CPU1 CPU2
fput(file)
-> __fput(file)
-> eventpoll_release(file)
-> eventpoll_release_file(file)
mutex_lock(&ep->mtx)
epi_item_poll()
-> epi_fget()
-> file_ref_get(file)
mutex_unlock(&ep->mtx)
mutex_lock(&ep->mtx);
__ep_remove()
mutex_unlock(&ep->mtx);
-> kmem_cache_free(file)
(2) ttm dmabuf
This explanation is a bit more involved. A regular dmabuf file stashed
the dmabuf in file->private_data and the file in dmabuf->file:
file->private_data = dmabuf;
dmabuf->file = file;
The generic release method of a dmabuf file handles file specific
things:
f_op->release::dma_buf_file_release()
while the generic dentry release method of a dmabuf handles dmabuf
freeing including driver specific things:
dentry->d_release::dma_buf_release()
During ttm dmabuf initialization in ttm_object_device_init() the ttm
driver copies the provided struct dma_buf_ops into a private location:
struct ttm_object_device {
spinlock_t object_lock;
struct dma_buf_ops ops;
void (*dmabuf_release)(struct dma_buf *dma_buf);
struct idr idr;
};
ttm_object_device_init(const struct dma_buf_ops *ops)
{
// copy original dma_buf_ops in private location
tdev->ops = *ops;
// stash the release method of the original struct dma_buf_ops
tdev->dmabuf_release = tdev->ops.release;
// override the release method in the copy of the struct dma_buf_ops
// with ttm's own dmabuf release method
tdev->ops.release = ttm_prime_dmabuf_release;
}
When a new dmabuf is created the struct dma_buf_ops with the overriden
release method set to ttm_prime_dmabuf_release is passed in exp_info.ops:
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
exp_info.ops = &tdev->ops;
exp_info.size = prime->size;
exp_info.flags = flags;
exp_info.priv = prime;
The call to dma_buf_export() then sets
mutex_lock_interruptible(&prime->mutex);
dma_buf = dma_buf_export(&exp_info)
{
dmabuf->ops = exp_info->ops;
}
mutex_unlock(&prime->mutex);
which creates a new dmabuf file and then install a file descriptor to
it in the callers file descriptor table:
ret = dma_buf_fd(dma_buf, flags);
When that dmabuf file is closed we now get:
fput(file)
-> __fput(file)
-> f_op->release::dma_buf_file_release()
-> dput()
-> d_op->d_release::dma_buf_release()
-> dmabuf->ops->release::ttm_prime_dmabuf_release()
mutex_lock(&prime->mutex);
if (prime->dma_buf == dma_buf)
prime->dma_buf = NULL;
mutex_unlock(&prime->mutex);
Where we can see that prime->dma_buf is set to NULL. So when we have
the following diagram:
CPU1 CPU2
fput(file)
-> __fput(file)
-> f_op->release::dma_buf_file_release()
-> dput()
-> d_op->d_release::dma_buf_release()
-> dmabuf->ops->release::ttm_prime_dmabuf_release()
ttm_prime_handle_to_fd()
mutex_lock_interruptible(&prime->mutex)
dma_buf = prime->dma_buf
dma_buf && get_dma_buf_unless_doomed(dma_buf)
-> file_ref_get(dma_buf->file)
mutex_unlock(&prime->mutex);
mutex_lock(&prime->mutex);
if (prime->dma_buf == dma_buf)
prime->dma_buf = NULL;
mutex_unlock(&prime->mutex);
-> kmem_cache_free(file)
The logic of the mechanism is the same as for epoll: sync with
__fput() preventing the file from being freed. Here the
synchronization happens through the ttm instance's prime->mutex.
Basically, the lifetime of the dma_buf and the file are tighly
coupled.
Both (1) and (2) used to call atomic_inc_not_zero() to check whether
the file has already been marked dead and then refuse to revive it.
This is only safe because both (1) and (2) sync with __fput() and thus
prevent kmem_cache_free() on the file being called and thus prevent
the file from being immediately recycled due to SLAB_TYPESAFE_BY_RCU.
Both (1) and (2) have been ported from atomic_inc_not_zero() to
file_ref_get(). That means a file that is already in the process of
being marked as FILE_REF_DEAD:
file_ref_put()
cnt = atomic_long_dec_return()
-> __file_ref_put(cnt)
if (cnt == FIlE_REF_NOREF)
atomic_long_try_cmpxchg_release(cnt, FILE_REF_DEAD)
can be revived again:
CPU1 CPU2
file_ref_put()
cnt = atomic_long_dec_return()
-> __file_ref_put(cnt)
if (cnt == FIlE_REF_NOREF)
file_ref_get()
// Brings reference back to FILE_REF_ONEREF
atomic_long_add_negative()
atomic_long_try_cmpxchg_release(cnt, FILE_REF_DEAD)
This is fine and inherent to the file_ref_get()/file_ref_put()
semantics. For both (1) and (2) this is safe because __fput() is
prevented from making progress if file_ref_get() fails due to the
aforementioned synchronization mechanisms.
Two cases need to be considered that affect both (1) epoll and (2) ttm
dmabuf:
(i) fput()'s file_ref_put() and marks the file as FILE_REF_NOREF but
before that fput() can mark the file as FILE_REF_DEAD someone
manages to sneak in a file_ref_get() and brings the refcount back
from FILE_REF_NOREF to FILE_REF_ONEREF. In that case the original
fput() doesn't call __fput(). For epoll the poll will finish and
for ttm dmabuf the file can be used again. For ttm dambuf this is
actually an advantage because it avoids immediately allocating
a new dmabuf object.
CPU1 CPU2
file_ref_put()
cnt = atomic_long_dec_return()
-> __file_ref_put(cnt)
if (cnt == FIlE_REF_NOREF)
file_ref_get()
// Brings reference back to FILE_REF_ONEREF
atomic_long_add_negative()
atomic_long_try_cmpxchg_release(cnt, FILE_REF_DEAD)
(ii) fput()'s file_ref_put() marks the file FILE_REF_NOREF and
also suceeds in actually marking it FILE_REF_DEAD and then calls
into __fput() to free the file.
When either (1) or (2) call file_ref_get() they fail as
atomic_long_add_negative() will return true.
At the same time, both (1) and (2) all file_ref_get() under
mutexes that __fput() must also acquire preventing
kmem_cache_free() from freeing the file.
So while this might be treated as a change in semantics for (1) and
(2) it really isn't. It if should end up causing issues this can be
fixed by adding a helper that does something like:
long cnt = atomic_long_read(&ref->refcnt);
do {
if (cnt < 0)
return false;
} while (!atomic_long_try_cmpxchg(&ref->refcnt, &cnt, cnt + 1));
return true;
which would block FILE_REF_NOREF to FILE_REF_ONEREF transitions.
- Jann correctly pointed out that kmem_cache_zalloc() cannot be used
anymore once files have been ported to file_ref_t.
The kmem_cache_zalloc() call will memset() the whole struct file to
zero when it is reallocated. This will also set file->f_ref to zero
which mens that a concurrent file_ref_get() can return true:
CPU1 CPU2
__get_file_rcu()
rcu_dereference_raw()
close()
[frees file]
alloc_empty_file()
kmem_cache_zalloc()
[reallocates same file]
memset(..., 0, ...)
file_ref_get()
[increments 0->1, returns true]
init_file()
file_ref_init(..., 1)
[sets to 0]
rcu_dereference_raw()
fput()
file_ref_put()
[decrements 0->FILE_REF_NOREF, frees file]
[UAF]
causing a concurrent __get_file_rcu() call to acquire a reference to
the file that is about to be reallocated and immediately freeing it
on realizing that it has been recycled. This causes a UAF for the
task that reallocated/recycled the file.
This is prevented by switching from kmem_cache_zalloc() to
kmem_cache_alloc() and initializing the fields manually. With
file->f_ref initialized last.
Note that a memset() also isn't guaranteed to atomically update an
unsigned long so it's theoretically possible to see torn and
therefore bogus counter values.
Link: https://lore.kernel.org/r/20241007-brauner-file-rcuref-v2-3-387e24dc9163@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Patch series "Memory allocation profiling", v6.
Overview:
Low overhead [1] per-callsite memory allocation profiling. Not just for
debug kernels, overhead low enough to be deployed in production.
Example output:
root@moria-kvm:~# sort -rn /proc/allocinfo
127664128 31168 mm/page_ext.c:270 func:alloc_page_ext
56373248 4737 mm/slub.c:2259 func:alloc_slab_page
14880768 3633 mm/readahead.c:247 func:page_cache_ra_unbounded
14417920 3520 mm/mm_init.c:2530 func:alloc_large_system_hash
13377536 234 block/blk-mq.c:3421 func:blk_mq_alloc_rqs
11718656 2861 mm/filemap.c:1919 func:__filemap_get_folio
9192960 2800 kernel/fork.c:307 func:alloc_thread_stack_node
4206592 4 net/netfilter/nf_conntrack_core.c:2567 func:nf_ct_alloc_hashtable
4136960 1010 drivers/staging/ctagmod/ctagmod.c:20 [ctagmod] func:ctagmod_start
3940352 962 mm/memory.c:4214 func:alloc_anon_folio
2894464 22613 fs/kernfs/dir.c:615 func:__kernfs_new_node
...
Usage:
kconfig options:
- CONFIG_MEM_ALLOC_PROFILING
- CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT
- CONFIG_MEM_ALLOC_PROFILING_DEBUG
adds warnings for allocations that weren't accounted because of a
missing annotation
sysctl:
/proc/sys/vm/mem_profiling
Runtime info:
/proc/allocinfo
Notes:
[1]: Overhead
To measure the overhead we are comparing the following configurations:
(1) Baseline with CONFIG_MEMCG_KMEM=n
(2) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n)
(3) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y)
(4) Enabled at runtime (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n && /proc/sys/vm/mem_profiling=1)
(5) Baseline with CONFIG_MEMCG_KMEM=y && allocating with __GFP_ACCOUNT
(6) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n) && CONFIG_MEMCG_KMEM=y
(7) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) && CONFIG_MEMCG_KMEM=y
Performance overhead:
To evaluate performance we implemented an in-kernel test executing
multiple get_free_page/free_page and kmalloc/kfree calls with allocation
sizes growing from 8 to 240 bytes with CPU frequency set to max and CPU
affinity set to a specific CPU to minimize the noise. Below are results
from running the test on Ubuntu 22.04.2 LTS with 6.8.0-rc1 kernel on
56 core Intel Xeon:
kmalloc pgalloc
(1 baseline) 6.764s 16.902s
(2 default disabled) 6.793s (+0.43%) 17.007s (+0.62%)
(3 default enabled) 7.197s (+6.40%) 23.666s (+40.02%)
(4 runtime enabled) 7.405s (+9.48%) 23.901s (+41.41%)
(5 memcg) 13.388s (+97.94%) 48.460s (+186.71%)
(6 def disabled+memcg) 13.332s (+97.10%) 48.105s (+184.61%)
(7 def enabled+memcg) 13.446s (+98.78%) 54.963s (+225.18%)
Memory overhead:
Kernel size:
text data bss dec diff
(1) 26515311 18890222 17018880 62424413
(2) 26524728 19423818 16740352 62688898 264485
(3) 26524724 19423818 16740352 62688894 264481
(4) 26524728 19423818 16740352 62688898 264485
(5) 26541782 18964374 16957440 62463596 39183
Memory consumption on a 56 core Intel CPU with 125GB of memory:
Code tags: 192 kB
PageExts: 262144 kB (256MB)
SlabExts: 9876 kB (9.6MB)
PcpuExts: 512 kB (0.5MB)
Total overhead is 0.2% of total memory.
Benchmarks:
Hackbench tests run 100 times:
hackbench -s 512 -l 200 -g 15 -f 25 -P
baseline disabled profiling enabled profiling
avg 0.3543 0.3559 (+0.0016) 0.3566 (+0.0023)
stdev 0.0137 0.0188 0.0077
hackbench -l 10000
baseline disabled profiling enabled profiling
avg 6.4218 6.4306 (+0.0088) 6.5077 (+0.0859)
stdev 0.0933 0.0286 0.0489
stress-ng tests:
stress-ng --class memory --seq 4 -t 60
stress-ng --class cpu --seq 4 -t 60
Results posted at: https://evilpiepirate.org/~kent/memalloc_prof_v4_stress-ng/
[2] https://lore.kernel.org/all/20240306182440.2003814-1-surenb@google.com/
This patch (of 37):
The next patch drops vmalloc.h from a system header in order to fix a
circular dependency; this adds it to all the files that were pulling it in
implicitly.
[kent.overstreet@linux.dev: fix arch/alpha/lib/memcpy.c]
Link: https://lkml.kernel.org/r/20240327002152.3339937-1-kent.overstreet@linux.dev
[surenb@google.com: fix arch/x86/mm/numa_32.c]
Link: https://lkml.kernel.org/r/20240402180933.1663992-1-surenb@google.com
[kent.overstreet@linux.dev: a few places were depending on sizes.h]
Link: https://lkml.kernel.org/r/20240404034744.1664840-1-kent.overstreet@linux.dev
[arnd@arndb.de: fix mm/kasan/hw_tags.c]
Link: https://lkml.kernel.org/r/20240404124435.3121534-1-arnd@kernel.org
[surenb@google.com: fix arc build]
Link: https://lkml.kernel.org/r/20240405225115.431056-1-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-1-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-2-surenb@google.com
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The object pin created for shmem_create_from_object is just a
single use mapping with the sole purpose of reading the contents
of the whole object in bulk. And the whole source object is also
even a throw-away. Ergo, the additional logic required by
i915_coherent_map_type can be safely dropped and simplified.
Suggested-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Signed-off-by: Jonathan Cavitt <jonathan.cavitt@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Andi Shyti <andi.shyti@linux.intel.com>
Signed-off-by: Andi Shyti <andi.shyti@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230801153242.2445478-2-jonathan.cavitt@intel.com
Link: https://patchwork.freedesktop.org/patch/msgid/20230807121957.598420-2-andi.shyti@linux.intel.com
|
|
Use i915_coherent_map_type() function to find out
map_type of the shmem obj.
v2: handle non-llc platform(Matt)
Signed-off-by: Nirmoy Das <nirmoy.das@intel.com>
Reviewed-by: Andrzej Hajda <andrzej.hajda@intel.com>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20221219112933.21417-1-nirmoy.das@intel.com
|
|
Add a variant of shmem_read() that takes a iosys_map pointer rather
than a plain pointer as argument. It's mostly a copy __shmem_rw() but
adapting the api and removing the write support since there's currently
only need to use iosys_map as destination.
Reworking __shmem_rw() to share the implementation was tempting, but
finding a good balance between reuse and clarity pushed towards a little
code duplication. Since the function is small, just add the similar
function with a copy/paste/adapt approach.
v2: Add an offset as argument and instead of using a map iterator, use the
offset to keep track of where we are writing data to.
Cc: Matt Roper <matthew.d.roper@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com>
Reviewed-by: Matt Atwood <matthew.s.atwood@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220216174147.3073235-4-lucas.demarchi@intel.com
|
|
Use I915_MAP_WC when default state object is allocated in LMEM.
Signed-off-by: Venkata Ramana Nayana <venkata.ramana.nayana@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210427085417.120246-1-matthew.auld@intel.com
|
|
Quick fix, just use the unlocked version.
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20210323155059.628690-40-maarten.lankhorst@linux.intel.com
|
|
The obj->stolen is currently used to identify an object allocated from
stolen memory. This dates back to when there were just 1.5 types of
objects, an object backed by shmemfs and an object backed by shmemfs
with a contiguous physical address. Now that we have several different
types of objects, we no longer want to treat stolen objects as a special
case.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210119214336.1463-3-chris@chris-wilson.co.uk
|
|
Currently the check that the unsigned size_t variable i is >= 0
is always true because the unsigned variable will never be negative,
causing the loop to run forever. Fix this by changing the
pre-decrement check to a zero check on i followed by a decrement of i.
Addresses-Coverity: ("Unsigned compared against 0")
Fixes: bfed6708d6c9 ("drm/i915: use vmap in shmem_pin_map")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20201002170354.94627-1-colin.king@canonical.com
|
|
As we use a shmemfs file to hold the context state, when not in use it
may be swapped out, such as across suspend. Since we wrote into the
shmemfs without marking the pages as dirty, the contents may be dropped
instead of being written back to swap. On re-using the shmemfs file,
such as creating a new context after resume, the contents of that file
were likely garbage and so the new context could then hang the GPU.
Simply mark the page as being written when copying into the shmemfs
file, and it the new contents will be retained across swapout.
Fixes: be1cb55a07bf ("drm/i915/gt: Keep a no-frills swappable copy of the default context state")
Cc: Sudeep Dutt <sudeep.dutt@intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Ramalingam C <ramalingam.c@intel.com>
Signed-off-by: CQ Tang <cq.tang@intel.com>
Signed-off-by: Venkata Ramana Nayana <venkata.ramana.nayana@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: <stable@vger.kernel.org> # v5.8+
Link: https://patchwork.freedesktop.org/patch/msgid/20201127120718.454037-161-matthew.auld@intel.com
|
|
shmem_pin_map somewhat awkwardly reimplements vmap using alloc_vm_area and
manual pte setup. The only practical difference is that alloc_vm_area
prefeaults the vmalloc area PTEs, which doesn't seem to be required here
(and could be added to vmap using a flag if actually required). Switch to
use vmap, and use vfree to free both the vmalloc mapping and the page
array, as well as dropping the references to each page.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002122204.1534411-7-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We need to keep the default context state around to instantiate new
contexts (aka golden rendercontext), and we also keep it pinned while
the engine is active so that we can quickly reset a hanging context.
However, the default contexts are large enough to merit keeping in
swappable memory as opposed to kernel memory, so we store them inside
shmemfs. Currently, we use the normal GEM objects to create the default
context image, but we can throw away all but the shmemfs file.
This greatly simplifies the tricky power management code which wants to
run underneath the normal GT locking, and we definitely do not want to
use any high level objects that may appear to recurse back into the GT.
Though perhaps the primary advantage of the complex GEM object is that
we aggressively cache the mapping, but here we are recreating the
vm_area everytime time we unpark. At the worst, we add a lightweight
cache, but first find a microbenchmark that is impacted.
Having started to create some utility functions to make working with
shmemfs objects easier, we can start putting them to wider use, where
GEM objects are overkill, such as storing persistent error state.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Ramalingam C <ramalingam.c@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200429172429.6054-1-chris@chris-wilson.co.uk
|