Age | Commit message (Collapse) | Author |
|
commit f1fb088d9cecde5c3066d8ff8846789667519b7d upstream.
Take irqfds.lock when adding/deleting an IRQ bypass producer to ensure
irqfd->producer isn't modified while kvm_irq_routing_update() is running.
The only lock held when a producer is added/removed is irqbypass's mutex.
Fixes: 872768800652 ("KVM: x86: select IRQ_BYPASS_MANAGER")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250404193923.1413163-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9bcac97dc42d2f4da8229d18feb0fe2b1ce523a2 upstream.
Restore an IRTE back to host control (remapped or posted MSI mode) if the
*new* GSI route prevents posting the IRQ directly to a vCPU, regardless of
the GSI routing type. Updating the IRTE if and only if the new GSI is an
MSI results in KVM leaving an IRTE posting to a vCPU.
The dangling IRTE can result in interrupts being incorrectly delivered to
the guest, and in the worst case scenario can result in use-after-free,
e.g. if the VM is torn down, but the underlying host IRQ isn't freed.
Fixes: efc644048ecd ("KVM: x86: Update IRTE for posted-interrupts")
Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250404193923.1413163-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bcda70c56f3e718465cab2aad260cf34183ce1ce upstream.
Explicitly treat type differences as GSI routing changes, as comparing MSI
data between two entries could get a false negative, e.g. if userspace
changed the type but left the type-specific data as-is.
Fixes: 515a0c79e796 ("kvm: irqfd: avoid update unmodified entries of the routing")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250404193923.1413163-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7537deda36521fa8fff9133b39c46e31893606f2 upstream.
Allocate SVM's interrupt remapping metadata using GFP_ATOMIC as
svm_ir_list_add() is called with IRQs are disabled and irqfs.lock held
when kvm_irq_routing_update() reacts to GSI routing changes.
Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250404193923.1413163-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85fd85bc025a525354acb2241beb3c5387c551ec upstream.
insn_decoder_test found a problem with decoding APX CTEST instructions:
Found an x86 instruction decoder bug, please report this.
ffffffff810021df 62 54 94 05 85 ff ctestneq
objdump says 6 bytes, but insn_get_length() says 5
It happens because x86-opcode-map.txt doesn't specify arguments for the
instruction and the decoder doesn't expect to see ModRM byte.
Fixes: 690ca3a3067f ("x86/insn: Add support for APX EVEX instructions to the opcode map")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: stable@vger.kernel.org # v6.10+
Link: https://lore.kernel.org/r/20250423065815.2003231-1-kirill.shutemov@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d81cadbe164265337f149cf31c9462d7217c1eed upstream.
On SNP-enabled system, VMRUN marks AVIC Backing Page as in-use while
the guest is running for both secure and non-secure guest. Any hypervisor
write to the in-use vCPU's AVIC backing page (e.g. to inject an interrupt)
will generate unexpected #PF in the host.
Currently, attempt to run AVIC guest would result in the following error:
BUG: unable to handle page fault for address: ff3a442e549cc270
#PF: supervisor write access in kernel mode
#PF: error_code(0x80000003) - RMP violation
PGD b6ee01067 P4D b6ee02067 PUD 10096d063 PMD 11c540063 PTE 80000001149cc163
SEV-SNP: PFN 0x1149cc unassigned, dumping non-zero entries in 2M PFN region: [0x114800 - 0x114a00]
...
Newer AMD system is enhanced to allow hypervisor to modify the backing page
for non-secure guest on SNP-enabled system. This enhancement is available
when the CPUID Fn8000_001F_EAX bit 30 is set (HvInUseWrAllowed).
This table describes AVIC support matrix w.r.t. SNP enablement:
| Non-SNP system | SNP system
-----------------------------------------------------
Non-SNP guest | AVIC Activate | AVIC Activate iff
| | HvInuseWrAllowed=1
-----------------------------------------------------
SNP guest | N/A | Secure AVIC
Therefore, check and disable AVIC in kvm_amd driver when the feature is not
available on SNP-enabled system.
See the AMD64 Architecture Programmer’s Manual (APM) Volume 2 for detail.
(https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/
programmer-references/40332.pdf)
Fixes: 216d106c7ff7 ("x86/sev: Add SEV-SNP host initialization support")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/20241104075845.7583-1-suravee.suthikulpanit@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Cc: Naveen N Rao <naveen@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1a97fea9db9e9b9c4839d4232dde9f505ff5b4cc ]
Perf doesn't work at perf stat for hardware events on certain x86 platforms:
$perf stat -- sleep 1
Performance counter stats for 'sleep 1':
16.44 msec task-clock # 0.016 CPUs utilized
2 context-switches # 121.691 /sec
0 cpu-migrations # 0.000 /sec
54 page-faults # 3.286 K/sec
<not supported> cycles
<not supported> instructions
<not supported> branches
<not supported> branch-misses
The reason is that the check in x86_pmu_hw_config() for sampling events is
unexpectedly applied to counting events as well.
It should only impact x86 platforms with limit_period used for non-PEBS
events. For Intel platforms, it should only impact some older platforms,
e.g., HSW, BDW and NHM.
Fixes: 88ec7eedbbd2 ("perf/x86: Fix low freqency setting issue")
Signed-off-by: Luo Gengkun <luogengkun@huaweicloud.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250423064724.3716211-1-luogengkun@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c3164d2e0d181027da8fc94f8179d8607c3d440f ]
Setting pci_msi_ignore_mask inhibits the toggling of the mask bit for both
MSI and MSI-X entries globally, regardless of the IRQ chip they are using.
Only Xen sets the pci_msi_ignore_mask when routing physical interrupts over
event channels, to prevent PCI code from attempting to toggle the maskbit,
as it's Xen that controls the bit.
However, the pci_msi_ignore_mask being global will affect devices that use
MSI interrupts but are not routing those interrupts over event channels
(not using the Xen pIRQ chip). One example is devices behind a VMD PCI
bridge. In that scenario the VMD bridge configures MSI(-X) using the
normal IRQ chip (the pIRQ one in the Xen case), and devices behind the
bridge configure the MSI entries using indexes into the VMD bridge MSI
table. The VMD bridge then demultiplexes such interrupts and delivers to
the destination device(s). Having pci_msi_ignore_mask set in that scenario
prevents (un)masking of MSI entries for devices behind the VMD bridge.
Move the signaling of no entry masking into the MSI domain flags, as that
allows setting it on a per-domain basis. Set it for the Xen MSI domain
that uses the pIRQ chip, while leaving it unset for the rest of the
cases.
Remove pci_msi_ignore_mask at once, since it was only used by Xen code, and
with Xen dropping usage the variable is unneeded.
This fixes using devices behind a VMD bridge on Xen PV hardware domains.
Albeit Devices behind a VMD bridge are not known to Xen, that doesn't mean
Linux cannot use them. By inhibiting the usage of
VMD_FEAT_CAN_BYPASS_MSI_REMAP and the removal of the pci_msi_ignore_mask
bodge devices behind a VMD bridge do work fine when use from a Linux Xen
hardware domain. That's the whole point of the series.
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Juergen Gross <jgross@suse.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Message-ID: <20250219092059.90850-4-roger.pau@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Stable-dep-of: cf761e3dacc6 ("PCI/MSI: Add an option to write MSIX ENTRY_DATA before any reads")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 506f981ab40f0b03a11a640cfd77f48b09aff330 upstream.
The scale of IIO bandwidth in free running counters is inherited from
the ICX. The counter increments for every 32 bytes rather than 4 bytes.
The IIO bandwidth out free running counters don't increment with a
consistent size. The increment depends on the requested size. It's
impossible to find a fixed increment. Remove it from the event_descs.
Fixes: 0378c93a92e2 ("perf/x86/intel/uncore: Support IIO free-running counters on Sapphire Rapids server")
Reported-by: Tang Jun <dukang.tj@alibaba-inc.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250416142426.3933977-3-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 32c7f1150225694d95a51110a93be25db03bb5db upstream.
There was a mistake in the ICX uncore spec too. The counter increments
for every 32 bytes rather than 4 bytes.
The same as SNR, there are 1 ioclk and 8 IIO bandwidth in free running
counters. Reuse the snr_uncore_iio_freerunning_events().
Fixes: 2b3b76b5ec67 ("perf/x86/intel/uncore: Add Ice Lake server uncore support")
Reported-by: Tang Jun <dukang.tj@alibaba-inc.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250416142426.3933977-2-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 96a720db59ab330c8562b2437153faa45dac705f upstream.
There was a mistake in the SNR uncore spec. The counter increments for
every 32 bytes of data sent from the IO agent to the SOC, not 4 bytes
which was documented in the spec.
The event list has been updated:
"EventName": "UNC_IIO_BANDWIDTH_IN.PART0_FREERUN",
"BriefDescription": "Free running counter that increments for every 32
bytes of data sent from the IO agent to the SOC",
Update the scale of the IIO bandwidth in free running counters as well.
Fixes: 210cc5f9db7a ("perf/x86/intel/uncore: Add uncore support for Snow Ridge server")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250416142426.3933977-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 71dcc11c2cd9e434c34a63154ecadca21c135ddd upstream.
Currently when a user samples user space GPRs (--user-regs option) with
PEBS, the user space GPRs actually always come from software PMI
instead of from PEBS hardware. This leads to the sampled GPRs to
possibly be inaccurate for single PEBS record case because of the
skid between counter overflow and GPRs sampling on PMI.
For the large PEBS case, it is even worse. If user sets the
exclude_kernel attribute, large PEBS would be used to sample user space
GPRs, but since PEBS GPRs group is not really enabled, it leads to all
samples in the large PEBS record to share the same piece of user space
GPRs, like this reproducer shows:
$ perf record -e branches:pu --user-regs=ip,ax -c 100000 ./foo
$ perf report -D | grep "AX"
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
So enable GPRs group for user space GPRs sampling and prioritize reading
GPRs from PEBS. If the PEBS sampled GPRs is not user space GPRs (single
PEBS record case), perf_sample_regs_user() modifies them to user space
GPRs.
[ mingo: Clarified the changelog. ]
Fixes: c22497f5838c ("perf/x86/intel: Support adaptive PEBS v4")
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250415104135.318169-2-dapeng1.mi@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d54d610243a4508183978871e5faff5502786cd4 upstream.
Communicating with the hypervisor using the shared GHCB page requires
clearing the C bit in the mapping of that page. When executing in the
context of the EFI boot services, the page tables are owned by the
firmware, and this manipulation is not possible.
So switch to a different API for accepting memory in SEV-SNP guests, one
which is actually supported at the point during boot where the EFI stub
may need to accept memory, but the SEV-SNP init code has not executed
yet.
For simplicity, also switch the memory acceptance carried out by the
decompressor when not booting via EFI - this only involves the
allocation for the decompressed kernel, and is generally only called
after kexec, as normal boot will jump straight into the kernel from the
EFI stub.
Fixes: 6c3211796326 ("x86/sev: Add SNP-specific unaccepted memory support")
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Dionna Amalie Glaze <dionnaglaze@google.com>
Cc: Kevin Loughlin <kevinloughlin@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-efi@vger.kernel.org
Link: https://lore.kernel.org/r/20250404082921.2767593-8-ardb+git@google.com # discussion thread #1
Link: https://lore.kernel.org/r/20250410132850.3708703-2-ardb+git@google.com # discussion thread #2
Link: https://lore.kernel.org/r/20250417202120.1002102-2-ardb+git@google.com # final submission
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 263e55949d8902a6a09bdb92a1ab6a3f67231abe upstream.
Erratum 1054 affects AMD Zen processors that are a part of Family 17h
Models 00-2Fh and the workaround is to not set HWCR[IRPerfEn]. However,
when X86_FEATURE_ZEN1 was introduced, the condition to detect unaffected
processors was incorrectly changed in a way that the IRPerfEn bit gets
set only for unaffected Zen 1 processors.
Ensure that HWCR[IRPerfEn] is set for all unaffected processors. This
includes a subset of Zen 1 (Family 17h Models 30h and above) and all
later processors. Also clear X86_FEATURE_IRPERF on affected processors
so that the IRPerfCount register is not used by other entities like the
MSR PMU driver.
Fixes: 232afb557835 ("x86/CPU/AMD: Add X86_FEATURE_ZEN1")
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/caa057a9d6f8ad579e2f1abaa71efbd5bd4eaf6d.1744956467.git.sandipan.das@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
unreleased standalone Zen5 microcode patches
commit 805b743fc163f1abef7ce1bea8eca8dfab5b685b upstream.
All Zen5 machines out there should get BIOS updates which update to the
correct microcode patches addressing the microcode signature issue.
However, silly people carve out random microcode blobs from BIOS
packages and think are doing other people a service this way...
Block loading of any unreleased standalone Zen5 microcode patches.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20250410114222.32523-1-bp@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 715ad3e0ec2b13c27335749f27a5c9f0c0e84064 ]
Initializing a percpu variable with the address of a struct tagged as
.initdata is breaking the build with CONFIG_SECTION_MISMATCH_WARN_ONLY
not set to "y".
Fix that by using an access function instead returning the .initdata
struct address if the percpu space of the struct hasn't been
allocated yet.
Fixes: 368990a7fe30 ("xen: fix multicall debug data referencing")
Reported-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: "Borislav Petkov (AMD)" <bp@alien8.de>
Tested-by: "Borislav Petkov (AMD)" <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-ID: <20250327190602.26015-1-jgross@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
e820__register_nosave_regions()
commit f2f29da9f0d4367f6ff35e0d9d021257bb53e273 upstream.
While debugging kexec/hibernation hangs and crashes, it turned out that
the current implementation of e820__register_nosave_regions() suffers from
multiple serious issues:
- The end of last region is tracked by PFN, causing it to find holes
that aren't there if two consecutive subpage regions are present
- The nosave PFN ranges derived from holes are rounded out (instead of
rounded in) which makes it inconsistent with how explicitly reserved
regions are handled
Fix this by:
- Treating reserved regions as if they were holes, to ensure consistent
handling (rounding out nosave PFN ranges is more correct as the
kernel does not use partial pages)
- Tracking the end of the last RAM region by address instead of pages
to detect holes more precisely
These bugs appear to have been introduced about ~18 years ago with the very
first version of e820_mark_nosave_regions(), and its flawed assumptions were
carried forward uninterrupted through various waves of rewrites and renames.
[ mingo: Added Git archeology details, for kicks and giggles. ]
Fixes: e8eff5ac294e ("[PATCH] Make swsusp avoid memory holes and reserved memory regions on x86_64")
Reported-by: Roberto Ricci <io@r-ricci.it>
Tested-by: Roberto Ricci <io@r-ricci.it>
Signed-off-by: Myrrh Periwinkle <myrrhperiwinkle@qtmlabs.xyz>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250406-fix-e820-nosave-v3-1-f3787bc1ee1d@qtmlabs.xyz
Closes: https://lore.kernel.org/all/Z4WFjBVHpndct7br@desktop0a/
Signed-off-by: Myrrh Periwinkle <myrrhperiwinkle@qtmlabs.xyz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 22cc5ca5de52bbfc36a7d4a55323f91fb4492264 upstream.
CONFIG_PARAVIRT_XXL is mainly defined/used by XEN PV guests. For
other VM guest types, features supported under CONFIG_PARAVIRT
are self sufficient. CONFIG_PARAVIRT mainly provides support for
TLB flush operations and time related operations.
For TDX guest as well, paravirt calls under CONFIG_PARVIRT meets
most of its requirement except the need of HLT and SAFE_HLT
paravirt calls, which is currently defined under
CONFIG_PARAVIRT_XXL.
Since enabling CONFIG_PARAVIRT_XXL is too bloated for TDX guest
like platforms, move HLT and SAFE_HLT paravirt calls under
CONFIG_PARAVIRT.
Moving HLT and SAFE_HLT paravirt calls are not fatal and should not
break any functionality for current users of CONFIG_PARAVIRT.
Fixes: bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Vishal Annapurve <vannapurve@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Ryan Afranji <afranji@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20250228014416.3925664-2-vannapurve@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef01cac401f18647d62720cf773d7bb0541827da upstream.
Acquire a lock on kvm->srcu when userspace is getting MP state to handle a
rather extreme edge case where "accepting" APIC events, i.e. processing
pending INIT or SIPI, can trigger accesses to guest memory. If the vCPU
is in L2 with INIT *and* a TRIPLE_FAULT request pending, then getting MP
state will trigger a nested VM-Exit by way of ->check_nested_events(), and
emuating the nested VM-Exit can access guest memory.
The splat was originally hit by syzkaller on a Google-internal kernel, and
reproduced on an upstream kernel by hacking the triple_fault_event_test
selftest to stuff a pending INIT, store an MSR on VM-Exit (to generate a
memory access on VMX), and do vcpu_mp_state_get() to trigger the scenario.
=============================
WARNING: suspicious RCU usage
6.14.0-rc3-b112d356288b-vmx/pi_lockdep_false_pos-lock #3 Not tainted
-----------------------------
include/linux/kvm_host.h:1058 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by triple_fault_ev/1256:
#0: ffff88810df5a330 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x8b/0x9a0 [kvm]
stack backtrace:
CPU: 11 UID: 1000 PID: 1256 Comm: triple_fault_ev Not tainted 6.14.0-rc3-b112d356288b-vmx #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x144/0x190
kvm_vcpu_gfn_to_memslot+0x156/0x180 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
read_and_check_msr_entry+0x2e/0x180 [kvm_intel]
__nested_vmx_vmexit+0x550/0xde0 [kvm_intel]
kvm_check_nested_events+0x1b/0x30 [kvm]
kvm_apic_accept_events+0x33/0x100 [kvm]
kvm_arch_vcpu_ioctl_get_mpstate+0x30/0x1d0 [kvm]
kvm_vcpu_ioctl+0x33e/0x9a0 [kvm]
__x64_sys_ioctl+0x8b/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250401150504.829812-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bc52ae0a708cb6fa3926d11c88e3c55e1171b4a1 upstream.
Explicitly zero/empty-initialize the unions used for PMU related CPUID
entries, instead of manually zeroing all fields (hopefully), or in the
case of 0x80000022, relying on the compiler to clobber the uninitialized
bitfields.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-ID: <20250315024102.2361628-1-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 87af633689ce16ddb166c80f32b120e50b1295de upstream.
PVH dom0 re-uses logic from PV dom0, in which RAM ranges not assigned to
dom0 are re-used as scratch memory to map foreign and grant pages. Such
logic relies on reporting those unpopulated ranges as RAM to Linux, and
mark them as reserved. This way Linux creates the underlying page
structures required for metadata management.
Such approach works fine on PV because the initial balloon target is
calculated using specific Xen data, that doesn't take into account the
memory type changes described above. However on HVM and PVH the initial
balloon target is calculated using get_num_physpages(), and that function
does take into account the unpopulated RAM regions used as scratch space
for remote domain mappings.
This leads to PVH dom0 having an incorrect initial balloon target, which
causes malfunction (excessive memory freeing) of the balloon driver if the
dom0 memory target is later adjusted from the toolstack.
Fix this by using xen_released_pages to account for any pages that are part
of the memory map, but are already unpopulated when the balloon driver is
initialized. This accounts for any regions used for scratch remote
mappings. Note on x86 xen_released_pages definition is moved to
enlighten.c so it's uniformly available for all Xen-enabled builds.
Take the opportunity to unify PV with PVH/HVM guests regarding the usage of
get_num_physpages(), as that avoids having to add different logic for PV vs
PVH in both balloon_add_regions() and arch_xen_unpopulated_init().
Much like a6aa4eb994ee, the code in this changeset should have been part of
38620fc4e893.
Fixes: a6aa4eb994ee ('xen/x86: add extra pages to unpopulated-alloc if available')
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: stable@vger.kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-ID: <20250407082838.65495-1-roger.pau@citrix.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
running in a virtual machine
[ Upstream commit a4248ee16f411ac1ea7dfab228a6659b111e3d65 ]
When running in a virtual machine, we might see the original hardware CPU
vendor string (i.e. "AuthenticAMD"), but a model and family ID set by the
hypervisor. In case we run on AMD hardware and the hypervisor sets a model
ID < 0x14, the LAHF cpu feature is eliminated from the the list of CPU
capabilities present to circumvent a bug with some BIOSes in conjunction with
AMD K8 processors.
Parsing the flags list from /proc/cpuinfo seems to be happening mostly in
bash scripts and prebuilt Docker containers, as it does not need to have
additionals tools present – even though more reliable ways like using "kcpuid",
which calls the CPUID instruction instead of parsing a list, should be preferred.
Scripts, that use /proc/cpuinfo to determine if the current CPU is
"compliant" with defined microarchitecture levels like x86-64-v2 will falsely
claim the CPU is incapable of modern CPU instructions when "lahf_lm" is missing
in that flags list.
This can prevent some docker containers from starting or build scripts to create
unoptimized binaries.
Admittably, this is more a small inconvenience than a severe bug in the kernel
and the shoddy scripts that rely on parsing /proc/cpuinfo
should be fixed instead.
This patch adds an additional check to see if we're running inside a
virtual machine (X86_FEATURE_HYPERVISOR is present), which, to my
understanding, can't be present on a real K8 processor as it was introduced
only with the later/other Athlon64 models.
Example output with the "lahf_lm" flag missing in the flags list
(should be shown between "hypervisor" and "abm"):
$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 15
model : 6
model name : Common KVM processor
stepping : 1
microcode : 0x1000065
cpu MHz : 2599.998
cache size : 512 KB
physical id : 0
siblings : 1
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp
lm rep_good nopl cpuid extd_apicid tsc_known_freq pni
pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c hypervisor abm
3dnowprefetch vmmcall bmi1 avx2 bmi2 xsaveopt
... while kcpuid shows the feature to be present in the CPU:
# kcpuid -d | grep lahf
lahf_lm - LAHF/SAHF available in 64-bit mode
[ mingo: Updated the comment a bit, incorporated Boris's review feedback. ]
Signed-off-by: Max Grobecker <max@grobecker.info>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ad546940b5991d3e141238cd80a6d1894b767184 ]
The first GDT descriptor is reserved as 'NULL descriptor'. As bits 0
and 1 of a segment selector, i.e., the RPL bits, are NOT used to index
GDT, selector values 0~3 all point to the NULL descriptor, thus values
0, 1, 2 and 3 are all valid NULL selector values.
When a NULL selector value is to be loaded into a segment register,
reload_segments() sets its RPL bits. Later IRET zeros ES, FS, GS, and
DS segment registers if any of them is found to have any nonzero NULL
selector value. The two operations offset each other to actually effect
a nop.
Besides, zeroing of RPL in NULL selector values is an information leak
in pre-FRED systems as userspace can spot any interrupt/exception by
loading a nonzero NULL selector, and waiting for it to become zero.
But there is nothing software can do to prevent it before FRED.
ERETU, the only legit instruction to return to userspace from kernel
under FRED, by design does NOT zero any segment register to avoid this
problem behavior.
As such, leave NULL selector values 0~3 unchanged and close the leak.
Do the same on 32-bit kernel as well.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241126184529.1607334-1-xin@zytor.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
14.2
[ Upstream commit b6762467a09ba8838c499e4f36561e82fc608ed1 ]
GCC < 14.2 does not correctly propagate address space qualifiers
with -fsanitize=bool,enum. Together with address sanitizer then
causes that load to be sanitized.
Disable named address spaces for GCC < 14.2 when both, UBSAN_BOOL
and KASAN are enabled.
Reported-by: Matt Fleming <matt@readmodwrite.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250227140715.2276353-1-ubizjak@gmail.com
Closes: https://lore.kernel.org/lkml/20241213190119.3449103-1-matt@readmodwrite.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c1fcf41cf37f7a3fd3bbf6f0c04aba3ea4258888 ]
The bit pattern of _PAGE_DIRTY set and _PAGE_RW clear is used to mark
shadow stacks. This is currently checked for in mk_pte() but not
pfn_pte(). If we add the check to pfn_pte(), it catches vfree()
calling set_direct_map_invalid_noflush() which calls
__change_page_attr() which loads the old protection bits from the
PTE, clears the specified bits and uses pfn_pte() to construct the
new PTE.
We should, therefore, for kernel mappings, clear the _PAGE_DIRTY bit
consistently whenever we clear _PAGE_RW. I opted to do it in the
callers in case we want to use __change_page_attr() to create shadow
stacks inside the kernel at some point in the future. Arguably, we
might also want to clear _PAGE_ACCESSED here.
Note that the 3 functions involved:
__set_pages_np()
kernel_map_pages_in_pgd()
kernel_unmap_pages_in_pgd()
Only ever manipulate non-swappable kernel mappings, so maintaining
the DIRTY:1|RW:0 special pattern for shadow stacks and DIRTY:0
pattern for non-shadow-stack entries can be maintained consistently
and doesn't result in the unintended clearing of a live dirty bit
that could corrupt (destroy) dirty bit information for user mappings.
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/174051422675.10177.13226545170101706336.tip-bot2@tip-bot2
Closes: https://lore.kernel.org/oe-lkp/202502241646.719f4651-lkp@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8b37357a78d7fa13d88ea822b35b40137da1c85e ]
Xen disables ACPI for PV guests in DomU, which causes acpi_mps_check() to
return 1 when CONFIG_X86_MPPARSE is not set. As a result, the local APIC is
disabled and the guest is later limited to a single vCPU, despite being
configured with more.
This regression was introduced in version 6.9 in commit 7c0edad3643f
("x86/cpu/topology: Rework possible CPU management"), which added an
early check that limits CPUs to 1 if apic_is_disabled.
Update the acpi_mps_check() logic to return 0 early when running as a Xen
PV guest in DomU, preventing APIC from being disabled in this specific case
and restoring correct multi-vCPU behaviour.
Fixes: 7c0edad3643f ("x86/cpu/topology: Rework possible CPU management")
Signed-off-by: Petr Vaněk <arkamar@atlas.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250407132445.6732-2-arkamar@atlas.cz
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit d26638bfcdfc5c8c4e085dc3f5976a0443abab3c upstream.
If KVM rejects an AP Creation event, leave the target vCPU state as-is.
Nothing in the GHCB suggests the hypervisor is *allowed* to muck with vCPU
state on failure, let alone required to do so. Furthermore, kicking only
in the !ON_INIT case leads to divergent behavior, and even the "kick" case
is non-deterministic.
E.g. if an ON_INIT request fails, the guest can successfully retry if the
fixed AP Creation request is made prior to sending INIT. And if a !ON_INIT
fails, the guest can successfully retry if the fixed AP Creation request is
handled before the target vCPU processes KVM's
KVM_REQ_UPDATE_PROTECTED_GUEST_STATE.
Fixes: e366f92ea99e ("KVM: SEV: Support SEV-SNP AP Creation NAE event")
Cc: stable@vger.kernel.org
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Link: https://lore.kernel.org/r/20250227012541.3234589-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3ef938c3503563bfc2ac15083557f880d29c2e64 upstream.
On the following path, flush_tlb_range() can be used for zapping normal
PMD entries (PMD entries that point to page tables) together with the PTE
entries in the pointed-to page table:
collapse_pte_mapped_thp
pmdp_collapse_flush
flush_tlb_range
The arm64 version of flush_tlb_range() has a comment describing that it can
be used for page table removal, and does not use any last-level
invalidation optimizations. Fix the X86 version by making it behave the
same way.
Currently, X86 only uses this information for the following two purposes,
which I think means the issue doesn't have much impact:
- In native_flush_tlb_multi() for checking if lazy TLB CPUs need to be
IPI'd to avoid issues with speculative page table walks.
- In Hyper-V TLB paravirtualization, again for lazy TLB stuff.
The patch "x86/mm: only invalidate final translations with INVLPGB" which
is currently under review (see
<https://lore.kernel.org/all/20241230175550.4046587-13-riel@surriel.com/>)
would probably be making the impact of this a lot worse.
Fixes: 016c4d92cd16 ("x86/mm/tlb: Add freed_tables argument to flush_tlb_mm_range")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250103-x86-collapse-flush-fix-v1-1-3c521856cfa6@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d90c9de9de2f1712df56de6e4f7d6982d358cabe upstream.
TSC could be reset in deep ACPI sleep states, even with invariant TSC.
That's the reason we have sched_clock() save/restore functions, to deal
with this situation. But what happens is that such functions are guarded
with a check for the stability of sched_clock - if not considered stable,
the save/restore routines aren't executed.
On top of that, we have a clear comment in native_sched_clock() saying
that *even* with TSC unstable, we continue using TSC for sched_clock due
to its speed.
In other words, if we have a situation of TSC getting detected as unstable,
it marks the sched_clock as unstable as well, so subsequent S3 sleep cycles
could bring bogus sched_clock values due to the lack of the save/restore
mechanism, causing warnings like this:
[22.954918] ------------[ cut here ]------------
[22.954923] Delta way too big! 18446743750843854390 ts=18446744072977390405 before=322133536015 after=322133536015 write stamp=18446744072977390405
[22.954923] If you just came from a suspend/resume,
[22.954923] please switch to the trace global clock:
[22.954923] echo global > /sys/kernel/tracing/trace_clock
[22.954923] or add trace_clock=global to the kernel command line
[22.954937] WARNING: CPU: 2 PID: 5728 at kernel/trace/ring_buffer.c:2890 rb_add_timestamp+0x193/0x1c0
Notice that the above was reproduced even with "trace_clock=global".
The fix for that is to _always_ save/restore the sched_clock on suspend
cycle _if TSC is used_ as sched_clock - only if we fallback to jiffies
the sched_clock_stable() check becomes relevant to save/restore the
sched_clock.
Debugged-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250215210314.351480-1-gpiccoli@igalia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6ac43f2be982ea54b75206dccd33f4cf81bfdc39 upstream.
An older cleanup of mine inadvertently removed geode-gx1 and geode-lx
from the list of CPUs that are known to support a working cmpxchg8b.
Fixes: 88a2b4edda3d ("x86/Kconfig: Rework CONFIG_X86_PAE dependency")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250226213714.4040853-2-arnd@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fa6192adc32f4fdfe5b74edd5b210e12afd6ecc0 upstream.
Jann reported a possible issue when trampoline_check_ip returns
address near the bottom of the address space that is allowed to
call into the syscall if uretprobes are not set up:
https://lore.kernel.org/bpf/202502081235.5A6F352985@keescook/T/#m9d416df341b8fbc11737dacbcd29f0054413cbbf
Though the mmap minimum address restrictions will typically prevent
creating mappings there, let's make sure uretprobe syscall checks
for that.
Fixes: ff474a78cef5 ("uprobe: Add uretprobe syscall to speed up return probe")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250212220433.3624297-1-jolsa@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f9bdf1f953392c9edd69a7f884f78c0390127029 upstream.
The WARN_ON(this_cpu_read(cpu_hw_events.enabled)) in the
intel_pmu_save_and_restart_reload() is triggered, when sampling read
topdown events.
In a NMI handler, the cpu_hw_events.enabled is set and used to indicate
the status of core PMU. The generic pmu->pmu_disable_count, updated in
the perf_pmu_disable/enable pair, is not touched.
However, the perf_pmu_disable/enable pair is invoked when sampling read
in a NMI handler. The cpuc->enabled is mistakenly set by the
perf_pmu_enable().
Avoid disabling PMU if the core PMU is already disabled.
Merge the logic together.
Fixes: 7b2c05a15d29 ("perf/x86/intel: Generic support for hardware TopDown metrics")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250121152303.3128733-2-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 314dfe10576912e1d786b13c5d4eee8c51b63caa upstream.
The x86_pmu_drain_pebs static call was introduced in commit 7c9903c9bf71
("x86/perf, static_call: Optimize x86_pmu methods"), but it's not really
used to replace the old method.
Apply the static call for drain_pebs.
Fixes: 7c9903c9bf71 ("x86/perf, static_call: Optimize x86_pmu methods")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250121152303.3128733-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9f98a4f4e7216dbe366010b4cdcab6b220f229c4 upstream.
Direct HLT instruction execution causes #VEs for TDX VMs which is routed
to hypervisor via TDCALL. If HLT is executed in STI-shadow, resulting #VE
handler will enable interrupts before TDCALL is routed to hypervisor
leading to missed wakeup events, as current TDX spec doesn't expose
interruptibility state information to allow #VE handler to selectively
enable interrupts.
Commit bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
prevented the idle routines from executing HLT instruction in STI-shadow.
But it missed the paravirt routine which can be reached via this path
as an example:
kvm_wait() =>
safe_halt() =>
raw_safe_halt() =>
arch_safe_halt() =>
irq.safe_halt() =>
pv_native_safe_halt()
To reliably handle arch_safe_halt() for TDX VMs, introduce explicit
dependency on CONFIG_PARAVIRT and override paravirt halt()/safe_halt()
routines with TDX-safe versions that execute direct TDCALL and needed
interrupt flag updates. Executing direct TDCALL brings in additional
benefit of avoiding HLT related #VEs altogether.
As tested by Ryan Afranji:
"Tested with the specjbb2015 benchmark. It has heavy lock contention which leads
to many halt calls. TDX VMs suffered a poor score before this patchset.
Verified the major performance improvement with this patchset applied."
Fixes: bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
Signed-off-by: Vishal Annapurve <vannapurve@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Ryan Afranji <afranji@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250228014416.3925664-3-vannapurve@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1a15bb8303b6b104e78028b6c68f76a0d4562134 upstream.
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not recovered"") tries to fix noise message "Memory error not recovered"
and skips duplicate SIGBUSs due to the race. But it also introduced a bug
that kill_accessing_process() return -EHWPOISON for instr case, as result,
kill_me_maybe() send a SIGBUS to user process.
# 4. The fix, in my opinion, should be:
- For copyin case:
The key point is whether the error context is in a read from user memory.
We do not care about the ex-type if we know its a MOV reading from
userspace.
is_copy_from_user() return true when both of the following two checks are
true:
- the current instruction is copy
- source address is user memory
If copy_user is true, we set
m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
Then do_machine_check() will try fixup_exception() first.
- For instr case: let kill_accessing_process() return 0 to prevent a SIGBUS.
- For patch 3:
The return value of memory_failure() is quite important while discussed
instr case regression with Tony and Miaohe for patch 2, so add comment
about the return value.
This patch (of 3):
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and commit 4c132d1d844a
("x86/futex: Remove .fixup usage") updated the extable fixup type for
copy-from-user operations, changing it from EX_TYPE_UACCESS to
EX_TYPE_EFAULT_REG. The error context for copy-from-user operations no
longer functions as an in-kernel recovery context. Consequently, the
error context for copy-from-user operations no longer functions as an
in-kernel recovery context, resulting in kernel panics with the message:
"Machine check: Data load in unrecoverable area of kernel."
To address this, it is crucial to identify if an error context involves a
read operation from user memory. The function is_copy_from_user() can be
utilized to determine:
- the current operation is copy
- when reading user memory
When these conditions are met, is_copy_from_user() will return true,
confirming that it is indeed a direct copy from user memory. This check
is essential for correctly handling the context of errors in these
operations without relying on the extable fixup types that previously
allowed for in-kernel recovery.
So, use is_copy_from_user() to determine if a context is copy user directly.
Link: https://lkml.kernel.org/r/20250312112852.82415-1-xueshuai@linux.alibaba.com
Link: https://lkml.kernel.org/r/20250312112852.82415-2-xueshuai@linux.alibaba.com
Fixes: 4c132d1d844a ("x86/futex: Remove .fixup usage")
Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Ruidong Tian <tianruidong@linux.alibaba.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 31ab12df723543047c3fc19cb8f8c4498ec6267f upstream.
When verify_sha256_digest() fails, __apply_microcode_amd() should propagate
the failure by returning false (and not -1 which is promoted to true).
Fixes: 50cef76d5cb0 ("x86/microcode/AMD: Load only SHA256-checksummed patches")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250327230503.1850368-2-boris.ostrovsky@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 74c1807f6c4feddb3c3cb1056c54531d4adbaea6 upstream.
KVM_CAP_SYNC_REGS does not make sense for VMs with protected guest state,
since the register values cannot actually be written. Return 0
when using the VM-level KVM_CHECK_EXTENSION ioctl, and accordingly
return -EINVAL from KVM_RUN if the valid/dirty fields are nonzero.
However, on exit from KVM_RUN userspace could have placed a nonzero
value into kvm_run->kvm_valid_regs, so check guest_state_protected
again and skip store_regs() in that case.
Cc: stable@vger.kernel.org
Fixes: 517987e3fb19 ("KVM: x86: add fields to struct kvm_arch for CoCo features")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250306202923.646075-1-pbonzini@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e792d843aa3c9d039074cdce728d5803262e57a7 upstream.
snp_set_vmsa() returns 0 as success result and so fix it.
Cc: stable@vger.kernel.org
Fixes: 44676bb9d566 ("x86/hyperv: Add smp support for SEV-SNP guest")
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/20250313085217.45483-1-ltykernel@gmail.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20250313085217.45483-1-ltykernel@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
copy_user_generic(), on non-FSRM/ERMS CPUs
[ Upstream commit b5322b6ec06a6c58650f52abcd2492000396363b ]
History of the performance regression:
======================================
Since the following series of user copy updates were merged upstream
~2 years ago via:
a5624566431d ("Merge branch 'x86-rep-insns': x86 user copy clarifications")
.. copy_user_generic() on x86_64 stopped doing alignment of the
writes to the destination to a 8 byte boundary for the non FSRM case.
Previously, this was done through the ALIGN_DESTINATION macro that
was used in the now removed copy_user_generic_unrolled function.
Turns out this change causes some loss of performance/throughput on
some use cases and specific CPU/platforms without FSRM and ERMS.
Lately I got two reports of performance/throughput issues after a
RHEL 9 kernel pulled the same upstream series with updates to user
copy functions. Both reports consisted of running specific
networking/TCP related testing using iperf3.
Partial upstream fix
====================
The first report was related to a Linux Bridge testing using VMs on a
specific machine with an AMD CPU (EPYC 7402), and after a brief
investigation it turned out that the later change via:
ca96b162bfd2 ("x86: bring back rep movsq for user access on CPUs without ERMS")
... helped/fixed the performance issue.
However, after the later commit/fix was applied, then I got another
regression reported in a multistream TCP test on a 100Gbit mlx5 nic, also
running on an AMD based platform (AMD EPYC 7302 CPU), again that was using
iperf3 to run the test. That regression was after applying the later
fix/commit, but only this didn't help in telling the whole history.
Testing performed to pinpoint residual regression
=================================================
So I narrowed down the second regression use case, but running it
without traffic through a NIC, on localhost, in trying to narrow down
CPU usage and not being limited by other factor like network bandwidth.
I used another system also with an AMD CPU (AMD EPYC 7742). Basically,
I run iperf3 in server and client mode in the same system, for example:
- Start the server binding it to CPU core/thread 19:
$ taskset -c 19 iperf3 -D -s -B 127.0.0.1 -p 12000
- Start the client always binding/running on CPU core/thread 17, using
perf to get statistics:
$ perf stat -o stat.txt taskset -c 17 iperf3 -c 127.0.0.1 -b 0/1000 -V \
-n 50G --repeating-payload -l 16384 -p 12000 --cport 12001 2>&1 \
> stat-19.txt
For the client, always running/pinned to CPU 17. But for the iperf3 in
server mode, I did test runs using CPUs 19, 21, 23 or not pinned to any
specific CPU. So it basically consisted with four runs of the same
commands, just changing the CPU which the server is pinned, or without
pinning by removing the taskset call before the server command. The CPUs
were chosen based on NUMA node they were on, this is the relevant output
of lscpu on the system:
$ lscpu
...
Model name: AMD EPYC 7742 64-Core Processor
...
Caches (sum of all):
L1d: 2 MiB (64 instances)
L1i: 2 MiB (64 instances)
L2: 32 MiB (64 instances)
L3: 256 MiB (16 instances)
NUMA:
NUMA node(s): 4
NUMA node0 CPU(s): 0,1,8,9,16,17,24,25,32,33,40,41,48,49,56,57,64,65,72,73,80,81,88,89,96,97,104,105,112,113,120,121
NUMA node1 CPU(s): 2,3,10,11,18,19,26,27,34,35,42,43,50,51,58,59,66,67,74,75,82,83,90,91,98,99,106,107,114,115,122,123
NUMA node2 CPU(s): 4,5,12,13,20,21,28,29,36,37,44,45,52,53,60,61,68,69,76,77,84,85,92,93,100,101,108,109,116,117,124,125
NUMA node3 CPU(s): 6,7,14,15,22,23,30,31,38,39,46,47,54,55,62,63,70,71,78,79,86,87,94,95,102,103,110,111,118,119,126,127
...
So for the server run, when picking a CPU, I chose CPUs to be not on the same
node. The reason is with that I was able to get/measure relevant
performance differences when changing the alignment of the writes to the
destination in copy_user_generic.
Testing shows up to +81% performance improvement under iperf3
=============================================================
Here's a summary of the iperf3 runs:
# Vanilla upstream alignment:
CPU RATE SYS TIME sender-receiver
Server bind 19: 13.0Gbits/sec 28.371851000 33.233499566 86.9%-70.8%
Server bind 21: 12.9Gbits/sec 28.283381000 33.586486621 85.8%-69.9%
Server bind 23: 11.1Gbits/sec 33.660190000 39.012243176 87.7%-64.5%
Server bind none: 18.9Gbits/sec 19.215339000 22.875117865 86.0%-80.5%
# With the attached patch (aligning writes in non ERMS/FSRM case):
CPU RATE SYS TIME sender-receiver
Server bind 19: 20.8Gbits/sec 14.897284000 20.811101382 75.7%-89.0%
Server bind 21: 20.4Gbits/sec 15.205055000 21.263165909 75.4%-89.7%
Server bind 23: 20.2Gbits/sec 15.433801000 21.456175000 75.5%-89.8%
Server bind none: 26.1Gbits/sec 12.534022000 16.632447315 79.8%-89.6%
So I consistently got better results when aligning the write. The
results above were run on 6.14.0-rc6/rc7 based kernels. The sys is sys
time and then the total time to run/transfer 50G of data. The last
field is the CPU usage of sender/receiver iperf3 process. It's also
worth to note that each pair of iperf3 runs may get slightly different
results on each run, but I always got consistent higher results with
the write alignment for this specific test of running the processes
on CPUs in different NUMA nodes.
Linus Torvalds helped/provided this version of the patch. Initially I
proposed a version which aligned writes for all cases in
rep_movs_alternative, however it used two extra registers and thus
Linus provided an enhanced version that only aligns the write on the
large_movsq case, which is sufficient since the problem happens only
on those AMD CPUs like ones mentioned above without ERMS/FSRM, and
also doesn't require using extra registers. Also, I validated that
aligning only on large_movsq case is really enough for getting the
performance back.
I also tested this patch on an old Intel based non-ERMS/FRMS system
(with Xeon E5-2667 - Sandy Bridge based) and didn't get any problems:
no performance enhancement but also no regression either, using the
same iperf3 based benchmark. Also newer Intel processors after
Sandy Bridge usually have ERMS and should not be affected by this change.
[ mingo: Updated the changelog. ]
Fixes: ca96b162bfd2 ("x86: bring back rep movsq for user access on CPUs without ERMS")
Fixes: 034ff37d3407 ("x86: rewrite '__copy_user_nocache' function")
Reported-by: Ondrej Lichtner <olichtne@redhat.com>
Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Herton R. Krzesinski <herton@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250320142213.2623518-1-herton@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 65be5c95d08eedda570a6c888a12384c77fe7614 ]
The kernel requires X86_FEATURE_SGX_LC to be able to create SGX enclaves,
not just X86_FEATURE_SGX.
There is quite a number of hardware which has X86_FEATURE_SGX but not
X86_FEATURE_SGX_LC. A kernel running on such hardware does not create
the /dev/sgx_enclave file and does so silently.
Explicitly warn if X86_FEATURE_SGX_LC is not enabled to properly notify
users that the kernel disabled the SGX driver.
The X86_FEATURE_SGX_LC, a.k.a. SGX Launch Control, is a CPU feature
that enables LE (Launch Enclave) hash MSRs to be writable (with
additional opt-in required in the 'feature control' MSR) when running
enclaves, i.e. using a custom root key rather than the Intel proprietary
key for enclave signing.
I've hit this issue myself and have spent some time researching where
my /dev/sgx_enclave file went on SGX-enabled hardware.
Related links:
https://github.com/intel/linux-sgx/issues/837
https://patchwork.kernel.org/project/platform-driver-x86/patch/20180827185507.17087-3-jarkko.sakkinen@linux.intel.com/
[ mingo: Made the error message a bit more verbose, and added other cases
where the kernel fails to create the /dev/sgx_enclave device node. ]
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Kai Huang <kai.huang@intel.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250309172215.21777-2-vdronov@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 09beefefb57bbc3a06d98f319d85db4d719d7bcb ]
The hypercall in hv_mark_gpa_visibility() is invoked with an input
argument and an output argument. The output argument ostensibly returns
the number of pages that were processed. But in fact, the hypercall does
not provide any output, so the output argument is spurious.
The spurious argument is harmless because Hyper-V ignores it, but in the
interest of correctness and to avoid the potential for future problems,
remove it.
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Link: https://lore.kernel.org/r/20250226200612.2062-2-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20250226200612.2062-2-mhklinux@outlook.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 59115e2e25f42924181055ed7cc1d123af7598b7 ]
For Linux, running in Hyper-V VTL (Virtual Trust Level), kernel in VTL2
tries to access VTL0 low memory in probe_roms. This memory is not
described in the e820 map. Initialize probe_roms call to no-ops
during boot for VTL2 kernel to avoid this. The issue got identified
in OpenVMM which detects invalid accesses initiated from kernel running
in VTL2.
Co-developed-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Naman Jain <namjain@linux.microsoft.com>
Tested-by: Roman Kisel <romank@linux.microsoft.com>
Reviewed-by: Roman Kisel <romank@linux.microsoft.com>
Link: https://lore.kernel.org/r/20250116061224.1701-1-namjain@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20250116061224.1701-1-namjain@linux.microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5550187c4c21740942c32a9ae56f9f472a104cb4 ]
In order to work around some issues with disabling SSE on older versions
of gcc (compilation would fail upon seeing a function declaration
containing a float, even if it was never called or defined), the
corresponding CFLAGS and RUSTFLAGS were only set when using clang.
However, this led to two problems:
- Newer gcc versions also wouldn't get the correct flags, despite not
having the bug.
- The RUSTFLAGS for setting the rust target definition were not set,
despite being unrelated. This works by chance for x86_64, as the
built-in default target is close enough, but not for 32-bit x86.
Move the target definition outside the conditional block, and update the
condition to take into account the gcc version.
Fixes: a3046a618a28 ("um: Only disable SSE on clang to work around old GCC bugs")
Signed-off-by: David Gow <davidgow@google.com>
Link: https://patch.msgid.link/20250210105353.2238769-2-davidgow@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
misplaced assignment
[ Upstream commit 2c118f50d7fd4d9aefc4533a26f83338b2906b7a ]
Commit:
2e4be0d011f2 ("x86/show_trace_log_lvl: Ensure stack pointer is aligned, again")
was intended to ensure alignment of the stack pointer; but it also moved
the initialization of the "stack" variable down into the loop header.
This was likely intended as a no-op cleanup, since the commit
message does not mention it; however, this caused a behavioral change
because the value of "regs" is different between the two places.
Originally, get_stack_pointer() used the regs provided by the caller; after
that commit, get_stack_pointer() instead uses the regs at the top of the
stack frame the unwinder is looking at. Often, there are no such regs at
all, and "regs" is NULL, causing get_stack_pointer() to fall back to the
task's current stack pointer, which is not what we want here, but probably
happens to mostly work. Other times, the original regs will point to
another regs frame - in that case, the linear guess unwind logic in
show_trace_log_lvl() will start unwinding too far up the stack, causing the
first frame found by the proper unwinder to never be visited, resulting in
a stack trace consisting purely of guess lines.
Fix it by moving the "stack = " assignment back where it belongs.
Fixes: 2e4be0d011f2 ("x86/show_trace_log_lvl: Ensure stack pointer is aligned, again")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250325-2025-03-unwind-fixes-v1-2-acd774364768@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 57e2428f8df8263275344566e02c277648a4b7f1 ]
PUSH_REGS with save_ret=1 is used by interrupt entry helper functions that
initially start with a UNWIND_HINT_FUNC ORC state.
However, save_ret=1 means that we clobber the helper function's return
address (and then later restore the return address further down on the
stack); after that point, the only thing on the stack we can unwind through
is the IRET frame, so use UNWIND_HINT_IRET_REGS until we have a full
pt_regs frame.
( An alternate approach would be to move the pt_regs->di overwrite down
such that it is the final step of pt_regs setup; but I don't want to
rearrange entry code just to make unwinding a tiny bit more elegant. )
Fixes: 9e809d15d6b6 ("x86/entry: Reduce the code footprint of the 'idtentry' macro")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20250325-2025-03-unwind-fixes-v1-1-acd774364768@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dc84bc2aba85a1508f04a936f9f9a15f64ebfb31 ]
If track_pfn_copy() fails, we already added the dst VMA to the maple
tree. As fork() fails, we'll cleanup the maple tree, and stumble over
the dst VMA for which we neither performed any reservation nor copied
any page tables.
Consequently untrack_pfn() will see VM_PAT and try obtaining the
PAT information from the page table -- which fails because the page
table was not copied.
The easiest fix would be to simply clear the VM_PAT flag of the dst VMA
if track_pfn_copy() fails. However, the whole thing is about "simply"
clearing the VM_PAT flag is shaky as well: if we passed track_pfn_copy()
and performed a reservation, but copying the page tables fails, we'll
simply clear the VM_PAT flag, not properly undoing the reservation ...
which is also wrong.
So let's fix it properly: set the VM_PAT flag only if the reservation
succeeded (leaving it clear initially), and undo the reservation if
anything goes wrong while copying the page tables: clearing the VM_PAT
flag after undoing the reservation.
Note that any copied page table entries will get zapped when the VMA will
get removed later, after copy_page_range() succeeded; as VM_PAT is not set
then, we won't try cleaning VM_PAT up once more and untrack_pfn() will be
happy. Note that leaving these page tables in place without a reservation
is not a problem, as we are aborting fork(); this process will never run.
A reproducer can trigger this usually at the first try:
https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/reproducers/pat_fork.c
WARNING: CPU: 26 PID: 11650 at arch/x86/mm/pat/memtype.c:983 get_pat_info+0xf6/0x110
Modules linked in: ...
CPU: 26 UID: 0 PID: 11650 Comm: repro3 Not tainted 6.12.0-rc5+ #92
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:get_pat_info+0xf6/0x110
...
Call Trace:
<TASK>
...
untrack_pfn+0x52/0x110
unmap_single_vma+0xa6/0xe0
unmap_vmas+0x105/0x1f0
exit_mmap+0xf6/0x460
__mmput+0x4b/0x120
copy_process+0x1bf6/0x2aa0
kernel_clone+0xab/0x440
__do_sys_clone+0x66/0x90
do_syscall_64+0x95/0x180
Likely this case was missed in:
d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
... and instead of undoing the reservation we simply cleared the VM_PAT flag.
Keep the documentation of these functions in include/linux/pgtable.h,
one place is more than sufficient -- we should clean that up for the other
functions like track_pfn_remap/untrack_pfn separately.
Fixes: d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
Fixes: 2ab640379a0a ("x86: PAT: hooks in generic vm code to help archs to track pfnmap regions - v3")
Reported-by: xingwei lee <xrivendell7@gmail.com>
Reported-by: yuxin wang <wang1315768607@163.com>
Reported-by: Marius Fleischer <fleischermarius@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Link: https://lore.kernel.org/r/20250321112323.153741-1-david@redhat.com
Closes: https://lore.kernel.org/lkml/CABOYnLx_dnqzpCW99G81DmOr+2UzdmZMk=T3uxwNxwz+R1RAwg@mail.gmail.com/
Closes: https://lore.kernel.org/lkml/CAJg=8jwijTP5fre8woS4JVJQ8iUA6v+iNcsOgtj9Zfpc3obDOQ@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d55f31e29047f2f987286d55928ae75775111fe7 ]
ia32_emulation_override_cmdline() is an early_param() arg and these
are only needed at boot time. In fact, all other early_param() functions
in arch/x86 seem to have '__init' annotation and
ia32_emulation_override_cmdline() is the only exception.
Fixes: a11e097504ac ("x86: Make IA32_EMULATION boot time configurable")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/all/20241210151650.1746022-1-vkuznets%40redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dda366083e5ff307a4a728757db874bbfe7550be ]
Guest FPUs manage vCPU FPU states. They are allocated via
fpu_alloc_guest_fpstate() and are resized in fpstate_realloc() when XFD
features are enabled.
Since the introduction of guest FPUs, there have been inconsistencies in
the kernel buffer size and xfeatures:
1. fpu_alloc_guest_fpstate() uses fpu_user_cfg since its introduction. See:
69f6ed1d14c6 ("x86/fpu: Provide infrastructure for KVM FPU cleanup")
36487e6228c4 ("x86/fpu: Prepare guest FPU for dynamically enabled FPU features")
2. __fpstate_reset() references fpu_kernel_cfg to set storage attributes.
3. fpu->guest_perm uses fpu_kernel_cfg, affecting fpstate_realloc().
A recent commit in the tip:x86/fpu tree partially addressed the inconsistency
between (1) and (3) by using fpu_kernel_cfg for size calculation in (1),
but left fpu_guest->xfeatures and fpu_guest->perm still referencing
fpu_user_cfg:
https://lore.kernel.org/all/20250218141045.85201-1-stanspas@amazon.de/
1937e18cc3cf ("x86/fpu: Fix guest FPU state buffer allocation size")
The inconsistencies within fpu_alloc_guest_fpstate() and across the
mentioned functions cause confusion.
Fix them by using fpu_kernel_cfg consistently in fpu_alloc_guest_fpstate(),
except for fields related to the UABI buffer. Referencing fpu_kernel_cfg
won't impact functionalities, as:
1. fpu_guest->perm is overwritten shortly in fpu_init_guest_permissions()
with fpstate->guest_perm, which already uses fpu_kernel_cfg.
2. fpu_guest->xfeatures is solely used to check if XFD features are enabled.
Including supervisor xfeatures doesn't affect the check.
Fixes: 36487e6228c4 ("x86/fpu: Prepare guest FPU for dynamically enabled FPU features")
Suggested-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Link: https://lore.kernel.org/r/20250317140613.1761633-1-chao.gao@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8085fcd78c1a3dbdf2278732579009d41ce0bc4e ]
The CONFIG_X86_ESPFIX64 version of exc_double_fault() can return to its
caller, but the !CONFIG_X86_ESPFIX64 version never does. In the latter
case the compiler and/or objtool may consider it to be implicitly
noreturn.
However, due to the currently inflexible way objtool detects noreturns,
a function's noreturn status needs to be consistent across configs.
The current workaround for this issue is to suppress unreachable
warnings for exc_double_fault()'s callers. Unfortunately that can
result in ORC coverage gaps and potentially worse issues like inert
static calls and silently disabled CPU mitigations.
Instead, prevent exc_double_fault() from ever being implicitly marked
noreturn by forcing a return behind a never-taken conditional.
Until a more integrated noreturn detection method exists, this is likely
the least objectionable workaround.
Fixes: 55eeab2a8a11 ("objtool: Ignore exc_double_fault() __noreturn warnings")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Link: https://lore.kernel.org/r/d1f4026f8dc35d0de6cc61f2684e0cb6484009d1.1741975349.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a121798ae669351ec0697c94f71c3a692b2a755b ]
Commit
6eac36bb9eb0 ("x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid")
added logic that causes resctrl to search for the CLOSID with the fewest dirty
cache lines when creating a new control group, if requested by the arch code.
This depends on the values read from the llc_occupancy counters. The logic is
applicable to architectures where the CLOSID effectively forms part of the
monitoring identifier and so do not allow complete freedom to choose an unused
monitoring identifier for a given CLOSID.
This support missed that some platforms may not have these counters. This
causes a NULL pointer dereference when creating a new control group as the
array was not allocated by dom_data_init().
As this feature isn't necessary on platforms that don't have cache occupancy
monitors, add this to the check that occurs when a new control group is
allocated.
Fixes: 6eac36bb9eb0 ("x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Amit Singh Tomar <amitsinght@marvell.com> # arm64
Tested-by: Shanker Donthineni <sdonthineni@nvidia.com> # arm64
Tested-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/20250311183715.16445-2-james.morse@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|