Age | Commit message (Collapse) | Author |
|
commit 17bcd714426386fda741a4bccd96a2870179344b upstream.
Free vCPUs before freeing any VM state, as both SVM and VMX may access
VM state when "freeing" a vCPU that is currently "in" L2, i.e. that needs
to be kicked out of nested guest mode.
Commit 6fcee03df6a1 ("KVM: x86: avoid loading a vCPU after .vm_destroy was
called") partially fixed the issue, but for unknown reasons only moved the
MMU unloading before VM destruction. Complete the change, and free all
vCPU state prior to destroying VM state, as nVMX accesses even more state
than nSVM.
In addition to the AVIC, KVM can hit a use-after-free on MSR filters:
kvm_msr_allowed+0x4c/0xd0
__kvm_set_msr+0x12d/0x1e0
kvm_set_msr+0x19/0x40
load_vmcs12_host_state+0x2d8/0x6e0 [kvm_intel]
nested_vmx_vmexit+0x715/0xbd0 [kvm_intel]
nested_vmx_free_vcpu+0x33/0x50 [kvm_intel]
vmx_free_vcpu+0x54/0xc0 [kvm_intel]
kvm_arch_vcpu_destroy+0x28/0xf0
kvm_vcpu_destroy+0x12/0x50
kvm_arch_destroy_vm+0x12c/0x1c0
kvm_put_kvm+0x263/0x3c0
kvm_vm_release+0x21/0x30
and an upcoming fix to process injectable interrupts on nested VM-Exit
will access the PIC:
BUG: kernel NULL pointer dereference, address: 0000000000000090
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
CPU: 23 UID: 1000 PID: 2658 Comm: kvm-nx-lpage-re
RIP: 0010:kvm_cpu_has_extint+0x2f/0x60 [kvm]
Call Trace:
<TASK>
kvm_cpu_has_injectable_intr+0xe/0x60 [kvm]
nested_vmx_vmexit+0x2d7/0xdf0 [kvm_intel]
nested_vmx_free_vcpu+0x40/0x50 [kvm_intel]
vmx_vcpu_free+0x2d/0x80 [kvm_intel]
kvm_arch_vcpu_destroy+0x2d/0x130 [kvm]
kvm_destroy_vcpus+0x8a/0x100 [kvm]
kvm_arch_destroy_vm+0xa7/0x1d0 [kvm]
kvm_destroy_vm+0x172/0x300 [kvm]
kvm_vcpu_release+0x31/0x50 [kvm]
Inarguably, both nSVM and nVMX need to be fixed, but punt on those
cleanups for the moment. Conceptually, vCPUs should be freed before VM
state. Assets like the I/O APIC and PIC _must_ be allocated before vCPUs
are created, so it stands to reason that they must be freed _after_ vCPUs
are destroyed.
Reported-by: Aaron Lewis <aaronlewis@google.com>
Closes: https://lore.kernel.org/all/20240703175618.2304869-2-aaronlewis@google.com
Cc: Jim Mattson <jmattson@google.com>
Cc: Yan Zhao <yan.y.zhao@intel.com>
Cc: Rick P Edgecombe <rick.p.edgecombe@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250224235542.2562848-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Cheng <chengkev@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9245fd6b8531497d129a7a6e3eef258042862f85 ]
As a result of a recent investigation, it was determined that x86 CPUs
which support 5-level paging, don't always respect CR4.LA57 when doing
canonical checks.
In particular:
1. MSRs which contain a linear address, allow full 57-bitcanonical address
regardless of CR4.LA57 state. For example: MSR_KERNEL_GS_BASE.
2. All hidden segment bases and GDT/IDT bases also behave like MSRs.
This means that full 57-bit canonical address can be loaded to them
regardless of CR4.LA57, both using MSRS (e.g GS_BASE) and instructions
(e.g LGDT).
3. TLB invalidation instructions also allow the user to use full 57-bit
address regardless of the CR4.LA57.
Finally, it must be noted that the CPU doesn't prevent the user from
disabling 5-level paging, even when the full 57-bit canonical address is
present in one of the registers mentioned above (e.g GDT base).
In fact, this can happen without any userspace help, when the CPU enters
SMM mode - some MSRs, for example MSR_KERNEL_GS_BASE are left to contain
a non-canonical address in regard to the new mode.
Since most of the affected MSRs and all segment bases can be read and
written freely by the guest without any KVM intervention, this patch makes
the emulator closely follow hardware behavior, which means that the
emulator doesn't take in the account the guest CPUID support for 5-level
paging, and only takes in the account the host CPU support.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906221824.491834-4-mlevitsk@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush")
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c534b37b7584e2abc5d487b4e017f61a61959ca9 ]
Add emulation flags for MSR accesses and Descriptor Tables loads, and pass
the new flags as appropriate to emul_is_noncanonical_address(). The flags
will be used to perform the correct canonical check, as the type of access
affects whether or not CR4.LA57 is consulted when determining the canonical
bit.
No functional change is intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906221824.491834-3-mlevitsk@redhat.com
[sean: split to separate patch, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush")
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 16ccadefa295af434ca296e566f078223ecd79ca ]
Add emulate_ops.is_canonical_addr() to perform (non-)canonical checks in
the emulator, which will allow extending is_noncanonical_address() to
support different flavors of canonical checks, e.g. for descriptor table
bases vs. MSRs, without needing duplicate logic in the emulator.
No functional change is intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906221824.491834-3-mlevitsk@redhat.com
[sean: separate from additional of flags, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush")
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fa7d0f83c5c4223a01598876352473cb3d3bd4d7 upstream.
Initialize DR7 by writing its architectural reset value to always set
bit 10, which is reserved to '1', when "clearing" DR7 so as not to
trigger unanticipated behavior if said bit is ever unreserved, e.g. as
a feature enabling flag with inverted polarity.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20250620231504.2676902-3-xin%40zytor.com
[ context adjusted: no KVM_DEBUGREG_AUTO_SWITCH flag test" ]
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 159013a7ca18c271ff64192deb62a689b622d860 upstream.
ITS bug in some pre-Alderlake Intel CPUs may allow indirect branches in the
first half of a cache line get predicted to a target of a branch located in
the second half of the cache line.
Set X86_BUG_ITS on affected CPUs. Mitigation to follow in later commits.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f1fb088d9cecde5c3066d8ff8846789667519b7d upstream.
Take irqfds.lock when adding/deleting an IRQ bypass producer to ensure
irqfd->producer isn't modified while kvm_irq_routing_update() is running.
The only lock held when a producer is added/removed is irqbypass's mutex.
Fixes: 872768800652 ("KVM: x86: select IRQ_BYPASS_MANAGER")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250404193923.1413163-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bcda70c56f3e718465cab2aad260cf34183ce1ce upstream.
Explicitly treat type differences as GSI routing changes, as comparing MSI
data between two entries could get a false negative, e.g. if userspace
changed the type but left the type-specific data as-is.
Fixes: 515a0c79e796 ("kvm: irqfd: avoid update unmodified entries of the routing")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250404193923.1413163-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef01cac401f18647d62720cf773d7bb0541827da upstream.
Acquire a lock on kvm->srcu when userspace is getting MP state to handle a
rather extreme edge case where "accepting" APIC events, i.e. processing
pending INIT or SIPI, can trigger accesses to guest memory. If the vCPU
is in L2 with INIT *and* a TRIPLE_FAULT request pending, then getting MP
state will trigger a nested VM-Exit by way of ->check_nested_events(), and
emuating the nested VM-Exit can access guest memory.
The splat was originally hit by syzkaller on a Google-internal kernel, and
reproduced on an upstream kernel by hacking the triple_fault_event_test
selftest to stuff a pending INIT, store an MSR on VM-Exit (to generate a
memory access on VMX), and do vcpu_mp_state_get() to trigger the scenario.
=============================
WARNING: suspicious RCU usage
6.14.0-rc3-b112d356288b-vmx/pi_lockdep_false_pos-lock #3 Not tainted
-----------------------------
include/linux/kvm_host.h:1058 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by triple_fault_ev/1256:
#0: ffff88810df5a330 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x8b/0x9a0 [kvm]
stack backtrace:
CPU: 11 UID: 1000 PID: 1256 Comm: triple_fault_ev Not tainted 6.14.0-rc3-b112d356288b-vmx #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x144/0x190
kvm_vcpu_gfn_to_memslot+0x156/0x180 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
read_and_check_msr_entry+0x2e/0x180 [kvm_intel]
__nested_vmx_vmexit+0x550/0xde0 [kvm_intel]
kvm_check_nested_events+0x1b/0x30 [kvm]
kvm_apic_accept_events+0x33/0x100 [kvm]
kvm_arch_vcpu_ioctl_get_mpstate+0x30/0x1d0 [kvm]
kvm_vcpu_ioctl+0x33e/0x9a0 [kvm]
__x64_sys_ioctl+0x8b/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250401150504.829812-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 74c1807f6c4feddb3c3cb1056c54531d4adbaea6 upstream.
KVM_CAP_SYNC_REGS does not make sense for VMs with protected guest state,
since the register values cannot actually be written. Return 0
when using the VM-level KVM_CHECK_EXTENSION ioctl, and accordingly
return -EINVAL from KVM_RUN if the valid/dirty fields are nonzero.
However, on exit from KVM_RUN userspace could have placed a nonzero
value into kvm_run->kvm_valid_regs, so check guest_state_protected
again and skip store_regs() in that case.
Cc: stable@vger.kernel.org
Fixes: 517987e3fb19 ("KVM: x86: add fields to struct kvm_arch for CoCo features")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250306202923.646075-1-pbonzini@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 189ecdb3e112da703ac0699f4ec76aa78122f911 upstream.
Snapshot the host's DEBUGCTL after disabling IRQs, as perf can toggle
debugctl bits from IRQ context, e.g. when enabling/disabling events via
smp_call_function_single(). Taking the snapshot (long) before IRQs are
disabled could result in KVM effectively clobbering DEBUGCTL due to using
a stale snapshot.
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fb71c795935652fa20eaf9517ca9547f5af99a76 upstream.
Move KVM's snapshot of DEBUGCTL to kvm_vcpu_arch and take the snapshot in
common x86, so that SVM can also use the snapshot.
Opportunistically change the field to a u64. While bits 63:32 are reserved
on AMD, not mentioned at all in Intel's SDM, and managed as an "unsigned
long" by the kernel, DEBUGCTL is an MSR and therefore a 64-bit value.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit adfec1f4591cf8c69664104eaf41e06b2e7b767e ]
Inline kvm_get_apic_mode() in lapic.h to avoid a CALL+RET as well as an
export. The underlying kvm_apic_mode() helper is public information, i.e.
there is no state/information that needs to be hidden from vendor modules.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20241009181742.1128779-5-seanjc@google.com
Link: https://lore.kernel.org/r/20241101183555.1794700-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stable-dep-of: 04bc93cf49d1 ("KVM: nVMX: Defer SVI update to vmcs01 on EOI when L2 is active w/o VID")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d91060e342a66b52d9bd64f0b123b9c306293b76 ]
Access KVM's emulated APIC base MSR value directly instead of bouncing
through a helper, as there is no reason to add a layer of indirection, and
there are other MSRs with a "set" but no "get", e.g. EFER.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20241009181742.1128779-4-seanjc@google.com
Link: https://lore.kernel.org/r/20241101183555.1794700-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stable-dep-of: 04bc93cf49d1 ("KVM: nVMX: Defer SVI update to vmcs01 on EOI when L2 is active w/o VID")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit c2fee09fc167c74a64adb08656cb993ea475197e upstream.
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.
When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit. This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.
For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.
But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.
Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop. If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.
The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup. E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).
L1's view:
==========
<L1 disables DR interception>
CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0
A: L1 Writes DR6
CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1
B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec
D: L1 reads DR6, arch.dr6 = 0
CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0
CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0
L2 reads DR6, L1 disables DR interception
CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0
CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0
L2 detects failure
CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT
L1 reads DR6 (confirms failure)
CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0
L0's view:
==========
L2 reads DR6, arch.dr6 = 0
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
L2 => L1 nested VM-Exit
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_entry: vcpu 23
L1 writes DR7, L0 disables DR interception
CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000007
CPU 23/KVM-5046 [001] d.... 3410.005613: kvm_entry: vcpu 23
L0 writes DR6 = 0 (arch.dr6)
CPU 23/KVM-5046 [001] d.... 3410.005613: <hack>: Set DRs, DR6 = 0xffff0ff0
A: <L1 writes DR6 = 1, no interception, arch.dr6 is still '0'>
B: CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_exit: vcpu 23 reason PREEMPTION_TIMER
CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_entry: vcpu 23
C: L0 writes DR6 = 0 (arch.dr6)
CPU 23/KVM-5046 [001] d.... 3410.005614: <hack>: Set DRs, DR6 = 0xffff0ff0
L1 => L2 nested VM-Enter
CPU 23/KVM-5046 [001] d.... 3410.005616: kvm_exit: vcpu 23 reason VMRESUME
L0 reads DR6, arch.dr6 = 0
Reported-by: John Stultz <jstultz@google.com>
Closes: https://lkml.kernel.org/r/CANDhNCq5_F3HfFYABqFGCA1bPd_%2BxgNj-iDQhH4tDk%2Bwi8iZZg%40mail.gmail.com
Fixes: 375e28ffc0cf ("KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT")
Fixes: d67668e9dd76 ("KVM: x86, SVM: isolate vcpu->arch.dr6 from vmcb->save.dr6")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Tested-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20250125011833.3644371-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 931656b9e2ff7029aee0b36e17780621948a6ac1 upstream.
Some libraries want to ensure they are single threaded before forking,
so making the kernel's kvm huge page recovery process a vhost task of
the user process breaks those. The minijail library used by crosvm is
one such affected application.
Defer the task to after the first VM_RUN call, which occurs after the
parent process has forked all its jailed processes. This needs to happen
only once for the kvm instance, so introduce some general-purpose
infrastructure for that, too. It's similar in concept to pthread_once;
except it is actually usable, because the callback takes a parameter.
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Alyssa Ross <hi@alyssa.is>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Message-ID: <20250123153543.2769928-1-kbusch@meta.com>
[Move call_once API to include/linux. - Paolo]
Cc: stable@vger.kernel.org
Fixes: d96c77bd4eeb ("KVM: x86: switch hugepage recovery thread to vhost_task")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9b42d1e8e4fe9dc631162c04caa69b0d1860b0f0 upstream.
Use is_64_bit_hypercall() instead of is_64_bit_mode() to detect a 64-bit
hypercall when completing said hypercall. For guests with protected state,
e.g. SEV-ES and SEV-SNP, KVM must assume the hypercall was made in 64-bit
mode as the vCPU state needed to detect 64-bit mode is unavailable.
Hacking the sev_smoke_test selftest to generate a KVM_HC_MAP_GPA_RANGE
hypercall via VMGEXIT trips the WARN:
------------[ cut here ]------------
WARNING: CPU: 273 PID: 326626 at arch/x86/kvm/x86.h:180 complete_hypercall_exit+0x44/0xe0 [kvm]
Modules linked in: kvm_amd kvm ... [last unloaded: kvm]
CPU: 273 UID: 0 PID: 326626 Comm: sev_smoke_test Not tainted 6.12.0-smp--392e932fa0f3-feat #470
Hardware name: Google Astoria/astoria, BIOS 0.20240617.0-0 06/17/2024
RIP: 0010:complete_hypercall_exit+0x44/0xe0 [kvm]
Call Trace:
<TASK>
kvm_arch_vcpu_ioctl_run+0x2400/0x2720 [kvm]
kvm_vcpu_ioctl+0x54f/0x630 [kvm]
__se_sys_ioctl+0x6b/0xc0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: b5aead0064f3 ("KVM: x86: Assume a 64-bit hypercall for guests with protected state")
Cc: stable@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Nikunj A Dadhania <nikunj@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20241128004344.4072099-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1201f226c863b7da739f7420ddba818cedf372fc upstream.
Snapshot the output of CPUID.0xD.[1..n] during kvm.ko initiliaization to
avoid the overead of CPUID during runtime. The offset, size, and metadata
for CPUID.0xD.[1..n] sub-leaves does not depend on XCR0 or XSS values, i.e.
is constant for a given CPU, and thus can be cached during module load.
On Intel's Emerald Rapids, CPUID is *wildly* expensive, to the point where
recomputing XSAVE offsets and sizes results in a 4x increase in latency of
nested VM-Enter and VM-Exit (nested transitions can trigger
xstate_required_size() multiple times per transition), relative to using
cached values. The issue is easily visible by running `perf top` while
triggering nested transitions: kvm_update_cpuid_runtime() shows up at a
whopping 50%.
As measured via RDTSC from L2 (using KVM-Unit-Test's CPUID VM-Exit test
and a slightly modified L1 KVM to handle CPUID in the fastpath), a nested
roundtrip to emulate CPUID on Skylake (SKX), Icelake (ICX), and Emerald
Rapids (EMR) takes:
SKX 11650
ICX 22350
EMR 28850
Using cached values, the latency drops to:
SKX 6850
ICX 9000
EMR 7900
The underlying issue is that CPUID itself is slow on ICX, and comically
slow on EMR. The problem is exacerbated on CPUs which support XSAVES
and/or XSAVEC, as KVM invokes xstate_required_size() twice on each
runtime CPUID update, and because there are more supported XSAVE features
(CPUID for supported XSAVE feature sub-leafs is significantly slower).
SKX:
CPUID.0xD.2 = 348 cycles
CPUID.0xD.3 = 400 cycles
CPUID.0xD.4 = 276 cycles
CPUID.0xD.5 = 236 cycles
<other sub-leaves are similar>
EMR:
CPUID.0xD.2 = 1138 cycles
CPUID.0xD.3 = 1362 cycles
CPUID.0xD.4 = 1068 cycles
CPUID.0xD.5 = 910 cycles
CPUID.0xD.6 = 914 cycles
CPUID.0xD.7 = 1350 cycles
CPUID.0xD.8 = 734 cycles
CPUID.0xD.9 = 766 cycles
CPUID.0xD.10 = 732 cycles
CPUID.0xD.11 = 718 cycles
CPUID.0xD.12 = 734 cycles
CPUID.0xD.13 = 1700 cycles
CPUID.0xD.14 = 1126 cycles
CPUID.0xD.15 = 898 cycles
CPUID.0xD.16 = 716 cycles
CPUID.0xD.17 = 748 cycles
CPUID.0xD.18 = 776 cycles
Note, updating runtime CPUID information multiple times per nested
transition is itself a flaw, especially since CPUID is a mandotory
intercept on both Intel and AMD. E.g. KVM doesn't need to ensure emulated
CPUID state is up-to-date while running L2. That flaw will be fixed in a
future patch, as deferring runtime CPUID updates is more subtle than it
appears at first glance, the benefits aren't super critical to have once
the XSAVE issue is resolved, and caching CPUID output is desirable even if
KVM's updates are deferred.
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241211013302.1347853-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
KVM VMX changes for 6.12:
- Set FINAL/PAGE in the page fault error code for EPT Violations if and only
if the GVA is valid. If the GVA is NOT valid, there is no guest-side page
table walk and so stuffing paging related metadata is nonsensical.
- Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
emulating posted interrupt delivery to L2.
- Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.
- Harden eVMCS loading against an impossible NULL pointer deref (really truly
should be impossible).
- Minor SGX fix and a cleanup.
|
|
into HEAD
KVM VMX and x86 PAT MSR macro cleanup for 6.12:
- Add common defines for the x86 architectural memory types, i.e. the types
that are shared across PAT, MTRRs, VMCSes, and EPTPs.
- Clean up the various VMX MSR macros to make the code self-documenting
(inasmuch as possible), and to make it less painful to add new macros.
|
|
KVM x86 MMU changes for 6.12:
- Overhaul the "unprotect and retry" logic to more precisely identify cases
where retrying is actually helpful, and to harden all retry paths against
putting the guest into an infinite retry loop.
- Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in
the shadow MMU.
- Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for
adding MGLRU support in KVM.
- Misc cleanups
|
|
KVM x86 misc changes for 6.12
- Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
functionality that is on the horizon).
- Rework common MSR handling code to suppress errors on userspace accesses to
unsupported-but-advertised MSRs. This will allow removing (almost?) all of
KVM's exemptions for userspace access to MSRs that shouldn't exist based on
the vCPU model (the actual cleanup is non-trivial future work).
- Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
stores the entire 64-bit value a the ICR offset.
- Fix a bug where KVM would fail to exit to userspace if one was triggered by
a fastpath exit handler.
- Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
there's already a pending wake event at the time of the exit.
- Finally fix the RSM vs. nested VM-Enter WARN by forcing the vCPU out of
guest mode prior to signalling SHUTDOWN (architecturally, the SHUTDOWN is
supposed to hit L1, not L2).
|
|
Register KVM's cpuhp and syscore callbacks when enabling virtualization in
hardware, as the sole purpose of said callbacks is to disable and re-enable
virtualization as needed.
The primary motivation for this series is to simplify dealing with enabling
virtualization for Intel's TDX, which needs to enable virtualization
when kvm-intel.ko is loaded, i.e. long before the first VM is created.
That said, this is a nice cleanup on its own. By registering the callbacks
on-demand, the callbacks themselves don't need to check kvm_usage_count,
because their very existence implies a non-zero count.
Patch 1 (re)adds a dedicated lock for kvm_usage_count. This avoids a
lock ordering issue between cpus_read_lock() and kvm_lock. The lock
ordering issue still exist in very rare cases, and will be fixed for
good by switching vm_list to an (S)RCU-protected list.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename reexecute_instruction() to kvm_unprotect_and_retry_on_failure() to
make the intent and purpose of the helper much more obvious.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When retrying the faulting instruction after emulation failure, refresh
the infinite loop protection fields even if no shadow pages were zapped,
i.e. avoid hitting an infinite loop even when retrying the instruction as
a last-ditch effort to avoid terminating the guest.
Link: https://lore.kernel.org/r/20240831001538.336683-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use kvm_mmu_unprotect_gfn_and_retry() in reexecute_instruction() to pick
up protection against infinite loops, e.g. if KVM somehow manages to
encounter an unsupported instruction and unprotecting the gfn doesn't
allow the vCPU to make forward progress. Other than that, the retry-on-
failure logic is a functionally equivalent, open coded version of
kvm_mmu_unprotect_gfn_and_retry().
Note, the emulation failure path still isn't fully protected, as KVM
won't update the retry protection fields if no shadow pages are zapped
(but this change is still a step forward). That flaw will be addressed
in a future patch.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't bother unprotecting the target gfn if EMULTYPE_WRITE_PF_TO_SP is
set, as KVM will simply report the emulation failure to userspace. This
will allow converting reexecute_instruction() to use
kvm_mmu_unprotect_gfn_instead_retry() instead of kvm_mmu_unprotect_page().
Link: https://lore.kernel.org/r/20240831001538.336683-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the manual pfn look when retrying an instruction that KVM failed to
emulation in response to a #PF due to a write-protected gfn. Now that KVM
sets EMULTYPE_ALLOW_RETRY_PF if and only if the page fault hit a write-
protected gfn, i.e. if and only if there's a writable memslot, there's no
need to redo the lookup to avoid retrying an instruction that failed on
emulated MMIO (no slot, or a write to a read-only slot).
I.e. KVM will never attempt to retry an instruction that failed on
emulated MMIO, whereas that was not the case prior to the introduction of
RET_PF_WRITE_PROTECTED.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that retry_instruction() is reasonably tiny, fold it into its sole
caller, x86_emulate_instruction(). In addition to getting rid of the
absurdly confusing retry_instruction() name, handling the retry in
x86_emulate_instruction() pairs it back up with the code that resets
last_retry_{eip,address}.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the sanity checks for EMULTYPE_ALLOW_RETRY_PF to the top of
x86_emulate_instruction(). In addition to deduplicating a small amount
of code, this makes the connection between EMULTYPE_ALLOW_RETRY_PF and
EMULTYPE_PF even more explicit, and will allow dropping retry_instruction()
entirely.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the anti-infinite-loop protection provided by last_retry_{eip,addr}
into kvm_mmu_write_protect_fault() so that it guards unprotect+retry that
never hits the emulator, as well as reexecute_instruction(), which is the
last ditch "might as well try it" logic that kicks in when emulation fails
on an instruction that faulted on a write-protected gfn.
Add a new helper, kvm_mmu_unprotect_gfn_and_retry(), to set the retry
fields and deduplicate other code (with more to come).
Link: https://lore.kernel.org/r/20240831001538.336683-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Store the gpa used to unprotect the faulting gfn for retry as a gpa_t, not
an unsigned long. This fixes a bug where 32-bit KVM would unprotect and
retry the wrong gfn if the gpa had bits 63:32!=0. In practice, this bug
is functionally benign, as unprotecting the wrong gfn is purely a
performance issue (thanks to the anti-infinite-loop logic). And of course,
almost no one runs 32-bit KVM these days.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Read RIP from vCPU state instead of pulling it from the emulation context
when filling last_retry_eip, which is part of the anti-infinite-loop
protection used when unprotecting and retrying instructions that hit a
write-protected gfn.
This will allow reusing the anti-infinite-loop protection in flows that
never make it into the emulator.
No functional change intended, as ctxt->eip is set to kvm_rip_read() in
init_emulate_ctxt(), and EMULTYPE_PF emulation is mutually exclusive with
EMULTYPE_NO_DECODE and EMULTYPE_SKIP, i.e. always goes through
x86_decode_emulated_instruction() and hasn't advanced ctxt->eip (yet).
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Resume the guest and thus skip emulation of a non-PTE-writing instruction
if and only if unprotecting the gfn actually zapped at least one shadow
page. If the gfn is write-protected for some reason other than shadow
paging, attempting to unprotect the gfn will effectively fail, and thus
retrying the instruction is all but guaranteed to be pointless. This bug
has existed for a long time, but was effectively fudged around by the
retry RIP+address anti-loop detection.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Leave nested mode before synthesizing shutdown (a.k.a. TRIPLE_FAULT) if
RSM fails when resuming L2 (a.k.a. guest mode). Architecturally, shutdown
on RSM occurs _before_ the transition back to guest mode on both Intel and
AMD.
On Intel, per the SDM pseudocode, SMRAM state is loaded before critical
VMX state:
restore state normally from SMRAM;
...
CR4.VMXE := value stored internally;
IF internal storage indicates that the logical processor had been in
VMX operation (root or non-root)
THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 32.14.1;
...
restore current VMCS pointer;
FI;
AMD's APM is both less clearcut and more explicit. Because AMD CPUs save
VMCB and guest state in SMRAM itself, given the lack of anything in the
APM to indicate a shutdown in guest mode is possible, a straightforward
reading of the clause on invalid state is that _what_ state is invalid is
irrelevant, i.e. all roads lead to shutdown.
An RSM causes a processor shutdown if an invalid-state condition is
found in the SMRAM state-save area.
This fixes a bug found by syzkaller where synthesizing shutdown for L2
led to a nested VM-Exit (if L1 is intercepting shutdown), which in turn
caused KVM to complain about trying to cancel a nested VM-Enter (see
commit 759cbd59674a ("KVM: x86: nSVM/nVMX: set nested_run_pending on VM
entry which is a result of RSM").
Note, Paolo pointed out that KVM shouldn't set nested_run_pending until
after loading SMRAM state. But as above, that's only half the story, KVM
shouldn't transition to guest mode either. Unfortunately, fixing that
mess requires rewriting the nVMX and nSVM RSM flows to not piggyback
their nested VM-Enter flows, as executing the nested VM-Enter flows after
loading state from SMRAM would clobber much of said state.
For now, add a FIXME to call out that transitioning to guest mode before
loading state from SMRAM is wrong.
Link: https://lore.kernel.org/all/CABgObfYaUHXyRmsmg8UjRomnpQ0Jnaog9-L2gMjsjkqChjDYUQ@mail.gmail.com
Reported-by: syzbot+988d9efcdf137bc05f66@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/0000000000007a9acb06151e1670@google.com
Reported-by: Zheyu Ma <zheyuma97@gmail.com>
Closes: https://lore.kernel.org/all/CAMhUBjmXMYsEoVYw_M8hSZjBMHh24i88QYm-RY6HDta5YZ7Wgw@mail.gmail.com
Analyzed-by: Michal Wilczynski <michal.wilczynski@intel.com>
Cc: Kishen Maloor <kishen.maloor@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906161337.1118412-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
clang warns on this because it has an unannotated fall-through between
cases:
arch/x86/kvm/x86.c:4819:2: error: unannotated fall-through between switch labels [-Werror,-Wimplicit-fallthrough]
and while we could annotate it as a fallthrough, the proper fix is to
just add the break for this case, instead of falling through to the
default case and the break there.
gcc also has that warning, but it looks like gcc only warns for the
cases where they fall through to "real code", rather than to just a
break. Odd.
Fixes: d30d9ee94cc0 ("KVM: x86: Only advertise KVM_CAP_READONLY_MEM when supported by VM")
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Register the "disable virtualization in an emergency" callback just
before KVM enables virtualization in hardware, as there is no functional
need to keep the callbacks registered while KVM happens to be loaded, but
is inactive, i.e. if KVM hasn't enabled virtualization.
Note, unregistering the callback every time the last VM is destroyed could
have measurable latency due to the synchronize_rcu() needed to ensure all
references to the callback are dropped before KVM is unloaded. But the
latency should be a small fraction of the total latency of disabling
virtualization across all CPUs, and userspace can set enable_virt_at_load
to completely eliminate the runtime overhead.
Add a pointer in kvm_x86_ops to allow vendor code to provide its callback.
There is no reason to force vendor code to do the registration, and either
way KVM would need a new kvm_x86_ops hook.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240830043600.127750-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename x86's the per-CPU vendor hooks used to enable virtualization in
hardware to align with the recently renamed arch hooks.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240830043600.127750-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename the per-CPU hooks used to enable virtualization in hardware to
align with the KVM-wide helpers in kvm_main.c, and to better capture that
the callbacks are invoked on every online CPU.
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240830043600.127750-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Until recently, KVM_CAP_READONLY_MEM was unconditionally supported on
x86, but this is no longer the case for SEV-ES and SEV-SNP VMs.
When KVM_CHECK_EXTENSION is invoked on a VM, only advertise
KVM_CAP_READONLY_MEM when it's actually supported.
Fixes: 66155de93bcf ("KVM: x86: Disallow read-only memslots for SEV-ES and SEV-SNP (and TDX)")
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Michael Roth <michael.roth@amd.com>
Signed-off-by: Tom Dohrmann <erbse.13@gmx.de>
Message-ID: <20240902144219.3716974-1-erbse.13@gmx.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a fastpath for HLT VM-Exits by immediately re-entering the guest if
it has a pending wake event. When virtual interrupt delivery is enabled,
i.e. when KVM doesn't need to manually inject interrupts, this allows KVM
to stay in the fastpath run loop when a vIRQ arrives between the guest
doing CLI and STI;HLT. Without AMD's Idle HLT-intercept support, the CPU
generates a HLT VM-Exit even though KVM will immediately resume the guest.
Note, on bare metal, it's relatively uncommon for a modern guest kernel to
actually trigger this scenario, as the window between the guest checking
for a wake event and committing to HLT is quite small. But in a nested
environment, the timings change significantly, e.g. rudimentary testing
showed that ~50% of HLT exits where HLT-polling was successful would be
serviced by this fastpath, i.e. ~50% of the time that a nested vCPU gets
a wake event before KVM schedules out the vCPU, the wake event was pending
even before the VM-Exit.
Link: https://lore.kernel.org/all/20240528041926.3989-3-manali.shukla@amd.com
Link: https://lore.kernel.org/r/20240802195120.325560-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Shuffle code around in x86.c so that the various helpers related to vCPU
blocking/running logic are (a) located near each other and (b) ordered so
that HLT emulation can use kvm_vcpu_has_events() in a future path.
No functional change intended.
Link: https://lore.kernel.org/r/20240802195120.325560-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Exit to userspace if a fastpath handler triggers such an exit, which can
happen when skipping the instruction, e.g. due to userspace
single-stepping the guest via KVM_GUESTDBG_SINGLESTEP or because of an
emulation failure.
Fixes: 404d5d7bff0d ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Link: https://lore.kernel.org/r/20240802195120.325560-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that the WRMSR fastpath for x2APIC_ICR and TSC_DEADLINE are identical,
ignoring the backend MSR handling, consolidate the common bits of skipping
the instruction and setting the return value.
No functional change intended.
Link: https://lore.kernel.org/r/20240802195120.325560-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Re-enter the guest in the fastpath if WRMSR emulation for x2APIC's ICR is
successful, as no additional work is needed, i.e. there is no code unique
for WRMSR exits between the fastpath and the "!= EXIT_FASTPATH_NONE" check
in __vmx_handle_exit().
Link: https://lore.kernel.org/r/20240802195120.325560-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Extend KVM's suppression of userspace MSR access failures to MSRs that KVM
reports as emulated, but are ultimately unsupported, e.g. if the VMX MSRs
are emulated by KVM, but are unsupported given the vCPU model.
Suggested-by: Weijiang Yang <weijiang.yang@intel.com>
Reviewed-by: Weijiang Yang <weijiang.yang@intel.com>
Link: https://lore.kernel.org/r/20240802181935.292540-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Extend KVM's suppression of failures due to a userspace access to an
unsupported, but advertised as a "to save" MSR to all MSRs, not just those
that happen to reach the default case statements in kvm_get_msr_common()
and kvm_set_msr_common(). KVM's soon-to-be-established ABI is that if an
MSR is advertised to userspace, then userspace is allowed to read the MSR,
and write back the value that was read, i.e. why an MSR is unsupported
doesn't change KVM's ABI.
Practically speaking, this is very nearly a nop, as the only other paths
that return KVM_MSR_RET_UNSUPPORTED are {svm,vmx}_get_feature_msr(), and
it's unlikely, though not impossible, that userspace is using KVM_GET_MSRS
on unsupported MSRs.
The primary goal of moving the suppression to common code is to allow
returning KVM_MSR_RET_UNSUPPORTED as appropriate throughout KVM, without
having to manually handle the "is userspace accessing an advertised"
waiver. I.e. this will allow formalizing KVM's ABI without incurring a
high maintenance cost.
Link: https://lore.kernel.org/r/20240802181935.292540-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the definitions of the various MSR arrays above kvm_do_msr_access()
so that kvm_do_msr_access() can query the arrays when handling failures,
e.g. to squash errors if userspace tries to read an MSR that isn't fully
supported, but that KVM advertised as being an MSR-to-save.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a common helper, kvm_do_msr_access(), to invoke the "leaf" APIs that
are type and access specific, and more importantly to handle errors that
are returned from the leaf APIs. I.e. turn kvm_msr_ignored_check() from a
a helper that is called on an error, into a trampoline that detects errors
*and* applies relevant side effects, e.g. logging unimplemented accesses.
Because the leaf APIs are used for guest accesses, userspace accesses, and
KVM accesses, and because KVM supports restricting access to MSRs from
userspace via filters, the error handling is subtly non-trivial. E.g. KVM
has had at least one bug escape due to making each "outer" function handle
errors. See commit 3376ca3f1a20 ("KVM: x86: Fix KVM_GET_MSRS stack info
leak").
Link: https://lore.kernel.org/r/20240802181935.292540-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor kvm_get_feature_msr() to take the components of kvm_msr_entry as
separate parameters, along with a vCPU pointer, i.e. to give it the same
prototype as kvm_{g,s}et_msr_ignored_check(). This will allow using a
common inner helper for handling accesses to "regular" and feature MSRs.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|