summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/vmx
AgeCommit message (Collapse)Author
3 daysKVM: x86: model canonical checks more preciselyMaxim Levitsky
[ Upstream commit 9245fd6b8531497d129a7a6e3eef258042862f85 ] As a result of a recent investigation, it was determined that x86 CPUs which support 5-level paging, don't always respect CR4.LA57 when doing canonical checks. In particular: 1. MSRs which contain a linear address, allow full 57-bitcanonical address regardless of CR4.LA57 state. For example: MSR_KERNEL_GS_BASE. 2. All hidden segment bases and GDT/IDT bases also behave like MSRs. This means that full 57-bit canonical address can be loaded to them regardless of CR4.LA57, both using MSRS (e.g GS_BASE) and instructions (e.g LGDT). 3. TLB invalidation instructions also allow the user to use full 57-bit address regardless of the CR4.LA57. Finally, it must be noted that the CPU doesn't prevent the user from disabling 5-level paging, even when the full 57-bit canonical address is present in one of the registers mentioned above (e.g GDT base). In fact, this can happen without any userspace help, when the CPU enters SMM mode - some MSRs, for example MSR_KERNEL_GS_BASE are left to contain a non-canonical address in regard to the new mode. Since most of the affected MSRs and all segment bases can be read and written freely by the guest without any KVM intervention, this patch makes the emulator closely follow hardware behavior, which means that the emulator doesn't take in the account the guest CPUID support for 5-level paging, and only takes in the account the host CPU support. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-4-mlevitsk@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
3 daysKVM: x86: drop x86.h include from cpuid.hMaxim Levitsky
[ Upstream commit e52ad1ddd0a3b07777141ec9406d5dc2c9a0de17 ] Drop x86.h include from cpuid.h to allow the x86.h to include the cpuid.h instead. Also fix various places where x86.h was implicitly included via cpuid.h Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-2-mlevitsk@redhat.com [sean: fixup a missed include in mtrr.c] Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-10x86/bugs: Rename MDS machinery to something more genericBorislav Petkov (AMD)
Commit f9af88a3d384c8b55beb5dc5483e5da0135fadbd upstream. It will be used by other x86 mitigations. No functional changes. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-06-27KVM: VMX: Flush shadow VMCS on emergency rebootChao Gao
commit a0ee1d5faff135e28810f29e0f06328c66f89852 upstream. Ensure the shadow VMCS cache is evicted during an emergency reboot to prevent potential memory corruption if the cache is evicted after reboot. This issue was identified through code inspection, as __loaded_vmcs_clear() flushes both the normal VMCS and the shadow VMCS. Avoid checking the "launched" state during an emergency reboot, unlike the behavior in __loaded_vmcs_clear(). This is important because reboot NMIs can interfere with operations like copy_shadow_to_vmcs12(), where shadow VMCSes are loaded directly using VMPTRLD. In such cases, if NMIs occur right after the VMCS load, the shadow VMCSes will be active but the "launched" state may not be set. Fixes: 16f5b9034b69 ("KVM: nVMX: Copy processor-specific shadow-vmcs to VMCS12") Cc: stable@vger.kernel.org Signed-off-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20250324140849.2099723-1-chao.gao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-02KVM: x86: Reset IRTE to host control if *new* route isn't postableSean Christopherson
commit 9bcac97dc42d2f4da8229d18feb0fe2b1ce523a2 upstream. Restore an IRTE back to host control (remapped or posted MSI mode) if the *new* GSI route prevents posting the IRQ directly to a vCPU, regardless of the GSI routing type. Updating the IRTE if and only if the new GSI is an MSI results in KVM leaving an IRTE posting to a vCPU. The dangling IRTE can result in interrupts being incorrectly delivered to the guest, and in the worst case scenario can result in use-after-free, e.g. if the VM is torn down, but the underlying host IRQ isn't freed. Fixes: efc644048ecd ("KVM: x86: Update IRTE for posted-interrupts") Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250404193923.1413163-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: x86: Snapshot the host's DEBUGCTL in common x86Sean Christopherson
commit fb71c795935652fa20eaf9517ca9547f5af99a76 upstream. Move KVM's snapshot of DEBUGCTL to kvm_vcpu_arch and take the snapshot in common x86, so that SVM can also use the snapshot. Opportunistically change the field to a u64. While bits 63:32 are reserved on AMD, not mentioned at all in Intel's SDM, and managed as an "unsigned long" by the kernel, DEBUGCTL is an MSR and therefore a 64-bit value. Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-02-27KVM: nVMX: Defer SVI update to vmcs01 on EOI when L2 is active w/o VIDChao Gao
[ Upstream commit 04bc93cf49d16d01753b95ddb5d4f230b809a991 ] If KVM emulates an EOI for L1's virtual APIC while L2 is active, defer updating GUEST_INTERUPT_STATUS.SVI, i.e. the VMCS's cache of the highest in-service IRQ, until L1 is active, as vmcs01, not vmcs02, needs to track vISR. The missed SVI update for vmcs01 can result in L1 interrupts being incorrectly blocked, e.g. if there is a pending interrupt with lower priority than the interrupt that was EOI'd. This bug only affects use cases where L1's vAPIC is effectively passed through to L2, e.g. in a pKVM scenario where L2 is L1's depriveleged host, as KVM will only emulate an EOI for L1's vAPIC if Virtual Interrupt Delivery (VID) is disabled in vmc12, and L1 isn't intercepting L2 accesses to its (virtual) APIC page (or if x2APIC is enabled, the EOI MSR). WARN() if KVM updates L1's ISR while L2 is active with VID enabled, as an EOI from L2 is supposed to affect L2's vAPIC, but still defer the update, to try to keep L1 alive. Specifically, KVM forwards all APICv-related VM-Exits to L1 via nested_vmx_l1_wants_exit(): case EXIT_REASON_APIC_ACCESS: case EXIT_REASON_APIC_WRITE: case EXIT_REASON_EOI_INDUCED: /* * The controls for "virtualize APIC accesses," "APIC- * register virtualization," and "virtual-interrupt * delivery" only come from vmcs12. */ return true; Fixes: c7c9c56ca26f ("x86, apicv: add virtual interrupt delivery support") Cc: stable@vger.kernel.org Link: https://lore.kernel.org/kvm/20230312180048.1778187-1-jason.cj.chen@intel.com Reported-by: Markku Ahvenjärvi <mankku@gmail.com> Closes: https://lore.kernel.org/all/20240920080012.74405-1-mankku@gmail.com Cc: Janne Karhunen <janne.karhunen@gmail.com> Signed-off-by: Chao Gao <chao.gao@intel.com> [sean: drop request, handle in VMX, write changelog] Tested-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20241128000010.4051275-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-02-21KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loopSean Christopherson
commit c2fee09fc167c74a64adb08656cb993ea475197e upstream. Move the conditional loading of hardware DR6 with the guest's DR6 value out of the core .vcpu_run() loop to fix a bug where KVM can load hardware with a stale vcpu->arch.dr6. When the guest accesses a DR and host userspace isn't debugging the guest, KVM disables DR interception and loads the guest's values into hardware on VM-Enter and saves them on VM-Exit. This allows the guest to access DRs at will, e.g. so that a sequence of DR accesses to configure a breakpoint only generates one VM-Exit. For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest) and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop. But for DR6, the guest's value doesn't need to be loaded into hardware for KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas VMX requires software to manually load the guest value, and so loading the guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done _inside_ the core run loop. Unfortunately, saving the guest values on VM-Exit is initiated by common x86, again outside of the core run loop. If the guest modifies DR6 (in hardware, when DR interception is disabled), and then the next VM-Exit is a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and clobber the guest's actual value. The bug shows up primarily with nested VMX because KVM handles the VMX preemption timer in the fastpath, and the window between hardware DR6 being modified (in guest context) and DR6 being read by guest software is orders of magnitude larger in a nested setup. E.g. in non-nested, the VMX preemption timer would need to fire precisely between #DB injection and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the window where hardware DR6 is "dirty" extends all the way from L1 writing DR6 to VMRESUME (in L1). L1's view: ========== <L1 disables DR interception> CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0 A: L1 Writes DR6 CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1 B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec D: L1 reads DR6, arch.dr6 = 0 CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0 CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0 L2 reads DR6, L1 disables DR interception CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216 CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0 CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0 L2 detects failure CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT L1 reads DR6 (confirms failure) CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0 L0's view: ========== L2 reads DR6, arch.dr6 = 0 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 L2 => L1 nested VM-Exit CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason VMREAD CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_entry: vcpu 23 L1 writes DR7, L0 disables DR interception CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000007 CPU 23/KVM-5046 [001] d.... 3410.005613: kvm_entry: vcpu 23 L0 writes DR6 = 0 (arch.dr6) CPU 23/KVM-5046 [001] d.... 3410.005613: <hack>: Set DRs, DR6 = 0xffff0ff0 A: <L1 writes DR6 = 1, no interception, arch.dr6 is still '0'> B: CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_exit: vcpu 23 reason PREEMPTION_TIMER CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_entry: vcpu 23 C: L0 writes DR6 = 0 (arch.dr6) CPU 23/KVM-5046 [001] d.... 3410.005614: <hack>: Set DRs, DR6 = 0xffff0ff0 L1 => L2 nested VM-Enter CPU 23/KVM-5046 [001] d.... 3410.005616: kvm_exit: vcpu 23 reason VMRESUME L0 reads DR6, arch.dr6 = 0 Reported-by: John Stultz <jstultz@google.com> Closes: https://lkml.kernel.org/r/CANDhNCq5_F3HfFYABqFGCA1bPd_%2BxgNj-iDQhH4tDk%2Bwi8iZZg%40mail.gmail.com Fixes: 375e28ffc0cf ("KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT") Fixes: d67668e9dd76 ("KVM: x86, SVM: isolate vcpu->arch.dr6 from vmcb->save.dr6") Cc: stable@vger.kernel.org Cc: Jim Mattson <jmattson@google.com> Tested-by: John Stultz <jstultz@google.com> Link: https://lore.kernel.org/r/20250125011833.3644371-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-02-08KVM: x86: Plumb in the vCPU to kvm_x86_ops.hwapic_isr_update()Sean Christopherson
commit 76bce9f10162cd4b36ac0b7889649b22baf70ebd upstream. Pass the target vCPU to the hwapic_isr_update() vendor hook so that VMX can defer the update until after nested VM-Exit if an EOI for L1's vAPIC occurs while L2 is active. Note, commit d39850f57d21 ("KVM: x86: Drop @vcpu parameter from kvm_x86_ops.hwapic_isr_update()") removed the parameter with the justification that doing so "allows for a decent amount of (future) cleanup in the APIC code", but it's not at all clear what cleanup was intended, or if it was ever realized. No functional change intended. Cc: stable@vger.kernel.org Reviewed-by: Chao Gao <chao.gao@intel.com> Tested-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20241128000010.4051275-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-12-05Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of ↵Sean Christopherson
setup_vmcs_config()" commit 85434c3c73fcad58870016ddfe5eaa5036672675 upstream. Revert back to clearing VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL in KVM's golden VMCS config, as applying the workaround during vCPU creation is pointless and broken. KVM *unconditionally* clears the controls in the values returned by vmx_vmentry_ctrl() and vmx_vmexit_ctrl(), as KVM loads PERF_GLOBAL_CTRL if and only if its necessary to do so. E.g. if KVM wants to run the guest with the same PERF_GLOBAL_CTRL as the host, then there's no need to re-load the MSR on entry and exit. Even worse, the buggy commit failed to apply the erratum where it's actually needed, add_atomic_switch_msr(). As a result, KVM completely ignores the erratum for all intents and purposes, i.e. uses the flawed VMCS controls to load PERF_GLOBAL_CTRL. To top things off, the patch was intended to be dropped, as the premise of an L1 VMM being able to pivot on FMS is flawed, and KVM can (and now does) fully emulate the controls in software. Simply revert the commit, as all upstream supported kernels that have the buggy commit should also have commit f4c93d1a0e71 ("KVM: nVMX: Always emulate PERF_GLOBAL_CTRL VM-Entry/VM-Exit controls"), i.e. the (likely theoretical) live migration concern is a complete non-issue. Opportunistically drop the manual "kvm: " scope from the warning about the erratum, as KVM now uses pr_fmt() to provide the correct scope (v6.1 kernels and earlier don't, but the erratum only applies to CPUs that are 15+ years old; it's not worth a separate patch). This reverts commit 9d78d6fb186bc4aff41b5d6c4726b76649d3cb53. Link: https://lore.kernel.org/all/YtnZmCutdd5tpUmz@google.com Fixes: 9d78d6fb186b ("KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()") Cc: stable@vger.kernel.org Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-ID: <20241119011433.1797921-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-08KVM: VMX: Bury Intel PT virtualization (guest/host mode) behind CONFIG_BROKENSean Christopherson
Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are myriad bugs in the implementation, some of which are fatal to the guest, and others which put the stability and health of the host at risk. For guest fatalities, the most glaring issue is that KVM fails to ensure tracing is disabled, and *stays* disabled prior to VM-Enter, which is necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing is enabled (enforced via a VMX consistency check). Per the SDM: If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load IA32_RTIT_CTL" VM-entry control must be 0. On the host side, KVM doesn't validate the guest CPUID configuration provided by userspace, and even worse, uses the guest configuration to decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring guest CPUID to enumerate more address ranges than are supported in hardware will result in KVM trying to passthrough, save, and load non-existent MSRs, which generates a variety of WARNs, ToPA ERRORs in the host, a potential deadlock, etc. Fixes: f99e3daf94ff ("KVM: x86: Add Intel PT virtualization work mode") Cc: stable@vger.kernel.org Cc: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Tested-by: Adrian Hunter <adrian.hunter@intel.com> Message-ID: <20241101185031.1799556-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-11-04KVM: nVMX: Treat vpid01 as current if L2 is active, but with VPID disabledSean Christopherson
When getting the current VPID, e.g. to emulate a guest TLB flush, return vpid01 if L2 is running but with VPID disabled, i.e. if VPID is disabled in vmcs12. Architecturally, if VPID is disabled, then the guest and host effectively share VPID=0. KVM emulates this behavior by using vpid01 when running an L2 with VPID disabled (see prepare_vmcs02_early_rare()), and so KVM must also treat vpid01 as the current VPID while L2 is active. Unconditionally treating vpid02 as the current VPID when L2 is active causes KVM to flush TLB entries for vpid02 instead of vpid01, which results in TLB entries from L1 being incorrectly preserved across nested VM-Enter to L2 (L2=>L1 isn't problematic, because the TLB flush after nested VM-Exit flushes vpid01). The bug manifests as failures in the vmx_apicv_test KVM-Unit-Test, as KVM incorrectly retains TLB entries for the APIC-access page across a nested VM-Enter. Opportunisticaly add comments at various touchpoints to explain the architectural requirements, and also why KVM uses vpid01 instead of vpid02. All credit goes to Chao, who root caused the issue and identified the fix. Link: https://lore.kernel.org/all/ZwzczkIlYGX+QXJz@intel.com Fixes: 2b4a5a5d5688 ("KVM: nVMX: Flush current VPID (L1 vs. L2) for KVM_REQ_TLB_FLUSH_GUEST") Cc: stable@vger.kernel.org Cc: Like Xu <like.xu.linux@gmail.com> Debugged-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Tested-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20241031202011.1580522-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-20KVM: VMX: reset the segment cache after segment init in vmx_vcpu_reset()Maxim Levitsky
Reset the segment cache after segment initialization in vmx_vcpu_reset() to harden KVM against caching stale/uninitialized data. Without the recent fix to bypass the cache in kvm_arch_vcpu_put(), the following scenario is possible: - vCPU is just created, and the vCPU thread is preempted before SS.AR_BYTES is written in vmx_vcpu_reset(). - When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() => vmx_get_cpl() reads and caches '0' for SS.AR_BYTES. - vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't invoke vmx_segment_cache_clear() to invalidate the cache. As a result, KVM retains a stale value in the cache, which can be read, e.g. via KVM_GET_SREGS. Usually this is not a problem because the VMX segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM selftests) reads and writes system registers just after the vCPU was created, _without_ modifying SS.AR_BYTES, userspace will write back the stale '0' value and ultimately will trigger a VM-Entry failure due to incorrect SS segment type. Invalidating the cache after writing the VMCS doesn't address the general issue of cache accesses from IRQ context being unsafe, but it does prevent KVM from clobbering the VMCS, i.e. mitigates the harm done _if_ KVM has a bug that results in an unsafe cache access. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Fixes: 2fb92db1ec08 ("KVM: VMX: Cache vmcs segment fields") [sean: rework changelog to account for previous patch] Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20241009175002.1118178-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-28Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull x86 kvm updates from Paolo Bonzini: "x86: - KVM currently invalidates the entirety of the page tables, not just those for the memslot being touched, when a memslot is moved or deleted. This does not traditionally have particularly noticeable overhead, but Intel's TDX will require the guest to re-accept private pages if they are dropped from the secure EPT, which is a non starter. Actually, the only reason why this is not already being done is a bug which was never fully investigated and caused VM instability with assigned GeForce GPUs, so allow userspace to opt into the new behavior. - Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10 functionality that is on the horizon) - Rework common MSR handling code to suppress errors on userspace accesses to unsupported-but-advertised MSRs This will allow removing (almost?) all of KVM's exemptions for userspace access to MSRs that shouldn't exist based on the vCPU model (the actual cleanup is non-trivial future work) - Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the 64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv) stores the entire 64-bit value at the ICR offset - Fix a bug where KVM would fail to exit to userspace if one was triggered by a fastpath exit handler - Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when there's already a pending wake event at the time of the exit - Fix a WARN caused by RSM entering a nested guest from SMM with invalid guest state, by forcing the vCPU out of guest mode prior to signalling SHUTDOWN (the SHUTDOWN hits the VM altogether, not the nested guest) - Overhaul the "unprotect and retry" logic to more precisely identify cases where retrying is actually helpful, and to harden all retry paths against putting the guest into an infinite retry loop - Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in the shadow MMU - Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for adding multi generation LRU support in KVM - Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled, i.e. when the CPU has already flushed the RSB - Trace the per-CPU host save area as a VMCB pointer to improve readability and cleanup the retrieval of the SEV-ES host save area - Remove unnecessary accounting of temporary nested VMCB related allocations - Set FINAL/PAGE in the page fault error code for EPT violations if and only if the GVA is valid. If the GVA is NOT valid, there is no guest-side page table walk and so stuffing paging related metadata is nonsensical - Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of emulating posted interrupt delivery to L2 - Add a lockdep assertion to detect unsafe accesses of vmcs12 structures - Harden eVMCS loading against an impossible NULL pointer deref (really truly should be impossible) - Minor SGX fix and a cleanup - Misc cleanups Generic: - Register KVM's cpuhp and syscore callbacks when enabling virtualization in hardware, as the sole purpose of said callbacks is to disable and re-enable virtualization as needed - Enable virtualization when KVM is loaded, not right before the first VM is created Together with the previous change, this simplifies a lot the logic of the callbacks, because their very existence implies virtualization is enabled - Fix a bug that results in KVM prematurely exiting to userspace for coalesced MMIO/PIO in many cases, clean up the related code, and add a testcase - Fix a bug in kvm_clear_guest() where it would trigger a buffer overflow _if_ the gpa+len crosses a page boundary, which thankfully is guaranteed to not happen in the current code base. Add WARNs in more helpers that read/write guest memory to detect similar bugs Selftests: - Fix a goof that caused some Hyper-V tests to be skipped when run on bare metal, i.e. NOT in a VM - Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES guest - Explicitly include one-off assets in .gitignore. Past Sean was completely wrong about not being able to detect missing .gitignore entries - Verify userspace single-stepping works when KVM happens to handle a VM-Exit in its fastpath - Misc cleanups" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits) Documentation: KVM: fix warning in "make htmldocs" s390: Enable KVM_S390_UCONTROL config in debug_defconfig selftests: kvm: s390: Add VM run test case KVM: SVM: let alternatives handle the cases when RSB filling is required KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is valid KVM: x86/mmu: Use KVM_PAGES_PER_HPAGE() instead of an open coded equivalent KVM: x86/mmu: Add KVM_RMAP_MANY to replace open coded '1' and '1ul' literals KVM: x86/mmu: Fold mmu_spte_age() into kvm_rmap_age_gfn_range() KVM: x86/mmu: Morph kvm_handle_gfn_range() into an aging specific helper KVM: x86/mmu: Honor NEED_RESCHED when zapping rmaps and blocking is allowed KVM: x86/mmu: Add a helper to walk and zap rmaps for a memslot KVM: x86/mmu: Plumb a @can_yield parameter into __walk_slot_rmaps() KVM: x86/mmu: Move walk_slot_rmaps() up near for_each_slot_rmap_range() KVM: x86/mmu: WARN on MMIO cache hit when emulating write-protected gfn KVM: x86/mmu: Detect if unprotect will do anything based on invalid_list KVM: x86/mmu: Subsume kvm_mmu_unprotect_page() into the and_retry() version KVM: x86: Rename reexecute_instruction()=>kvm_unprotect_and_retry_on_failure() KVM: x86: Update retry protection fields when forcing retry on emulation failure KVM: x86: Apply retry protection to "unprotect on failure" path KVM: x86: Check EMULTYPE_WRITE_PF_TO_SP before unprotecting gfn ...
2024-09-17Merge tag 'kvm-x86-vmx-6.12' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM VMX changes for 6.12: - Set FINAL/PAGE in the page fault error code for EPT Violations if and only if the GVA is valid. If the GVA is NOT valid, there is no guest-side page table walk and so stuffing paging related metadata is nonsensical. - Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of emulating posted interrupt delivery to L2. - Add a lockdep assertion to detect unsafe accesses of vmcs12 structures. - Harden eVMCS loading against an impossible NULL pointer deref (really truly should be impossible). - Minor SGX fix and a cleanup.
2024-09-17Merge tag 'kvm-x86-pat_vmx_msrs-6.12' of https://github.com/kvm-x86/linux ↵Paolo Bonzini
into HEAD KVM VMX and x86 PAT MSR macro cleanup for 6.12: - Add common defines for the x86 architectural memory types, i.e. the types that are shared across PAT, MTRRs, VMCSes, and EPTPs. - Clean up the various VMX MSR macros to make the code self-documenting (inasmuch as possible), and to make it less painful to add new macros.
2024-09-17Merge tag 'kvm-x86-misc-6.12' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.12 - Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10 functionality that is on the horizon). - Rework common MSR handling code to suppress errors on userspace accesses to unsupported-but-advertised MSRs. This will allow removing (almost?) all of KVM's exemptions for userspace access to MSRs that shouldn't exist based on the vCPU model (the actual cleanup is non-trivial future work). - Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the 64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv) stores the entire 64-bit value a the ICR offset. - Fix a bug where KVM would fail to exit to userspace if one was triggered by a fastpath exit handler. - Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when there's already a pending wake event at the time of the exit. - Finally fix the RSM vs. nested VM-Enter WARN by forcing the vCPU out of guest mode prior to signalling SHUTDOWN (architecturally, the SHUTDOWN is supposed to hit L1, not L2).
2024-09-15Revert "KVM: VMX: Always honor guest PAT on CPUs that support self-snoop"Paolo Bonzini
This reverts commit 377b2f359d1f71c75f8cc352b5c81f2210312d83. This caused a regression with the bochsdrm driver, which used ioremap() instead of ioremap_wc() to map the video RAM. After the commit, the WB memory type is used without the IGNORE_PAT, resulting in the slower UC memory type. In fact, UC is slow enough to basically cause guests to not boot... but only on new processors such as Sapphire Rapids and Cascade Lake. Coffee Lake for example works properly, though that might also be an effect of being on a larger, more NUMA system. The driver has been fixed but that does not help older guests. Until we figure out whether Cascade Lake and newer processors are working as intended, revert the commit. Long term we might add a quirk, but the details depend on whether the processors are working as intended: for example if they are, the quirk might reference bochs-compatible devices, e.g. in the name and documentation, so that userspace can disable the quirk by default and only leave it enabled if such a device is being exposed to the guest. If instead this is actually a bug in CLX+, then the actions we need to take are different and depend on the actual cause of the bug. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-09KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is validSean Christopherson
Set PFERR_GUEST_{FINAL,PAGE}_MASK based on EPT_VIOLATION_GVA_TRANSLATED if and only if EPT_VIOLATION_GVA_IS_VALID is also set in exit qualification. Per the SDM, bit 8 (EPT_VIOLATION_GVA_TRANSLATED) is valid if and only if bit 7 (EPT_VIOLATION_GVA_IS_VALID) is set, and is '0' if bit 7 is '0'. Bit 7 (a.k.a. EPT_VIOLATION_GVA_IS_VALID) Set if the guest linear-address field is valid. The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the guest PDPTEs as part of the execution of the MOV CR instruction and those due to trace-address pre-translation Bit 8 (a.k.a. EPT_VIOLATION_GVA_TRANSLATED) If bit 7 is 1: • Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear address. • Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the update of an accessed or dirty bit. Reserved if bit 7 is 0 (cleared to 0). Failure to guard the logic on GVA_IS_VALID results in KVM marking the page fault as PFERR_GUEST_PAGE_MASK when there is no known GVA, which can put the vCPU into an infinite loop due to kvm_mmu_page_fault() getting false positive on its PFERR_NESTED_GUEST_PAGE logic (though only because that logic is also buggy/flawed). In practice, this is largely a non-issue because so GVA_IS_VALID is almost always set. However, when TDX comes along, GVA_IS_VALID will *never* be set, as the TDX Module deliberately clears bits 12:7 in exit qualification, e.g. so that the faulting virtual address and other metadata that aren't practically useful for the hypervisor aren't leaked to the untrusted host. When exit is due to EPT violation, bits 12-7 of the exit qualification are cleared to 0. Fixes: eebed2438923 ("kvm: nVMX: Add support for fast unprotection of nested guest page tables") Reviewed-by: Yuan Yao <yuan.yao@intel.com> Link: https://lore.kernel.org/r/20240831001538.336683-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09KVM: nVMX: Assert that vcpu->mutex is held when accessing secondary VMCSesSean Christopherson
Add lockdep assertions in get_vmcs12() and get_shadow_vmcs12() to verify the vCPU's mutex is held, as the returned VMCS objects are dynamically allocated/freed when nested VMX is turned on/off, i.e. accessing vmcs12 structures without holding vcpu->mutex is susceptible to use-after-free. Waive the assertion if the VM is being destroyed, as KVM currently forces a nested VM-Exit when freeing the vCPU. If/when that wart is fixed, the assertion can/should be converted to an unqualified lockdep assertion. See also https://lore.kernel.org/all/Zsd0TqCeY3B5Sb5b@google.com. Link: https://lore.kernel.org/r/20240906043413.1049633-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09KVM: nVMX: Explicitly invalidate posted_intr_nv if PI is disabled at VM-EnterSean Christopherson
Explicitly invalidate posted_intr_nv when emulating nested VM-Enter and posted interrupts are disabled to make it clear that posted_intr_nv is valid if and only if nested posted interrupts are enabled, and as a cheap way to harden against KVM bugs. KVM initializes posted_intr_nv to -1 at vCPU creation and resets it to -1 when unloading vmcs12 and/or leaving nested mode, i.e. this is not a bug fix (or at least, it's not intended to be a bug fix). Note, tracking nested.posted_intr_nv as a u16 subtly adds a measure of safety, as it prevents unintentionally matching KVM's informal "no IRQ" vector of -1, stored as a signed int. Because a u16 can be always be represented as a signed int, the effective "invalid" value of posted_intr_nv, 65535, will be preserved as-is when comparing against an int, i.e. will be zero-extended, not sign-extended, and thus won't get a false positive if KVM is buggy and compares posted_intr_nv against -1. Opportunistically add a comment in vmx_deliver_nested_posted_interrupt() to call out that it must check vmx->nested.posted_intr_nv, not the vector in vmcs12, which is presumably the _entire_ reason nested.posted_intr_nv exists. E.g. vmcs12 is a KVM-controlled snapshot, so there are no TOCTOU races to worry about, the only potential badness is if the vCPU leaves nested and frees vmcs12 between the sender checking is_guest_mode() and dereferencing the vmcs12 pointer. Link: https://lore.kernel.org/r/20240906043413.1049633-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09KVM: nVMX: Detect nested posted interrupt NV at nested VM-Exit injectionSean Christopherson
When synthensizing a nested VM-Exit due to an external interrupt, pend a nested posted interrupt if the external interrupt vector matches L2's PI notification vector, i.e. if the interrupt is a PI notification for L2. This fixes a bug where KVM will incorrectly inject VM-Exit instead of processing nested posted interrupt when IPI virtualization is enabled. Per the SDM, detection of the notification vector doesn't occur until the interrupt is acknowledge and deliver to the CPU core. If the external-interrupt exiting VM-execution control is 1, any unmasked external interrupt causes a VM exit (see Section 26.2). If the "process posted interrupts" VM-execution control is also 1, this behavior is changed and the processor handles an external interrupt as follows: 1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, called here the physical vector. 2. If the physical vector equals the posted-interrupt notification vector, the logical processor continues to the next step. Otherwise, a VM exit occurs as it would normally due to an external interrupt; the vector is saved in the VM-exit interruption-information field. For the most part, KVM has avoided problems because a PI NV for L2 that arrives will L2 is active will be processed by hardware, and KVM checks for a pending notification vector during nested VM-Enter. Thus, to hit the bug, the PI NV interrupt needs to sneak its way into L1's vIRR while L2 is active. Without IPI virtualization, the scenario is practically impossible to hit, modulo L1 doing weird things (see below), as the ordering between vmx_deliver_posted_interrupt() and nested VM-Enter effectively guarantees that either the sender will see the vCPU as being in_guest_mode(), or the receiver will see the interrupt in its vIRR. With IPI virtualization, introduced by commit d588bb9be1da ("KVM: VMX: enable IPI virtualization"), the sending CPU effectively implements a rough equivalent of vmx_deliver_posted_interrupt(), sans the nested PI NV check. If the target vCPU has a valid PID, the CPU will send a PI NV interrupt based on _L1's_ PID, as the sender's because IPIv table points at L1 PIDs. PIR := 32 bytes at PID_ADDR; // under lock PIR[V] := 1; store PIR at PID_ADDR; // release lock NotifyInfo := 8 bytes at PID_ADDR + 32; // under lock IF NotifyInfo.ON = 0 AND NotifyInfo.SN = 0; THEN NotifyInfo.ON := 1; SendNotify := 1; ELSE SendNotify := 0; FI; store NotifyInfo at PID_ADDR + 32; // release lock IF SendNotify = 1; THEN send an IPI specified by NotifyInfo.NDST and NotifyInfo.NV; FI; As a result, the target vCPU ends up receiving an interrupt on KVM's POSTED_INTR_VECTOR while L2 is running, with an interrupt in L1's PIR for L2's nested PI NV. The POSTED_INTR_VECTOR interrupt triggers a VM-Exit from L2 to L0, KVM moves the interrupt from L1's PIR to vIRR, triggers a KVM_REQ_EVENT prior to re-entry to L2, and calls vmx_check_nested_events(), effectively bypassing all of KVM's "early" checks on nested PI NV. Without IPI virtualization, the bug can likely be hit only if L1 programs an assigned device to _post_ an interrupt to L2's notification vector, by way of L1's PID.PIR. Doing so would allow the interrupt to get into L1's vIRR without KVM checking vmcs12's NV. Which is architecturally allowed, but unlikely behavior for a hypervisor. Cc: Zeng Guang <guang.zeng@intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20240906043413.1049633-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09KVM: nVMX: Suppress external interrupt VM-Exit injection if there's no IRQSean Christopherson
In the should-be-impossible scenario that kvm_cpu_get_interrupt() doesn't return a valid vector after checking kvm_cpu_has_interrupt(), skip VM-Exit injection to reduce the probability of crashing/confusing L1. Now that KVM gets the IRQ _before_ calling nested_vmx_vmexit(), squashing the VM-Exit injection is trivial since there are no actions that need to be undone. Reviewed-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20240906043413.1049633-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09KVM: nVMX: Get to-be-acknowledge IRQ for nested VM-Exit at injection siteSean Christopherson
Move the logic to get the to-be-acknowledge IRQ for a nested VM-Exit from nested_vmx_vmexit() to vmx_check_nested_events(), which is subtly the one and only path where KVM invokes nested_vmx_vmexit() with EXIT_REASON_EXTERNAL_INTERRUPT. A future fix will perform a last-minute check on L2's nested posted interrupt notification vector, just before injecting a nested VM-Exit. To handle that scenario correctly, KVM needs to get the interrupt _before_ injecting VM-Exit, as simply querying the highest priority interrupt, via kvm_cpu_has_interrupt(), would result in TOCTOU bug, as a new, higher priority interrupt could arrive between kvm_cpu_has_interrupt() and kvm_cpu_get_interrupt(). Unfortunately, simply moving the call to kvm_cpu_get_interrupt() doesn't suffice, as a VMWRITE to GUEST_INTERRUPT_STATUS.SVI is hiding in kvm_get_apic_interrupt(), and acknowledging the interrupt before nested VM-Exit would cause the VMWRITE to hit vmcs02 instead of vmcs01. Open code a rough equivalent to kvm_cpu_get_interrupt() so that the IRQ is acknowledged after emulating VM-Exit, taking care to avoid the TOCTOU issue described above. Opportunistically convert the WARN_ON() to a WARN_ON_ONCE(). If KVM has a bug that results in a false positive from kvm_cpu_has_interrupt(), spamming dmesg won't help the situation. Note, nested_vmx_reflect_vmexit() can never reflect external interrupts as they are always "wanted" by L0. Link: https://lore.kernel.org/r/20240906043413.1049633-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09KVM: VMX: Also clear SGX EDECCSSA in KVM CPU caps when SGX is disabledKai Huang
When SGX EDECCSSA support was added to KVM in commit 16a7fe3728a8 ("KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest"), it forgot to clear the X86_FEATURE_SGX_EDECCSSA bit in KVM CPU caps when KVM SGX is disabled. Fix it. Fixes: 16a7fe3728a8 ("KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest") Signed-off-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240905120837.579102-1-kai.huang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-04KVM: x86: Register "emergency disable" callbacks when virt is enabledSean Christopherson
Register the "disable virtualization in an emergency" callback just before KVM enables virtualization in hardware, as there is no functional need to keep the callbacks registered while KVM happens to be loaded, but is inactive, i.e. if KVM hasn't enabled virtualization. Note, unregistering the callback every time the last VM is destroyed could have measurable latency due to the synchronize_rcu() needed to ensure all references to the callback are dropped before KVM is unloaded. But the latency should be a small fraction of the total latency of disabling virtualization across all CPUs, and userspace can set enable_virt_at_load to completely eliminate the runtime overhead. Add a pointer in kvm_x86_ops to allow vendor code to provide its callback. There is no reason to force vendor code to do the registration, and either way KVM would need a new kvm_x86_ops hook. Suggested-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Acked-by: Kai Huang <kai.huang@intel.com> Tested-by: Farrah Chen <farrah.chen@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240830043600.127750-11-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-04KVM: x86: Rename virtualization {en,dis}abling APIs to match common KVMSean Christopherson
Rename x86's the per-CPU vendor hooks used to enable virtualization in hardware to align with the recently renamed arch hooks. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240830043600.127750-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-29KVM: x86: Add fastpath handling of HLT VM-ExitsSean Christopherson
Add a fastpath for HLT VM-Exits by immediately re-entering the guest if it has a pending wake event. When virtual interrupt delivery is enabled, i.e. when KVM doesn't need to manually inject interrupts, this allows KVM to stay in the fastpath run loop when a vIRQ arrives between the guest doing CLI and STI;HLT. Without AMD's Idle HLT-intercept support, the CPU generates a HLT VM-Exit even though KVM will immediately resume the guest. Note, on bare metal, it's relatively uncommon for a modern guest kernel to actually trigger this scenario, as the window between the guest checking for a wake event and committing to HLT is quite small. But in a nested environment, the timings change significantly, e.g. rudimentary testing showed that ~50% of HLT exits where HLT-polling was successful would be serviced by this fastpath, i.e. ~50% of the time that a nested vCPU gets a wake event before KVM schedules out the vCPU, the wake event was pending even before the VM-Exit. Link: https://lore.kernel.org/all/20240528041926.3989-3-manali.shukla@amd.com Link: https://lore.kernel.org/r/20240802195120.325560-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-29KVM: x86: Re-split x2APIC ICR into ICR+ICR2 for AMD (x2AVIC)Sean Christopherson
Re-introduce the "split" x2APIC ICR storage that KVM used prior to Intel's IPI virtualization support, but only for AMD. While not stated anywhere in the APM, despite stating the ICR is a single 64-bit register, AMD CPUs store the 64-bit ICR as two separate 32-bit values in ICR and ICR2. When IPI virtualization (IPIv on Intel, all AVIC flavors on AMD) is enabled, KVM needs to match CPU behavior as some ICR ICR writes will be handled by the CPU, not by KVM. Add a kvm_x86_ops knob to control the underlying format used by the CPU to store the x2APIC ICR, and tune it to AMD vs. Intel regardless of whether or not x2AVIC is enabled. If KVM is handling all ICR writes, the storage format for x2APIC mode doesn't matter, and having the behavior follow AMD versus Intel will provide better test coverage and ease debugging. Fixes: 4d1d7942e36a ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode") Cc: stable@vger.kernel.org Cc: Maxim Levitsky <mlevitsk@redhat.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Link: https://lore.kernel.org/r/20240719235107.3023592-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Rename get_msr_feature() APIs to get_feature_msr()Sean Christopherson
Rename all APIs related to feature MSRs from get_msr_feature() to get_feature_msr(). The APIs get "feature MSRs", not "MSR features". And unlike kvm_{g,s}et_msr_common(), the "feature" adjective doesn't describe the helper itself. No functional change intended. Link: https://lore.kernel.org/r/20240802181935.292540-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Refactor kvm_x86_ops.get_msr_feature() to avoid kvm_msr_entrySean Christopherson
Refactor get_msr_feature() to take the index and data pointer as distinct parameters in anticipation of eliminating "struct kvm_msr_entry" usage further up the primary callchain. No functional change intended. Link: https://lore.kernel.org/r/20240802181935.292540-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Rename KVM_MSR_RET_INVALID to KVM_MSR_RET_UNSUPPORTEDSean Christopherson
Rename the "INVALID" internal MSR error return code to "UNSUPPORTED" to try and make it more clear that access was denied because the MSR itself is unsupported/unknown. "INVALID" is too ambiguous, as it could just as easily mean the value for WRMSR as invalid. Avoid UNKNOWN and UNIMPLEMENTED, as the error code is used for MSRs that _are_ actually implemented by KVM, e.g. if the MSR is unsupported because an associated feature flag is not present in guest CPUID. Opportunistically beef up the comments for the internal MSR error codes. Link: https://lore.kernel.org/r/20240802181935.292540-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Move MSR_TYPE_{R,W,RW} values from VMX to x86, as enumsSean Christopherson
Move VMX's MSR_TYPE_{R,W,RW} #defines to x86.h, as enums, so that they can be used by common x86 code, e.g. instead of doing "bool write". Opportunistically tweak the definitions to make it more obvious that the values are bitmasks, not arbitrary ascending values. No functional change intended. Link: https://lore.kernel.org/r/20240802181935.292540-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: hyper-v: Prevent impossible NULL pointer dereference in evmcs_load()Vitaly Kuznetsov
GCC 12.3.0 complains about a potential NULL pointer dereference in evmcs_load() as hv_get_vp_assist_page() can return NULL. In fact, this cannot happen because KVM verifies (hv_init_evmcs()) that every CPU has a valid VP assist page and aborts enabling the feature otherwise. CPU onlining path is also checked in vmx_hardware_enable(). To make the compiler happy and to future proof the code, add a KVM_BUG_ON() sentinel. It doesn't seem to be possible (and logical) to observe evmcs_load() happening without an active vCPU so it is presumed that kvm_get_running_vcpu() can't return NULL. No functional change intended. Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com> Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20240816130124.286226-1-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Use vmx_segment_cache_clear() instead of open coded equivalentMaxim Levitsky
In prepare_vmcs02_rare(), call vmx_segment_cache_clear() instead of setting segment_cache.bitmask directly. Using the helper minimizes the chances of prepare_vmcs02_rare() doing the wrong thing in the future, e.g. if KVM ends up doing more than just zero the bitmask when purging the cache. No functional change intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240725175232.337266-2-mlevitsk@redhat.com [sean: massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Honor userspace MSR filter lists for nested VM-Enter/VM-ExitSean Christopherson
Synthesize a consistency check VM-Exit (VM-Enter) or VM-Abort (VM-Exit) if L1 attempts to load/store an MSR via the VMCS MSR lists that userspace has disallowed access to via an MSR filter. Intel already disallows including a handful of "special" MSRs in the VMCS lists, so denying access isn't completely without precedent. More importantly, the behavior is well-defined _and_ can be communicated the end user, e.g. to the customer that owns a VM running as L1 on top of KVM. On the other hand, ignoring userspace MSR filters is all but guaranteed to result in unexpected behavior as the access will hit KVM's internal state, which is likely not up-to-date. Unlike KVM-internal accesses, instruction emulation, and dedicated VMCS fields, the MSRs in the VMCS load/store lists are 100% guest controlled, thus making it all but impossible to reason about the correctness of ignoring the MSR filter. And if userspace *really* wants to deny access to MSRs via the aforementioned scenarios, userspace can hide the associated feature from the guest, e.g. by disabling the PMU to prevent accessing PERF_GLOBAL_CTRL via its VMCS field. But for the MSR lists, KVM is blindly processing MSRs; the MSR filters are the _only_ way for userspace to deny access. This partially reverts commit ac8d6cad3c7b ("KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr"). Cc: Hou Wenlong <houwenlong.hwl@antgroup.com> Cc: Jim Mattson <jmattson@google.com> Link: https://lore.kernel.org/r/20240722235922.3351122-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Do not account for temporary memory allocation in ECREATE emulationKai Huang
In handle_encls_ecreate(), a page is allocated to store a copy of SECS structure used by the ENCLS[ECREATE] leaf from the guest. This page is only used temporarily and is freed after use in handle_encls_ecreate(). Don't account for the memory allocation of this page per [1]. Link: https://lore.kernel.org/kvm/b999afeb588eb75d990891855bc6d58861968f23.camel@intel.com/T/#mb81987afc3ab308bbb5861681aa9a20f2aece7fd [1] Signed-off-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240715101224.90958-1-kai.huang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Modify the BUILD_BUG_ON_MSG of the 32-bit field in the ↵Qiang Liu
vmcs_check16 function According to the SDM, the meaning of field bit 0 is: Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields. So there is no 32-bit high field here, it should be a 32-bit field instead. Signed-off-by: Qiang Liu <liuq131@chinatelecom.cn> Link: https://lore.kernel.org/r/20240702064609.52487-1-liuq131@chinatelecom.cn Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Use macros and #defines in vmx_restore_vmx_misc()Xin Li
Use macros in vmx_restore_vmx_misc() instead of open coding everything using BIT_ULL() and GENMASK_ULL(). Opportunistically split feature bits and reserved bits into separate variables, and add a comment explaining the subset logic (it's not immediately obvious that the set of feature bits is NOT the set of _supported_ feature bits). Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog, drop #defines] Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-11-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Open code VMX preemption timer rate mask in its accessorXin Li
Use vmx_misc_preemption_timer_rate() to get the rate in hardware_setup(), and open code the rate's bitmask in vmx_misc_preemption_timer_rate() so that the function looks like all the helpers that grab values from VMX_BASIC and VMX_MISC MSR values. No functional change intended. Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog] Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-10-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM VMX: Move MSR_IA32_VMX_MISC bit defines to asm/vmx.hSean Christopherson
Move the handful of MSR_IA32_VMX_MISC bit defines that are currently in msr-indx.h to vmx.h so that all of the VMX_MISC defines and wrappers can be found in a single location. Opportunistically use BIT_ULL() instead of open coding hex values, add defines for feature bits that are architecturally defined, and move the defines down in the file so that they are colocated with the helpers for getting fields from VMX_MISC. No functional change intended. Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog] Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Add a helper to encode VMCS info in MSR_IA32_VMX_BASICSean Christopherson
Add a helper to encode the VMCS revision, size, and supported memory types in MSR_IA32_VMX_BASIC, i.e. when synthesizing KVM's supported BASIC MSR value, and delete the now unused VMCS size and memtype shift macros. For a variety of reasons, KVM has shifted (pun intended) to using helpers to *get* information from the VMX MSRs, as opposed to defined MASK and SHIFT macros for direct use. Provide a similar helper for the nested VMX code, which needs to *set* information, so that KVM isn't left with a mix of SHIFT macros and dedicated helpers. Reported-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Use macros and #defines in vmx_restore_vmx_basic()Xin Li
Use macros in vmx_restore_vmx_basic() instead of open coding everything using BIT_ULL() and GENMASK_ULL(). Opportunistically split feature bits and reserved bits into separate variables, and add a comment explaining the subset logic (it's not immediately obvious that the set of feature bits is NOT the set of _supported_ feature bits). Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog, drop #defines] Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Track CPU's MSR_IA32_VMX_BASIC as a single 64-bit valueXin Li
Track the "basic" capabilities VMX MSR as a single u64 in vmcs_config instead of splitting it across three fields, that obviously don't combine into a single 64-bit value, so that KVM can use the macros that define MSR bits using their absolute position. Replace all open coded shifts and masks, many of which are relative to the "high" half, with the appropriate macro. Opportunistically use VMX_BASIC_32BIT_PHYS_ADDR_ONLY instead of an open coded equivalent, and clean up the related comment to not reference a specific SDM section (to the surprise of no one, the comment is stale). No functional change intended (though obviously the code generation will be quite different). Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog] Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22x86/cpu: KVM: Add common defines for architectural memory types (PAT, MTRRs, ↵Sean Christopherson
etc.) Add defines for the architectural memory types that can be shoved into various MSRs and registers, e.g. MTRRs, PAT, VMX capabilities MSRs, EPTPs, etc. While most MSRs/registers support only a subset of all memory types, the values themselves are architectural and identical across all users. Leave the goofy MTRR_TYPE_* definitions as-is since they are in a uapi header, but add compile-time assertions to connect the dots (and sanity check that the msr-index.h values didn't get fat-fingered). Keep the VMX_EPTP_MT_* defines so that it's slightly more obvious that the EPTP holds a single memory type in 3 of its 64 bits; those bits just happen to be 2:0, i.e. don't need to be shifted. Opportunistically use X86_MEMTYPE_WB instead of an open coded '6' in setup_vmcs_config(). No functional change intended. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-07-16Merge tag 'kvm-x86-vmx-6.11' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM VMX changes for 6.11 - Remove an unnecessary EPT TLB flush when enabling hardware. - Fix a series of bugs that cause KVM to fail to detect nested pending posted interrupts as valid wake eents for a vCPU executing HLT in L2 (with HLT-exiting disable by L1). - Misc cleanups
2024-07-16Merge tag 'kvm-x86-pmu-6.11' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86/pmu changes for 6.11 - Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads '0' and writes from userspace are ignored. - Update to the newfangled Intel CPU FMS infrastructure. - Use macros instead of open-coded literals to clean up KVM's manipulation of FIXED_CTR_CTRL MSRs.
2024-07-16Merge tag 'kvm-x86-mtrrs-6.11' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 MTRR virtualization removal Remove support for virtualizing MTRRs on Intel CPUs, along with a nasty CR0.CD hack, and instead always honor guest PAT on CPUs that support self-snoop.
2024-07-16Merge tag 'kvm-x86-misc-6.11' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.11 - Add a global struct to consolidate tracking of host values, e.g. EFER, and move "shadow_phys_bits" into the structure as "maxphyaddr". - Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC bus frequency, because TDX. - Print the name of the APICv/AVIC inhibits in the relevant tracepoint. - Clean up KVM's handling of vendor specific emulation to consistently act on "compatible with Intel/AMD", versus checking for a specific vendor. - Misc cleanups
2024-07-16Merge tag 'kvm-x86-generic-6.11' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM generic changes for 6.11 - Enable halt poll shrinking by default, as Intel found it to be a clear win. - Setup empty IRQ routing when creating a VM to avoid having to synchronize SRCU when creating a split IRQCHIP on x86. - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag that arch code can use for hooking both sched_in() and sched_out(). - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid truncating a bogus value from userspace, e.g. to help userspace detect bugs. - Mark a vCPU as preempted if and only if it's scheduled out while in the KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest memory when retrieving guest state during live migration blackout. - A few minor cleanups