Age | Commit message (Collapse) | Author |
|
Prepare to check mmu->sync_page pointer before calling it.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-3-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
FNAME(invlpg)() and kvm_mmu_invalidate_gva() take a gva_t, i.e. unsigned
long, as the type of the address to invalidate. On 32-bit kernels, the
upper 32 bits of the GPA will get dropped when an L2 GPA address is
invalidated in the shadowed nested TDP MMU.
Convert it to u64 to fix the problem.
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-2-jiangshanlai@gmail.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop FNAME(is_self_change_mapping) and instead rely on
kvm_mmu_hugepage_adjust() to adjust the hugepage accordingly. Prior to
commit 4cd071d13c5c ("KVM: x86/mmu: Move calls to thp_adjust() down a
level"), the hugepage adjustment was done before allocating new shadow
pages, i.e. failed to restrict the hugepage sizes if a new shadow page
resulted in account_shadowed() changing the disallowed hugepage tracking.
Removing FNAME(is_self_change_mapping) fixes a bug reported by Huang Hang
where KVM unnecessarily forces a 4KiB page. FNAME(is_self_change_mapping)
has a defect in that it blindly disables _all_ hugepage mappings rather
than trying to reduce the size of the hugepage. If the guest is writing
to a 1GiB page and the 1GiB is self-referential but a 2MiB page is not,
then KVM can and should create a 2MiB mapping.
Add a comment above the call to kvm_mmu_hugepage_adjust() to call out the
new dependency on adjusting the hugepage size after walking indirect PTEs.
Reported-by: Huang Hang <hhuang@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20221213125538.81209-1-jiangshanlai@gmail.com
[sean: rework changelog after separating out the emulator change]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the detection of write #PF to shadow pages, i.e. a fault on a write
to a page table that is being shadowed by KVM that is used to translate
the write itself, from FNAME(is_self_change_mapping) to FNAME(fetch).
There is no need to detect the self-referential write before
kvm_faultin_pfn() as KVM does not consume EMULTYPE_WRITE_PF_TO_SP for
accesses that resolve to "error or no-slot" pfns, i.e. KVM doesn't allow
retrying MMIO accesses or writes to read-only memslots.
Detecting the EMULTYPE_WRITE_PF_TO_SP scenario in FNAME(fetch) will allow
dropping FNAME(is_self_change_mapping) entirely, as the hugepage
interaction can be deferred to kvm_mmu_hugepage_adjust().
Cc: Huang Hang <hhuang@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20221213125538.81209-1-jiangshanlai@gmail.com
[sean: split to separate patch, write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use a new EMULTYPE flag, EMULTYPE_WRITE_PF_TO_SP, to track page faults
on self-changing writes to shadowed page tables instead of propagating
that information to the emulator via a semi-persistent vCPU flag. Using
a flag in "struct kvm_vcpu_arch" is confusing, especially as implemented,
as it's not at all obvious that clearing the flag only when emulation
actually occurs is correct.
E.g. if KVM sets the flag and then retries the fault without ever getting
to the emulator, the flag will be left set for future calls into the
emulator. But because the flag is consumed if and only if both
EMULTYPE_PF and EMULTYPE_ALLOW_RETRY_PF are set, and because
EMULTYPE_ALLOW_RETRY_PF is deliberately not set for direct MMUs, emulated
MMIO, or while L2 is active, KVM avoids false positives on a stale flag
since FNAME(page_fault) is guaranteed to be run and refresh the flag
before it's ultimately consumed by the tail end of reexecute_instruction().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make tdp_mmu_allowed static since it is only ever used within
arch/x86/kvm/mmu/mmu.c.
Link: https://lore.kernel.org/kvm/202302072055.odjDVd5V-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20230213212844.3062733-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
strtobool() is the same as kstrtobool().
However, the latter is more used within the kernel.
In order to remove strtobool() and slightly simplify kstrtox.h, switch to
the other function name.
While at it, include the corresponding header file (<linux/kstrtox.h>)
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/670882aa04dbdd171b46d3b20ffab87158454616.1673689135.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use the new kvm_flush_remote_tlbs_gfn() helper to cleanup the call sites
of range-based flushing for given page, which makes the code clear.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/593ee1a876ece0e819191c0b23f56b940d6686db.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The spte pointing to the children SP is dropped, so the whole gfn range
covered by the children SP should be flushed. Although, Hyper-V may
treat a 1-page flush the same if the address points to a huge page, it
still would be better to use the correct size of huge page.
Fixes: c3134ce240eed ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/5f297c566f7d7ff2ea6da3c66d050f69ce1b8ede.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When a spte is dropped, the start gfn of tlb flushing should be the gfn
of spte not the base gfn of SP which contains the spte. Also introduce a
helper function to do range-based flushing when a spte is dropped, which
would help prevent future buggy use of
kvm_flush_remote_tlbs_with_address() in such case.
Fixes: c3134ce240eed ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/72ac2169a261976f00c1703e88cda676dfb960f5.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
tdp_mmu_map_handle_target_level()
Since the children SP is zapped, the gfn range of tlb flushing should be
the range covered by children SP not parent SP. Replace sp->gfn which is
the base gfn of parent SP with iter->gfn and use the correct size of gfn
range for children SP to reduce tlb flushing range.
Fixes: bb95dfb9e2df ("KVM: x86/mmu: Defer TLB flush to caller when freeing TDP MMU shadow pages")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/528ab9c784a486e9ce05f61462ad9260796a8732.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When the spte of hupe page is dropped in kvm_set_pte_rmapp(), the whole
gfn range covered by the spte should be flushed. However,
rmap_walk_init_level() doesn't align down the gfn for new level like tdp
iterator does, then the gfn used in kvm_set_pte_rmapp() is not the base
gfn of huge page. And the size of gfn range is wrong too for huge page.
Use the base gfn of huge page and the size of huge page for flushing
tlbs for huge page. Also introduce a helper function to flush the given
page (huge or not) of guest memory, which would help prevent future
buggy use of kvm_flush_remote_tlbs_with_address() in such case.
Fixes: c3134ce240eed ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/0ce24d7078fa5f1f8d64b0c59826c50f32f8065e.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rounding down the GFN to a huge page size is a common pattern throughout
KVM, so move round_gfn_for_level() helper in tdp_iter.c to
mmu_internal.h for common usage. Also rename it as gfn_round_for_level()
to use gfn_* prefix and clean up the other call sites.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/415c64782f27444898db650e21cf28eeb6441dfa.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
There is no function named kvm_mmu_ensure_valid_pgd().
Fix the comment and remove the pair of braces to conform to Linux kernel
coding style.
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221128214709.224710-1-wei.liu@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Although there is no harm, but there is no point to clear write
flooding for direct SP.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230105100310.6700-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
SPTE_TDP_AD_ENABLED_MASK, SPTE_TDP_AD_DISABLED_MASK and
SPTE_TDP_AD_WRPROT_ONLY_MASK are actual value, not mask.
Remove "MASK" from their names.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230105100204.6521-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When handling direct page faults, pivot on the TDP MMU being globally
enabled instead of checking if the target MMU is a TDP MMU. Now that the
TDP MMU is all-or-nothing, if the TDP MMU is enabled, KVM will reach
direct_page_fault() if and only if the MMU is a TDP MMU. When TDP is
enabled (obviously required for the TDP MMU), only non-nested TDP page
faults reach direct_page_fault(), i.e. nonpaging MMUs are impossible, as
NPT requires paging to be enabled and EPT faults use ept_page_fault().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-8-seanjc@google.com>
[Use tdp_mmu_enabled variable. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Simplify and optimize the logic for detecting if the current/active MMU
is a TDP MMU. If the TDP MMU is globally enabled, then the active MMU is
a TDP MMU if it is direct. When TDP is enabled, so called nonpaging MMUs
are never used as the only form of shadow paging KVM uses is for nested
TDP, and the active MMU can't be direct in that case.
Rename the helper and take the vCPU instead of an arbitrary MMU, as
nonpaging MMUs can show up in the walk_mmu if L1 is using nested TDP and
L2 has paging disabled. Taking the vCPU has the added bonus of cleaning
up the callers, all of which check the current MMU but wrap code that
consumes the vCPU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-9-seanjc@google.com>
[Use tdp_mmu_enabled variable. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use is_tdp_mmu_page() instead of querying sp->tdp_mmu_page directly so
that all users benefit if KVM ever finds a way to optimize the logic.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename __direct_map() to direct_map() since the leading underscores are
unnecessary. This also makes the page fault handler names more
consistent: kvm_tdp_mmu_page_fault() calls kvm_tdp_mmu_map() and
direct_page_fault() calls direct_map().
Opportunistically make some trivial cleanups to comments that had to be
modified anyway since they mentioned __direct_map(). Specifically, use
"()" when referring to functions, and include kvm_tdp_mmu_map() among
the various callers of disallowed_hugepage_adjust().
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Stop calling make_mmu_pages_available() when handling TDP MMU faults.
The TDP MMU does not participate in the "available MMU pages" tracking
and limiting so calling this function is unnecessary work when handling
TDP MMU faults.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-10-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Split out the page fault handling for the TDP MMU to a separate
function. This creates some duplicate code, but makes the TDP MMU fault
handler simpler to read by eliminating branches and will enable future
cleanups by allowing the TDP MMU and non-TDP MMU fault paths to diverge.
Only compile in the TDP MMU fault handler for 64-bit builds since
kvm_tdp_mmu_map() does not exist in 32-bit builds.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the initialization of fault.{gfn,slot} earlier in the page fault
handling code for fully direct MMUs. This will enable a future commit to
split out TDP MMU page fault handling without needing to duplicate the
initialization of these 2 fields.
Opportunistically take advantage of the fact that fault.gfn is
initialized in kvm_tdp_page_fault() rather than recomputing it from
fault->addr.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle faults on GFNs that do not have a backing memslot in
kvm_faultin_pfn() and drop handle_abnormal_pfn(). This eliminates
duplicate code in the various page fault handlers.
Opportunistically tweak the comment about handling gfn > host.MAXPHYADDR
to reflect that the effect of returning RET_PF_EMULATE at that point is
to avoid creating an MMIO SPTE for such GFNs.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pass the kvm_page_fault struct down to kvm_handle_error_pfn() to avoid a
memslot lookup when handling KVM_PFN_ERR_HWPOISON. Opportunistically
move the gfn_to_hva_memslot() call and @current down into
kvm_send_hwpoison_signal() to cut down on line lengths.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle error PFNs in kvm_faultin_pfn() rather than relying on the caller
to invoke handle_abnormal_pfn() after kvm_faultin_pfn().
Opportunistically rename kvm_handle_bad_page() to kvm_handle_error_pfn()
to make it more consistent with is_error_pfn().
This commit moves KVM closer to being able to drop
handle_abnormal_pfn(), which will reduce the amount of duplicate code in
the various page fault handlers.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Grab mmu_invalidate_seq in kvm_faultin_pfn() and stash it in struct
kvm_page_fault. The eliminates duplicate code and reduces the amount of
parameters needed for is_page_fault_stale().
Preemptively split out __kvm_faultin_pfn() to a separate function for
use in subsequent commits.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move kvm_mmu_{init,uninit}_tdp_mmu() behind tdp_mmu_enabled. This makes
these functions consistent with the rest of the calls into the TDP MMU
from mmu.c, and which is now possible since tdp_mmu_enabled is only
modified when the x86 vendor module is loaded. i.e. It will never change
during the lifetime of a VM.
This change also enabled removing the stub definitions for 32-bit KVM,
as the compiler will just optimize the calls out like it does for all
the other TDP MMU functions.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Change tdp_mmu to a read-only parameter and drop the per-vm
tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is
always false so that the compiler can continue omitting cals to the TDP
MMU.
The TDP MMU was introduced in 5.10 and has been enabled by default since
5.15. At this point there are no known functionality gaps between the
TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales
better with the number of vCPUs. In other words, there is no good reason
to disable the TDP MMU on a live system.
Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to
always use the TDP MMU) since tdp_mmu=N is still used to get test
coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Since the commit 65855ed8b034 ("KVM: X86: Synchronize the shadow
pagetable before link it"), no sp would be linked with
sp->unsync_children = 1.
So make it WARN if it is the case.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20221212090106.378206-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
"be split be split" -> "be split"
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20221207120505.9175-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Don't install a leaf TDP MMU SPTE if the parent page's level doesn't
match the target level of the fault, and instead have the vCPU retry the
faulting instruction after warning. Continuing on is completely
unnecessary as the absolute worst case scenario of retrying is DoSing
the vCPU, whereas continuing on all but guarantees bigger explosions, e.g.
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/tdp_mmu.c:559!
invalid opcode: 0000 [#1] SMP
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__handle_changed_spte.cold+0x95/0x9c
RSP: 0018:ffffc9000072faf8 EFLAGS: 00010246
RAX: 00000000000000c1 RBX: ffffc90000731000 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: 0600000112400bf3 R08: ffff888277c5b4c0 R09: ffffc9000072f9a0
R10: 0000000000000001 R11: 0000000000000001 R12: 06000001126009f3
R13: 0000000000000002 R14: 0000000012600901 R15: 0000000012400b01
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_mmu_map+0x3b0/0x510
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Modules linked in: kvm_intel
---[ end trace 0000000000000000 ]---
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Re-check sp->nx_huge_page_disallowed under the tdp_mmu_pages_lock spinlock
when adding a new shadow page in the TDP MMU. To ensure the NX reclaim
kthread can't see a not-yet-linked shadow page, the page fault path links
the new page table prior to adding the page to possible_nx_huge_pages.
If the page is zapped by different task, e.g. because dirty logging is
disabled, between linking the page and adding it to the list, KVM can end
up triggering use-after-free by adding the zapped SP to the aforementioned
list, as the zapped SP's memory is scheduled for removal via RCU callback.
The bug is detected by the sanity checks guarded by CONFIG_DEBUG_LIST=y,
i.e. the below splat is just one possible signature.
------------[ cut here ]------------
list_add corruption. prev->next should be next (ffffc9000071fa70), but was ffff88811125ee38. (prev=ffff88811125ee38).
WARNING: CPU: 1 PID: 953 at lib/list_debug.c:30 __list_add_valid+0x79/0xa0
Modules linked in: kvm_intel
CPU: 1 PID: 953 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #71
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__list_add_valid+0x79/0xa0
RSP: 0018:ffffc900006efb68 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888116cae8a0 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 0000000100001872 RDI: ffff888277c5b4c8
RBP: ffffc90000717000 R08: ffff888277c5b4c0 R09: ffffc900006efa08
R10: 0000000000199998 R11: 0000000000199a20 R12: ffff888116cae930
R13: ffff88811125ee38 R14: ffffc9000071fa70 R15: ffff88810b794f90
FS: 00007fc0415d2740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000115201006 CR4: 0000000000172ea0
Call Trace:
<TASK>
track_possible_nx_huge_page+0x53/0x80
kvm_tdp_mmu_map+0x242/0x2c0
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: 61f94478547b ("KVM: x86/mmu: Set disallowed_nx_huge_page in TDP MMU before setting SPTE")
Reported-by: Greg Thelen <gthelen@google.com>
Analyzed-by: David Matlack <dmatlack@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Map the leaf SPTE when handling a TDP MMU page fault if and only if the
target level is reached. A recent commit reworked the retry logic and
incorrectly assumed that walking SPTEs would never "fail", as the loop
either bails (retries) or installs parent SPs. However, the iterator
itself will bail early if it detects a frozen (REMOVED) SPTE when
stepping down. The TDP iterator also rereads the current SPTE before
stepping down specifically to avoid walking into a part of the tree that
is being removed, which means it's possible to terminate the loop without
the guts of the loop observing the frozen SPTE, e.g. if a different task
zaps a parent SPTE between the initial read and try_step_down()'s refresh.
Mapping a leaf SPTE at the wrong level results in all kinds of badness as
page table walkers interpret the SPTE as a page table, not a leaf, and
walk into the weeds.
------------[ cut here ]------------
WARNING: CPU: 1 PID: 1025 at arch/x86/kvm/mmu/tdp_mmu.c:1070 kvm_tdp_mmu_map+0x481/0x510
Modules linked in: kvm_intel
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_tdp_mmu_map+0x481/0x510
RSP: 0018:ffffc9000072fba8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffffc9000072fcc0 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: ffff888107d45a10 R08: ffff888277c5b4c0 R09: ffffc9000072fa48
R10: 0000000000000001 R11: 0000000000000001 R12: ffffc9000073a0e0
R13: ffff88810fc54800 R14: ffff888107d1ae60 R15: ffff88810fc54f90
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Invalid SPTE change: cannot replace a present leaf
SPTE with another present leaf SPTE mapping a
different PFN!
as_id: 0 gfn: 100200 old_spte: 600000112400bf3 new_spte: 6000001126009f3 level: 2
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/tdp_mmu.c:559!
invalid opcode: 0000 [#1] SMP
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__handle_changed_spte.cold+0x95/0x9c
RSP: 0018:ffffc9000072faf8 EFLAGS: 00010246
RAX: 00000000000000c1 RBX: ffffc90000731000 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: 0600000112400bf3 R08: ffff888277c5b4c0 R09: ffffc9000072f9a0
R10: 0000000000000001 R11: 0000000000000001 R12: 06000001126009f3
R13: 0000000000000002 R14: 0000000012600901 R15: 0000000012400b01
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_mmu_map+0x3b0/0x510
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Modules linked in: kvm_intel
---[ end trace 0000000000000000 ]---
Fixes: 63d28a25e04c ("KVM: x86/mmu: simplify kvm_tdp_mmu_map flow when guest has to retry")
Cc: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hoist the is_removed_spte() check above the "level == goal_level" check
when walking SPTEs during a TDP MMU page fault to avoid attempting to map
a leaf entry if said entry is frozen by a different task/vCPU.
------------[ cut here ]------------
WARNING: CPU: 3 PID: 939 at arch/x86/kvm/mmu/tdp_mmu.c:653 kvm_tdp_mmu_map+0x269/0x4b0
Modules linked in: kvm_intel
CPU: 3 PID: 939 Comm: nx_huge_pages_t Not tainted 6.1.0-rc4+ #67
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_tdp_mmu_map+0x269/0x4b0
RSP: 0018:ffffc9000068fba8 EFLAGS: 00010246
RAX: 00000000000005a0 RBX: ffffc9000068fcc0 RCX: 0000000000000005
RDX: ffff88810741f000 RSI: ffff888107f04600 RDI: ffffc900006a3000
RBP: 060000010b000bf3 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 000ffffffffff000 R12: 0000000000000005
R13: ffff888113670000 R14: ffff888107464958 R15: 0000000000000000
FS: 00007f01c942c740(0000) GS:ffff888277cc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000117013006 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: 63d28a25e04c ("KVM: x86/mmu: simplify kvm_tdp_mmu_map flow when guest has to retry")
Cc: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Robert Hoo <robert.hu@linux.intel.com>
Message-Id: <20221213033030.83345-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
|
|
make_mmu_pages_available() must be called with mmu_lock held for write.
However, if the TDP MMU is used, it will be called with mmu_lock held for
read.
This function does nothing unless shadow pages are used, so there is no
race unless nested TDP is used.
Since nested TDP uses shadow pages, old shadow pages may be zapped by this
function even when the TDP MMU is enabled.
Since shadow pages are never allocated by kvm_tdp_mmu_map(), a race
condition can be avoided by not calling make_mmu_pages_available() if the
TDP MMU is currently in use.
I encountered this when repeatedly starting and stopping nested VM.
It can be artificially caused by allocating a large number of nested TDP
SPTEs.
For example, the following BUG and general protection fault are caused in
the host kernel.
pte_list_remove: 00000000cd54fc10 many->many
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/mmu.c:963!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:pte_list_remove.cold+0x16/0x48 [kvm]
Call Trace:
<TASK>
drop_spte+0xe0/0x180 [kvm]
mmu_page_zap_pte+0x4f/0x140 [kvm]
__kvm_mmu_prepare_zap_page+0x62/0x3e0 [kvm]
kvm_mmu_zap_oldest_mmu_pages+0x7d/0xf0 [kvm]
direct_page_fault+0x3cb/0x9b0 [kvm]
kvm_tdp_page_fault+0x2c/0xa0 [kvm]
kvm_mmu_page_fault+0x207/0x930 [kvm]
npf_interception+0x47/0xb0 [kvm_amd]
svm_invoke_exit_handler+0x13c/0x1a0 [kvm_amd]
svm_handle_exit+0xfc/0x2c0 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0xa79/0x1780 [kvm]
kvm_vcpu_ioctl+0x29b/0x6f0 [kvm]
__x64_sys_ioctl+0x95/0xd0
do_syscall_64+0x5c/0x90
general protection fault, probably for non-canonical address
0xdead000000000122: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:kvm_mmu_commit_zap_page.part.0+0x4b/0xe0 [kvm]
Call Trace:
<TASK>
kvm_mmu_zap_oldest_mmu_pages+0xae/0xf0 [kvm]
direct_page_fault+0x3cb/0x9b0 [kvm]
kvm_tdp_page_fault+0x2c/0xa0 [kvm]
kvm_mmu_page_fault+0x207/0x930 [kvm]
npf_interception+0x47/0xb0 [kvm_amd]
CVE: CVE-2022-45869
Fixes: a2855afc7ee8 ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Signed-off-by: Kazuki Takiguchi <takiguchi.kazuki171@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Since gfn_to_memslot() is relatively expensive, it helps to
skip it if it the memslot cannot possibly have dirty logging
enabled. In order to do this, add to struct kvm a counter
of the number of log-page memslots. While the correct value
can only be read with slots_lock taken, the NX recovery thread
is content with using an approximate value. Therefore, the
counter is an atomic_t.
Based on https://lore.kernel.org/kvm/20221027200316.2221027-2-dmatlack@google.com/
by David Matlack.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Do not recover (i.e. zap) an NX Huge Page that is being dirty tracked,
as it will just be faulted back in at the same 4KiB granularity when
accessed by a vCPU. This may need to be changed if KVM ever supports
2MiB (or larger) dirty tracking granularity, or faulting huge pages
during dirty tracking for reads/executes. However for now, these zaps
are entirely wasteful.
In order to check if this commit increases the CPU usage of the NX
recovery worker thread I used a modified version of execute_perf_test
[1] that supports splitting guest memory into multiple slots and reports
/proc/pid/schedstat:se.sum_exec_runtime for the NX recovery worker just
before tearing down the VM. The goal was to force a large number of NX
Huge Page recoveries and see if the recovery worker used any more CPU.
Test Setup:
echo 1000 > /sys/module/kvm/parameters/nx_huge_pages_recovery_period_ms
echo 10 > /sys/module/kvm/parameters/nx_huge_pages_recovery_ratio
Test Command:
./execute_perf_test -v64 -s anonymous_hugetlb_1gb -x 16 -o
| kvm-nx-lpage-re:se.sum_exec_runtime |
| ---------------------------------------- |
Run | Before | After |
------- | ------------------ | ------------------- |
1 | 730.084105 | 724.375314 |
2 | 728.751339 | 740.581988 |
3 | 736.264720 | 757.078163 |
Comparing the median results, this commit results in about a 1% increase
CPU usage of the NX recovery worker when testing a VM with 16 slots.
However, the effect is negligible with the default halving time of NX
pages, which is 1 hour rather than 10 seconds given by period_ms = 1000,
ratio = 10.
[1] https://lore.kernel.org/kvm/20221019234050.3919566-2-dmatlack@google.com/
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221103204421.1146958-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A removed SPTE is never present, hence the "if" in kvm_tdp_mmu_map
only fails in the exact same conditions that the earlier loop
tested in order to issue a "break". So, instead of checking twice the
condition (upper level SPTEs could not be created or was frozen), just
exit the loop with a goto---the usual poor-man C replacement for RAII
early returns.
While at it, do not use the "ret" variable for return values of
functions that do not return a RET_PF_* enum. This is clearer
and also makes it possible to initialize ret to RET_PF_RETRY.
Suggested-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Now that the TDP MMU has a mechanism to split huge pages, use it in the
fault path when a huge page needs to be replaced with a mapping at a
lower level.
This change reduces the negative performance impact of NX HugePages.
Prior to this change if a vCPU executed from a huge page and NX
HugePages was enabled, the vCPU would take a fault, zap the huge page,
and mapping the faulting address at 4KiB with execute permissions
enabled. The rest of the memory would be left *unmapped* and have to be
faulted back in by the guest upon access (read, write, or execute). If
guest is backed by 1GiB, a single execute instruction can zap an entire
GiB of its physical address space.
For example, it can take a VM longer to execute from its memory than to
populate that memory in the first place:
$ ./execute_perf_test -s anonymous_hugetlb_1gb -v96
Populating memory : 2.748378795s
Executing from memory : 2.899670885s
With this change, such faults split the huge page instead of zapping it,
which avoids the non-present faults on the rest of the huge page:
$ ./execute_perf_test -s anonymous_hugetlb_1gb -v96
Populating memory : 2.729544474s
Executing from memory : 0.111965688s <---
This change also reduces the performance impact of dirty logging when
eager_page_split=N. eager_page_split=N (abbreviated "eps=N" below) can
be desirable for read-heavy workloads, as it avoids allocating memory to
split huge pages that are never written and avoids increasing the TLB
miss cost on reads of those pages.
| Config: ept=Y, tdp_mmu=Y, 5% writes |
| Iteration 1 dirty memory time |
| --------------------------------------------- |
vCPU Count | eps=N (Before) | eps=N (After) | eps=Y |
------------ | -------------- | ------------- | ------------ |
2 | 0.332305091s | 0.019615027s | 0.006108211s |
4 | 0.353096020s | 0.019452131s | 0.006214670s |
8 | 0.453938562s | 0.019748246s | 0.006610997s |
16 | 0.719095024s | 0.019972171s | 0.007757889s |
32 | 1.698727124s | 0.021361615s | 0.012274432s |
64 | 2.630673582s | 0.031122014s | 0.016994683s |
96 | 3.016535213s | 0.062608739s | 0.044760838s |
Eager page splitting remains beneficial for write-heavy workloads, but
the gap is now reduced.
| Config: ept=Y, tdp_mmu=Y, 100% writes |
| Iteration 1 dirty memory time |
| --------------------------------------------- |
vCPU Count | eps=N (Before) | eps=N (After) | eps=Y |
------------ | -------------- | ------------- | ------------ |
2 | 0.317710329s | 0.296204596s | 0.058689782s |
4 | 0.337102375s | 0.299841017s | 0.060343076s |
8 | 0.386025681s | 0.297274460s | 0.060399702s |
16 | 0.791462524s | 0.298942578s | 0.062508699s |
32 | 1.719646014s | 0.313101996s | 0.075984855s |
64 | 2.527973150s | 0.455779206s | 0.079789363s |
96 | 2.681123208s | 0.673778787s | 0.165386739s |
Further study is needed to determine if the remaining gap is acceptable
for customer workloads or if eager_page_split=N still requires a-priori
knowledge of the VM workload, especially when considering these costs
extrapolated out to large VMs with e.g. 416 vCPUs and 12TB RAM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221109185905.486172-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When zapping a GFN range, pass 0 => ALL_ONES for the to-be-invalidated
range to effectively block all page faults while the zap is in-progress.
The invalidation helpers take a host virtual address, whereas zapping a
GFN obviously provides a guest physical address and with the wrong unit
of measurement (frame vs. byte).
Alternatively, KVM could walk all memslots to get the associated HVAs,
but thanks to SMM, that would require multiple lookups. And practically
speaking, kvm_zap_gfn_range() usage is quite rare and not a hot path,
e.g. MTRR and CR0.CD are almost guaranteed to be done only on vCPU0
during boot, and APICv inhibits are similarly infrequent operations.
Fixes: edb298c663fc ("KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range")
Reported-by: Chao Peng <chao.p.peng@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221111001841.2412598-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Extend the accounting sanity check in kvm_recover_nx_huge_pages() to the
TDP MMU, i.e. verify that zapping a shadow page unaccounts the disallowed
NX huge page regardless of the MMU type. Recovery runs while holding
mmu_lock for write and so it should be impossible to get false positives
on the WARN.
Suggested-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explicitly check if a NX huge page is disallowed when determining if a
page fault needs to be forced to use a smaller sized page. KVM currently
assumes that the NX huge page mitigation is the only scenario where KVM
will force a shadow page instead of a huge page, and so unnecessarily
keeps an existing shadow page instead of replacing it with a huge page.
Any scenario that causes KVM to zap leaf SPTEs may result in having a SP
that can be made huge without violating the NX huge page mitigation.
E.g. prior to commit 5ba7c4c6d1c7 ("KVM: x86/MMU: Zap non-leaf SPTEs when
disabling dirty logging"), KVM would keep shadow pages after disabling
dirty logging due to a live migration being canceled, resulting in
degraded performance due to running with 4kb pages instead of huge pages.
Although the dirty logging case is "fixed", that fix is coincidental,
i.e. is an implementation detail, and there are other scenarios where KVM
will zap leaf SPTEs. E.g. zapping leaf SPTEs in response to a host page
migration (mmu_notifier invalidation) to create a huge page would yield a
similar result; KVM would see the shadow-present non-leaf SPTE and assume
a huge page is disallowed.
Fixes: b8e8c8303ff2 ("kvm: mmu: ITLB_MULTIHIT mitigation")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
[sean: use spte_to_child_sp(), massage changelog, fold into if-statement]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a helper to convert a SPTE to its shadow page to deduplicate a
variety of flows and hopefully avoid future bugs, e.g. if KVM attempts to
get the shadow page for a SPTE without dropping high bits.
Opportunistically add a comment in mmu_free_root_page() documenting why
it treats the root HPA as a SPTE.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Track the number of TDP MMU "shadow" pages instead of tracking the pages
themselves. With the NX huge page list manipulation moved out of the common
linking flow, elminating the list-based tracking means the happy path of
adding a shadow page doesn't need to acquire a spinlock and can instead
inc/dec an atomic.
Keep the tracking as the WARN during TDP MMU teardown on leaked shadow
pages is very, very useful for detecting KVM bugs.
Tracking the number of pages will also make it trivial to expose the
counter to userspace as a stat in the future, which may or may not be
desirable.
Note, the TDP MMU needs to use a separate counter (and stat if that ever
comes to be) from the existing n_used_mmu_pages. The TDP MMU doesn't bother
supporting the shrinker nor does it honor KVM_SET_NR_MMU_PAGES (because the
TDP MMU consumes so few pages relative to shadow paging), and including TDP
MMU pages in that counter would break both the shrinker and shadow MMUs,
e.g. if a VM is using nested TDP.
Cc: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Set nx_huge_page_disallowed in TDP MMU shadow pages before making the SP
visible to other readers, i.e. before setting its SPTE. This will allow
KVM to query the flag when determining if a shadow page can be replaced
by a NX huge page without violating the rules of the mitigation.
Note, the shadow/legacy MMU holds mmu_lock for write, so it's impossible
for another CPU to see a shadow page without an up-to-date
nx_huge_page_disallowed, i.e. only the TDP MMU needs the complicated
dance.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Account and track NX huge pages for nonpaging MMUs so that a future
enhancement to precisely check if a shadow page can't be replaced by a NX
huge page doesn't get false positives. Without correct tracking, KVM can
get stuck in a loop if an instruction is fetching and writing data on the
same huge page, e.g. KVM installs a small executable page on the fetch
fault, replaces it with an NX huge page on the write fault, and faults
again on the fetch.
Alternatively, and perhaps ideally, KVM would simply not enforce the
workaround for nonpaging MMUs. The guest has no page tables to abuse
and KVM is guaranteed to switch to a different MMU on CR0.PG being
toggled so there's no security or performance concerns. However, getting
make_spte() to play nice now and in the future is unnecessarily complex.
In the current code base, make_spte() can enforce the mitigation if TDP
is enabled or the MMU is indirect, but make_spte() may not always have a
vCPU/MMU to work with, e.g. if KVM were to support in-line huge page
promotion when disabling dirty logging.
Without a vCPU/MMU, KVM could either pass in the correct information
and/or derive it from the shadow page, but the former is ugly and the
latter subtly non-trivial due to the possibility of direct shadow pages
in indirect MMUs. Given that using shadow paging with an unpaged guest
is far from top priority _and_ has been subjected to the workaround since
its inception, keep it simple and just fix the accounting glitch.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221019165618.927057-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|