Age | Commit message (Collapse) | Author |
|
Improve debugging printks and fixup formatting.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-5-bp@alien8.de
|
|
request_microcode_fw() can always request firmware now so drop this
superfluous argument.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-4-bp@alien8.de
|
|
Get rid of all the IPI-sending functions and their wrappers and use
those which are supposed to be called on each CPU.
Thus:
- microcode_init_cpu() gets called on each CPU on init, applying any new
microcode that the driver might've found on the filesystem.
- mc_cpu_starting() simply tries to apply cached microcode as this is
the cpuhp starting callback which gets called on CPU resume too.
Even if the driver init function is a late initcall, there is no
filesystem by then (not even a hdd driver has been loaded yet) so a new
firmware load attempt cannot simply be done.
It is pointless anyway - for that there's late loading if one really
needs it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-3-bp@alien8.de
|
|
This is a left-over from the old days when CPU hotplug wasn't as robust
as it is now. Currently, microcode gets loaded early on the CPU init
path and there's no need to attempt to load it again, which that subsys
interface callback is doing.
The only other thing that the subsys interface init path was doing is
adding the
/sys/devices/system/cpu/cpu*/microcode/
hierarchy.
So add a function which gets called on each CPU after all the necessary
driver setup has happened. Use schedule_on_each_cpu() which can block
because the sysfs creating code does kmem_cache_zalloc() which can block
too and the initial version of this where it did that setup in an IPI
handler of on_each_cpu() can cause a deadlock of the sort:
lock(fs_reclaim);
<Interrupt>
lock(fs_reclaim);
as the IPI handler runs in IRQ context.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221028142638.28498-2-bp@alien8.de
|
|
Back in 2018, Ingo Molnar suggested[0] to improve the formatting of the
struct user_regset arrays. They have multiple member initializations per
line and some lines exceed 100 chars. Reformat them like he suggested.
[0] https://lore.kernel.org/lkml/20180711102035.GB8574@gmail.com/
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20221021221803.10910-3-rick.p.edgecombe%40intel.com
|
|
In fill_thread_core_info() the ptrace accessible registers are collected
for a core file to be written out as notes. The note array is allocated
from a size calculated by iterating the user regset view, and counting the
regsets that have a non-zero core_note_type. However, this only allows for
there to be non-zero core_note_type at the end of the regset view. If
there are any in the middle, fill_thread_core_info() will overflow the
note allocation, as it iterates over the size of the view and the
allocation would be smaller than that.
To apparently avoid this problem, x86_32_regsets and x86_64_regsets need
to be constructed in a special way. They both draw their indices from a
shared enum x86_regset, but 32 bit and 64 bit don't all support the same
regsets and can be compiled in at the same time in the case of
IA32_EMULATION. So this enum has to be laid out in a special way such that
there are no gaps for both x86_32_regsets and x86_64_regsets. This
involves ordering them just right by creating aliases for enum’s that
are only in one view or the other, or creating multiple versions like
REGSET32_IOPERM/REGSET64_IOPERM.
So the collection of the registers tries to minimize the size of the
allocation, but it doesn’t quite work. Then the x86 ptrace side works
around it by constructing the enum just right to avoid a problem. In the
end there is no functional problem, but it is somewhat strange and
fragile.
It could also be improved like this [1], by better utilizing the smaller
array, but this still wastes space in the regset array’s if they are not
carefully crafted to avoid gaps. Instead, just fully separate out the
enums and give them separate 32 and 64 enum names. Add some bitsize-free
defines for REGSET_GENERAL and REGSET_FP since they are the only two
referred to in bitsize generic code.
While introducing a bunch of new 32/64 enums, change the pattern of the
name from REGSET_FOO32 to REGSET32_FOO to better indicate that the 32 is
in reference to the CPU mode and not the register size, as suggested by
Eric Biederman.
This should have no functional change and is only changing how constants
are generated and referred to.
[1] https://lore.kernel.org/lkml/20180717162502.32274-1-yu-cheng.yu@intel.com/
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20221021221803.10910-2-rick.p.edgecombe%40intel.com
|
|
In order to avoid known hashes (from knowing the boot image),
randomize the CFI hashes with a per-boot random seed.
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221027092842.765195516@infradead.org
|
|
Add the "cfi=" boot parameter to allow people to select a CFI scheme
at boot time. Mostly useful for development / debugging.
Requested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221027092842.699804264@infradead.org
|
|
Implement an alternative CFI scheme that merges both the fine-grained
nature of kCFI but also takes full advantage of the coarse grained
hardware CFI as provided by IBT.
To contrast:
kCFI is a pure software CFI scheme and relies on being able to read
text -- specifically the instruction *before* the target symbol, and
does the hash validation *before* doing the call (otherwise control
flow is compromised already).
FineIBT is a software and hardware hybrid scheme; by ensuring every
branch target starts with a hash validation it is possible to place
the hash validation after the branch. This has several advantages:
o the (hash) load is avoided; no memop; no RX requirement.
o IBT WAIT-FOR-ENDBR state is a speculation stop; by placing
the hash validation in the immediate instruction after
the branch target there is a minimal speculation window
and the whole is a viable defence against SpectreBHB.
o Kees feels obliged to mention it is slightly more vulnerable
when the attacker can write code.
Obviously this patch relies on kCFI, but additionally it also relies
on the padding from the call-depth-tracking patches. It uses this
padding to place the hash-validation while the call-sites are
re-written to modify the indirect target to be 16 bytes in front of
the original target, thus hitting this new preamble.
Notably, there is no hardware that needs call-depth-tracking (Skylake)
and supports IBT (Tigerlake and onwards).
Suggested-by: Joao Moreira (Intel) <joao@overdrivepizza.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221027092842.634714496@infradead.org
|
|
commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") introduced a cond_resched() during enclave
release where the EREMOVE instruction is applied to every 4k enclave
page. Giving other tasks an opportunity to run while tearing down a
large enclave placates the soft lockup detector but Iqbal found
that the fix causes a 25% performance degradation of a workload
run using Gramine.
Gramine maintains a 1:1 mapping between processes and SGX enclaves.
That means if a workload in an enclave creates a subprocess then
Gramine creates a duplicate enclave for that subprocess to run in.
The consequence is that the release of the enclave used to run
the subprocess can impact the performance of the workload that is
run in the original enclave, especially in large enclaves when
SGX2 is not in use.
The workload run by Iqbal behaves as follows:
Create enclave (enclave "A")
/* Initialize workload in enclave "A" */
Create enclave (enclave "B")
/* Run subprocess in enclave "B" and send result to enclave "A" */
Release enclave (enclave "B")
/* Run workload in enclave "A" */
Release enclave (enclave "A")
The performance impact of releasing enclave "B" in the above scenario
is amplified when there is a lot of SGX memory and the enclave size
matches the SGX memory. When there is 128GB SGX memory and an enclave
size of 128GB, from the time enclave "B" starts the 128GB SGX memory
is oversubscribed with a combined demand for 256GB from the two
enclaves.
Before commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") enclave release was done in a tight loop
without giving other tasks a chance to run. Even though the system
experienced soft lockups the workload (run in enclave "A") obtained
good performance numbers because when the workload started running
there was no interference.
Commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") gave other tasks opportunity to run while an
enclave is released. The impact of this in this scenario is that while
enclave "B" is released and needing to access each page that belongs
to it in order to run the SGX EREMOVE instruction on it, enclave "A"
is attempting to run the workload needing to access the enclave
pages that belong to it. This causes a lot of swapping due to the
demand for the oversubscribed SGX memory. Longer latencies are
experienced by the workload in enclave "A" while enclave "B" is
released.
Improve the performance of enclave release while still avoiding the
soft lockup detector with two enhancements:
- Only call cond_resched() after XA_CHECK_SCHED iterations.
- Use the xarray advanced API to keep the xarray locked for
XA_CHECK_SCHED iterations instead of locking and unlocking
at every iteration.
This batching solution is copied from sgx_encl_may_map() that
also iterates through all enclave pages using this technique.
With this enhancement the workload experiences a 5%
performance degradation when compared to a kernel without
commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves"), an improvement to the reported 25%
degradation, while still placating the soft lockup detector.
Scenarios with poor performance are still possible even with these
enhancements. For example, short workloads creating sub processes
while running in large enclaves. Further performance improvements
are pursued in user space through avoiding to create duplicate enclaves
for certain sub processes, and using SGX2 that will do lazy allocation
of pages as needed so enclaves created for sub processes start quickly
and release quickly.
Fixes: 8795359e35bc ("x86/sgx: Silence softlockup detection when releasing large enclaves")
Reported-by: Md Iqbal Hossain <md.iqbal.hossain@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Md Iqbal Hossain <md.iqbal.hossain@intel.com>
Link: https://lore.kernel.org/all/00efa80dd9e35dc85753e1c5edb0344ac07bb1f0.1667236485.git.reinette.chatre%40intel.com
|
|
A call is made to arch_get_random_longs() and rdtsc(), rather than just
using get_random_long(), because this was written during a time when
very early boot would give abysmal entropy. These days, a call to
get_random_long() at early boot will incorporate RDRAND, RDTSC, and
more, without having to do anything bespoke.
In fact, the situation is now such that on the majority of x86 systems,
the pool actually is initialized at this point, even though it doesn't
need to be for get_random_long() to still return something better than
what this function currently does.
So simplify this to just call get_random_long() instead.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221029002613.143153-1-Jason@zx2c4.com
|
|
mce_severity_intel() has a special case to promote UC and AR errors
in kernel context to PANIC severity.
The "AR" case is already handled with separate entries in the severity
table for all instruction fetch errors, and those data fetch errors that
are not in a recoverable area of the kernel (i.e. have an extable fixup
entry).
Add an entry to the severity table for UC errors in kernel context that
reports severity = PANIC. Delete the special case code from
mce_severity_intel().
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220922195136.54575-2-tony.luck@intel.com
|
|
The symbol is not used outside of the file, so mark it static.
Signed-off-by: Chen Lifu <chenlifu@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220823021958.3052493-1-chenlifu@huawei.com
|
|
AMD's MCA Thresholding feature counts errors of all severity levels, not
just correctable errors. If a deferred error causes the threshold limit
to be reached (it was the error that caused the overflow), then both a
deferred error interrupt and a thresholding interrupt will be triggered.
The order of the interrupts is not guaranteed. If the threshold
interrupt handler is executed first, then it will clear MCA_STATUS for
the error. It will not check or clear MCA_DESTAT which also holds a copy
of the deferred error. When the deferred error interrupt handler runs it
will not find an error in MCA_STATUS, but it will find the error in
MCA_DESTAT. This will cause two errors to be logged.
Check for deferred errors when handling a threshold interrupt. If a bank
contains a deferred error, then clear the bank's MCA_DESTAT register.
Define a new helper function to do the deferred error check and clearing
of MCA_DESTAT.
[ bp: Simplify, convert comment to passive voice. ]
Fixes: 37d43acfd79f ("x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220621155943.33623-1-yazen.ghannam@amd.com
|
|
The first argument of WARN() is a condition, so this will use "addr"
as the format string and possibly crash.
Fixes: 3b6c1747da48 ("x86/retpoline: Add SKL retthunk retpolines")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/Y1gBoUZrRK5N%2FlCB@kili/
|
|
The field arch_has_empty_bitmaps is not required anymore. The field
min_cbm_bits is enough to validate the CBM (capacity bit mask) if the
architecture can support the zero CBM or not.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lore.kernel.org/r/166430979654.372014.615622285687642644.stgit@bmoger-ubuntu
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fix from Borislav Petkov:
- Fix ORC stack unwinding when GCOV is enabled
* tag 'objtool_urgent_for_v6.1_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fix unreliable stack dump with gcov
|
|
There's a conflict between the call-depth tracking commits in x86/core:
ee3e2469b346 ("x86/ftrace: Make it call depth tracking aware")
36b64f101219 ("x86/ftrace: Rebalance RSB")
eac828eaef29 ("x86/ftrace: Remove ftrace_epilogue()")
And these fixes in x86/urgent:
883bbbffa5a4 ("ftrace,kcfi: Separate ftrace_stub() and ftrace_stub_graph()")
b5f1fc318440 ("x86/ftrace: Remove ftrace_epilogue()")
It's non-trivial overlapping modifications - resolve them.
Conflicts:
arch/x86/kernel/ftrace_64.S
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate.
Fixes: 2308ee57d93d ("x86/fpu/amx: Enable the AMX feature in 64-bit mode")
Reported-by: Yuan Yao <yuan.yao@intel.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/lkml/BYAPR11MB3717EDEF2351C958F2C86EED95259@BYAPR11MB3717.namprd11.prod.outlook.com/
Link: https://lkml.kernel.org/r/20221021185844.13472-1-chang.seok.bae@intel.com
|
|
When a console stack dump is initiated with CONFIG_GCOV_PROFILE_ALL
enabled, show_trace_log_lvl() gets out of sync with the ORC unwinder,
causing the stack trace to show all text addresses as unreliable:
# echo l > /proc/sysrq-trigger
[ 477.521031] sysrq: Show backtrace of all active CPUs
[ 477.523813] NMI backtrace for cpu 0
[ 477.524492] CPU: 0 PID: 1021 Comm: bash Not tainted 6.0.0 #65
[ 477.525295] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014
[ 477.526439] Call Trace:
[ 477.526854] <TASK>
[ 477.527216] ? dump_stack_lvl+0xc7/0x114
[ 477.527801] ? dump_stack+0x13/0x1f
[ 477.528331] ? nmi_cpu_backtrace.cold+0xb5/0x10d
[ 477.528998] ? lapic_can_unplug_cpu+0xa0/0xa0
[ 477.529641] ? nmi_trigger_cpumask_backtrace+0x16a/0x1f0
[ 477.530393] ? arch_trigger_cpumask_backtrace+0x1d/0x30
[ 477.531136] ? sysrq_handle_showallcpus+0x1b/0x30
[ 477.531818] ? __handle_sysrq.cold+0x4e/0x1ae
[ 477.532451] ? write_sysrq_trigger+0x63/0x80
[ 477.533080] ? proc_reg_write+0x92/0x110
[ 477.533663] ? vfs_write+0x174/0x530
[ 477.534265] ? handle_mm_fault+0x16f/0x500
[ 477.534940] ? ksys_write+0x7b/0x170
[ 477.535543] ? __x64_sys_write+0x1d/0x30
[ 477.536191] ? do_syscall_64+0x6b/0x100
[ 477.536809] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 477.537609] </TASK>
This happens when the compiled code for show_stack() has a single word
on the stack, and doesn't use a tail call to show_stack_log_lvl().
(CONFIG_GCOV_PROFILE_ALL=y is the only known case of this.) Then the
__unwind_start() skip logic hits an off-by-one bug and fails to unwind
all the way to the intended starting frame.
Fix it by reverting the following commit:
f1d9a2abff66 ("x86/unwind/orc: Don't skip the first frame for inactive tasks")
The original justification for that commit no longer exists. That
original issue was later fixed in a different way, with the following
commit:
f2ac57a4c49d ("x86/unwind/orc: Fix inactive tasks with stack pointer in %sp on GCC 10 compiled kernels")
Fixes: f1d9a2abff66 ("x86/unwind/orc: Don't skip the first frame for inactive tasks")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
[jpoimboe: rewrite commit log]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
|
Different function signatures means they needs to be different
functions; otherwise CFI gets upset.
As triggered by the ftrace boot tests:
[] CFI failure at ftrace_return_to_handler+0xac/0x16c (target: ftrace_stub+0x0/0x14; expected type: 0x0a5d5347)
Fixes: 3c516f89e17e ("x86: Add support for CONFIG_CFI_CLANG")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/Y06dg4e1xF6JTdQq@hirez.programming.kicks-ass.net
|
|
Remove the weird jumps to RET and simply use RET.
This then promotes ftrace_stub() to a real function; which becomes
important for kcfi.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.719080593@infradead.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
|
The Cyrix CPU specific MTRR function cyrix_set_all() will never be
called as the mtrr_ops->set_all() callback will only be called in the
use_intel() case, which would require the use_intel_if member of struct
mtrr_ops to be set, which isn't the case for Cyrix.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221004081023.32402-3-jgross@suse.com
|
|
Add a comment about set_mtrr_state() needing serialization.
[ bp: Touchups. ]
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220820092533.29420-2-jgross@suse.com
|
|
[ bp: Fixup merge conflict caused by changes coming from the kbuild tree. ]
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220606203802.158958-9-brgerst@gmail.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
There are significant differences between signal handling on 32-bit vs.
64-bit, like different structure layouts and legacy syscalls. Instead
of duplicating that code for native and compat, merge both versions
into one file.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220606203802.158958-8-brgerst@gmail.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Add ABI prefixes to the frame setup functions that didn't already have
them. To avoid compiler warnings and prepare for moving these functions
to separate files, make them non-static.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220606203802.158958-7-brgerst@gmail.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Adapt the native get_sigframe() function so that the compat signal code
can use it.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220606203802.158958-6-brgerst@gmail.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Push down the call to sigmask_to_save() into the frame setup functions.
Thus, remove the use of compat_sigset_t outside of the compat code.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220606203802.158958-3-brgerst@gmail.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Passing the signal number as a separate parameter is unnecessary, since
it is always ksig->sig.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220606203802.158958-2-brgerst@gmail.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
AMD systems support zero CBM (capacity bit mask) for cache allocation.
That is reflected in rdt_init_res_defs_amd() by:
r->cache.arch_has_empty_bitmaps = true;
However given the unified code in cbm_validate(), checking for:
val == 0 && !arch_has_empty_bitmaps
is not enough because of another check in cbm_validate():
if ((zero_bit - first_bit) < r->cache.min_cbm_bits)
The default value of r->cache.min_cbm_bits = 1.
Leading to:
$ cd /sys/fs/resctrl
$ mkdir foo
$ cd foo
$ echo L3:0=0 > schemata
-bash: echo: write error: Invalid argument
$ cat /sys/fs/resctrl/info/last_cmd_status
Need at least 1 bits in the mask
Initialize the min_cbm_bits to 0 for AMD. Also, remove the default
setting of min_cbm_bits and initialize it separately.
After the fix:
$ cd /sys/fs/resctrl
$ mkdir foo
$ cd foo
$ echo L3:0=0 > schemata
$ cat /sys/fs/resctrl/info/last_cmd_status
ok
Fixes: 316e7f901f5a ("x86/resctrl: Add struct rdt_cache::arch_has_{sparse, empty}_bitmaps")
Co-developed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/lkml/20220517001234.3137157-1-eranian@google.com
|
|
Currently, the patch application logic checks whether the revision
needs to be applied on each logical CPU (SMT thread). Therefore, on SMT
designs where the microcode engine is shared between the two threads,
the application happens only on one of them as that is enough to update
the shared microcode engine.
However, there are microcode patches which do per-thread modification,
see Link tag below.
Therefore, drop the revision check and try applying on each thread. This
is what the BIOS does too so this method is very much tested.
Btw, change only the early paths. On the late loading paths, there's no
point in doing per-thread modification because if is it some case like
in the bugzilla below - removing a CPUID flag - the kernel cannot go and
un-use features it has detected are there early. For that, one should
use early loading anyway.
[ bp: Fixes does not contain the oldest commit which did check for
equality but that is good enough. ]
Fixes: 8801b3fcb574 ("x86/microcode/AMD: Rework container parsing")
Reported-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Cc: <stable@vger.kernel.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216211
|
|
Today, core ID is assumed to be unique within each package.
But an AlderLake-N platform adds a Module level between core and package,
Linux excludes the unknown modules bits from the core ID, resulting in
duplicate core ID's.
To keep core ID unique within a package, Linux must include all APIC-ID
bits for known or unknown levels above the core and below the package
in the core ID.
It is important to understand that core ID's have always come directly
from the APIC-ID encoding, which comes from the BIOS. Thus there is no
guarantee that they start at 0, or that they are contiguous.
As such, naively using them for array indexes can be problematic.
[ dhansen: un-known -> unknown ]
Fixes: 7745f03eb395 ("x86/topology: Add CPUID.1F multi-die/package support")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221014090147.1836-5-rui.zhang@intel.com
|
|
CPUID.1F/B does not enumerate Package level explicitly, instead, all the
APIC-ID bits above the enumerated levels are assumed to be package ID
bits.
Current code gets package ID by shifting out all the APIC-ID bits that
Linux supports, rather than shifting out all the APIC-ID bits that
CPUID.1F enumerates. This introduces problems when CPUID.1F enumerates a
level that Linux does not support.
For example, on a single package AlderLake-N, there are 2 Ecore Modules
with 4 atom cores in each module. Linux does not support the Module
level and interprets the Module ID bits as package ID and erroneously
reports a multi module system as a multi-package system.
Fix this by using APIC-ID bits above all the CPUID.1F enumerated levels
as package ID.
[ dhansen: spelling fix ]
Fixes: 7745f03eb395 ("x86/topology: Add CPUID.1F multi-die/package support")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221014090147.1836-4-rui.zhang@intel.com
|
|
Debug aid, allows running retbleed=force,stuff on non-affected uarchs
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
The fully secure mitigation for RSB underflow on Intel SKL CPUs is IBRS,
which inflicts up to 30% penalty for pathological syscall heavy work loads.
Software based call depth tracking and RSB refill is not perfect, but
reduces the attack surface massively. The penalty for the pathological case
is about 8% which is still annoying but definitely more palatable than IBRS.
Add a retbleed=stuff command line option to enable the call depth tracking
and software refill of the RSB.
This gives admins a choice. IBeeRS are safe and cause headaches, call depth
tracking is considered to be s(t)ufficiently safe.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111149.029587352@infradead.org
|
|
Since ftrace has trampolines, don't use thunks for the __fentry__ site
but instead require that every function called from there includes
accounting. This very much includes all the direct-call functions.
Additionally, ftrace uses ROP tricks in two places:
- return_to_handler(), and
- ftrace_regs_caller() when pt_regs->orig_ax is set by a direct-call.
return_to_handler() already uses a retpoline to replace an
indirect-jump to defeat IBT, since this is a jump-type retpoline, make
sure there is no accounting done and ALTERNATIVE the RET into a ret.
ftrace_regs_caller() does much the same and gets the same treatment.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.927545073@infradead.org
|
|
ftrace_regs_caller() uses a PUSH;RET pattern to tail-call into a
direct-call function, this unbalances the RSB, fix that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.823216933@infradead.org
|
|
Remove the weird jumps to RET and simply use RET.
This then promotes ftrace_stub() to a real function; which becomes
important for kcfi.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.719080593@infradead.org
|
|
Ensure that calls in BPF jitted programs are emitting call depth accounting
when enabled to keep the call/return balanced. The return thunk jump is
already injected due to the earlier retbleed mitigations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.615413406@infradead.org
|
|
Callthunks addresses on the stack would confuse the ORC unwinder. Handle
them correctly and tell ORC to proceed further down the stack.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.511637628@infradead.org
|
|
When indirect calls are switched to direct calls then it has to be ensured
that the call target is not the function, but the call thunk when call
depth tracking is enabled. But static calls are available before call
thunks have been set up.
Ensure a second run through the static call patching code after call thunks
have been created. When call thunks are not enabled this has no side
effects.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.306100465@infradead.org
|
|
Add a debuigfs mechanism to validate the accounting, e.g. vs. call/ret
balance and to gather statistics about the stuffing to call ratio.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.204285506@infradead.org
|
|
Add the actual SKL call thunk for call depth accounting.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.101125588@infradead.org
|
|
Ensure that retpolines do the proper call accounting so that the return
accounting works correctly.
Specifically; retpolines are used to replace both 'jmp *%reg' and
'call *%reg', however these two cases do not have the same accounting
requirements. Therefore split things up and provide two different
retpoline arrays for SKL.
The 'jmp *%reg' case needs no accounting, the
__x86_indirect_jump_thunk_array[] covers this. The retpoline is
changed to not use the return thunk; it's a simple call;ret construct.
[ strictly speaking it should do:
andq $(~0x1f), PER_CPU_VAR(__x86_call_depth)
but we can argue this can be covered by the fuzz we already have
in the accounting depth (12) vs the RSB depth (16) ]
The 'call *%reg' case does need accounting, the
__x86_indirect_call_thunk_array[] covers this. Again, this retpoline
avoids the use of the return-thunk, in this case to avoid double
accounting.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.996634749@infradead.org
|
|
To address the Intel SKL RSB underflow issue in software it's required to
do call depth tracking.
Provide a return thunk for call depth tracking on Intel SKL CPUs.
The tracking does not use a counter. It uses uses arithmetic shift
right on call entry and logical shift left on return.
The depth tracking variable is initialized to 0x8000.... when the call
depth is zero. The arithmetic shift right sign extends the MSB and
saturates after the 12th call. The shift count is 5 so the tracking covers
12 nested calls. On return the variable is shifted left logically so it
becomes zero again.
CALL RET
0: 0x8000000000000000 0x0000000000000000
1: 0xfc00000000000000 0xf000000000000000
...
11: 0xfffffffffffffff8 0xfffffffffffffc00
12: 0xffffffffffffffff 0xffffffffffffffe0
After a return buffer fill the depth is credited 12 calls before the next
stuffing has to take place.
There is a inaccuracy for situations like this:
10 calls
5 returns
3 calls
4 returns
3 calls
....
The shift count might cause this to be off by one in either direction, but
there is still a cushion vs. the RSB depth. The algorithm does not claim to
be perfect, but it should obfuscate the problem enough to make exploitation
extremly difficult.
The theory behind this is:
RSB is a stack with depth 16 which is filled on every call. On the return
path speculation "pops" entries to speculate down the call chain. Once the
speculative RSB is empty it switches to other predictors, e.g. the Branch
History Buffer, which can be mistrained by user space and misguide the
speculation path to a gadget.
Call depth tracking is designed to break this speculation path by stuffing
speculation trap calls into the RSB which are never getting a corresponding
return executed. This stalls the prediction path until it gets resteered,
The assumption is that stuffing at the 12th return is sufficient to break
the speculation before it hits the underflow and the fallback to the other
predictors. Testing confirms that it works. Johannes, one of the retbleed
researchers. tried to attack this approach but failed.
There is obviously no scientific proof that this will withstand future
research progress, but all we can do right now is to speculate about it.
The SAR/SHL usage was suggested by Andi Kleen.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
|
|
In preparation for call depth tracking on Intel SKL CPUs, make it possible
to patch in a SKL specific return thunk.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.680469665@infradead.org
|
|
As for the builtins create call thunks and patch the call sites to call the
thunk on Intel SKL CPUs for retbleed mitigation.
Note, that module init functions are ignored for sake of simplicity because
loading modules is not something which is done in high frequent loops and
the attacker has not really a handle on when this happens in order to
launch a matching attack. The depth tracking will still work for calls into
the builtins and because the call is not accounted it will underflow faster
and overstuff, but that's mitigated by the saturating counter and the side
effect is only temporary.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.575673066@infradead.org
|
|
Mitigating the Intel SKL RSB underflow issue in software requires to
track the call depth. That is every CALL and every RET need to be
intercepted and additional code injected.
The existing retbleed mitigations already include means of redirecting
RET to __x86_return_thunk; this can be re-purposed and RET can be
redirected to another function doing RET accounting.
CALL accounting will use the function padding introduced in prior
patches. For each CALL instruction, the destination symbol's padding
is rewritten to do the accounting and the CALL instruction is adjusted
to call into the padding.
This ensures only affected CPUs pay the overhead of this accounting.
Unaffected CPUs will leave the padding unused and have their 'JMP
__x86_return_thunk' replaced with an actual 'RET' instruction.
Objtool has been modified to supply a .call_sites section that lists
all the 'CALL' instructions. Additionally the paravirt instruction
sites are iterated since they will have been patched from an indirect
call to direct calls (or direct instructions in which case it'll be
ignored).
Module handling and the actual thunk code for SKL will be added in
subsequent steps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.470877038@infradead.org
|
|
The upcoming call thunk patching must hold text_mutex and needs access to
text_poke_copy(), which takes text_mutex.
Provide a _locked postfixed variant to expose the inner workings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.159977224@infradead.org
|