summaryrefslogtreecommitdiff
path: root/arch/powerpc/include
AgeCommit message (Collapse)Author
2019-05-03powerpc/mm: move hugetlb_disabled into asm/hugetlb.hChristophe Leroy
No need to have this in asm/page.h, move it into asm/hugetlb.h Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: cleanup ifdef mess in add_huge_page_size()Christophe Leroy
Introduce a subarch specific helper check_and_get_huge_psize() to check the huge page sizes and cleanup the ifdef mess in add_huge_page_size() Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: add a helper to populate hugepdChristophe Leroy
This patchs adds a subarch helper to populate hugepd. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: split asm/hugetlb.h into dedicated subarch filesChristophe Leroy
Three subarches support hugepages: - fsl book3e - book3s/64 - 8xx This patch splits asm/hugetlb.h to reduce the #ifdef mess. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: make gup_hugepte() staticChristophe Leroy
gup_huge_pd() is the only user of gup_hugepte() and it is located in the same file. This patch moves gup_huge_pd() after gup_hugepte() and makes gup_hugepte() static. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/64: only book3s/64 supports CONFIG_PPC_64K_PAGESChristophe Leroy
CONFIG_PPC_64K_PAGES cannot be selected by nohash/64. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: define subarch SLB_ADDR_LIMIT_DEFAULTChristophe Leroy
This patch defines a subarch specific SLB_ADDR_LIMIT_DEFAULT to remove the #ifdefs around the setup of mm->context.slb_addr_limit It also generalises the use of mm_ctx_set_slb_addr_limit() helper. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: define get_slice_psize() all the timeChristophe Leroy
get_slice_psize() can be defined regardless of CONFIG_PPC_MM_SLICES to avoid ifdefs Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/8xx: get rid of #ifdef CONFIG_HUGETLB_PAGE for slicesChristophe Leroy
The 8xx only selects CONFIG_PPC_MM_SLICES when CONFIG_HUGETLB_PAGE is set. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: get rid of mm_ctx_slice_mask_xxx()Christophe Leroy
Now that slice_mask_for_size() is in mmu.h, the mm_ctx_slice_mask_xxx() are not needed anymore, so drop them. Note that the 8xx ones where not used anyway. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: move slice_mask_for_size() into mmu.hChristophe Leroy
Move slice_mask_for_size() into subarch mmu.h Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> [mpe: Retain the BUG_ON()s, rather than converting to VM_BUG_ON()] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03powerpc/mm: no slice for nohash/64Christophe Leroy
Only nohash/32 and book3s/64 support mm slices. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-02powerpc/nohash64: clean pgtable.hChristophe Leroy
TRANSPARENT_HUGEPAGE is only supported by book3s VMEMMAP_REGION_ID is never used Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-01powerpc/powernv/mce: Print additional information about MCE error.Mahesh Salgaonkar
Print more information about MCE error whether it is an hardware or software error. Some of the MCE errors can be easily categorized as hardware or software errors e.g. UEs are due to hardware error, where as error triggered due to invalid usage of tlbie is a pure software bug. But not all the MCE errors can be easily categorize into either software or hardware. There are errors like multihit errors which are usually result of a software bug, but in some rare cases a hardware failure can cause a multihit error. In past, we have seen case where after replacing faulty chip, multihit errors stopped occurring. Same with parity errors, which are usually due to faulty hardware but there are chances where multihit can also cause an parity error. Such errors are difficult to determine what really caused it. Hence this patch classifies MCE errors into following four categorize: 1. Hardware error: UE and Link timeout failure errors. 2. Probable hardware error (some chance of software cause) SLB/ERAT/TLB Parity errors. 3. Software error Invalid tlbie form. 4. Probable software error (some chance of hardware cause) SLB/ERAT/TLB Multihit errors. Sample output: MCE: CPU80: machine check (Warning) Guest SLB Multihit DAR: 000001001b6e0320 [Recovered] MCE: CPU80: PID: 24765 Comm: qemu-system-ppc Guest NIP: [00007fffa309dc60] MCE: CPU80: Probable Software error (some chance of hardware cause) Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-01powerpc/powernv/mce: Print correct severity for MCE error.Mahesh Salgaonkar
Currently all machine check errors are printed as severe errors which isn't correct. Print soft errors as warning instead of severe errors. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-01powerpc/powernv/mce: Reduce MCE console logs to lesser lines.Mahesh Salgaonkar
Also add cpu number while displaying MCE log. This will help cleaner logs when MCE hits on multiple cpus simultaneously. Before the changes the MCE output was: Severe Machine check interrupt [Recovered] NIP [d00000000ba80280]: insert_slb_entry.constprop.0+0x278/0x2c0 [mcetest_slb] Initiator: CPU Error type: SLB [Multihit] Effective address: d00000000ba80280 After this patch series changes the MCE output will be: MCE: CPU80: machine check (Warning) Host SLB Multihit [Recovered] MCE: CPU80: NIP: [d00000000b550280] insert_slb_entry.constprop.0+0x278/0x2c0 [mcetest_slb] MCE: CPU80: Probable software error (some chance of hardware cause) UE in host application: MCE: CPU48: machine check (Severe) Host UE Load/Store DAR: 00007fffc6079a80 paddr: 0000000f8e260000 [Not recovered] MCE: CPU48: PID: 4584 Comm: find NIP: [0000000010023368] MCE: CPU48: Hardware error and for MCE in Guest: MCE: CPU80: machine check (Warning) Guest SLB Multihit DAR: 000001001b6e0320 [Recovered] MCE: CPU80: PID: 24765 Comm: qemu-system-ppc Guest NIP: [00007fffa309dc60] MCE: CPU80: Probable software error (some chance of hardware cause) Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-01powerpc: Add doorbell tracepointsAnton Blanchard
When analysing sources of OS jitter, I noticed that doorbells cannot be traced. Signed-off-by: Anton Blanchard <anton@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-30Merge branch 'topic/ppc-kvm' into nextMichael Ellerman
Merge our topic branch shared with KVM. In particular this includes the rewrite of the idle code into C.
2019-04-30powerpc/64s: Reimplement book3s idle code in CNicholas Piggin
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation speific HV idle code to the powernv platform code. Book3S assembly stubs are kept in common code and used only to save the stack frame and non-volatile GPRs before executing architected idle instructions, and restoring the stack and reloading GPRs then returning to C after waking from idle. The complex logic dealing with threads and subcores, locking, SPRs, HMIs, timebase resync, etc., is all done in C which makes it more maintainable. This is not a strict translation to C code, there are some significant differences: - Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs, but saves and restores them itself. - The optimisation where EC=ESL=0 idle modes did not have to save GPRs or change MSR is restored, because it's now simple to do. ESL=1 sleeps that do not lose GPRs can use this optimization too. - KVM secondary entry and cede is now more of a call/return style rather than branchy. nap_state_lost is not required because KVM always returns via NVGPR restoring path. - KVM secondary wakeup from offline sequence is moved entirely into the offline wakeup, which avoids a hwsync in the normal idle wakeup path. Performance measured with context switch ping-pong on different threads or cores, is possibly improved a small amount, 1-3% depending on stop state and core vs thread test for shallow states. Deep states it's in the noise compared with other latencies. KVM improvements: - Idle sleepers now always return to caller rather than branch out to KVM first. - This allows optimisations like very fast return to caller when no state has been lost. - KVM no longer requires nap_state_lost because it controls NVGPR save/restore itself on the way in and out. - The heavy idle wakeup KVM request check can be moved out of the normal host idle code and into the not-performance-critical offline code. - KVM nap code now returns from where it is called, which makes the flow a bit easier to follow. Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Squash the KVM changes in] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-30KVM: PPC: Book3S HV: XIVE: Replace the 'destroy' method by a 'release' methodCédric Le Goater
When a P9 sPAPR VM boots, the CAS negotiation process determines which interrupt mode to use (XICS legacy or XIVE native) and invokes a machine reset to activate the chosen mode. We introduce 'release' methods for the XICS-on-XIVE and the XIVE native KVM devices which are called when the file descriptor of the device is closed after the TIMA and ESB pages have been unmapped. They perform the necessary cleanups : clear the vCPU interrupt presenters that could be attached and then destroy the device. The 'release' methods replace the 'destroy' methods as 'destroy' is not called anymore once 'release' is. Compatibility with older QEMU is nevertheless maintained. This is not considered as a safe operation as the vCPUs are still running and could be referencing the KVM device through their presenters. To protect the system from any breakage, the kvmppc_xive objects representing both KVM devices are now stored in an array under the VM. Allocation is performed on first usage and memory is freed only when the VM exits. [paulus@ozlabs.org - Moved freeing of xive structures to book3s.c, put it under #ifdef CONFIG_KVM_XICS.] Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add a mapping for the source ESB pagesCédric Le Goater
Each source is associated with an Event State Buffer (ESB) with a even/odd pair of pages which provides commands to manage the source: to trigger, to EOI, to turn off the source for instance. The custom VM fault handler will deduce the guest IRQ number from the offset of the fault, and the ESB page of the associated XIVE interrupt will be inserted into the VMA using the internal structure caching information on the interrupts. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add a TIMA mappingCédric Le Goater
Each thread has an associated Thread Interrupt Management context composed of a set of registers. These registers let the thread handle priority management and interrupt acknowledgment. The most important are : - Interrupt Pending Buffer (IPB) - Current Processor Priority (CPPR) - Notification Source Register (NSR) They are exposed to software in four different pages each proposing a view with a different privilege. The first page is for the physical thread context and the second for the hypervisor. Only the third (operating system) and the fourth (user level) are exposed the guest. A custom VM fault handler will populate the VMA with the appropriate pages, which should only be the OS page for now. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add get/set accessors for the VP XIVE stateCédric Le Goater
The state of the thread interrupt management registers needs to be collected for migration. These registers are cached under the 'xive_saved_state.w01' field of the VCPU when the VPCU context is pulled from the HW thread. An OPAL call retrieves the backup of the IPB register in the underlying XIVE NVT structure and merges it in the KVM state. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add a control to dirty the XIVE EQ pagesCédric Le Goater
When migration of a VM is initiated, a first copy of the RAM is transferred to the destination before the VM is stopped, but there is no guarantee that the EQ pages in which the event notifications are queued have not been modified. To make sure migration will capture a consistent memory state, the XIVE device should perform a XIVE quiesce sequence to stop the flow of event notifications and stabilize the EQs. This is the purpose of the KVM_DEV_XIVE_EQ_SYNC control which will also marks the EQ pages dirty to force their transfer. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add a control to sync the sourcesCédric Le Goater
This control will be used by the H_INT_SYNC hcall from QEMU to flush event notifications on the XIVE IC owning the source. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add a global reset controlCédric Le Goater
This control is to be used by the H_INT_RESET hcall from QEMU. Its purpose is to clear all configuration of the sources and EQs. This is necessary in case of a kexec (for a kdump kernel for instance) to make sure that no remaining configuration is left from the previous boot setup so that the new kernel can start safely from a clean state. The queue 7 is ignored when the XIVE device is configured to run in single escalation mode. Prio 7 is used by escalations. The XIVE VP is kept enabled as the vCPU is still active and connected to the XIVE device. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add controls for the EQ configurationCédric Le Goater
These controls will be used by the H_INT_SET_QUEUE_CONFIG and H_INT_GET_QUEUE_CONFIG hcalls from QEMU to configure the underlying Event Queue in the XIVE IC. They will also be used to restore the configuration of the XIVE EQs and to capture the internal run-time state of the EQs. Both 'get' and 'set' rely on an OPAL call to access the EQ toggle bit and EQ index which are updated by the XIVE IC when event notifications are enqueued in the EQ. The value of the guest physical address of the event queue is saved in the XIVE internal xive_q structure for later use. That is when migration needs to mark the EQ pages dirty to capture a consistent memory state of the VM. To be noted that H_INT_SET_QUEUE_CONFIG does not require the extra OPAL call setting the EQ toggle bit and EQ index to configure the EQ, but restoring the EQ state will. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add a control to configure a sourceCédric Le Goater
This control will be used by the H_INT_SET_SOURCE_CONFIG hcall from QEMU to configure the target of a source and also to restore the configuration of a source when migrating the VM. The XIVE source interrupt structure is extended with the value of the Effective Interrupt Source Number. The EISN is the interrupt number pushed in the event queue that the guest OS will use to dispatch events internally. Caching the EISN value in KVM eases the test when checking if a reconfiguration is indeed needed. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: add a control to initialize a sourceCédric Le Goater
The XIVE KVM device maintains a list of interrupt sources for the VM which are allocated in the pool of generic interrupts (IPIs) of the main XIVE IC controller. These are used for the CPU IPIs as well as for virtual device interrupts. The IRQ number space is defined by QEMU. The XIVE device reuses the source structures of the XICS-on-XIVE device for the source blocks (2-level tree) and for the source interrupts. Under XIVE native, the source interrupt caches mostly configuration information and is less used than under the XICS-on-XIVE device in which hcalls are still necessary at run-time. When a source is initialized in KVM, an IPI interrupt source is simply allocated at the OPAL level and then MASKED. KVM only needs to know about its type: LSI or MSI. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Introduce a new capability KVM_CAP_PPC_IRQ_XIVECédric Le Goater
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to let QEMU connect the vCPU presenters to the XIVE KVM device if required. The capability is not advertised for now as the full support for the XIVE native exploitation mode is not yet available. When this is case, the capability will be advertised on PowerNV Hypervisors only. Nested guests (pseries KVM Hypervisor) are not supported. Internally, the interface to the new KVM device is protected with a new interrupt mode: KVMPPC_IRQ_XIVE. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Add a new KVM device for the XIVE native exploitation modeCédric Le Goater
This is the basic framework for the new KVM device supporting the XIVE native exploitation mode. The user interface exposes a new KVM device to be created by QEMU, only available when running on a L0 hypervisor. Support for nested guests is not available yet. The XIVE device reuses the device structure of the XICS-on-XIVE device as they have a lot in common. That could possibly change in the future if the need arise. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-nextPaul Mackerras
This merges in the ppc-kvm topic branch from the powerpc tree to get patches which touch both general powerpc code and KVM code, one of which is a prerequisite for following patches. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Flush TLB on secondary radix threadsPaul Mackerras
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host in SMT1 mode, KVM will run guest VCPUs on offline secondary threads. If those guests are in radix mode, we fail to load the LPID and flush the TLB if necessary, leading to the guest crashing with an unsupported MMU fault. This arises from commit 9a4506e11b97 ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on", 2018-05-17), which didn't consider the case where indep_threads_mode = N. For simplicity, this makes the real-mode guest entry path flush the TLB in the same place for both radix and hash guests, as we did before 9a4506e11b97, though the code is now C code rather than assembly code. We also have the radix TLB flush open-coded rather than calling radix__local_flush_tlb_lpid_guest(), because the TLB flush can be called in real mode, and in real mode we don't want to invoke the tracepoint code. Fixes: 9a4506e11b97 ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on") Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Move HPT guest TLB flushing to C codePaul Mackerras
This replaces assembler code in book3s_hv_rmhandlers.S that checks the kvm->arch.need_tlb_flush cpumask and optionally does a TLB flush with C code in book3s_hv_builtin.c. Note that unlike the radix version, the hash version doesn't do an explicit ERAT invalidation because we will invalidate and load up the SLB before entering the guest, and that will invalidate the ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S: Allocate guest TCEs on demand tooAlexey Kardashevskiy
We already allocate hardware TCE tables in multiple levels and skip intermediate levels when we can, now it is a turn of the KVM TCE tables. Thankfully these are allocated already in 2 levels. This moves the table's last level allocation from the creating helper to kvmppc_tce_put() and kvm_spapr_tce_fault(). Since such allocation cannot be done in real mode, this creates a virtual mode version of kvmppc_tce_put() which handles allocations. This adds kvmppc_rm_ioba_validate() to do an additional test if the consequent kvmppc_tce_put() needs a page which has not been allocated; if this is the case, we bail out to virtual mode handlers. The allocations are protected by a new mutex as kvm->lock is not suitable for the task because the fault handler is called with the mmap_sem held but kvmhv_setup_mmu() locks kvm->lock and mmap_sem in the reverse order. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Avoid lockdep debugging in TCE realmode handlersAlexey Kardashevskiy
The kvmppc_tce_to_ua() helper is called from real and virtual modes and it works fine as long as CONFIG_DEBUG_LOCKDEP is not enabled. However if the lockdep debugging is on, the lockdep will most likely break in kvm_memslots() because of srcu_dereference_check() so we need to use PPC-own kvm_memslots_raw() which uses realmode safe rcu_dereference_raw_notrace(). This creates a realmode copy of kvmppc_tce_to_ua() which replaces kvm_memslots() with kvm_memslots_raw(). Since kvmppc_rm_tce_to_ua() becomes static and can only be used inside HV KVM, this moves it earlier under CONFIG_KVM_BOOK3S_HV_POSSIBLE. This moves truly virtual-mode kvmppc_tce_to_ua() to where it belongs and drops the prmap parameter which was never used in the virtual mode. Fixes: d3695aa4f452 ("KVM: PPC: Add support for multiple-TCE hcalls", 2016-02-15) Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Implement real mode H_PAGE_INIT handlerSuraj Jitindar Singh
Implement a real mode handler for the H_CALL H_PAGE_INIT which can be used to zero or copy a guest page. The page is defined to be 4k and must be 4k aligned. The in-kernel real mode handler halves the time to handle this H_CALL compared to handling it in userspace for a hash guest. Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-29powerpc/pseries: Track LMB nid instead of using device treeNathan Fontenot
When removing memory we need to remove the memory from the node it was added to instead of looking up the node it should be in in the device tree. During testing we have seen scenarios where the affinity for a LMB changes due to a partition migration or PRRN event. In these cases the node the LMB exists in may not match the node the device tree indicates it belongs in. This can lead to a system crash when trying to DLPAR remove the LMB after a migration or PRRN event. The current code looks up the node in the device tree to remove the LMB from, the crash occurs when we try to offline this node and it does not have any data, i.e. node_data[nid] == NULL. 36:mon> e cpu 0x36: Vector: 300 (Data Access) at [c0000001828b7810] pc: c00000000036d08c: try_offline_node+0x2c/0x1b0 lr: c0000000003a14ec: remove_memory+0xbc/0x110 sp: c0000001828b7a90 msr: 800000000280b033 dar: 9a28 dsisr: 40000000 current = 0xc0000006329c4c80 paca = 0xc000000007a55200 softe: 0 irq_happened: 0x01 pid = 76926, comm = kworker/u320:3 36:mon> t [link register ] c0000000003a14ec remove_memory+0xbc/0x110 [c0000001828b7a90] c00000000006a1cc arch_remove_memory+0x9c/0xd0 (unreliable) [c0000001828b7ad0] c0000000003a14e0 remove_memory+0xb0/0x110 [c0000001828b7b20] c0000000000c7db4 dlpar_remove_lmb+0x94/0x160 [c0000001828b7b60] c0000000000c8ef8 dlpar_memory+0x7e8/0xd10 [c0000001828b7bf0] c0000000000bf828 handle_dlpar_errorlog+0xf8/0x160 [c0000001828b7c60] c0000000000bf8cc pseries_hp_work_fn+0x3c/0xa0 [c0000001828b7c90] c000000000128cd8 process_one_work+0x298/0x5a0 [c0000001828b7d20] c000000000129068 worker_thread+0x88/0x620 [c0000001828b7dc0] c00000000013223c kthread+0x1ac/0x1c0 [c0000001828b7e30] c00000000000b45c ret_from_kernel_thread+0x5c/0x80 To resolve this we need to track the node a LMB belongs to when it is added to the system so we can remove it from that node instead of the node that the device tree indicates it should belong to. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm/hash: Rename KERNEL_REGION_ID to LINEAR_MAP_REGION_IDAneesh Kumar K.V
The region actually point to linear map. Rename the #define to clarify thati. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm/hash: Simplify the region id calculation.Aneesh Kumar K.V
This reduces multiple comparisons in get_region_id to a bit shift operation. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm: Drop the unnecessary region checkAneesh Kumar K.V
All the regions are now mapped with top nibble 0xc. Hence the region id check is not needed for virt_addr_valid() Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm/hash64: Map all the kernel regions in the same 0xc rangeAneesh Kumar K.V
This patch maps vmalloc, IO and vmemap regions in the 0xc address range instead of the current 0xd and 0xf range. This brings the mapping closer to radix translation mode. With hash 64K page size each of this region is 512TB whereas with 4K config we are limited by the max page table range of 64TB and hence there regions are of 16TB size. The kernel mapping is now: On 4K hash kernel_region_map_size = 16TB kernel vmalloc start = 0xc000100000000000 kernel IO start = 0xc000200000000000 kernel vmemmap start = 0xc000300000000000 64K hash, 64K radix and 4k radix: kernel_region_map_size = 512TB kernel vmalloc start = 0xc008000000000000 kernel IO start = 0xc00a000000000000 kernel vmemmap start = 0xc00c000000000000 Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm/hash64: Add a variable to track the end of IO mappingAneesh Kumar K.V
This makes it easy to update the region mapping in the later patch Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerc/mm/hash: Reduce hash_mm_context sizeAneesh Kumar K.V
Allocate subpage protect related variables only if we use the feature. This helps in reducing the hash related mm context struct by around 4K Before the patch sizeof(struct hash_mm_context) = 8288 After the patch sizeof(struct hash_mm_context) = 4160 Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm: Reduce memory usage for mm_context_t for radixAneesh Kumar K.V
Currently, our mm_context_t on book3s64 include all hash specific context details like slice mask and subpage protection details. We can skip allocating these with radix translation. This will help us to save 8K per mm_context with radix translation. With the patch applied we have sizeof(mm_context_t) = 136 sizeof(struct hash_mm_context) = 8288 Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm: Add helpers for accessing hash translation related variablesAneesh Kumar K.V
We want to switch to allocating them runtime only when hash translation is enabled. Add helpers so that both book3s and nohash can be adapted to upcoming change easily. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm: Remove PPC_MM_SLICES #ifdef for book3s64Aneesh Kumar K.V
Book3s64 always have PPC_MM_SLICES enabled. So remove the unncessary #ifdef Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/mm: Fix build error with FLATMEM book3s64 configAneesh Kumar K.V
The current value of MAX_PHYSMEM_BITS cannot work with 32 bit configs. We used to have MAX_PHYSMEM_BITS not defined without SPARSEMEM and 32 bit configs never expected a value to be set for MAX_PHYSMEM_BITS. Dependent code such as zsmalloc derived the right values based on other fields. Instead of finding a value that works with different configs, use new values only for book3s_64. For 64 bit booke, use the definition of MAX_PHYSMEM_BITS as per commit a7df61a0e2b6 ("[PATCH] ppc64: Increase sparsemem defaults") That change was done in 2005 and hopefully will work with book3e 64. Fixes: 8bc086899816 ("powerpc/mm: Only define MAX_PHYSMEM_BITS in SPARSEMEM configurations") Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/32s: Implement Kernel Userspace Access ProtectionChristophe Leroy
This patch implements Kernel Userspace Access Protection for book3s/32. Due to limitations of the processor page protection capabilities, the protection is only against writing. read protection cannot be achieved using page protection. The previous patch modifies the page protection so that RW user pages are RW for Key 0 and RO for Key 1, and it sets Key 0 for both user and kernel. This patch changes userspace segment registers are set to Ku 0 and Ks 1. When kernel needs to write to RW pages, the associated segment register is then changed to Ks 0 in order to allow write access to the kernel. In order to avoid having the read all segment registers when locking/unlocking the access, some data is kept in the thread_struct and saved on stack on exceptions. The field identifies both the first unlocked segment and the first segment following the last unlocked one. When no segment is unlocked, it contains value 0. As the hash_page() function is not able to easily determine if a protfault is due to a bad kernel access to userspace, protfaults need to be handled by handle_page_fault when KUAP is set. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> [mpe: Drop allow_read/write_to/from_user() as they're now in kup.h, and adapt allow_user_access() to do nothing when to == NULL] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-21powerpc/32s: Prepare Kernel Userspace Access ProtectionChristophe Leroy
This patch prepares Kernel Userspace Access Protection for book3s/32. Due to limitations of the processor page protection capabilities, the protection is only against writing. read protection cannot be achieved using page protection. book3s/32 provides the following values for PP bits: PP00 provides RW for Key 0 and NA for Key 1 PP01 provides RW for Key 0 and RO for Key 1 PP10 provides RW for all PP11 provides RO for all Today PP10 is used for RW pages and PP11 for RO pages, and user segment register's Kp and Ks are set to 1. This patch modifies page protection to use PP01 for RW pages and sets user segment registers to Kp 0 and Ks 0. This will allow to setup Userspace write access protection by settng Ks to 1 in the following patch. Kernel space segment registers remain unchanged. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>