summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/mte.c
AgeCommit message (Collapse)Author
2020-12-22arm64: kasan: allow enabling in-kernel MTEVincenzo Frascino
Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22arm64: mte: reset the page tag in page->flagsVincenzo Frascino
The hardware tag-based KASAN for compatibility with the other modes stores the tag associated to a page in page->flags. Due to this the kernel faults on access when it allocates a page with an initial tag and the user changes the tags. Reset the tag associated by the kernel to a page in all the meaningful places to prevent kernel faults on access. Note: An alternative to this approach could be to modify page_to_virt(). This though could end up being racy, in fact if a CPU checks the PG_mte_tagged bit and decides that the page is not tagged but another CPU maps the same with PROT_MTE and becomes tagged the subsequent kernel access would fail. Link: https://lkml.kernel.org/r/9073d4e973747a6f78d5bdd7ebe17f290d087096.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22arm64: mte: add in-kernel MTE helpersVincenzo Frascino
Provide helper functions to manipulate allocation and pointer tags for kernel addresses. Low-level helper functions (mte_assign_*, written in assembly) operate tag values from the [0x0, 0xF] range. High-level helper functions (mte_get/set_*) use the [0xF0, 0xFF] range to preserve compatibility with normal kernel pointers that have 0xFF in their top byte. MTE_GRANULE_SIZE and related definitions are moved to mte-def.h header that doesn't have any dependencies and is safe to include into any low-level header. Link: https://lkml.kernel.org/r/c31bf759b4411b2d98cdd801eb928e241584fd1f.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-03arm64: mte: fix prctl(PR_GET_TAGGED_ADDR_CTRL) if TCF0=NONEPeter Collingbourne
Previously we were always returning a tag inclusion mask of zero via PR_GET_TAGGED_ADDR_CTRL if TCF0 was set to NONE. Fix it by making the code for the NONE case match the others. Signed-off-by: Peter Collingbourne <pcc@google.com> Link: https://linux-review.googlesource.com/id/Iefbea66cf7d2b4c80b82f9639b9ea7f33f7fac53 Fixes: af5ce95282dc ("arm64: mte: Allow user control of the generated random tags via prctl()") Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20201203075110.2781021-1-pcc@google.com Signed-off-by: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Enable swap of tagged pagesSteven Price
When swapping pages out to disk it is necessary to save any tags that have been set, and restore when swapping back in. Make use of the new page flag (PG_ARCH_2, locally named PG_mte_tagged) to identify pages with tags. When swapping out these pages the tags are stored in memory and later restored when the pages are brought back in. Because shmem can swap pages back in without restoring the userspace PTE it is also necessary to add a hook for shmem. Signed-off-by: Steven Price <steven.price@arm.com> [catalin.marinas@arm.com: move function prototypes to mte.h] [catalin.marinas@arm.com: drop '_tags' from arch_swap_restore_tags()] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS supportCatalin Marinas
Add support for bulk setting/getting of the MTE tags in a tracee's address space at 'addr' in the ptrace() syscall prototype. 'data' points to a struct iovec in the tracer's address space with iov_base representing the address of a tracer's buffer of length iov_len. The tags to be copied to/from the tracer's buffer are stored as one tag per byte. On successfully copying at least one tag, ptrace() returns 0 and updates the tracer's iov_len with the number of tags copied. In case of error, either -EIO or -EFAULT is returned, trying to follow the ptrace() man page. Note that the tag copying functions are not performance critical, therefore they lack optimisations found in typical memory copy routines. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Alan Hayward <Alan.Hayward@arm.com> Cc: Luis Machado <luis.machado@linaro.org> Cc: Omair Javaid <omair.javaid@linaro.org>
2020-09-04arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasksCatalin Marinas
In preparation for ptrace() access to the prctl() value, allow calling these functions on non-current tasks. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Restore the GCR_EL1 register after a suspendCatalin Marinas
The CPU resume/suspend routines only take care of the common system registers. Restore GCR_EL1 in addition via the __cpu_suspend_exit() function. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2020-09-04arm64: mte: Allow user control of the generated random tags via prctl()Catalin Marinas
The IRG, ADDG and SUBG instructions insert a random tag in the resulting address. Certain tags can be excluded via the GCR_EL1.Exclude bitmap when, for example, the user wants a certain colour for freed buffers. Since the GCR_EL1 register is not accessible at EL0, extend the prctl(PR_SET_TAGGED_ADDR_CTRL) interface to include a 16-bit field in the first argument for controlling which tags can be generated by the above instruction (an include rather than exclude mask). Note that by default all non-zero tags are excluded. This setting is per-thread. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Allow user control of the tag check mode via prctl()Catalin Marinas
By default, even if PROT_MTE is set on a memory range, there is no tag check fault reporting (SIGSEGV). Introduce a set of option to the exiting prctl(PR_SET_TAGGED_ADDR_CTRL) to allow user control of the tag check fault mode: PR_MTE_TCF_NONE - no reporting (default) PR_MTE_TCF_SYNC - synchronous tag check fault reporting PR_MTE_TCF_ASYNC - asynchronous tag check fault reporting These options translate into the corresponding SCTLR_EL1.TCF0 bitfield, context-switched by the kernel. Note that the kernel accesses to the user address space (e.g. read() system call) are not checked if the user thread tag checking mode is PR_MTE_TCF_NONE or PR_MTE_TCF_ASYNC. If the tag checking mode is PR_MTE_TCF_SYNC, the kernel makes a best effort to check its user address accesses, however it cannot always guarantee it. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Tags-aware aware memcmp_pages() implementationCatalin Marinas
When the Memory Tagging Extension is enabled, two pages are identical only if both their data and tags are identical. Make the generic memcmp_pages() a __weak function and add an arm64-specific implementation which returns non-zero if any of the two pages contain valid MTE tags (PG_mte_tagged set). There isn't much benefit in comparing the tags of two pages since these are normally used for heap allocations and likely to differ anyway. Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Clear the tags when a page is mapped in user-space with PROT_MTECatalin Marinas
Pages allocated by the kernel are not guaranteed to have the tags zeroed, especially as the kernel does not (yet) use MTE itself. To ensure the user can still access such pages when mapped into its address space, clear the tags via set_pte_at(). A new page flag - PG_mte_tagged (PG_arch_2) - is used to track pages with valid allocation tags. Since the zero page is mapped as pte_special(), it won't be covered by the above set_pte_at() mechanism. Clear its tags during early MTE initialisation. Co-developed-by: Steven Price <steven.price@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Handle synchronous and asynchronous tag check faultsVincenzo Frascino
The Memory Tagging Extension has two modes of notifying a tag check fault at EL0, configurable through the SCTLR_EL1.TCF0 field: 1. Synchronous raising of a Data Abort exception with DFSC 17. 2. Asynchronous setting of a cumulative bit in TFSRE0_EL1. Add the exception handler for the synchronous exception and handling of the asynchronous TFSRE0_EL1.TF0 bit setting via a new TIF flag in do_notify_resume(). On a tag check failure in user-space, whether synchronous or asynchronous, a SIGSEGV will be raised on the faulting thread. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>