Age | Commit message (Collapse) | Author |
|
* for-next/ftrace:
arm64: ftrace: Simplify get_ftrace_plt
arm64: ftrace: Add direct call support
ftrace: selftest: remove broken trace_direct_tramp
ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS
ftrace: Store direct called addresses in their ops
ftrace: Rename _ftrace_direct_multi APIs to _ftrace_direct APIs
ftrace: Remove the legacy _ftrace_direct API
ftrace: Replace uses of _ftrace_direct APIs with _ftrace_direct_multi
ftrace: Let unregister_ftrace_direct_multi() call ftrace_free_filter()
|
|
Replace the architecture's fbdev helpers with the generic
ones from <asm-generic/fb.h>. No functional changes.
v2:
* use default implementation for fb_pgprotect() (Arnd)
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Helge Deller <deller@gmx.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20230417125651.25126-5-tzimmermann@suse.de
|
|
Per-vcpu flags are updated using a non-atomic RMW operation.
Which means it is possible to get preempted between the read and
write operations.
Another interesting thing to note is that preemption also updates
flags, as we have some flag manipulation in both the load and put
operations.
It is thus possible to lose information communicated by either
load or put, as the preempted flag update will overwrite the flags
when the thread is resumed. This is specially critical if either
load or put has stored information which depends on the physical
CPU the vcpu runs on.
This results in really elusive bugs, and kudos must be given to
Mostafa for the long hours of debugging, and finally spotting
the problem.
Fix it by disabling preemption during the RMW operation, which
ensures that the state stays consistent. Also upgrade vcpu_get_flag
path to use READ_ONCE() to make sure the field is always atomically
accessed.
Fixes: e87abb73e594 ("KVM: arm64: Add helpers to manipulate vcpu flags among a set")
Reported-by: Mostafa Saleh <smostafa@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230418125737.2327972-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Automatically generate the Hypervisor Fine-Grained Instruction Trap
Register as per DDI0601 2023-03, currently we only have a definition for
the register name not any of the contents. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230306-arm64-fgt-reg-gen-v5-1-516a89cb50f6@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In preparation for improving objtool's handling of weak noreturn
functions, mark panic_smp_self_stop() __noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/92d76ab5c8bf660f04fdcd3da1084519212de248.1681342859.git.jpoimboe@kernel.org
|
|
In preparation for marking panic_smp_self_stop() __noreturn across the
kernel, first mark the arm64 implementation of cpu_park_loop() and
related functions __noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/55787d3193ea3e295ccbb097abfab0a10ae49d45.1681342859.git.jpoimboe@kernel.org
|
|
Currently only the first attempt to single-step has any effect. After
that all further stepping remains "stuck" at the same program counter
value.
Refer to the ARM Architecture Reference Manual (ARM DDI 0487E.a) D2.12,
PSTATE.SS=1 should be set at each step before transferring the PE to the
'Active-not-pending' state. The problem here is PSTATE.SS=1 is not set
since the second single-step.
After the first single-step, the PE transferes to the 'Inactive' state,
with PSTATE.SS=0 and MDSCR.SS=1, thus PSTATE.SS won't be set to 1 due to
kernel_active_single_step()=true. Then the PE transferes to the
'Active-pending' state when ERET and returns to the debugger by step
exception.
Before this patch:
==================
Entering kdb (current=0xffff3376039f0000, pid 1) on processor 0 due to Keyboard Entry
[0]kdb>
[0]kdb>
[0]kdb> bp write_sysrq_trigger
Instruction(i) BP #0 at 0xffffa45c13d09290 (write_sysrq_trigger)
is enabled addr at ffffa45c13d09290, hardtype=0 installed=0
[0]kdb> go
$ echo h > /proc/sysrq-trigger
Entering kdb (current=0xffff4f7e453f8000, pid 175) on processor 1 due to Breakpoint @ 0xffffad651a309290
[1]kdb> ss
Entering kdb (current=0xffff4f7e453f8000, pid 175) on processor 1 due to SS trap @ 0xffffad651a309294
[1]kdb> ss
Entering kdb (current=0xffff4f7e453f8000, pid 175) on processor 1 due to SS trap @ 0xffffad651a309294
[1]kdb>
After this patch:
=================
Entering kdb (current=0xffff6851c39f0000, pid 1) on processor 0 due to Keyboard Entry
[0]kdb> bp write_sysrq_trigger
Instruction(i) BP #0 at 0xffffc02d2dd09290 (write_sysrq_trigger)
is enabled addr at ffffc02d2dd09290, hardtype=0 installed=0
[0]kdb> go
$ echo h > /proc/sysrq-trigger
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to Breakpoint @ 0xffffc02d2dd09290
[1]kdb> ss
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to SS trap @ 0xffffc02d2dd09294
[1]kdb> ss
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to SS trap @ 0xffffc02d2dd09298
[1]kdb> ss
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to SS trap @ 0xffffc02d2dd0929c
[1]kdb>
Fixes: 44679a4f142b ("arm64: KGDB: Add step debugging support")
Co-developed-by: Wei Li <liwei391@huawei.com>
Signed-off-by: Wei Li <liwei391@huawei.com>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Tested-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20230202073148.657746-3-sumit.garg@linaro.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When CNTPOFF isn't implemented and that we have a non-zero counter
offset, CNTPCT and CNTPCTSS are trapped. We properly handle the
former, but not the latter, as it is not present in the sysreg
table (despite being actually handled in the code). Bummer.
Just populate the cp15_64 table with the missing register.
Reported-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Now that we use XPACLRI to strip PACs within the kernel, the
ptrauth_user_pac_mask() and ptrauth_kernel_pac_mask() definitions no
longer need to live in <asm/compiler.h>.
Move them to <asm/pointer_auth.h>, and ensure that this header is
included where they are used.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230412160134.306148-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Currently we strip the PAC from pointers using C code, which requires
generating bitmasks, and conditionally clearing/setting bits depending
on bit 55. We can do better by using XPACLRI directly.
When the logic was originally written to strip PACs from user pointers,
contemporary toolchains used for the kernel had assemblers which were
unaware of the PAC instructions. As stripping the PAC from userspace
pointers required unconditional clearing of a fixed set of bits (which
could be performed with a single instruction), it was simpler to
implement the masking in C than it was to make use of XPACI or XPACLRI.
When support for in-kernel pointer authentication was added, the
stripping logic was extended to cover TTBR1 pointers, requiring several
instructions to handle whether to clear/set bits dependent on bit 55 of
the pointer.
This patch simplifies the stripping of PACs by using XPACLRI directly,
as contemporary toolchains do within __builtin_return_address(). This
saves a number of instructions, especially where
__builtin_return_address() does not implicitly strip the PAC but is
heavily used (e.g. with tracepoints). As the kernel might be compiled
with an assembler without knowledge of XPACLRI, it is assembled using
the 'HINT #7' alias, which results in an identical opcode.
At the same time, I've split ptrauth_strip_insn_pac() into
ptrauth_strip_user_insn_pac() and ptrauth_strip_kernel_insn_pac()
helpers so that we can avoid unnecessary PAC stripping when pointer
authentication is not in use in userspace or kernel respectively.
The underlying xpaclri() macro uses inline assembly which clobbers x30.
The clobber causes the compiler to save/restore the original x30 value
in a frame record (protected with PACIASP and AUTIASP when in-kernel
authentication is enabled), so this does not provide a gadget to alter
the return address. Similarly this does not adversely affect unwinding
due to the presence of the frame record.
The ptrauth_user_pac_mask() and ptrauth_kernel_pac_mask() are exported
from the kernel in ptrace and core dumps, so these are retained. A
subsequent patch will move them out of <asm/compiler.h>.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230412160134.306148-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In old versions of GCC and Clang, __builtin_return_address() did not
strip the PAC. This was not the behaviour we desired, and so we wrapped
this with code to strip the PAC in commit:
689eae42afd7a916 ("arm64: mask PAC bits of __builtin_return_address")
Since then, both GCC and Clang decided that __builtin_return_address()
*should* strip the PAC, and the existing behaviour was a bug.
GCC was fixed in 11.1.0, with those fixes backported to 10.2.0, 9.4.0,
8.5.0, but not earlier:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
Clang was fixed in 12.0.0, though this was not backported:
https://reviews.llvm.org/D75044
When using a compiler whose __builtin_return_address() strips the PAC,
our wrapper to strip the PAC is redundant. Similarly, when pointer
authentication is not in use within the kernel pointers will not have a
PAC, and so there's no point stripping those pointers.
To avoid this redundant work, this patch updates the
__builtin_return_address() wrapper to only be used when in-kernel
pointer authentication is configured and the compiler's
__builtin_return_address() does not strip the PAC.
This is a cleanup/optimization, and not a fix that requires backporting.
Stripping a PAC should be an idempotent operation, and so redundantly
stripping the PAC is not harmful.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230412160134.306148-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
memory zones
In commit 031495635b46 ("arm64: Do not defer reserve_crashkernel() for
platforms with no DMA memory zones"), reserve_crashkernel() is called
much earlier in arm64_memblock_init() to avoid causing base apge
mapping on platforms with no DMA meomry zones.
With taking off protection on crashkernel memory region, no need to call
reserve_crashkernel() specially in advance. The deferred invocation of
reserve_crashkernel() in bootmem_init() can cover all cases. So revert
the whole commit now.
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com>
Link: https://lore.kernel.org/r/20230407011507.17572-4-bhe@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Problem:
=======
On arm64, block and section mapping is supported to build page tables.
However, currently it enforces to take base page mapping for the whole
linear mapping if CONFIG_ZONE_DMA or CONFIG_ZONE_DMA32 is enabled and
crashkernel kernel parameter is set. This will cause longer time of the
linear mapping process during bootup and severe performance degradation
during running time.
Root cause:
==========
On arm64, crashkernel reservation relies on knowing the upper limit of
low memory zone because it needs to reserve memory in the zone so that
devices' DMA addressing in kdump kernel can be satisfied. However, the
upper limit of low memory on arm64 is variant. And the upper limit can
only be decided late till bootmem_init() is called [1].
And we need to map the crashkernel region with base page granularity when
doing linear mapping, because kdump needs to protect the crashkernel region
via set_memory_valid(,0) after kdump kernel loading. However, arm64 doesn't
support well on splitting the built block or section mapping due to some
cpu reststriction [2]. And unfortunately, the linear mapping is done before
bootmem_init().
To resolve the above conflict on arm64, the compromise is enforcing to
take base page mapping for the entire linear mapping if crashkernel is
set, and CONFIG_ZONE_DMA or CONFIG_ZONE_DMA32 is enabed. Hence
performance is sacrificed.
Solution:
=========
Comparing with the base page mapping for the whole linear region, it's
better to take off the protection on crashkernel memory region for the
time being because the anticipated stamping on crashkernel memory region
could only happen in a chance in one million, while the base page mapping
for the whole linear region is mitigating arm64 systems with crashkernel
set always.
[1]
https://lore.kernel.org/all/YrIIJkhKWSuAqkCx@arm.com/T/#u
[2]
https://lore.kernel.org/linux-arm-kernel/20190911182546.17094-1-nsaenzjulienne@suse.de/T/
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com>
Link: https://lore.kernel.org/r/20230407011507.17572-2-bhe@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Some generic COMPAT definitions have been consolidated in
asm-generic/compat.h by commit 84a0c977ab98
("asm-generic: compat: Cleanup duplicate definitions")
Remove those that are already defined to the same value there from
arm64 asm/compat.h.
Signed-off-by: Teo Couprie Diaz <teo.coupriediaz@arm.com>
Reviewed-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230314140038.252908-1-teo.coupriediaz@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Today the fixmap code largely maps elements at PAGE_SIZE granularity,
but we special-case the FDT mapping such that it can be mapped with 2M
block mappings when 4K pages are in use. The original rationale for this
was simplicity, but it has some unfortunate side-effects, and
complicates portions of the fixmap code (i.e. is not so simple after
all).
The FDT can be up to 2M in size but is only required to have 8-byte
alignment, and so it may straddle a 2M boundary. Thus when using 2M
block mappings we may map up to 4M of memory surrounding the FDT. This
is unfortunate as most of that memory will be unrelated to the FDT, and
any pages which happen to share a 2M block with the FDT will by mapped
with Normal Write-Back Cacheable attributes, which might not be what we
want elsewhere (e.g. for carve-outs using Non-Cacheable attributes).
The logic to handle mapping the FDT with 2M blocks requires some special
cases in the fixmap code, and ties it to the early page table
configuration by virtue of the SWAPPER_TABLE_SHIFT and
SWAPPER_BLOCK_SIZE constants used to determine the granularity used to
map the FDT.
This patch simplifies the FDT logic and removes the unnecessary mappings
of surrounding pages by always mapping the FDT at page granularity as
with all other fixmap mappings. To do so we statically reserve multiple
PTE tables to cover the fixmap VA range. Since the FDT can be at most
2M, for 4K pages we only need to allocate a single additional PTE table,
and for 16K and 64K pages the existing single PTE table is sufficient.
The PTE table allocation scales with the number of slots reserved in the
fixmap, and so this also makes it easier to add more fixmap entries if
we require those in future.
Our VA layout means that the fixmap will always fall within a single PMD
table (and consequently, within a single PUD/P4D/PGD entry), which we
can verify at compile time with a static_assert(). With that assert a
number of runtime warnings become impossible, and are removed.
I've boot-tested this patch with both 4K and 64K pages.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20230406152759.4164229-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Over time, arm64's mm/mmu.c has become increasingly large and painful to
navigate. Move the fixmap code to its own file where it can be understood in
isolation.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20230406152759.4164229-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Currently arm64's FIXADDR_{START,SIZE} definitions only cover the
runtime fixmap slots (and not the boot-time fixmap slots), but the code
for creating the fixmap assumes that these definitions cover the entire
fixmap range. This means that the ptdump boundaries are reported in a
misleading way, missing the VA region of the runtime slots. In theory
this could also cause the fixmap creation to go wrong if the boot-time
fixmap slots end up spilling into a separate PMD entry, though luckily
this is not currently the case in any configuration.
While it seems like we could extend FIXADDR_{START,SIZE} to cover the
entire fixmap area, core code relies upon these *only* covering the
runtime slots. For example, fix_to_virt() and virt_to_fix() try to
reject manipulation of the boot-time slots based upon
FIXADDR_{START,SIZE}, while __fix_to_virt() and __virt_to_fix() can
handle any fixmap slot.
This patch follows the lead of x86 in commit:
55f49fcb879fbeeb ("x86/mm: Fix overlap of i386 CPU_ENTRY_AREA with FIX_BTMAP")
... and add new FIXADDR_TOT_{START,SIZE} definitions which cover the
entire fixmap area, using these for the fixmap creation and ptdump code.
As the boot-time fixmap slots are now rejected by fix_to_virt(),
the early_fixmap_init() code is changed to consistently use
__fix_to_virt(), as it already does in a few cases.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20230406152759.4164229-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
This builds up on the CALL_OPS work which extends the ftrace patchsite
on arm64 with an ops pointer usable by the ftrace trampoline.
This ops pointer is valid at all time. Indeed, it is either pointing to
ftrace_list_ops or to the single ops which should be called from that
patchsite.
There are a few cases to distinguish:
- If a direct call ops is the only one tracing a function:
- If the direct called trampoline is within the reach of a BL
instruction
-> the ftrace patchsite jumps to the trampoline
- Else
-> the ftrace patchsite jumps to the ftrace_caller trampoline which
reads the ops pointer in the patchsite and jumps to the direct
call address stored in the ops
- Else
-> the ftrace patchsite jumps to the ftrace_caller trampoline and its
ops literal points to ftrace_list_ops so it iterates over all
registered ftrace ops, including the direct call ops and calls its
call_direct_funcs handler which stores the direct called
trampoline's address in the ftrace_regs and the ftrace_caller
trampoline will return to that address instead of returning to the
traced function
Signed-off-by: Florent Revest <revest@chromium.org>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230405180250.2046566-2-revest@chromium.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Convert the fine grained traps read and write control registers to
automatic generation as per DDI0601 2022-12. No functional changes.
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230306-arm64-fgt-reg-gen-v3-1-decba93cbaab@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
MAX_ORDER currently defined as number of orders page allocator supports:
user can ask buddy allocator for page order between 0 and MAX_ORDER-1.
This definition is counter-intuitive and lead to number of bugs all over
the kernel.
Change the definition of MAX_ORDER to be inclusive: the range of orders
user can ask from buddy allocator is 0..MAX_ORDER now.
[kirill@shutemov.name: fix min() warning]
Link: https://lkml.kernel.org/r/20230315153800.32wib3n5rickolvh@box
[akpm@linux-foundation.org: fix another min_t warning]
[kirill@shutemov.name: fixups per Zi Yan]
Link: https://lkml.kernel.org/r/20230316232144.b7ic4cif4kjiabws@box.shutemov.name
[akpm@linux-foundation.org: fix underlining in docs]
Link: https://lore.kernel.org/oe-kbuild-all/202303191025.VRCTk6mP-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230315113133.11326-11-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add two new tagging-related routines arch_suppress_tag_checks_start/stop
that suppress MTE tag checking via the TCO register.
These rouines are used in the next patch.
[andreyknvl@google.com: drop __ from mte_disable/enable_tco names]
Link: https://lkml.kernel.org/r/7ad5e5a9db79e3aba08d8f43aca24350b04080f6.1680114854.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/75a362551c3c54b70ae59a3492cabb51c105fa6b.1678491668.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Weizhao Ouyang <ouyangweizhao@zeku.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The TCO related routines are used in uaccess methods and
load_unaligned_zeropad() but are unrelated to both even if the naming
suggest otherwise.
Improve the readability of the code moving the away from uaccess.h and
pre-pending them with "mte".
[andreyknvl@google.com: drop __ from mte_disable/enable_tco names]
Link: https://lkml.kernel.org/r/74d26337b2360733956114069e96ff11c296a944.1680114854.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/a48e7adce1248c0f9603a457776d59daa0ef734b.1678491668.git.andreyknvl@google.com
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Weizhao Ouyang <ouyangweizhao@zeku.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Rename arch_enable_tagging_sync/async/asymm to
arch_enable_tag_checks_sync/async/asymm, as the new name better reflects
their function.
Also rename kasan_enable_tagging to kasan_enable_hw_tags for the same
reason.
Link: https://lkml.kernel.org/r/069ef5b77715c1ac8d69b186725576c32b149491.1678491668.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Weizhao Ouyang <ouyangweizhao@zeku.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When returning to userspace to handle a SMCCC call, we consistently
set PC to point to the instruction immediately after the HVC/SMC.
However, should userspace need to know the exact address of the
trapping instruction, it needs to know about the *size* of that
instruction. For AArch64, this is pretty easy. For AArch32, this
is a bit more funky, as Thumb has 16bit encodings for both HVC
and SMC.
Expose this to userspace with a new flag that directly derives
from ESR_EL2.IL. Also update the documentation to reflect the PC
state at the point of exit.
Finally, this fixes a small buglet where the hypercall.{args,ret}
fields would not be cleared on exit, and could contain some
random junk.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/86pm8iv8tj.wl-maz@kernel.org
|
|
As the SMCCC (and related specifications) march towards an 'everything
and the kitchen sink' interface for interacting with a system it becomes
less likely that KVM will support every related feature. We could do
better by letting userspace have a crack at it instead.
Allow userspace to define an 'SMCCC filter' that applies to both HVCs
and SMCs initiated by the guest. Supporting both conduits with this
interface is important for a couple of reasons. Guest SMC usage is table
stakes for a nested guest, as HVCs are always taken to the virtual EL2.
Additionally, guests may want to interact with a service on the secure
side which can now be proxied by userspace.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-10-oliver.upton@linux.dev
|
|
In anticipation of user hypercall filters, add the necessary plumbing to
get SMCCC calls out to userspace. Even though the exit structure has
space for KVM to pass register arguments, let's just avoid it altogether
and let userspace poke at the registers via KVM_GET_ONE_REG.
This deliberately stretches the definition of a 'hypercall' to cover
SMCs from EL1 in addition to the HVCs we know and love. KVM doesn't
support EL1 calls into secure services, but now we can paint that as a
userspace problem and be done with it.
Finally, we need a flag to let userspace know what conduit instruction
was used (i.e. SMC vs. HVC).
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-9-oliver.upton@linux.dev
|
|
Maple tree is an efficient B-tree implementation that is intended for
storing non-overlapping intervals. Such a data structure is a good fit
for the SMCCC filter as it is desirable to sparsely allocate the 32 bit
function ID space.
To that end, add a maple tree to kvm_arch and correctly init/teardown
along with the VM. Wire in a test against the hypercall filter for HVCs
which does nothing until the controls are exposed to userspace.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-8-oliver.upton@linux.dev
|
|
KVM presently allows userspace to filter guest hypercalls with bitmaps
expressed via pseudo-firmware registers. These bitmaps have a narrow
scope and, of course, can only allow/deny a particular call. A
subsequent change to KVM will introduce a generalized UAPI for filtering
hypercalls, allowing functions to be forwarded to userspace.
Refactor the existing hypercall filtering logic to make room for more
than two actions. While at it, generalize the function names around
SMCCC as it is the basis for the upcoming UAPI.
No functional change intended.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-7-oliver.upton@linux.dev
|
|
The test_bit(...) pattern is quite a lot of keystrokes. Replace
existing callsites with a helper.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-3-oliver.upton@linux.dev
|
|
Emulating EL2 also means emulating the EL2 timers. To do so, we expand
our timer framework to deal with at most 4 timers. At any given time,
two timers are using the HW timers, and the two others are purely
emulated.
The role of deciding which is which at any given time is left to a
mapping function which is called every time we need to make such a
decision.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Co-developed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-18-maz@kernel.org
|
|
For VHE-specific hypervisor code, kern_hyp_va() is a NOP.
Actually, it is a whole range of NOPs. It'd be much better if
this code simply didn't exist. Let's just do that.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-13-maz@kernel.org
|
|
Having the timer IRQs duplicated into each vcpu isn't great, and
becomes absolutely awful with NV. So let's move these into
the per-VM arch_timer_vm_data structure.
This simplifies a lot of code, but requires us to introduce a
mutex so that we can reason about userspace trying to change
an interrupt number while another vcpu is running, something
that wasn't really well handled so far.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-12-maz@kernel.org
|
|
And this is the moment you have all been waiting for: setting the
counter offset from userspace.
We expose a brand new capability that reports the ability to set
the offset for both the virtual and physical sides.
In keeping with the architecture, the offset is expressed as
a delta that is substracted from the physical counter value.
Once this new API is used, there is no going back, and the counters
cannot be written to to set the offsets implicitly (the writes
are instead ignored).
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-8-maz@kernel.org
|
|
Being able to lock/unlock all vcpus in one go is a feature that
only the vgic has enjoyed so far. Let's be brave and expose it
to the world.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-7-maz@kernel.org
|
|
CNTPOFF_EL2 is awesome, but it is mostly vapourware, and no publicly
available implementation has it. So for the common mortals, let's
implement the emulated version of this thing.
It means trapping accesses to the physical counter and timer, and
emulate some of it as necessary.
As for CNTPOFF_EL2, nobody sets the offset yet.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-6-maz@kernel.org
|
|
kvm->lock must be taken outside of the vcpu->mutex. Of course, the
locking documentation for KVM makes this abundantly clear. Nonetheless,
the locking order in KVM/arm64 has been wrong for quite a while; we
acquire the kvm->lock while holding the vcpu->mutex all over the shop.
All was seemingly fine until commit 42a90008f890 ("KVM: Ensure lockdep
knows about kvm->lock vs. vcpu->mutex ordering rule") caught us with our
pants down, leading to lockdep barfing:
======================================================
WARNING: possible circular locking dependency detected
6.2.0-rc7+ #19 Not tainted
------------------------------------------------------
qemu-system-aar/859 is trying to acquire lock:
ffff5aa69269eba0 (&host_kvm->lock){+.+.}-{3:3}, at: kvm_reset_vcpu+0x34/0x274
but task is already holding lock:
ffff5aa68768c0b8 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x8c/0xba0
which lock already depends on the new lock.
Add a dedicated lock to serialize writes to VM-scoped configuration from
the context of a vCPU. Protect the register width flags with the new
lock, thus avoiding the need to grab the kvm->lock while holding
vcpu->mutex in kvm_reset_vcpu().
Cc: stable@vger.kernel.org
Reported-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/kvmarm/f6452cdd-65ff-34b8-bab0-5c06416da5f6@arm.com/
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230327164747.2466958-3-oliver.upton@linux.dev
|
|
KVM/arm64 had the lock ordering backwards on vcpu->mutex and kvm->lock
from the very beginning. One such example is the way vCPU resets are
handled: the kvm->lock is acquired while handling a guest CPU_ON PSCI
call.
Add a dedicated lock to serialize writes to kvm_vcpu_arch::{mp_state,
reset_state}. Promote all accessors of mp_state to {READ,WRITE}_ONCE()
as readers do not acquire the mp_state_lock. While at it, plug yet
another race by taking the mp_state_lock in the KVM_SET_MP_STATE ioctl
handler.
As changes to MP state are now guarded with a dedicated lock, drop the
kvm->lock acquisition from the PSCI CPU_ON path. Similarly, move the
reader of reset_state outside of the kvm->lock and instead protect it
with the mp_state_lock. Note that writes to reset_state::reset have been
demoted to regular stores as both readers and writers acquire the
mp_state_lock.
While the kvm->lock inversion still exists in kvm_reset_vcpu(), at least
now PSCI CPU_ON no longer depends on it for serializing vCPU reset.
Cc: stable@vger.kernel.org
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230327164747.2466958-2-oliver.upton@linux.dev
|
|
s390 can do more fine-grained handling of spurious TLB protection faults,
when there also is the PTE pointer available.
Therefore, pass on the PTE pointer to flush_tlb_fix_spurious_fault() as an
additional parameter.
This will add no functional change to other architectures, but those with
private flush_tlb_fix_spurious_fault() implementations need to be made
aware of the new parameter.
Link: https://lkml.kernel.org/r/20230306161548.661740-1-gerald.schaefer@linux.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently the asm constraints for __get_mem_asm() mark the value
register as an earlyclobber operand. This means that the compiler can't
reuse the same register for both the address and value, even when the
value is not subsequently used.
There's no need for the value register to be marked as earlyclobber, as
it's only written to after the address register is consumed, even when
the access faults.
Remove the unnecessary earlyclobber.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230314153700.787701-5-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Currently the asm constraints for __put_mem_asm() require that the value
is placed in a "real" GPR (i.e. one other than [XW]ZR or SP). This means
that for cases such as:
__put_user(0, addr)
... the compiler has to move '0' into "real" GPR, e.g.
mov xN, #0
sttr xN, [<addr>]
This is unfortunate, as using the zero register would require fewer
instructions and save a "real" GPR for other usage, allowing the
compiler to generate:
sttr xzr, [<addr>]
Modify the asm constaints for __put_mem_asm() to permit the use of the
zero register for the value.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230314153700.787701-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Currently the asm constraints for __smp_store_release() require that the
value is placed in a "real" GPR (i.e. one other than [XW]ZR or SP).
This means that for cases such as:
__smp_store_release(ptr, 0)
... the compiler has to move '0' into "real" GPR, e.g.
mov xN, #0
stlr xN, [<addr>]
This is unfortunate, as using the zero register would require fewer
instructions and save a "real" GPR for other usage, allowing the
compiler to generate:
stlr xzr, [<addr>]
Modify the asm constaints for __smp_store_release() to permit the use of
the zero register for the value.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230314153700.787701-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
For historical reasons, the LSE implementation of cmpxchg*() hard-codes
the GPRs to use, and shuffles registers around with MOVs. This is no
longer necessary, and can be simplified.
When the LSE cmpxchg implementation was added in commit:
c342f78217e822d2 ("arm64: cmpxchg: patch in lse instructions when supported by the CPU")
... the LL/SC implementation of cmpxchg() would be placed out-of-line,
and the in-line assembly for cmpxchg would default to:
NOP
BL <ll_sc_cmpxchg*_implementation>
NOP
The LL/SC implementation of each cmpxchg() function accepted arguments
as per AAPCS64 rules, to it was necessary to place the pointer in x0,
the older value in X1, and the new value in x2, and acquire the return
value from x0. The LL/SC implementation required a temporary register
(e.g. for the STXR status value). As the LL/SC implementation preserved
the old value, the LSE implementation does likewise.
Since commit:
addfc38672c73efd ("arm64: atomics: avoid out-of-line ll/sc atomics")
... the LSE and LL/SC implementations of cmpxchg are inlined as separate
asm blocks, with another branch choosing between thw two. Due to this,
it is no longer necessary for the LSE implementation to match the
register constraints of the LL/SC implementation. This was partially
dealt with by removing the hard-coded use of x30 in commit:
3337cb5aea594e40 ("arm64: avoid using hard-coded registers for LSE atomics")
... but we didn't clean up the hard-coding of x0, x1, and x2.
This patch simplifies the LSE implementation of cmpxchg, removing the
register shuffling and directly clobbering the 'old' argument. This
gives the compiler greater freedom for register allocation, and avoids
redundant work.
The new constraints permit 'old' (Rs) and 'new' (Rt) to be allocated to
the same register when the initial values of the two are the same, e.g.
resulting in:
CAS X0, X0, [X1]
This is safe as Rs is only written back after the initial values of Rs
and Rt are consumed, and there are no UNPREDICTABLE behaviours to avoid
when Rs == Rt.
The new constraints also permit 'new' to be allocated to the zero
register, avoiding a MOV in a few cases. The same cannot be done for
'old' as it is both an input and output, and any caller of cmpxchg()
should care about the output value. Note that for CAS* the use of the
zero register never affects the ordering (while for SWP* the use of the
zero regsiter for the 'old' value drops any ACQUIRE semantic).
Compared to v6.2-rc4, a defconfig vmlinux is ~116KiB smaller, though the
resulting Image is the same size due to internal alignment and padding:
[mark@lakrids:~/src/linux]% ls -al vmlinux-*
-rwxr-xr-x 1 mark mark 137269304 Jan 16 11:59 vmlinux-after
-rwxr-xr-x 1 mark mark 137387936 Jan 16 10:54 vmlinux-before
[mark@lakrids:~/src/linux]% ls -al Image-*
-rw-r--r-- 1 mark mark 38711808 Jan 16 11:59 Image-after
-rw-r--r-- 1 mark mark 38711808 Jan 16 10:54 Image-before
This patch does not touch cmpxchg_double*() as that requires contiguous
register pairs, and separate patches will replace it with cmpxchg128*().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230314153700.787701-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Commit 21b56c847753 ("iov_iter: get rid of separate bvec and xarray
callbacks") removed the calls to memcpy_page_flushcache().
Remove the unnecessary memcpy_page_flushcache() call.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Dan Williams" <dan.j.williams@intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221230-kmap-x86-v1-3-15f1ecccab50@intel.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Kfence only needs its pool to be mapped as page granularity, if it is
inited early. Previous judgement was a bit over protected. From [1], Mark
suggested to "just map the KFENCE region a page granularity". So I
decouple it from judgement and do page granularity mapping for kfence
pool only. Need to be noticed that late init of kfence pool still requires
page granularity mapping.
Page granularity mapping in theory cost more(2M per 1GB) memory on arm64
platform. Like what I've tested on QEMU(emulated 1GB RAM) with
gki_defconfig, also turning off rodata protection:
Before:
[root@liebao ]# cat /proc/meminfo
MemTotal: 999484 kB
After:
[root@liebao ]# cat /proc/meminfo
MemTotal: 1001480 kB
To implement this, also relocate the kfence pool allocation before the
linear mapping setting up, arm64_kfence_alloc_pool is to allocate phys
addr, __kfence_pool is to be set after linear mapping set up.
LINK: [1] https://lore.kernel.org/linux-arm-kernel/Y+IsdrvDNILA59UN@FVFF77S0Q05N/
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/1679066974-690-1-git-send-email-quic_zhenhuah@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
KVM host support is available only on arm64.
By moving the inclusion of kvm_host.h to an arm64-specific file,
the 32bit architecture will be able to implement dummy helpers.
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-5-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The current PMU version definitions are available for arm64 only,
As we want to add PMUv3 support to arm (32-bit), abstracts
these definitions by using arch-specific helpers.
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-4-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
As we want to enable 32bit support, we need to distanciate the
PMUv3 driver from the AArch64 system register names.
This patch moves all system register accesses to an architecture
specific include file, allowing the 32bit counterpart to be
slotted in at a later time.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Co-developed-by: Zaid Al-Bassam <zalbassam@google.com>
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-3-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Having the ARM PMUv3 driver sitting in arch/arm64/kernel is getting
in the way of being able to use perf on ARMv8 cores running a 32bit
kernel, such as 32bit KVM guests.
This patch moves it into drivers/perf/arm_pmuv3.c, with an include
file in include/linux/perf/arm_pmuv3.h. The only thing left in
arch/arm64 is some mundane perf stuff.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-2-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Add a line in /proc/$PID/status to report untag_mask. It can be
used to find out LAM status of the process from the outside. It is
useful for debuggers.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-10-kirill.shutemov%40linux.intel.com
|
|
In case of success, this function returns the amount of handled bytes.
However, this does not work for large values: The function is called
from kvm_arch_vm_ioctl() (which still returns a long), which in turn
is called from kvm_vm_ioctl() in virt/kvm/kvm_main.c. And that function
stores the return value in an "int r" variable. So the upper 32-bits
of the "long" return value are lost there.
KVM ioctl functions should only return "int" values, so let's limit
the amount of bytes that can be requested here to INT_MAX to avoid
the problem with the truncated return value. We can then also change
the return type of the function to "int" to make it clearer that it
is not possible to return a "long" here.
Fixes: f0376edb1ddc ("KVM: arm64: Add ioctl to fetch/store tags in a guest")
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Message-Id: <20230208140105.655814-5-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|