Age | Commit message (Collapse) | Author |
|
[ Upstream commit 924725707d80bc2588cefafef76ff3f164d299bc ]
Add cputype definitions for Neoverse-N3. These will be used for errata
detection in subsequent patches.
These values can be found in Table A-261 ("MIDR_EL1 bit descriptions")
in issue 02 of the Neoverse-N3 TRM, which can be found at:
https://developer.arm.com/documentation/107997/0000/?lang=en
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240930111705.3352047-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit a1d402abf8e3ff1d821e88993fc5331784fac0da upstream.
Oliver reports that the kvm_has_feat() helper is not behaviing as
expected for negative feature. On investigation, the main issue
seems to be caused by the following construct:
#define get_idreg_field(kvm, id, fld) \
(id##_##fld##_SIGNED ? \
get_idreg_field_signed(kvm, id, fld) : \
get_idreg_field_unsigned(kvm, id, fld))
where one side of the expression evaluates as something signed,
and the other as something unsigned. In retrospect, this is totally
braindead, as the compiler converts this into an unsigned expression.
When compared to something that is 0, the test is simply elided.
Epic fail. Similar issue exists in the expand_field_sign() macro.
The correct way to handle this is to chose between signed and unsigned
comparisons, so that both sides of the ternary expression are of the
same type (bool).
In order to keep the code readable (sort of), we introduce new
comparison primitives taking an operator as a parameter, and
rewrite the kvm_has_feat*() helpers in terms of these primitives.
Fixes: c62d7a23b947 ("KVM: arm64: Add feature checking helpers")
Reported-by: Oliver Upton <oliver.upton@linux.dev>
Tested-by: Oliver Upton <oliver.upton@linux.dev>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20241002204239.2051637-1-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit db0d8a84348b876df7c4276f0cbce5df3b769f5f upstream.
The ampere1a cpu is affected by erratum AC04_CPU_10 which is the same
bug as AC03_CPU_38. Add ampere1a to the AC03_CPU_38 workaround midr list.
Cc: <stable@vger.kernel.org>
Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240827211701.2216719-1-scott@os.amperecomputing.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b6db3eb6c373b97d9e433530d748590421bbeea7 upstream.
Add explicit casting to prevent expantion of 32th bit of
u32 into highest half of u64 in several places.
For example, in inject_abt64:
ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT = 0x24 << 26.
This operation's result is int with 1 in 32th bit.
While casting this value into u64 (esr is u64) 1
fills 32 highest bits.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Cc: <stable@vger.kernel.org>
Fixes: aa8eff9bfbd5 ("arm64: KVM: fault injection into a guest")
Signed-off-by: Anastasia Belova <abelova@astralinux.ru>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/stable/20240910085016.32120-1-abelova%40astralinux.ru
Link: https://lore.kernel.org/r/20240910085016.32120-1-abelova@astralinux.ru
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit fc2220c9b15828319b09384e68399b4afc6276d9 ]
A few SME-related sigcontext UAPI macros leave an argument
unprotected from misparsing during macro expansion.
Add parentheses around references to macro arguments where
appropriate.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Fixes: ee072cf70804 ("arm64/sme: Implement signal handling for ZT")
Fixes: 39782210eb7e ("arm64/sme: Implement ZA signal handling")
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240729152005.289844-1-Dave.Martin@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2488444274c70038eb6b686cba5f1ce48ebb9cdd ]
In a review discussion of the changes to support vCPU hotplug where
a check was added on the GICC being enabled if was online, it was
noted that there is need to map back to the cpu and use that to index
into a cpumask. As such, a valid ID is needed.
If an MPIDR check fails in acpi_map_gic_cpu_interface() it is possible
for the entry in cpu_madt_gicc[cpu] == NULL. This function would
then cause a NULL pointer dereference. Whilst a path to trigger
this has not been established, harden this caller against the
possibility.
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20240529133446.28446-13-Jonathan.Cameron@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8d34b6f17b9ac93faa2791eb037dcb08bdf755de ]
ACPI identifies CPUs by UID. get_cpu_for_acpi_id() maps the ACPI UID
to the Linux CPU number.
The helper to retrieve this mapping is only available in arm64's NUMA
code.
Move it to live next to get_acpi_id_for_cpu().
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Tested-by: Vishnu Pajjuri <vishnu@os.amperecomputing.com>
Tested-by: Jianyong Wu <jianyong.wu@arm.com>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Link: https://lore.kernel.org/r/20240529133446.28446-12-Jonathan.Cameron@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Stable-dep-of: 2488444274c7 ("arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entry")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9ef54a384526911095db465e77acc1cb5266b32c ]
Add cputype definitions for Cortex-A725. These will be used for errata
detection in subsequent patches.
These values can be found in the Cortex-A725 TRM:
https://developer.arm.com/documentation/107652/0001/
... in table A-247 ("MIDR_EL1 bit descriptions").
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20240801101803.1982459-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 58d245e03c324d083a0ec3b9ab8ebd46ec9848d7 ]
Add cputype definitions for Cortex-X1C. These will be used for errata
detection in subsequent patches.
These values can be found in the Cortex-X1C TRM:
https://developer.arm.com/documentation/101968/0002/
... in section B2.107 ("MIDR_EL1, Main ID Register, EL1").
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20240801101803.1982459-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ec768766608092087dfb5c1fc45a16a6f524dee2 ]
Cortex-X4 erratum 3194386 and Neoverse-V3 erratum 3312417 are identical,
with duplicate Kconfig text and some unsightly ifdeffery. While we try
to share code behind CONFIG_ARM64_WORKAROUND_SPECULATIVE_SSBS, having
separate options results in a fair amount of boilerplate code, and this
will only get worse as we expand the set of affected CPUs.
To reduce this boilerplate, unify the two behind a common Kconfig
option. This removes the duplicate text and Kconfig logic, and removes
the need for the intermediate ARM64_WORKAROUND_SPECULATIVE_SSBS option.
The set of affected CPUs is described as a list so that this can easily
be extended.
I've used ARM64_ERRATUM_3194386 (matching the Neoverse-V3 erratum ID) as
the common option, matching the way we use ARM64_ERRATUM_1319367 to
cover Cortex-A57 erratum 1319537 and Cortex-A72 erratum 1319367.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240603111812.1514101-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fd2ff5f0b320f418288e7a1f919f648fbc8a0dfc ]
Add cputype definitions for Cortex-X925. These will be used for errata
detection in subsequent patches.
These values can be found in Table A-285 ("MIDR_EL1 bit descriptions")
in issue 0001-05 of the Cortex-X925 TRM, which can be found at:
https://developer.arm.com/documentation/102807/0001/?lang=en
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240603111812.1514101-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit add332c40328cf06fe35e4b3cde8ec315c4629e5 ]
Add cputype definitions for Cortex-A720. These will be used for errata
detection in subsequent patches.
These values can be found in Table A-186 ("MIDR_EL1 bit descriptions")
in issue 0002-05 of the Cortex-A720 TRM, which can be found at:
https://developer.arm.com/documentation/102530/0002/?lang=en
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240603111812.1514101-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit be5a6f238700f38b534456608588723fba96c5ab ]
Add cputype definitions for Cortex-X3. These will be used for errata
detection in subsequent patches.
These values can be found in Table A-263 ("MIDR_EL1 bit descriptions")
in issue 07 of the Cortex-X3 TRM, which can be found at:
https://developer.arm.com/documentation/101593/0102/?lang=en
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240603111812.1514101-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ Mark: trivial backport ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit cfb00a35786414e7c0e6226b277d9f09657eae74 ]
Although the Arm architecture permits concurrent modification and
execution of NOP and branch instructions, it still requires some
synchronisation to ensure that other CPUs consistently execute the newly
written instruction:
> When the modified instructions are observable, each PE that is
> executing the modified instructions must execute an ISB or perform a
> context synchronizing event to ensure execution of the modified
> instructions
Prior to commit f6cc0c501649 ("arm64: Avoid calling stop_machine() when
patching jump labels"), the arm64 jump_label patching machinery
performed synchronisation using stop_machine() after each modification,
however this was problematic when flipping static keys from atomic
contexts (namely, the arm_arch_timer CPU hotplug startup notifier) and
so we switched to the _nosync() patching routines to avoid "scheduling
while atomic" BUG()s during boot.
In hindsight, the analysis of the issue in f6cc0c501649 isn't quite
right: it cites the use of IPIs in the default patching routines as the
cause of the lockup, whereas stop_machine() does not rely on IPIs and
the I-cache invalidation is performed using __flush_icache_range(),
which elides the call to kick_all_cpus_sync(). In fact, the blocking
wait for other CPUs is what triggers the BUG() and the problem remains
even after f6cc0c501649, for example because we could block on the
jump_label_mutex. Eventually, the arm_arch_timer driver was fixed to
avoid the static key entirely in commit a862fc2254bd
("clocksource/arm_arch_timer: Remove use of workaround static key").
This all leaves the jump_label patching code in a funny situation on
arm64 as we do not synchronise with other CPUs to reduce the likelihood
of a bug which no longer exists. Consequently, toggling a static key on
one CPU cannot be assumed to take effect on other CPUs, leading to
potential issues, for example with missing preempt notifiers.
Rather than revert f6cc0c501649 and go back to stop_machine() for each
patch site, implement arch_jump_label_transform_apply() and kick all
the other CPUs with an IPI at the end of patching.
Cc: Alexander Potapenko <glider@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Fixes: f6cc0c501649 ("arm64: Avoid calling stop_machine() when patching jump labels")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240731133601.3073-1-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 36639013b3462c06ff8e3400a427f775b4fc97f5 upstream.
Lina reports random oopsen originating from the fast GUP code when
16K pages are used with 4-level page-tables, the fourth level being
folded at runtime due to lack of LPA2.
In this configuration, the generic implementation of
p4d_offset_lockless() will return a 'p4d_t *' corresponding to the
'pgd_t' allocated on the stack of the caller, gup_fast_pgd_range().
This is normally fine, but when the fourth level of page-table is folded
at runtime, pud_offset_lockless() will offset from the address of the
'p4d_t' to calculate the address of the PUD in the same page-table page.
This results in a stray stack read when the 'p4d_t' has been allocated
on the stack and can send the walker into the weeds.
Fix the problem by providing our own definition of p4d_offset_lockless()
when CONFIG_PGTABLE_LEVELS <= 4 which returns the real page-table
pointer rather than the address of the local stack variable.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/50360968-13fb-4e6f-8f52-1725b3177215@asahilina.net
Fixes: 0dd4f60a2c76 ("arm64: mm: Add support for folding PUDs at runtime")
Reported-by: Asahi Lina <lina@asahilina.net>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240725090345.28461-1-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"A pair of small arm64 fixes for -rc6.
One is a fix for the recently merged uffd-wp support (which was
triggering a spurious warning) and the other is a fix to the clearing
of the initial idmap pgd in some configurations
Summary:
- Fix spurious page-table warning when clearing PTE_UFFD_WP in a live
pte
- Fix clearing of the idmap pgd when using large addressing modes"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Clear the initial ID map correctly before remapping
arm64: mm: Permit PTE SW bits to change in live mappings
|
|
Using sys_io_pgetevents() as the entry point for compat mode tasks
works almost correctly, but misses the sign extension for the min_nr
and nr arguments.
This was addressed on parisc by switching to
compat_sys_io_pgetevents_time64() in commit 6431e92fc827 ("parisc:
io_pgetevents_time64() needs compat syscall in 32-bit compat mode"),
as well as by using more sophisticated system call wrappers on x86 and
s390. However, arm64, mips, powerpc, sparc and riscv still have the
same bug.
Change all of them over to use compat_sys_io_pgetevents_time64()
like parisc already does. This was clearly the intention when the
function was originally added, but it got hooked up incorrectly in
the tables.
Cc: stable@vger.kernel.org
Fixes: 48166e6ea47d ("y2038: add 64-bit time_t syscalls to all 32-bit architectures")
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Previously pgattr_change_is_safe() was overly-strict and complained
(e.g. "[ 116.262743] __check_safe_pte_update: unsafe attribute change:
0x0560000043768fc3 -> 0x0160000043768fc3") if it saw any SW bits change
in a live PTE. There is no such restriction on SW bits in the Arm ARM.
Until now, no SW bits have been updated in live mappings via the
set_ptes() route. PTE_DIRTY would be updated live, but this is handled
by ptep_set_access_flags() which does not call pgattr_change_is_safe().
However, with the introduction of uffd-wp for arm64, there is core-mm
code that does ptep_get(); pte_clear_uffd_wp(); set_ptes(); which
triggers this false warning.
Silence this warning by masking out the SW bits during checks.
The bug isn't technically in the highlighted commit below, but that's
where bisecting would likely lead as its what made the bug user-visible.
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Fixes: 5b32510af77b ("arm64/mm: Add uffd write-protect support")
Link: https://lore.kernel.org/r/20240619121859.4153966-1-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
- Fix spurious CPU hotplug warning message from SETEND emulation code
- Fix the build when GCC wasn't inlining our I/O accessor internals
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64/io: add constant-argument check
arm64: armv8_deprecated: Fix warning in isndep cpuhp starting process
|
|
In some configurations __const_iowrite32_copy() does not get inlined
and gcc runs into the BUILD_BUG():
In file included from <command-line>:
In function '__const_memcpy_toio_aligned32',
inlined from '__const_iowrite32_copy' at arch/arm64/include/asm/io.h:203:3,
inlined from '__const_iowrite32_copy' at arch/arm64/include/asm/io.h:199:20:
include/linux/compiler_types.h:487:45: error: call to '__compiletime_assert_538' declared with attribute error: BUILD_BUG failed
487 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
| ^
include/linux/compiler_types.h:468:25: note: in definition of macro '__compiletime_assert'
468 | prefix ## suffix(); \
| ^~~~~~
include/linux/compiler_types.h:487:9: note: in expansion of macro '_compiletime_assert'
487 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
| ^~~~~~~~~~~~~~~~~~~
include/linux/build_bug.h:39:37: note: in expansion of macro 'compiletime_assert'
39 | #define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg)
| ^~~~~~~~~~~~~~~~~~
include/linux/build_bug.h:59:21: note: in expansion of macro 'BUILD_BUG_ON_MSG'
59 | #define BUILD_BUG() BUILD_BUG_ON_MSG(1, "BUILD_BUG failed")
| ^~~~~~~~~~~~~~~~
arch/arm64/include/asm/io.h:193:17: note: in expansion of macro 'BUILD_BUG'
193 | BUILD_BUG();
| ^~~~~~~~~
Move the check for constant arguments into the inline function to ensure
it is still constant if the compiler decides against inlining it, and
mark them as __always_inline to override the logic that sometimes leads
to the compiler not producing the simplified output.
Note that either the __always_inline annotation or the check for a
constant value are sufficient here, but combining the two looks cleaner
as it also avoids the macro. With clang-8 and older, the macro was still
needed, but all versions of gcc and clang can reliably perform constant
folding here.
Fixes: ead79118dae6 ("arm64/io: Provide a WC friendly __iowriteXX_copy()")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20240604210006.668912-1-arnd@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When setting/clearing CPACR bits for EL0 and EL1, use the ELx
format of the bits, which covers both. This makes the code
clearer, and reduces the chances of accidentally missing a bit.
No functional change intended.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20240603122852.3923848-9-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Now that we have introduced finalize_init_hyp_mode(), lets
consolidate the initializing of the host_data fpsimd_state and
sve state.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240603122852.3923848-8-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Protected mode needs to maintain (save/restore) the host's sve
state, rather than relying on the host kernel to do that. This is
to avoid leaking information to the host about guests and the
type of operations they are performing.
As a first step towards that, allocate memory mapped at hyp, per
cpu, for the host sve state. The following patch will use this
memory to save/restore the host state.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20240603122852.3923848-6-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The same traps controlled by CPTR_EL2 or CPACR_EL1 need to be
toggled in different parts of the code, but the exact bits and
their polarity differ between these two formats and the mode
(vhe/nvhe/hvhe).
To reduce the amount of duplicated code and the chance of getting
the wrong bit/polarity or missing a field, abstract the set/clear
of CPTR_EL2 bits behind a helper.
Since (h)VHE is the way of the future, use the CPACR_EL1 format,
which is a subset of the VHE CPTR_EL2, as a reference.
No functional change intended.
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20240603122852.3923848-4-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Since the prototypes for __sve_save_state/__sve_restore_state at
hyp were added, the underlying macro has acquired a third
parameter for saving/restoring ffr.
Fix the prototypes to account for the third parameter, and
restore the ffr for the guest since it is saved.
Suggested-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240603122852.3923848-3-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Now that the hypervisor is handling the host sve state in
protected mode, it needs to be able to save it.
This reverts commit e66425fc9ba3 ("KVM: arm64: Remove unused
__sve_save_state").
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20240603122852.3923848-2-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull more mm updates from Andrew Morton:
"Jeff Xu's implementation of the mseal() syscall"
* tag 'mm-stable-2024-05-24-11-49' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
selftest mm/mseal read-only elf memory segment
mseal: add documentation
selftest mm/mseal memory sealing
mseal: add mseal syscall
mseal: wire up mseal syscall
|
|
Patch series "Introduce mseal", v10.
This patchset proposes a new mseal() syscall for the Linux kernel.
In a nutshell, mseal() protects the VMAs of a given virtual memory range
against modifications, such as changes to their permission bits.
Modern CPUs support memory permissions, such as the read/write (RW) and
no-execute (NX) bits. Linux has supported NX since the release of kernel
version 2.6.8 in August 2004 [1]. The memory permission feature improves
the security stance on memory corruption bugs, as an attacker cannot
simply write to arbitrary memory and point the code to it. The memory
must be marked with the X bit, or else an exception will occur.
Internally, the kernel maintains the memory permissions in a data
structure called VMA (vm_area_struct). mseal() additionally protects the
VMA itself against modifications of the selected seal type.
Memory sealing is useful to mitigate memory corruption issues where a
corrupted pointer is passed to a memory management system. For example,
such an attacker primitive can break control-flow integrity guarantees
since read-only memory that is supposed to be trusted can become writable
or .text pages can get remapped. Memory sealing can automatically be
applied by the runtime loader to seal .text and .rodata pages and
applications can additionally seal security critical data at runtime. A
similar feature already exists in the XNU kernel with the
VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall
[4]. Also, Chrome wants to adopt this feature for their CFI work [2] and
this patchset has been designed to be compatible with the Chrome use case.
Two system calls are involved in sealing the map: mmap() and mseal().
The new mseal() is an syscall on 64 bit CPU, and with following signature:
int mseal(void addr, size_t len, unsigned long flags)
addr/len: memory range.
flags: reserved.
mseal() blocks following operations for the given memory range.
1> Unmapping, moving to another location, and shrinking the size,
via munmap() and mremap(), can leave an empty space, therefore can
be replaced with a VMA with a new set of attributes.
2> Moving or expanding a different VMA into the current location,
via mremap().
3> Modifying a VMA via mmap(MAP_FIXED).
4> Size expansion, via mremap(), does not appear to pose any specific
risks to sealed VMAs. It is included anyway because the use case is
unclear. In any case, users can rely on merging to expand a sealed VMA.
5> mprotect() and pkey_mprotect().
6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous
memory, when users don't have write permission to the memory. Those
behaviors can alter region contents by discarding pages, effectively a
memset(0) for anonymous memory.
The idea that inspired this patch comes from Stephen Röttger’s work in
V8 CFI [5]. Chrome browser in ChromeOS will be the first user of this
API.
Indeed, the Chrome browser has very specific requirements for sealing,
which are distinct from those of most applications. For example, in the
case of libc, sealing is only applied to read-only (RO) or read-execute
(RX) memory segments (such as .text and .RELRO) to prevent them from
becoming writable, the lifetime of those mappings are tied to the lifetime
of the process.
Chrome wants to seal two large address space reservations that are managed
by different allocators. The memory is mapped RW- and RWX respectively
but write access to it is restricted using pkeys (or in the future ARM
permission overlay extensions). The lifetime of those mappings are not
tied to the lifetime of the process, therefore, while the memory is
sealed, the allocators still need to free or discard the unused memory.
For example, with madvise(DONTNEED).
However, always allowing madvise(DONTNEED) on this range poses a security
risk. For example if a jump instruction crosses a page boundary and the
second page gets discarded, it will overwrite the target bytes with zeros
and change the control flow. Checking write-permission before the discard
operation allows us to control when the operation is valid. In this case,
the madvise will only succeed if the executing thread has PKEY write
permissions and PKRU changes are protected in software by control-flow
integrity.
Although the initial version of this patch series is targeting the Chrome
browser as its first user, it became evident during upstream discussions
that we would also want to ensure that the patch set eventually is a
complete solution for memory sealing and compatible with other use cases.
The specific scenario currently in mind is glibc's use case of loading and
sealing ELF executables. To this end, Stephen is working on a change to
glibc to add sealing support to the dynamic linker, which will seal all
non-writable segments at startup. Once this work is completed, all
applications will be able to automatically benefit from these new
protections.
In closing, I would like to formally acknowledge the valuable
contributions received during the RFC process, which were instrumental in
shaping this patch:
Jann Horn: raising awareness and providing valuable insights on the
destructive madvise operations.
Liam R. Howlett: perf optimization.
Linus Torvalds: assisting in defining system call signature and scope.
Theo de Raadt: sharing the experiences and insight gained from
implementing mimmutable() in OpenBSD.
MM perf benchmarks
==================
This patch adds a loop in the mprotect/munmap/madvise(DONTNEED) to
check the VMAs’ sealing flag, so that no partial update can be made,
when any segment within the given memory range is sealed.
To measure the performance impact of this loop, two tests are developed.
[8]
The first is measuring the time taken for a particular system call,
by using clock_gettime(CLOCK_MONOTONIC). The second is using
PERF_COUNT_HW_REF_CPU_CYCLES (exclude user space). Both tests have
similar results.
The tests have roughly below sequence:
for (i = 0; i < 1000, i++)
create 1000 mappings (1 page per VMA)
start the sampling
for (j = 0; j < 1000, j++)
mprotect one mapping
stop and save the sample
delete 1000 mappings
calculates all samples.
Below tests are performed on Intel(R) Pentium(R) Gold 7505 @ 2.00GHz,
4G memory, Chromebook.
Based on the latest upstream code:
The first test (measuring time)
syscall__ vmas t t_mseal delta_ns per_vma %
munmap__ 1 909 944 35 35 104%
munmap__ 2 1398 1502 104 52 107%
munmap__ 4 2444 2594 149 37 106%
munmap__ 8 4029 4323 293 37 107%
munmap__ 16 6647 6935 288 18 104%
munmap__ 32 11811 12398 587 18 105%
mprotect 1 439 465 26 26 106%
mprotect 2 1659 1745 86 43 105%
mprotect 4 3747 3889 142 36 104%
mprotect 8 6755 6969 215 27 103%
mprotect 16 13748 14144 396 25 103%
mprotect 32 27827 28969 1142 36 104%
madvise_ 1 240 262 22 22 109%
madvise_ 2 366 442 76 38 121%
madvise_ 4 623 751 128 32 121%
madvise_ 8 1110 1324 215 27 119%
madvise_ 16 2127 2451 324 20 115%
madvise_ 32 4109 4642 534 17 113%
The second test (measuring cpu cycle)
syscall__ vmas cpu cmseal delta_cpu per_vma %
munmap__ 1 1790 1890 100 100 106%
munmap__ 2 2819 3033 214 107 108%
munmap__ 4 4959 5271 312 78 106%
munmap__ 8 8262 8745 483 60 106%
munmap__ 16 13099 14116 1017 64 108%
munmap__ 32 23221 24785 1565 49 107%
mprotect 1 906 967 62 62 107%
mprotect 2 3019 3203 184 92 106%
mprotect 4 6149 6569 420 105 107%
mprotect 8 9978 10524 545 68 105%
mprotect 16 20448 21427 979 61 105%
mprotect 32 40972 42935 1963 61 105%
madvise_ 1 434 497 63 63 115%
madvise_ 2 752 899 147 74 120%
madvise_ 4 1313 1513 200 50 115%
madvise_ 8 2271 2627 356 44 116%
madvise_ 16 4312 4883 571 36 113%
madvise_ 32 8376 9319 943 29 111%
Based on the result, for 6.8 kernel, sealing check adds
20-40 nano seconds, or around 50-100 CPU cycles, per VMA.
In addition, I applied the sealing to 5.10 kernel:
The first test (measuring time)
syscall__ vmas t tmseal delta_ns per_vma %
munmap__ 1 357 390 33 33 109%
munmap__ 2 442 463 21 11 105%
munmap__ 4 614 634 20 5 103%
munmap__ 8 1017 1137 120 15 112%
munmap__ 16 1889 2153 263 16 114%
munmap__ 32 4109 4088 -21 -1 99%
mprotect 1 235 227 -7 -7 97%
mprotect 2 495 464 -30 -15 94%
mprotect 4 741 764 24 6 103%
mprotect 8 1434 1437 2 0 100%
mprotect 16 2958 2991 33 2 101%
mprotect 32 6431 6608 177 6 103%
madvise_ 1 191 208 16 16 109%
madvise_ 2 300 324 24 12 108%
madvise_ 4 450 473 23 6 105%
madvise_ 8 753 806 53 7 107%
madvise_ 16 1467 1592 125 8 108%
madvise_ 32 2795 3405 610 19 122%
The second test (measuring cpu cycle)
syscall__ nbr_vma cpu cmseal delta_cpu per_vma %
munmap__ 1 684 715 31 31 105%
munmap__ 2 861 898 38 19 104%
munmap__ 4 1183 1235 51 13 104%
munmap__ 8 1999 2045 46 6 102%
munmap__ 16 3839 3816 -23 -1 99%
munmap__ 32 7672 7887 216 7 103%
mprotect 1 397 443 46 46 112%
mprotect 2 738 788 50 25 107%
mprotect 4 1221 1256 35 9 103%
mprotect 8 2356 2429 72 9 103%
mprotect 16 4961 4935 -26 -2 99%
mprotect 32 9882 10172 291 9 103%
madvise_ 1 351 380 29 29 108%
madvise_ 2 565 615 49 25 109%
madvise_ 4 872 933 61 15 107%
madvise_ 8 1508 1640 132 16 109%
madvise_ 16 3078 3323 245 15 108%
madvise_ 32 5893 6704 811 25 114%
For 5.10 kernel, sealing check adds 0-15 ns in time, or 10-30
CPU cycles, there is even decrease in some cases.
It might be interesting to compare 5.10 and 6.8 kernel
The first test (measuring time)
syscall__ vmas t_5_10 t_6_8 delta_ns per_vma %
munmap__ 1 357 909 552 552 254%
munmap__ 2 442 1398 956 478 316%
munmap__ 4 614 2444 1830 458 398%
munmap__ 8 1017 4029 3012 377 396%
munmap__ 16 1889 6647 4758 297 352%
munmap__ 32 4109 11811 7702 241 287%
mprotect 1 235 439 204 204 187%
mprotect 2 495 1659 1164 582 335%
mprotect 4 741 3747 3006 752 506%
mprotect 8 1434 6755 5320 665 471%
mprotect 16 2958 13748 10790 674 465%
mprotect 32 6431 27827 21397 669 433%
madvise_ 1 191 240 49 49 125%
madvise_ 2 300 366 67 33 122%
madvise_ 4 450 623 173 43 138%
madvise_ 8 753 1110 357 45 147%
madvise_ 16 1467 2127 660 41 145%
madvise_ 32 2795 4109 1314 41 147%
The second test (measuring cpu cycle)
syscall__ vmas cpu_5_10 c_6_8 delta_cpu per_vma %
munmap__ 1 684 1790 1106 1106 262%
munmap__ 2 861 2819 1958 979 327%
munmap__ 4 1183 4959 3776 944 419%
munmap__ 8 1999 8262 6263 783 413%
munmap__ 16 3839 13099 9260 579 341%
munmap__ 32 7672 23221 15549 486 303%
mprotect 1 397 906 509 509 228%
mprotect 2 738 3019 2281 1140 409%
mprotect 4 1221 6149 4929 1232 504%
mprotect 8 2356 9978 7622 953 423%
mprotect 16 4961 20448 15487 968 412%
mprotect 32 9882 40972 31091 972 415%
madvise_ 1 351 434 82 82 123%
madvise_ 2 565 752 186 93 133%
madvise_ 4 872 1313 442 110 151%
madvise_ 8 1508 2271 763 95 151%
madvise_ 16 3078 4312 1234 77 140%
madvise_ 32 5893 8376 2483 78 142%
From 5.10 to 6.8
munmap: added 250-550 ns in time, or 500-1100 in cpu cycle, per vma.
mprotect: added 200-750 ns in time, or 500-1200 in cpu cycle, per vma.
madvise: added 33-50 ns in time, or 70-110 in cpu cycle, per vma.
In comparison to mseal, which adds 20-40 ns or 50-100 CPU cycles, the
increase from 5.10 to 6.8 is significantly larger, approximately ten times
greater for munmap and mprotect.
When I discuss the mm performance with Brian Makin, an engineer who worked
on performance, it was brought to my attention that such performance
benchmarks, which measuring millions of mm syscall in a tight loop, may
not accurately reflect real-world scenarios, such as that of a database
service. Also this is tested using a single HW and ChromeOS, the data
from another HW or distribution might be different. It might be best to
take this data with a grain of salt.
This patch (of 5):
Wire up mseal syscall for all architectures.
Link: https://lkml.kernel.org/r/20240415163527.626541-1-jeffxu@chromium.org
Link: https://lkml.kernel.org/r/20240415163527.626541-2-jeffxu@chromium.org
Signed-off-by: Jeff Xu <jeffxu@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Jann Horn <jannh@google.com> [Bug #2]
Cc: Jeff Xu <jeffxu@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jorge Lucangeli Obes <jorgelo@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Stephen Röttger <sroettger@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Amer Al Shanawany <amer.shanawany@gmail.com>
Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"The major fix here is for a filesystem corruption issue reported on
Apple M1 as a result of buggy management of the floating point
register state introduced in 6.8. I initially reverted one of the
offending patches, but in the end Ard cooked a proper fix so there's a
revert+reapply in the series.
Aside from that, we've got some CPU errata workarounds and misc other
fixes.
- Fix broken FP register state tracking which resulted in filesystem
corruption when dm-crypt is used
- Workarounds for Arm CPU errata affecting the SSBS Spectre
mitigation
- Fix lockdep assertion in DMC620 memory controller PMU driver
- Fix alignment of BUG table when CONFIG_DEBUG_BUGVERBOSE is
disabled"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64/fpsimd: Avoid erroneous elide of user state reload
Reapply "arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD"
arm64: asm-bug: Add .align 2 to the end of __BUG_ENTRY
perf/arm-dmc620: Fix lockdep assert in ->event_init()
Revert "arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD"
arm64: errata: Add workaround for Arm errata 3194386 and 3312417
arm64: cputype: Add Neoverse-V3 definitions
arm64: cputype: Add Cortex-X4 definitions
arm64: barrier: Restore spec_bar() macro
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull more non-mm updates from Andrew Morton:
- A series ("kbuild: enable more warnings by default") from Arnd
Bergmann which enables a number of additional build-time warnings. We
fixed all the fallout which we could find, there may still be a few
stragglers.
- Samuel Holland has developed the series "Unified cross-architecture
kernel-mode FPU API". This does a lot of consolidation of
per-architecture kernel-mode FPU usage and enables the use of newer
AMD GPUs on RISC-V.
- Tao Su has fixed some selftests build warnings in the series
"Selftests: Fix compilation warnings due to missing _GNU_SOURCE
definition".
- This pull also includes a nilfs2 fixup from Ryusuke Konishi.
* tag 'mm-nonmm-stable-2024-05-22-17-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (23 commits)
nilfs2: make block erasure safe in nilfs_finish_roll_forward()
selftests/harness: use 1024 in place of LINE_MAX
Revert "selftests/harness: remove use of LINE_MAX"
selftests/fpu: allow building on other architectures
selftests/fpu: move FP code to a separate translation unit
drm/amd/display: use ARCH_HAS_KERNEL_FPU_SUPPORT
drm/amd/display: only use hard-float, not altivec on powerpc
riscv: add support for kernel-mode FPU
x86: implement ARCH_HAS_KERNEL_FPU_SUPPORT
powerpc: implement ARCH_HAS_KERNEL_FPU_SUPPORT
LoongArch: implement ARCH_HAS_KERNEL_FPU_SUPPORT
lib/raid6: use CC_FLAGS_FPU for NEON CFLAGS
arm64: crypto: use CC_FLAGS_FPU for NEON CFLAGS
arm64: implement ARCH_HAS_KERNEL_FPU_SUPPORT
ARM: crypto: use CC_FLAGS_FPU for NEON CFLAGS
ARM: implement ARCH_HAS_KERNEL_FPU_SUPPORT
arch: add ARCH_HAS_KERNEL_FPU_SUPPORT
x86/fpu: fix asm/fpu/types.h include guard
kbuild: enable -Wcast-function-type-strict unconditionally
kbuild: enable -Wformat-truncation on clang
...
|
|
This reverts commit b8995a18417088bb53f87c49d200ec72a9dd4ec1.
Ard managed to reproduce the dm-crypt corruption problem and got to the
bottom of it, so re-apply the problematic patch in preparation for
fixing things properly.
Cc: stable@vger.kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When CONFIG_DEBUG_BUGVERBOSE=n, we fail to add necessary padding bytes
to bug_table entries, and as a result the last entry in a bug table will
be ignored, potentially leading to an unexpected panic(). All prior
entries in the table will be handled correctly.
The arm64 ABI requires that struct fields of up to 8 bytes are
naturally-aligned, with padding added within a struct such that struct
are suitably aligned within arrays.
When CONFIG_DEBUG_BUGVERPOSE=y, the layout of a bug_entry is:
struct bug_entry {
signed int bug_addr_disp; // 4 bytes
signed int file_disp; // 4 bytes
unsigned short line; // 2 bytes
unsigned short flags; // 2 bytes
}
... with 12 bytes total, requiring 4-byte alignment.
When CONFIG_DEBUG_BUGVERBOSE=n, the layout of a bug_entry is:
struct bug_entry {
signed int bug_addr_disp; // 4 bytes
unsigned short flags; // 2 bytes
< implicit padding > // 2 bytes
}
... with 8 bytes total, with 6 bytes of data and 2 bytes of trailing
padding, requiring 4-byte alginment.
When we create a bug_entry in assembly, we align the start of the entry
to 4 bytes, which implicitly handles padding for any prior entries.
However, we do not align the end of the entry, and so when
CONFIG_DEBUG_BUGVERBOSE=n, the final entry lacks the trailing padding
bytes.
For the main kernel image this is not a problem as find_bug() doesn't
depend on the trailing padding bytes when searching for entries:
for (bug = __start___bug_table; bug < __stop___bug_table; ++bug)
if (bugaddr == bug_addr(bug))
return bug;
However for modules, module_bug_finalize() depends on the trailing
bytes when calculating the number of entries:
mod->num_bugs = sechdrs[i].sh_size / sizeof(struct bug_entry);
... and as the last bug_entry lacks the necessary padding bytes, this entry
will not be counted, e.g. in the case of a single entry:
sechdrs[i].sh_size == 6
sizeof(struct bug_entry) == 8;
sechdrs[i].sh_size / sizeof(struct bug_entry) == 0;
Consequently module_find_bug() will miss the last bug_entry when it does:
for (i = 0; i < mod->num_bugs; ++i, ++bug)
if (bugaddr == bug_addr(bug))
goto out;
... which can lead to a kenrel panic due to an unhandled bug.
This can be demonstrated with the following module:
static int __init buginit(void)
{
WARN(1, "hello\n");
return 0;
}
static void __exit bugexit(void)
{
}
module_init(buginit);
module_exit(bugexit);
MODULE_LICENSE("GPL");
... which will trigger a kernel panic when loaded:
------------[ cut here ]------------
hello
Unexpected kernel BRK exception at EL1
Internal error: BRK handler: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in: hello(O+)
CPU: 0 PID: 50 Comm: insmod Tainted: G O 6.9.1 #8
Hardware name: linux,dummy-virt (DT)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : buginit+0x18/0x1000 [hello]
lr : buginit+0x18/0x1000 [hello]
sp : ffff800080533ae0
x29: ffff800080533ae0 x28: 0000000000000000 x27: 0000000000000000
x26: ffffaba8c4e70510 x25: ffff800080533c30 x24: ffffaba8c4a28a58
x23: 0000000000000000 x22: 0000000000000000 x21: ffff3947c0eab3c0
x20: ffffaba8c4e3f000 x19: ffffaba846464000 x18: 0000000000000006
x17: 0000000000000000 x16: ffffaba8c2492834 x15: 0720072007200720
x14: 0720072007200720 x13: ffffaba8c49b27c8 x12: 0000000000000312
x11: 0000000000000106 x10: ffffaba8c4a0a7c8 x9 : ffffaba8c49b27c8
x8 : 00000000ffffefff x7 : ffffaba8c4a0a7c8 x6 : 80000000fffff000
x5 : 0000000000000107 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff3947c0eab3c0
Call trace:
buginit+0x18/0x1000 [hello]
do_one_initcall+0x80/0x1c8
do_init_module+0x60/0x218
load_module+0x1ba4/0x1d70
__do_sys_init_module+0x198/0x1d0
__arm64_sys_init_module+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xd8
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x190/0x194
Code: d0ffffe0 910003fd 91000000 9400000b (d4210000)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: BRK handler: Fatal exception
Fix this by always aligning the end of a bug_entry to 4 bytes, which is
correct regardless of CONFIG_DEBUG_BUGVERBOSE.
Fixes: 9fb7410f955f ("arm64/BUG: Use BRK instruction for generic BUG traps")
Signed-off-by: Yuanbin Xie <xieyuanbin1@huawei.com>
Signed-off-by: Jiangfeng Xiao <xiaojiangfeng@huawei.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/1716212077-43826-1-git-send-email-xiaojiangfeng@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cleanups from Arnd Bergmann:
"These are a few cross-architecture cleanup patches:
- separate out fbdev support from the asm/video.h contents that may
be used by either the old fbdev drivers or the newer drm display
code (Thomas Zimmermann)
- cleanups for the generic bitops code and asm-generic/bug.h
(Thorsten Blum)
- remove the orphaned include/asm-generic/page.h header that used to
be included by long-removed mmu-less architectures (me)"
* tag 'asm-generic-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
arch: Fix name collision with ACPI's video.o
bug: Improve comment
asm-generic: remove unused asm-generic/page.h
arch: Rename fbdev header and source files
arch: Remove struct fb_info from video helpers
arch: Select fbdev helpers with CONFIG_VIDEO
bitops: Change function return types from long to int
|
|
arm64 provides an equivalent to the common kernel-mode FPU API, but in a
different header and using different function names. Add a wrapper
header, and export CFLAGS adjustments as found in lib/raid6/Makefile.
Link: https://lkml.kernel.org/r/20240329072441.591471-5-samuel.holland@sifive.com
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nicolas Schier <nicolas@fjasle.eu>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: WANG Xuerui <git@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
|
|
Pull rdma updates from Jason Gunthorpe:
"Aside from the usual things this has an arch update for
__iowrite64_copy() used by the RDMA drivers.
This API was intended to generate large 64 byte MemWr TLPs on PCI.
These days most processors had done this by just repeating writel() in
a loop. S390 and some new ARM64 designs require a special helper to
get this to generate.
- Small improvements and fixes for erdma, efa, hfi1, bnxt_re
- Fix a UAF crash after module unload on leaking restrack entry
- Continue adding full RDMA support in mana with support for EQs,
GID's and CQs
- Improvements to the mkey cache in mlx5
- DSCP traffic class support in hns and several bug fixes
- Cap the maximum number of MADs in the receive queue to avoid OOM
- Another batch of rxe bug fixes from large scale testing
- __iowrite64_copy() optimizations for write combining MMIO memory
- Remove NULL checks before dev_put/hold()
- EFA support for receive with immediate
- Fix a recent memleaking regression in a cma error path"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (70 commits)
RDMA/cma: Fix kmemleak in rdma_core observed during blktests nvme/rdma use siw
RDMA/IPoIB: Fix format truncation compilation errors
bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq
RDMA/efa: Support QP with unsolicited write w/ imm. receive
IB/hfi1: Remove generic .ndo_get_stats64
IB/hfi1: Do not use custom stat allocator
RDMA/hfi1: Use RMW accessors for changing LNKCTL2
RDMA/mana_ib: implement uapi for creation of rnic cq
RDMA/mana_ib: boundary check before installing cq callbacks
RDMA/mana_ib: introduce a helper to remove cq callbacks
RDMA/mana_ib: create and destroy RNIC cqs
RDMA/mana_ib: create EQs for RNIC CQs
RDMA/core: Remove NULL check before dev_{put, hold}
RDMA/ipoib: Remove NULL check before dev_{put, hold}
RDMA/mlx5: Remove NULL check before dev_{put, hold}
RDMA/mlx5: Track DCT, DCI and REG_UMR QPs as diver_detail resources.
RDMA/core: Add an option to display driver-specific QPs in the rdmatool
RDMA/efa: Add shutdown notifier
RDMA/mana_ib: Fix missing ret value
IB/mlx5: Use __iowrite64_copy() for write combining stores
...
|
|
This reverts commit 2632e25217696712681dd1f3ecc0d71624ea3b23.
Johannes (and others) report data corruption with dm-crypt on Apple M1
which has been bisected to this change. Revert the offending commit
while we figure out what's going on.
Cc: stable@vger.kernel.org
Reported-by: Johannes Nixdorf <mixi@shadowice.org>
Link: https://lore.kernel.org/all/D1B7GPIR9K1E.5JFV37G0YTIF@shadowice.org/
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- Move a lot of state that was previously stored on a per vcpu basis
into a per-CPU area, because it is only pertinent to the host while
the vcpu is loaded. This results in better state tracking, and a
smaller vcpu structure.
- Add full handling of the ERET/ERETAA/ERETAB instructions in nested
virtualisation. The last two instructions also require emulating
part of the pointer authentication extension. As a result, the trap
handling of pointer authentication has been greatly simplified.
- Turn the global (and not very scalable) LPI translation cache into
a per-ITS, scalable cache, making non directly injected LPIs much
cheaper to make visible to the vcpu.
- A batch of pKVM patches, mostly fixes and cleanups, as the
upstreaming process seems to be resuming. Fingers crossed!
- Allocate PPIs and SGIs outside of the vcpu structure, allowing for
smaller EL2 mapping and some flexibility in implementing more or
less than 32 private IRQs.
- Purge stale mpidr_data if a vcpu is created after the MPIDR map has
been created.
- Preserve vcpu-specific ID registers across a vcpu reset.
- Various minor cleanups and improvements.
LoongArch:
- Add ParaVirt IPI support
- Add software breakpoint support
- Add mmio trace events support
RISC-V:
- Support guest breakpoints using ebreak
- Introduce per-VCPU mp_state_lock and reset_cntx_lock
- Virtualize SBI PMU snapshot and counter overflow interrupts
- New selftests for SBI PMU and Guest ebreak
- Some preparatory work for both TDX and SNP page fault handling.
This also cleans up the page fault path, so that the priorities of
various kinds of fauls (private page, no memory, write to read-only
slot, etc.) are easier to follow.
x86:
- Minimize amount of time that shadow PTEs remain in the special
REMOVED_SPTE state.
This is a state where the mmu_lock is held for reading but
concurrent accesses to the PTE have to spin; shortening its use
allows other vCPUs to repopulate the zapped region while the zapper
finishes tearing down the old, defunct page tables.
- Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID
field, which is defined by hardware but left for software use.
This lets KVM communicate its inability to map GPAs that set bits
51:48 on hosts without 5-level nested page tables. Guest firmware
is expected to use the information when mapping BARs; this avoids
that they end up at a legal, but unmappable, GPA.
- Fixed a bug where KVM would not reject accesses to MSR that aren't
supposed to exist given the vCPU model and/or KVM configuration.
- As usual, a bunch of code cleanups.
x86 (AMD):
- Implement a new and improved API to initialize SEV and SEV-ES VMs,
which will also be extendable to SEV-SNP.
The new API specifies the desired encryption in KVM_CREATE_VM and
then separately initializes the VM. The new API also allows
customizing the desired set of VMSA features; the features affect
the measurement of the VM's initial state, and therefore enabling
them cannot be done tout court by the hypervisor.
While at it, the new API includes two bugfixes that couldn't be
applied to the old one without a flag day in userspace or without
affecting the initial measurement. When a SEV-ES VM is created with
the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected
once the VMSA has been encrypted. Also, the FPU and AVX state will
be synchronized and encrypted too.
- Support for GHCB version 2 as applicable to SEV-ES guests.
This, once more, is only accessible when using the new
KVM_SEV_INIT2 flow for initialization of SEV-ES VMs.
x86 (Intel):
- An initial bunch of prerequisite patches for Intel TDX were merged.
They generally don't do anything interesting. The only somewhat
user visible change is a new debugging mode that checks that KVM's
MMU never triggers a #VE virtualization exception in the guest.
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig
VM-Exit to L1, as per the SDM.
Generic:
- Use vfree() instead of kvfree() for allocations that always use
vcalloc() or __vcalloc().
- Remove .change_pte() MMU notifier - the changes to non-KVM code are
small and Andrew Morton asked that I also take those through the
KVM tree.
The callback was only ever implemented by KVM (which was also the
original user of MMU notifiers) but it had been nonfunctional ever
since calls to set_pte_at_notify were wrapped with
invalidate_range_start and invalidate_range_end... in 2012.
Selftests:
- Enhance the demand paging test to allow for better reporting and
stressing of UFFD performance.
- Convert the steal time test to generate TAP-friendly output.
- Fix a flaky false positive in the xen_shinfo_test due to comparing
elapsed time across two different clock domains.
- Skip the MONITOR/MWAIT test if the host doesn't actually support
MWAIT.
- Avoid unnecessary use of "sudo" in the NX hugepage test wrapper
shell script, to play nice with running in a minimal userspace
environment.
- Allow skipping the RSEQ test's sanity check that the vCPU was able
to complete a reasonable number of KVM_RUNs, as the assert can fail
on a completely valid setup.
If the test is run on a large-ish system that is otherwise idle,
and the test isn't affined to a low-ish number of CPUs, the vCPU
task can be repeatedly migrated to CPUs that are in deep sleep
states, which results in the vCPU having very little net runtime
before the next migration due to high wakeup latencies.
- Define _GNU_SOURCE for all selftests to fix a warning that was
introduced by a change to kselftest_harness.h late in the 6.9
cycle, and because forcing every test to #define _GNU_SOURCE is
painful.
- Provide a global pseudo-RNG instance for all tests, so that library
code can generate random, but determinstic numbers.
- Use the global pRNG to randomly force emulation of select writes
from guest code on x86, e.g. to help validate KVM's emulation of
locked accesses.
- Allocate and initialize x86's GDT, IDT, TSS, segments, and default
exception handlers at VM creation, instead of forcing tests to
manually trigger the related setup.
Documentation:
- Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits)
selftests/kvm: remove dead file
KVM: selftests: arm64: Test vCPU-scoped feature ID registers
KVM: selftests: arm64: Test that feature ID regs survive a reset
KVM: selftests: arm64: Store expected register value in set_id_regs
KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope
KVM: arm64: Only reset vCPU-scoped feature ID regs once
KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs()
KVM: arm64: Rename is_id_reg() to imply VM scope
KVM: arm64: Destroy mpidr_data for 'late' vCPU creation
KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support
KVM: arm64: Fix hvhe/nvhe early alias parsing
KVM: SEV: Allow per-guest configuration of GHCB protocol version
KVM: SEV: Add GHCB handling for termination requests
KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests
KVM: SEV: Add support to handle AP reset MSR protocol
KVM: x86: Explicitly zero kvm_caps during vendor module load
KVM: x86: Fully re-initialize supported_mce_cap on vendor module load
KVM: x86: Fully re-initialize supported_vm_types on vendor module load
KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns
KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core & protocols:
- Complete rework of garbage collection of AF_UNIX sockets.
AF_UNIX is prone to forming reference count cycles due to fd
passing functionality. New method based on Tarjan's Strongly
Connected Components algorithm should be both faster and remove a
lot of workarounds we accumulated over the years.
- Add TCP fraglist GRO support, allowing chaining multiple TCP
packets and forwarding them together. Useful for small switches /
routers which lack basic checksum offload in some scenarios (e.g.
PPPoE).
- Support using SMP threads for handling packet backlog i.e. packet
processing from software interfaces and old drivers which don't use
NAPI. This helps move the processing out of the softirq jumble.
- Continue work of converting from rtnl lock to RCU protection.
Don't require rtnl lock when reading: IPv6 routing FIB, IPv6
address labels, netdev threaded NAPI sysfs files, bonding driver's
sysfs files, MPLS devconf, IPv4 FIB rules, netns IDs, tcp metrics,
TC Qdiscs, neighbor entries, ARP entries via ioctl(SIOCGARP), a lot
of the link information available via rtnetlink.
- Small optimizations from Eric to UDP wake up handling, memory
accounting, RPS/RFS implementation, TCP packet sizing etc.
- Allow direct page recycling in the bulk API used by XDP, for +2%
PPS.
- Support peek with an offset on TCP sockets.
- Add MPTCP APIs for querying last time packets were received/sent/acked
and whether MPTCP "upgrade" succeeded on a TCP socket.
- Add intra-node communication shortcut to improve SMC performance.
- Add IPv6 (and IPv{4,6}-over-IPv{4,6}) support to the GTP protocol
driver.
- Add HSR-SAN (RedBOX) mode of operation to the HSR protocol driver.
- Add reset reasons for tracing what caused a TCP reset to be sent.
- Introduce direction attribute for xfrm (IPSec) states. State can be
used either for input or output packet processing.
Things we sprinkled into general kernel code:
- Add bitmap_{read,write}(), bitmap_size(), expose BYTES_TO_BITS().
This required touch-ups and renaming of a few existing users.
- Add Endian-dependent __counted_by_{le,be} annotations.
- Make building selftests "quieter" by printing summaries like
"CC object.o" rather than full commands with all the arguments.
Netfilter:
- Use GFP_KERNEL to clone elements, to deal better with OOM
situations and avoid failures in the .commit step.
BPF:
- Add eBPF JIT for ARCv2 CPUs.
- Support attaching kprobe BPF programs through kprobe_multi link in
a session mode, meaning, a BPF program is attached to both function
entry and return, the entry program can decide if the return
program gets executed and the entry program can share u64 cookie
value with return program. "Session mode" is a common use-case for
tetragon and bpftrace.
- Add the ability to specify and retrieve BPF cookie for raw
tracepoint programs in order to ease migration from classic to raw
tracepoints.
- Add an internal-only BPF per-CPU instruction for resolving per-CPU
memory addresses and implement support in x86, ARM64 and RISC-V
JITs. This allows inlining functions which need to access per-CPU
state.
- Optimize x86 BPF JIT's emit_mov_imm64, and add support for various
atomics in bpf_arena which can be JITed as a single x86
instruction. Support BPF arena on ARM64.
- Add a new bpf_wq API for deferring events and refactor
process-context bpf_timer code to keep common code where possible.
- Harden the BPF verifier's and/or/xor value tracking.
- Introduce crypto kfuncs to let BPF programs call kernel crypto
APIs.
- Support bpf_tail_call_static() helper for BPF programs with GCC 13.
- Add bpf_preempt_{disable,enable}() kfuncs in order to allow a BPF
program to have code sections where preemption is disabled.
Driver API:
- Skip software TC processing completely if all installed rules are
marked as HW-only, instead of checking the HW-only flag rule by
rule.
- Add support for configuring PoE (Power over Ethernet), similar to
the already existing support for PoDL (Power over Data Line)
config.
- Initial bits of a queue control API, for now allowing a single
queue to be reset without disturbing packet flow to other queues.
- Common (ethtool) statistics for hardware timestamping.
Tests and tooling:
- Remove the need to create a config file to run the net forwarding
tests so that a naive "make run_tests" can exercise them.
- Define a method of writing tests which require an external endpoint
to communicate with (to send/receive data towards the test
machine). Add a few such tests.
- Create a shared code library for writing Python tests. Expose the
YAML Netlink library from tools/ to the tests for easy Netlink
access.
- Move netfilter tests under net/, extend them, separate performance
tests from correctness tests, and iron out issues found by running
them "on every commit".
- Refactor BPF selftests to use common network helpers.
- Further work filling in YAML definitions of Netlink messages for:
nftables, team driver, bonding interfaces, vlan interfaces, VF
info, TC u32 mark, TC police action.
- Teach Python YAML Netlink to decode attribute policies.
- Extend the definition of the "indexed array" construct in the specs
to cover arrays of scalars rather than just nests.
- Add hyperlinks between definitions in generated Netlink docs.
Drivers:
- Make sure unsupported flower control flags are rejected by drivers,
and make more drivers report errors directly to the application
rather than dmesg (large number of driver changes from Asbjørn
Sloth Tønnesen).
- Ethernet high-speed NICs:
- Broadcom (bnxt):
- support multiple RSS contexts and steering traffic to them
- support XDP metadata
- make page pool allocations more NUMA aware
- Intel (100G, ice, idpf):
- extract datapath code common among Intel drivers into a library
- use fewer resources in switchdev by sharing queues with the PF
- add PFCP filter support
- add Ethernet filter support
- use a spinlock instead of HW lock in PTP clock ops
- support 5 layer Tx scheduler topology
- nVidia/Mellanox:
- 800G link modes and 100G SerDes speeds
- per-queue IRQ coalescing configuration
- Marvell Octeon:
- support offloading TC packet mark action
- Ethernet NICs consumer, embedded and virtual:
- stop lying about skb->truesize in USB Ethernet drivers, it
messes up TCP memory calculations
- Google cloud vNIC:
- support changing ring size via ethtool
- support ring reset using the queue control API
- VirtIO net:
- expose flow hash from RSS to XDP
- per-queue statistics
- add selftests
- Synopsys (stmmac):
- support controllers which require an RX clock signal from the
MII bus to perform their hardware initialization
- TI:
- icssg_prueth: support ICSSG-based Ethernet on AM65x SR1.0 devices
- icssg_prueth: add SW TX / RX Coalescing based on hrtimers
- cpsw: minimal XDP support
- Renesas (ravb):
- support describing the MDIO bus
- Realtek (r8169):
- add support for RTL8168M
- Microchip Sparx5:
- matchall and flower actions mirred and redirect
- Ethernet switches:
- nVidia/Mellanox:
- improve events processing performance
- Marvell:
- add support for MV88E6250 family internal PHYs
- Microchip:
- add DCB and DSCP mapping support for KSZ switches
- vsc73xx: convert to PHYLINK
- Realtek:
- rtl8226b/rtl8221b: add C45 instances and SerDes switching
- Many driver changes related to PHYLIB and PHYLINK deprecated API
cleanup
- Ethernet PHYs:
- Add a new driver for Airoha EN8811H 2.5 Gigabit PHY.
- micrel: lan8814: add support for PPS out and external timestamp trigger
- WiFi:
- Disable Wireless Extensions (WEXT) in all Wi-Fi 7 devices
drivers. Modern devices can only be configured using nl80211.
- mac80211/cfg80211
- handle color change per link for WiFi 7 Multi-Link Operation
- Intel (iwlwifi):
- don't support puncturing in 5 GHz
- support monitor mode on passive channels
- BZ-W device support
- P2P with HE/EHT support
- re-add support for firmware API 90
- provide channel survey information for Automatic Channel Selection
- MediaTek (mt76):
- mt7921 LED control
- mt7925 EHT radiotap support
- mt7920e PCI support
- Qualcomm (ath11k):
- P2P support for QCA6390, WCN6855 and QCA2066
- support hibernation
- ieee80211-freq-limit Device Tree property support
- Qualcomm (ath12k):
- refactoring in preparation of multi-link support
- suspend and hibernation support
- ACPI support
- debugfs support, including dfs_simulate_radar support
- RealTek:
- rtw88: RTL8723CS SDIO device support
- rtw89: RTL8922AE Wi-Fi 7 PCI device support
- rtw89: complete features of new WiFi 7 chip 8922AE including
BT-coexistence and Wake-on-WLAN
- rtw89: use BIOS ACPI settings to set TX power and channels
- rtl8xxxu: enable Management Frame Protection (MFP) support
- Bluetooth:
- support for Intel BlazarI and Filmore Peak2 (BE201)
- support for MediaTek MT7921S SDIO
- initial support for Intel PCIe BT driver
- remove HCI_AMP support"
* tag 'net-next-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1827 commits)
selftests: netfilter: fix packetdrill conntrack testcase
net: gro: fix napi_gro_cb zeroed alignment
Bluetooth: btintel_pcie: Refactor and code cleanup
Bluetooth: btintel_pcie: Fix warning reported by sparse
Bluetooth: hci_core: Fix not handling hdev->le_num_of_adv_sets=1
Bluetooth: btintel: Fix compiler warning for multi_v7_defconfig config
Bluetooth: btintel_pcie: Fix compiler warnings
Bluetooth: btintel_pcie: Add *setup* function to download firmware
Bluetooth: btintel_pcie: Add support for PCIe transport
Bluetooth: btintel: Export few static functions
Bluetooth: HCI: Remove HCI_AMP support
Bluetooth: L2CAP: Fix div-by-zero in l2cap_le_flowctl_init()
Bluetooth: qca: Fix error code in qca_read_fw_build_info()
Bluetooth: hci_conn: Use __counted_by() and avoid -Wfamnae warning
Bluetooth: btintel: Add support for Filmore Peak2 (BE201)
Bluetooth: btintel: Add support for BlazarI
LE Create Connection command timeout increased to 20 secs
dt-bindings: net: bluetooth: Add MediaTek MT7921S SDIO Bluetooth
Bluetooth: compute LE flow credits based on recvbuf space
Bluetooth: hci_sync: Use cmd->num_cis instead of magic number
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The most interesting parts are probably the mm changes from Ryan which
optimise the creation of the linear mapping at boot and (separately)
implement write-protect support for userfaultfd.
Outside of our usual directories, the Kbuild-related changes under
scripts/ have been acked by Masahiro whilst the drivers/acpi/ parts
have been acked by Rafael and the addition of cpumask_any_and_but()
has been acked by Yury.
ACPI:
- Support for the Firmware ACPI Control Structure (FACS) signature
feature which is used to reboot out of hibernation on some systems
Kbuild:
- Support for building Flat Image Tree (FIT) images, where the kernel
Image is compressed alongside a set of devicetree blobs
Memory management:
- Optimisation of our early page-table manipulation for creation of
the linear mapping
- Support for userfaultfd write protection, which brings along some
nice cleanups to our handling of invalid but present ptes
- Extend our use of range TLBI invalidation at EL1
Perf and PMUs:
- Ensure that the 'pmu->parent' pointer is correctly initialised by
PMU drivers
- Avoid allocating 'cpumask_t' types on the stack in some PMU drivers
- Fix parsing of the CPU PMU "version" field in assembly code, as it
doesn't follow the usual architectural rules
- Add best-effort unwinding support for USER_STACKTRACE
- Minor driver fixes and cleanups
Selftests:
- Minor cleanups to the arm64 selftests (missing NULL check, unused
variable)
Miscellaneous:
- Add a command-line alias for disabling 32-bit application support
- Add part number for Neoverse-V2 CPUs
- Minor fixes and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
arm64/mm: Fix pud_user_accessible_page() for PGTABLE_LEVELS <= 2
arm64/mm: Add uffd write-protect support
arm64/mm: Move PTE_PRESENT_INVALID to overlay PTE_NG
arm64/mm: Remove PTE_PROT_NONE bit
arm64/mm: generalize PMD_PRESENT_INVALID for all levels
arm64: simplify arch_static_branch/_jump function
arm64: Add USER_STACKTRACE support
arm64: Add the arm64.no32bit_el0 command line option
drivers/perf: hisi: hns3: Actually use devm_add_action_or_reset()
drivers/perf: hisi: hns3: Fix out-of-bound access when valid event group
drivers/perf: hisi_pcie: Fix out-of-bound access when valid event group
kselftest: arm64: Add a null pointer check
arm64: defer clearing DAIF.D
arm64: assembler: update stale comment for disable_step_tsk
arm64/sysreg: Update PIE permission encodings
kselftest/arm64: Remove unused parameters in abi test
perf/arm-spe: Assign parents for event_source device
perf/arm-smmuv3: Assign parents for event_source device
perf/arm-dsu: Assign parents for event_source device
perf/arm-dmc620: Assign parents for event_source device
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/pelt: Remove shift of thermal clock
sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
thermal/cpufreq: Remove arch_update_thermal_pressure()
sched/cpufreq: Take cpufreq feedback into account
cpufreq: Add a cpufreq pressure feedback for the scheduler
sched/fair: Fix update of rd->sg_overutilized
sched/vtime: Do not include <asm/vtime.h> header
s390/irq,nmi: Include <asm/vtime.h> header directly
s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
sched/vtime: Get rid of generic vtime_task_switch() implementation
sched/vtime: Remove confusing arch_vtime_task_switch() declaration
sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
sched/fair: Rename root_domain::overload to ::overloaded
sched/fair: Use helper functions to access root_domain::overload
sched/fair: Check root_domain::overload value before update
sched/fair: Combine EAS check with root_domain::overutilized access
sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
...
|
|
Inline calls to bpf_get_smp_processor_id() helper in the JIT by emitting
a read from struct thread_info. The SP_EL0 system register holds the
pointer to the task_struct and thread_info is the first member of this
struct. We can read the cpu number from the thread_info.
Here is how the ARM64 JITed assembly changes after this commit:
ARM64 JIT
===========
BEFORE AFTER
-------- -------
int cpu = bpf_get_smp_processor_id(); int cpu = bpf_get_smp_processor_id();
mov x10, #0xfffffffffffff4d0 mrs x10, sp_el0
movk x10, #0x802b, lsl #16 ldr w7, [x10, #24]
movk x10, #0x8000, lsl #32
blr x10
add x7, x0, #0x0
Performance improvement using benchmark[1]
./benchs/run_bench_trigger.sh glob-arr-inc arr-inc hash-inc
+---------------+-------------------+-------------------+--------------+
| Name | Before | After | % change |
|---------------+-------------------+-------------------+--------------|
| glob-arr-inc | 23.380 ± 1.675M/s | 25.893 ± 0.026M/s | + 10.74% |
| arr-inc | 23.928 ± 0.034M/s | 25.213 ± 0.063M/s | + 5.37% |
| hash-inc | 12.352 ± 0.005M/s | 12.609 ± 0.013M/s | + 2.08% |
+---------------+-------------------+-------------------+--------------+
[1] https://github.com/anakryiko/linux/commit/8dec900975ef
Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240502151854.9810-5-puranjay@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Support an instruction for resolving absolute addresses of per-CPU
data from their per-CPU offsets. This instruction is internal-only and
users are not allowed to use them directly. They will only be used for
internal inlining optimizations for now between BPF verifier and BPF
JITs.
Since commit 7158627686f0 ("arm64: percpu: implement optimised pcpu
access using tpidr_el1"), the per-cpu offset for the CPU is stored in
the tpidr_el1/2 register of that CPU.
To support this BPF instruction in the ARM64 JIT, the following ARM64
instructions are emitted:
mov dst, src // Move src to dst, if src != dst
mrs tmp, tpidr_el1/2 // Move per-cpu offset of the current cpu in tmp.
add dst, dst, tmp // Add the per cpu offset to the dst.
To measure the performance improvement provided by this change, the
benchmark in [1] was used:
Before:
glob-arr-inc : 23.597 ± 0.012M/s
arr-inc : 23.173 ± 0.019M/s
hash-inc : 12.186 ± 0.028M/s
After:
glob-arr-inc : 23.819 ± 0.034M/s
arr-inc : 23.285 ± 0.017M/s
hash-inc : 12.419 ± 0.011M/s
[1] https://github.com/anakryiko/linux/commit/8dec900975ef
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240502151854.9810-4-puranjay@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 6.10
- Move a lot of state that was previously stored on a per vcpu
basis into a per-CPU area, because it is only pertinent to the
host while the vcpu is loaded. This results in better state
tracking, and a smaller vcpu structure.
- Add full handling of the ERET/ERETAA/ERETAB instructions in
nested virtualisation. The last two instructions also require
emulating part of the pointer authentication extension.
As a result, the trap handling of pointer authentication has
been greattly simplified.
- Turn the global (and not very scalable) LPI translation cache
into a per-ITS, scalable cache, making non directly injected
LPIs much cheaper to make visible to the vcpu.
- A batch of pKVM patches, mostly fixes and cleanups, as the
upstreaming process seems to be resuming. Fingers crossed!
- Allocate PPIs and SGIs outside of the vcpu structure, allowing
for smaller EL2 mapping and some flexibility in implementing
more or less than 32 private IRQs.
- Purge stale mpidr_data if a vcpu is created after the MPIDR
map has been created.
- Preserve vcpu-specific ID registers across a vcpu reset.
- Various minor cleanups and improvements.
|
|
* for-next/errata:
arm64: errata: Add workaround for Arm errata 3194386 and 3312417
arm64: cputype: Add Neoverse-V3 definitions
arm64: cputype: Add Cortex-X4 definitions
arm64: barrier: Restore spec_bar() macro
|
|
Cortex-X4 and Neoverse-V3 suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time. This is described in their Software Developer Errata Notice (SDEN)
documents:
* Cortex-X4 SDEN v8.0, erratum 3194386:
https://developer.arm.com/documentation/SDEN-2432808/0800/
* Neoverse-V3 SDEN v6.0, erratum 3312417:
https://developer.arm.com/documentation/SDEN-2891958/0600/
To workaround these errata, it is necessary to place a speculation
barrier (SB) after MSR to the SSBS special-purpose register. This patch
adds the requisite SB after writes to SSBS within the kernel, and hides
the presence of SSBS from EL0 such that userspace software which cares
about SSBS will manipulate this via prctl(PR_GET_SPECULATION_CTRL, ...).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240508081400.235362-5-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Add cputype definitions for Neoverse-V3. These will be used for errata
detection in subsequent patches.
These values can be found in Table B-249 ("MIDR_EL1 bit descriptions")
in issue 0001-04 of the Neoverse-V3 TRM, which can be found at:
https://developer.arm.com/documentation/107734/0001/?lang=en
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240508081400.235362-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Add cputype definitions for Cortex-X4. These will be used for errata
detection in subsequent patches.
These values can be found in Table B-249 ("MIDR_EL1 bit descriptions")
in issue 0002-05 of the Cortex-X4 TRM, which can be found at:
https://developer.arm.com/documentation/102484/0002/?lang=en
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240508081400.235362-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Upcoming errata workarounds will need to use SB from C code. Restore the
spec_bar() macro so that we can use SB.
This is effectively a revert of commit:
4f30ba1cce36d413 ("arm64: barrier: Remove spec_bar() macro")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240508081400.235362-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
* kvm-arm64/mpidr-reset:
: .
: Fixes for CLIDR_EL1 and MPIDR_EL1 being accidentally mutable across
: a vcpu reset, courtesy of Oliver. From the cover letter:
:
: "For VM-wide feature ID registers we ensure they get initialized once for
: the lifetime of a VM. On the other hand, vCPU-local feature ID registers
: get re-initialized on every vCPU reset, potentially clobbering the
: values userspace set up.
:
: MPIDR_EL1 and CLIDR_EL1 are the only registers in this space that we
: allow userspace to modify for now. Clobbering the value of MPIDR_EL1 has
: some disastrous side effects as the compressed index used by the
: MPIDR-to-vCPU lookup table assumes MPIDR_EL1 is immutable after KVM_RUN.
:
: Series + reproducer test case to address the problem of KVM wiping out
: userspace changes to these registers. Note that there are still some
: differences between VM and vCPU scoped feature ID registers from the
: perspective of userspace. We do not allow the value of VM-scope
: registers to change after KVM_RUN, but vCPU registers remain mutable."
: .
KVM: selftests: arm64: Test vCPU-scoped feature ID registers
KVM: selftests: arm64: Test that feature ID regs survive a reset
KVM: selftests: arm64: Store expected register value in set_id_regs
KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope
KVM: arm64: Only reset vCPU-scoped feature ID regs once
KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs()
KVM: arm64: Rename is_id_reg() to imply VM scope
Signed-off-by: Marc Zyngier <maz@kernel.org>
|