Age | Commit message (Collapse) | Author |
|
* pci/endpoint:
tools: PCI: Add a missing option help line
misc: pci_endpoint_test: Enable/Disable MSI using module param
misc: pci_endpoint_test: Avoid using hard-coded BAR sizes
misc: pci_endpoint_test: Add support to not enable MSI interrupts
misc: pci_endpoint_test: Add support to provide aligned buffer addresses
misc: pci_endpoint_test: Add support for PCI_ENDPOINT_TEST regs to be mapped to any BAR
PCI: designware-ep: Do not disable BARs during initialization
PCI: dra7xx: Reset all BARs during initialization
PCI: dwc: designware: Provide page_size to pci_epc_mem
PCI: endpoint: Remove the ->remove() callback
PCI: endpoint: Add support to poll early for host commands
PCI: endpoint: Add support to use _any_ BAR to map PCI_ENDPOINT_TEST regs
PCI: endpoint: Do not reset *command* inadvertently
PCI: endpoint: Add "volatile" to pci_epf_test_reg
PCI: endpoint: Add support for configurable page size
PCI: endpoint: Make ->remove() callback optional
PCI: endpoint: Add an API to get matching "pci_epf_device_id"
PCI: endpoint: Use of_dma_configure() to set initial DMA mask
|
|
* pci/host-xilinx:
PCI: xilinx-nwl: Fix platform_get_irq() error handling
PCI: xilinx: Allow build on MIPS platforms
PCI: xilinx: Don't enable config completion interrupts
PCI: xilinx: Unify INTx & MSI interrupt decode
PCI: xilinx-nwl: Translate INTx range to hwirqs 0-3
PCI: xilinx: Translate INTx range to hwirqs 0-3
|
|
* pci/host-xgene:
PCI: xgene: Clean up whitespace
PCI: xgene: Define XGENE_PCI_EXP_CAP and use generic PCI_EXP_RTCTL offset
PCI: xgene: Fix platform_get_irq() error handling
|
|
* pci/host-vmd:
iommu/vt-d: Prevent VMD child devices from being remapping targets
x86/PCI: Use is_vmd() rather than relying on the domain number
x86/PCI: Move VMD quirk to x86 fixups
MAINTAINERS: Add Jonathan Derrick as VMD maintainer
PCI: vmd: Remove IRQ affinity so we can allocate more IRQs
PCI: vmd: Free up IRQs on suspend path
PCI: vmd: Assign vector zero to all bridges
PCI: vmd: Reserve IRQ pre-vector for better affinity
|
|
* pci/host-tegra:
PCI: tegra: Explicitly request exclusive reset control
|
|
* pci/host-spear13xx:
PCI: spear13xx: Fix platform_get_irq() error handling
|
|
* pci/host-rockchip:
PCI: rockchip: Fix platform_get_irq() error handling
PCI: rockchip: Umap IO space if probe fails
PCI: rockchip: Remove IRQ domain if probe fails
PCI: rockchip: Disable vpcie0v9 if resume_noirq fails
PCI: rockchip: Clean up PHY if driver probe or resume fails
PCI: rockchip: Factor out rockchip_pcie_deinit_phys()
PCI: rockchip: Factor out rockchip_pcie_disable_clocks()
PCI: rockchip: Factor out rockchip_pcie_enable_clocks()
PCI: rockchip: Factor out rockchip_pcie_setup_irq()
PCI: rockchip: Use gpiod_set_value_cansleep() to allow reset via expanders
PCI: rockchip: Use PCI_NUM_INTX
PCI: rockchip: Explicitly request exclusive reset control
dt-bindings: phy-rockchip-pcie: Convert to per-lane PHY model
dt-bindings: PCI: rockchip: Convert to per-lane PHY model
arm64: dts: rockchip: convert PCIe to use per-lane PHYs for rk3339
PCI: rockchip: Idle inactive PHY(s)
phy: rockchip-pcie: Reconstruct driver to support per-lane PHYs
PCI: rockchip: Add per-lane PHY support
PCI: rockchip: Factor out rockchip_pcie_get_phys()
PCI: rockchip: Control optional 12v power supply
dt-bindings: PCI: rockchip: Add vpcie12v-supply for Rockchip PCIe controller
|
|
* pci/host-rcar:
PCI: rcar: Add device tree support for r8a7743/5
PCI: rcar: Fix memory leak when no PCIe card is inserted
PCI: rcar: Fix error exit path
|
|
* pci/host-qcom:
PCI: qcom: Add support for IPQ8074 PCIe controller
dt-bindings: PCI: qcom: Add support for IPQ8074
PCI: qcom: Use block IP version for operations
PCI: qcom: Explicitly request exclusive reset control
PCI: qcom: Use gpiod_set_value_cansleep() to allow reset via expanders
|
|
* pci/host-mvebu:
PCI: mvebu: Remove unneeded gpiod NULL check
|
|
* pci/host-mediatek:
PCI: mediatek: Use PCI_NUM_INTX
PCI: mediatek: Add MSI support for MT2712 and MT7622
PCI: mediatek: Use bus->sysdata to get host private data
dt-bindings: PCI: Add support for MT2712 and MT7622
PCI: mediatek: Add controller support for MT2712 and MT7622
dt-bindings: PCI: Cleanup MediaTek binding text
dt-bindings: PCI: Rename MediaTek binding
PCI: mediatek: Switch to use platform_get_resource_byname()
PCI: mediatek: Add a structure to abstract the controller generations
PCI: mediatek: Rename port->index and mtk_pcie_parse_ports()
PCI: mediatek: Use readl_poll_timeout() to wait for Gen2 training
PCI: mediatek: Explicitly request exclusive reset control
|
|
* pci/host-layerscape:
PCI: layerscape: Add support for ls1088a
PCI: layerscape: Add support for ls2088a
PCI: artpec6: Stop enabling writes to DBI read-only registers
PCI: layerscape: Remove unnecessary class code fixup
PCI: dwc: Enable write permission for Class Code, Interrupt Pin updates
PCI: dwc: Add accessors for write permission of DBI read-only registers
PCI: layerscape: Disable outbound windows configured by bootloader
PCI: layerscape: Refactor ls1021_pcie_host_init()
PCI: layerscape: Move generic init functions earlier in file
PCI: layerscape: Add class code and multifunction fixups for ls1021a
PCI: layerscape: Move STRFMR1 access out from the DBI write-enable bracket
PCI: layerscape: Call dw_pcie_setup_rc() from ls_pcie_host_init()
|
|
* pci/host-kirin:
PCI: kirin: Constify dw_pcie_host_ops structure
|
|
* pci/host-keystone:
PCI: keystone: Use PCI_NUM_INTX
PCI: keystone: Remove duplicate MAX_*_IRQS defs
PCI: keystone-dw: Remove unused ks_pcie, pci variables
|
|
* pci/host-iproc:
PCI: iproc: Clean up whitespace
PCI: iproc: Rename PCI_EXP_CAP to IPROC_PCI_EXP_CAP
PCI: iproc: Add 500ms delay during device shutdown
PCI: iproc: Work around Stingray CRS defects
PCI: iproc: Factor out memory-mapped config access address calculation
PCI: iproc: Remove unused struct iproc_pcie *pcie
|
|
* pci/host-imx6:
PCI: imx6: Explicitly request exclusive reset control
|
|
* pci/host-hv:
PCI: hv: Do not sleep in compose_msi_msg()
|
|
* pci/host-hisi:
PCI: hisi: Constify dw_pcie_host_ops structure
PCI: hisi: Remove unused variable driver
|
|
* pci/host-faraday:
PCI: faraday: Use PCI_NUM_INTX
PCI: faraday: Fix of_irq_get() error check
|
|
* pci/host-exynos:
PCI: exynos: Fix platform_get_irq() error handling
|
|
* pci/host-dra7xx:
PCI: dra7xx: Fix platform_get_irq() error handling
PCI: dra7xx: Propagate platform_get_irq() errors in dra7xx_pcie_probe()
PCI: dra7xx: Use PCI_NUM_INTX
|
|
* pci/host-designware:
PCI: dwc: Clear MSI interrupt status after it is handled, not before
PCI: qcom: Allow ->post_init() to fail
PCI: qcom: Don't unroll init if ->init() fails
PCI: dwc: designware: Handle ->host_init() failures
PCI: dwc: designware: Test PCIE_ATU_ENABLE bit specifically
PCI: dwc: designware: Make dw_pcie_prog_*_atu_unroll() static
|
|
* pci/host-artpec6:
PCI: artpec6: Fix platform_get_irq() error handling
|
|
* pci/host-armada:
PCI: armada8k: Fix platform_get_irq() error handling
PCI: armada8k: Check the return value from clk_prepare_enable()
|
|
* pci/host-altera:
PCI: altera: Fix platform_get_irq() error handling
PCI: altera: Use size=4 IRQ domain for legacy INTx
PCI: altera: Remove unused num_of_vectors variable
|
|
* pci/host-aardvark:
PCI: aardvark: Use PCI_NUM_INTX
|
|
* pci/irq-intx:
PCI: Add pci_irqd_intx_xlate()
PCI: Move enum pci_interrupt_pin to linux/pci.h
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- the new pvcalls backend for routing socket calls from a guest to dom0
- some cleanups of Xen code
- a fix for wrong usage of {get,put}_cpu()
* tag 'for-linus-4.14b-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (27 commits)
xen/mmu: set MMU_NORMAL_PT_UPDATE in remap_area_mfn_pte_fn
xen: Don't try to call xen_alloc_p2m_entry() on autotranslating guests
xen/events: events_fifo: Don't use {get,put}_cpu() in xen_evtchn_fifo_init()
xen/pvcalls: use WARN_ON(1) instead of __WARN()
xen: remove not used trace functions
xen: remove unused function xen_set_domain_pte()
xen: remove tests for pvh mode in pure pv paths
xen-platform: constify pci_device_id.
xen: cleanup xen.h
xen: introduce a Kconfig option to enable the pvcalls backend
xen/pvcalls: implement write
xen/pvcalls: implement read
xen/pvcalls: implement the ioworker functions
xen/pvcalls: disconnect and module_exit
xen/pvcalls: implement release command
xen/pvcalls: implement poll command
xen/pvcalls: implement accept command
xen/pvcalls: implement listen command
xen/pvcalls: implement bind command
xen/pvcalls: implement connect command
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Nothing really major this release, despite quite a lot of activity.
Just lots of things all over the place.
Some things of note include:
- Access via perf to a new type of PMU (IMC) on Power9, which can
count both core events as well as nest unit events (Memory
controller etc).
- Optimisations to the radix MMU TLB flushing, mostly to avoid
unnecessary Page Walk Cache (PWC) flushes when the structure of the
tree is not changing.
- Reworks/cleanups of do_page_fault() to modernise it and bring it
closer to other architectures where possible.
- Rework of our page table walking so that THP updates only need to
send IPIs to CPUs where the affected mm has run, rather than all
CPUs.
- The size of our vmalloc area is increased to 56T on 64-bit hash MMU
systems. This avoids problems with the percpu allocator on systems
with very sparse NUMA layouts.
- STRICT_KERNEL_RWX support on PPC32.
- A new sched domain topology for Power9, to capture the fact that
pairs of cores may share an L2 cache.
- Power9 support for VAS, which is a new mechanism for accessing
coprocessors, and initial support for using it with the NX
compression accelerator.
- Major work on the instruction emulation support, adding support for
many new instructions, and reworking it so it can be used to
implement the emulation needed to fixup alignment faults.
- Support for guests under PowerVM to use the Power9 XIVE interrupt
controller.
And probably that many things again that are almost as interesting,
but I had to keep the list short. Plus the usual fixes and cleanups as
always.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab,
Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh,
Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly,
Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang,
Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes
Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall,
LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring,
Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo,
Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff,
Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu,
Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui"
* tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (321 commits)
powerpc/xive: Fix section __init warning
powerpc: Fix kernel crash in emulation of vector loads and stores
powerpc/xive: improve debugging macros
powerpc/xive: add XIVE Exploitation Mode to CAS
powerpc/xive: introduce H_INT_ESB hcall
powerpc/xive: add the HW IRQ number under xive_irq_data
powerpc/xive: introduce xive_esb_write()
powerpc/xive: rename xive_poke_esb() in xive_esb_read()
powerpc/xive: guest exploitation of the XIVE interrupt controller
powerpc/xive: introduce a common routine xive_queue_page_alloc()
powerpc/sstep: Avoid used uninitialized error
axonram: Return directly after a failed kzalloc() in axon_ram_probe()
axonram: Improve a size determination in axon_ram_probe()
axonram: Delete an error message for a failed memory allocation in axon_ram_probe()
powerpc/powernv/npu: Move tlb flush before launching ATSD
powerpc/macintosh: constify wf_sensor_ops structures
powerpc/iommu: Use permission-specific DEVICE_ATTR variants
powerpc/eeh: Delete an error out of memory message at init time
powerpc/mm: Use seq_putc() in two functions
macintosh: Convert to using %pOF instead of full_name
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- Transparently fall back to other poweroff method(s) if EFI poweroff
fails (and returns)
- Use separate PE/COFF section headers for the RX and RW parts of the
ARM stub loader so that the firmware can use strict mapping
permissions
- Add support for requesting the firmware to wipe RAM at warm reboot
- Increase the size of the random seed obtained from UEFI so CRNG
fast init can complete earlier
- Update the EFI framebuffer address if it points to a BAR that gets
moved by the PCI resource allocation code
- Enable "reset attack mitigation" of TPM environments: this is
enabled if the kernel is configured with
CONFIG_RESET_ATTACK_MITIGATION=y.
- Clang related fixes
- Misc cleanups, constification, refactoring, etc"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/bgrt: Use efi_mem_type()
efi: Move efi_mem_type() to common code
efi/reboot: Make function pointer orig_pm_power_off static
efi/random: Increase size of firmware supplied randomness
efi/libstub: Enable reset attack mitigation
firmware/efi/esrt: Constify attribute_group structures
firmware/efi: Constify attribute_group structures
firmware/dcdbas: Constify attribute_group structures
arm/efi: Split zImage code and data into separate PE/COFF sections
arm/efi: Replace open coded constants with symbolic ones
arm/efi: Remove pointless dummy .reloc section
arm/efi: Remove forbidden values from the PE/COFF header
drivers/fbdev/efifb: Allow BAR to be moved instead of claiming it
efi/reboot: Fall back to original power-off method if EFI_RESET_SHUTDOWN returns
efi/arm/arm64: Add missing assignment of efi.config_table
efi/libstub/arm64: Set -fpie when building the EFI stub
efi/libstub/arm64: Force 'hidden' visibility for section markers
efi/libstub/arm64: Use hidden attribute for struct screen_info reference
efi/arm: Don't mark ACPI reclaim memory as MEMBLOCK_NOMAP
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
KVM/PPC update for 4.14
There are various minor fixes and cleanups. The only new feature is
that we now export information about storage key support to userspace,
so it can advertise it to the guest.
I have pulled in Michael Ellerman's topic/ppc-kvm branch from the
powerpc tree to get a couple of fixes that touch both KVM PPC code and
other PPC code. That's why there is some arch/powerpc stuff in the
diffstat that isn't arch/powerpc/kvm.
|
|
Currently, aio-nr is incremented in steps of 'num_possible_cpus() * 8'
for io_setup(nr_events, ..) with 'nr_events < num_possible_cpus() * 4':
ioctx_alloc()
...
nr_events = max(nr_events, num_possible_cpus() * 4);
nr_events *= 2;
...
ctx->max_reqs = nr_events;
...
aio_nr += ctx->max_reqs;
....
This limits the number of aio contexts actually available to much less
than aio-max-nr, and is increasingly worse with greater number of CPUs.
For example, with 64 CPUs, only 256 aio contexts are actually available
(with aio-max-nr = 65536) because the increment is 512 in that scenario.
Note: 65536 [max aio contexts] / (64*4*2) [increment per aio context]
is 128, but make it 256 (double) as counting against 'aio-max-nr * 2':
ioctx_alloc()
...
if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
...
goto err_ctx;
...
This patch uses the original value of nr_events (from userspace) to
increment aio-nr and count against aio-max-nr, which resolves those.
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Reported-by: Lekshmi C. Pillai <lekshmi.cpillai@in.ibm.com>
Tested-by: Lekshmi C. Pillai <lekshmi.cpillai@in.ibm.com>
Tested-by: Paul Nguyen <nguyenp@us.ibm.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
"The main changes include various Hyper-V optimizations such as faster
hypercalls and faster/better TLB flushes - and there's also some
Intel-MID cleanups"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tracing/hyper-v: Trace hyperv_mmu_flush_tlb_others()
x86/hyper-v: Support extended CPU ranges for TLB flush hypercalls
x86/platform/intel-mid: Make several arrays static, to make code smaller
MAINTAINERS: Add missed file for Hyper-V
x86/hyper-v: Use hypercall for remote TLB flush
hyper-v: Globalize vp_index
x86/hyper-v: Implement rep hypercalls
hyper-v: Use fast hypercall for HVCALL_SIGNAL_EVENT
x86/hyper-v: Introduce fast hypercall implementation
x86/hyper-v: Make hv_do_hypercall() inline
x86/hyper-v: Include hyperv/ only when CONFIG_HYPERV is set
x86/platform/intel-mid: Make 'bt_sfi_data' const
x86/platform/intel-mid: Make IRQ allocation a bit more flexible
x86/platform/intel-mid: Group timers callbacks together
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Changes for v4.14
Two minor cleanups and improvements, a fix for decoding external abort
types from guests, and added support for migrating the active priority
of interrupts when running a GICv2 guest on a GICv3 host.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux
KVM: s390: Fixes and features for 4.14
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
|
|
Use tabs (not spaces) for indentation. No functional change intended.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Apparently the PCIe capability is at address 0x40 in config space of X-Gene
v1 Root Ports. Add a definition of that and use the generic PCI_EXP_RTCTL
offset into the capability. No functional change intended.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
When platform_get_irq() fails we should propagate the real error value
instead of always returning -EINVAL.
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Duc Dang <dhdang@apm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
Pull libata updates from Tejun Heo:
"Except for the ahci fix that fixes a boot issue, nothing major in this
pull request. Some new platform controller support and device specific
changes"
* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata:
libata: zpodd: make arrays cdb static, reduces object code size
ahci: don't use MSI for devices with the silly Intel NVMe remapping scheme
dt-bindings: ata: add DT bindings for MediaTek SATA controller
ata: mediatek: add support for MediaTek SATA controller
pata_octeon_cf: use of_property_read_{bool|u32}()
cs5536: add support for IDE controller variant
ata: sata_gemini: Introduce explicit IDE pin control
ata: sata_gemini: Retire custom pin control
ata: ahci_platform: Add shutdown handler
ata: sata_gemini: explicitly request exclusive reset control
ata: Drop unnecessary static
ata: Convert to using %pOF instead of full_name
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
"Several notable changes this cycle:
- Thread mode was merged. This will be used for cgroup2 support for
CPU and possibly other controllers. Unfortunately, CPU controller
cgroup2 support didn't make this pull request but most contentions
have been resolved and the support is likely to be merged before
the next merge window.
- cgroup.stat now shows the number of descendant cgroups.
- cpuset now can enable the easier-to-configure v2 behavior on v1
hierarchy"
* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cpuset: Allow v2 behavior in v1 cgroup
cgroup: Add mount flag to enable cpuset to use v2 behavior in v1 cgroup
cgroup: remove unneeded checks
cgroup: misc changes
cgroup: short-circuit cset_cgroup_from_root() on the default hierarchy
cgroup: re-use the parent pointer in cgroup_destroy_locked()
cgroup: add cgroup.stat interface with basic hierarchy stats
cgroup: implement hierarchy limits
cgroup: keep track of number of descent cgroups
cgroup: add comment to cgroup_enable_threaded()
cgroup: remove unnecessary empty check when enabling threaded mode
cgroup: update debug controller to print out thread mode information
cgroup: implement cgroup v2 thread support
cgroup: implement CSS_TASK_ITER_THREADED
cgroup: introduce cgroup->dom_cgrp and threaded css_set handling
cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS
cgroup: reorganize cgroup.procs / task write path
cgroup: replace css_set walking populated test with testing cgrp->nr_populated_csets
cgroup: distinguish local and children populated states
cgroup: remove now unused list_head @pending in cgroup_apply_cftypes()
...
|
|
Pull workqueue updates from Tejun Heo:
"Nothing major. I introduced a flag collsion bug during v4.13 cycle
which is fixed in this pull request. Fortunately, the flag is for
debugging / verification and the bug isn't critical"
* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Fix flag collision
workqueue: Use TASK_IDLE
workqueue: fix path to documentation
workqueue: doc change for ST behavior on NUMA systems
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu updates from Tejun Heo:
"A lot of changes for percpu this time around. percpu inherited the
same area allocator from the original pre-virtual-address-mapped
implementation. This was from the time when percpu allocator wasn't
used all that much and the implementation was focused on simplicity,
with the unfortunate computational complexity of O(number of areas
allocated from the chunk) per alloc / free.
With the increase in percpu usage, we're hitting cases where the lack
of scalability is hurting. The most prominent one right now is bpf
perpcu map creation / destruction which may allocate and free a lot of
entries consecutively and it's likely that the problem will become
more prominent in the future.
To address the issue, Dennis replaced the area allocator with hinted
bitmap allocator which is more consistent. While the new allocator
does perform a bit worse in some cases, it outperforms the old
allocator way more than an order of magnitude in other more common
scenarios while staying mostly flat in CPU overhead and completely
flat in memory consumption"
* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (27 commits)
percpu: update header to contain bitmap allocator explanation.
percpu: update pcpu_find_block_fit to use an iterator
percpu: use metadata blocks to update the chunk contig hint
percpu: update free path to take advantage of contig hints
percpu: update alloc path to only scan if contig hints are broken
percpu: keep track of the best offset for contig hints
percpu: skip chunks if the alloc does not fit in the contig hint
percpu: add first_bit to keep track of the first free in the bitmap
percpu: introduce bitmap metadata blocks
percpu: replace area map allocator with bitmap
percpu: generalize bitmap (un)populated iterators
percpu: increase minimum percpu allocation size and align first regions
percpu: introduce nr_empty_pop_pages to help empty page accounting
percpu: change the number of pages marked in the first_chunk pop bitmap
percpu: combine percpu address checks
percpu: modify base_addr to be region specific
percpu: setup_first_chunk rename schunk/dchunk to chunk
percpu: end chunk area maps page aligned for the populated bitmap
percpu: unify allocation of schunk and dchunk
percpu: setup_first_chunk remove dyn_size and consolidate logic
...
|
|
Merge updates from Andrew Morton:
- various misc bits
- DAX updates
- OCFS2
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (119 commits)
mm,fork: introduce MADV_WIPEONFORK
x86,mpx: make mpx depend on x86-64 to free up VMA flag
mm: add /proc/pid/smaps_rollup
mm: hugetlb: clear target sub-page last when clearing huge page
mm: oom: let oom_reap_task and exit_mmap run concurrently
swap: choose swap device according to numa node
mm: replace TIF_MEMDIE checks by tsk_is_oom_victim
mm, oom: do not rely on TIF_MEMDIE for memory reserves access
z3fold: use per-cpu unbuddied lists
mm, swap: don't use VMA based swap readahead if HDD is used as swap
mm, swap: add sysfs interface for VMA based swap readahead
mm, swap: VMA based swap readahead
mm, swap: fix swap readahead marking
mm, swap: add swap readahead hit statistics
mm/vmalloc.c: don't reinvent the wheel but use existing llist API
mm/vmstat.c: fix wrong comment
selftests/memfd: add memfd_create hugetlbfs selftest
mm/shmem: add hugetlbfs support to memfd_create()
mm, devm_memremap_pages: use multi-order radix for ZONE_DEVICE lookups
mm/vmalloc.c: halve the number of comparisons performed in pcpu_get_vm_areas()
...
|
|
While debugging a problem, I thought that using
cr4_set_bits_and_update_boot() to restore CR4.PCIDE would be
helpful. It turns out to be counterproductive.
Add a comment documenting how this works.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When Linux brings a CPU down and back up, it switches to init_mm and then
loads swapper_pg_dir into CR3. With PCID enabled, this has the side effect
of masking off the ASID bits in CR3.
This can result in some confusion in the TLB handling code. If we
bring a CPU down and back up with any ASID other than 0, we end up
with the wrong ASID active on the CPU after resume. This could
cause our internal state to become corrupt, although major
corruption is unlikely because init_mm doesn't have any user pages.
More obviously, if CONFIG_DEBUG_VM=y, we'll trip over an assertion
in the next context switch. The result of *that* is a failure to
resume from suspend with probability 1 - 1/6^(cpus-1).
Fix it by reinitializing cpu_tlbstate on resume and CPU bringup.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Jiri Kosina <jikos@kernel.org>
Fixes: 10af6235e0d3 ("x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently trace_clock timestamps are applied to both regular and max
buffers only for global trace. For instance trace, trace_clock
timestamps are applied only to regular buffer. But, regular and max
buffers can be swapped, for example, following a snapshot. So, for
instance trace, bad timestamps can be seen following a snapshot.
Let's apply trace_clock timestamps to instance max buffer as well.
Link: http://lkml.kernel.org/r/ebdb168d0be042dcdf51f81e696b17fabe3609c1.1504642143.git.tom.zanussi@linux.intel.com
Cc: stable@vger.kernel.org
Fixes: 277ba0446 ("tracing: Add interface to allow multiple trace buffers")
Signed-off-by: Baohong Liu <baohong.liu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
in the child process after fork. This differs from MADV_DONTFORK in one
important way.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
MADV_WIPEONFORK only works on private, anonymous VMAs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
[akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Colm MacCártaigh <colm@allcosts.net>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm,fork,security: introduce MADV_WIPEONFORK", v4.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patchset also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
This patch (of 2):
MPX only seems to be available on 64 bit CPUs, starting with Skylake and
Goldmont. Move VM_MPX into the 64 bit only portion of vma->vm_flags, in
order to free up a VMA flag.
Link: http://lkml.kernel.org/r/20170811212829.29186-2-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will Drewry <wad@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Colm MacCártaigh <colm@allcosts.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
/proc/pid/smaps_rollup is a new proc file that improves the performance
of user programs that determine aggregate memory statistics (e.g., total
PSS) of a process.
Android regularly "samples" the memory usage of various processes in
order to balance its memory pool sizes. This sampling process involves
opening /proc/pid/smaps and summing certain fields. For very large
processes, sampling memory use this way can take several hundred
milliseconds, due mostly to the overhead of the seq_printf calls in
task_mmu.c.
smaps_rollup improves the situation. It contains most of the fields of
/proc/pid/smaps, but instead of a set of fields for each VMA,
smaps_rollup instead contains one synthetic smaps-format entry
representing the whole process. In the single smaps_rollup synthetic
entry, each field is the summation of the corresponding field in all of
the real-smaps VMAs. Using a common format for smaps_rollup and smaps
allows userspace parsers to repurpose parsers meant for use with
non-rollup smaps for smaps_rollup, and it allows userspace to switch
between smaps_rollup and smaps at runtime (say, based on the
availability of smaps_rollup in a given kernel) with minimal fuss.
By using smaps_rollup instead of smaps, a caller can avoid the
significant overhead of formatting, reading, and parsing each of a large
process's potentially very numerous memory mappings. For sampling
system_server's PSS in Android, we measured a 12x speedup, representing
a savings of several hundred milliseconds.
One alternative to a new per-process proc file would have been including
PSS information in /proc/pid/status. We considered this option but
thought that PSS would be too expensive (by a few orders of magnitude)
to collect relative to what's already emitted as part of
/proc/pid/status, and slowing every user of /proc/pid/status for the
sake of readers that happen to want PSS feels wrong.
The code itself works by reusing the existing VMA-walking framework we
use for regular smaps generation and keeping the mem_size_stats
structure around between VMA walks instead of using a fresh one for each
VMA. In this way, summation happens automatically. We let seq_file
walk over the VMAs just as it does for regular smaps and just emit
nothing to the seq_file until we hit the last VMA.
Benchmarks:
using smaps:
iterations:1000 pid:1163 pss:220023808
0m29.46s real 0m08.28s user 0m20.98s system
using smaps_rollup:
iterations:1000 pid:1163 pss:220702720
0m04.39s real 0m00.03s user 0m04.31s system
We're using the PSS samples we collect asynchronously for
system-management tasks like fine-tuning oom_adj_score, memory use
tracking for debugging, application-level memory-use attribution, and
deciding whether we want to kill large processes during system idle
maintenance windows. Android has been using PSS for these purposes for
a long time; as the average process VMA count has increased and and
devices become more efficiency-conscious, PSS-collection inefficiency
has started to matter more. IMHO, it'd be a lot safer to optimize the
existing PSS-collection model, which has been fine-tuned over the years,
instead of changing the memory tracking approach entirely to work around
smaps-generation inefficiency.
Tim said:
: There are two main reasons why Android gathers PSS information:
:
: 1. Android devices can show the user the amount of memory used per
: application via the settings app. This is a less important use case.
:
: 2. We log PSS to help identify leaks in applications. We have found
: an enormous number of bugs (in the Android platform, in Google's own
: apps, and in third-party applications) using this data.
:
: To do this, system_server (the main process in Android userspace) will
: sample the PSS of a process three seconds after it changes state (for
: example, app is launched and becomes the foreground application) and about
: every ten minutes after that. The net result is that PSS collection is
: regularly running on at least one process in the system (usually a few
: times a minute while the screen is on, less when screen is off due to
: suspend). PSS of a process is an incredibly useful stat to track, and we
: aren't going to get rid of it. We've looked at some very hacky approaches
: using RSS ("take the RSS of the target process, subtract the RSS of the
: zygote process that is the parent of all Android apps") to reduce the
: accounting time, but it regularly overestimated the memory used by 20+
: percent. Accordingly, I don't think that there's a good alternative to
: using PSS.
:
: We started looking into PSS collection performance after we noticed random
: frequency spikes while a phone's screen was off; occasionally, one of the
: CPU clusters would ramp to a high frequency because there was 200-300ms of
: constant CPU work from a single thread in the main Android userspace
: process. The work causing the spike (which is reasonable governor
: behavior given the amount of CPU time needed) was always PSS collection.
: As a result, Android is burning more power than we should be on PSS
: collection.
:
: The other issue (and why I'm less sure about improving smaps as a
: long-term solution) is that the number of VMAs per process has increased
: significantly from release to release. After trying to figure out why we
: were seeing these 200-300ms PSS collection times on Android O but had not
: noticed it in previous versions, we found that the number of VMAs in the
: main system process increased by 50% from Android N to Android O (from
: ~1800 to ~2700) and varying increases in every userspace process. Android
: M to N also had an increase in the number of VMAs, although not as much.
: I'm not sure why this is increasing so much over time, but thinking about
: ASLR and ways to make ASLR better, I expect that this will continue to
: increase going forward. I would not be surprised if we hit 5000 VMAs on
: the main Android process (system_server) by 2020.
:
: If we assume that the number of VMAs is going to increase over time, then
: doing anything we can do to reduce the overhead of each VMA during PSS
: collection seems like the right way to go, and that means outputting an
: aggregate statistic (to avoid whatever overhead there is per line in
: writing smaps and in reading each line from userspace).
Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.com
Signed-off-by: Daniel Colascione <dancol@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
clearing huge page on x86_64 platform, the cache footprint is 2M. But
on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M
LLC (last level cache). That is, in average, there are 2.5M LLC for
each core and 1.25M LLC for each thread.
If the cache pressure is heavy when clearing the huge page, and we clear
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing clearing the
end of the huge page. And it is possible for the application to access
the begin of the huge page after clearing the huge page.
To help the above situation, in this patch, when we clear a huge page,
the order to clear sub-pages is changed. In quite some situation, we
can get the address that the application will access after we clear the
huge page, for example, in a page fault handler. Instead of clearing
the huge page from begin to end, we will clear the sub-pages farthest
from the the sub-page to access firstly, and clear the sub-page to
access last. This will make the sub-page to access most cache-hot and
sub-pages around it more cache-hot too. If we cannot know the address
the application will access, the begin of the huge page is assumed to be
the the address the application will access.
With this patch, the throughput increases ~28.3% in vm-scalability
anon-w-seq test case with 72 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case creates 72 processes, each
process mmap a big anonymous memory area and writes to it from the begin
to the end. For each process, other processes could be seen as other
workload which generates heavy cache pressure. At the same time, the
cache miss rate reduced from ~33.4% to ~31.7%, the IPC (instruction per
cycle) increased from 0.56 to 0.74, and the time spent in user space is
reduced ~7.9%
Christopher Lameter suggests to clear bytes inside a sub-page from end
to begin too. But tests show no visible performance difference in the
tests. May because the size of page is small compared with the cache
size.
Thanks Andi Kleen to propose to use address to access to determine the
order of sub-pages to clear.
The hugetlbfs access address could be improved, will do that in another
patch.
[ying.huang@intel.com: improve readability of clear_huge_page()]
Link: http://lkml.kernel.org/r/20170830051842.1397-1-ying.huang@intel.com
Link: http://lkml.kernel.org/r/20170815014618.15842-1-ying.huang@intel.com
Suggested-by: Andi Kleen <andi.kleen@intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|