Age | Commit message (Collapse) | Author |
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Even though KVM sets up MDCR_EL2 to trap accesses to the SPE buffer and
sampling control registers and to inject an undefined exception, the
presence of FEAT_SPE is still advertised in the ID_AA64DFR0_EL1 register,
if the hardware supports it. Getting an undefined exception when accessing
a register usually happens for a hardware feature which is not implemented,
and indeed this is how PMU emulation is handled when the virtual machine
has been created without the KVM_ARM_VCPU_PMU_V3 feature. Let's be
consistent and never advertise FEAT_SPE, because KVM doesn't have support
for emulating it yet.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210409152154.198566-3-alexandru.elisei@arm.com
|
|
KVM sets up MDCR_EL2 to trap accesses to the SPE buffer and sampling
control registers and it relies on the fact that KVM injects an undefined
exception for unknown registers. This mechanism of injecting undefined
exceptions also prints a warning message for the host kernel; for example,
when a guest tries to access PMSIDR_EL1:
[ 2.691830] kvm [142]: Unsupported guest sys_reg access at: 80009e78 [800003c5]
[ 2.691830] { Op0( 3), Op1( 0), CRn( 9), CRm( 9), Op2( 7), func_read },
This is unnecessary, because KVM has explicitly configured trapping of
those registers and is well aware of their existence. Prevent the warning
by adding the SPE registers to the list of registers that KVM emulates.
The access function will inject the undefined exception.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210409152154.198566-2-alexandru.elisei@arm.com
|
|
On vcpu reset, we expect all the registers to be brought back
to their initial state, which happens to be a bunch of zeroes.
However, some recent commit broke this, and is now leaving a bunch
of registers (such as the FP state) with whatever was left by the
guest. My bad.
Zero the reset of the state (32bit SPSRs and FPSIMD state).
Cc: stable@vger.kernel.org
Fixes: e47c2055c68e ("KVM: arm64: Make struct kvm_regs userspace-only")
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Although the KVM_ARM_VCPU_INIT documentation mention that the
registers are reset to their "initial values", it doesn't
describe what these values are.
Describe this state explicitly.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The kvmarm mailing list is moderated for non-subscriber, but that
was never advertised. Fix this with the hope that people will
eventually subscribe before posting, saving me the hassle of
letting their post through eventually.
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
When a VCPU is created, the kvm_vcpu struct is initialized to zero in
kvm_vm_ioctl_create_vcpu(). On VHE systems, the first time
vcpu.arch.mdcr_el2 is loaded on hardware is in vcpu_load(), before it is
set to a sensible value in kvm_arm_setup_debug() later in the run loop. The
result is that KVM executes for a short time with MDCR_EL2 set to zero.
This has several unintended consequences:
* Setting MDCR_EL2.HPMN to 0 is constrained unpredictable according to ARM
DDI 0487G.a, page D13-3820. The behavior specified by the architecture
in this case is for the PE to behave as if MDCR_EL2.HPMN is set to a
value less than or equal to PMCR_EL0.N, which means that an unknown
number of counters are now disabled by MDCR_EL2.HPME, which is zero.
* The host configuration for the other debug features controlled by
MDCR_EL2 is temporarily lost. This has been harmless so far, as Linux
doesn't use the other fields, but that might change in the future.
Let's avoid both issues by initializing the VCPU's mdcr_el2 field in
kvm_vcpu_vcpu_first_run_init(), thus making sure that the MDCR_EL2 register
has a consistent value after each vcpu_load().
Fixes: d5a21bcc2995 ("KVM: arm64: Move common VHE/non-VHE trap config in separate functions")
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210407144857.199746-3-alexandru.elisei@arm.com
|
|
Commit 21b6f32f9471 ("KVM: arm64: guest debug, define API headers") added
the arm64 KVM_GUESTDBG_USE_HW flag for the KVM_SET_GUEST_DEBUG ioctl and
commit 834bf88726f0 ("KVM: arm64: enable KVM_CAP_SET_GUEST_DEBUG")
documented and implemented the flag functionality. Since its introduction,
at no point was the flag known by any name other than KVM_GUESTDBG_USE_HW
for the arm64 architecture, so refer to it as such in the documentation.
CC: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210407144857.199746-2-alexandru.elisei@arm.com
|
|
We needn't retrieve the memory slot again in user_mem_abort() because
the corresponding memory slot has been passed from the caller. This
would save some CPU cycles. For example, the time used to write 1GB
memory, which is backed by 2MB hugetlb pages and write-protected, is
dropped by 6.8% from 928ms to 864ms.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210316041126.81860-4-gshan@redhat.com
|
|
find_vma_intersection() has been existing to search the intersected
vma. This uses the function where it's applicable, to simplify the
code.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210316041126.81860-3-gshan@redhat.com
|
|
We needn't expose the function as it's only used by mmu.c since it
was introduced by commit c64735554c0a ("KVM: arm: Add initial dirty
page locking support").
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210316041126.81860-2-gshan@redhat.com
|
|
Document the device tree bindings for Trace Buffer Extension (TRBE).
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Rob Herring <robh@kernel.org>
Cc: devicetree@vger.kernel.org
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-21-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Add documentation for the TRBE under trace/coresight.
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
[ Split from the TRBE driver patch ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-20-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Add sysfs ABI documentation for the TRBE devices.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
[ Split from the TRBE driver patch ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-19-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Trace Buffer Extension (TRBE) implements a trace buffer per CPU which is
accessible via the system registers. The TRBE supports different addressing
modes including CPU virtual address and buffer modes including the circular
buffer mode. The TRBE buffer is addressed by a base pointer (TRBBASER_EL1),
an write pointer (TRBPTR_EL1) and a limit pointer (TRBLIMITR_EL1). But the
access to the trace buffer could be prohibited by a higher exception level
(EL3 or EL2), indicated by TRBIDR_EL1.P. The TRBE can also generate a CPU
private interrupt (PPI) on address translation errors and when the buffer
is full. Overall implementation here is inspired from the Arm SPE driver.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
[ Mark the buffer truncated on WRAP event, error code cleanup ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-18-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Add support for dedicated sinks that are bound to individual CPUs. (e.g,
TRBE). To allow quicker access to the sink for a given CPU bound source,
keep a percpu array of the sink devices. Also, add support for building
a path to the CPU local sink from the ETM.
This adds a new percpu sink type CORESIGHT_DEV_SUBTYPE_SINK_PERCPU_SYSMEM.
This new sink type is exclusively available and can only work with percpu
source type device CORESIGHT_DEV_SUBTYPE_SOURCE_PROC.
This defines a percpu structure that accommodates a single coresight_device
which can be used to store an initialized instance from a sink driver. As
these sinks are exclusively linked and dependent on corresponding percpu
sources devices, they should also be the default sink device during a perf
session.
Outwards device connections are scanned while establishing paths between a
source and a sink device. But such connections are not present for certain
percpu source and sink devices which are exclusively linked and dependent.
Build the path directly and skip connection scanning for such devices.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
[Moved the set/get percpu sink APIs from TRBE patch to here
Fixed build break on arm32]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-17-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
The context associated with an ETM for a given perf event
includes :
- handle -> the perf output handle for the AUX buffer.
- the path for the trace components
- the buffer config for the sink.
The path and the buffer config are part of the "aux_priv" data
(etm_event_data) setup by the setup_aux() callback, and made available
via perf_get_aux(handle).
Now with a sink supporting IRQ, the sink could "end" an output
handle when the buffer reaches the programmed limit and would try
to restart a handle. This could fail if there is not enough
space left the AUX buffer (e.g, the userspace has not consumed
the data). This leaves the "handle" disconnected from the "event"
and also the "perf_get_aux()" cleared. This all happens within
the sink driver, without the etm_perf driver being aware.
Now when the event is actually stopped, etm_event_stop()
will need to access the "event_data". But since the handle
is not valid anymore, we loose the information to stop the
"trace" path. So, we need a reliable way to access the etm_event_data
even when the handle may not be active.
This patch replaces the per_cpu handle array with a per_cpu context
for the ETM, which tracks the "handle" as well as the "etm_event_data".
The context notes the etm_event_data at etm_event_start() and clears
it at etm_event_stop(). This makes sure that we don't access a
stale "etm_event_data" as we are guaranteed that it is not
freed by free_aux() as long as the event is active and tracing,
also provides us with access to the critical information
needed to wind up a session even in the absence of an active
output_handle.
This is not an issue for the legacy sinks as none of them supports
an IRQ and is centrally handled by the etm-perf.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-16-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Document the device tree bindings for Embedded Trace Extensions.
ETE can be connected to legacy coresight components and thus
could optionally contain a connection graph as described by
the CoreSight bindings.
Cc: devicetree@vger.kernel.org
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-15-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Add ETE as one of the supported device types we support
with ETM4x driver. The devices are named following the
existing convention as ete<N>.
ETE mandates that the trace resource status register is programmed
before the tracing is turned on. For the moment simply write to
it indicating TraceActive.
Cc: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-14-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Add support for handling the system registers for Embedded Trace
Extensions (ETE). ETE shares most of the registers with ETMv4 except
for some and also adds some new registers. Re-arrange the ETMv4x list
to share the common definitions and add the ETE sysreg support.
Cc: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-13-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
ETE may not implement the OS lock and instead could rely on
the PE OS Lock for the trace unit access. This is indicated
by the TRCOLSR.OSM == 0b100. Add support for handling the
PE OS lock
Cc: Mike Leach <mike.leach@linaro.org>
Reviewed-by: mike.leach <mike.leach@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-12-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
If a graph node is not found for a given node, of_get_next_endpoint()
will emit the following error message :
OF: graph: no port node found in /<node_name>
If the given component doesn't have any explicit connections (e.g,
ETE) we could simply ignore the graph parsing. As for any legacy
component where this is mandatory, the device will not be usable
as before this patch. Updating the DT bindings to Yaml and enabling
the schema checks can detect such issues with the DT.
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-11-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
When a sink is not specified by the user, the etm perf driver
finds a suitable sink automatically, based on the first ETM
where this event could be scheduled. Then we allocate the
sink buffer based on the selected sink. This is fine for a
CPU bound event as the "sink" is always guaranteed to be
reachable from the ETM (as this is the only ETM where the
event is going to be scheduled). However, if we have a thread
bound event, the event could be scheduled on any of the ETMs
on the system. In this case, currently we automatically select
a sink and exclude any ETMs that cannot reach the selected
sink. This is problematic especially for 1x1 configurations.
We end up in tracing the event only on the "first" ETM,
as the default sink is local to the first ETM and unreachable
from the rest. However, we could allow the other ETMs to
trace if they all have a sink that is compatible with the
"selected" sink and can use the sink buffer. This can be
easily done by verifying that they are all driven by the
same driver and matches the same subtype. Please note
that at anytime there can be only one ETM tracing the event.
Adding support for different types of sinks for a single
event is complex and is not something that we expect
on a sane configuration.
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Tested-by: Linu Cherian <lcherian@marvell.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-10-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
If the CPU implements Arm v8.4 Trace filter controls (FEAT_TRF),
move the ETM to trace prohibited region using TRFCR, while disabling.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-9-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
For a nvhe host, the EL2 must allow the EL1&0 translation
regime for TraceBuffer (MDCR_EL2.E2TB == 0b11). This must
be saved/restored over a trip to the guest. Also, before
entering the guest, we must flush any trace data if the
TRBE was enabled. And we must prohibit the generation
of trace while we are in EL1 by clearing the TRFCR_EL1.
For vhe, the EL2 must prevent the EL1 access to the Trace
Buffer.
The MDCR_EL2 bit definitions for TRBE are available here :
https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405164307.1720226-8-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
At the moment, we check the availability of SPE on the given
CPU (i.e, SPE is implemented and is allowed at the host) during
every guest entry. This can be optimized a bit by moving the
check to vcpu_load time and recording the availability of the
feature on the current CPU via a new flag. This will also be useful
for adding the TRBE support.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Alexandru Elisei <Alexandru.Elisei@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405164307.1720226-7-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Rather than falling to an "unhandled access", inject add an explicit
"undefined access" for TRFCR_EL1 access from the guest.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405164307.1720226-6-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Fix to return a negative error code from the error handling
case instead of 0, as done elsewhere in this function.
Fixes: eeeee7193df0 ("KVM: arm64: Bootstrap PSCI SMC handler in nVHE EL2")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210406121759.5407-1-wangwensheng4@huawei.com
|
|
This adds TRBE related registers and corresponding feature macros.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-5-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
tsb csync synchronizes the trace operation of instructions.
The instruction is a nop when FEAT_TRF is not implemented.
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-4-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
CoreSight PMU supports aux-buffer for the ETM tracing. The trace
generated by the ETM (associated with individual CPUs, like Intel PT)
is captured by a separate IP (CoreSight TMC-ETR/ETF until now).
The TMC-ETR applies formatting of the raw ETM trace data, as it
can collect traces from multiple ETMs, with the TraceID to indicate
the source of a given trace packet.
Arm Trace Buffer Extension is new "sink" IP, attached to individual
CPUs and thus do not provide additional formatting, like TMC-ETR.
Additionally, a system could have both TRBE *and* TMC-ETR for
the trace collection. e.g, TMC-ETR could be used as a single
trace buffer to collect data from multiple ETMs to correlate
the traces from different CPUs. It is possible to have a
perf session where some events end up collecting the trace
in TMC-ETR while the others in TRBE. Thus we need a way
to identify the type of the trace for each AUX record.
Define the trace formats exported by the CoreSight PMU.
We don't define the flags following the "ETM" as this
information is available to the user when issuing
the session. What is missing is the additional
formatting applied by the "sink" which is decided
at the runtime and the user may not have a control on.
So we define :
- CORESIGHT format (indicates the Frame format)
- RAW format (indicates the format of the source)
The default value is CORESIGHT format for all the records
(i,e == 0). Add the RAW format for others that use
raw format.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Leach <mike.leach@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-3-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Allocate a byte for advertising the PMU specific format type
of the given AUX record. A PMU could end up providing hardware
trace data in multiple format in a single session.
e.g, The format of hardware buffer produced by CoreSight ETM
PMU depends on the type of the "sink" device used for collection
for an event (Traditional TMC-ETR/Bs with formatting or
TRBEs without any formatting).
# Boring story of why this is needed. Goto The_End_of_Story for skipping.
CoreSight ETM trace allows instruction level tracing of Arm CPUs.
The ETM generates the CPU excecution trace and pumps it into CoreSight
AMBA Trace Bus and is collected by a different CoreSight component
(traditionally CoreSight TMC-ETR /ETB/ETF), called "sink".
Important to note that there is no guarantee that every CPU has
a dedicated sink. Thus multiple ETMs could pump the trace data
into the same "sink" and thus they apply additional formatting
of the trace data for the user to decode it properly and attribute
the trace data to the corresponding ETM.
However, with the introduction of Arm Trace buffer Extensions (TRBE),
we now have a dedicated per-CPU architected sink for collecting the
trace. Since the TRBE is always per-CPU, it doesn't apply any formatting
of the trace. The support for this driver is under review [1].
Now a system could have a per-cpu TRBE and one or more shared
TMC-ETRs on the system. A user could choose a "specific" sink
for a perf session (e.g, a TMC-ETR) or the driver could automatically
select the nearest sink for a given ETM. It is possible that
some ETMs could end up using TMC-ETR (e.g, if the TRBE is not
usable on the CPU) while the others using TRBE in a single
perf session. Thus we now have "formatted" trace collected
from TMC-ETR and "unformatted" trace collected from TRBE.
However, we don't get into a situation where a single event
could end up using TMC-ETR & TRBE. i.e, any AUX buffer is
guaranteed to be either RAW or FORMATTED, but not a mix
of both.
As for perf decoding, we need to know the type of the data
in the individual AUX buffers, so that it can set up the
"OpenCSD" (library for decoding CoreSight trace) decoder
instance appropriately. Thus the perf.data file must conatin
the hints for the tool to decode the data correctly.
Since this is a runtime variable, and perf tool doesn't have
a control on what sink gets used (in case of automatic sink
selection), we need this information made available from
the PMU driver for each AUX record.
# The_End_of_Story
Cc: Peter Ziljstra <peterz@infradead.org>
Cc: alexander.shishkin@linux.intel.com
Cc: mingo@redhat.com
Cc: will@kernel.org
Cc: mark.rutland@arm.com
Cc: mike.leach@linaro.org
Cc: acme@kernel.org
Cc: jolsa@redhat.com
Cc: Mathieu Poirier <mathieu.poirer@linaro.org>
Reviewed by: Mike Leach <mike.leach@linaro.org>
Acked-by: Peter Ziljstra <peterz@infradead.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20210405164307.1720226-2-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
|
|
Julien's bandwidth for KVM reviewing has been pretty low lately,
and Alexandru has accepted to step in and help with the reviewing.
Many thanks to both!
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20210331131620.4005931-1-maz@kernel.org
|
|
gen-hyprel tool parses object files of the EL2 portion of KVM
and generates runtime relocation data. While only filtering for
R_AARCH64_ABS64 relocations in the input object files, it has an
allow-list of relocation types that are used for relative
addressing. Other, unexpected, relocation types are rejected and
cause the build to fail.
This allow-list did not include the position-relative relocation
types R_AARCH64_PREL64/32/16 and the recently introduced _PLT32.
While not seen used by toolchains in the wild, add them to the
allow-list for completeness.
Fixes: 8c49b5d43d4c ("KVM: arm64: Generate hyp relocation data")
Cc: <stable@vger.kernel.org>
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210331133048.63311-1-dbrazdil@google.com
|
|
The sparse tool complains as follows:
arch/arm64/kvm/arm.c:1900:6: warning:
symbol '_kvm_host_prot_finalize' was not declared. Should it be static?
This symbol is not used outside of arm.c, so this
commit marks it static.
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Xu Jia <xujia39@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/1617176179-31931-1-git-send-email-xujia39@huawei.com
|
|
Now that the read_ctr macro has been specialised for nVHE,
the whole CPU_FTR_REG_HYP_COPY infrastrcture looks completely
overengineered.
Simplify it by populating the two u64 quantities (MMFR0 and 1)
that the hypervisor need.
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
In protected mode, late CPUs are not allowed to boot (enforced by
the PSCI relay). We can thus specialise the read_ctr macro to
always return a pre-computed, sanitised value. Special care is
taken to prevent the use of this custome version outside of
the protected mode.
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Disable guest access to the Trace Filter control registers.
We do not advertise the Trace filter feature to the guest
(ID_AA64DFR0_EL1: TRACE_FILT is cleared) already, but the guest
can still access the TRFCR_EL1 unless we trap it.
This will also make sure that the guest cannot fiddle with
the filtering controls set by a nvhe host.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210323120647.454211-3-suzuki.poulose@arm.com
|
|
Currently we advertise the ID_AA6DFR0_EL1.TRACEVER for the guest,
when the trace register accesses are trapped (CPTR_EL2.TTA == 1).
So, the guest will get an undefined instruction, if trusts the
ID registers and access one of the trace registers.
Lets be nice to the guest and hide the feature to avoid
unexpected behavior.
Even though this can be done at KVM sysreg emulation layer,
we do this by removing the TRACEVER from the sanitised feature
register field. This is fine as long as the ETM drivers
can handle the individual trace units separately, even
when there are differences among the CPUs.
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210323120647.454211-2-suzuki.poulose@arm.com
|
|
When KVM runs in nVHE protected mode, use the host stage 2 to unmap the
hypervisor sections by marking them as owned by the hypervisor itself.
The long-term goal is to ensure the EL2 code can remain robust
regardless of the host's state, so this starts by making sure the host
cannot e.g. write to the .hyp sections directly.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-39-qperret@google.com
|
|
The host currently writes directly in EL2 per-CPU data sections from
the PMU code when running in nVHE. In preparation for unmapping the EL2
sections from the host stage 2, disable PMU support in protected mode as
we currently do not have a use-case for it.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-38-qperret@google.com
|
|
We will soon unmap the .hyp sections from the host stage 2 in Protected
nVHE mode, which obviously works with at least page granularity, so make
sure to align them correctly.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-37-qperret@google.com
|
|
When KVM runs in protected nVHE mode, make use of a stage 2 page-table
to give the hypervisor some control over the host memory accesses. The
host stage 2 is created lazily using large block mappings if possible,
and will default to page mappings in absence of a better solution.
>From this point on, memory accesses from the host to protected memory
regions (e.g. not 'owned' by the host) are fatal and lead to hyp_panic().
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-36-qperret@google.com
|
|
We will need to read sanitized values of mmfr{0,1}_el1 at EL2 soon, so
add them to the list of copied variables.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-35-qperret@google.com
|
|
Introduce a new stage 2 configuration flag to specify that all mappings
in a given page-table will be identity-mapped, as will be the case for
the host. This allows to introduce sanity checks in the map path and to
avoid programming errors.
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-34-qperret@google.com
|
|
In order to further configure stage 2 page-tables, pass flags to the
init function using a new enum.
The first of these flags allows to disable FWB even if the hardware
supports it as we will need to do so for the host stage 2.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-33-qperret@google.com
|