Age | Commit message (Collapse) | Author |
|
We have now introduced a mechanism that obviates the need for a
reattempted merge via the mmap_prepare() file hook, so eliminate this
functionality altogether.
The retry merge logic has been the cause of a great deal of complexity in
the past and required a great deal of careful manoeuvring of code to
ensure its continued and correct functionality.
It has also recently been involved in an issue surrounding maple tree
state, which again points to its problematic nature.
We make it much easier to reason about mmap() logic by eliminating this
and simply writing a VMA once. This also opens the doors to future
optimisation and improvement in the mmap() logic.
For any device or file system which encounters unwanted VMA fragmentation
as a result of this change (that is, having not implemented .mmap_prepare
hooks), the issue is easily resolvable by doing so.
Link: https://lkml.kernel.org/r/d5d8fc74f02b89d6bec5ae8bc0e36d7853b65cda.1746792520.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Secretmem has a simple .mmap() hook which is easily converted to the new
.mmap_prepare() callback.
Importantly, it's a rare instance of an driver that manipulates a VMA
which is mergeable (that is, not a VM_SPECIAL mapping) while also
adjusting VMA flags which may adjust mergeability, meaning the retry merge
logic might impact whether or not the VMA is merged.
By using .mmap_prepare() there's no longer any need to retry the merge
later as we can simply set the correct flags from the start.
This change therefore allows us to remove the retry merge logic in a
subsequent commit.
Link: https://lkml.kernel.org/r/0f758474fa6a30197bdf25ba62f898a69d84eef3.1746792520.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "eliminate mmap() retry merge, add .mmap_prepare hook", v2.
During the mmap() of a file-backed mapping, we invoke the underlying
driver file's mmap() callback in order to perform driver/file system
initialisation of the underlying VMA.
This has been a source of issues in the past, including a significant
security concern relating to unwinding of error state discovered by Jann
Horn, as fixed in commit 5de195060b2e ("mm: resolve faulty mmap_region()
error path behaviour") which performed the recent, significant, rework of
mmap() as a whole.
However, we have had a fly in the ointment remain - drivers have a great
deal of freedom in the .mmap() hook to manipulate VMA state (as well as
page table state).
This can be problematic, as we can no longer reason sensibly about VMA
state once the call is complete (the ability to do - anything - here does
rather interfere with that).
In addition, callers may choose to do odd or unusual things which might
interfere with subsequent steps in the mmap() process, and it may do so
and then raise an error, requiring very careful unwinding of state about
which we can make no assumptions.
Rather than providing such an open-ended interface, this series provides
an alternative, far more restrictive one - we expose a whitelist of fields
which can be adjusted by the driver, along with immutable state upon which
the driver can make such decisions:
struct vm_area_desc {
/* Immutable state. */
struct mm_struct *mm;
unsigned long start;
unsigned long end;
/* Mutable fields. Populated with initial state. */
pgoff_t pgoff;
struct file *file;
vm_flags_t vm_flags;
pgprot_t page_prot;
/* Write-only fields. */
const struct vm_operations_struct *vm_ops;
void *private_data;
};
The mmap logic then updates the state used to either merge with a VMA or
establish a new VMA based upon this logic.
This is achieved via new file hook .mmap_prepare(), which is, importantly,
invoked very early on in the mmap() process.
If an error arises, we can very simply abort the operation with very
little unwinding of state required.
The existing logic contains another, related, peccadillo - since the
.mmap() callback might do anything, it may also cause a previously
unmergeable VMA to become mergeable with adjacent VMAs.
Right now the logic will retry a merge like this only if the driver
changes VMA flags, and changes them in such a way that a merge might
succeed (that is, the flags are not 'special', that is do not contain any
of the flags specified in VM_SPECIAL).
This has also been the source of a great deal of pain - it's hard to
reason about an .mmap() callback that might do - anything - but it's also
hard to reason about setting up a VMA and writing to the maple tree, only
to do it again utilising a great deal of shared state.
Since .mmap_prepare() sets fields before the first merge is even
attempted, the use of this callback obviates the need for this retry merge
logic.
A driver may only specify .mmap_prepare() or the deprecated .mmap()
callback. In future we may add futher callbacks beyond .mmap_prepare() to
faciliate all use cass as we convert drivers.
In researching this change, I examined every .mmap() callback, and
discovered only a very few that set VMA state in such a way that a. the
VMA flags changed and b. this would be mergeable.
In the majority of cases, it turns out that drivers are mapping kernel
memory and thus ultimately set VM_PFNMAP, VM_MIXEDMAP, or other
unmergeable VM_SPECIAL flags.
Of those that remain I identified a number of cases which are only
applicable in DAX, setting the VM_HUGEPAGE flag:
* dax_mmap()
* erofs_file_mmap()
* ext4_file_mmap()
* xfs_file_mmap()
For this remerge to not occur and to impact users, each of these cases
would require a user to mmap() files using DAX, in parts, immediately
adjacent to one another.
This is a very unlikely usecase and so it does not appear to be worthwhile
to adjust this functionality accordingly.
We can, however, very quickly do so if needed by simply adding an
.mmap_prepare() callback to these as required.
There are two further non-DAX cases I idenitfied:
* orangefs_file_mmap() - Clears VM_RAND_READ if set, replacing with
VM_SEQ_READ.
* usb_stream_hwdep_mmap() - Sets VM_DONTDUMP.
Both of these cases again seem very unlikely to be mmap()'d immediately
adjacent to one another in a fashion that would result in a merge.
Finally, we are left with a viable case:
* secretmem_mmap() - Set VM_LOCKED, VM_DONTDUMP.
This is viable enough that the mm selftests trigger the logic as a matter
of course. Therefore, this series replace the .secretmem_mmap() hook with
.secret_mmap_prepare().
This patch (of 3):
Provide a means by which drivers can specify which fields of those
permitted to be changed should be altered to prior to mmap()'ing a range
(which may either result from a merge or from mapping an entirely new
VMA).
Doing so is substantially safer than the existing .mmap() calback which
provides unrestricted access to the part-constructed VMA and permits
drivers and file systems to do 'creative' things which makes it hard to
reason about the state of the VMA after the function returns.
The existing .mmap() callback's freedom has caused a great deal of issues,
especially in error handling, as unwinding the mmap() state has proven to
be non-trivial and caused significant issues in the past, for instance
those addressed in commit 5de195060b2e ("mm: resolve faulty mmap_region()
error path behaviour").
It also necessitates a second attempt at merge once the .mmap() callback
has completed, which has caused issues in the past, is awkward, adds
overhead and is difficult to reason about.
The .mmap_prepare() callback eliminates this requirement, as we can update
fields prior to even attempting the first merge. It is safer, as we
heavily restrict what can actually be modified, and being invoked very
early in the mmap() process, error handling can be performed safely with
very little unwinding of state required.
The .mmap_prepare() and deprecated .mmap() callbacks are mutually
exclusive, so we permit only one to be invoked at a time.
Update vma userland test stubs to account for changes.
Link: https://lkml.kernel.org/r/cover.1746792520.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/adb36a7c4affd7393b2fc4b54cc5cfe211e41f71.1746792520.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
test_memcg_protection()
The test_memcg_protection() function is used for the test_memcg_min and
test_memcg_low sub-tests. This function generates a set of parent/child
cgroups like:
parent: memory.min/low = 50M
child 0: memory.min/low = 75M, memory.current = 50M
child 1: memory.min/low = 25M, memory.current = 50M
child 2: memory.min/low = 0, memory.current = 50M
After applying memory pressure, the function expects the following actual
memory usages.
parent: memory.current ~= 50M
child 0: memory.current ~= 29M
child 1: memory.current ~= 21M
child 2: memory.current ~= 0
In reality, the actual memory usages can differ quite a bit from the
expected values. It uses an error tolerance of 10% with the
values_close() helper.
Both the test_memcg_min and test_memcg_low sub-tests can fail sporadically
because the actual memory usage exceeds the 10% error tolerance. Below
are a sample of the usage data of the tests runs that fail.
Child Actual usage Expected usage %err
----- ------------ -------------- ----
1 16990208 22020096 -12.9%
1 17252352 22020096 -12.1%
0 37699584 30408704 +10.7%
1 14368768 22020096 -21.0%
1 16871424 22020096 -13.2%
The current 10% error tolerenace might be right at the time
test_memcontrol.c was first introduced in v4.18 kernel, but memory reclaim
have certainly evolved quite a bit since then which may result in a bit
more run-to-run variation than previously expected.
Increase the error tolerance to 15% for child 0 and 20% for child 1 to
minimize the chance of this type of failure. The tolerance is bigger for
child 1 because an upswing in child 0 corresponds to a smaller %err than a
similar downswing in child 1 due to the way %err is used in
values_close().
Before this patch, a 100 test runs of test_memcontrol produced the
following results:
17 not ok 1 test_memcg_min
22 not ok 2 test_memcg_low
After applying this patch, there were no test failure for test_memcg_min
and test_memcg_low in 100 test runs. However, these tests may still fail
once in a while if the memory usage goes beyond the newly extended range.
Link: https://lkml.kernel.org/r/20250502010443.106022-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg: Fix test_memcg_min/low test failures", v8.
The test_memcontrol selftest consistently fails its test_memcg_low
sub-test (with memory_recursiveprot enabled) and sporadically fails its
test_memcg_min sub-test. This patchset fixes the test_memcg_min and
test_memcg_low failures by adjusting the test_memcontrol selftest to fix
these test failures.
This patch (of 8):
The test_memcontrol selftest consistently fails its test_memcg_low
sub-test due to the fact that its 3rd test child cgroup which have a
memmory.low of 0 have low event count. This happens when
memory_recursiveprot mount option is enabled which is the default setting
used by systemd to mount cgroup2 filesystem.
This issue was originally fixed by commit cdc69458a5f3 ("cgroup: account
for memory_recursiveprot in test_memcg_low()"). It was later reverted by
commit 1d09069f5313 ("selftests: memcg: expect no low events in
unprotected sibling") expecting the memory reclaim code would be fixed.
However, it turns out the unprotected cgroup may still have some residual
effective memory.low protection depending on the memory.low settings in
its parent and its siblings. As a result, low events may still be
triggered.
One way to fix the test failure is to revert the revert commit. However,
Michal suggested that it might be better to ignore the low event count
with memory_recursiveprot enabled as low event may or may not happen
depending on the actual test configuration.
Modify the test_memcontrol.c to ignore low event in the 3rd child cgroup
with memory_recursiveprot on.
The 4th child cgroup has no memory usage and so has an effective low of 0.
It has no low event count because the mem_cgroup_below_low() check in
shrink_node_memcgs() is skipped as mem_cgroup_below_min() returns true.
If we ever change mem_cgroup_below_min() in such a way that it no longer
skips the no usage case, we will have to add code to explicitly skip it.
With this patch applied, the test_memcg_low sub-test finishes successfully
without failure in most cases. Though both test_memcg_low and
test_memcg_min sub-tests may still fail occasionally if the memory.current
values fall outside of the expected ranges.
Link: https://lkml.kernel.org/r/20250502010443.106022-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20250502010443.106022-2-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We can get the folio directly from the folio batch, so remove the
unnecessary page_folio() call.
Link: https://lkml.kernel.org/r/20250430010059.892632-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/gup: Cleanup memfd_pin_folios()".
A couple straightforward cleanups to memfd_pin_folios() found through code
inspection. Saves 124 bytes of kernel text overall and makes the code
more readable.
This patch (of 2):
Commit 89c1905d9c14 ("mm/gup: introduce memfd_pin_folios() for pinning
memfd folios") checks if filemap_get_folios_contig() returned duplicate
folios to prevent multiple attempts at pinning the same folio.
Commit 8ab1b1602396 ("mm: fix filemap_get_folios_contig returning batches
of identical folios") ensures that filemap_get_folios_contig() returns a
batch of distinct folios.
We can remove the duplicate folio check to simplify the code and save 58
bytes of text.
Link: https://lkml.kernel.org/r/20250430010059.892632-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20250430010059.892632-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This helper existed to fix the circular header dependency issue but it is
no longer used since commit 0d40cfe63a2f ("fs: remove
folio_file_mapping()"), remove it.
Link: https://lkml.kernel.org/r/20250430181052.55698-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are no remaining users of folio_index() outside the mm subsystem.
Move it to mm/swap.h to co-locate it with swap_cache_index(), eliminating
a forward declaration, and a function call overhead.
Also remove the helper that was used to fix circular header dependency
issue.
Link: https://lkml.kernel.org/r/20250430181052.55698-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, none of the folio_contains callers should encounter swap cache
folios.
For fs/ callers, swap cache folios are never part of their workflow.
For filemap and truncate, folio_contains is only used for sanity checks to
verify the folio index matches the expected lookup / invalidation target.
The swap cache does not utilize filemap or truncate helpers in ways that
would trigger these checks, as it mostly implements its own cache
management.
Shmem won't trigger these sanity checks either unless thing went wrong, as
it would directly trigger a BUG because swap cache index are unrelated and
almost never matches shmem index. Shmem have to handle mixed values of
folios, shadows, and swap entries, so it has its own way of handling the
mapping.
While some filemap helpers works for swap cache space, the swap cache is
different from the page cache in many ways. So this particular helper
will unlikely to work in a helpful way for swap cache folios.
So make it explicit here that folio_contains should not be used for swap
cache folios. This helps to avoid misuse, make swap cache less exposed
and remove the folio_index usage here.
[akpm@linux-foundation.org: s/VM_WARN_ON_FOLIO/VM_WARN_ON_ONCE_FOLIO/, per Kairui]
Link: https://lkml.kernel.org/r/20250430181052.55698-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
folio_index is only needed for mixed usage of page cache and swap cache,
for pure page cache usage, the caller can just use folio->index instead.
It can't be a swap cache folio here. Swap mapping may only call into fs
through `swap_rw` but f2fs does not use that method for swap.
Link: https://lkml.kernel.org/r/20250430181052.55698-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: clean up swap cache mapping helper", v3.
This series removes usage of folio_index usage in fs/, and remove swap
cache checking in folio_contains.
Currently, the swap cache is already no longer directly exposed to fs, and
swap cache will be more different from page cache. Clean up the helpers
first to simplify the code and eliminate the helpers used for resolving
circular header dependency issue between filemap and swap headers, and
prepare for further changes.
This patch (of 6):
folio_index is only needed for mixed usage of page cache and swap cache,
for pure page cache usage, the caller can just use folio->index instead.
It can't be a swap cache folio here. Swap mapping may only call into fs
through `swap_rw` but fuse does not use that method for SWAP.
Link: https://lkml.kernel.org/r/20250430181052.55698-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250430181052.55698-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Qu Wenruo <wqu@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fix the documentation for __xa_cmpxchg to actually describe the
cmpxch-like semantics correctly, based on the version for xa_cmpxchg.
Link: https://lkml.kernel.org/r/20250507051656.3900864-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The word accuracy was misspelled as "accruracy".
Signed-off-by: Thushara.M.S <thusharms@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Device capacity intended for use as system ram should be aligned to the
architecture-defined memory block size or that capacity will be silently
truncated and capacity stranded.
As hotplug dax memory becomes more prevelant, the memory block size
alignment becomes more important for platform and device vendors to pay
attention to - so this truncation should not be silent.
This issue is particularly relevant for CXL Dynamic Capacity devices,
whose capacity may arrive in spec-aligned but block-misaligned chunks.
Link: https://lkml.kernel.org/r/20250410142831.217887-1-gourry@gourry.net
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Gregory Price <gourry@gourry.net>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
KASAN_TAG_WIDTH is 8 bits for both (HW_TAGS and SW_TAGS), but for HW_TAGS
the KASAN_TAG_WIDTH can be 4 bits bits because due to the design of the
MTE the memory words for storing metadata only need 4 bits. Change the
preprocessor define KASAN_TAG_WIDTH for check if SW_TAGS is define, so
KASAN_TAG_WIDTH should be 8 bits, but if HW_TAGS is define, so
KASAN_TAG_WIDTH should be 4 bits to save a few flags bits.
Link: https://lkml.kernel.org/r/20250428201409.5482-1-trintaeoitogc@gmail.com
Signed-off-by: Guilherme Giacomo Simoes <trintaeoitogc@gmail.com>
Suggested-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Right now these are performed in kernel/fork.c which is odd and a
violation of separation of concerns, as well as preventing us from
integrating this and related logic into userland VMA testing going
forward.
There is a fly in the ointment - nommu - mmap.c is not compiled if
CONFIG_MMU not set, and neither is vma.c.
To square the circle, let's add a new file - vma_init.c. This will be
compiled for both CONFIG_MMU and nommu builds, and will also form part of
the VMA userland testing.
This allows us to de-duplicate code, while maintaining separation of
concerns and the ability for us to userland test this logic.
Update the VMA userland tests accordingly, additionally adding a
detach_free_vma() helper function to correctly detach VMAs before freeing
them in test code, as this change was triggering the assert for this.
[akpm@linux-foundation.org: remove stray newline, per Liam]
Link: https://lkml.kernel.org/r/f97b3a85a6da0196b28070df331b99e22b263be8.1745853549.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Pedro Falcato <pfalcato@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is a key step in our being able to abstract and isolate VMA
allocation and destruction logic.
This function is the last one where vm_area_free() and vm_area_dup() are
directly referenced outside of mmap, so having this in mm allows us to
isolate these.
We do the same for the nommu version which is substantially simpler.
We place the declaration for dup_mmap() in mm/internal.h and have
kernel/fork.c import this in order to prevent improper use of this
functionality elsewhere in the kernel.
While we're here, we remove the useless #ifdef CONFIG_MMU check around
mmap_read_lock_maybe_expand() in mmap.c, mmap.c is compiled only if
CONFIG_MMU is set.
Link: https://lkml.kernel.org/r/e49aad3d00212f5539d9fa5769bfda4ce451db3e.1745853549.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Pedro Falcato <pfalcato@suse.de>
Reviewed-by: Pedro Falcato <pfalcato@suse.de>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are peculiarities within the kernel where what is very clearly mm
code is performed elsewhere arbitrarily.
This violates separation of concerns and makes it harder to refactor code
to make changes to how fundamental initialisation and operation of mm
logic is performed.
One such case is the creation of the VMA containing the initial stack upon
execve()'ing a new process. This is currently performed in
__bprm_mm_init() in fs/exec.c.
Abstract this operation to create_init_stack_vma(). This allows us to
limit use of vma allocation and free code to fork and mm only.
We previously did the same for the step at which we relocate the initial
stack VMA downwards via relocate_vma_down(), now we move the initial VMA
establishment too.
Take the opportunity to also move insert_vm_struct() to mm/vma.c as it's
no longer needed anywhere outside of mm.
Link: https://lkml.kernel.org/r/118c950ef7a8dd19ab20a23a68c3603751acd30e.1745853549.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Pedro Falcato <pfalcato@suse.de>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "move all VMA allocation, freeing and duplication logic to
mm", v3.
Currently VMA allocation, freeing and duplication exist in kernel/fork.c,
which is a violation of separation of concerns, and leaves these functions
exposed to the rest of the kernel when they are in fact internal
implementation details.
Resolve this by moving this logic to mm, and making it internal to vma.c,
vma.h.
This also allows us, in future, to provide userland testing around this
functionality.
We additionally abstract dup_mmap() to mm, being careful to ensure
kernel/fork.c acceses this via the mm internal header so it is not exposed
elsewhere in the kernel.
As part of this change, also abstract initial stack allocation performed
in __bprm_mm_init() out of fs code into mm via the
create_init_stack_vma(), as this code uses vm_area_alloc() and
vm_area_free().
In order to do so sensibly, we introduce a new mm/vma_exec.c file, which
contains the code that is shared by mm and exec. This file is added to
both memory mapping and exec sections in MAINTAINERS so both sets of
maintainers can maintain oversight.
As part of this change, we also move relocate_vma_down() to mm/vma_exec.c
so all shared mm/exec functionality is kept in one place.
We add code shared between nommu and mmu-enabled configurations in order
to share VMA allocation, freeing and duplication code correctly while also
keeping these functions available in userland VMA testing.
This is achieved by adding a mm/vma_init.c file which is also compiled by
the userland tests.
This patch (of 4):
There is functionality that overlaps the exec and memory mapping
subsystems. While it properly belongs in mm, it is important that exec
maintainers maintain oversight of this functionality correctly.
We can establish both goals by adding a new mm/vma_exec.c file which
contains these 'glue' functions, and have fs/exec.c import them.
As a part of this change, to ensure that proper oversight is achieved, add
the file to both the MEMORY MAPPING and EXEC & BINFMT API, ELF sections.
scripts/get_maintainer.pl can correctly handle files in multiple entries
and this neatly handles the cross-over.
[akpm@linux-foundation.org: fix comment typo]
Link: https://lkml.kernel.org/r/80f0d0c6-0b68-47f9-ab78-0ab7f74677fc@lucifer.local
Link: https://lkml.kernel.org/r/cover.1745853549.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/91f2cee8f17d65214a9d83abb7011aa15f1ea690.1745853549.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Pedro Falcato <pfalcato@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The variables kmemleak_enabled and kmemleak_free_enabled are read in the
kmemleak alloc and free path respectively, but are only written to if/when
kmemleak is disabled.
Link: https://lkml.kernel.org/r/4016090e857e8c4c2ade4b20df312f7f38325c15.1746046744.git.luizcap@redhat.com
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Newly created objects have object->count == 0, so the comment is
incorrect. Just drop it.
Link: https://lkml.kernel.org/r/3dfd09bc0e77bb626619184a808774ff07de275c.1746046744.git.luizcap@redhat.com
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
These are a trivial mm/kmemleak.c cleanups. I found these while reading
through the code.
This patch (of 3):
The kmemleak_warning variable is not used since commit c5665868183f ("mm:
kmemleak: use the memory pool for early allocations"), drop it.
Link: https://lkml.kernel.org/r/cover.1746046744.git.luizcap@redhat.com
Link: https://lkml.kernel.org/r/97e23faa7b67099027a1094c9438da5f72e037af.1746046744.git.luizcap@redhat.com
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the missing migrate_folio operation to jfs_metapage_aops to fix
warnings during memory compaction. These warnings were introduced by
commit 7ee3647243e5 ("migrate: Remove call to ->writepage") which added
explicit warnings when filesystems don't implement migrate_folio.
System reports following warnings:
jfs_metapage_aops does not implement migrate_folio
WARNING: CPU: 0 PID: 6870 at mm/migrate.c:955 fallback_migrate_folio mm/migrate.c:953 [inline]
WARNING: CPU: 0 PID: 6870 at mm/migrate.c:955 move_to_new_folio+0x70e/0x840 mm/migrate.c:1007
Implement metapage_migrate_folio() which handles both single and multiple
metapages per page configurations.
[shivankg@amd.com: change comment style]
Link: https://lkml.kernel.org/r/1967593d-8084-4a4a-b384-35d5adc54eb4@amd.com
[akpm@linux-foundation.org: fix build]
[shivankg@amd.com: remove redundant NULL check in __metapage_migrate_folio()]
Link: https://lkml.kernel.org/r/a67db238-0ca6-4725-abb2-dc092de87e1b@amd.com
Link: https://lkml.kernel.org/r/20250430100150.279751-3-shivankg@amd.com
Fixes: 35474d52c605 ("jfs: Convert metapage_writepage to metapage_write_folio")
Signed-off-by: Shivank Garg <shivankg@amd.com>
Reported-by: syzbot+8bb6fd945af4e0ad9299@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/67faff52.050a0220.379d84.001b.GAE@google.com
Tested-by: syzbot+8bb6fd945af4e0ad9299@syzkaller.appspotmail.com
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Donet Tom <donettom@linux.ibm.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series " JFS: Implement migrate_folio for jfs_metapage_aops" v5.
This patchset addresses a warning that occurs during memory compaction due
to JFS's missing migrate_folio operation. The warning was introduced by
commit 7ee3647243e5 ("migrate: Remove call to ->writepage") which added
explicit warnings when filesystem don't implement migrate_folio.
The syzbot reported following [1]:
jfs_metapage_aops does not implement migrate_folio
WARNING: CPU: 1 PID: 5861 at mm/migrate.c:955 fallback_migrate_folio mm/migrate.c:953 [inline]
WARNING: CPU: 1 PID: 5861 at mm/migrate.c:955 move_to_new_folio+0x70e/0x840 mm/migrate.c:1007
Modules linked in:
CPU: 1 UID: 0 PID: 5861 Comm: syz-executor280 Not tainted 6.15.0-rc1-next-20250411-syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
RIP: 0010:fallback_migrate_folio mm/migrate.c:953 [inline]
RIP: 0010:move_to_new_folio+0x70e/0x840 mm/migrate.c:1007
To fix this issue, this series implement metapage_migrate_folio() for JFS
which handles both single and multiple metapages per page configurations.
While most filesystems leverage existing migration implementations like
filemap_migrate_folio(), buffer_migrate_folio_norefs() or
buffer_migrate_folio() (which internally used folio_expected_refs()),
JFS's metapage architecture requires special handling of its private data
during migration. To support this, this series introduce the
folio_expected_ref_count(), which calculates external references to a
folio from page/swap cache, private data, and page table mappings.
This standardized implementation replaces the previous ad-hoc
folio_expected_refs() function and enables JFS to accurately determine
whether a folio has unexpected references before attempting migration.
Implement folio_expected_ref_count() to calculate expected folio reference
counts from:
- Page/swap cache (1 per page)
- Private data (1)
- Page table mappings (1 per map)
While originally needed for page migration operations, this improved
implementation standardizes reference counting by consolidating all
refcount contributors into a single, reusable function that can benefit
any subsystem needing to detect unexpected references to folios.
The folio_expected_ref_count() returns the sum of these external
references without including any reference the caller itself might hold.
Callers comparing against the actual folio_ref_count() must account for
their own references separately.
Link: https://syzkaller.appspot.com/bug?extid=8bb6fd945af4e0ad9299 [1]
Link: https://lkml.kernel.org/r/20250430100150.279751-1-shivankg@amd.com
Link: https://lkml.kernel.org/r/20250430100150.279751-2-shivankg@amd.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Shivank Garg <shivankg@amd.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Co-developed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Donet Tom <donettom@linux.ibm.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add missing header inclusions.
Link: https://lkml.kernel.org/r/20250428072754.3265274-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
cpuset memory pinning
Unlike sched_skip_vma_numa tracepoint which tracks skipped VMAs, this
tracks the task subjected to cpuset.mems pinning and prints out its
allowed memory node mask.
Link: https://lkml.kernel.org/r/20250424024523.2298272-3-libo.chen@oracle.com
Signed-off-by: Libo Chen <libo.chen@oracle.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Chen Yu <yu.c.chen@intel.com>
Cc: Chris Hyser <chris.hyser@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Madadi Vineeth Reddy <vineethr@linux.ibm.com>
Cc: Mel Gorman <mgorman <mgorman@suse.de>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Srikanth Aithal <sraithal@amd.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "sched/numa: Skip VMA scanning on memory pinned to one NUMA
node via cpuset.mems", v5.
This patch (of 2):
When the memory of the current task is pinned to one NUMA node by cgroup,
there is no point in continuing the rest of VMA scanning and hinting page
faults as they will just be overhead. With this change, there will be no
more unnecessary PTE updates or page faults in this scenario.
We have seen up to a 6x improvement on a typical java workload running on
VMs with memory and CPU pinned to one NUMA node via cpuset in a two-socket
AARCH64 system. With the same pinning, on a 18-cores-per-socket Intel
platform, we have seen 20% improvment in a microbench that creates a
30-vCPU selftest KVM guest with 4GB memory, where each vCPU reads 4KB
pages in a fixed number of loops.
Link: https://lkml.kernel.org/r/20250424024523.2298272-1-libo.chen@oracle.com
Link: https://lkml.kernel.org/r/20250424024523.2298272-2-libo.chen@oracle.com
Signed-off-by: Libo Chen <libo.chen@oracle.com>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Tested-by: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Chris Hyser <chris.hyser@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Madadi Vineeth Reddy <vineethr@linux.ibm.com>
Cc: Mel Gorman <mgorman <mgorman@suse.de>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add an unit test to verify the recent mmap_changing ABI breakage.
Note that I used some tricks here and there to make the test simple, e.g.
I abused UFFDIO_MOVE on top of shmem with the fact that I know what I want
to test will be even earlier than the vma type check. Rich comments were
added to explain trivial details.
Before that fix, -EAGAIN would have been written to the copy field most of
the time but not always; the test should be able to reliably trigger the
outlier case. After the fix, it's written always, the test verifies that
making sure corresponding field (e.g. copy.copy for UFFDIO_COPY) is
updated.
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20250424215729.194656-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
To prevent the function from being used when CONFIG_MM_ID is disabled, we
intend to inline it into its few callers, which also would help maintain
the expected code placement.
Link: https://lkml.kernel.org/r/20250424155606.57488-1-lance.yang@linux.dev
Signed-off-by: Lance Yang <lance.yang@linux.dev>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Mingzhe Yang <mingzhe.yang@ly.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's safer to use kmalloc_array() and size_add() because it can prevent
possible overflow problem.
Link: https://lkml.kernel.org/r/20250421062423.740605-1-suhui@nfschina.com
Signed-off-by: Su Hui <suhui@nfschina.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
container_of(node->array, ..., i_pages) just to access i_pages again is an
incredibly roundabout way of accessing node->array itself. Simplify it.
Link: https://lkml.kernel.org/r/20250421-workingset-simplify-v1-1-de5c40051e0e@suse.de
Signed-off-by: Pedro Falcato <pfalcato@suse.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, memmap_init initializes pfn_hole with 0 instead of
ARCH_PFN_OFFSET. Then init_unavailable_range will start iterating each
page from the page at address zero to the first available page, but it
won't do anything for pages below ARCH_PFN_OFFSET because pfn_valid
won't pass.
If ARCH_PFN_OFFSET is very large (e.g., something like 2^64-2GiB if the
kernel is used as a library and loaded at a very high address), the
pointless iteration for pages below ARCH_PFN_OFFSET will take a very long
time, and the kernel will look stuck at boot time.
Use for_each_valid_pfn() to skip the pointless iterations.
Link: https://lkml.kernel.org/r/20250423133821.789413-8-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reported-by: Ruihan Li <lrh2000@pku.edu.cn>
Suggested-by: Mike Rapoport <rppt@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Tested-by: Ruihan Li <lrh2000@pku.edu.cn>
Tested-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Link: https://lkml.kernel.org/r/20250423133821.789413-7-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Instead of calling pfn_valid() separately for every single PFN in the
range, use for_each_valid_pfn() and only look at the ones which are.
Link: https://lkml.kernel.org/r/20250423133821.789413-6-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Link: https://lkml.kernel.org/r/20250423133821.789413-5-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Implement for_each_valid_pfn() based on two helper functions.
The first_valid_pfn() function largely mirrors pfn_valid(), calling into a
pfn_section_first_valid() helper which is trivial for the !VMEMMAP case,
and in the VMEMMAP case will skip to the next subsection as needed.
Since next_valid_pfn() knows that its argument *is* a valid PFN, it
doesn't need to do any checking at all while iterating over the low bits
within a (sub)section mask; the whole (sub)section is either present or
not.
Note that the VMEMMAP version of pfn_section_first_valid() may return a
value *higher* than end_pfn when skipping to the next subsection, and
first_valid_pfn() happily returns that higher value. This is fine.
[dwmw2@infradead.org: fix next_valid_pfn() for sparsemem]
Link: https://lkml.kernel.org/r/c15100fcf6781a60b852c4dbb43bdc98a678fcf0.camel@infradead.org
Link: https://lkml.kernel.org/r/20250423133821.789413-4-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In the FLATMEM case, the default pfn_valid() just checks that the PFN is
within the range [ ARCH_PFN_OFFSET .. ARCH_PFN_OFFSET + max_mapnr ).
The for_each_valid_pfn() function can therefore be a simple for() loop
using those as min/max respectively.
Link: https://lkml.kernel.org/r/20250423133821.789413-3-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: Introduce for_each_valid_pfn()", v4.
There are cases where a naïve loop over a PFN range, calling pfn_valid()
on each one, is horribly inefficient. Ruihan Li reported the case where
memmap_init() iterates all the way from zero to a potentially large value
of ARCH_PFN_OFFSET, and we at Amazon found the reserve_bootmem_region()
one as it affects hypervisor live update. Others are more cosmetic.
By introducing a for_each_valid_pfn() helper it can optimise away a lot of
pointless calls to pfn_valid(), skipping immediately to the next valid PFN
and also skipping *all* checks within a valid (sub)region according to the
granularity of the memory model in use.
This patch (of 7)
Especially since commit 9092d4f7a1f8 ("memblock: update initialization of
reserved pages"), the reserve_bootmem_region() function can spend a
significant amount of time iterating over every 4KiB PFN in a range,
calling pfn_valid() on each one, and ultimately doing absolutely nothing.
On a platform used for virtualization, with large NOMAP regions that
eventually get used for guest RAM, this leads to a significant increase in
steal time experienced during kexec for a live update.
Introduce for_each_valid_pfn() and use it from reserve_bootmem_region().
This implementation is precisely the same naïve loop that the functio
used to have, but subsequent commits will provide optimised versions for
FLATMEM and SPARSEMEM, and this version will remain for those
architectures which provide their own pfn_valid() implementation,
until/unless they also provide a matching for_each_valid_pfn().
Link: https://lkml.kernel.org/r/20250423133821.789413-1-dwmw2@infradead.org
Link: https://lkml.kernel.org/r/20250423133821.789413-2-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We introduced KHO into Linux: A framework that allows Linux to pass
metadata and memory across kexec from Linux to Linux. KHO reuses fdt as
file format and shares a lot of the same properties of firmware-to- Linux
boot formats: It needs a stable, documented ABI that allows for forward
and backward compatibility as well as versioning.
As first user of KHO, we introduced memblock which can now preserve memory
ranges reserved with reserve_mem command line options contents across
kexec, so you can use the post-kexec kernel to read traces from the
pre-kexec kernel.
This patch adds memblock schemas similar to "device" device tree ones to a
new kho bindings directory. This allows us to force contributors to
document the data that moves across KHO kexecs and catch breaking change
during review.
Link: https://lkml.kernel.org/r/20250509074635.3187114-18-changyuanl@google.com
Co-developed-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With KHO in place, let's add documentation that describes what it is and
how to use it.
Link: https://lkml.kernel.org/r/20250509074635.3187114-17-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Linux has recently gained support for "reserve_mem": A mechanism to
allocate a region of memory early enough in boot that we can cross our
fingers and hope it stays at the same location during most boots, so we
can store for example ftrace buffers into it.
Thanks to KASLR, we can never be really sure that "reserve_mem"
allocations are static across kexec. Let's teach it KHO awareness so that
it serializes its reservations on kexec exit and deserializes them again
on boot, preserving the exact same mapping across kexec.
This is an example user for KHO in the KHO patch set to ensure we have at
least one (not very controversial) user in the tree before extending KHO's
use to more subsystems.
Link: https://lkml.kernel.org/r/20250509074635.3187114-16-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add ARCH_SUPPORTS_KEXEC_HANDOVER for 64 bits to allow enabling of
KEXEC_HANDOVER configuration option.
Link: https://lkml.kernel.org/r/20250509074635.3187114-15-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
During kexec handover (KHO) memory contains data that should be preserved
and this data would be consumed by kexec'ed kernel.
To make sure that the preserved memory is not overwritten, KHO uses
"scratch regions" to bootstrap kexec'ed kernel. These regions are
guaranteed to not have any memory that KHO would preserve and are used as
the only memory the kernel sees during the early boot.
The scratch regions are passed in the setup_data by the first kernel with
other KHO parameters. If the setup_data contains the KHO parameters,
limit randomization to scratch areas only to make sure preserved memory
won't get overwritten.
Since all the pointers in setup_data are represented by u64, they require
double casting (first to unsigned long and then to the actual pointer
type) to compile on 32-bits. This looks goofy out of context, but it is
unfortunately the way that this is handled across the tree. There are at
least a dozen instances of casting like this.
Link: https://lkml.kernel.org/r/20250509074635.3187114-14-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
KHO kernels are special and use only scratch memory for memblock
allocations, but memory below 1M is ignored by kernel after early boot and
cannot be naturally marked as scratch.
To allow allocation of the real-mode trampoline and a few (if any) other
very early allocations from below 1M forcibly mark the memory below 1M as
scratch.
After real mode trampoline is allocated, clear that scratch marking.
Link: https://lkml.kernel.org/r/20250509074635.3187114-13-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
kexec handover (KHO) creates a metadata that the kernels pass between each
other during kexec. This metadata is stored in memory and kexec image
contains a (physical) pointer to that memory.
In addition, KHO keeps "scratch regions" available for kexec: physically
contiguous memory regions that are guaranteed to not have any memory that
KHO would preserve. The new kernel bootstraps itself using the scratch
regions and sets all handed over memory as in use. When subsystems that
support KHO initialize, they introspect the KHO metadata, restore
preserved memory regions, and retrieve their state stored in the preserved
memory.
Enlighten x86 kexec-file and boot path about the KHO metadata and make
sure it gets passed along to the next kernel.
Link: https://lkml.kernel.org/r/20250509074635.3187114-12-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
memblock_reserve() does not distinguish memory used by firmware from
memory used by kernel.
The distinction is nice to have for accounting of early memory allocations
and reservations, but it is essential for kexec handover (kho) to know how
much memory kernel consumes during boot.
Use memblock_reserve_kern() to reserve kernel memory, such as kernel
image, initrd and setup data.
Link: https://lkml.kernel.org/r/20250509074635.3187114-11-changyuanl@google.com
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We now have all bits in place to support KHO kexecs. Add awareness of KHO
in the kexec file as well as boot path for arm64 and adds the respective
kconfig option to the architecture so that it can use KHO successfully.
Changes to the "chosen" node have been sent to
https://github.com/devicetree-org/dt-schema/pull/158.
Link: https://lkml.kernel.org/r/20250509074635.3187114-10-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We have all generic code in place now to support Kexec with KHO. This
patch adds a config option that depends on architecture support to enable
KHO support.
Link: https://lkml.kernel.org/r/20250509074635.3187114-9-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Kexec has 2 modes: A user space driven mode and a kernel driven mode. For
the kernel driven mode, kernel code determines the physical addresses of
all target buffers that the payload gets copied into.
With KHO, we can only safely copy payloads into the "scratch area". Teach
the kexec file loader about it, so it only allocates for that area. In
addition, enlighten it with support to ask the KHO subsystem for its
respective payloads to copy into target memory. Also teach the KHO
subsystem how to fill the images for file loads.
Link: https://lkml.kernel.org/r/20250509074635.3187114-8-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|