Age | Commit message (Collapse) | Author |
|
According to Intel's document on Indirect Branch Restricted
Speculation, "Enabling IBRS does not prevent software from controlling
the predicted targets of indirect branches of unrelated software
executed later at the same predictor mode (for example, between two
different user applications, or two different virtual machines). Such
isolation can be ensured through use of the Indirect Branch Predictor
Barrier (IBPB) command." This applies to both basic and enhanced IBRS.
Since L1 and L2 VMs share hardware predictor modes (guest-user and
guest-kernel), hardware IBRS is not sufficient to virtualize
IBRS. (The way that basic IBRS is implemented on pre-eIBRS parts,
hardware IBRS is actually sufficient in practice, even though it isn't
sufficient architecturally.)
For virtual CPUs that support IBRS, add an indirect branch prediction
barrier on emulated VM-exit, to ensure that the predicted targets of
indirect branches executed in L1 cannot be controlled by software that
was executed in L2.
Since we typically don't intercept guest writes to IA32_SPEC_CTRL,
perform the IBPB at emulated VM-exit regardless of the current
IA32_SPEC_CTRL.IBRS value, even though the IBPB could technically be
deferred until L1 sets IA32_SPEC_CTRL.IBRS, if IA32_SPEC_CTRL.IBRS is
clear at emulated VM-exit.
This is CVE-2022-2196.
Fixes: 5c911beff20a ("KVM: nVMX: Skip IBPB when switching between vmcs01 and vmcs02")
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221019213620.1953281-3-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
At this point in time, most guests (in the default, out-of-the-box
configuration) are likely to use IA32_SPEC_CTRL. Therefore, drop the
compiler hint that it is unlikely for KVM to be intercepting WRMSR of
IA32_SPEC_CTRL.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221019213620.1953281-2-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Inject #GP for if VMXON is attempting with a CR0/CR4 that fails the
generic "is CRx valid" check, but passes the CR4.VMXE check, and do the
generic checks _after_ handling the post-VMXON VM-Fail.
The CR4.VMXE check, and all other #UD cases, are special pre-conditions
that are enforced prior to pivoting on the current VMX mode, i.e. occur
before interception if VMXON is attempted in VMX non-root mode.
All other CR0/CR4 checks generate #GP and effectively have lower priority
than the post-VMXON check.
Per the SDM:
IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or ...
THEN #UD;
ELSIF not in VMX operation
THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation)
THEN #GP(0);
ELSIF in VMX non-root operation
THEN VMexit;
ELSIF CPL > 0
THEN #GP(0);
ELSE VMfail("VMXON executed in VMX root operation");
FI;
which, if re-written without ELSIF, yields:
IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or ...
THEN #UD
IF in VMX non-root operation
THEN VMexit;
IF CPL > 0
THEN #GP(0)
IF in VMX operation
THEN VMfail("VMXON executed in VMX root operation");
IF (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation)
THEN #GP(0);
Note, KVM unconditionally forwards VMXON VM-Exits that occur in L2 to L1,
i.e. there is no need to check the vCPU is not in VMX non-root mode. Add
a comment to explain why unconditionally forwarding such exits is
functionally correct.
Reported-by: Eric Li <ercli@ucdavis.edu>
Fixes: c7d855c2aff2 ("KVM: nVMX: Inject #UD if VMXON is attempted with incompatible CR0/CR4")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221006001956.329314-1-seanjc@google.com
|
|
The use of kmap_atomic() is being deprecated in favor of
kmap_local_page()[1].
The main difference between atomic and local mappings is that local
mappings don't disable page faults or preemption.
There're 2 reasons we can use kmap_local_page() here:
1. SEV is 64-bit only and kmap_local_page() doesn't disable migration in
this case, but here the function clflush_cache_range() uses CLFLUSHOPT
instruction to flush, and on x86 CLFLUSHOPT is not CPU-local and flushes
the page out of the entire cache hierarchy on all CPUs (APM volume 3,
chapter 3, CLFLUSHOPT). So there's no need to disable preemption to ensure
CPU-local.
2. clflush_cache_range() doesn't need to disable pagefault and the mapping
is still valid even if sleeps. This is also true for sched out/in when
preempted.
In addition, though kmap_local_page() is a thin wrapper around
page_address() on 64-bit, kmap_local_page() should still be used here in
preference to page_address() since page_address() isn't suitable to be used
in a generic function (like sev_clflush_pages()) where the page passed in
is not easy to determine the source of allocation. Keeping the kmap* API in
place means it can be used for things other than highmem mappings[2].
Therefore, sev_clflush_pages() is a function that should use
kmap_local_page() in place of kmap_atomic().
Convert the calls of kmap_atomic() / kunmap_atomic() to kmap_local_page() /
kunmap_local().
[1]: https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com
[2]: https://lore.kernel.org/lkml/5d667258-b58b-3d28-3609-e7914c99b31b@intel.com/
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Suggested-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220928092748.463631-1-zhao1.liu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Skip the WRMSR fastpath in SVM's VM-Exit handler if the next RIP isn't
valid, e.g. because KVM is running with nrips=false. SVM must decode and
emulate to skip the WRMSR if the CPU doesn't provide the next RIP.
Getting the instruction bytes to decode the WRMSR requires reading guest
memory, which in turn means dereferencing memslots, and that isn't safe
because KVM doesn't hold SRCU when the fastpath runs.
Don't bother trying to enable the fastpath for this case, e.g. by doing
only the WRMSR and leaving the "skip" until later. NRIPS is supported on
all modern CPUs (KVM has considered making it mandatory), and the next
RIP will be valid the vast, vast majority of the time.
=============================
WARNING: suspicious RCU usage
6.0.0-smp--4e557fcd3d80-skip #13 Tainted: G O
-----------------------------
include/linux/kvm_host.h:954 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by stable/206475:
#0: ffff9d9dfebcc0f0 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x8b/0x620 [kvm]
stack backtrace:
CPU: 152 PID: 206475 Comm: stable Tainted: G O 6.0.0-smp--4e557fcd3d80-skip #13
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
Call Trace:
<TASK>
dump_stack_lvl+0x69/0xaa
dump_stack+0x10/0x12
lockdep_rcu_suspicious+0x11e/0x130
kvm_vcpu_gfn_to_memslot+0x155/0x190 [kvm]
kvm_vcpu_gfn_to_hva_prot+0x18/0x80 [kvm]
paging64_walk_addr_generic+0x183/0x450 [kvm]
paging64_gva_to_gpa+0x63/0xd0 [kvm]
kvm_fetch_guest_virt+0x53/0xc0 [kvm]
__do_insn_fetch_bytes+0x18b/0x1c0 [kvm]
x86_decode_insn+0xf0/0xef0 [kvm]
x86_emulate_instruction+0xba/0x790 [kvm]
kvm_emulate_instruction+0x17/0x20 [kvm]
__svm_skip_emulated_instruction+0x85/0x100 [kvm_amd]
svm_skip_emulated_instruction+0x13/0x20 [kvm_amd]
handle_fastpath_set_msr_irqoff+0xae/0x180 [kvm]
svm_vcpu_run+0x4b8/0x5a0 [kvm_amd]
vcpu_enter_guest+0x16ca/0x22f0 [kvm]
kvm_arch_vcpu_ioctl_run+0x39d/0x900 [kvm]
kvm_vcpu_ioctl+0x538/0x620 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: 404d5d7bff0d ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220930234031.1732249-1-seanjc@google.com
|
|
Treat any exception during instruction decode for EMULTYPE_SKIP as a
"full" emulation failure, i.e. signal failure instead of queuing the
exception. When decoding purely to skip an instruction, KVM and/or the
CPU has already done some amount of emulation that cannot be unwound,
e.g. on an EPT misconfig VM-Exit KVM has already processeed the emulated
MMIO. KVM already does this if a #UD is encountered, but not for other
exceptions, e.g. if a #PF is encountered during fetch.
In SVM's soft-injection use case, queueing the exception is particularly
problematic as queueing exceptions while injecting events can put KVM
into an infinite loop due to bailing from VM-Enter to service the newly
pending exception. E.g. multiple warnings to detect such behavior fire:
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1017 at arch/x86/kvm/x86.c:9873 kvm_arch_vcpu_ioctl_run+0x1de5/0x20a0 [kvm]
Modules linked in: kvm_amd ccp kvm irqbypass
CPU: 3 PID: 1017 Comm: svm_nested_soft Not tainted 6.0.0-rc1+ #220
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x1de5/0x20a0 [kvm]
Call Trace:
kvm_vcpu_ioctl+0x223/0x6d0 [kvm]
__x64_sys_ioctl+0x85/0xc0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1017 at arch/x86/kvm/x86.c:9987 kvm_arch_vcpu_ioctl_run+0x12a3/0x20a0 [kvm]
Modules linked in: kvm_amd ccp kvm irqbypass
CPU: 3 PID: 1017 Comm: svm_nested_soft Tainted: G W 6.0.0-rc1+ #220
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x12a3/0x20a0 [kvm]
Call Trace:
kvm_vcpu_ioctl+0x223/0x6d0 [kvm]
__x64_sys_ioctl+0x85/0xc0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
---[ end trace 0000000000000000 ]---
Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220930233632.1725475-1-seanjc@google.com
|
|
Acquire SRCU before taking the gpc spinlock in wait_pending_event() so as
to be consistent with all other functions that acquire both locks. It's
not illegal to acquire SRCU inside a spinlock, nor is there deadlock
potential, but in general it's preferable to order locks from least
restrictive to most restrictive, e.g. if wait_pending_event() needed to
sleep for whatever reason, it could do so while holding SRCU, but would
need to drop the spinlock.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/CAPm50a++Cb=QfnjMZ2EnCj-Sb9Y4UM-=uOEtHAcjnNLCAAf-dQ@mail.gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Resume the guest immediately when injecting a #GP on ECREATE due to an
invalid enclave size, i.e. don't attempt ECREATE in the host. The #GP is
a terminal fault, e.g. skipping the instruction if ECREATE is successful
would result in KVM injecting #GP on the instruction following ECREATE.
Fixes: 70210c044b4e ("KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions")
Cc: stable@vger.kernel.org
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20220930233132.1723330-1-seanjc@google.com
|
|
If a triple fault was fixed by kvm_x86_ops.nested_ops->triple_fault (by
turning it into a vmexit), there is no need to leave vcpu_enter_guest().
Any vcpu->requests will be caught later before the actual vmentry,
and in fact vcpu_enter_guest() was not initializing the "r" variable.
Depending on the compiler's whims, this could cause the
x86_64/triple_fault_event_test test to fail.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 92e7d5c83aff ("KVM: x86: allow L1 to not intercept triple fault")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove the unused @kvm argument from gpc_unmap_khva().
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Formalize "gpc" as the acronym and use it in function names.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Torture test the cases where the runstate crosses a page boundary, and
and especially the case where it's configured in 32-bit mode and doesn't,
but then switching to 64-bit mode makes it go onto the second page.
To simplify this, make the KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ioctl
also update the guest runstate area. It already did so if the actual
runstate changed, as a side-effect of kvm_xen_update_runstate(). So
doing it in the plain adjustment case is making it more consistent, as
well as giving us a nice way to trigger the update without actually
running the vCPU again and changing the values.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Closer inspection of the Xen code shows that we aren't supposed to be
using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be
explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall.
If we randomly set the top bit of ->state_entry_time for a guest that
hasn't asked for it and doesn't expect it, that could make the runtimes
fail to add up and confuse the guest. Without the flag it's perfectly
safe for a vCPU to read its own vcpu_runstate_info; just not for one
vCPU to read *another's*.
I briefly pondered adding a word for the whole set of VMASST_TYPE_*
flags but the only one we care about for HVM guests is this, so it
seemed a bit pointless.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221127122210.248427-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The guest runstate area can be arbitrarily byte-aligned. In fact, even
when a sane 32-bit guest aligns the overall structure nicely, the 64-bit
fields in the structure end up being unaligned due to the fact that the
32-bit ABI only aligns them to 32 bits.
So setting the ->state_entry_time field to something|XEN_RUNSTATE_UPDATE
is buggy, because if it's unaligned then we can't update the whole field
atomically; the low bytes might be observable before the _UPDATE bit is.
Xen actually updates the *byte* containing that top bit, on its own. KVM
should do the same.
In addition, we cannot assume that the runstate area fits within a single
page. One option might be to make the gfn_to_pfn cache cope with regions
that cross a page — but getting a contiguous virtual kernel mapping of a
discontiguous set of IOMEM pages is a distinctly non-trivial exercise,
and it seems this is the *only* current use case for the GPC which would
benefit from it.
An earlier version of the runstate code did use a gfn_to_hva cache for
this purpose, but it still had the single-page restriction because it
used the uhva directly — because it needs to be able to do so atomically
when the vCPU is being scheduled out, so it used pagefault_disable()
around the accesses and didn't just use kvm_write_guest_cached() which
has a fallback path.
So... use a pair of GPCs for the first and potential second page covering
the runstate area. We can get away with locking both at once because
nothing else takes more than one GPC lock at a time so we can invent
a trivial ordering rule.
The common case where it's all in the same page is kept as a fast path,
but in both cases, the actual guest structure (compat or not) is built
up from the fields in @vx, following preset pointers to the state and
times fields. The only difference is whether those pointers point to
the kernel stack (in the split case) or to guest memory directly via
the GPC. The fast path is also fixed to use a byte access for the
XEN_RUNSTATE_UPDATE bit, then the only real difference is the dual
memcpy.
Finally, Xen also does write the runstate area immediately when it's
configured. Flip the kvm_xen_update_runstate() and …_guest() functions
and call the latter directly when the runstate area is set. This means
that other ioctls which modify the runstate also write it immediately
to the guest when they do so, which is also intended.
Update the xen_shinfo_test to exercise the pathological case where the
XEN_RUNSTATE_UPDATE flag in the top byte of the state_entry_time is
actually in a different page to the rest of the 64-bit word.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address support
- Removal of a unused function
|
|
Latest Intel platform Granite Rapids has introduced a new instruction -
PREFETCHIT0/1, which moves code to memory (cache) closer to the
processor depending on specific hints.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 14]
PREFETCHIT0/1 is on a KVM-only subleaf. Plus an x86_FEATURE definition
for this feature bit to direct it to the KVM entry.
Advertise PREFETCHIT0/1 to KVM userspace. This is safe because there are
no new VMX controls or additional host enabling required for guests to
use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-9-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AVX-NE-CONVERT is a new set of instructions which can convert low
precision floating point like BF16/FP16 to high precision floating point
FP32, and can also convert FP32 elements to BF16. This instruction
allows the platform to have improved AI capabilities and better
compatibility.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 5]
AVX-NE-CONVERT is on a KVM-only subleaf. Plus an x86_FEATURE definition
for this feature bit to direct it to the KVM entry.
Advertise AVX-NE-CONVERT to KVM userspace. This is safe because there
are no new VMX controls or additional host enabling required for guests
to use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-8-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AVX-VNNI-INT8 is a new set of instructions in the latest Intel platform
Sierra Forest, aims for the platform to have superior AI capabilities.
This instruction multiplies the individual bytes of two unsigned or
unsigned source operands, then adds and accumulates the results into the
destination dword element size operand.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 4]
AVX-VNNI-INT8 is on a new and sparse CPUID leaf and all bits on this
leaf have no truly kernel use case for now. Given that and to save space
for kernel feature bits, move this new leaf to KVM-only subleaf and plus
an x86_FEATURE definition for AVX-VNNI-INT8 to direct it to the KVM
entry.
Advertise AVX-VNNI-INT8 to KVM userspace. This is safe because there are
no new VMX controls or additional host enabling required for guests to
use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-7-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AVX-IFMA is a new instruction in the latest Intel platform Sierra
Forest. This instruction packed multiplies unsigned 52-bit integers and
adds the low/high 52-bit products to Qword Accumulators.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 23]
AVX-IFMA is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering AVX-IFMA itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.
Advertise AVX-IFMA to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-6-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Latest Intel platform Granite Rapids has introduced a new instruction -
AMX-FP16, which performs dot-products of two FP16 tiles and accumulates
the results into a packed single precision tile. AMX-FP16 adds FP16
capability and also allows a FP16 GPU trained model to run faster
without loss of accuracy or added SW overhead.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 21]
AMX-FP16 is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering AMX-FP16 itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.
Advertise AMX-FP16 to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-5-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
CMPccXADD is a new set of instructions in the latest Intel platform
Sierra Forest. This new instruction set includes a semaphore operation
that can compare and add the operands if condition is met, which can
improve database performance.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 7]
CMPccXADD is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering CMPccXADD itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.
Advertise CMPCCXADD to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-4-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename kvm_cpu_cap_init_scattered() to kvm_cpu_cap_init_kvm_defined() in
anticipation of adding KVM-only CPUID leafs that aren't recognized by the
kernel and thus not scattered, i.e. for leafs that are 100% KVM-defined.
Adjust/add comments to kvm_only_cpuid_leafs and KVM_X86_FEATURE to
document how to create new kvm_only_cpuid_leafs entries for scattered
features as well as features that are entirely unknown to the kernel.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221125125845.1182922-3-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a compile-time assert in the SF() macro to detect improper usage,
i.e. to detect passing in an X86_FEATURE_* flag that isn't actually
scattered by the kernel. Upcoming feature flags will be 100% KVM-only
and will have X86_FEATURE_* macros that point at a kvm_only_cpuid_leafs
word, not a kernel-defined word. Using SF() and thus boot_cpu_has() for
such feature flags would access memory beyond x86_capability[NCAPINTS]
and at best incorrectly hide a feature, and at worst leak kernel state to
userspace.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221125125845.1182922-2-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Adding Paul as co-maintainer of Xen support to help ensure that things
don't fall through the cracks when I spend three months at a time
travelling...
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Architecture code might want to use it even if CONFIG_HAVE_KVM_IRQ_ROUTING
is false; for example PPC XICS has KVM_IRQ_LINE and wants to use
kvm_arch_irqchip_in_kernel from there, but it does not have
KVM_SET_GSI_ROUTING so the prototype was not provided.
Fixes: d663b8a28598 ("KVM: replace direct irq.h inclusion")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This brings in a few important fixes for Xen emulation.
While nobody should be enabling it, the bug effectively
allows userspace to read arbitrary memory.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In the case where a GPC is refreshed to a different location within the
same page, we didn't bother to update it. Mostly we don't need to, but
since the ->khva field also includes the offset within the page, that
does have to be updated.
Fixes: 3ba2c95ea180 ("KVM: Do not incorporate page offset into gfn=>pfn cache user address")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There are almost no hypercalls which are valid from CPL > 0, and definitely
none which are handled by the kernel.
Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Reported-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We shouldn't allow guests to poll on arbitrary port numbers off the end
of the event channel table.
Fixes: 1a65105a5aba ("KVM: x86/xen: handle PV spinlocks slowpath")
[dwmw2: my bug though; the original version did check the validity as a
side-effect of an idr_find() which I ripped out in refactoring.]
Reported-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
clang warns about an unused function:
arch/s390/kvm/interrupt.c:317:20:
error: unused function 'gisa_clear_ipm_gisc' [-Werror,-Wunused-function]
static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
Remove gisa_clear_ipm_gisc(), since it is unused and get rid of this
warning.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Link: https://lore.kernel.org/r/20221118151133.2974602-1-hca@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Fix virtual vs physical address confusion (which currently are the same)
for the GISA when enabling the IRQ.
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20221118100429.70453-1-nrb@linux.ibm.com
Message-Id: <20221118100429.70453-1-nrb@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Add the module parameter "async_destroy", to allow the asynchronous
destroy mechanism to be switched off. This might be useful for
debugging purposes.
The parameter is enabled by default since the feature is opt-in anyway.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-7-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-7-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Add support for the Destroy Secure Configuration Fast Ultravisor call,
and take advantage of it for asynchronous destroy.
When supported, the protected guest is destroyed immediately using the
new UVC, leaving only the memory to be cleaned up asynchronously.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-6-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-6-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
If the appropriate UV feature bit is set, there is no need to perform
an export before import.
The misc feature indicates, among other things, that importing a shared
page from a different protected VM will automatically also transfer its
ownership.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-5-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-5-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Add KVM_CAP_S390_PROTECTED_ASYNC_DISABLE to signal that the
KVM_PV_ASYNC_DISABLE and KVM_PV_ASYNC_DISABLE_PREPARE commands for the
KVM_S390_PV_COMMAND ioctl are available.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-4-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-4-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Add documentation for the new commands added to the KVM_S390_PV_COMMAND
ioctl.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-3-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-3-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Until now, destroying a protected guest was an entirely synchronous
operation that could potentially take a very long time, depending on
the size of the guest, due to the time needed to clean up the address
space from protected pages.
This patch implements an asynchronous destroy mechanism, that allows a
protected guest to reboot significantly faster than previously.
This is achieved by clearing the pages of the old guest in background.
In case of reboot, the new guest will be able to run in the same
address space almost immediately.
The old protected guest is then only destroyed when all of its memory
has been destroyed or otherwise made non protected.
Two new PV commands are added for the KVM_S390_PV_COMMAND ioctl:
KVM_PV_ASYNC_CLEANUP_PREPARE: set aside the current protected VM for
later asynchronous teardown. The current KVM VM will then continue
immediately as non-protected. If a protected VM had already been
set aside for asynchronous teardown, but without starting the teardown
process, this call will fail. There can be at most one VM set aside at
any time. Once it is set aside, the protected VM only exists in the
context of the Ultravisor, it is not associated with the KVM VM
anymore. Its protected CPUs have already been destroyed, but not its
memory. This command can be issued again immediately after starting
KVM_PV_ASYNC_CLEANUP_PERFORM, without having to wait for completion.
KVM_PV_ASYNC_CLEANUP_PERFORM: tears down the protected VM previously
set aside using KVM_PV_ASYNC_CLEANUP_PREPARE. Ideally the
KVM_PV_ASYNC_CLEANUP_PERFORM PV command should be issued by userspace
from a separate thread. If a fatal signal is received (or if the
process terminates naturally), the command will terminate immediately
without completing. All protected VMs whose teardown was interrupted
will be put in the need_cleanup list. The rest of the normal KVM
teardown process will take care of properly cleaning up all remaining
protected VMs, including the ones on the need_cleanup list.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-2-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-2-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
|
|
Conform to the rest of Hyper-V emulation selftests which have 'hyperv'
prefix. Get rid of '_test' suffix as well as the purpose of this code
is fairly obvious.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-49-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Enable Hyper-V L2 TLB flush and check that Hyper-V TLB flush hypercalls
from L2 don't exit to L1 unless 'TlbLockCount' is set in the Partition
assist page.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-48-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Enable Hyper-V L2 TLB flush and check that Hyper-V TLB flush hypercalls
from L2 don't exit to L1 unless 'TlbLockCount' is set in the
Partition assist page.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-47-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hyper-V MSR-Bitmap tests do RDMSR from L2 to exit to L1. While 'evmcs_test'
correctly clobbers all GPRs (which are not preserved), 'hyperv_svm_test'
does not. Introduce a more generic rdmsr_from_l2() to avoid code
duplication and remove hardcoding of MSRs. Do not put it in common code
because it is really just a selftests bug rather than a processor
feature that requires it.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-46-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
vmmcall()/vmcall() are used to exit from L2 to L1 and no concrete hypercall
ABI is currenty followed. With the introduction of Hyper-V L2 TLB flush
it becomes (theoretically) possible that L0 will take responsibility for
handling the call and no L1 exit will happen. Prevent this by stuffing RAX
(KVM ABI) and RCX (Hyper-V ABI) with 'safe' values.
While on it, convert vmmcall() to 'static inline', make it setup stack
frame and move to include/x86_64/svm_util.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-45-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In preparation to testing Hyper-V L2 TLB flush hypercalls, allocate
so-called Partition assist page.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-44-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
specific test pages
There's no need to pollute VMX and SVM code with Hyper-V specific
stuff and allocate Hyper-V specific test pages for all test as only
few really need them. Create a dedicated struct and an allocation
helper.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-43-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In preparation to putting Hyper-V specific test pages to a dedicated
struct, move eVMCS load logic from load_vmcs(). Tests call load_vmcs()
directly and the only one which needs 'enlightened' version is
evmcs_test so there's not much gain in having this merged.
Temporary pass both GPA and HVA to load_evmcs().
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-42-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hyper-V VP assist page is not eVMCS specific, it is also used for
enlightened nSVM. Move the code to vendor neutral place.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-41-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
'struct hv_vp_assist_page' definition doesn't match TLFS. Also, define
'struct hv_nested_enlightenments_control' and use it instead of opaque
'__u64'.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-40-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
'struct hv_enlightened_vmcs' definition in selftests is not '__packed'
and so we rely on the compiler doing the right padding. This is not
obvious so it seems beneficial to use the same definition as in kernel.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-39-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Introduce a selftest for Hyper-V PV TLB flush hypercalls
(HvFlushVirtualAddressSpace/HvFlushVirtualAddressSpaceEx,
HvFlushVirtualAddressList/HvFlushVirtualAddressListEx).
The test creates one 'sender' vCPU and two 'worker' vCPU which do busy
loop reading from a certain GVA checking the observed value. Sender
vCPU swaos the data page with another page filled with a different value.
The expectation for workers is also altered. Without TLB flush on worker
vCPUs, they may continue to observe old value. To guard against accidental
TLB flushes for worker vCPUs the test is repeated 100 times.
Hyper-V TLB flush hypercalls are tested in both 'normal' and 'XMM
fast' modes.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-38-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|