diff options
Diffstat (limited to 'rust/kernel/task.rs')
| -rw-r--r-- | rust/kernel/task.rs | 241 | 
1 files changed, 222 insertions, 19 deletions
| diff --git a/rust/kernel/task.rs b/rust/kernel/task.rs index 5bce090a3869..7a76be583126 100644 --- a/rust/kernel/task.rs +++ b/rust/kernel/task.rs @@ -4,9 +4,13 @@  //!  //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h). +use crate::{ +    bindings, +    pid_namespace::PidNamespace, +    types::{ARef, NotThreadSafe, Opaque}, +};  use crate::ffi::{c_int, c_long, c_uint}; -use crate::types::Opaque; -use core::{marker::PhantomData, ops::Deref, ptr}; +use core::{cmp::{Eq, PartialEq},ops::Deref, ptr};  /// A sentinel value used for infinite timeouts.  pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX; @@ -29,6 +33,16 @@ macro_rules! current {      };  } +/// Returns the currently running task's pid namespace. +#[macro_export] +macro_rules! current_pid_ns { +    () => { +        // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive +        // the caller. +        unsafe { &*$crate::task::Task::current_pid_ns() } +    }; +} +  /// Wraps the kernel's `struct task_struct`.  ///  /// # Invariants @@ -90,7 +104,22 @@ unsafe impl Sync for Task {}  /// The type of process identifiers (PIDs).  type Pid = bindings::pid_t; +/// The type of user identifiers (UIDs). +#[derive(Copy, Clone)] +pub struct Kuid { +    kuid: bindings::kuid_t, +} +  impl Task { +    /// Returns a raw pointer to the current task. +    /// +    /// It is up to the user to use the pointer correctly. +    #[inline] +    pub fn current_raw() -> *mut bindings::task_struct { +        // SAFETY: Getting the current pointer is always safe. +        unsafe { bindings::get_current() } +    } +      /// Returns a task reference for the currently executing task/thread.      ///      /// The recommended way to get the current task/thread is to use the @@ -102,7 +131,7 @@ impl Task {      pub unsafe fn current() -> impl Deref<Target = Task> {          struct TaskRef<'a> {              task: &'a Task, -            _not_send: PhantomData<*mut ()>, +            _not_send: NotThreadSafe,          }          impl Deref for TaskRef<'_> { @@ -113,23 +142,118 @@ impl Task {              }          } -        // SAFETY: Just an FFI call with no additional safety requirements. -        let ptr = unsafe { bindings::get_current() }; - +        let current = Task::current_raw();          TaskRef {              // SAFETY: If the current thread is still running, the current task is valid. Given              // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread              // (where it could potentially outlive the caller). -            task: unsafe { &*ptr.cast() }, -            _not_send: PhantomData, +            task: unsafe { &*current.cast() }, +            _not_send: NotThreadSafe, +        } +    } + +    /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace. +    /// +    /// This function can be used to create an unbounded lifetime by e.g., storing the returned +    /// PidNamespace in a global variable which would be a bug. So the recommended way to get the +    /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is +    /// safe. +    /// +    /// # Safety +    /// +    /// Callers must ensure that the returned object doesn't outlive the current task/thread. +    pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> { +        struct PidNamespaceRef<'a> { +            task: &'a PidNamespace, +            _not_send: NotThreadSafe, +        } + +        impl Deref for PidNamespaceRef<'_> { +            type Target = PidNamespace; + +            fn deref(&self) -> &Self::Target { +                self.task +            } +        } + +        // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`. +        // +        // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A +        // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect +        // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children +        // created by the calling `Task`. This invariant guarantees that after having acquired a +        // reference to a `Task`'s pid namespace it will remain unchanged. +        // +        // When a task has exited and been reaped `release_task()` will be called. This will set +        // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task +        // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a +        // referencing count to +        // the `Task` will prevent `release_task()` being called. +        // +        // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function +        // can be used. There are two cases to consider: +        // +        // (1) retrieving the `PidNamespace` of the `current` task +        // (2) retrieving the `PidNamespace` of a non-`current` task +        // +        // From system call context retrieving the `PidNamespace` for case (1) is always safe and +        // requires neither RCU locking nor a reference count to be held. Retrieving the +        // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath +        // like that is exposed to Rust. +        // +        // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection. +        // Accessing `PidNamespace` outside of RCU protection requires a reference count that +        // must've been acquired while holding the RCU lock. Note that accessing a non-`current` +        // task means `NULL` can be returned as the non-`current` task could have already passed +        // through `release_task()`. +        // +        // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the +        // returned `PidNamespace` cannot outlive the calling scope. The associated +        // `current_pid_ns()` function should not be called directly as it could be abused to +        // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows +        // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU +        // protection and without having to acquire a reference count. +        // +        // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a +        // reference on `PidNamespace` and will return an `Option` to force the caller to +        // explicitly handle the case where `PidNamespace` is `None`, something that tends to be +        // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it +        // difficult to perform operations that are otherwise safe without holding a reference +        // count as long as RCU protection is guaranteed. But it is not important currently. But we +        // do want it in the future. +        // +        // Note for (2) the required RCU protection around calling `task_active_pid_ns()` +        // synchronizes against putting the last reference of the associated `struct pid` of +        // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the +        // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be +        // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via +        // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired +        // from `task->thread_pid` to finish. +        // +        // SAFETY: The current task's pid namespace is valid as long as the current task is running. +        let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) }; +        PidNamespaceRef { +            // SAFETY: If the current thread is still running, the current task and its associated +            // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be +            // transferred to another thread (where it could potentially outlive the current +            // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the +            // current task/thread. +            task: unsafe { PidNamespace::from_ptr(pidns) }, +            _not_send: NotThreadSafe,          }      } +    /// Returns a raw pointer to the task. +    #[inline] +    pub fn as_ptr(&self) -> *mut bindings::task_struct { +        self.0.get() +    } +      /// Returns the group leader of the given task.      pub fn group_leader(&self) -> &Task { -        // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always -        // have a valid `group_leader`. -        let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) }; +        // SAFETY: The group leader of a task never changes after initialization, so reading this +        // field is not a data race. +        let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };          // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,          // and given that a task has a reference to its group leader, we know it must be valid for @@ -139,23 +263,62 @@ impl Task {      /// Returns the PID of the given task.      pub fn pid(&self) -> Pid { -        // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always -        // have a valid pid. -        unsafe { *ptr::addr_of!((*self.0.get()).pid) } +        // SAFETY: The pid of a task never changes after initialization, so reading this field is +        // not a data race. +        unsafe { *ptr::addr_of!((*self.as_ptr()).pid) } +    } + +    /// Returns the UID of the given task. +    pub fn uid(&self) -> Kuid { +        // SAFETY: It's always safe to call `task_uid` on a valid task. +        Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) }) +    } + +    /// Returns the effective UID of the given task. +    pub fn euid(&self) -> Kuid { +        // SAFETY: It's always safe to call `task_euid` on a valid task. +        Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })      }      /// Determines whether the given task has pending signals.      pub fn signal_pending(&self) -> bool { +        // SAFETY: It's always safe to call `signal_pending` on a valid task. +        unsafe { bindings::signal_pending(self.as_ptr()) != 0 } +    } + +    /// Returns task's pid namespace with elevated reference count +    pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {          // SAFETY: By the type invariant, we know that `self.0` is valid. -        unsafe { bindings::signal_pending(self.0.get()) != 0 } +        let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) }; +        if ptr.is_null() { +            None +        } else { +            // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a +            // reference count via `task_get_pid_ns()`. +            // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`. +            Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) }) +        } +    } + +    /// Returns the given task's pid in the provided pid namespace. +    #[doc(alias = "task_tgid_nr_ns")] +    pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid { +        let pidns = match pidns { +            Some(pidns) => pidns.as_ptr(), +            None => core::ptr::null_mut(), +        }; +        // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid +        // PidNamespace that we can use as a pointer or we received an empty PidNamespace and +        // thus pass a null pointer. The underlying C function is safe to be used with NULL +        // pointers. +        unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }      }      /// Wakes up the task.      pub fn wake_up(&self) { -        // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid. -        // And `wake_up_process` is safe to be called for any valid task, even if the task is +        // SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task          // running. -        unsafe { bindings::wake_up_process(self.0.get()) }; +        unsafe { bindings::wake_up_process(self.as_ptr()) };      }  } @@ -163,7 +326,7 @@ impl Task {  unsafe impl crate::types::AlwaysRefCounted for Task {      fn inc_ref(&self) {          // SAFETY: The existence of a shared reference means that the refcount is nonzero. -        unsafe { bindings::get_task_struct(self.0.get()) }; +        unsafe { bindings::get_task_struct(self.as_ptr()) };      }      unsafe fn dec_ref(obj: ptr::NonNull<Self>) { @@ -171,3 +334,43 @@ unsafe impl crate::types::AlwaysRefCounted for Task {          unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }      }  } + +impl Kuid { +    /// Get the current euid. +    #[inline] +    pub fn current_euid() -> Kuid { +        // SAFETY: Just an FFI call. +        Self::from_raw(unsafe { bindings::current_euid() }) +    } + +    /// Create a `Kuid` given the raw C type. +    #[inline] +    pub fn from_raw(kuid: bindings::kuid_t) -> Self { +        Self { kuid } +    } + +    /// Turn this kuid into the raw C type. +    #[inline] +    pub fn into_raw(self) -> bindings::kuid_t { +        self.kuid +    } + +    /// Converts this kernel UID into a userspace UID. +    /// +    /// Uses the namespace of the current task. +    #[inline] +    pub fn into_uid_in_current_ns(self) -> bindings::uid_t { +        // SAFETY: Just an FFI call. +        unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) } +    } +} + +impl PartialEq for Kuid { +    #[inline] +    fn eq(&self, other: &Kuid) -> bool { +        // SAFETY: Just an FFI call. +        unsafe { bindings::uid_eq(self.kuid, other.kuid) } +    } +} + +impl Eq for Kuid {} | 
