diff options
Diffstat (limited to 'lib/crypto/x86/sha512-ssse3-asm.S')
| -rw-r--r-- | lib/crypto/x86/sha512-ssse3-asm.S | 419 | 
1 files changed, 419 insertions, 0 deletions
| diff --git a/lib/crypto/x86/sha512-ssse3-asm.S b/lib/crypto/x86/sha512-ssse3-asm.S new file mode 100644 index 000000000000..4cae7445b2a8 --- /dev/null +++ b/lib/crypto/x86/sha512-ssse3-asm.S @@ -0,0 +1,419 @@ +######################################################################## +# Implement fast SHA-512 with SSSE3 instructions. (x86_64) +# +# Copyright (C) 2013 Intel Corporation. +# +# Authors: +#     James Guilford <james.guilford@intel.com> +#     Kirk Yap <kirk.s.yap@intel.com> +#     David Cote <david.m.cote@intel.com> +#     Tim Chen <tim.c.chen@linux.intel.com> +# +# This software is available to you under a choice of one of two +# licenses.  You may choose to be licensed under the terms of the GNU +# General Public License (GPL) Version 2, available from the file +# COPYING in the main directory of this source tree, or the +# OpenIB.org BSD license below: +# +#     Redistribution and use in source and binary forms, with or +#     without modification, are permitted provided that the following +#     conditions are met: +# +#      - Redistributions of source code must retain the above +#        copyright notice, this list of conditions and the following +#        disclaimer. +# +#      - Redistributions in binary form must reproduce the above +#        copyright notice, this list of conditions and the following +#        disclaimer in the documentation and/or other materials +#        provided with the distribution. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# +######################################################################## +# +# This code is described in an Intel White-Paper: +# "Fast SHA-512 Implementations on Intel Architecture Processors" +# +# To find it, surf to http://www.intel.com/p/en_US/embedded +# and search for that title. +# +######################################################################## + +#include <linux/linkage.h> + +.text + +# Virtual Registers +# ARG1 +digest =	%rdi +# ARG2 +msg =		%rsi +# ARG3 +msglen =	%rdx +T1 =		%rcx +T2 =		%r8 +a_64 =		%r9 +b_64 =		%r10 +c_64 =		%r11 +d_64 =		%r12 +e_64 =		%r13 +f_64 =		%r14 +g_64 =		%r15 +h_64 =		%rbx +tmp0 =		%rax + +# Local variables (stack frame) + +W_SIZE = 80*8 +WK_SIZE = 2*8 + +frame_W = 0 +frame_WK = frame_W + W_SIZE +frame_size = frame_WK + WK_SIZE + +# Useful QWORD "arrays" for simpler memory references +# MSG, DIGEST, K_t, W_t are arrays +# WK_2(t) points to 1 of 2 qwords at frame.WK depending on t being odd/even + +# Input message (arg1) +#define MSG(i)    8*i(msg) + +# Output Digest (arg2) +#define DIGEST(i) 8*i(digest) + +# SHA Constants (static mem) +#define K_t(i)    8*i+K512(%rip) + +# Message Schedule (stack frame) +#define W_t(i)    8*i+frame_W(%rsp) + +# W[t]+K[t] (stack frame) +#define WK_2(i)   8*((i%2))+frame_WK(%rsp) + +.macro RotateState +	# Rotate symbols a..h right +	TMP   = h_64 +	h_64  = g_64 +	g_64  = f_64 +	f_64  = e_64 +	e_64  = d_64 +	d_64  = c_64 +	c_64  = b_64 +	b_64  = a_64 +	a_64  = TMP +.endm + +.macro SHA512_Round rnd + +	# Compute Round %%t +	mov	f_64, T1          # T1 = f +	mov	e_64, tmp0        # tmp = e +	xor	g_64, T1          # T1 = f ^ g +	ror	$23, tmp0 # 41    # tmp = e ror 23 +	and	e_64, T1          # T1 = (f ^ g) & e +	xor	e_64, tmp0        # tmp = (e ror 23) ^ e +	xor	g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g) +	idx = \rnd +	add	WK_2(idx), T1     # W[t] + K[t] from message scheduler +	ror	$4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4 +	xor	e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e +	mov	a_64, T2          # T2 = a +	add	h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h +	ror	$14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e) +	add	tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e) +	mov	a_64, tmp0        # tmp = a +	xor	c_64, T2          # T2 = a ^ c +	and	c_64, tmp0        # tmp = a & c +	and	b_64, T2          # T2 = (a ^ c) & b +	xor	tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c) +	mov	a_64, tmp0        # tmp = a +	ror	$5, tmp0 # 39     # tmp = a ror 5 +	xor	a_64, tmp0        # tmp = (a ror 5) ^ a +	add	T1, d_64          # e(next_state) = d + T1 +	ror	$6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6 +	xor	a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a +	lea	(T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c) +	ror	$28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a) +	add	tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a) +	RotateState +.endm + +.macro SHA512_2Sched_2Round_sse rnd + +	# Compute rounds t-2 and t-1 +	# Compute message schedule QWORDS t and t+1 + +	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and +	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message +	# scheduler. +	#   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)]. +	# They are then added to their respective SHA512 constants at +	# [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)] +	#   For brievity, the comments following vectored instructions only refer to +	# the first of a pair of QWORDS. +	# Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]} +	#   The computation of the message schedule and the rounds are tightly +	# stitched to take advantage of instruction-level parallelism. +	# For clarity, integer instructions (for the rounds calculation) are indented +	# by one tab. Vectored instructions (for the message scheduler) are indented +	# by two tabs. + +	mov	f_64, T1 +	idx = \rnd -2 +	movdqa	W_t(idx), %xmm2		    # XMM2 = W[t-2] +	xor	g_64, T1 +	and	e_64, T1 +	movdqa	%xmm2, %xmm0	            # XMM0 = W[t-2] +	xor	g_64, T1 +	idx = \rnd +	add	WK_2(idx), T1 +	idx = \rnd - 15 +	movdqu	W_t(idx), %xmm5		    # XMM5 = W[t-15] +	mov	e_64, tmp0 +	ror	$23, tmp0 # 41 +	movdqa	%xmm5, %xmm3	            # XMM3 = W[t-15] +	xor	e_64, tmp0 +	ror	$4, tmp0 # 18 +	psrlq	$61-19, %xmm0		    # XMM0 = W[t-2] >> 42 +	xor	e_64, tmp0 +	ror	$14, tmp0 # 14 +	psrlq	$(8-7), %xmm3		    # XMM3 = W[t-15] >> 1 +	add	tmp0, T1 +	add	h_64, T1 +	pxor	%xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2] +	mov	a_64, T2 +	xor	c_64, T2 +	pxor	%xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15] +	and	b_64, T2 +	mov	a_64, tmp0 +	psrlq	$(19-6), %xmm0		    # XMM0 = ((W[t-2]>>42)^W[t-2])>>13 +	and	c_64, tmp0 +	xor	tmp0, T2 +	psrlq	$(7-1), %xmm3		    # XMM3 = ((W[t-15]>>1)^W[t-15])>>6 +	mov	a_64, tmp0 +	ror	$5, tmp0 # 39 +	pxor	%xmm2, %xmm0	            # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2] +	xor	a_64, tmp0 +	ror	$6, tmp0 # 34 +	pxor	%xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15] +	xor	a_64, tmp0 +	ror	$28, tmp0 # 28 +	psrlq	$6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6 +	add	tmp0, T2 +	add	T1, d_64 +	psrlq	$1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1 +	lea	(T1, T2), h_64 +	RotateState +	movdqa	%xmm2, %xmm1	            # XMM1 = W[t-2] +	mov	f_64, T1 +	xor	g_64, T1 +	movdqa	%xmm5, %xmm4		    # XMM4 = W[t-15] +	and	e_64, T1 +	xor	g_64, T1 +	psllq	$(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42 +	idx = \rnd + 1 +	add	WK_2(idx), T1 +	mov	e_64, tmp0 +	psllq	$(64-1)-(64-8), %xmm4	    # XMM4 = W[t-15] << 7 +	ror	$23, tmp0 # 41 +	xor	e_64, tmp0 +	pxor	%xmm2, %xmm1		    # XMM1 = (W[t-2] << 42)^W[t-2] +	ror	$4, tmp0 # 18 +	xor	e_64, tmp0 +	pxor	%xmm5, %xmm4		    # XMM4 = (W[t-15]<<7)^W[t-15] +	ror	$14, tmp0 # 14 +	add	tmp0, T1 +	psllq	$(64-61), %xmm1		    # XMM1 = ((W[t-2] << 42)^W[t-2])<<3 +	add	h_64, T1 +	mov	a_64, T2 +	psllq	$(64-8), %xmm4		    # XMM4 = ((W[t-15]<<7)^W[t-15])<<56 +	xor	c_64, T2 +	and	b_64, T2 +	pxor	%xmm1, %xmm0		    # XMM0 = s1(W[t-2]) +	mov	a_64, tmp0 +	and	c_64, tmp0 +	idx = \rnd - 7 +	movdqu	W_t(idx), %xmm1		    # XMM1 = W[t-7] +	xor	tmp0, T2 +	pxor	%xmm4, %xmm3                # XMM3 = s0(W[t-15]) +	mov	a_64, tmp0 +	paddq	%xmm3, %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15]) +	ror	$5, tmp0 # 39 +	idx =\rnd-16 +	paddq	W_t(idx), %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16] +	xor	a_64, tmp0 +	paddq	%xmm1, %xmm0	            # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16] +	ror	$6, tmp0 # 34 +	movdqa	%xmm0, W_t(\rnd)	    # Store scheduled qwords +	xor	a_64, tmp0 +	paddq	K_t(\rnd), %xmm0	    # Compute W[t]+K[t] +	ror	$28, tmp0 # 28 +	idx = \rnd +	movdqa	%xmm0, WK_2(idx)	    # Store W[t]+K[t] for next rounds +	add	tmp0, T2 +	add	T1, d_64 +	lea	(T1, T2), h_64 +	RotateState +.endm + +######################################################################## +# void sha512_transform_ssse3(struct sha512_block_state *state, +#			      const u8 *data, size_t nblocks); +# Purpose: Updates the SHA512 digest stored at "state" with the message +# stored in "data". +# The size of the message pointed to by "data" must be an integer multiple +# of SHA512 message blocks. +# "nblocks" is the message length in SHA512 blocks.  Must be >= 1. +######################################################################## +SYM_FUNC_START(sha512_transform_ssse3) + +	# Save GPRs +	push	%rbx +	push	%r12 +	push	%r13 +	push	%r14 +	push	%r15 + +	# Allocate Stack Space +	push	%rbp +	mov	%rsp, %rbp +	sub	$frame_size, %rsp +	and	$~(0x20 - 1), %rsp + +.Lupdateblock: + +# Load state variables +	mov	DIGEST(0), a_64 +	mov	DIGEST(1), b_64 +	mov	DIGEST(2), c_64 +	mov	DIGEST(3), d_64 +	mov	DIGEST(4), e_64 +	mov	DIGEST(5), f_64 +	mov	DIGEST(6), g_64 +	mov	DIGEST(7), h_64 + +	t = 0 +	.rept 80/2 + 1 +	# (80 rounds) / (2 rounds/iteration) + (1 iteration) +	# +1 iteration because the scheduler leads hashing by 1 iteration +		.if t < 2 +			# BSWAP 2 QWORDS +			movdqa	XMM_QWORD_BSWAP(%rip), %xmm1 +			movdqu	MSG(t), %xmm0 +			pshufb	%xmm1, %xmm0	# BSWAP +			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair +			paddq	K_t(t), %xmm0	# Compute W[t]+K[t] +			movdqa	%xmm0, WK_2(t)	# Store into WK for rounds +		.elseif t < 16 +			# BSWAP 2 QWORDS# Compute 2 Rounds +			movdqu	MSG(t), %xmm0 +			pshufb	%xmm1, %xmm0	# BSWAP +			SHA512_Round t-2	# Round t-2 +			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair +			paddq	K_t(t), %xmm0	# Compute W[t]+K[t] +			SHA512_Round t-1	# Round t-1 +			movdqa	%xmm0, WK_2(t)	# Store W[t]+K[t] into WK +		.elseif t < 79 +			# Schedule 2 QWORDS# Compute 2 Rounds +			SHA512_2Sched_2Round_sse t +		.else +			# Compute 2 Rounds +			SHA512_Round t-2 +			SHA512_Round t-1 +		.endif +		t = t+2 +	.endr + +	# Update digest +	add	a_64, DIGEST(0) +	add	b_64, DIGEST(1) +	add	c_64, DIGEST(2) +	add	d_64, DIGEST(3) +	add	e_64, DIGEST(4) +	add	f_64, DIGEST(5) +	add	g_64, DIGEST(6) +	add	h_64, DIGEST(7) + +	# Advance to next message block +	add	$16*8, msg +	dec	msglen +	jnz	.Lupdateblock + +	# Restore Stack Pointer +	mov	%rbp, %rsp +	pop	%rbp + +	# Restore GPRs +	pop	%r15 +	pop	%r14 +	pop	%r13 +	pop	%r12 +	pop	%rbx + +	RET +SYM_FUNC_END(sha512_transform_ssse3) + +######################################################################## +### Binary Data + +.section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16 +.align 16 +# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. +XMM_QWORD_BSWAP: +	.octa 0x08090a0b0c0d0e0f0001020304050607 + +# Mergeable 640-byte rodata section. This allows linker to merge the table +# with other, exactly the same 640-byte fragment of another rodata section +# (if such section exists). +.section	.rodata.cst640.K512, "aM", @progbits, 640 +.align 64 +# K[t] used in SHA512 hashing +K512: +	.quad 0x428a2f98d728ae22,0x7137449123ef65cd +	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc +	.quad 0x3956c25bf348b538,0x59f111f1b605d019 +	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 +	.quad 0xd807aa98a3030242,0x12835b0145706fbe +	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 +	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 +	.quad 0x9bdc06a725c71235,0xc19bf174cf692694 +	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 +	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 +	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 +	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 +	.quad 0x983e5152ee66dfab,0xa831c66d2db43210 +	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 +	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 +	.quad 0x06ca6351e003826f,0x142929670a0e6e70 +	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 +	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df +	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8 +	.quad 0x81c2c92e47edaee6,0x92722c851482353b +	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 +	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30 +	.quad 0xd192e819d6ef5218,0xd69906245565a910 +	.quad 0xf40e35855771202a,0x106aa07032bbd1b8 +	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 +	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 +	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb +	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 +	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60 +	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec +	.quad 0x90befffa23631e28,0xa4506cebde82bde9 +	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b +	.quad 0xca273eceea26619c,0xd186b8c721c0c207 +	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 +	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 +	.quad 0x113f9804bef90dae,0x1b710b35131c471b +	.quad 0x28db77f523047d84,0x32caab7b40c72493 +	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c +	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a +	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 | 
