diff options
Diffstat (limited to 'lib/crc/s390/crc32be-vx.c')
| -rw-r--r-- | lib/crc/s390/crc32be-vx.c | 174 | 
1 files changed, 174 insertions, 0 deletions
| diff --git a/lib/crc/s390/crc32be-vx.c b/lib/crc/s390/crc32be-vx.c new file mode 100644 index 000000000000..fed7c9c70d05 --- /dev/null +++ b/lib/crc/s390/crc32be-vx.c @@ -0,0 +1,174 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Hardware-accelerated CRC-32 variants for Linux on z Systems + * + * Use the z/Architecture Vector Extension Facility to accelerate the + * computing of CRC-32 checksums. + * + * This CRC-32 implementation algorithm processes the most-significant + * bit first (BE). + * + * Copyright IBM Corp. 2015 + * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> + */ + +#include <linux/types.h> +#include <asm/fpu.h> +#include "crc32-vx.h" + +/* Vector register range containing CRC-32 constants */ +#define CONST_R1R2		9 +#define CONST_R3R4		10 +#define CONST_R5		11 +#define CONST_R6		12 +#define CONST_RU_POLY		13 +#define CONST_CRC_POLY		14 + +/* + * The CRC-32 constant block contains reduction constants to fold and + * process particular chunks of the input data stream in parallel. + * + * For the CRC-32 variants, the constants are precomputed according to + * these definitions: + * + *	R1 = x4*128+64 mod P(x) + *	R2 = x4*128    mod P(x) + *	R3 = x128+64   mod P(x) + *	R4 = x128      mod P(x) + *	R5 = x96       mod P(x) + *	R6 = x64       mod P(x) + * + *	Barret reduction constant, u, is defined as floor(x**64 / P(x)). + * + *	where P(x) is the polynomial in the normal domain and the P'(x) is the + *	polynomial in the reversed (bitreflected) domain. + * + * Note that the constant definitions below are extended in order to compute + * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction. + * The rightmost doubleword can be 0 to prevent contribution to the result or + * can be multiplied by 1 to perform an XOR without the need for a separate + * VECTOR EXCLUSIVE OR instruction. + * + * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: + * + *	P(x)  = 0x04C11DB7 + *	P'(x) = 0xEDB88320 + */ + +static unsigned long constants_CRC_32_BE[] = { +	0x08833794c, 0x0e6228b11,	/* R1, R2 */ +	0x0c5b9cd4c, 0x0e8a45605,	/* R3, R4 */ +	0x0f200aa66, 1UL << 32,		/* R5, x32 */ +	0x0490d678d, 1,			/* R6, 1 */ +	0x104d101df, 0,			/* u */ +	0x104C11DB7, 0,			/* P(x) */ +}; + +/** + * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers + * @crc: Initial CRC value, typically ~0. + * @buf: Input buffer pointer, performance might be improved if the + *	  buffer is on a doubleword boundary. + * @size: Size of the buffer, must be 64 bytes or greater. + * + * Register usage: + *	V0:	Initial CRC value and intermediate constants and results. + *	V1..V4:	Data for CRC computation. + *	V5..V8:	Next data chunks that are fetched from the input buffer. + *	V9..V14: CRC-32 constants. + */ +u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size) +{ +	/* Load CRC-32 constants */ +	fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE); +	fpu_vzero(0); + +	/* Load the initial CRC value into the leftmost word of V0. */ +	fpu_vlvgf(0, crc, 0); + +	/* Load a 64-byte data chunk and XOR with CRC */ +	fpu_vlm(1, 4, buf); +	fpu_vx(1, 0, 1); +	buf += 64; +	size -= 64; + +	while (size >= 64) { +		/* Load the next 64-byte data chunk into V5 to V8 */ +		fpu_vlm(5, 8, buf); + +		/* +		 * Perform a GF(2) multiplication of the doublewords in V1 with +		 * the reduction constants in V0.  The intermediate result is +		 * then folded (accumulated) with the next data chunk in V5 and +		 * stored in V1.  Repeat this step for the register contents +		 * in V2, V3, and V4 respectively. +		 */ +		fpu_vgfmag(1, CONST_R1R2, 1, 5); +		fpu_vgfmag(2, CONST_R1R2, 2, 6); +		fpu_vgfmag(3, CONST_R1R2, 3, 7); +		fpu_vgfmag(4, CONST_R1R2, 4, 8); +		buf += 64; +		size -= 64; +	} + +	/* Fold V1 to V4 into a single 128-bit value in V1 */ +	fpu_vgfmag(1, CONST_R3R4, 1, 2); +	fpu_vgfmag(1, CONST_R3R4, 1, 3); +	fpu_vgfmag(1, CONST_R3R4, 1, 4); + +	while (size >= 16) { +		fpu_vl(2, buf); +		fpu_vgfmag(1, CONST_R3R4, 1, 2); +		buf += 16; +		size -= 16; +	} + +	/* +	 * The R5 constant is used to fold a 128-bit value into an 96-bit value +	 * that is XORed with the next 96-bit input data chunk.  To use a single +	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to +	 * form an intermediate 96-bit value (with appended zeros) which is then +	 * XORed with the intermediate reduction result. +	 */ +	fpu_vgfmg(1, CONST_R5, 1); + +	/* +	 * Further reduce the remaining 96-bit value to a 64-bit value using a +	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The +	 * intermediate result is then XORed with the product of the leftmost +	 * doubleword with R6.	The result is a 64-bit value and is subject to +	 * the Barret reduction. +	 */ +	fpu_vgfmg(1, CONST_R6, 1); + +	/* +	 * The input values to the Barret reduction are the degree-63 polynomial +	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction +	 * constant u.	The Barret reduction result is the CRC value of R(x) mod +	 * P(x). +	 * +	 * The Barret reduction algorithm is defined as: +	 * +	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u +	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) +	 *    3. C(x)  = R(x) XOR T2(x) mod x^32 +	 * +	 * Note: To compensate the division by x^32, use the vector unpack +	 * instruction to move the leftmost word into the leftmost doubleword +	 * of the vector register.  The rightmost doubleword is multiplied +	 * with zero to not contribute to the intermediate results. +	 */ + +	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ +	fpu_vupllf(2, 1); +	fpu_vgfmg(2, CONST_RU_POLY, 2); + +	/* +	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in +	 * V2 and XOR the intermediate result, T2(x),  with the value in V1. +	 * The final result is in the rightmost word of V2. +	 */ +	fpu_vupllf(2, 2); +	fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); +	return fpu_vlgvf(2, 3); +} | 
