diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/sched/core.c | 275 | ||||
| -rw-r--r-- | kernel/sched/idle_task.c | 1 | ||||
| -rw-r--r-- | kernel/sched/sched.h | 2 | ||||
| -rw-r--r-- | kernel/time/tick-sched.c | 2 | 
4 files changed, 205 insertions, 75 deletions
| diff --git a/kernel/sched/core.c b/kernel/sched/core.c index d5594a4268d4..bb840405335d 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2161,11 +2161,73 @@ unsigned long this_cpu_load(void)  } +/* + * Global load-average calculations + * + * We take a distributed and async approach to calculating the global load-avg + * in order to minimize overhead. + * + * The global load average is an exponentially decaying average of nr_running + + * nr_uninterruptible. + * + * Once every LOAD_FREQ: + * + *   nr_active = 0; + *   for_each_possible_cpu(cpu) + *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; + * + *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) + * + * Due to a number of reasons the above turns in the mess below: + * + *  - for_each_possible_cpu() is prohibitively expensive on machines with + *    serious number of cpus, therefore we need to take a distributed approach + *    to calculating nr_active. + * + *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 + *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } + * + *    So assuming nr_active := 0 when we start out -- true per definition, we + *    can simply take per-cpu deltas and fold those into a global accumulate + *    to obtain the same result. See calc_load_fold_active(). + * + *    Furthermore, in order to avoid synchronizing all per-cpu delta folding + *    across the machine, we assume 10 ticks is sufficient time for every + *    cpu to have completed this task. + * + *    This places an upper-bound on the IRQ-off latency of the machine. Then + *    again, being late doesn't loose the delta, just wrecks the sample. + * + *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because + *    this would add another cross-cpu cacheline miss and atomic operation + *    to the wakeup path. Instead we increment on whatever cpu the task ran + *    when it went into uninterruptible state and decrement on whatever cpu + *    did the wakeup. This means that only the sum of nr_uninterruptible over + *    all cpus yields the correct result. + * + *  This covers the NO_HZ=n code, for extra head-aches, see the comment below. + */ +  /* Variables and functions for calc_load */  static atomic_long_t calc_load_tasks;  static unsigned long calc_load_update;  unsigned long avenrun[3]; -EXPORT_SYMBOL(avenrun); +EXPORT_SYMBOL(avenrun); /* should be removed */ + +/** + * get_avenrun - get the load average array + * @loads:	pointer to dest load array + * @offset:	offset to add + * @shift:	shift count to shift the result left + * + * These values are estimates at best, so no need for locking. + */ +void get_avenrun(unsigned long *loads, unsigned long offset, int shift) +{ +	loads[0] = (avenrun[0] + offset) << shift; +	loads[1] = (avenrun[1] + offset) << shift; +	loads[2] = (avenrun[2] + offset) << shift; +}  static long calc_load_fold_active(struct rq *this_rq)  { @@ -2182,6 +2244,9 @@ static long calc_load_fold_active(struct rq *this_rq)  	return delta;  } +/* + * a1 = a0 * e + a * (1 - e) + */  static unsigned long  calc_load(unsigned long load, unsigned long exp, unsigned long active)  { @@ -2193,30 +2258,118 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)  #ifdef CONFIG_NO_HZ  /* - * For NO_HZ we delay the active fold to the next LOAD_FREQ update. + * Handle NO_HZ for the global load-average. + * + * Since the above described distributed algorithm to compute the global + * load-average relies on per-cpu sampling from the tick, it is affected by + * NO_HZ. + * + * The basic idea is to fold the nr_active delta into a global idle-delta upon + * entering NO_HZ state such that we can include this as an 'extra' cpu delta + * when we read the global state. + * + * Obviously reality has to ruin such a delightfully simple scheme: + * + *  - When we go NO_HZ idle during the window, we can negate our sample + *    contribution, causing under-accounting. + * + *    We avoid this by keeping two idle-delta counters and flipping them + *    when the window starts, thus separating old and new NO_HZ load. + * + *    The only trick is the slight shift in index flip for read vs write. + * + *        0s            5s            10s           15s + *          +10           +10           +10           +10 + *        |-|-----------|-|-----------|-|-----------|-| + *    r:0 0 1           1 0           0 1           1 0 + *    w:0 1 1           0 0           1 1           0 0 + * + *    This ensures we'll fold the old idle contribution in this window while + *    accumlating the new one. + * + *  - When we wake up from NO_HZ idle during the window, we push up our + *    contribution, since we effectively move our sample point to a known + *    busy state. + * + *    This is solved by pushing the window forward, and thus skipping the + *    sample, for this cpu (effectively using the idle-delta for this cpu which + *    was in effect at the time the window opened). This also solves the issue + *    of having to deal with a cpu having been in NOHZ idle for multiple + *    LOAD_FREQ intervals.   *   * When making the ILB scale, we should try to pull this in as well.   */ -static atomic_long_t calc_load_tasks_idle; +static atomic_long_t calc_load_idle[2]; +static int calc_load_idx; -void calc_load_account_idle(struct rq *this_rq) +static inline int calc_load_write_idx(void)  { +	int idx = calc_load_idx; + +	/* +	 * See calc_global_nohz(), if we observe the new index, we also +	 * need to observe the new update time. +	 */ +	smp_rmb(); + +	/* +	 * If the folding window started, make sure we start writing in the +	 * next idle-delta. +	 */ +	if (!time_before(jiffies, calc_load_update)) +		idx++; + +	return idx & 1; +} + +static inline int calc_load_read_idx(void) +{ +	return calc_load_idx & 1; +} + +void calc_load_enter_idle(void) +{ +	struct rq *this_rq = this_rq();  	long delta; +	/* +	 * We're going into NOHZ mode, if there's any pending delta, fold it +	 * into the pending idle delta. +	 */  	delta = calc_load_fold_active(this_rq); -	if (delta) -		atomic_long_add(delta, &calc_load_tasks_idle); +	if (delta) { +		int idx = calc_load_write_idx(); +		atomic_long_add(delta, &calc_load_idle[idx]); +	}  } -static long calc_load_fold_idle(void) +void calc_load_exit_idle(void)  { -	long delta = 0; +	struct rq *this_rq = this_rq(); + +	/* +	 * If we're still before the sample window, we're done. +	 */ +	if (time_before(jiffies, this_rq->calc_load_update)) +		return;  	/* -	 * Its got a race, we don't care... +	 * We woke inside or after the sample window, this means we're already +	 * accounted through the nohz accounting, so skip the entire deal and +	 * sync up for the next window.  	 */ -	if (atomic_long_read(&calc_load_tasks_idle)) -		delta = atomic_long_xchg(&calc_load_tasks_idle, 0); +	this_rq->calc_load_update = calc_load_update; +	if (time_before(jiffies, this_rq->calc_load_update + 10)) +		this_rq->calc_load_update += LOAD_FREQ; +} + +static long calc_load_fold_idle(void) +{ +	int idx = calc_load_read_idx(); +	long delta = 0; + +	if (atomic_long_read(&calc_load_idle[idx])) +		delta = atomic_long_xchg(&calc_load_idle[idx], 0);  	return delta;  } @@ -2302,66 +2455,39 @@ static void calc_global_nohz(void)  {  	long delta, active, n; -	/* -	 * If we crossed a calc_load_update boundary, make sure to fold -	 * any pending idle changes, the respective CPUs might have -	 * missed the tick driven calc_load_account_active() update -	 * due to NO_HZ. -	 */ -	delta = calc_load_fold_idle(); -	if (delta) -		atomic_long_add(delta, &calc_load_tasks); - -	/* -	 * It could be the one fold was all it took, we done! -	 */ -	if (time_before(jiffies, calc_load_update + 10)) -		return; - -	/* -	 * Catch-up, fold however many we are behind still -	 */ -	delta = jiffies - calc_load_update - 10; -	n = 1 + (delta / LOAD_FREQ); +	if (!time_before(jiffies, calc_load_update + 10)) { +		/* +		 * Catch-up, fold however many we are behind still +		 */ +		delta = jiffies - calc_load_update - 10; +		n = 1 + (delta / LOAD_FREQ); -	active = atomic_long_read(&calc_load_tasks); -	active = active > 0 ? active * FIXED_1 : 0; +		active = atomic_long_read(&calc_load_tasks); +		active = active > 0 ? active * FIXED_1 : 0; -	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); -	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); -	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); +		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); +		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); +		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); -	calc_load_update += n * LOAD_FREQ; -} -#else -void calc_load_account_idle(struct rq *this_rq) -{ -} +		calc_load_update += n * LOAD_FREQ; +	} -static inline long calc_load_fold_idle(void) -{ -	return 0; +	/* +	 * Flip the idle index... +	 * +	 * Make sure we first write the new time then flip the index, so that +	 * calc_load_write_idx() will see the new time when it reads the new +	 * index, this avoids a double flip messing things up. +	 */ +	smp_wmb(); +	calc_load_idx++;  } +#else /* !CONFIG_NO_HZ */ -static void calc_global_nohz(void) -{ -} -#endif +static inline long calc_load_fold_idle(void) { return 0; } +static inline void calc_global_nohz(void) { } -/** - * get_avenrun - get the load average array - * @loads:	pointer to dest load array - * @offset:	offset to add - * @shift:	shift count to shift the result left - * - * These values are estimates at best, so no need for locking. - */ -void get_avenrun(unsigned long *loads, unsigned long offset, int shift) -{ -	loads[0] = (avenrun[0] + offset) << shift; -	loads[1] = (avenrun[1] + offset) << shift; -	loads[2] = (avenrun[2] + offset) << shift; -} +#endif /* CONFIG_NO_HZ */  /*   * calc_load - update the avenrun load estimates 10 ticks after the @@ -2369,11 +2495,18 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift)   */  void calc_global_load(unsigned long ticks)  { -	long active; +	long active, delta;  	if (time_before(jiffies, calc_load_update + 10))  		return; +	/* +	 * Fold the 'old' idle-delta to include all NO_HZ cpus. +	 */ +	delta = calc_load_fold_idle(); +	if (delta) +		atomic_long_add(delta, &calc_load_tasks); +  	active = atomic_long_read(&calc_load_tasks);  	active = active > 0 ? active * FIXED_1 : 0; @@ -2384,12 +2517,7 @@ void calc_global_load(unsigned long ticks)  	calc_load_update += LOAD_FREQ;  	/* -	 * Account one period with whatever state we found before -	 * folding in the nohz state and ageing the entire idle period. -	 * -	 * This avoids loosing a sample when we go idle between  -	 * calc_load_account_active() (10 ticks ago) and now and thus -	 * under-accounting. +	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.  	 */  	calc_global_nohz();  } @@ -2406,7 +2534,6 @@ static void calc_load_account_active(struct rq *this_rq)  		return;  	delta  = calc_load_fold_active(this_rq); -	delta += calc_load_fold_idle();  	if (delta)  		atomic_long_add(delta, &calc_load_tasks); @@ -2414,6 +2541,10 @@ static void calc_load_account_active(struct rq *this_rq)  }  /* + * End of global load-average stuff + */ + +/*   * The exact cpuload at various idx values, calculated at every tick would be   * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load   * diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c index b44d604b35d1..b6baf370cae9 100644 --- a/kernel/sched/idle_task.c +++ b/kernel/sched/idle_task.c @@ -25,7 +25,6 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl  static struct task_struct *pick_next_task_idle(struct rq *rq)  {  	schedstat_inc(rq, sched_goidle); -	calc_load_account_idle(rq);  	return rq->idle;  } diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 6d52cea7f33d..55844f24435a 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -942,8 +942,6 @@ static inline u64 sched_avg_period(void)  	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;  } -void calc_load_account_idle(struct rq *this_rq); -  #ifdef CONFIG_SCHED_HRTICK  /* diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index 869997833928..4a08472c3ca7 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c @@ -406,6 +406,7 @@ static void tick_nohz_stop_sched_tick(struct tick_sched *ts)  		 */  		if (!ts->tick_stopped) {  			select_nohz_load_balancer(1); +			calc_load_enter_idle();  			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);  			ts->tick_stopped = 1; @@ -597,6 +598,7 @@ void tick_nohz_idle_exit(void)  		account_idle_ticks(ticks);  #endif +	calc_load_exit_idle();  	touch_softlockup_watchdog();  	/*  	 * Cancel the scheduled timer and restore the tick | 
