summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--kernel/bpf/verifier.c744
-rw-r--r--tools/testing/selftests/bpf/prog_tests/btf.c1
-rw-r--r--tools/testing/selftests/bpf/prog_tests/tc_opts.c6
3 files changed, 401 insertions, 350 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index bd1c42eb540f..e801c50d3857 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -2324,6 +2324,81 @@ static void __update_reg_bounds(struct bpf_reg_state *reg)
/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
{
+ /* If upper 32 bits of u64/s64 range don't change, we can use lower 32
+ * bits to improve our u32/s32 boundaries.
+ *
+ * E.g., the case where we have upper 32 bits as zero ([10, 20] in
+ * u64) is pretty trivial, it's obvious that in u32 we'll also have
+ * [10, 20] range. But this property holds for any 64-bit range as
+ * long as upper 32 bits in that entire range of values stay the same.
+ *
+ * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
+ * in decimal) has the same upper 32 bits throughout all the values in
+ * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
+ * range.
+ *
+ * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
+ * following the rules outlined below about u64/s64 correspondence
+ * (which equally applies to u32 vs s32 correspondence). In general it
+ * depends on actual hexadecimal values of 32-bit range. They can form
+ * only valid u32, or only valid s32 ranges in some cases.
+ *
+ * So we use all these insights to derive bounds for subregisters here.
+ */
+ if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
+ /* u64 to u32 casting preserves validity of low 32 bits as
+ * a range, if upper 32 bits are the same
+ */
+ reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
+ reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
+
+ if ((s32)reg->umin_value <= (s32)reg->umax_value) {
+ reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
+ reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
+ }
+ }
+ if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
+ /* low 32 bits should form a proper u32 range */
+ if ((u32)reg->smin_value <= (u32)reg->smax_value) {
+ reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
+ reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
+ }
+ /* low 32 bits should form a proper s32 range */
+ if ((s32)reg->smin_value <= (s32)reg->smax_value) {
+ reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
+ reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
+ }
+ }
+ /* Special case where upper bits form a small sequence of two
+ * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
+ * 0x00000000 is also valid), while lower bits form a proper s32 range
+ * going from negative numbers to positive numbers. E.g., let's say we
+ * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
+ * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
+ * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
+ * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
+ * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
+ * upper 32 bits. As a random example, s64 range
+ * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
+ * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
+ */
+ if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
+ (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
+ reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
+ reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
+ }
+ if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
+ (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
+ reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
+ reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
+ }
+ /* if u32 range forms a valid s32 range (due to matching sign bit),
+ * try to learn from that
+ */
+ if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
+ reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
+ reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
+ }
/* Learn sign from signed bounds.
* If we cannot cross the sign boundary, then signed and unsigned bounds
* are the same, so combine. This works even in the negative case, e.g.
@@ -2358,6 +2433,77 @@ static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
{
+ /* If u64 range forms a valid s64 range (due to matching sign bit),
+ * try to learn from that. Let's do a bit of ASCII art to see when
+ * this is happening. Let's take u64 range first:
+ *
+ * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
+ * |-------------------------------|--------------------------------|
+ *
+ * Valid u64 range is formed when umin and umax are anywhere in the
+ * range [0, U64_MAX], and umin <= umax. u64 case is simple and
+ * straightforward. Let's see how s64 range maps onto the same range
+ * of values, annotated below the line for comparison:
+ *
+ * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
+ * |-------------------------------|--------------------------------|
+ * 0 S64_MAX S64_MIN -1
+ *
+ * So s64 values basically start in the middle and they are logically
+ * contiguous to the right of it, wrapping around from -1 to 0, and
+ * then finishing as S64_MAX (0x7fffffffffffffff) right before
+ * S64_MIN. We can try drawing the continuity of u64 vs s64 values
+ * more visually as mapped to sign-agnostic range of hex values.
+ *
+ * u64 start u64 end
+ * _______________________________________________________________
+ * / \
+ * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
+ * |-------------------------------|--------------------------------|
+ * 0 S64_MAX S64_MIN -1
+ * / \
+ * >------------------------------ ------------------------------->
+ * s64 continues... s64 end s64 start s64 "midpoint"
+ *
+ * What this means is that, in general, we can't always derive
+ * something new about u64 from any random s64 range, and vice versa.
+ *
+ * But we can do that in two particular cases. One is when entire
+ * u64/s64 range is *entirely* contained within left half of the above
+ * diagram or when it is *entirely* contained in the right half. I.e.:
+ *
+ * |-------------------------------|--------------------------------|
+ * ^ ^ ^ ^
+ * A B C D
+ *
+ * [A, B] and [C, D] are contained entirely in their respective halves
+ * and form valid contiguous ranges as both u64 and s64 values. [A, B]
+ * will be non-negative both as u64 and s64 (and in fact it will be
+ * identical ranges no matter the signedness). [C, D] treated as s64
+ * will be a range of negative values, while in u64 it will be
+ * non-negative range of values larger than 0x8000000000000000.
+ *
+ * Now, any other range here can't be represented in both u64 and s64
+ * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
+ * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
+ * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
+ * for example. Similarly, valid s64 range [D, A] (going from negative
+ * to positive values), would be two separate [D, U64_MAX] and [0, A]
+ * ranges as u64. Currently reg_state can't represent two segments per
+ * numeric domain, so in such situations we can only derive maximal
+ * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
+ *
+ * So we use these facts to derive umin/umax from smin/smax and vice
+ * versa only if they stay within the same "half". This is equivalent
+ * to checking sign bit: lower half will have sign bit as zero, upper
+ * half have sign bit 1. Below in code we simplify this by just
+ * casting umin/umax as smin/smax and checking if they form valid
+ * range, and vice versa. Those are equivalent checks.
+ */
+ if ((s64)reg->umin_value <= (s64)reg->umax_value) {
+ reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
+ reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
+ }
/* Learn sign from signed bounds.
* If we cannot cross the sign boundary, then signed and unsigned bounds
* are the same, so combine. This works even in the negative case, e.g.
@@ -2390,10 +2536,54 @@ static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
}
}
+static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
+{
+ /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
+ * values on both sides of 64-bit range in hope to have tigher range.
+ * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
+ * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
+ * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
+ * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
+ * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
+ * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
+ * We just need to make sure that derived bounds we are intersecting
+ * with are well-formed ranges in respecitve s64 or u64 domain, just
+ * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
+ */
+ __u64 new_umin, new_umax;
+ __s64 new_smin, new_smax;
+
+ /* u32 -> u64 tightening, it's always well-formed */
+ new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
+ new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
+ reg->umin_value = max_t(u64, reg->umin_value, new_umin);
+ reg->umax_value = min_t(u64, reg->umax_value, new_umax);
+ /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
+ new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
+ new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
+ reg->smin_value = max_t(s64, reg->smin_value, new_smin);
+ reg->smax_value = min_t(s64, reg->smax_value, new_smax);
+
+ /* if s32 can be treated as valid u32 range, we can use it as well */
+ if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
+ /* s32 -> u64 tightening */
+ new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
+ new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
+ reg->umin_value = max_t(u64, reg->umin_value, new_umin);
+ reg->umax_value = min_t(u64, reg->umax_value, new_umax);
+ /* s32 -> s64 tightening */
+ new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
+ new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
+ reg->smin_value = max_t(s64, reg->smin_value, new_smin);
+ reg->smax_value = min_t(s64, reg->smax_value, new_smax);
+ }
+}
+
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
__reg32_deduce_bounds(reg);
__reg64_deduce_bounds(reg);
+ __reg_deduce_mixed_bounds(reg);
}
/* Attempts to improve var_off based on unsigned min/max information */
@@ -2415,6 +2605,7 @@ static void reg_bounds_sync(struct bpf_reg_state *reg)
__update_reg_bounds(reg);
/* We might have learned something about the sign bit. */
__reg_deduce_bounds(reg);
+ __reg_deduce_bounds(reg);
/* We might have learned some bits from the bounds. */
__reg_bound_offset(reg);
/* Intersecting with the old var_off might have improved our bounds
@@ -2448,51 +2639,6 @@ static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
}
}
-static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
-{
- /* special case when 64-bit register has upper 32-bit register
- * zeroed. Typically happens after zext or <<32, >>32 sequence
- * allowing us to use 32-bit bounds directly,
- */
- if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
- __reg_assign_32_into_64(reg);
- } else {
- /* Otherwise the best we can do is push lower 32bit known and
- * unknown bits into register (var_off set from jmp logic)
- * then learn as much as possible from the 64-bit tnum
- * known and unknown bits. The previous smin/smax bounds are
- * invalid here because of jmp32 compare so mark them unknown
- * so they do not impact tnum bounds calculation.
- */
- __mark_reg64_unbounded(reg);
- }
- reg_bounds_sync(reg);
-}
-
-static bool __reg64_bound_s32(s64 a)
-{
- return a >= S32_MIN && a <= S32_MAX;
-}
-
-static bool __reg64_bound_u32(u64 a)
-{
- return a >= U32_MIN && a <= U32_MAX;
-}
-
-static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
-{
- __mark_reg32_unbounded(reg);
- if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
- reg->s32_min_value = (s32)reg->smin_value;
- reg->s32_max_value = (s32)reg->smax_value;
- }
- if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
- reg->u32_min_value = (u32)reg->umin_value;
- reg->u32_max_value = (u32)reg->umax_value;
- }
- reg_bounds_sync(reg);
-}
-
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(const struct bpf_verifier_env *env,
struct bpf_reg_state *reg)
@@ -6196,9 +6342,10 @@ static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
* values are also truncated so we push 64-bit bounds into
* 32-bit bounds. Above were truncated < 32-bits already.
*/
- if (size >= 4)
- return;
- __reg_combine_64_into_32(reg);
+ if (size < 4) {
+ __mark_reg32_unbounded(reg);
+ reg_bounds_sync(reg);
+ }
}
static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
@@ -14041,161 +14188,102 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
}));
}
-static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
+/* check if register is a constant scalar value */
+static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
{
- struct tnum subreg = tnum_subreg(reg->var_off);
- s32 sval = (s32)val;
-
- switch (opcode) {
- case BPF_JEQ:
- if (tnum_is_const(subreg))
- return !!tnum_equals_const(subreg, val);
- else if (val < reg->u32_min_value || val > reg->u32_max_value)
- return 0;
- else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
- return 0;
- break;
- case BPF_JNE:
- if (tnum_is_const(subreg))
- return !tnum_equals_const(subreg, val);
- else if (val < reg->u32_min_value || val > reg->u32_max_value)
- return 1;
- else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
- return 1;
- break;
- case BPF_JSET:
- if ((~subreg.mask & subreg.value) & val)
- return 1;
- if (!((subreg.mask | subreg.value) & val))
- return 0;
- break;
- case BPF_JGT:
- if (reg->u32_min_value > val)
- return 1;
- else if (reg->u32_max_value <= val)
- return 0;
- break;
- case BPF_JSGT:
- if (reg->s32_min_value > sval)
- return 1;
- else if (reg->s32_max_value <= sval)
- return 0;
- break;
- case BPF_JLT:
- if (reg->u32_max_value < val)
- return 1;
- else if (reg->u32_min_value >= val)
- return 0;
- break;
- case BPF_JSLT:
- if (reg->s32_max_value < sval)
- return 1;
- else if (reg->s32_min_value >= sval)
- return 0;
- break;
- case BPF_JGE:
- if (reg->u32_min_value >= val)
- return 1;
- else if (reg->u32_max_value < val)
- return 0;
- break;
- case BPF_JSGE:
- if (reg->s32_min_value >= sval)
- return 1;
- else if (reg->s32_max_value < sval)
- return 0;
- break;
- case BPF_JLE:
- if (reg->u32_max_value <= val)
- return 1;
- else if (reg->u32_min_value > val)
- return 0;
- break;
- case BPF_JSLE:
- if (reg->s32_max_value <= sval)
- return 1;
- else if (reg->s32_min_value > sval)
- return 0;
- break;
- }
-
- return -1;
+ return reg->type == SCALAR_VALUE &&
+ tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
}
+/* assuming is_reg_const() is true, return constant value of a register */
+static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
+{
+ return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
+}
-static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
+/*
+ * <reg1> <op> <reg2>, currently assuming reg2 is a constant
+ */
+static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
+ u8 opcode, bool is_jmp32)
{
- s64 sval = (s64)val;
+ struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
+ u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
+ u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
+ s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
+ s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
+ u64 uval = is_jmp32 ? (u32)tnum_subreg(reg2->var_off).value : reg2->var_off.value;
+ s64 sval = is_jmp32 ? (s32)uval : (s64)uval;
switch (opcode) {
case BPF_JEQ:
- if (tnum_is_const(reg->var_off))
- return !!tnum_equals_const(reg->var_off, val);
- else if (val < reg->umin_value || val > reg->umax_value)
+ if (tnum_is_const(t1))
+ return !!tnum_equals_const(t1, uval);
+ else if (uval < umin1 || uval > umax1)
return 0;
- else if (sval < reg->smin_value || sval > reg->smax_value)
+ else if (sval < smin1 || sval > smax1)
return 0;
break;
case BPF_JNE:
- if (tnum_is_const(reg->var_off))
- return !tnum_equals_const(reg->var_off, val);
- else if (val < reg->umin_value || val > reg->umax_value)
+ if (tnum_is_const(t1))
+ return !tnum_equals_const(t1, uval);
+ else if (uval < umin1 || uval > umax1)
return 1;
- else if (sval < reg->smin_value || sval > reg->smax_value)
+ else if (sval < smin1 || sval > smax1)
return 1;
break;
case BPF_JSET:
- if ((~reg->var_off.mask & reg->var_off.value) & val)
+ if ((~t1.mask & t1.value) & uval)
return 1;
- if (!((reg->var_off.mask | reg->var_off.value) & val))
+ if (!((t1.mask | t1.value) & uval))
return 0;
break;
case BPF_JGT:
- if (reg->umin_value > val)
+ if (umin1 > uval )
return 1;
- else if (reg->umax_value <= val)
+ else if (umax1 <= uval)
return 0;
break;
case BPF_JSGT:
- if (reg->smin_value > sval)
+ if (smin1 > sval)
return 1;
- else if (reg->smax_value <= sval)
+ else if (smax1 <= sval)
return 0;
break;
case BPF_JLT:
- if (reg->umax_value < val)
+ if (umax1 < uval)
return 1;
- else if (reg->umin_value >= val)
+ else if (umin1 >= uval)
return 0;
break;
case BPF_JSLT:
- if (reg->smax_value < sval)
+ if (smax1 < sval)
return 1;
- else if (reg->smin_value >= sval)
+ else if (smin1 >= sval)
return 0;
break;
case BPF_JGE:
- if (reg->umin_value >= val)
+ if (umin1 >= uval)
return 1;
- else if (reg->umax_value < val)
+ else if (umax1 < uval)
return 0;
break;
case BPF_JSGE:
- if (reg->smin_value >= sval)
+ if (smin1 >= sval)
return 1;
- else if (reg->smax_value < sval)
+ else if (smax1 < sval)
return 0;
break;
case BPF_JLE:
- if (reg->umax_value <= val)
+ if (umax1 <= uval)
return 1;
- else if (reg->umin_value > val)
+ else if (umin1 > uval)
return 0;
break;
case BPF_JSLE:
- if (reg->smax_value <= sval)
+ if (smax1 <= sval)
return 1;
- else if (reg->smin_value > sval)
+ else if (smin1 > sval)
return 0;
break;
}
@@ -14203,41 +14291,6 @@ static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
return -1;
}
-/* compute branch direction of the expression "if (reg opcode val) goto target;"
- * and return:
- * 1 - branch will be taken and "goto target" will be executed
- * 0 - branch will not be taken and fall-through to next insn
- * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
- * range [0,10]
- */
-static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
- bool is_jmp32)
-{
- if (__is_pointer_value(false, reg)) {
- if (!reg_not_null(reg))
- return -1;
-
- /* If pointer is valid tests against zero will fail so we can
- * use this to direct branch taken.
- */
- if (val != 0)
- return -1;
-
- switch (opcode) {
- case BPF_JEQ:
- return 0;
- case BPF_JNE:
- return 1;
- default:
- return -1;
- }
- }
-
- if (is_jmp32)
- return is_branch32_taken(reg, val, opcode);
- return is_branch64_taken(reg, val, opcode);
-}
-
static int flip_opcode(u32 opcode)
{
/* How can we transform "a <op> b" into "b <op> a"? */
@@ -14299,32 +14352,98 @@ static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
return -1;
}
-/* Adjusts the register min/max values in the case that the dst_reg is the
- * variable register that we are working on, and src_reg is a constant or we're
- * simply doing a BPF_K check.
- * In JEQ/JNE cases we also adjust the var_off values.
+/* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
+ * and return:
+ * 1 - branch will be taken and "goto target" will be executed
+ * 0 - branch will not be taken and fall-through to next insn
+ * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
+ * range [0,10]
+ */
+static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
+ u8 opcode, bool is_jmp32)
+{
+ u64 val;
+
+ if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
+ return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
+
+ /* try to make sure reg2 is a constant SCALAR_VALUE */
+ if (!is_reg_const(reg2, is_jmp32)) {
+ opcode = flip_opcode(opcode);
+ swap(reg1, reg2);
+ }
+ /* for now we expect reg2 to be a constant to make any useful decisions */
+ if (!is_reg_const(reg2, is_jmp32))
+ return -1;
+ val = reg_const_value(reg2, is_jmp32);
+
+ if (__is_pointer_value(false, reg1)) {
+ if (!reg_not_null(reg1))
+ return -1;
+
+ /* If pointer is valid tests against zero will fail so we can
+ * use this to direct branch taken.
+ */
+ if (val != 0)
+ return -1;
+
+ switch (opcode) {
+ case BPF_JEQ:
+ return 0;
+ case BPF_JNE:
+ return 1;
+ default:
+ return -1;
+ }
+ }
+
+ return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
+}
+
+/* Adjusts the register min/max values in the case that the dst_reg and
+ * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
+ * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
+ * Technically we can do similar adjustments for pointers to the same object,
+ * but we don't support that right now.
*/
-static void reg_set_min_max(struct bpf_reg_state *true_reg,
- struct bpf_reg_state *false_reg,
- u64 val, u32 val32,
+static void reg_set_min_max(struct bpf_reg_state *true_reg1,
+ struct bpf_reg_state *true_reg2,
+ struct bpf_reg_state *false_reg1,
+ struct bpf_reg_state *false_reg2,
u8 opcode, bool is_jmp32)
{
- struct tnum false_32off = tnum_subreg(false_reg->var_off);
- struct tnum false_64off = false_reg->var_off;
- struct tnum true_32off = tnum_subreg(true_reg->var_off);
- struct tnum true_64off = true_reg->var_off;
- s64 sval = (s64)val;
- s32 sval32 = (s32)val32;
-
- /* If the dst_reg is a pointer, we can't learn anything about its
- * variable offset from the compare (unless src_reg were a pointer into
- * the same object, but we don't bother with that.
- * Since false_reg and true_reg have the same type by construction, we
- * only need to check one of them for pointerness.
+ struct tnum false_32off, false_64off;
+ struct tnum true_32off, true_64off;
+ u64 uval;
+ u32 uval32;
+ s64 sval;
+ s32 sval32;
+
+ /* If either register is a pointer, we can't learn anything about its
+ * variable offset from the compare (unless they were a pointer into
+ * the same object, but we don't bother with that).
*/
- if (__is_pointer_value(false, false_reg))
+ if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
return;
+ /* we expect right-hand registers (src ones) to be constants, for now */
+ if (!is_reg_const(false_reg2, is_jmp32)) {
+ opcode = flip_opcode(opcode);
+ swap(true_reg1, true_reg2);
+ swap(false_reg1, false_reg2);
+ }
+ if (!is_reg_const(false_reg2, is_jmp32))
+ return;
+
+ false_32off = tnum_subreg(false_reg1->var_off);
+ false_64off = false_reg1->var_off;
+ true_32off = tnum_subreg(true_reg1->var_off);
+ true_64off = true_reg1->var_off;
+ uval = false_reg2->var_off.value;
+ uval32 = (u32)tnum_subreg(false_reg2->var_off).value;
+ sval = (s64)uval;
+ sval32 = (s32)uval32;
+
switch (opcode) {
/* JEQ/JNE comparison doesn't change the register equivalence.
*
@@ -14337,52 +14456,52 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
*/
case BPF_JEQ:
if (is_jmp32) {
- __mark_reg32_known(true_reg, val32);
- true_32off = tnum_subreg(true_reg->var_off);
+ __mark_reg32_known(true_reg1, uval32);
+ true_32off = tnum_subreg(true_reg1->var_off);
} else {
- ___mark_reg_known(true_reg, val);
- true_64off = true_reg->var_off;
+ ___mark_reg_known(true_reg1, uval);
+ true_64off = true_reg1->var_off;
}
break;
case BPF_JNE:
if (is_jmp32) {
- __mark_reg32_known(false_reg, val32);
- false_32off = tnum_subreg(false_reg->var_off);
+ __mark_reg32_known(false_reg1, uval32);
+ false_32off = tnum_subreg(false_reg1->var_off);
} else {
- ___mark_reg_known(false_reg, val);
- false_64off = false_reg->var_off;
+ ___mark_reg_known(false_reg1, uval);
+ false_64off = false_reg1->var_off;
}
break;
case BPF_JSET:
if (is_jmp32) {
- false_32off = tnum_and(false_32off, tnum_const(~val32));
- if (is_power_of_2(val32))
+ false_32off = tnum_and(false_32off, tnum_const(~uval32));
+ if (is_power_of_2(uval32))
true_32off = tnum_or(true_32off,
- tnum_const(val32));
+ tnum_const(uval32));
} else {
- false_64off = tnum_and(false_64off, tnum_const(~val));
- if (is_power_of_2(val))
+ false_64off = tnum_and(false_64off, tnum_const(~uval));
+ if (is_power_of_2(uval))
true_64off = tnum_or(true_64off,
- tnum_const(val));
+ tnum_const(uval));
}
break;
case BPF_JGE:
case BPF_JGT:
{
if (is_jmp32) {
- u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
- u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
+ u32 false_umax = opcode == BPF_JGT ? uval32 : uval32 - 1;
+ u32 true_umin = opcode == BPF_JGT ? uval32 + 1 : uval32;
- false_reg->u32_max_value = min(false_reg->u32_max_value,
+ false_reg1->u32_max_value = min(false_reg1->u32_max_value,
false_umax);
- true_reg->u32_min_value = max(true_reg->u32_min_value,
+ true_reg1->u32_min_value = max(true_reg1->u32_min_value,
true_umin);
} else {
- u64 false_umax = opcode == BPF_JGT ? val : val - 1;
- u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
+ u64 false_umax = opcode == BPF_JGT ? uval : uval - 1;
+ u64 true_umin = opcode == BPF_JGT ? uval + 1 : uval;
- false_reg->umax_value = min(false_reg->umax_value, false_umax);
- true_reg->umin_value = max(true_reg->umin_value, true_umin);
+ false_reg1->umax_value = min(false_reg1->umax_value, false_umax);
+ true_reg1->umin_value = max(true_reg1->umin_value, true_umin);
}
break;
}
@@ -14393,14 +14512,14 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
- false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
- true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
+ false_reg1->s32_max_value = min(false_reg1->s32_max_value, false_smax);
+ true_reg1->s32_min_value = max(true_reg1->s32_min_value, true_smin);
} else {
s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
- false_reg->smax_value = min(false_reg->smax_value, false_smax);
- true_reg->smin_value = max(true_reg->smin_value, true_smin);
+ false_reg1->smax_value = min(false_reg1->smax_value, false_smax);
+ true_reg1->smin_value = max(true_reg1->smin_value, true_smin);
}
break;
}
@@ -14408,19 +14527,19 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
case BPF_JLT:
{
if (is_jmp32) {
- u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
- u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
+ u32 false_umin = opcode == BPF_JLT ? uval32 : uval32 + 1;
+ u32 true_umax = opcode == BPF_JLT ? uval32 - 1 : uval32;
- false_reg->u32_min_value = max(false_reg->u32_min_value,
+ false_reg1->u32_min_value = max(false_reg1->u32_min_value,
false_umin);
- true_reg->u32_max_value = min(true_reg->u32_max_value,
+ true_reg1->u32_max_value = min(true_reg1->u32_max_value,
true_umax);
} else {
- u64 false_umin = opcode == BPF_JLT ? val : val + 1;
- u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
+ u64 false_umin = opcode == BPF_JLT ? uval : uval + 1;
+ u64 true_umax = opcode == BPF_JLT ? uval - 1 : uval;
- false_reg->umin_value = max(false_reg->umin_value, false_umin);
- true_reg->umax_value = min(true_reg->umax_value, true_umax);
+ false_reg1->umin_value = max(false_reg1->umin_value, false_umin);
+ true_reg1->umax_value = min(true_reg1->umax_value, true_umax);
}
break;
}
@@ -14431,14 +14550,14 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
- false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
- true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
+ false_reg1->s32_min_value = max(false_reg1->s32_min_value, false_smin);
+ true_reg1->s32_max_value = min(true_reg1->s32_max_value, true_smax);
} else {
s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
- false_reg->smin_value = max(false_reg->smin_value, false_smin);
- true_reg->smax_value = min(true_reg->smax_value, true_smax);
+ false_reg1->smin_value = max(false_reg1->smin_value, false_smin);
+ true_reg1->smax_value = min(true_reg1->smax_value, true_smax);
}
break;
}
@@ -14447,36 +14566,20 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
}
if (is_jmp32) {
- false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
+ false_reg1->var_off = tnum_or(tnum_clear_subreg(false_64off),
tnum_subreg(false_32off));
- true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
+ true_reg1->var_off = tnum_or(tnum_clear_subreg(true_64off),
tnum_subreg(true_32off));
- __reg_combine_32_into_64(false_reg);
- __reg_combine_32_into_64(true_reg);
+ reg_bounds_sync(false_reg1);
+ reg_bounds_sync(true_reg1);
} else {
- false_reg->var_off = false_64off;
- true_reg->var_off = true_64off;
- __reg_combine_64_into_32(false_reg);
- __reg_combine_64_into_32(true_reg);
+ false_reg1->var_off = false_64off;
+ true_reg1->var_off = true_64off;
+ reg_bounds_sync(false_reg1);
+ reg_bounds_sync(true_reg1);
}
}
-/* Same as above, but for the case that dst_reg holds a constant and src_reg is
- * the variable reg.
- */
-static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
- struct bpf_reg_state *false_reg,
- u64 val, u32 val32,
- u8 opcode, bool is_jmp32)
-{
- opcode = flip_opcode(opcode);
- /* This uses zero as "not present in table"; luckily the zero opcode,
- * BPF_JA, can't get here.
- */
- if (opcode)
- reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
-}
-
/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
struct bpf_reg_state *dst_reg)
@@ -14706,6 +14809,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
struct bpf_reg_state *eq_branch_regs;
+ struct bpf_reg_state fake_reg = {};
u8 opcode = BPF_OP(insn->code);
bool is_jmp32;
int pred = -1;
@@ -14746,42 +14850,13 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
return -EINVAL;
}
+ src_reg = &fake_reg;
+ src_reg->type = SCALAR_VALUE;
+ __mark_reg_known(src_reg, insn->imm);
}
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
-
- if (BPF_SRC(insn->code) == BPF_K) {
- pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
- } else if (src_reg->type == SCALAR_VALUE &&
- is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
- pred = is_branch_taken(dst_reg,
- tnum_subreg(src_reg->var_off).value,
- opcode,
- is_jmp32);
- } else if (src_reg->type == SCALAR_VALUE &&
- !is_jmp32 && tnum_is_const(src_reg->var_off)) {
- pred = is_branch_taken(dst_reg,
- src_reg->var_off.value,
- opcode,
- is_jmp32);
- } else if (dst_reg->type == SCALAR_VALUE &&
- is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
- pred = is_branch_taken(src_reg,
- tnum_subreg(dst_reg->var_off).value,
- flip_opcode(opcode),
- is_jmp32);
- } else if (dst_reg->type == SCALAR_VALUE &&
- !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
- pred = is_branch_taken(src_reg,
- dst_reg->var_off.value,
- flip_opcode(opcode),
- is_jmp32);
- } else if (reg_is_pkt_pointer_any(dst_reg) &&
- reg_is_pkt_pointer_any(src_reg) &&
- !is_jmp32) {
- pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
- }
-
+ pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
if (pred >= 0) {
/* If we get here with a dst_reg pointer type it is because
* above is_branch_taken() special cased the 0 comparison.
@@ -14829,53 +14904,32 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
return -EFAULT;
other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
- /* detect if we are comparing against a constant value so we can adjust
- * our min/max values for our dst register.
- * this is only legit if both are scalars (or pointers to the same
- * object, I suppose, see the PTR_MAYBE_NULL related if block below),
- * because otherwise the different base pointers mean the offsets aren't
- * comparable.
- */
if (BPF_SRC(insn->code) == BPF_X) {
- struct bpf_reg_state *src_reg = &regs[insn->src_reg];
+ reg_set_min_max(&other_branch_regs[insn->dst_reg],
+ &other_branch_regs[insn->src_reg],
+ dst_reg, src_reg, opcode, is_jmp32);
if (dst_reg->type == SCALAR_VALUE &&
- src_reg->type == SCALAR_VALUE) {
- if (tnum_is_const(src_reg->var_off) ||
- (is_jmp32 &&
- tnum_is_const(tnum_subreg(src_reg->var_off))))
- reg_set_min_max(&other_branch_regs[insn->dst_reg],
- dst_reg,
- src_reg->var_off.value,
- tnum_subreg(src_reg->var_off).value,
- opcode, is_jmp32);
- else if (tnum_is_const(dst_reg->var_off) ||
- (is_jmp32 &&
- tnum_is_const(tnum_subreg(dst_reg->var_off))))
- reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
- src_reg,
- dst_reg->var_off.value,
- tnum_subreg(dst_reg->var_off).value,
- opcode, is_jmp32);
- else if (!is_jmp32 &&
- (opcode == BPF_JEQ || opcode == BPF_JNE))
- /* Comparing for equality, we can combine knowledge */
- reg_combine_min_max(&other_branch_regs[insn->src_reg],
- &other_branch_regs[insn->dst_reg],
- src_reg, dst_reg, opcode);
- if (src_reg->id &&
- !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
- find_equal_scalars(this_branch, src_reg);
- find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
- }
-
- }
- } else if (dst_reg->type == SCALAR_VALUE) {
+ src_reg->type == SCALAR_VALUE &&
+ !is_jmp32 && (opcode == BPF_JEQ || opcode == BPF_JNE)) {
+ /* Comparing for equality, we can combine knowledge */
+ reg_combine_min_max(&other_branch_regs[insn->src_reg],
+ &other_branch_regs[insn->dst_reg],
+ src_reg, dst_reg, opcode);
+ }
+ } else /* BPF_SRC(insn->code) == BPF_K */ {
reg_set_min_max(&other_branch_regs[insn->dst_reg],
- dst_reg, insn->imm, (u32)insn->imm,
- opcode, is_jmp32);
+ src_reg /* fake one */,
+ dst_reg, src_reg /* same fake one */,
+ opcode, is_jmp32);
}
+ if (BPF_SRC(insn->code) == BPF_X &&
+ src_reg->type == SCALAR_VALUE && src_reg->id &&
+ !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
+ find_equal_scalars(this_branch, src_reg);
+ find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
+ }
if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
!WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
find_equal_scalars(this_branch, dst_reg);
diff --git a/tools/testing/selftests/bpf/prog_tests/btf.c b/tools/testing/selftests/bpf/prog_tests/btf.c
index 92d51f377fe5..8fb4a04fbbc0 100644
--- a/tools/testing/selftests/bpf/prog_tests/btf.c
+++ b/tools/testing/selftests/bpf/prog_tests/btf.c
@@ -5265,6 +5265,7 @@ static size_t get_pprint_mapv_size(enum pprint_mapv_kind_t mapv_kind)
#endif
assert(0);
+ return 0;
}
static void set_pprint_mapv(enum pprint_mapv_kind_t mapv_kind,
diff --git a/tools/testing/selftests/bpf/prog_tests/tc_opts.c b/tools/testing/selftests/bpf/prog_tests/tc_opts.c
index 51883ccb8020..196abf223465 100644
--- a/tools/testing/selftests/bpf/prog_tests/tc_opts.c
+++ b/tools/testing/selftests/bpf/prog_tests/tc_opts.c
@@ -2387,12 +2387,9 @@ static int generate_dummy_prog(void)
const size_t prog_insn_cnt = sizeof(prog_insns) / sizeof(struct bpf_insn);
LIBBPF_OPTS(bpf_prog_load_opts, opts);
const size_t log_buf_sz = 256;
- char *log_buf;
+ char log_buf[log_buf_sz];
int fd = -1;
- log_buf = malloc(log_buf_sz);
- if (!ASSERT_OK_PTR(log_buf, "log_buf_alloc"))
- return fd;
opts.log_buf = log_buf;
opts.log_size = log_buf_sz;
@@ -2402,7 +2399,6 @@ static int generate_dummy_prog(void)
prog_insns, prog_insn_cnt, &opts);
ASSERT_STREQ(log_buf, "", "log_0");
ASSERT_GE(fd, 0, "prog_fd");
- free(log_buf);
return fd;
}