1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
.file "tancotf.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 12/27/00 Improved speed
// 02/21/01 Updated to call tanl
// 05/30/02 Improved speed, added cotf.
// 11/25/02 Added explicit completer on fnorm
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 04/17/03 Eliminated redundant stop bits
//
// APIs
//==============================================================
// float tanf(float)
// float cotf(float)
//
// Algorithm Description for tanf
//==============================================================
// The tanf function computes the principle value of the tangent of x,
// where x is radian argument.
//
// There are 5 paths:
// 1. x = +/-0.0
// Return tanf(x) = +/-0.0
//
// 2. x = [S,Q]NaN
// Return tanf(x) = QNaN
//
// 3. x = +/-Inf
// Return tanf(x) = QNaN
//
// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
// Return tanf(x) = P19(r) = A1*r + A3*r^3 + A5*r^5 + ... + A19*r^19 =
// = r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = r*P9(t), where t = r^2
//
// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
// Return tanf(x) = -1/r + P11(r) = -1/r + B1*r + B3*r^3 + ... + B11*r^11 =
// = -1/r + r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = -1/r + r*P11(t),
// where t = r^2
//
// Algorithm Description for cotf
//==============================================================
// The cotf function computes the principle value of the cotangent of x,
// where x is radian argument.
//
// There are 5 paths:
// 1. x = +/-0.0
// Return cotf(x) = +/-Inf and error handling is called
//
// 2. x = [S,Q]NaN
// Return cotf(x) = QNaN
//
// 3. x = +/-Inf
// Return cotf(x) = QNaN
//
// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
// Return cotf(x) = P19(-r) = A1*(-r) + A3*(-r^3) + ... + A19*(-r^19) =
// = -r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = -r*P9(t), where t = r^2
//
// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
// Return cotf(x) = 1/r + P11(-r) = 1/r + B1*(-r) + ... + B11*(-r^11) =
// = 1/r - r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = 1/r - r*P11(t),
// where t = r^2
//
// We set p10 and clear p11 if computing tanf, vice versa for cotf.
//
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f80
//
// General registers used:
// r14 -> r23, r32 -> r39
//
// Predicate registers used:
// p6 -> p13
//
// Assembly macros
//==============================================================
// integer registers
rExp = r14
rSignMask = r15
rRshf = r16
rScFctrExp = r17
rIntN = r18
rSigRcpPiby2 = r19
rScRshf = r20
rCoeffA = r21
rCoeffB = r22
rExpCut = r23
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_Parameter_X = r36
GR_Parameter_Y = r37
GR_Parameter_RESULT = r38
GR_Parameter_Tag = r39
//==============================================================
// floating point registers
fScRcpPiby2 = f32
fScRshf = f33
fNormArg = f34
fScFctr = f35
fRshf = f36
fShiftedN = f37
fN = f38
fR = f39
fA01 = f40
fA03 = f41
fA05 = f42
fA07 = f43
fA09 = f44
fA11 = f45
fA13 = f46
fA15 = f47
fA17 = f48
fA19 = f49
fB01 = f50
fB03 = f51
fB05 = f52
fB07 = f53
fB09 = f54
fB11 = f55
fA03_01 = f56
fA07_05 = f57
fA11_09 = f58
fA15_13 = f59
fA19_17 = f60
fA11_05 = f61
fA19_13 = f62
fA19_05 = f63
fRbyA03_01 = f64
fB03_01 = f65
fB07_05 = f66
fB11_09 = f67
fB11_05 = f68
fRbyB03_01 = f69
fRbyB11_01 = f70
fRp2 = f71
fRp4 = f72
fRp8 = f73
fRp5 = f74
fY0 = f75
fY1 = f76
fD = f77
fDp2 = f78
fInvR = f79
fPiby2 = f80
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(coeff_A)
data8 0x3FF0000000000000 // A1 = 1.00000000000000000000e+00
data8 0x3FD5555556BCE758 // A3 = 3.33333334641442641606e-01
data8 0x3FC111105C2DAE48 // A5 = 1.33333249100689099175e-01
data8 0x3FABA1F876341060 // A7 = 5.39701122561673229739e-02
data8 0x3F965FB86D12A38D // A9 = 2.18495194027670719750e-02
data8 0x3F8265F62415F9D6 // A11 = 8.98353860497717439465e-03
data8 0x3F69E3AE64CCF58D // A13 = 3.16032468108912746342e-03
data8 0x3F63920D09D0E6F6 // A15 = 2.38897844840557235331e-03
LOCAL_OBJECT_END(coeff_A)
LOCAL_OBJECT_START(coeff_B)
data8 0xC90FDAA22168C235, 0x3FFF // pi/2
data8 0x3FD55555555358DB // B1 = 3.33333333326107426583e-01
data8 0x3F96C16C252F643F // B3 = 2.22222230621336129239e-02
data8 0x3F61566243AB3C60 // B5 = 2.11638633968606896785e-03
data8 0x3F2BC1169BD4438B // B7 = 2.11748132564551094391e-04
data8 0x3EF611B4CEA056A1 // B9 = 2.10467959860990200942e-05
data8 0x3EC600F9E32194BF // B11 = 2.62305891234274186608e-06
data8 0xBF42BA7BCC177616 // A17 =-5.71546981685324877205e-04
data8 0x3F4F2614BC6D3BB8 // A19 = 9.50584530849832782542e-04
LOCAL_OBJECT_END(coeff_B)
.section .text
LOCAL_LIBM_ENTRY(cotf)
{ .mlx
getf.exp rExp = f8 // ***** Get 2ˆ17 * s + E
movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
}
{ .mlx
addl rCoeffA = @ltoff(coeff_A), gp
movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
}
;;
{ .mfi
alloc r32 = ar.pfs, 0, 4, 4, 0
fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
cmp.eq p11, p10 = r0, r0 // if p11=1 we compute cotf
}
{ .mib
ld8 rCoeffA = [rCoeffA]
mov rExpCut = 0x10009 // cutoff for exponent
br.cond.sptk Common_Path
}
;;
LOCAL_LIBM_END(cotf)
GLOBAL_IEEE754_ENTRY(tanf)
{ .mlx
getf.exp rExp = f8 // ***** Get 2ˆ17 * s + E
movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
}
{ .mlx
addl rCoeffA = @ltoff(coeff_A), gp
movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
}
;;
{ .mfi
alloc r32 = ar.pfs, 0, 4, 4, 0
fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
cmp.eq p10, p11 = r0, r0 // if p10=1 we compute tandf
}
{ .mib
ld8 rCoeffA = [rCoeffA]
mov rExpCut = 0x10009 // cutoff for exponent
nop.b 0
}
;;
// Below is common path for both tandf and cotdf
Common_Path:
{ .mfi
setf.sig fScRcpPiby2 = rSigRcpPiby2 // 2^(63+1)*(2/Pi)
fclass.m p8, p0 = f8, 0x23 // Test for x=inf
mov rSignMask = 0x1ffff // mask for sign bit
}
{ .mlx
setf.d fScRshf = rScRshf // 1.5*2^(63+63+1)
movl rRshf = 0x43e8000000000000 // 1.5 2^63 for right shift
}
;;
{ .mfi
and rSignMask = rSignMask, rExp // clear sign bit
(p10) fclass.m.unc p7, p0 = f8, 0x07 // Test for x=0 (for tanf)
mov rScFctrExp = 0xffff-64 // exp of scaling factor
}
{ .mfb
adds rCoeffB = coeff_B - coeff_A, rCoeffA
(p9) fma.s.s0 f8 = f8, f1, f8 // Set qnan if x=nan
(p9) br.ret.spnt b0 // Exit for x=nan
}
;;
{ .mfi
cmp.ge p6, p0 = rSignMask, rExpCut // p6 = (E => 0x10009)
(p8) frcpa.s0 f8, p0 = f0, f0 // Set qnan indef if x=inf
mov GR_Parameter_Tag = 227 // (cotf)
}
{ .mbb
ldfe fPiby2 = [rCoeffB], 16
(p8) br.ret.spnt b0 // Exit for x=inf
(p6) br.cond.spnt Huge_Argument // Branch if |x|>=2^10
}
;;
{ .mfi
nop.m 0
(p11) fclass.m.unc p6, p0 = f8, 0x07 // Test for x=0 (for cotf)
nop.i 0
}
{ .mfb
nop.m 0
fnorm.s0 fNormArg = f8
(p7) br.ret.spnt b0 // Exit for x=0 (for tanf)
}
;;
{ .mmf
ldfpd fA01, fA03 = [rCoeffA], 16
ldfpd fB01, fB03 = [rCoeffB], 16
fmerge.s f10 = f8, f8 // Save input for error call
}
;;
{ .mmf
setf.exp fScFctr = rScFctrExp // get as real
setf.d fRshf = rRshf // get right shifter as real
(p6) frcpa.s0 f8, p0 = f1, f8 // cotf(+-0) = +-Inf
}
;;
{ .mmb
ldfpd fA05, fA07 = [rCoeffA], 16
ldfpd fB05, fB07 = [rCoeffB], 16
(p6) br.cond.spnt __libm_error_region // call error support if cotf(+-0)
}
;;
{ .mmi
ldfpd fA09, fA11 = [rCoeffA], 16
ldfpd fB09, fB11 = [rCoeffB], 16
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fShiftedN = fNormArg,fScRcpPiby2,fScRshf // x*2^70*(2/Pi)+ScRshf
nop.i 0
}
;;
{ .mfi
nop.m 0
fms.s1 fN = fShiftedN, fScFctr, fRshf // N = Y*2^(-70) - Rshf
nop.i 0
}
;;
.pred.rel "mutex", p10, p11
{ .mfi
getf.sig rIntN = fShiftedN // get N as integer
(p10) fnma.s1 fR = fN, fPiby2, fNormArg // R = x - (Pi/2)*N (tanf)
nop.i 0
}
{ .mfi
nop.m 0
(p11) fms.s1 fR = fN, fPiby2, fNormArg // R = (Pi/2)*N - x (cotf)
nop.i 0
}
;;
{ .mmi
ldfpd fA13, fA15 = [rCoeffA], 16
ldfpd fA17, fA19 = [rCoeffB], 16
nop.i 0
}
;;
Return_From_Huges:
{ .mfi
nop.m 0
fma.s1 fRp2 = fR, fR, f0 // R^2
(p11) add rIntN = 0x1, rIntN // N = N + 1 (cotf)
}
;;
{ .mfi
nop.m 0
frcpa.s1 fY0, p0 = f1, fR // Y0 ~ 1/R
tbit.z p8, p9 = rIntN, 0 // p8=1 if N is even
}
;;
// Below are mixed polynomial calculations (mixed for even and odd N)
{ .mfi
nop.m 0
(p9) fma.s1 fB03_01 = fRp2, fB03, fB01 // R^2*B3 + B1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fRp4 = fRp2, fRp2, f0 // R^4
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fA15_13 = fRp2, fA15, fA13 // R^2*A15 + A13
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA19_17 = fRp2, fA19, fA17 // R^2*A19 + A17
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fA07_05 = fRp2, fA07, fA05 // R^2*A7 + A5
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA11_09 = fRp2, fA11, fA09 // R^2*A11 + A9
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fB07_05 = fRp2, fB07, fB05 // R^2*B7 + B5
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fB11_09 = fRp2, fB11, fB09 // R^2*B11 + B9
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fnma.s1 fD = fR, fY0, f1 // D = 1 - R*Y0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA03_01 = fRp2, fA03, fA01 // R^2*A3 + A1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fRp8 = fRp4, fRp4, f0 // R^8
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fRp5 = fR, fRp4, f0 // R^5
nop.i 0
}
;;
{ .mfi
nop.m 0
(p8) fma.s1 fA11_05 = fRp4, fA11_09, fA07_05 // R^4*(R^2*A11 + A9) + ...
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 fA19_13 = fRp4, fA19_17, fA15_13 // R^4*(R^2*A19 + A17) + ..
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fB11_05 = fRp4, fB11_09, fB07_05 // R^4*(R^2*B11 + B9) + ...
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fRbyB03_01 = fR, fB03_01, f0 // R*(R^2*B3 + B1)
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.s1 fY1 = fY0, fD, fY0 // Y1 = Y0*D + Y0
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 fDp2 = fD, fD, f0 // D^2
nop.i 0
}
;;
{ .mfi
nop.m 0
// R^8*(R^6*A19 + R^4*A17 + R^2*A15 + A13) + R^6*A11 + R^4*A9 + R^2*A7 + A5
(p8) fma.d.s1 fA19_05 = fRp8, fA19_13, fA11_05
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.d.s1 fRbyA03_01 = fR, fA03_01, f0 // R*(R^2*A3 + A1)
nop.i 0
}
;;
{ .mfi
nop.m 0
(p9) fma.d.s1 fInvR = fY1, fDp2, fY1 // 1/R = Y1*D^2 + Y1
nop.i 0
}
{ .mfi
nop.m 0
// R^5*(R^6*B11 + R^4*B9 + R^2*B7 + B5) + R^3*B3 + R*B1
(p9) fma.d.s1 fRbyB11_01 = fRp5, fB11_05, fRbyB03_01
nop.i 0
}
;;
.pred.rel "mutex", p8, p9
{ .mfi
nop.m 0
// Result = R^5*(R^14*A19 + R^12*A17 + R^10*A15 + ...) + R^3*A3 + R*A1
(p8) fma.s.s0 f8 = fRp5, fA19_05, fRbyA03_01
nop.i 0
}
{ .mfb
nop.m 0
// Result = -1/R + R^11*B11 + R^9*B9 + R^7*B7 + R^5*B5 + R^3*B3 + R*B1
(p9) fnma.s.s0 f8 = f1, fInvR, fRbyB11_01
br.ret.sptk b0 // exit for main path
}
;;
GLOBAL_IEEE754_END(tanf)
LOCAL_LIBM_ENTRY(__libm_callout)
Huge_Argument:
.prologue
{ .mfi
nop.m 0
fmerge.s f9 = f0,f0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs
}
;;
{ .mfi
mov GR_SAVE_GP=gp
nop.f 0
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0
}
.body
{ .mmb
nop.m 999
nop.m 999
(p10) br.cond.sptk.many call_tanl ;;
}
// Here if we should call cotl (p10=0, p11=1)
{ .mmb
nop.m 999
nop.m 999
br.call.sptk.many b0=__libm_cotl# ;;
}
{ .mfi
mov gp = GR_SAVE_GP
fnorm.s.s0 f8 = f8
mov b0 = GR_SAVE_B0
}
;;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
// Here if we should call tanl (p10=1, p11=0)
call_tanl:
{ .mmb
nop.m 999
nop.m 999
br.call.sptk.many b0=__libm_tanl# ;;
}
{ .mfi
mov gp = GR_SAVE_GP
fnorm.s.s0 f8 = f8
mov b0 = GR_SAVE_B0
}
;;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
LOCAL_LIBM_END(__libm_callout)
.type __libm_tanl#,@function
.global __libm_tanl#
.type __libm_cotl#,@function
.global __libm_cotl#
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
// (4)
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|