1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
|
.file "acosf.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
//==============================================================
// 02/02/00 Initial version
// 06/28/00 Improved speed
// 06/31/00 Changed register allocation because of some duplicate macros
// moved nan exit bundle up to gain a cycle.
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 08/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
// 10/17/00 Improved speed of x=0 and x=1 paths, set D flag if x denormal.
// 03/13/01 Corrected sign of imm1 value in dep instruction.
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// 04/17/03 Moved mutex after label
// Description
//=========================================
// The acosf function computes the principle value of the arc sine of x.
// A doman error occurs for arguments not in the range [-1,+1].
// The acosf function returns the arc cosine in the range [0, +pi] radians.
// acos(1) returns +0
// acos(x) returns a Nan and raises the invalid exception for |x| >1
// |x| <= sqrt(2)/2. get Ax and Bx
// poly_p1 = x p1
// poly_p3 = x2 p4 + p3
// poly_p1 = x2 (poly_p1) + x = x2(x p1) + x
// poly_p2 = x2( poly_p3) + p2 = x2(x2 p4 + p3) + p2
// poly_Ax = x5(x2( poly_p3) + p2) + x2(x p1) + x
// = x5(x2(x2 p4 + p3) + p2) + x2(x p1) + x
// poly_p7 = x2 p8 + p7
// poly_p5 = x2 p6 + p5
// poly_p7 = x4 p9 + (x2 p8 + p7)
// poly_Bx = x4 (x4 p9 + (x2 p8 + p7)) + x2 p6 + p5
// sinf1 = x11(x4 (x4 p9 + (x2 p8 + p7)) + x2 p6 + p5) + x5(x2(x2 p4 + p3) + p2) + x2(x p1) + x
// = x19 p9 + x17 p8 + x15 p7 x13 p6 + x11 p5 + x9 p4 + x7 p3 + x5 p2 + x3 p1 + x
// answer1 = pi/2 - sinf1
// |x| > sqrt(2)/2
// Get z = sqrt(1-x2)
// Get polynomial in t = 1-x2
// t2 = t t
// t4 = t2 t2
// poly_p4 = t p5 + p4
// poly_p1 = t p1 + 1
// poly_p6 = t p7 + p6
// poly_p2 = t p3 + p2
// poly_p8 = t p9 + p8
// poly_p4 = t2 poly_p6 + poly_p4
// = t2 (t p7 + p6) + (t p5 + p4)
// poly_p2 = t2 poly_p2 + poly_p1
// = t2 (t p3 + p2) + (t p1 + 1)
// poly_p4 = t4 poly_p8 + poly_p4
// = t4 (t p9 + p8) + (t2 (t p7 + p6) + (t p5 + p4))
// P(t) = poly_p2 + t4 poly_p8
// = t2 (t p3 + p2) + (t p1 + 1) + t4 (t4 (t p9 + p8) + (t2 (t p7 + p6) + (t p5 + p4)))
// = t3 p3 + t2 p2 + t p1 + 1 + t9 p9 + t8 p8 + t7 p7 + t6 p6 + t5 p5 + t4 p4
// answer2 = sign(x) z P(t) if x>0
// = sign(x) z P(t) + pi if x<0
//
// Assembly macros
//=========================================
// predicate registers
//acosf_pred_LEsqrt2by2 = p7
//acosf_pred_GTsqrt2by2 = p8
// integer registers
ACOSF_Addr1 = r33
ACOSF_Addr2 = r34
ACOSF_GR_1by2 = r35
ACOSF_GR_3by2 = r36
ACOSF_GR_5by2 = r37
GR_SAVE_B0 = r38
GR_SAVE_PFS = r39
GR_SAVE_GP = r40
GR_Parameter_X = r41
GR_Parameter_Y = r42
GR_Parameter_RESULT = r43
GR_Parameter_TAG = r44
// floating point registers
acosf_y = f32
acosf_abs_x = f33
acosf_x2 = f34
acosf_sgn_x = f35
acosf_1by2 = f36
acosf_3by2 = f37
acosf_5by2 = f38
acosf_coeff_P3 = f39
acosf_coeff_P8 = f40
acosf_coeff_P1 = f41
acosf_coeff_P4 = f42
acosf_coeff_P5 = f43
acosf_coeff_P2 = f44
acosf_coeff_P7 = f45
acosf_coeff_P6 = f46
acosf_coeff_P9 = f47
acosf_x2 = f48
acosf_x3 = f49
acosf_x4 = f50
acosf_x8 = f51
acosf_x5 = f52
acosf_const_piby2 = f53
acosf_const_sqrt2by2 = f54
acosf_x11 = f55
acosf_poly_p1 = f56
acosf_poly_p3 = f57
acosf_sinf1 = f58
acosf_poly_p2 = f59
acosf_poly_Ax = f60
acosf_poly_p7 = f61
acosf_poly_p5 = f62
acosf_sgnx_t4 = f63
acosf_poly_Bx = f64
acosf_t = f65
acosf_yby2 = f66
acosf_B = f67
acosf_B2 = f68
acosf_Az = f69
acosf_dz = f70
acosf_Sz = f71
acosf_d2z = f72
acosf_Fz = f73
acosf_z = f74
acosf_sgnx_z = f75
acosf_t2 = f76
acosf_2poly_p4 = f77
acosf_2poly_p6 = f78
acosf_2poly_p1 = f79
acosf_2poly_p2 = f80
acosf_2poly_p8 = f81
acosf_t4 = f82
acosf_Pt = f83
acosf_sgnx_2poly_p2 = f84
acosf_sgn_x_piby2 = f85
acosf_poly_p7a = f86
acosf_2poly_p4a = f87
acosf_2poly_p4b = f88
acosf_2poly_p2a = f89
acosf_poly_p1a = f90
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(acosf_coeff_1_table)
data8 0x3FC5555607DCF816 // P1
data8 0x3F9CF81AD9BAB2C6 // P4
data8 0x3FC59E0975074DF3 // P7
data8 0xBFA6F4CC2780AA1D // P6
data8 0x3FC2DD45292E93CB // P9
data8 0x3fe6a09e667f3bcd // sqrt(2)/2
LOCAL_OBJECT_END(acosf_coeff_1_table)
LOCAL_OBJECT_START(acosf_coeff_2_table)
data8 0x3FA6F108E31EFBA6 // P3
data8 0xBFCA31BF175D82A0 // P8
data8 0x3FA30C0337F6418B // P5
data8 0x3FB332C9266CB1F9 // P2
data8 0x3ff921fb54442d18 // pi_by_2
LOCAL_OBJECT_END(acosf_coeff_2_table)
.section .text
GLOBAL_LIBM_ENTRY(acosf)
// Load the addresses of the two tables.
// Then, load the coefficients and other constants.
{ .mfi
alloc r32 = ar.pfs,1,8,4,0
fnma.s1 acosf_t = f8,f8,f1
dep.z ACOSF_GR_1by2 = 0x3f,24,8 // 0x3f000000
}
{ .mfi
addl ACOSF_Addr1 = @ltoff(acosf_coeff_1_table),gp
fma.s1 acosf_x2 = f8,f8,f0
addl ACOSF_Addr2 = @ltoff(acosf_coeff_2_table),gp ;;
}
{ .mfi
ld8 ACOSF_Addr1 = [ACOSF_Addr1]
fmerge.s acosf_abs_x = f1,f8
dep ACOSF_GR_3by2 = -1,r0,22,8 // 0x3fc00000
}
{ .mlx
nop.m 999
movl ACOSF_GR_5by2 = 0x40200000;;
}
{ .mfi
setf.s acosf_1by2 = ACOSF_GR_1by2
fmerge.s acosf_sgn_x = f8,f1
nop.i 999
}
{ .mfi
ld8 ACOSF_Addr2 = [ACOSF_Addr2]
nop.f 0
nop.i 999;;
}
{ .mfi
setf.s acosf_5by2 = ACOSF_GR_5by2
fcmp.lt.s1 p11,p12 = f8,f0
nop.i 999;;
}
{ .mmf
ldfpd acosf_coeff_P1,acosf_coeff_P4 = [ACOSF_Addr1],16
setf.s acosf_3by2 = ACOSF_GR_3by2
fclass.m.unc p8,p0 = f8, 0xc3 ;; //@qnan | @snan
}
{ .mfi
ldfpd acosf_coeff_P7,acosf_coeff_P6 = [ACOSF_Addr1],16
fma.s1 acosf_t2 = acosf_t,acosf_t,f0
nop.i 999
}
{ .mfi
ldfpd acosf_coeff_P3,acosf_coeff_P8 = [ACOSF_Addr2],16
fma.s1 acosf_x4 = acosf_x2,acosf_x2,f0
nop.i 999;;
}
{ .mfi
ldfpd acosf_coeff_P9,acosf_const_sqrt2by2 = [ACOSF_Addr1]
fclass.m.unc p10,p0 = f8, 0x07 //@zero
nop.i 999
}
{ .mfi
ldfpd acosf_coeff_P5,acosf_coeff_P2 = [ACOSF_Addr2],16
fma.s1 acosf_x3 = f8,acosf_x2,f0
nop.i 999;;
}
{ .mfi
ldfd acosf_const_piby2 = [ACOSF_Addr2]
frsqrta.s1 acosf_B,p0 = acosf_t
nop.i 999
}
{ .mfb
nop.m 999
(p8) fma.s.s0 f8 = f8,f1,f0
(p8) br.ret.spnt b0 ;; // Exit if x=nan
}
{ .mfb
nop.m 999
fcmp.eq.s1 p6,p0 = acosf_abs_x,f1
(p10) br.cond.spnt ACOSF_ZERO ;; // Branch if x=0
}
{ .mfi
nop.m 999
fcmp.gt.s1 p9,p0 = acosf_abs_x,f1
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_x8 = acosf_x4,acosf_x4,f0
nop.i 999
}
{ .mfb
nop.m 999
fma.s1 acosf_t4 = acosf_t2,acosf_t2,f0
(p6) br.cond.spnt ACOSF_ABS_ONE ;; // Branch if |x|=1
}
{ .mfi
nop.m 999
fma.s1 acosf_x5 = acosf_x2,acosf_x3,f0
nop.i 999
}
{ .mfb
(p9) mov GR_Parameter_TAG = 59
fma.s1 acosf_yby2 = acosf_t,acosf_1by2,f0
(p9) br.cond.spnt __libm_error_region ;; // Branch if |x|>1
}
{ .mfi
nop.m 999
fma.s1 acosf_Az = acosf_t,acosf_B,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_B2 = acosf_B,acosf_B,f0
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p1 = f8,acosf_coeff_P1,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_2poly_p1 = acosf_coeff_P1,acosf_t,f1
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p3 = acosf_coeff_P4,acosf_x2,acosf_coeff_P3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_2poly_p6 = acosf_coeff_P7,acosf_t,acosf_coeff_P6
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p7 = acosf_x2,acosf_coeff_P8,acosf_coeff_P7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_2poly_p2 = acosf_coeff_P3,acosf_t,acosf_coeff_P2
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p5 = acosf_x2,acosf_coeff_P6,acosf_coeff_P5
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_2poly_p4 = acosf_coeff_P5,acosf_t,acosf_coeff_P4
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_x11 = acosf_x8,acosf_x3,f0
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 acosf_dz = acosf_B2,acosf_yby2,acosf_1by2
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p1a = acosf_x2,acosf_poly_p1,f8
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_2poly_p8 = acosf_coeff_P9,acosf_t,acosf_coeff_P8
nop.i 999;;
}
// Get the absolute value of x and determine the region in which x lies
{ .mfi
nop.m 999
fcmp.le.s1 p7,p8 = acosf_abs_x,acosf_const_sqrt2by2
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p2 = acosf_x2,acosf_poly_p3,acosf_coeff_P2
nop.i 999;;
}
{ .mfi
nop.m 999
fma.s1 acosf_poly_p7a = acosf_x4,acosf_coeff_P9,acosf_poly_p7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 acosf_2poly_p2a = acosf_2poly_p2,acosf_t2,acosf_2poly_p1
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_sgnx_t4 = acosf_sgn_x,acosf_t4,f0
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_2poly_p4a = acosf_2poly_p6,acosf_t2,acosf_2poly_p4
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_Sz = acosf_5by2,acosf_dz,acosf_3by2
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_d2z = acosf_dz,acosf_dz,f0
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fnma.d.s1 acosf_sgn_x_piby2 = acosf_sgn_x,acosf_const_piby2,acosf_const_piby2
nop.i 999
}
{ .mfi
nop.m 999
(p7) fma.s1 acosf_poly_Ax = acosf_x5,acosf_poly_p2,acosf_poly_p1a
nop.i 999;;
}
{ .mfi
nop.m 999
(p7) fma.s1 acosf_poly_Bx = acosf_x4,acosf_poly_p7a,acosf_poly_p5
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_sgnx_2poly_p2 = acosf_sgn_x,acosf_2poly_p2a,f0
nop.i 999;;
}
{ .mfi
nop.m 999
fcmp.eq.s0 p6,p0 = f8,f0 // Only purpose is to set D if x denormal
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_2poly_p4b = acosf_2poly_p8,acosf_t4,acosf_2poly_p4a
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.s1 acosf_Fz = acosf_d2z,acosf_Sz,acosf_dz
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.d.s1 acosf_Pt = acosf_2poly_p4b,acosf_sgnx_t4,acosf_sgnx_2poly_p2
nop.i 999;;
}
{ .mfi
nop.m 999
(p8) fma.d.s1 acosf_z = acosf_Az,acosf_Fz,acosf_Az
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) fma.d.s1 acosf_sinf1 = acosf_x11,acosf_poly_Bx,acosf_poly_Ax
nop.i 999;;
}
.pred.rel "mutex",p8,p7 //acosf_pred_GTsqrt2by2,acosf_pred_LEsqrt2by2
{ .mfi
nop.m 999
(p8) fma.s.s0 f8 = acosf_z,acosf_Pt,acosf_sgn_x_piby2
nop.i 999
}
{ .mfb
nop.m 999
(p7) fms.s.s0 f8 = acosf_const_piby2,f1,acosf_sinf1
br.ret.sptk b0 ;;
}
ACOSF_ZERO:
// Here if x=0
{ .mfb
nop.m 999
fma.s.s0 f8 = acosf_const_piby2,f1,f0 // acosf(0)=pi/2
br.ret.sptk b0 ;;
}
ACOSF_ABS_ONE:
.pred.rel "mutex",p11,p12
// Here if |x|=1
{ .mfi
nop.m 999
(p11) fma.s.s0 f8 = acosf_const_piby2,f1,acosf_const_piby2 // acosf(-1)=pi
nop.i 999
}
{ .mfb
nop.m 999
(p12) fma.s.s0 f8 = f1,f0,f0 // acosf(1)=0
br.ret.sptk b0 ;;
}
GLOBAL_LIBM_END(acosf)
// Stack operations when calling error support.
// (1) (2)
// sp -> + psp -> +
// | |
// | | <- GR_Y
// | |
// | <-GR_Y Y2->|
// | |
// | | <- GR_X
// | |
// sp-64 -> + sp -> +
// save ar.pfs save b0
// save gp
// Stack operations when calling error support.
// (3) (call) (4)
// psp -> + sp -> +
// | |
// R3 ->| <- GR_RESULT | -> f8
// | |
// Y2 ->| <- GR_Y |
// | |
// X1 ->| |
// | |
// sp -> + +
// restore gp
// restore ar.pfs
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfs [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mfi
nop.m 0
frcpa.s0 f9,p0 = f0,f0
nop.i 0
};;
{ .mib
stfs [GR_Parameter_X] = f8 // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|