summaryrefslogtreecommitdiff
path: root/sysdeps/powerpc/powerpc64/power4
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/powerpc/powerpc64/power4')
-rw-r--r--sysdeps/powerpc/powerpc64/power4/Makefile6
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/Makefile5
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/mpa.c549
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/slowexp.c66
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c94
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c62
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c60
-rw-r--r--sysdeps/powerpc/powerpc64/power4/memcmp.S982
-rw-r--r--sysdeps/powerpc/powerpc64/power4/memcopy.h1
-rw-r--r--sysdeps/powerpc/powerpc64/power4/memcpy.S418
-rw-r--r--sysdeps/powerpc/powerpc64/power4/memset.S275
-rw-r--r--sysdeps/powerpc/powerpc64/power4/strncmp.S180
-rw-r--r--sysdeps/powerpc/powerpc64/power4/wordcopy.c1
13 files changed, 2699 insertions, 0 deletions
diff --git a/sysdeps/powerpc/powerpc64/power4/Makefile b/sysdeps/powerpc/powerpc64/power4/Makefile
new file mode 100644
index 0000000000..60aa508ba4
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/Makefile
@@ -0,0 +1,6 @@
+# Makefile fragment for POWER4/5/5+.
+
+ifeq ($(subdir),string)
+CFLAGS-wordcopy.c += --param max-variable-expansions-in-unroller=2 --param max-unroll-times=2 -funroll-loops -fpeel-loops -ftree-loop-linear
+CFLAGS-memmove.c += --param max-variable-expansions-in-unroller=2 --param max-unroll-times=2 -funroll-loops -fpeel-loops -ftree-loop-linear
+endif
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
new file mode 100644
index 0000000000..89dfa5ef35
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
@@ -0,0 +1,5 @@
+# Makefile fragment for POWER4/5/5+ platforms with FPU.
+
+ifeq ($(subdir),math)
+CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops -ftree-loop-linear
+endif
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
new file mode 100644
index 0000000000..4a232e27bf
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
@@ -0,0 +1,549 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001, 2006 Free Software Foundation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+/************************************************************************/
+/* MODULE_NAME: mpa.c */
+/* */
+/* FUNCTIONS: */
+/* mcr */
+/* acr */
+/* cr */
+/* cpy */
+/* cpymn */
+/* norm */
+/* denorm */
+/* mp_dbl */
+/* dbl_mp */
+/* add_magnitudes */
+/* sub_magnitudes */
+/* add */
+/* sub */
+/* mul */
+/* inv */
+/* dvd */
+/* */
+/* Arithmetic functions for multiple precision numbers. */
+/* Relative errors are bounded */
+/************************************************************************/
+
+
+#include "endian.h"
+#include "mpa.h"
+#include "mpa2.h"
+#include <sys/param.h> /* For MIN() */
+/* mcr() compares the sizes of the mantissas of two multiple precision */
+/* numbers. Mantissas are compared regardless of the signs of the */
+/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
+/* disregarded. */
+static int mcr(const mp_no *x, const mp_no *y, int p) {
+ long i;
+ long p2 = p;
+ for (i=1; i<=p2; i++) {
+ if (X[i] == Y[i]) continue;
+ else if (X[i] > Y[i]) return 1;
+ else return -1; }
+ return 0;
+}
+
+
+
+/* acr() compares the absolute values of two multiple precision numbers */
+int __acr(const mp_no *x, const mp_no *y, int p) {
+ long i;
+
+ if (X[0] == ZERO) {
+ if (Y[0] == ZERO) i= 0;
+ else i=-1;
+ }
+ else if (Y[0] == ZERO) i= 1;
+ else {
+ if (EX > EY) i= 1;
+ else if (EX < EY) i=-1;
+ else i= mcr(x,y,p);
+ }
+
+ return i;
+}
+
+
+/* cr90 compares the values of two multiple precision numbers */
+int __cr(const mp_no *x, const mp_no *y, int p) {
+ int i;
+
+ if (X[0] > Y[0]) i= 1;
+ else if (X[0] < Y[0]) i=-1;
+ else if (X[0] < ZERO ) i= __acr(y,x,p);
+ else i= __acr(x,y,p);
+
+ return i;
+}
+
+
+/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
+void __cpy(const mp_no *x, mp_no *y, int p) {
+ long i;
+
+ EY = EX;
+ for (i=0; i <= p; i++) Y[i] = X[i];
+
+ return;
+}
+
+
+/* Copy a multiple precision number x of precision m into a */
+/* multiple precision number y of precision n. In case n>m, */
+/* the digits of y beyond the m'th are set to zero. In case */
+/* n<m, the digits of x beyond the n'th are ignored. */
+/* x=y is permissible. */
+
+void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
+
+ long i,k;
+ long n2 = n;
+ long m2 = m;
+
+ EY = EX; k=MIN(m2,n2);
+ for (i=0; i <= k; i++) Y[i] = X[i];
+ for ( ; i <= n2; i++) Y[i] = ZERO;
+
+ return;
+}
+
+/* Convert a multiple precision number *x into a double precision */
+/* number *y, normalized case (|x| >= 2**(-1022))) */
+static void norm(const mp_no *x, double *y, int p)
+{
+ #define R radixi.d
+ long i;
+#if 0
+ int k;
+#endif
+ double a,c,u,v,z[5];
+ if (p<5) {
+ if (p==1) c = X[1];
+ else if (p==2) c = X[1] + R* X[2];
+ else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
+ else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
+ }
+ else {
+ for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
+ {a *= TWO; z[1] *= TWO; }
+
+ for (i=2; i<5; i++) {
+ z[i] = X[i]*a;
+ u = (z[i] + CUTTER)-CUTTER;
+ if (u > z[i]) u -= RADIX;
+ z[i] -= u;
+ z[i-1] += u*RADIXI;
+ }
+
+ u = (z[3] + TWO71) - TWO71;
+ if (u > z[3]) u -= TWO19;
+ v = z[3]-u;
+
+ if (v == TWO18) {
+ if (z[4] == ZERO) {
+ for (i=5; i <= p; i++) {
+ if (X[i] == ZERO) continue;
+ else {z[3] += ONE; break; }
+ }
+ }
+ else z[3] += ONE;
+ }
+
+ c = (z[1] + R *(z[2] + R * z[3]))/a;
+ }
+
+ c *= X[0];
+
+ for (i=1; i<EX; i++) c *= RADIX;
+ for (i=1; i>EX; i--) c *= RADIXI;
+
+ *y = c;
+ return;
+#undef R
+}
+
+/* Convert a multiple precision number *x into a double precision */
+/* number *y, denormalized case (|x| < 2**(-1022))) */
+static void denorm(const mp_no *x, double *y, int p)
+{
+ long i,k;
+ long p2 = p;
+ double c,u,z[5];
+#if 0
+ double a,v;
+#endif
+
+#define R radixi.d
+ if (EX<-44 || (EX==-44 && X[1]<TWO5))
+ { *y=ZERO; return; }
+
+ if (p2==1) {
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
+ else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
+ }
+ else if (p2==2) {
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
+ else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
+ }
+ else {
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
+ else {z[1]= TWO10; z[2]=ZERO; k=1;}
+ z[3] = X[k];
+ }
+
+ u = (z[3] + TWO57) - TWO57;
+ if (u > z[3]) u -= TWO5;
+
+ if (u==z[3]) {
+ for (i=k+1; i <= p2; i++) {
+ if (X[i] == ZERO) continue;
+ else {z[3] += ONE; break; }
+ }
+ }
+
+ c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
+
+ *y = c*TWOM1032;
+ return;
+
+#undef R
+}
+
+/* Convert a multiple precision number *x into a double precision number *y. */
+/* The result is correctly rounded to the nearest/even. *x is left unchanged */
+
+void __mp_dbl(const mp_no *x, double *y, int p) {
+#if 0
+ int i,k;
+ double a,c,u,v,z[5];
+#endif
+
+ if (X[0] == ZERO) {*y = ZERO; return; }
+
+ if (EX> -42) norm(x,y,p);
+ else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
+ else denorm(x,y,p);
+}
+
+
+/* dbl_mp() converts a double precision number x into a multiple precision */
+/* number *y. If the precision p is too small the result is truncated. x is */
+/* left unchanged. */
+
+void __dbl_mp(double x, mp_no *y, int p) {
+
+ long i,n;
+ long p2 = p;
+ double u;
+
+ /* Sign */
+ if (x == ZERO) {Y[0] = ZERO; return; }
+ else if (x > ZERO) Y[0] = ONE;
+ else {Y[0] = MONE; x=-x; }
+
+ /* Exponent */
+ for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
+ for ( ; x < ONE; EY -= ONE) x *= RADIX;
+
+ /* Digits */
+ n=MIN(p2,4);
+ for (i=1; i<=n; i++) {
+ u = (x + TWO52) - TWO52;
+ if (u>x) u -= ONE;
+ Y[i] = u; x -= u; x *= RADIX; }
+ for ( ; i<=p2; i++) Y[i] = ZERO;
+ return;
+}
+
+
+/* add_magnitudes() adds the magnitudes of *x & *y assuming that */
+/* abs(*x) >= abs(*y) > 0. */
+/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
+/* No guard digit is used. The result equals the exact sum, truncated. */
+/* *x & *y are left unchanged. */
+
+static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+ long i,j,k;
+ long p2 = p;
+
+ EZ = EX;
+
+ i=p2; j=p2+ EY - EX; k=p2+1;
+
+ if (j<1)
+ {__cpy(x,z,p); return; }
+ else Z[k] = ZERO;
+
+ for (; j>0; i--,j--) {
+ Z[k] += X[i] + Y[j];
+ if (Z[k] >= RADIX) {
+ Z[k] -= RADIX;
+ Z[--k] = ONE; }
+ else
+ Z[--k] = ZERO;
+ }
+
+ for (; i>0; i--) {
+ Z[k] += X[i];
+ if (Z[k] >= RADIX) {
+ Z[k] -= RADIX;
+ Z[--k] = ONE; }
+ else
+ Z[--k] = ZERO;
+ }
+
+ if (Z[1] == ZERO) {
+ for (i=1; i<=p2; i++) Z[i] = Z[i+1]; }
+ else EZ += ONE;
+}
+
+
+/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
+/* abs(*x) > abs(*y) > 0. */
+/* The sign of the difference *z is undefined. x&y may overlap but not x&z */
+/* or y&z. One guard digit is used. The error is less than one ulp. */
+/* *x & *y are left unchanged. */
+
+static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+ long i,j,k;
+ long p2 = p;
+
+ EZ = EX;
+
+ if (EX == EY) {
+ i=j=k=p2;
+ Z[k] = Z[k+1] = ZERO; }
+ else {
+ j= EX - EY;
+ if (j > p2) {__cpy(x,z,p); return; }
+ else {
+ i=p2; j=p2+1-j; k=p2;
+ if (Y[j] > ZERO) {
+ Z[k+1] = RADIX - Y[j--];
+ Z[k] = MONE; }
+ else {
+ Z[k+1] = ZERO;
+ Z[k] = ZERO; j--;}
+ }
+ }
+
+ for (; j>0; i--,j--) {
+ Z[k] += (X[i] - Y[j]);
+ if (Z[k] < ZERO) {
+ Z[k] += RADIX;
+ Z[--k] = MONE; }
+ else
+ Z[--k] = ZERO;
+ }
+
+ for (; i>0; i--) {
+ Z[k] += X[i];
+ if (Z[k] < ZERO) {
+ Z[k] += RADIX;
+ Z[--k] = MONE; }
+ else
+ Z[--k] = ZERO;
+ }
+
+ for (i=1; Z[i] == ZERO; i++) ;
+ EZ = EZ - i + 1;
+ for (k=1; i <= p2+1; )
+ Z[k++] = Z[i++];
+ for (; k <= p2; )
+ Z[k++] = ZERO;
+
+ return;
+}
+
+
+/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
+/* but not x&z or y&z. One guard digit is used. The error is less than */
+/* one ulp. *x & *y are left unchanged. */
+
+void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+ int n;
+
+ if (X[0] == ZERO) {__cpy(y,z,p); return; }
+ else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
+
+ if (X[0] == Y[0]) {
+ if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
+ else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
+ }
+ else {
+ if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
+ else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
+ else Z[0] = ZERO;
+ }
+ return;
+}
+
+
+/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
+/* overlap but not x&z or y&z. One guard digit is used. The error is */
+/* less than one ulp. *x & *y are left unchanged. */
+
+void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+ int n;
+
+ if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; }
+ else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
+
+ if (X[0] != Y[0]) {
+ if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
+ else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
+ }
+ else {
+ if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
+ else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
+ else Z[0] = ZERO;
+ }
+ return;
+}
+
+
+/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
+/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
+/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
+/* *x & *y are left unchanged. */
+
+void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+ long i, i1, i2, j, k, k2;
+ long p2 = p;
+ double u, zk, zk2;
+
+ /* Is z=0? */
+ if (X[0]*Y[0]==ZERO)
+ { Z[0]=ZERO; return; }
+
+ /* Multiply, add and carry */
+ k2 = (p2<3) ? p2+p2 : p2+3;
+ zk = Z[k2]=ZERO;
+ for (k=k2; k>1; ) {
+ if (k > p2) {i1=k-p2; i2=p2+1; }
+ else {i1=1; i2=k; }
+#if 1
+ /* rearange this inner loop to allow the fmadd instructions to be
+ independent and execute in parallel on processors that have
+ dual symetrical FP pipelines. */
+ if (i1 < (i2-1))
+ {
+ /* make sure we have at least 2 iterations */
+ if (((i2 - i1) & 1L) == 1L)
+ {
+ /* Handle the odd iterations case. */
+ zk2 = x->d[i2-1]*y->d[i1];
+ }
+ else
+ zk2 = zero.d;
+ /* Do two multiply/adds per loop iteration, using independent
+ accumulators; zk and zk2. */
+ for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2)
+ {
+ zk += x->d[i]*y->d[j];
+ zk2 += x->d[i+1]*y->d[j-1];
+ }
+ zk += zk2; /* final sum. */
+ }
+ else
+ {
+ /* Special case when iterations is 1. */
+ zk += x->d[i1]*y->d[i1];
+ }
+#else
+ /* The orginal code. */
+ for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j];
+#endif
+
+ u = (zk + CUTTER)-CUTTER;
+ if (u > zk) u -= RADIX;
+ Z[k] = zk - u;
+ zk = u*RADIXI;
+ --k;
+ }
+ Z[k] = zk;
+
+ /* Is there a carry beyond the most significant digit? */
+ if (Z[1] == ZERO) {
+ for (i=1; i<=p2; i++) Z[i]=Z[i+1];
+ EZ = EX + EY - 1; }
+ else
+ EZ = EX + EY;
+
+ Z[0] = X[0] * Y[0];
+ return;
+}
+
+
+/* Invert a multiple precision number. Set *y = 1 / *x. */
+/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
+/* 2.001*r**(1-p) for p>3. */
+/* *x=0 is not permissible. *x is left unchanged. */
+
+void __inv(const mp_no *x, mp_no *y, int p) {
+ long i;
+#if 0
+ int l;
+#endif
+ double t;
+ mp_no z,w;
+ static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
+ 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
+ const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
+
+ __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
+ t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
+
+ for (i=0; i<np1[p]; i++) {
+ __cpy(y,&w,p);
+ __mul(x,&w,y,p);
+ __sub(&mptwo,y,&z,p);
+ __mul(&w,&z,y,p);
+ }
+ return;
+}
+
+
+/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
+/* are left unchanged. x&y may overlap but not x&z or y&z. */
+/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
+/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
+
+void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+ mp_no w;
+
+ if (X[0] == ZERO) Z[0] = ZERO;
+ else {__inv(y,&w,p); __mul(x,&w,z,p);}
+ return;
+}
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/slowexp.c b/sysdeps/powerpc/powerpc64/power4/fpu/slowexp.c
new file mode 100644
index 0000000000..b22b0dfeab
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/slowexp.c
@@ -0,0 +1,66 @@
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001, 2007 Free Software Foundation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+/**************************************************************************/
+/* MODULE_NAME:slowexp.c */
+/* */
+/* FUNCTION:slowexp */
+/* */
+/* FILES NEEDED:mpa.h */
+/* mpa.c mpexp.c */
+/* */
+/*Converting from double precision to Multi-precision and calculating */
+/* e^x */
+/**************************************************************************/
+#include "math_private.h"
+
+#ifdef NO_LONG_DOUBLE
+#include "mpa.h"
+void __mpexp(mp_no *x, mp_no *y, int p);
+#endif
+
+/*Converting from double precision to Multi-precision and calculating e^x */
+double __slowexp(double x) {
+#ifdef NO_LONG_DOUBLE
+ double w,z,res,eps=3.0e-26;
+ int p;
+ mp_no mpx, mpy, mpz,mpw,mpeps,mpcor;
+
+ p=6;
+ __dbl_mp(x,&mpx,p); /* Convert a double precision number x */
+ /* into a multiple precision number mpx with prec. p. */
+ __mpexp(&mpx, &mpy, p); /* Multi-Precision exponential function */
+ __dbl_mp(eps,&mpeps,p);
+ __mul(&mpeps,&mpy,&mpcor,p);
+ __add(&mpy,&mpcor,&mpw,p);
+ __sub(&mpy,&mpcor,&mpz,p);
+ __mp_dbl(&mpw, &w, p);
+ __mp_dbl(&mpz, &z, p);
+ if (w == z) return w;
+ else { /* if calculating is not exactly */
+ p = 32;
+ __dbl_mp(x,&mpx,p);
+ __mpexp(&mpx, &mpy, p);
+ __mp_dbl(&mpy, &res, p);
+ return res;
+ }
+#else
+ return (double) __ieee754_expl((long double)x);
+#endif
+}
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c b/sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c
new file mode 100644
index 0000000000..ad147a89a6
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/slowpow.c
@@ -0,0 +1,94 @@
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001, 2006 Free Software Foundation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+/*************************************************************************/
+/* MODULE_NAME:slowpow.c */
+/* */
+/* FUNCTION:slowpow */
+/* */
+/*FILES NEEDED:mpa.h */
+/* mpa.c mpexp.c mplog.c halfulp.c */
+/* */
+/* Given two IEEE double machine numbers y,x , routine computes the */
+/* correctly rounded (to nearest) value of x^y. Result calculated by */
+/* multiplication (in halfulp.c) or if result isn't accurate enough */
+/* then routine converts x and y into multi-precision doubles and */
+/* recompute. */
+/*************************************************************************/
+
+#include "mpa.h"
+#include "math_private.h"
+
+void __mpexp (mp_no * x, mp_no * y, int p);
+void __mplog (mp_no * x, mp_no * y, int p);
+double ulog (double);
+double __halfulp (double x, double y);
+
+double
+__slowpow (double x, double y, double z)
+{
+ double res, res1;
+ long double ldw, ldz, ldpp;
+ static const long double ldeps = 0x4.0p-96;
+
+ res = __halfulp (x, y); /* halfulp() returns -10 or x^y */
+ if (res >= 0)
+ return res; /* if result was really computed by halfulp */
+ /* else, if result was not really computed by halfulp */
+
+ /* Compute pow as long double, 106 bits */
+ ldz = __ieee754_logl ((long double) x);
+ ldw = (long double) y *ldz;
+ ldpp = __ieee754_expl (ldw);
+ res = (double) (ldpp + ldeps);
+ res1 = (double) (ldpp - ldeps);
+
+ if (res != res1) /* if result still not accurate enough */
+ { /* use mpa for higher persision. */
+ mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1;
+ static const mp_no eps = { -3, {1.0, 4.0} };
+ int p;
+
+ p = 10; /* p=precision 240 bits */
+ __dbl_mp (x, &mpx, p);
+ __dbl_mp (y, &mpy, p);
+ __dbl_mp (z, &mpz, p);
+ __mplog (&mpx, &mpz, p); /* log(x) = z */
+ __mul (&mpy, &mpz, &mpw, p); /* y * z =w */
+ __mpexp (&mpw, &mpp, p); /* e^w =pp */
+ __add (&mpp, &eps, &mpr, p); /* pp+eps =r */
+ __mp_dbl (&mpr, &res, p);
+ __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */
+ __mp_dbl (&mpr1, &res1, p); /* converting into double precision */
+ if (res == res1)
+ return res;
+
+ /* if we get here result wasn't calculated exactly, continue for
+ more exact calculation using 768 bits. */
+ p = 32;
+ __dbl_mp (x, &mpx, p);
+ __dbl_mp (y, &mpy, p);
+ __dbl_mp (z, &mpz, p);
+ __mplog (&mpx, &mpz, p); /* log(c)=z */
+ __mul (&mpy, &mpz, &mpw, p); /* y*z =w */
+ __mpexp (&mpw, &mpp, p); /* e^w=pp */
+ __mp_dbl (&mpp, &res, p); /* converting into double precision */
+ }
+ return res;
+}
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c
new file mode 100644
index 0000000000..d2b62b2672
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrt.c
@@ -0,0 +1,62 @@
+/* Double-precision floating point square root wrapper.
+ Copyright (C) 2004, 2007 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <math_ldbl_opt.h>
+#include "math.h"
+#include "math_private.h"
+#include <fenv_libc.h>
+
+#ifdef __STDC__
+double
+__sqrt (double x) /* wrapper sqrt */
+#else
+double
+__sqrt (x) /* wrapper sqrt */
+ double x;
+#endif
+{
+ double z;
+/* Power4 (ISA V2.0) and above implement sqrt in hardware. */
+ __asm __volatile (
+ " fsqrt %0,%1\n"
+ : "=f" (z)
+ : "f" (x));
+#ifdef _IEEE_LIBM
+ return z;
+#else
+ if (__builtin_expect (_LIB_VERSION == _IEEE_, 0))
+ return z;
+
+ if (__builtin_expect (x != x, 0))
+ return z;
+
+ if (__builtin_expect (x < 0.0, 0))
+ return __kernel_standard (x, x, 26); /* sqrt(negative) */
+ else
+ return z;
+#endif
+}
+
+weak_alias (__sqrt, sqrt)
+#ifdef NO_LONG_DOUBLE
+ strong_alias (__sqrt, __sqrtl) weak_alias (__sqrt, sqrtl)
+#endif
+#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_0)
+compat_symbol (libm, __sqrt, sqrtl, GLIBC_2_0);
+#endif
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c
new file mode 100644
index 0000000000..4784869f07
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/w_sqrtf.c
@@ -0,0 +1,60 @@
+/* Single-precision floating point square root wrapper.
+ Copyright (C) 2004, 2007 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include "math.h"
+#include "math_private.h"
+#include <fenv_libc.h>
+
+#include <sysdep.h>
+#include <ldsodefs.h>
+
+#ifdef __STDC__
+float
+__sqrtf (float x) /* wrapper sqrtf */
+#else
+float
+__sqrtf (x) /* wrapper sqrtf */
+ float x;
+#endif
+{
+#ifdef _IEEE_LIBM
+ return __ieee754_sqrtf (x);
+#else
+ float z;
+/* Power4 (ISA V2.0) and above implement sqrtf in hardware. */
+ __asm __volatile (
+ " fsqrts %0,%1\n"
+ : "=f" (z)
+ : "f" (x));
+
+ if (__builtin_expect (_LIB_VERSION == _IEEE_, 0))
+ return z;
+
+ if (__builtin_expect (x != x, 0))
+ return z;
+
+ if (__builtin_expect (x < 0.0, 0))
+ /* sqrtf(negative) */
+ return (float) __kernel_standard ((double) x, (double) x, 126);
+ else
+ return z;
+#endif
+}
+
+weak_alias (__sqrtf, sqrtf)
diff --git a/sysdeps/powerpc/powerpc64/power4/memcmp.S b/sysdeps/powerpc/powerpc64/power4/memcmp.S
new file mode 100644
index 0000000000..a5e0c758df
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/memcmp.S
@@ -0,0 +1,982 @@
+/* Optimized strcmp implementation for PowerPC64.
+ Copyright (C) 2003, 2006 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
+ 02110-1301 USA. */
+
+#include <sysdep.h>
+#include <bp-sym.h>
+#include <bp-asm.h>
+
+/* int [r3] memcmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */
+
+ .machine power4
+EALIGN (BP_SYM(memcmp), 4, 0)
+ CALL_MCOUNT 3
+
+#define rTMP r0
+#define rRTN r3
+#define rSTR1 r3 /* first string arg */
+#define rSTR2 r4 /* second string arg */
+#define rN r5 /* max string length */
+/* Note: The Bounded pointer support in this code is broken. This code
+ was inherited from PPC32 and and that support was never completed.
+ Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */
+#define rWORD1 r6 /* current word in s1 */
+#define rWORD2 r7 /* current word in s2 */
+#define rWORD3 r8 /* next word in s1 */
+#define rWORD4 r9 /* next word in s2 */
+#define rWORD5 r10 /* next word in s1 */
+#define rWORD6 r11 /* next word in s2 */
+#define rBITDIF r12 /* bits that differ in s1 & s2 words */
+#define rWORD7 r30 /* next word in s1 */
+#define rWORD8 r31 /* next word in s2 */
+
+ xor rTMP, rSTR2, rSTR1
+ cmpldi cr6, rN, 0
+ cmpldi cr1, rN, 12
+ clrldi. rTMP, rTMP, 61
+ clrldi rBITDIF, rSTR1, 61
+ cmpldi cr5, rBITDIF, 0
+ beq- cr6, L(zeroLength)
+ dcbt 0,rSTR1
+ dcbt 0,rSTR2
+/* If less than 8 bytes or not aligned, use the unalligned
+ byte loop. */
+ blt cr1, L(bytealigned)
+ std rWORD8,-8(r1)
+ cfi_offset(rWORD8,-8)
+ std rWORD7,-16(r1)
+ cfi_offset(rWORD7,-16)
+ bne L(unaligned)
+/* At this point we know both strings have the same alignment and the
+ compare length is at least 8 bytes. rBITDIF containes the low order
+ 3 bits of rSTR1 and cr5 contains the result of the logical compare
+ of rBITDIF to 0. If rBITDIF == 0 then we are already double word
+ aligned and can perform the DWaligned loop.
+
+ Otherwise we know the two strings have the same alignment (but not
+ yet DW). So we can force the string addresses to the next lower DW
+ boundary and special case this first DW word using shift left to
+ ellimiate bits preceeding the first byte. Since we want to join the
+ normal (DWaligned) compare loop, starting at the second double word,
+ we need to adjust the length (rN) and special case the loop
+ versioning for the first DW. This insures that the loop count is
+ correct and the first DW (shifted) is in the expected resister pair. */
+ .align 4
+L(samealignment):
+ clrrdi rSTR1, rSTR1, 3
+ clrrdi rSTR2, rSTR2, 3
+ beq cr5, L(DWaligned)
+ add rN, rN, rBITDIF
+ sldi r11, rBITDIF, 3
+ srdi rTMP, rN, 5 /* Divide by 32 */
+ andi. rBITDIF, rN, 24 /* Get the DW remainder */
+ ld rWORD1, 0(rSTR1)
+ ld rWORD2, 0(rSTR2)
+ cmpldi cr1, rBITDIF, 16
+ cmpldi cr7, rN, 32
+ clrldi rN, rN, 61
+ beq L(dPs4)
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ bgt cr1, L(dPs3)
+ beq cr1, L(dPs2)
+
+/* Remainder is 8 */
+ .align 3
+L(dsP1):
+ sld rWORD5, rWORD1, r11
+ sld rWORD6, rWORD2, r11
+ cmpld cr5, rWORD5, rWORD6
+ blt cr7, L(dP1x)
+/* Do something useful in this cycle since we have to branch anyway. */
+ ld rWORD1, 8(rSTR1)
+ ld rWORD2, 8(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ b L(dP1e)
+/* Remainder is 16 */
+ .align 4
+L(dPs2):
+ sld rWORD5, rWORD1, r11
+ sld rWORD6, rWORD2, r11
+ cmpld cr6, rWORD5, rWORD6
+ blt cr7, L(dP2x)
+/* Do something useful in this cycle since we have to branch anyway. */
+ ld rWORD7, 8(rSTR1)
+ ld rWORD8, 8(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ b L(dP2e)
+/* Remainder is 24 */
+ .align 4
+L(dPs3):
+ sld rWORD3, rWORD1, r11
+ sld rWORD4, rWORD2, r11
+ cmpld cr1, rWORD3, rWORD4
+ b L(dP3e)
+/* Count is a multiple of 32, remainder is 0 */
+ .align 4
+L(dPs4):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ sld rWORD1, rWORD1, r11
+ sld rWORD2, rWORD2, r11
+ cmpld cr0, rWORD1, rWORD2
+ b L(dP4e)
+
+/* At this point we know both strings are double word aligned and the
+ compare length is at least 8 bytes. */
+ .align 4
+L(DWaligned):
+ andi. rBITDIF, rN, 24 /* Get the DW remainder */
+ srdi rTMP, rN, 5 /* Divide by 32 */
+ cmpldi cr1, rBITDIF, 16
+ cmpldi cr7, rN, 32
+ clrldi rN, rN, 61
+ beq L(dP4)
+ bgt cr1, L(dP3)
+ beq cr1, L(dP2)
+
+/* Remainder is 8 */
+ .align 4
+L(dP1):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
+ (8-15 byte compare), we want to use only volitile registers. This
+ means we can avoid restoring non-volitile registers since we did not
+ change any on the early exit path. The key here is the non-early
+ exit path only cares about the condition code (cr5), not about which
+ register pair was used. */
+ ld rWORD5, 0(rSTR1)
+ ld rWORD6, 0(rSTR2)
+ cmpld cr5, rWORD5, rWORD6
+ blt cr7, L(dP1x)
+ ld rWORD1, 8(rSTR1)
+ ld rWORD2, 8(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+L(dP1e):
+ ld rWORD3, 16(rSTR1)
+ ld rWORD4, 16(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ ld rWORD5, 24(rSTR1)
+ ld rWORD6, 24(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr5, L(dLcr5)
+ bne cr0, L(dLcr0)
+
+ ldu rWORD7, 32(rSTR1)
+ ldu rWORD8, 32(rSTR2)
+ bne cr1, L(dLcr1)
+ cmpld cr5, rWORD7, rWORD8
+ bdnz L(dLoop)
+ bne cr6, L(dLcr6)
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ .align 3
+L(dP1x):
+ sldi. r12, rN, 3
+ bne cr5, L(dLcr5)
+ subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
+ bne L(d00)
+ li rRTN, 0
+ blr
+
+/* Remainder is 16 */
+ .align 4
+L(dP2):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ ld rWORD5, 0(rSTR1)
+ ld rWORD6, 0(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ blt cr7, L(dP2x)
+ ld rWORD7, 8(rSTR1)
+ ld rWORD8, 8(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+L(dP2e):
+ ld rWORD1, 16(rSTR1)
+ ld rWORD2, 16(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ ld rWORD3, 24(rSTR1)
+ ld rWORD4, 24(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ addi rSTR1, rSTR1, 8
+ addi rSTR2, rSTR2, 8
+ bne cr6, L(dLcr6)
+ bne cr5, L(dLcr5)
+ b L(dLoop2)
+/* Again we are on a early exit path (16-23 byte compare), we want to
+ only use volitile registers and avoid restoring non-volitile
+ registers. */
+ .align 4
+L(dP2x):
+ ld rWORD3, 8(rSTR1)
+ ld rWORD4, 8(rSTR2)
+ cmpld cr5, rWORD3, rWORD4
+ sldi. r12, rN, 3
+ bne cr6, L(dLcr6)
+ addi rSTR1, rSTR1, 8
+ addi rSTR2, rSTR2, 8
+ bne cr5, L(dLcr5)
+ subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
+ bne L(d00)
+ li rRTN, 0
+ blr
+
+/* Remainder is 24 */
+ .align 4
+L(dP3):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ ld rWORD3, 0(rSTR1)
+ ld rWORD4, 0(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+L(dP3e):
+ ld rWORD5, 8(rSTR1)
+ ld rWORD6, 8(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ blt cr7, L(dP3x)
+ ld rWORD7, 16(rSTR1)
+ ld rWORD8, 16(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ ld rWORD1, 24(rSTR1)
+ ld rWORD2, 24(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ addi rSTR1, rSTR1, 16
+ addi rSTR2, rSTR2, 16
+ bne cr1, L(dLcr1)
+ bne cr6, L(dLcr6)
+ b L(dLoop1)
+/* Again we are on a early exit path (24-31 byte compare), we want to
+ only use volitile registers and avoid restoring non-volitile
+ registers. */
+ .align 4
+L(dP3x):
+ ld rWORD1, 16(rSTR1)
+ ld rWORD2, 16(rSTR2)
+ cmpld cr5, rWORD1, rWORD2
+ sldi. r12, rN, 3
+ bne cr1, L(dLcr1)
+ addi rSTR1, rSTR1, 16
+ addi rSTR2, rSTR2, 16
+ bne cr6, L(dLcr6)
+ subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
+ bne cr5, L(dLcr5)
+ bne L(d00)
+ li rRTN, 0
+ blr
+
+/* Count is a multiple of 32, remainder is 0 */
+ .align 4
+L(dP4):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ ld rWORD1, 0(rSTR1)
+ ld rWORD2, 0(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+L(dP4e):
+ ld rWORD3, 8(rSTR1)
+ ld rWORD4, 8(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ ld rWORD5, 16(rSTR1)
+ ld rWORD6, 16(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ ldu rWORD7, 24(rSTR1)
+ ldu rWORD8, 24(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ bne cr0, L(dLcr0)
+ bne cr1, L(dLcr1)
+ bdz- L(d24) /* Adjust CTR as we start with +4 */
+/* This is the primary loop */
+ .align 4
+L(dLoop):
+ ld rWORD1, 8(rSTR1)
+ ld rWORD2, 8(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ bne cr6, L(dLcr6)
+L(dLoop1):
+ ld rWORD3, 16(rSTR1)
+ ld rWORD4, 16(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr5, L(dLcr5)
+L(dLoop2):
+ ld rWORD5, 24(rSTR1)
+ ld rWORD6, 24(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ bne cr0, L(dLcr0)
+L(dLoop3):
+ ldu rWORD7, 32(rSTR1)
+ ldu rWORD8, 32(rSTR2)
+ bne- cr1, L(dLcr1)
+ cmpld cr0, rWORD1, rWORD2
+ bdnz+ L(dLoop)
+
+L(dL4):
+ cmpld cr1, rWORD3, rWORD4
+ bne cr6, L(dLcr6)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr5, L(dLcr5)
+ cmpld cr5, rWORD7, rWORD8
+L(d44):
+ bne cr0, L(dLcr0)
+L(d34):
+ bne cr1, L(dLcr1)
+L(d24):
+ bne cr6, L(dLcr6)
+L(d14):
+ sldi. r12, rN, 3
+ bne cr5, L(dLcr5)
+L(d04):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
+ beq L(zeroLength)
+/* At this point we have a remainder of 1 to 7 bytes to compare. Since
+ we are aligned it is safe to load the whole double word, and use
+ shift right double to elliminate bits beyond the compare length. */
+L(d00):
+ ld rWORD1, 8(rSTR1)
+ ld rWORD2, 8(rSTR2)
+ srd rWORD1, rWORD1, rN
+ srd rWORD2, rWORD2, rN
+ cmpld cr5, rWORD1, rWORD2
+ bne cr5, L(dLcr5x)
+ li rRTN, 0
+ blr
+ .align 4
+L(dLcr0):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgtlr cr0
+ li rRTN, -1
+ blr
+ .align 4
+L(dLcr1):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgtlr cr1
+ li rRTN, -1
+ blr
+ .align 4
+L(dLcr6):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgtlr cr6
+ li rRTN, -1
+ blr
+ .align 4
+L(dLcr5):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+L(dLcr5x):
+ li rRTN, 1
+ bgtlr cr5
+ li rRTN, -1
+ blr
+
+ .align 4
+L(bytealigned):
+ mtctr rN /* Power4 wants mtctr 1st in dispatch group */
+ beq- cr6, L(zeroLength)
+
+/* We need to prime this loop. This loop is swing modulo scheduled
+ to avoid pipe delays. The dependent instruction latencies (load to
+ compare to conditional branch) is 2 to 3 cycles. In this loop each
+ dispatch group ends in a branch and takes 1 cycle. Effectively
+ the first iteration of the loop only serves to load operands and
+ branches based on compares are delayed until the next loop.
+
+ So we must precondition some registers and condition codes so that
+ we don't exit the loop early on the first iteration. */
+
+ lbz rWORD1, 0(rSTR1)
+ lbz rWORD2, 0(rSTR2)
+ bdz- L(b11)
+ cmpld cr0, rWORD1, rWORD2
+ lbz rWORD3, 1(rSTR1)
+ lbz rWORD4, 1(rSTR2)
+ bdz- L(b12)
+ cmpld cr1, rWORD3, rWORD4
+ lbzu rWORD5, 2(rSTR1)
+ lbzu rWORD6, 2(rSTR2)
+ bdz- L(b13)
+ .align 4
+L(bLoop):
+ lbzu rWORD1, 1(rSTR1)
+ lbzu rWORD2, 1(rSTR2)
+ bne- cr0, L(bLcr0)
+
+ cmpld cr6, rWORD5, rWORD6
+ bdz- L(b3i)
+
+ lbzu rWORD3, 1(rSTR1)
+ lbzu rWORD4, 1(rSTR2)
+ bne- cr1, L(bLcr1)
+
+ cmpld cr0, rWORD1, rWORD2
+ bdz- L(b2i)
+
+ lbzu rWORD5, 1(rSTR1)
+ lbzu rWORD6, 1(rSTR2)
+ bne- cr6, L(bLcr6)
+
+ cmpld cr1, rWORD3, rWORD4
+ bdnz+ L(bLoop)
+
+/* We speculatively loading bytes before we have tested the previous
+ bytes. But we must avoid overrunning the length (in the ctr) to
+ prevent these speculative loads from causing a segfault. In this
+ case the loop will exit early (before the all pending bytes are
+ tested. In this case we must complete the pending operations
+ before returning. */
+L(b1i):
+ bne- cr0, L(bLcr0)
+ bne- cr1, L(bLcr1)
+ b L(bx56)
+ .align 4
+L(b2i):
+ bne- cr6, L(bLcr6)
+ bne- cr0, L(bLcr0)
+ b L(bx34)
+ .align 4
+L(b3i):
+ bne- cr1, L(bLcr1)
+ bne- cr6, L(bLcr6)
+ b L(bx12)
+ .align 4
+L(bLcr0):
+ li rRTN, 1
+ bgtlr cr0
+ li rRTN, -1
+ blr
+L(bLcr1):
+ li rRTN, 1
+ bgtlr cr1
+ li rRTN, -1
+ blr
+L(bLcr6):
+ li rRTN, 1
+ bgtlr cr6
+ li rRTN, -1
+ blr
+
+L(b13):
+ bne- cr0, L(bx12)
+ bne- cr1, L(bx34)
+L(bx56):
+ sub rRTN, rWORD5, rWORD6
+ blr
+ nop
+L(b12):
+ bne- cr0, L(bx12)
+L(bx34):
+ sub rRTN, rWORD3, rWORD4
+ blr
+L(b11):
+L(bx12):
+ sub rRTN, rWORD1, rWORD2
+ blr
+ .align 4
+L(zeroLengthReturn):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+L(zeroLength):
+ li rRTN, 0
+ blr
+
+ .align 4
+/* At this point we know the strings have different alignment and the
+ compare length is at least 8 bytes. rBITDIF containes the low order
+ 3 bits of rSTR1 and cr5 contains the result of the logical compare
+ of rBITDIF to 0. If rBITDIF == 0 then rStr1 is double word
+ aligned and can perform the DWunaligned loop.
+
+ Otherwise we know that rSTR1 is not aready DW aligned yet.
+ So we can force the string addresses to the next lower DW
+ boundary and special case this first DW word using shift left to
+ ellimiate bits preceeding the first byte. Since we want to join the
+ normal (DWaligned) compare loop, starting at the second double word,
+ we need to adjust the length (rN) and special case the loop
+ versioning for the first DW. This insures that the loop count is
+ correct and the first DW (shifted) is in the expected resister pair. */
+#define rSHL r29 /* Unaligned shift left count. */
+#define rSHR r28 /* Unaligned shift right count. */
+#define rB r27 /* Left rotation temp for rWORD2. */
+#define rD r26 /* Left rotation temp for rWORD4. */
+#define rF r25 /* Left rotation temp for rWORD6. */
+#define rH r24 /* Left rotation temp for rWORD8. */
+#define rA r0 /* Right rotation temp for rWORD2. */
+#define rC r12 /* Right rotation temp for rWORD4. */
+#define rE r0 /* Right rotation temp for rWORD6. */
+#define rG r12 /* Right rotation temp for rWORD8. */
+L(unaligned):
+ std r29,-24(r1)
+ cfi_offset(r29,-24)
+ clrldi rSHL, rSTR2, 61
+ beq- cr6, L(duzeroLength)
+ std r28,-32(r1)
+ cfi_offset(r28,-32)
+ beq cr5, L(DWunaligned)
+ std r27,-40(r1)
+ cfi_offset(r27,-40)
+/* Adjust the logical start of rSTR2 ro compensate for the extra bits
+ in the 1st rSTR1 DW. */
+ sub r27, rSTR2, rBITDIF
+/* But do not attempt to address the DW before that DW that contains
+ the actual start of rSTR2. */
+ clrrdi rSTR2, rSTR2, 3
+ std r26,-48(r1)
+ cfi_offset(r26,-48)
+/* Compute the leaft/right shift counts for the unalign rSTR2,
+ compensating for the logical (DW aligned) start of rSTR1. */
+ clrldi rSHL, r27, 61
+ clrrdi rSTR1, rSTR1, 3
+ std r25,-56(r1)
+ cfi_offset(r25,-56)
+ sldi rSHL, rSHL, 3
+ cmpld cr5, r27, rSTR2
+ add rN, rN, rBITDIF
+ sldi r11, rBITDIF, 3
+ std r24,-64(r1)
+ cfi_offset(r24,-64)
+ subfic rSHR, rSHL, 64
+ srdi rTMP, rN, 5 /* Divide by 32 */
+ andi. rBITDIF, rN, 24 /* Get the DW remainder */
+/* We normally need to load 2 DWs to start the unaligned rSTR2, but in
+ this special case those bits may be discarded anyway. Also we
+ must avoid loading a DW where none of the bits are part of rSTR2 as
+ this may cross a page boundary and cause a page fault. */
+ li rWORD8, 0
+ blt cr5, L(dus0)
+ ld rWORD8, 0(rSTR2)
+ la rSTR2, 8(rSTR2)
+ sld rWORD8, rWORD8, rSHL
+
+L(dus0):
+ ld rWORD1, 0(rSTR1)
+ ld rWORD2, 0(rSTR2)
+ cmpldi cr1, rBITDIF, 16
+ cmpldi cr7, rN, 32
+ srd rG, rWORD2, rSHR
+ clrldi rN, rN, 61
+ beq L(duPs4)
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ or rWORD8, rG, rWORD8
+ bgt cr1, L(duPs3)
+ beq cr1, L(duPs2)
+
+/* Remainder is 8 */
+ .align 4
+L(dusP1):
+ sld rB, rWORD2, rSHL
+ sld rWORD7, rWORD1, r11
+ sld rWORD8, rWORD8, r11
+ bge cr7, L(duP1e)
+/* At this point we exit early with the first double word compare
+ complete and remainder of 0 to 7 bytes. See L(du14) for details on
+ how we handle the remaining bytes. */
+ cmpld cr5, rWORD7, rWORD8
+ sldi. rN, rN, 3
+ bne cr5, L(duLcr5)
+ cmpld cr7, rN, rSHR
+ beq L(duZeroReturn)
+ li rA, 0
+ ble cr7, L(dutrim)
+ ld rWORD2, 8(rSTR2)
+ srd rA, rWORD2, rSHR
+ b L(dutrim)
+/* Remainder is 16 */
+ .align 4
+L(duPs2):
+ sld rH, rWORD2, rSHL
+ sld rWORD5, rWORD1, r11
+ sld rWORD6, rWORD8, r11
+ b L(duP2e)
+/* Remainder is 24 */
+ .align 4
+L(duPs3):
+ sld rF, rWORD2, rSHL
+ sld rWORD3, rWORD1, r11
+ sld rWORD4, rWORD8, r11
+ b L(duP3e)
+/* Count is a multiple of 32, remainder is 0 */
+ .align 4
+L(duPs4):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ or rWORD8, rG, rWORD8
+ sld rD, rWORD2, rSHL
+ sld rWORD1, rWORD1, r11
+ sld rWORD2, rWORD8, r11
+ b L(duP4e)
+
+/* At this point we know rSTR1 is double word aligned and the
+ compare length is at least 8 bytes. */
+ .align 4
+L(DWunaligned):
+ std r27,-40(r1)
+ cfi_offset(r27,-40)
+ clrrdi rSTR2, rSTR2, 3
+ std r26,-48(r1)
+ cfi_offset(r26,-48)
+ srdi rTMP, rN, 5 /* Divide by 32 */
+ std r25,-56(r1)
+ cfi_offset(r25,-56)
+ andi. rBITDIF, rN, 24 /* Get the DW remainder */
+ std r24,-64(r1)
+ cfi_offset(r24,-64)
+ sldi rSHL, rSHL, 3
+ ld rWORD6, 0(rSTR2)
+ ldu rWORD8, 8(rSTR2)
+ cmpldi cr1, rBITDIF, 16
+ cmpldi cr7, rN, 32
+ clrldi rN, rN, 61
+ subfic rSHR, rSHL, 64
+ sld rH, rWORD6, rSHL
+ beq L(duP4)
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ bgt cr1, L(duP3)
+ beq cr1, L(duP2)
+
+/* Remainder is 8 */
+ .align 4
+L(duP1):
+ srd rG, rWORD8, rSHR
+ ld rWORD7, 0(rSTR1)
+ sld rB, rWORD8, rSHL
+ or rWORD8, rG, rH
+ blt cr7, L(duP1x)
+L(duP1e):
+ ld rWORD1, 8(rSTR1)
+ ld rWORD2, 8(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ srd rA, rWORD2, rSHR
+ sld rD, rWORD2, rSHL
+ or rWORD2, rA, rB
+ ld rWORD3, 16(rSTR1)
+ ld rWORD4, 16(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ srd rC, rWORD4, rSHR
+ sld rF, rWORD4, rSHL
+ bne cr5, L(duLcr5)
+ or rWORD4, rC, rD
+ ld rWORD5, 24(rSTR1)
+ ld rWORD6, 24(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ srd rE, rWORD6, rSHR
+ sld rH, rWORD6, rSHL
+ bne cr0, L(duLcr0)
+ or rWORD6, rE, rF
+ cmpld cr6, rWORD5, rWORD6
+ b L(duLoop3)
+ .align 4
+/* At this point we exit early with the first double word compare
+ complete and remainder of 0 to 7 bytes. See L(du14) for details on
+ how we handle the remaining bytes. */
+L(duP1x):
+ cmpld cr5, rWORD7, rWORD8
+ sldi. rN, rN, 3
+ bne cr5, L(duLcr5)
+ cmpld cr7, rN, rSHR
+ beq L(duZeroReturn)
+ li rA, 0
+ ble cr7, L(dutrim)
+ ld rWORD2, 8(rSTR2)
+ srd rA, rWORD2, rSHR
+ b L(dutrim)
+/* Remainder is 16 */
+ .align 4
+L(duP2):
+ srd rE, rWORD8, rSHR
+ ld rWORD5, 0(rSTR1)
+ or rWORD6, rE, rH
+ sld rH, rWORD8, rSHL
+L(duP2e):
+ ld rWORD7, 8(rSTR1)
+ ld rWORD8, 8(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ srd rG, rWORD8, rSHR
+ sld rB, rWORD8, rSHL
+ or rWORD8, rG, rH
+ blt cr7, L(duP2x)
+ ld rWORD1, 16(rSTR1)
+ ld rWORD2, 16(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ bne cr6, L(duLcr6)
+ srd rA, rWORD2, rSHR
+ sld rD, rWORD2, rSHL
+ or rWORD2, rA, rB
+ ld rWORD3, 24(rSTR1)
+ ld rWORD4, 24(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ bne cr5, L(duLcr5)
+ srd rC, rWORD4, rSHR
+ sld rF, rWORD4, rSHL
+ or rWORD4, rC, rD
+ addi rSTR1, rSTR1, 8
+ addi rSTR2, rSTR2, 8
+ cmpld cr1, rWORD3, rWORD4
+ b L(duLoop2)
+ .align 4
+L(duP2x):
+ cmpld cr5, rWORD7, rWORD8
+ addi rSTR1, rSTR1, 8
+ addi rSTR2, rSTR2, 8
+ bne cr6, L(duLcr6)
+ sldi. rN, rN, 3
+ bne cr5, L(duLcr5)
+ cmpld cr7, rN, rSHR
+ beq L(duZeroReturn)
+ li rA, 0
+ ble cr7, L(dutrim)
+ ld rWORD2, 8(rSTR2)
+ srd rA, rWORD2, rSHR
+ b L(dutrim)
+
+/* Remainder is 24 */
+ .align 4
+L(duP3):
+ srd rC, rWORD8, rSHR
+ ld rWORD3, 0(rSTR1)
+ sld rF, rWORD8, rSHL
+ or rWORD4, rC, rH
+L(duP3e):
+ ld rWORD5, 8(rSTR1)
+ ld rWORD6, 8(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ srd rE, rWORD6, rSHR
+ sld rH, rWORD6, rSHL
+ or rWORD6, rE, rF
+ ld rWORD7, 16(rSTR1)
+ ld rWORD8, 16(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr1, L(duLcr1)
+ srd rG, rWORD8, rSHR
+ sld rB, rWORD8, rSHL
+ or rWORD8, rG, rH
+ blt cr7, L(duP3x)
+ ld rWORD1, 24(rSTR1)
+ ld rWORD2, 24(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ bne cr6, L(duLcr6)
+ srd rA, rWORD2, rSHR
+ sld rD, rWORD2, rSHL
+ or rWORD2, rA, rB
+ addi rSTR1, rSTR1, 16
+ addi rSTR2, rSTR2, 16
+ cmpld cr0, rWORD1, rWORD2
+ b L(duLoop1)
+ .align 4
+L(duP3x):
+ addi rSTR1, rSTR1, 16
+ addi rSTR2, rSTR2, 16
+ bne cr1, L(duLcr1)
+ cmpld cr5, rWORD7, rWORD8
+ bne cr6, L(duLcr6)
+ sldi. rN, rN, 3
+ bne cr5, L(duLcr5)
+ cmpld cr7, rN, rSHR
+ beq L(duZeroReturn)
+ li rA, 0
+ ble cr7, L(dutrim)
+ ld rWORD2, 8(rSTR2)
+ srd rA, rWORD2, rSHR
+ b L(dutrim)
+
+/* Count is a multiple of 32, remainder is 0 */
+ .align 4
+L(duP4):
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
+ srd rA, rWORD8, rSHR
+ ld rWORD1, 0(rSTR1)
+ sld rD, rWORD8, rSHL
+ or rWORD2, rA, rH
+L(duP4e):
+ ld rWORD3, 8(rSTR1)
+ ld rWORD4, 8(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ srd rC, rWORD4, rSHR
+ sld rF, rWORD4, rSHL
+ or rWORD4, rC, rD
+ ld rWORD5, 16(rSTR1)
+ ld rWORD6, 16(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ bne cr0, L(duLcr0)
+ srd rE, rWORD6, rSHR
+ sld rH, rWORD6, rSHL
+ or rWORD6, rE, rF
+ ldu rWORD7, 24(rSTR1)
+ ldu rWORD8, 24(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr1, L(duLcr1)
+ srd rG, rWORD8, rSHR
+ sld rB, rWORD8, rSHL
+ or rWORD8, rG, rH
+ cmpld cr5, rWORD7, rWORD8
+ bdz- L(du24) /* Adjust CTR as we start with +4 */
+/* This is the primary loop */
+ .align 4
+L(duLoop):
+ ld rWORD1, 8(rSTR1)
+ ld rWORD2, 8(rSTR2)
+ cmpld cr1, rWORD3, rWORD4
+ bne cr6, L(duLcr6)
+ srd rA, rWORD2, rSHR
+ sld rD, rWORD2, rSHL
+ or rWORD2, rA, rB
+L(duLoop1):
+ ld rWORD3, 16(rSTR1)
+ ld rWORD4, 16(rSTR2)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr5, L(duLcr5)
+ srd rC, rWORD4, rSHR
+ sld rF, rWORD4, rSHL
+ or rWORD4, rC, rD
+L(duLoop2):
+ ld rWORD5, 24(rSTR1)
+ ld rWORD6, 24(rSTR2)
+ cmpld cr5, rWORD7, rWORD8
+ bne cr0, L(duLcr0)
+ srd rE, rWORD6, rSHR
+ sld rH, rWORD6, rSHL
+ or rWORD6, rE, rF
+L(duLoop3):
+ ldu rWORD7, 32(rSTR1)
+ ldu rWORD8, 32(rSTR2)
+ cmpld cr0, rWORD1, rWORD2
+ bne- cr1, L(duLcr1)
+ srd rG, rWORD8, rSHR
+ sld rB, rWORD8, rSHL
+ or rWORD8, rG, rH
+ bdnz+ L(duLoop)
+
+L(duL4):
+ bne cr1, L(duLcr1)
+ cmpld cr1, rWORD3, rWORD4
+ bne cr6, L(duLcr6)
+ cmpld cr6, rWORD5, rWORD6
+ bne cr5, L(duLcr5)
+ cmpld cr5, rWORD7, rWORD8
+L(du44):
+ bne cr0, L(duLcr0)
+L(du34):
+ bne cr1, L(duLcr1)
+L(du24):
+ bne cr6, L(duLcr6)
+L(du14):
+ sldi. rN, rN, 3
+ bne cr5, L(duLcr5)
+/* At this point we have a remainder of 1 to 7 bytes to compare. We use
+ shift right double to elliminate bits beyond the compare length.
+ This allows the use of double word subtract to compute the final
+ result.
+
+ However it may not be safe to load rWORD2 which may be beyond the
+ string length. So we compare the bit length of the remainder to
+ the right shift count (rSHR). If the bit count is less than or equal
+ we do not need to load rWORD2 (all significant bits are already in
+ rB). */
+ cmpld cr7, rN, rSHR
+ beq L(duZeroReturn)
+ li rA, 0
+ ble cr7, L(dutrim)
+ ld rWORD2, 8(rSTR2)
+ srd rA, rWORD2, rSHR
+ .align 4
+L(dutrim):
+ ld rWORD1, 8(rSTR1)
+ ld rWORD8,-8(r1)
+ subfic rN, rN, 64 /* Shift count is 64 - (rN * 8). */
+ or rWORD2, rA, rB
+ ld rWORD7,-16(r1)
+ ld r29,-24(r1)
+ srd rWORD1, rWORD1, rN
+ srd rWORD2, rWORD2, rN
+ ld r28,-32(r1)
+ ld r27,-40(r1)
+ li rRTN, 0
+ cmpld cr0, rWORD1, rWORD2
+ ld r26,-48(r1)
+ ld r25,-56(r1)
+ beq cr0, L(dureturn24)
+ li rRTN, 1
+ ld r24,-64(r1)
+ bgtlr cr0
+ li rRTN, -1
+ blr
+ .align 4
+L(duLcr0):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgt cr0, L(dureturn29)
+ ld r29,-24(r1)
+ ld r28,-32(r1)
+ li rRTN, -1
+ b L(dureturn27)
+ .align 4
+L(duLcr1):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgt cr1, L(dureturn29)
+ ld r29,-24(r1)
+ ld r28,-32(r1)
+ li rRTN, -1
+ b L(dureturn27)
+ .align 4
+L(duLcr6):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgt cr6, L(dureturn29)
+ ld r29,-24(r1)
+ ld r28,-32(r1)
+ li rRTN, -1
+ b L(dureturn27)
+ .align 4
+L(duLcr5):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+ li rRTN, 1
+ bgt cr5, L(dureturn29)
+ ld r29,-24(r1)
+ ld r28,-32(r1)
+ li rRTN, -1
+ b L(dureturn27)
+ .align 3
+L(duZeroReturn):
+ li rRTN,0
+ .align 4
+L(dureturn):
+ ld rWORD8,-8(r1)
+ ld rWORD7,-16(r1)
+L(dureturn29):
+ ld r29,-24(r1)
+ ld r28,-32(r1)
+L(dureturn27):
+ ld r27,-40(r1)
+L(dureturn26):
+ ld r26,-48(r1)
+L(dureturn25):
+ ld r25,-56(r1)
+L(dureturn24):
+ ld r24,-64(r1)
+ blr
+L(duzeroLength):
+ li rRTN,0
+ blr
+
+END (BP_SYM (memcmp))
+libc_hidden_builtin_def (memcmp)
+weak_alias (memcmp, bcmp)
diff --git a/sysdeps/powerpc/powerpc64/power4/memcopy.h b/sysdeps/powerpc/powerpc64/power4/memcopy.h
new file mode 100644
index 0000000000..9a4ff79f4a
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/memcopy.h
@@ -0,0 +1 @@
+#include "../../powerpc32/power4/memcopy.h"
diff --git a/sysdeps/powerpc/powerpc64/power4/memcpy.S b/sysdeps/powerpc/powerpc64/power4/memcpy.S
new file mode 100644
index 0000000000..56f313b4b8
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/memcpy.S
@@ -0,0 +1,418 @@
+/* Optimized memcpy implementation for PowerPC64.
+ Copyright (C) 2003, 2006 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
+ 02110-1301 USA. */
+
+#include <sysdep.h>
+#include <bp-sym.h>
+#include <bp-asm.h>
+
+/* __ptr_t [r3] memcpy (__ptr_t dst [r3], __ptr_t src [r4], size_t len [r5]);
+ Returns 'dst'.
+
+ Memcpy handles short copies (< 32-bytes) using a binary move blocks
+ (no loops) of lwz/stw. The tail (remaining 1-3) bytes is handled
+ with the appropriate combination of byte and halfword load/stores.
+ There is minimal effort to optimize the alignment of short moves.
+ The 64-bit implementations of POWER3 and POWER4 do a reasonable job
+ of handling unligned load/stores that do not cross 32-byte boundries.
+
+ Longer moves (>= 32-bytes) justify the effort to get at least the
+ destination doubleword (8-byte) aligned. Further optimization is
+ posible when both source and destination are doubleword aligned.
+ Each case has a optimized unrolled loop. */
+
+ .machine power4
+EALIGN (BP_SYM (memcpy), 5, 0)
+ CALL_MCOUNT 3
+
+ cmpldi cr1,5,31
+ neg 0,3
+ std 3,-16(1)
+ std 31,-8(1)
+ cfi_offset(31,-8)
+ andi. 11,3,7 /* check alignement of dst. */
+ clrldi 0,0,61 /* Number of bytes until the 1st doubleword of dst. */
+ clrldi 10,4,61 /* check alignement of src. */
+ cmpldi cr6,5,8
+ ble- cr1,.L2 /* If move < 32 bytes use short move code. */
+ cmpld cr6,10,11
+ mr 12,4
+ srdi 9,5,3 /* Number of full double words remaining. */
+ mtcrf 0x01,0
+ mr 31,5
+ beq .L0
+
+ subf 31,0,5
+ /* Move 0-7 bytes as needed to get the destination doubleword alligned. */
+1: bf 31,2f
+ lbz 6,0(12)
+ addi 12,12,1
+ stb 6,0(3)
+ addi 3,3,1
+2: bf 30,4f
+ lhz 6,0(12)
+ addi 12,12,2
+ sth 6,0(3)
+ addi 3,3,2
+4: bf 29,0f
+ lwz 6,0(12)
+ addi 12,12,4
+ stw 6,0(3)
+ addi 3,3,4
+0:
+ clrldi 10,12,61 /* check alignement of src again. */
+ srdi 9,31,3 /* Number of full double words remaining. */
+
+ /* Copy doublewords from source to destination, assumpting the
+ destination is aligned on a doubleword boundary.
+
+ At this point we know there are at least 25 bytes left (32-7) to copy.
+ The next step is to determine if the source is also doubleword aligned.
+ If not branch to the unaligned move code at .L6. which uses
+ a load, shift, store strategy.
+
+ Otherwise source and destination are doubleword aligned, and we can
+ the optimized doubleword copy loop. */
+.L0:
+ clrldi 11,31,61
+ mtcrf 0x01,9
+ cmpldi cr1,11,0
+ bne- cr6,.L6 /* If source is not DW aligned. */
+
+ /* Move doublewords where destination and source are DW aligned.
+ Use a unrolled loop to copy 4 doubleword (32-bytes) per iteration.
+ If the the copy is not an exact multiple of 32 bytes, 1-3
+ doublewords are copied as needed to set up the main loop. After
+ the main loop exits there may be a tail of 1-7 bytes. These byte are
+ copied a word/halfword/byte at a time as needed to preserve alignment. */
+
+ srdi 8,31,5
+ cmpldi cr1,9,4
+ cmpldi cr6,11,0
+ mr 11,12
+
+ bf 30,1f
+ ld 6,0(12)
+ ld 7,8(12)
+ addi 11,12,16
+ mtctr 8
+ std 6,0(3)
+ std 7,8(3)
+ addi 10,3,16
+ bf 31,4f
+ ld 0,16(12)
+ std 0,16(3)
+ blt cr1,3f
+ addi 11,12,24
+ addi 10,3,24
+ b 4f
+ .align 4
+1:
+ mr 10,3
+ mtctr 8
+ bf 31,4f
+ ld 6,0(12)
+ addi 11,12,8
+ std 6,0(3)
+ addi 10,3,8
+
+ .align 4
+4:
+ ld 6,0(11)
+ ld 7,8(11)
+ ld 8,16(11)
+ ld 0,24(11)
+ addi 11,11,32
+2:
+ std 6,0(10)
+ std 7,8(10)
+ std 8,16(10)
+ std 0,24(10)
+ addi 10,10,32
+ bdnz 4b
+3:
+
+ rldicr 0,31,0,60
+ mtcrf 0x01,31
+ beq cr6,0f
+.L9:
+ add 3,3,0
+ add 12,12,0
+
+/* At this point we have a tail of 0-7 bytes and we know that the
+ destiniation is double word aligned. */
+4: bf 29,2f
+ lwz 6,0(12)
+ addi 12,12,4
+ stw 6,0(3)
+ addi 3,3,4
+2: bf 30,1f
+ lhz 6,0(12)
+ addi 12,12,2
+ sth 6,0(3)
+ addi 3,3,2
+1: bf 31,0f
+ lbz 6,0(12)
+ stb 6,0(3)
+0:
+ /* Return original dst pointer. */
+ ld 31,-8(1)
+ ld 3,-16(1)
+ blr
+
+/* Copy up to 31 bytes. This divided into two cases 0-8 bytes and 9-31
+ bytes. Each case is handled without loops, using binary (1,2,4,8)
+ tests.
+
+ In the short (0-8 byte) case no attempt is made to force alignment
+ of either source or destination. The hardware will handle the
+ unaligned load/stores with small delays for crossing 32- 64-byte, and
+ 4096-byte boundaries. Since these short moves are unlikely to be
+ unaligned or cross these boundaries, the overhead to force
+ alignment is not justified.
+
+ The longer (9-31 byte) move is more likely to cross 32- or 64-byte
+ boundaries. Since only loads are sensitive to the 32-/64-byte
+ boundaries it is more important to align the source then the
+ destination. If the source is not already word aligned, we first
+ move 1-3 bytes as needed. Since we are only word aligned we don't
+ use double word load/stores to insure that all loads are aligned.
+ While the destination and stores may still be unaligned, this
+ is only an issue for page (4096 byte boundary) crossing, which
+ should be rare for these short moves. The hardware handles this
+ case automatically with a small delay. */
+
+ .align 4
+.L2:
+ mtcrf 0x01,5
+ neg 8,4
+ clrrdi 11,4,2
+ andi. 0,8,3
+ ble cr6,.LE8 /* Handle moves of 0-8 bytes. */
+/* At least 9 bytes left. Get the source word aligned. */
+ cmpldi cr1,5,16
+ mr 10,5
+ mr 12,4
+ cmpldi cr6,0,2
+ beq .L3 /* If the source is already word aligned skip this. */
+/* Copy 1-3 bytes to get source address word aligned. */
+ lwz 6,0(11)
+ subf 10,0,5
+ add 12,4,0
+ blt cr6,5f
+ srdi 7,6,16
+ bgt cr6,3f
+ sth 6,0(3)
+ b 7f
+ .align 4
+3:
+ stb 7,0(3)
+ sth 6,1(3)
+ b 7f
+ .align 4
+5:
+ stb 6,0(3)
+7:
+ cmpldi cr1,10,16
+ add 3,3,0
+ mtcrf 0x01,10
+ .align 4
+.L3:
+/* At least 6 bytes left and the source is word aligned. */
+ blt cr1,8f
+16: /* Move 16 bytes. */
+ lwz 6,0(12)
+ lwz 7,4(12)
+ stw 6,0(3)
+ lwz 6,8(12)
+ stw 7,4(3)
+ lwz 7,12(12)
+ addi 12,12,16
+ stw 6,8(3)
+ stw 7,12(3)
+ addi 3,3,16
+8: /* Move 8 bytes. */
+ bf 28,4f
+ lwz 6,0(12)
+ lwz 7,4(12)
+ addi 12,12,8
+ stw 6,0(3)
+ stw 7,4(3)
+ addi 3,3,8
+4: /* Move 4 bytes. */
+ bf 29,2f
+ lwz 6,0(12)
+ addi 12,12,4
+ stw 6,0(3)
+ addi 3,3,4
+2: /* Move 2-3 bytes. */
+ bf 30,1f
+ lhz 6,0(12)
+ sth 6,0(3)
+ bf 31,0f
+ lbz 7,2(12)
+ stb 7,2(3)
+ ld 3,-16(1)
+ blr
+1: /* Move 1 byte. */
+ bf 31,0f
+ lbz 6,0(12)
+ stb 6,0(3)
+0:
+ /* Return original dst pointer. */
+ ld 3,-16(1)
+ blr
+
+/* Special case to copy 0-8 bytes. */
+ .align 4
+.LE8:
+ mr 12,4
+ bne cr6,4f
+/* Would have liked to use use ld/std here but the 630 processors are
+ slow for load/store doubles that are not at least word aligned.
+ Unaligned Load/Store word execute with only a 1 cycle penaltity. */
+ lwz 6,0(4)
+ lwz 7,4(4)
+ stw 6,0(3)
+ stw 7,4(3)
+ /* Return original dst pointer. */
+ ld 3,-16(1)
+ blr
+ .align 4
+4: bf 29,2b
+ lwz 6,0(4)
+ stw 6,0(3)
+6:
+ bf 30,5f
+ lhz 7,4(4)
+ sth 7,4(3)
+ bf 31,0f
+ lbz 8,6(4)
+ stb 8,6(3)
+ ld 3,-16(1)
+ blr
+ .align 4
+5:
+ bf 31,0f
+ lbz 6,4(4)
+ stb 6,4(3)
+ .align 4
+0:
+ /* Return original dst pointer. */
+ ld 3,-16(1)
+ blr
+
+ .align 4
+.L6:
+
+ /* Copy doublewords where the destination is aligned but the source is
+ not. Use aligned doubleword loads from the source, shifted to realign
+ the data, to allow aligned destination stores. */
+ addi 11,9,-1 /* loop DW count is one less than total */
+ subf 5,10,12
+ sldi 10,10,3
+ mr 4,3
+ srdi 8,11,2 /* calculate the 32 byte loop count */
+ ld 6,0(5)
+ mtcrf 0x01,11
+ cmpldi cr6,9,4
+ mtctr 8
+ ld 7,8(5)
+ subfic 9,10,64
+ bf 30,1f
+
+ /* there are at least two DWs to copy */
+ sld 0,6,10
+ srd 8,7,9
+ or 0,0,8
+ ld 6,16(5)
+ std 0,0(4)
+ sld 0,7,10
+ srd 8,6,9
+ or 0,0,8
+ ld 7,24(5)
+ std 0,8(4)
+ addi 4,4,16
+ addi 5,5,32
+ blt cr6,8f /* if total DWs = 3, then bypass loop */
+ bf 31,4f
+ /* there is a third DW to copy */
+ sld 0,6,10
+ srd 8,7,9
+ or 0,0,8
+ std 0,0(4)
+ mr 6,7
+ ld 7,0(5)
+ addi 5,5,8
+ addi 4,4,8
+ beq cr6,8f /* if total DWs = 4, then bypass loop */
+ b 4f
+ .align 4
+1:
+ sld 0,6,10
+ srd 8,7,9
+ addi 5,5,16
+ or 0,0,8
+ bf 31,4f
+ mr 6,7
+ ld 7,0(5)
+ addi 5,5,8
+ std 0,0(4)
+ addi 4,4,8
+ .align 4
+/* copy 32 bytes at a time */
+4: sld 0,6,10
+ srd 8,7,9
+ or 0,0,8
+ ld 6,0(5)
+ std 0,0(4)
+ sld 0,7,10
+ srd 8,6,9
+ or 0,0,8
+ ld 7,8(5)
+ std 0,8(4)
+ sld 0,6,10
+ srd 8,7,9
+ or 0,0,8
+ ld 6,16(5)
+ std 0,16(4)
+ sld 0,7,10
+ srd 8,6,9
+ or 0,0,8
+ ld 7,24(5)
+ std 0,24(4)
+ addi 5,5,32
+ addi 4,4,32
+ bdnz+ 4b
+ .align 4
+8:
+ /* calculate and store the final DW */
+ sld 0,6,10
+ srd 8,7,9
+ or 0,0,8
+ std 0,0(4)
+3:
+ rldicr 0,31,0,60
+ mtcrf 0x01,31
+ bne cr1,.L9 /* If the tail is 0 bytes we are done! */
+ /* Return original dst pointer. */
+ ld 31,-8(1)
+ ld 3,-16(1)
+ blr
+END_GEN_TB (BP_SYM (memcpy),TB_TOCLESS)
+libc_hidden_builtin_def (memcpy)
diff --git a/sysdeps/powerpc/powerpc64/power4/memset.S b/sysdeps/powerpc/powerpc64/power4/memset.S
new file mode 100644
index 0000000000..e7a259acdd
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/memset.S
@@ -0,0 +1,275 @@
+/* Optimized memset implementation for PowerPC64.
+ Copyright (C) 1997, 1999, 2000, 2002, 2003, 2007
+ Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <sysdep.h>
+#include <bp-sym.h>
+#include <bp-asm.h>
+
+/* __ptr_t [r3] memset (__ptr_t s [r3], int c [r4], size_t n [r5]));
+ Returns 's'.
+
+ The memset is done in three sizes: byte (8 bits), word (32 bits),
+ cache line (256 bits). There is a special case for setting cache lines
+ to 0, to take advantage of the dcbz instruction. */
+
+ .machine power4
+EALIGN (BP_SYM (memset), 5, 0)
+ CALL_MCOUNT 3
+
+#define rTMP r0
+#define rRTN r3 /* Initial value of 1st argument. */
+#if __BOUNDED_POINTERS__
+# define rMEMP0 r4 /* Original value of 1st arg. */
+# define rCHR r5 /* Char to set in each byte. */
+# define rLEN r6 /* Length of region to set. */
+# define rMEMP r10 /* Address at which we are storing. */
+#else
+# define rMEMP0 r3 /* Original value of 1st arg. */
+# define rCHR r4 /* Char to set in each byte. */
+# define rLEN r5 /* Length of region to set. */
+# define rMEMP r6 /* Address at which we are storing. */
+#endif
+#define rALIGN r7 /* Number of bytes we are setting now (when aligning). */
+#define rMEMP2 r8
+
+#define rNEG64 r8 /* Constant -64 for clearing with dcbz. */
+#define rCLS r8 /* Cache line size obtained from static. */
+#define rCLM r9 /* Cache line size mask to check for cache alignment. */
+L(_memset):
+#if __BOUNDED_POINTERS__
+ cmpldi cr1, rRTN, 0
+ CHECK_BOUNDS_BOTH_WIDE (rMEMP0, rTMP, rTMP2, rLEN)
+ beq cr1, L(b0)
+ STORE_RETURN_VALUE (rMEMP0)
+ STORE_RETURN_BOUNDS (rTMP, rTMP2)
+L(b0):
+#endif
+/* Take care of case for size <= 4. */
+ cmpldi cr1, rLEN, 8
+ andi. rALIGN, rMEMP0, 7
+ mr rMEMP, rMEMP0
+ ble- cr1, L(small)
+
+/* Align to doubleword boundary. */
+ cmpldi cr5, rLEN, 31
+ rlwimi rCHR, rCHR, 8, 16, 23 /* Replicate byte to halfword. */
+ beq+ L(aligned2)
+ mtcrf 0x01, rMEMP0
+ subfic rALIGN, rALIGN, 8
+ cror 28,30,31 /* Detect odd word aligned. */
+ add rMEMP, rMEMP, rALIGN
+ sub rLEN, rLEN, rALIGN
+ rlwimi rCHR, rCHR, 16, 0, 15 /* Replicate halfword to word. */
+ bt 29, L(g4)
+/* Process the even word of doubleword. */
+ bf+ 31, L(g2)
+ stb rCHR, 0(rMEMP0)
+ bt 30, L(g4x)
+L(g2):
+ sth rCHR, -6(rMEMP)
+L(g4x):
+ stw rCHR, -4(rMEMP)
+ b L(aligned)
+/* Process the odd word of doubleword. */
+L(g4):
+ bf 28, L(g4x) /* If false, word aligned on odd word. */
+ bf+ 31, L(g0)
+ stb rCHR, 0(rMEMP0)
+ bt 30, L(aligned)
+L(g0):
+ sth rCHR, -2(rMEMP)
+
+/* Handle the case of size < 31. */
+L(aligned2):
+ rlwimi rCHR, rCHR, 16, 0, 15 /* Replicate halfword to word. */
+L(aligned):
+ mtcrf 0x01, rLEN
+ ble cr5, L(medium)
+/* Align to 32-byte boundary. */
+ andi. rALIGN, rMEMP, 0x18
+ subfic rALIGN, rALIGN, 0x20
+ insrdi rCHR,rCHR,32,0 /* Replicate word to double word. */
+ beq L(caligned)
+ mtcrf 0x01, rALIGN
+ add rMEMP, rMEMP, rALIGN
+ sub rLEN, rLEN, rALIGN
+ cmplwi cr1, rALIGN, 0x10
+ mr rMEMP2, rMEMP
+ bf 28, L(a1)
+ stdu rCHR, -8(rMEMP2)
+L(a1): blt cr1, L(a2)
+ std rCHR, -8(rMEMP2)
+ stdu rCHR, -16(rMEMP2)
+L(a2):
+
+/* Now aligned to a 32 byte boundary. */
+L(caligned):
+ cmpldi cr1, rCHR, 0
+ clrrdi. rALIGN, rLEN, 5
+ mtcrf 0x01, rLEN
+ beq cr1, L(zloopstart) /* Special case for clearing memory using dcbz. */
+L(nondcbz):
+ srdi rTMP, rALIGN, 5
+ mtctr rTMP
+ beq L(medium) /* We may not actually get to do a full line. */
+ clrldi. rLEN, rLEN, 59
+ add rMEMP, rMEMP, rALIGN
+ li rNEG64, -0x40
+ bdz L(cloopdone)
+
+L(c3): dcbtst rNEG64, rMEMP
+ std rCHR, -8(rMEMP)
+ std rCHR, -16(rMEMP)
+ std rCHR, -24(rMEMP)
+ stdu rCHR, -32(rMEMP)
+ bdnz L(c3)
+L(cloopdone):
+ std rCHR, -8(rMEMP)
+ std rCHR, -16(rMEMP)
+ cmpldi cr1, rLEN, 16
+ std rCHR, -24(rMEMP)
+ stdu rCHR, -32(rMEMP)
+ beqlr
+ add rMEMP, rMEMP, rALIGN
+ b L(medium_tail2)
+
+ .align 5
+/* Clear lines of memory in 128-byte chunks. */
+L(zloopstart):
+/* If the remaining length is less the 32 bytes, don't bother getting
+ the cache line size. */
+ beq L(medium)
+ li rCLS,128 /* cache line size is 128 */
+
+/* Now we know the cache line size, and it is not 32-bytes, but
+ we may not yet be aligned to the cache line. May have a partial
+ line to fill, so touch it 1st. */
+ dcbt 0,rMEMP
+L(getCacheAligned):
+ cmpldi cr1,rLEN,32
+ andi. rTMP,rMEMP,127
+ blt cr1,L(handletail32)
+ beq L(cacheAligned)
+ addi rMEMP,rMEMP,32
+ addi rLEN,rLEN,-32
+ std rCHR,-32(rMEMP)
+ std rCHR,-24(rMEMP)
+ std rCHR,-16(rMEMP)
+ std rCHR,-8(rMEMP)
+ b L(getCacheAligned)
+
+/* Now we are aligned to the cache line and can use dcbz. */
+L(cacheAligned):
+ cmpld cr1,rLEN,rCLS
+ blt cr1,L(handletail32)
+ dcbz 0,rMEMP
+ subf rLEN,rCLS,rLEN
+ add rMEMP,rMEMP,rCLS
+ b L(cacheAligned)
+
+/* We are here because the cache line size was set and was not 32-bytes
+ and the remainder (rLEN) is less than the actual cache line size.
+ So set up the preconditions for L(nondcbz) and go there. */
+L(handletail32):
+ clrrwi. rALIGN, rLEN, 5
+ b L(nondcbz)
+
+ .align 5
+L(small):
+/* Memset of 8 bytes or less. */
+ cmpldi cr6, rLEN, 4
+ cmpldi cr5, rLEN, 1
+ ble cr6,L(le4)
+ subi rLEN, rLEN, 4
+ stb rCHR,0(rMEMP)
+ stb rCHR,1(rMEMP)
+ stb rCHR,2(rMEMP)
+ stb rCHR,3(rMEMP)
+ addi rMEMP,rMEMP, 4
+ cmpldi cr5, rLEN, 1
+L(le4):
+ cmpldi cr1, rLEN, 3
+ bltlr cr5
+ stb rCHR, 0(rMEMP)
+ beqlr cr5
+ stb rCHR, 1(rMEMP)
+ bltlr cr1
+ stb rCHR, 2(rMEMP)
+ beqlr cr1
+ stb rCHR, 3(rMEMP)
+ blr
+
+/* Memset of 0-31 bytes. */
+ .align 5
+L(medium):
+ insrdi rCHR,rCHR,32,0 /* Replicate word to double word. */
+ cmpldi cr1, rLEN, 16
+L(medium_tail2):
+ add rMEMP, rMEMP, rLEN
+L(medium_tail):
+ bt- 31, L(medium_31t)
+ bt- 30, L(medium_30t)
+L(medium_30f):
+ bt- 29, L(medium_29t)
+L(medium_29f):
+ bge- cr1, L(medium_27t)
+ bflr- 28
+ std rCHR, -8(rMEMP)
+ blr
+
+L(medium_31t):
+ stbu rCHR, -1(rMEMP)
+ bf- 30, L(medium_30f)
+L(medium_30t):
+ sthu rCHR, -2(rMEMP)
+ bf- 29, L(medium_29f)
+L(medium_29t):
+ stwu rCHR, -4(rMEMP)
+ blt- cr1, L(medium_27f)
+L(medium_27t):
+ std rCHR, -8(rMEMP)
+ stdu rCHR, -16(rMEMP)
+L(medium_27f):
+ bflr- 28
+L(medium_28t):
+ std rCHR, -8(rMEMP)
+ blr
+END_GEN_TB (BP_SYM (memset),TB_TOCLESS)
+libc_hidden_builtin_def (memset)
+
+/* Copied from bzero.S to prevent the linker from inserting a stub
+ between bzero and memset. */
+ENTRY (BP_SYM (__bzero))
+ CALL_MCOUNT 3
+#if __BOUNDED_POINTERS__
+ mr r6,r4
+ li r5,0
+ mr r4,r3
+ /* Tell memset that we don't want a return value. */
+ li r3,0
+ b L(_memset)
+#else
+ mr r5,r4
+ li r4,0
+ b L(_memset)
+#endif
+END_GEN_TB (BP_SYM (__bzero),TB_TOCLESS)
+
+weak_alias (BP_SYM (__bzero), BP_SYM (bzero))
diff --git a/sysdeps/powerpc/powerpc64/power4/strncmp.S b/sysdeps/powerpc/powerpc64/power4/strncmp.S
new file mode 100644
index 0000000000..7a1665d2bc
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/strncmp.S
@@ -0,0 +1,180 @@
+/* Optimized strcmp implementation for PowerPC64.
+ Copyright (C) 2003, 2006 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
+ 02110-1301 USA. */
+
+#include <sysdep.h>
+#include <bp-sym.h>
+#include <bp-asm.h>
+
+/* See strlen.s for comments on how the end-of-string testing works. */
+
+/* int [r3] strncmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */
+
+EALIGN (BP_SYM(strncmp), 4, 0)
+ CALL_MCOUNT 3
+
+#define rTMP r0
+#define rRTN r3
+#define rSTR1 r3 /* first string arg */
+#define rSTR2 r4 /* second string arg */
+#define rN r5 /* max string length */
+/* Note: The Bounded pointer support in this code is broken. This code
+ was inherited from PPC32 and and that support was never completed.
+ Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */
+#define rWORD1 r6 /* current word in s1 */
+#define rWORD2 r7 /* current word in s2 */
+#define rWORD3 r10
+#define rWORD4 r11
+#define rFEFE r8 /* constant 0xfefefefefefefeff (-0x0101010101010101) */
+#define r7F7F r9 /* constant 0x7f7f7f7f7f7f7f7f */
+#define rNEG r10 /* ~(word in s1 | 0x7f7f7f7f7f7f7f7f) */
+#define rBITDIF r11 /* bits that differ in s1 & s2 words */
+
+ dcbt 0,rSTR1
+ or rTMP, rSTR2, rSTR1
+ lis r7F7F, 0x7f7f
+ dcbt 0,rSTR2
+ clrldi. rTMP, rTMP, 61
+ cmpldi cr1, rN, 0
+ lis rFEFE, -0x101
+ bne L(unaligned)
+/* We are doubleword alligned so set up for two loops. first a double word
+ loop, then fall into the byte loop if any residual. */
+ srdi. rTMP, rN, 3
+ clrldi rN, rN, 61
+ addi rFEFE, rFEFE, -0x101
+ addi r7F7F, r7F7F, 0x7f7f
+ cmpldi cr1, rN, 0
+ beq L(unaligned)
+
+ mtctr rTMP /* Power4 wants mtctr 1st in dispatch group. */
+ ld rWORD1, 0(rSTR1)
+ ld rWORD2, 0(rSTR2)
+ sldi rTMP, rFEFE, 32
+ insrdi r7F7F, r7F7F, 32, 0
+ add rFEFE, rFEFE, rTMP
+ b L(g1)
+
+L(g0):
+ ldu rWORD1, 8(rSTR1)
+ bne- cr1, L(different)
+ ldu rWORD2, 8(rSTR2)
+L(g1): add rTMP, rFEFE, rWORD1
+ nor rNEG, r7F7F, rWORD1
+ bdz L(tail)
+ and. rTMP, rTMP, rNEG
+ cmpd cr1, rWORD1, rWORD2
+ beq+ L(g0)
+
+/* OK. We've hit the end of the string. We need to be careful that
+ we don't compare two strings as different because of gunk beyond
+ the end of the strings... */
+
+L(endstring):
+ and rTMP, r7F7F, rWORD1
+ beq cr1, L(equal)
+ add rTMP, rTMP, r7F7F
+ xor. rBITDIF, rWORD1, rWORD2
+
+ andc rNEG, rNEG, rTMP
+ blt- L(highbit)
+ cntlzd rBITDIF, rBITDIF
+ cntlzd rNEG, rNEG
+ addi rNEG, rNEG, 7
+ cmpd cr1, rNEG, rBITDIF
+ sub rRTN, rWORD1, rWORD2
+ blt- cr1, L(equal)
+ sradi rRTN, rRTN, 63
+ ori rRTN, rRTN, 1
+ blr
+L(equal):
+ li rRTN, 0
+ blr
+
+L(different):
+ ldu rWORD1, -8(rSTR1)
+ xor. rBITDIF, rWORD1, rWORD2
+ sub rRTN, rWORD1, rWORD2
+ blt- L(highbit)
+ sradi rRTN, rRTN, 63
+ ori rRTN, rRTN, 1
+ blr
+L(highbit):
+ srdi rWORD2, rWORD2, 56
+ srdi rWORD1, rWORD1, 56
+ sub rRTN, rWORD1, rWORD2
+ blr
+
+
+/* Oh well. In this case, we just do a byte-by-byte comparison. */
+ .align 4
+L(tail):
+ and. rTMP, rTMP, rNEG
+ cmpd cr1, rWORD1, rWORD2
+ bne- L(endstring)
+ addi rSTR1, rSTR1, 8
+ bne- cr1, L(different)
+ addi rSTR2, rSTR2, 8
+ cmpldi cr1, rN, 0
+L(unaligned):
+ mtctr rN /* Power4 wants mtctr 1st in dispatch group */
+ ble cr1, L(ux)
+L(uz):
+ lbz rWORD1, 0(rSTR1)
+ lbz rWORD2, 0(rSTR2)
+ .align 4
+L(u1):
+ cmpdi cr1, rWORD1, 0
+ bdz L(u4)
+ cmpd rWORD1, rWORD2
+ beq- cr1, L(u4)
+ lbzu rWORD3, 1(rSTR1)
+ lbzu rWORD4, 1(rSTR2)
+ bne- L(u4)
+ cmpdi cr1, rWORD3, 0
+ bdz L(u3)
+ cmpd rWORD3, rWORD4
+ beq- cr1, L(u3)
+ lbzu rWORD1, 1(rSTR1)
+ lbzu rWORD2, 1(rSTR2)
+ bne- L(u3)
+ cmpdi cr1, rWORD1, 0
+ bdz L(u4)
+ cmpd rWORD1, rWORD2
+ beq- cr1, L(u4)
+ lbzu rWORD3, 1(rSTR1)
+ lbzu rWORD4, 1(rSTR2)
+ bne- L(u4)
+ cmpdi cr1, rWORD3, 0
+ bdz L(u3)
+ cmpd rWORD3, rWORD4
+ beq- cr1, L(u3)
+ lbzu rWORD1, 1(rSTR1)
+ lbzu rWORD2, 1(rSTR2)
+ beq+ L(u1)
+
+L(u3): sub rRTN, rWORD3, rWORD4
+ blr
+L(u4): sub rRTN, rWORD1, rWORD2
+ blr
+L(ux):
+ li rRTN, 0
+ blr
+END (BP_SYM (strncmp))
+libc_hidden_builtin_def (strncmp)
+
diff --git a/sysdeps/powerpc/powerpc64/power4/wordcopy.c b/sysdeps/powerpc/powerpc64/power4/wordcopy.c
new file mode 100644
index 0000000000..f427b48e7a
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/wordcopy.c
@@ -0,0 +1 @@
+#include "../../powerpc32/power4/wordcopy.c"