summaryrefslogtreecommitdiff
path: root/sysdeps/m68k/fpu/__math.h
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/m68k/fpu/__math.h')
-rw-r--r--sysdeps/m68k/fpu/__math.h775
1 files changed, 231 insertions, 544 deletions
diff --git a/sysdeps/m68k/fpu/__math.h b/sysdeps/m68k/fpu/__math.h
index 4992aea561..0e3e2a3d8c 100644
--- a/sysdeps/m68k/fpu/__math.h
+++ b/sysdeps/m68k/fpu/__math.h
@@ -1,4 +1,4 @@
-/* Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
+/* Copyright (C) 1991, 92, 93, 94, 96 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
@@ -39,30 +39,30 @@ Cambridge, MA 02139, USA. */
__m81_inline rettype \
__m81_u(func) args
+/* Define the three variants of a math function that has a direct
+ implementation in the m68k fpu. FUNC is the name for C (which will be
+ suffixed with f and l for the float and long double version, resp). OP
+ is the name of the fpu operation (without leading f). */
#define __inline_mathop(func, op) \
__m81_defun (double, func, (double __mathop_x)) \
{ \
double __result; \
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
return __result; \
- }
-
-#define __inline_mathopf(func, op) \
- __m81_defun (float, func, (float __mathop_x)) \
+ } \
+ __m81_defun (float, func##f, (float __mathop_x)) \
{ \
float __result; \
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
return __result; \
- }
-
-#define __inline_mathopl(func, op) \
- __m81_defun (long double, func, (long double __mathop_x)) \
+ } \
+ __m81_defun (long double, func##l, (long double __mathop_x)) \
{ \
long double __result; \
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
return __result; \
}
-
+
/* ieee style elementary functions */
__inline_mathop(__ieee754_acos, acos)
__inline_mathop(__ieee754_asin, asin)
@@ -74,28 +74,6 @@ __inline_mathop(__ieee754_log, logn)
__inline_mathop(__ieee754_sqrt, sqrt)
__inline_mathop(__ieee754_atanh, atanh)
-/* ieee style elementary float functions */
-__inline_mathopf(__ieee754_acosf, acos)
-__inline_mathopf(__ieee754_asinf, asin)
-__inline_mathopf(__ieee754_coshf, cosh)
-__inline_mathopf(__ieee754_sinhf, sinh)
-__inline_mathopf(__ieee754_expf, etox)
-__inline_mathopf(__ieee754_log10f, log10)
-__inline_mathopf(__ieee754_logf, logn)
-__inline_mathopf(__ieee754_sqrtf, sqrt)
-__inline_mathopf(__ieee754_atanhf, atan)
-
-/* ieee style elementary long double functions */
-__inline_mathopl(__ieee754_acosl, acos)
-__inline_mathopl(__ieee754_asinl, asin)
-__inline_mathopl(__ieee754_coshl, cosh)
-__inline_mathopl(__ieee754_sinhl, sinh)
-__inline_mathopl(__ieee754_expl, etox)
-__inline_mathopl(__ieee754_log10l, log10)
-__inline_mathopl(__ieee754_logl, logn)
-__inline_mathopl(__ieee754_sqrtl, sqrt)
-__inline_mathopl(__ieee754_atanhl, atan)
-
__inline_mathop(__atan, atan)
__inline_mathop(__cos, cos)
__inline_mathop(__sin, sin)
@@ -110,517 +88,226 @@ __inline_mathop(__log1p, lognp1)
__inline_mathop(__logb, log2)
__inline_mathop(__significand, getman)
-__inline_mathopf(__atanf, atan)
-__inline_mathopf(__cosf, cos)
-__inline_mathopf(__sinf, sin)
-__inline_mathopf(__tanf, tan)
-__inline_mathopf(__tanhf, tanh)
-__inline_mathopf(__fabsf, abs)
-__inline_mathopf(__sqrtf, sqrt)
-
-__inline_mathopf(__rintf, int)
-__inline_mathopf(__expm1f, etoxm1)
-__inline_mathopf(__log1pf, lognp1)
-__inline_mathopf(__logbf, log2)
-__inline_mathopf(__significandf, getman)
-
-__inline_mathopl(__atanl, atan)
-__inline_mathopl(__cosl, cos)
-__inline_mathopl(__sinl, sin)
-__inline_mathopl(__tanl, tan)
-__inline_mathopl(__tanhl, tanh)
-__inline_mathopl(__fabsl, abs)
-__inline_mathopl(__sqrtl, sqrt)
-
-__inline_mathopl(__rintl, int)
-__inline_mathopl(__expm1l, etoxm1)
-__inline_mathopl(__log1pl, lognp1)
-__inline_mathopl(__logbl, log2)
-__inline_mathopl(__significandl, getman)
-
-__m81_defun (double, __ieee754_remainder, (double __x, double __y))
-{
- double __result;
- __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
- return __result;
-}
-
-__m81_defun (double, __ldexp, (double __x, int __e))
-{
- double __result;
- double __double_e = (double) __e;
- __asm("fscale%.x %1, %0" : "=f" (__result) : "f" (__double_e), "0" (__x));
- return __result;
-}
-
-__m81_defun (double, __ieee754_fmod, (double __x, double __y))
-{
- double __result;
- __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
- return __result;
-}
-
-__m81_inline double
-__m81_u(__frexp)(double __value, int *__expptr)
-{
- double __mantissa, __exponent;
- __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value));
- __asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value));
- *__expptr = (int) __exponent;
- return __mantissa;
-}
-
-__m81_defun (double, __floor, (double __x))
-{
- double __result;
- unsigned long int __ctrl_reg;
- __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg));
- /* Set rounding towards negative infinity. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" ((__ctrl_reg & ~0x10) | 0x20));
- /* Convert X to an integer, using -Inf rounding. */
- __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
- /* Restore the previous rounding mode. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg));
- return __result;
-}
-
-__m81_defun (double, __ieee754_pow, (double __x, double __y))
-{
- double __result;
- if (__x == 0.0)
- {
- if (__y <= 0.0)
- __result = 0.0 / 0.0;
- else
- __result = 0.0;
- }
- else if (__y == 0.0 || __x == 1.0)
- __result = 1.0;
- else if (__y == 1.0)
- __result = __x;
- else if (__y == 2.0)
- __result = __x * __x;
- else if (__x == 10.0)
- __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y));
- else if (__x == 2.0)
- __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y));
- else if (__x < 0.0)
- {
- double __temp = __m81_u (__rint) (__y);
- if (__y == __temp)
- {
- int i = (int) __y;
- __result = __m81_u(__ieee754_exp)(__y * __m81_u(__ieee754_log)(-__x));
- if (i & 1)
- __result = -__result;
- }
- else
- __result = 0.0 / 0.0;
- }
- else
- __result = __m81_u(__ieee754_exp)(__y * __m81_u(__ieee754_log)(__x));
- return __result;
-}
-
-__m81_defun (double, __ceil, (double __x))
-{
- double __result;
- unsigned long int __ctrl_reg;
- __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg));
- /* Set rounding towards positive infinity. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg | 0x30));
- /* Convert X to an integer, using +Inf rounding. */
- __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
- /* Restore the previous rounding mode. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg));
- return __result;
-}
-
-__m81_inline double
-__m81_u(__modf)(double __value, double *__iptr)
-{
- double __modf_int;
- __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value));
- *__iptr = __modf_int;
- return __value - __modf_int;
-}
-
-__m81_defun (int, __isinf, (double __value))
-{
- /* There is no branch-condition for infinity,
- so we must extract and examine the condition codes manually. */
- unsigned long int __fpsr;
- __asm("ftst%.x %1\n"
- "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value));
- return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0;
-}
-
-__m81_defun (int, __isnan, (double __value))
-{
- char __result;
- __asm("ftst%.x %1\n"
- "fsun %0" : "=dm" (__result) : "f" (__value));
- return __result;
-}
-
-__m81_defun (int, __finite, (double __value))
-{
- /* There is no branch-condition for infinity, so we must extract and
- examine the condition codes manually. */
- unsigned long int __fpsr;
- __asm ("ftst%.x %1\n"
- "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value));
- return (__fpsr & (3 << 24)) == 0;
-}
-
-__m81_defun (int, __ilogb, (double __x))
-{
- double __result;
- __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x));
- return (int) __result;
-}
-
-__m81_defun (double, __ieee754_scalb, (double __x, double __n))
-{
- double __result;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x));
- return __result;
-}
-
-__m81_defun (double, __scalbn, (double __x, int __n))
-{
- double __result;
- double __double_n = (double) __n;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__double_n), "0" (__x));
- return __result;
-}
-
-__m81_defun (float, __ieee754_remainderf, (float __x, float __y))
-{
- float __result;
- __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
- return __result;
-}
-
-__m81_defun (float, __ldexpf, (float __x, int __e))
-{
- float __result;
- float __float_e = (float) __e;
- __asm("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_e), "0" (__x));
- return __result;
-}
-
-__m81_defun (float, __ieee754_fmodf, (float __x, float __y))
-{
- float __result;
- __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
- return __result;
-}
-
-__m81_inline float
-__m81_u(__frexpf)(float __value, int *__expptr)
-{
- float __mantissa, __exponent;
- __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value));
- __asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value));
- *__expptr = (int) __exponent;
- return __mantissa;
-}
-
-__m81_defun (float, __floorf, (float __x))
-{
- float __result;
- unsigned long int __ctrl_reg;
- __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg));
- /* Set rounding towards negative infinity. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" ((__ctrl_reg & ~0x10) | 0x20));
- /* Convert X to an integer, using -Inf rounding. */
- __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
- /* Restore the previous rounding mode. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg));
- return __result;
-}
-
-__m81_defun (float, __ieee754_powf, (float __x, float __y))
-{
- float __result;
- if (__x == 0.0f)
- {
- if (__y <= 0.0f)
- __result = 0.0f / 0.0f;
- else
- __result = 0.0f;
- }
- else if (__y == 0.0f || __x == 1.0f)
- __result = 1.0;
- else if (__y == 1.0f)
- __result = __x;
- else if (__y == 2.0f)
- __result = __x * __x;
- else if (__x == 10.0f)
- __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y));
- else if (__x == 2.0f)
- __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y));
- else if (__x < 0.0f)
- {
- float __temp = __m81_u(__rintf)(__y);
- if (__y == __temp)
- {
- int i = (int) __y;
- __result = __m81_u(__ieee754_expf)(__y * __m81_u(__ieee754_logf)(-__x));
- if (i & 1)
- __result = -__result;
- }
- else
- __result = 0.0f / 0.0f;
- }
- else
- __result = __m81_u(__ieee754_expf)(__y * __m81_u(__ieee754_logf)(__x));
- return __result;
-}
-
-__m81_defun (float, __ceilf, (float __x))
-{
- float __result;
- unsigned long int __ctrl_reg;
- __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg));
- /* Set rounding towards positive infinity. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg | 0x30));
- /* Convert X to an integer, using +Inf rounding. */
- __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
- /* Restore the previous rounding mode. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg));
- return __result;
-}
-
-__m81_inline float
-__m81_u(__modff)(float __value, float *__iptr)
-{
- float __modf_int;
- __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value));
- *__iptr = __modf_int;
- return __value - __modf_int;
-}
-
-__m81_defun (int, __isinff, (float __value))
-{
- /* There is no branch-condition for infinity,
- so we must extract and examine the condition codes manually. */
- unsigned long int __fpsr;
- __asm("ftst%.x %1\n"
- "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value));
- return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0;
-}
-
-__m81_defun (int, __isnanf, (float __value))
-{
- char __result;
- __asm("ftst%.x %1\n"
- "fsun %0" : "=dm" (__result) : "f" (__value));
- return __result;
-}
-
-__m81_defun (int, __finitef, (float __value))
-{
- /* There is no branch-condition for infinity, so we must extract and
- examine the condition codes manually. */
- unsigned long int __fpsr;
- __asm ("ftst%.x %1\n"
- "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value));
- return (__fpsr & (3 << 24)) == 0;
-}
-
-__m81_defun (int, __ilogbf, (float __x))
-{
- float __result;
- __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x));
- return (int) __result;
-}
-
-__m81_defun (float, __ieee754_scalbf, (float __x, float __n))
-{
- float __result;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x));
- return __result;
-}
-
-__m81_defun (float, __scalbnf, (float __x, int __n))
-{
- float __result;
- float __float_n = (float) __n;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_n), "0" (__x));
- return __result;
-}
-
-__m81_defun (long double, __ieee754_remainderl, (long double __x,
- long double __y))
-{
- long double __result;
- __asm ("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
- return __result;
-}
-
-__m81_defun (long double, __ldexpl, (long double __x, int __e))
-{
- long double __result;
- long double __float_e = (long double) __e;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_e), "0" (__x));
- return __result;
-}
-
-__m81_defun (long double, __ieee754_fmodl, (long double __x, long double __y))
-{
- long double __result;
- __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
- return __result;
-}
-
-__m81_inline long double
-__m81_u(__frexpl)(long double __value, int *__expptr)
-{
- long double __mantissa, __exponent;
- __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value));
- __asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value));
- *__expptr = (int) __exponent;
- return __mantissa;
-}
-
-__m81_defun (long double, __floorl, (long double __x))
-{
- long double __result;
- unsigned long int __ctrl_reg;
- __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg));
- /* Set rounding towards negative infinity. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" ((__ctrl_reg & ~0x10) | 0x20));
- /* Convert X to an integer, using -Inf rounding. */
- __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
- /* Restore the previous rounding mode. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg));
- return __result;
-}
-
-__m81_defun (long double, __ieee754_powl, (long double __x, long double __y))
-{
- long double __result;
- if (__x == 0.0l)
- {
- if (__y <= 0.0l)
- __result = 0.0l / 0.0l;
- else
- __result = 0.0l;
- }
- else if (__y == 0.0l || __x == 1.0l)
- __result = 1.0;
- else if (__y == 1.0l)
- __result = __x;
- else if (__y == 2.0l)
- __result = __x * __x;
- else if (__x == 10.0l)
- __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y));
- else if (__x == 2.0l)
- __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y));
- else if (__x < 0.0l)
- {
- long double __temp = __m81_u(__rintl)(__y);
- if (__y == __temp)
- {
- int i = (int) __y;
- __result
- = __m81_u(__ieee754_expl)(__y * __m81_u(__ieee754_logl)(-__x));
- if (i & 1)
- __result = -__result;
- }
- else
- __result = 0.0l / 0.0l;
- }
- else
- __result = __m81_u(__ieee754_expl)(__y * __m81_u(__ieee754_logl)(__x));
- return __result;
-}
-
-__m81_defun (long double, __ceill, (long double __x))
-{
- long double __result;
- unsigned long int __ctrl_reg;
- __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg));
- /* Set rounding towards positive infinity. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg | 0x30));
- /* Convert X to an integer, using +Inf rounding. */
- __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
- /* Restore the previous rounding mode. */
- __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */
- : "dmi" (__ctrl_reg));
- return __result;
-}
-
-__m81_inline long double
-__m81_u(__modfl)(long double __value, long double *__iptr)
-{
- long double __modf_int;
- __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value));
- *__iptr = __modf_int;
- return __value - __modf_int;
-}
-
-__m81_defun (int, __isinfl, (long double __value))
-{
- /* There is no branch-condition for infinity,
- so we must extract and examine the condition codes manually. */
- unsigned long int __fpsr;
- __asm("ftst%.x %1\n"
- "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value));
- return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0;
-}
-
-__m81_defun (int, __isnanl, (long double __value))
-{
- char __result;
- __asm("ftst%.x %1\n"
- "fsun %0" : "=dm" (__result) : "f" (__value));
- return __result;
-}
-
-__m81_defun (int, __finitel, (long double __value))
-{
- /* There is no branch-condition for infinity, so we must extract and
- examine the condition codes manually. */
- unsigned long int __fpsr;
- __asm ("ftst%.x %1\n"
- "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value));
- return (__fpsr & (3 << 24)) == 0;
-}
-
-__m81_defun (int, __ilogbl, (long double __x))
-{
- long double __result;
- __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x));
- return (int) __result;
-}
-
-__m81_defun (long double, __ieee754_scalbl, (long double __x, long double __n))
-{
- long double __result;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x));
- return __result;
-}
-
-__m81_defun (long double, __scalbnl, (long double __x, int __n))
-{
- long double __result;
- long double __float_n = (long double) __n;
- __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_n), "0" (__x));
- return __result;
-}
+/* This macro contains the definition for the rest of the inline
+ functions, using __FLOAT_TYPE as the domain type and __S as the suffix
+ for the function names. */
+
+#define __inline_functions(__float_type, __s) \
+__m81_defun (__float_type, \
+ __ieee754_remainder##__s, (__float_type __x, __float_type __y)) \
+{ \
+ __float_type __result; \
+ __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \
+ return __result; \
+} \
+ \
+__m81_defun (__float_type, \
+ __ieee754_fmod##__s, (__float_type __x, __float_type __y)) \
+{ \
+ __float_type __result; \
+ __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \
+ return __result; \
+} \
+ \
+__m81_defun (__float_type, \
+ __ieee754_atan2##__s, (__float_type __y, __float_type __x)) \
+{ \
+ __float_type __pi, __pi_2; \
+ \
+ __asm ("fmovecr%.x %#0, %0" : "=f" (__pi)); \
+ __asm ("fscale%.w %#-1, %0" : "=f" (__pi_2) : "0" (__pi)); \
+ if (__x > 0) \
+ { \
+ if (__y > 0) \
+ { \
+ if (__x > __y) \
+ return __m81_u(__atan##__s) (__y / __x); \
+ else \
+ return __pi_2 - __m81_u(__atan##__s) (__x / __y); \
+ } \
+ else \
+ { \
+ if (__x > -__y) \
+ return __m81_u(__atan##__s) (__y / __x); \
+ else \
+ return -__pi_2 - __m81_u(__atan##__s) (__x / __y); \
+ } \
+ } \
+ else \
+ { \
+ if (__y > 0) \
+ { \
+ if (-__x < __y) \
+ return __pi + __m81_u(__atan##__s) (__y / __x); \
+ else \
+ return __pi_2 - __m81_u(__atan##__s) (__x / __y); \
+ } \
+ else \
+ { \
+ if (-__x > -__y) \
+ return -__pi + __m81_u(__atan##__s) (__y / __x); \
+ else \
+ return -__pi_2 - __m81_u(__atan##__s) (__x / __y); \
+ } \
+ } \
+} \
+ \
+__m81_inline __float_type \
+__m81_u(__frexp##__s)(__float_type __value, int *__expptr) \
+{ \
+ __float_type __mantissa, __exponent; \
+ int __iexponent; \
+ if (__value == 0.0) \
+ { \
+ *__expptr = 0; \
+ return __value; \
+ } \
+ __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); \
+ __iexponent = (int) __exponent + 1; \
+ *__expptr = __iexponent; \
+ __asm("fscale%.l %2, %0" : "=f" (__mantissa) \
+ : "0" (__value), "dmi" (-__iexponent)); \
+ return __mantissa; \
+} \
+ \
+__m81_defun (__float_type, __floor##__s, (__float_type __x)) \
+{ \
+ __float_type __result; \
+ unsigned long int __ctrl_reg; \
+ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
+ /* Set rounding towards negative infinity. */ \
+ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
+ : "dmi" ((__ctrl_reg & ~0x10) | 0x20)); \
+ /* Convert X to an integer, using -Inf rounding. */ \
+ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
+ /* Restore the previous rounding mode. */ \
+ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
+ : "dmi" (__ctrl_reg)); \
+ return __result; \
+} \
+ \
+__m81_defun (__float_type, \
+ __ieee754_pow##__s, (__float_type __x, __float_type __y)) \
+{ \
+ __float_type __result; \
+ if (__x == 0.0) \
+ { \
+ if (__y <= 0.0) \
+ __result = 0.0 / 0.0; \
+ else \
+ __result = 0.0; \
+ } \
+ else if (__y == 0.0 || __x == 1.0) \
+ __result = 1.0; \
+ else if (__y == 1.0) \
+ __result = __x; \
+ else if (__y == 2.0) \
+ __result = __x * __x; \
+ else if (__x == 10.0) \
+ __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y)); \
+ else if (__x == 2.0) \
+ __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y)); \
+ else if (__x < 0.0) \
+ { \
+ __float_type __temp = __m81_u (__rint##__s) (__y); \
+ if (__y == __temp) \
+ { \
+ int __i = (int) __y; \
+ __result = (__m81_u(__ieee754_exp##__s) \
+ (__y * __m81_u(__ieee754_log##__s) (-__x))); \
+ if (__i & 1) \
+ __result = -__result; \
+ } \
+ else \
+ __result = 0.0 / 0.0; \
+ } \
+ else \
+ __result = (__m81_u(__ieee754_exp##__s) \
+ (__y * __m81_u(__ieee754_log##__s) (__x))); \
+ return __result; \
+} \
+ \
+__m81_defun (__float_type, __ceil##__s, (__float_type __x)) \
+{ \
+ __float_type __result; \
+ unsigned long int __ctrl_reg; \
+ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
+ /* Set rounding towards positive infinity. */ \
+ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
+ : "dmi" (__ctrl_reg | 0x30)); \
+ /* Convert X to an integer, using +Inf rounding. */ \
+ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
+ /* Restore the previous rounding mode. */ \
+ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
+ : "dmi" (__ctrl_reg)); \
+ return __result; \
+} \
+ \
+__m81_inline __float_type \
+__m81_u(__modf##__s)(__float_type __value, __float_type *__iptr) \
+{ \
+ __float_type __modf_int; \
+ __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value)); \
+ *__iptr = __modf_int; \
+ return __value - __modf_int; \
+} \
+ \
+__m81_defun (int, __isinf##__s, (__float_type __value)) \
+{ \
+ /* There is no branch-condition for infinity, \
+ so we must extract and examine the condition codes manually. */ \
+ unsigned long int __fpsr; \
+ __asm("ftst%.x %1\n" \
+ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \
+ return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; \
+} \
+ \
+__m81_defun (int, __isnan##__s, (__float_type __value)) \
+{ \
+ char __result; \
+ __asm("ftst%.x %1\n" \
+ "fsun %0" : "=dm" (__result) : "f" (__value)); \
+ return __result; \
+} \
+ \
+__m81_defun (int, __finite##__s, (__float_type __value)) \
+{ \
+ /* There is no branch-condition for infinity, so we must extract and \
+ examine the condition codes manually. */ \
+ unsigned long int __fpsr; \
+ __asm ("ftst%.x %1\n" \
+ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \
+ return (__fpsr & (3 << 24)) == 0; \
+} \
+ \
+__m81_defun (int, __ilogb##__s, (__float_type __x)) \
+{ \
+ __float_type __result; \
+ if (__x == 0.0) \
+ return 0x80000001; \
+ __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); \
+ return (int) __result; \
+} \
+ \
+__m81_defun (__float_type, \
+ __ieee754_scalb##__s, (__float_type __x, __float_type __n)) \
+{ \
+ __float_type __result; \
+ __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); \
+ return __result; \
+} \
+ \
+__m81_defun (__float_type, __scalbn##__s, (__float_type __x, int __n)) \
+{ \
+ __float_type __result; \
+ __asm ("fscale%.l %1, %0" : "=f" (__result) : "dmi" (__n), "0" (__x)); \
+ return __result; \
+}
+
+/* This defines the three variants of the inline functions. */
+__inline_functions (double, )
+__inline_functions (float, f)
+__inline_functions (long double, l)
+#undef __inline_functions
#endif /* GCC. */