summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/flt-32/e_gammaf_r.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/flt-32/e_gammaf_r.c')
-rw-r--r--sysdeps/ieee754/flt-32/e_gammaf_r.c134
1 files changed, 129 insertions, 5 deletions
diff --git a/sysdeps/ieee754/flt-32/e_gammaf_r.c b/sysdeps/ieee754/flt-32/e_gammaf_r.c
index a312957b0a..f58f4c8056 100644
--- a/sysdeps/ieee754/flt-32/e_gammaf_r.c
+++ b/sysdeps/ieee754/flt-32/e_gammaf_r.c
@@ -19,14 +19,97 @@
#include <math.h>
#include <math_private.h>
+#include <float.h>
+/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
+ approximation to gamma function. */
+
+static const float gamma_coeff[] =
+ {
+ 0x1.555556p-4f,
+ -0xb.60b61p-12f,
+ 0x3.403404p-12f,
+ };
+
+#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
+
+/* Return gamma (X), for positive X less than 42, in the form R *
+ 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
+ avoid overflow or underflow in intermediate calculations. */
+
+static float
+gammaf_positive (float x, int *exp2_adj)
+{
+ int local_signgam;
+ if (x < 0.5f)
+ {
+ *exp2_adj = 0;
+ return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
+ }
+ else if (x <= 1.5f)
+ {
+ *exp2_adj = 0;
+ return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
+ }
+ else if (x < 2.5f)
+ {
+ *exp2_adj = 0;
+ float x_adj = x - 1;
+ return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
+ * x_adj);
+ }
+ else
+ {
+ float eps = 0;
+ float x_eps = 0;
+ float x_adj = x;
+ float prod = 1;
+ if (x < 4.0f)
+ {
+ /* Adjust into the range for applying Stirling's
+ approximation. */
+ float n = __ceilf (4.0f - x);
+#if FLT_EVAL_METHOD != 0
+ volatile
+#endif
+ float x_tmp = x + n;
+ x_adj = x_tmp;
+ x_eps = (x - (x_adj - n));
+ prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
+ }
+ /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
+ Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
+ starting by computing pow (X_ADJ, X_ADJ) with a power of 2
+ factored out. */
+ float exp_adj = -eps;
+ float x_adj_int = __roundf (x_adj);
+ float x_adj_frac = x_adj - x_adj_int;
+ int x_adj_log2;
+ float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
+ if (x_adj_mant < (float) M_SQRT1_2)
+ {
+ x_adj_log2--;
+ x_adj_mant *= 2.0f;
+ }
+ *exp2_adj = x_adj_log2 * (int) x_adj_int;
+ float ret = (__ieee754_powf (x_adj_mant, x_adj)
+ * __ieee754_exp2f (x_adj_log2 * x_adj_frac)
+ * __ieee754_expf (-x_adj)
+ * __ieee754_sqrtf (2 * (float) M_PI / x_adj)
+ / prod);
+ exp_adj += x_eps * __ieee754_logf (x);
+ float bsum = gamma_coeff[NCOEFF - 1];
+ float x_adj2 = x_adj * x_adj;
+ for (size_t i = 1; i <= NCOEFF - 1; i++)
+ bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
+ exp_adj += bsum / x_adj;
+ return ret + ret * __expm1f (exp_adj);
+ }
+}
float
__ieee754_gammaf_r (float x, int *signgamp)
{
- /* We don't have a real gamma implementation now. We'll use lgamma
- and the exp function. But due to the required boundary
- conditions we must check some values separately. */
int32_t hx;
GET_FLOAT_WORD (hx, x);
@@ -50,8 +133,49 @@ __ieee754_gammaf_r (float x, int *signgamp)
*signgamp = 0;
return x - x;
}
+ if (__builtin_expect ((hx & 0x7f800000) == 0x7f800000, 0))
+ {
+ /* Positive infinity (return positive infinity) or NaN (return
+ NaN). */
+ *signgamp = 0;
+ return x + x;
+ }
- /* XXX FIXME. */
- return __ieee754_expf (__ieee754_lgammaf_r (x, signgamp));
+ if (x >= 36.0f)
+ {
+ /* Overflow. */
+ *signgamp = 0;
+ return FLT_MAX * FLT_MAX;
+ }
+ else if (x > 0.0f)
+ {
+ *signgamp = 0;
+ int exp2_adj;
+ float ret = gammaf_positive (x, &exp2_adj);
+ return __scalbnf (ret, exp2_adj);
+ }
+ else if (x >= -FLT_EPSILON / 4.0f)
+ {
+ *signgamp = 0;
+ return 1.0f / x;
+ }
+ else
+ {
+ float tx = __truncf (x);
+ *signgamp = (tx == 2.0f * __truncf (tx / 2.0f)) ? -1 : 1;
+ if (x <= -42.0f)
+ /* Underflow. */
+ return FLT_MIN * FLT_MIN;
+ float frac = tx - x;
+ if (frac > 0.5f)
+ frac = 1.0f - frac;
+ float sinpix = (frac <= 0.25f
+ ? __sinf ((float) M_PI * frac)
+ : __cosf ((float) M_PI * (0.5f - frac)));
+ int exp2_adj;
+ float ret = (float) M_PI / (-x * sinpix
+ * gammaf_positive (-x, &exp2_adj));
+ return __scalbnf (ret, -exp2_adj);
+ }
}
strong_alias (__ieee754_gammaf_r, __gammaf_r_finite)