summaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu')
-rw-r--r--sysdeps/ia64/fpu/Dist11
-rw-r--r--sysdeps/ia64/fpu/Makefile36
-rw-r--r--sysdeps/ia64/fpu/README50
-rw-r--r--sysdeps/ia64/fpu/bits/mathdef.h37
-rw-r--r--sysdeps/ia64/fpu/e_acos.S1499
-rw-r--r--sysdeps/ia64/fpu/e_acosf.S78
-rw-r--r--sysdeps/ia64/fpu/e_acosh.S1202
-rw-r--r--sysdeps/ia64/fpu/e_acoshf.S1030
-rw-r--r--sysdeps/ia64/fpu/e_acoshl.S1716
-rw-r--r--sysdeps/ia64/fpu/e_acosl.S2917
-rw-r--r--sysdeps/ia64/fpu/e_asin.S1465
-rw-r--r--sysdeps/ia64/fpu/e_asinf.S72
-rw-r--r--sysdeps/ia64/fpu/e_asinl.S2834
-rw-r--r--sysdeps/ia64/fpu/e_atan2.S738
-rw-r--r--sysdeps/ia64/fpu/e_atan2f.S86
-rw-r--r--sysdeps/ia64/fpu/e_atanh.S1071
-rw-r--r--sysdeps/ia64/fpu/e_atanhf.S845
-rw-r--r--sysdeps/ia64/fpu/e_atanhl.S1156
-rw-r--r--sysdeps/ia64/fpu/e_cosh.S1477
-rw-r--r--sysdeps/ia64/fpu/e_coshf.S1447
-rw-r--r--sysdeps/ia64/fpu/e_coshl.S1662
-rw-r--r--sysdeps/ia64/fpu/e_exp.S895
-rw-r--r--sysdeps/ia64/fpu/e_exp10.S605
-rw-r--r--sysdeps/ia64/fpu/e_exp10f.S557
-rw-r--r--sysdeps/ia64/fpu/e_exp10l.S811
-rw-r--r--sysdeps/ia64/fpu/e_exp2.S564
-rw-r--r--sysdeps/ia64/fpu/e_exp2f.S539
-rw-r--r--sysdeps/ia64/fpu/e_exp2l.S807
-rw-r--r--sysdeps/ia64/fpu/e_expf.S957
-rw-r--r--sysdeps/ia64/fpu/e_fmod.S218
-rw-r--r--sysdeps/ia64/fpu/e_fmodf.S225
-rw-r--r--sysdeps/ia64/fpu/e_fmodl.S972
-rw-r--r--sysdeps/ia64/fpu/e_gammaf_r.c1
-rw-r--r--sysdeps/ia64/fpu/e_gammal_r.c1
-rw-r--r--sysdeps/ia64/fpu/e_hypot.S75
-rw-r--r--sysdeps/ia64/fpu/e_hypotf.S76
-rw-r--r--sysdeps/ia64/fpu/e_hypotl.S73
-rw-r--r--sysdeps/ia64/fpu/e_lgamma_r.c71
-rw-r--r--sysdeps/ia64/fpu/e_lgammaf_r.c71
-rw-r--r--sysdeps/ia64/fpu/e_lgammal_r.c70
-rw-r--r--sysdeps/ia64/fpu/e_log.S2453
-rw-r--r--sysdeps/ia64/fpu/e_log2.S711
-rw-r--r--sysdeps/ia64/fpu/e_log2f.S551
-rw-r--r--sysdeps/ia64/fpu/e_log2l.S817
-rw-r--r--sysdeps/ia64/fpu/e_logf.S1786
-rw-r--r--sysdeps/ia64/fpu/e_logl.S1200
-rw-r--r--sysdeps/ia64/fpu/e_logl.c (renamed from sysdeps/ia64/fpu/e_gamma_r.c)0
-rw-r--r--sysdeps/ia64/fpu/e_pow.S1633
-rw-r--r--sysdeps/ia64/fpu/e_powf.S2232
-rw-r--r--sysdeps/ia64/fpu/e_powl.S4080
-rw-r--r--sysdeps/ia64/fpu/e_remainder.S113
-rw-r--r--sysdeps/ia64/fpu/e_remainderf.S113
-rw-r--r--sysdeps/ia64/fpu/e_remainderl.S115
-rw-r--r--sysdeps/ia64/fpu/e_scalb.S669
-rw-r--r--sysdeps/ia64/fpu/e_scalbf.S669
-rw-r--r--sysdeps/ia64/fpu/e_scalbl.S669
-rw-r--r--sysdeps/ia64/fpu/e_sinh.S1652
-rw-r--r--sysdeps/ia64/fpu/e_sinhf.S1614
-rw-r--r--sysdeps/ia64/fpu/e_sinhl.S1779
-rw-r--r--sysdeps/ia64/fpu/e_sqrt.S68
-rw-r--r--sysdeps/ia64/fpu/e_sqrtf.S69
-rw-r--r--sysdeps/ia64/fpu/e_sqrtl.S67
-rw-r--r--sysdeps/ia64/fpu/feholdexcpt.c3
-rw-r--r--sysdeps/ia64/fpu/fesetround.c7
-rw-r--r--sysdeps/ia64/fpu/gen_import_file_list90
-rw-r--r--sysdeps/ia64/fpu/import_check81
-rw-r--r--sysdeps/ia64/fpu/import_diffs7
-rw-r--r--sysdeps/ia64/fpu/import_file.awk151
-rw-r--r--sysdeps/ia64/fpu/import_intel_libm106
-rw-r--r--sysdeps/ia64/fpu/libm-symbols.h64
-rw-r--r--sysdeps/ia64/fpu/libm-test-ulps90
-rw-r--r--sysdeps/ia64/fpu/libm_atan2_reg.S1234
-rw-r--r--sysdeps/ia64/fpu/libm_cpu_defs.h156
-rw-r--r--sysdeps/ia64/fpu/libm_error.c1114
-rw-r--r--sysdeps/ia64/fpu/libm_error_codes.h211
-rw-r--r--sysdeps/ia64/fpu/libm_frexp.S209
-rw-r--r--sysdeps/ia64/fpu/libm_frexpf.S209
-rw-r--r--sysdeps/ia64/fpu/libm_frexpl.S209
-rw-r--r--sysdeps/ia64/fpu/libm_lgamma.S3623
-rw-r--r--sysdeps/ia64/fpu/libm_lgammaf.S2199
-rw-r--r--sysdeps/ia64/fpu/libm_lgammal.S7678
-rw-r--r--sysdeps/ia64/fpu/libm_reduce.S1492
-rw-r--r--sysdeps/ia64/fpu/libm_scalblnf.S450
-rw-r--r--sysdeps/ia64/fpu/libm_sincos.S783
-rw-r--r--sysdeps/ia64/fpu/libm_sincos_large.S2757
-rw-r--r--sysdeps/ia64/fpu/libm_sincosf.S745
-rw-r--r--sysdeps/ia64/fpu/libm_sincosl.S2528
-rw-r--r--sysdeps/ia64/fpu/libm_support.h1180
-rw-r--r--sysdeps/ia64/fpu/printf_fphex.c4
-rw-r--r--sysdeps/ia64/fpu/s_asinh.S1138
-rw-r--r--sysdeps/ia64/fpu/s_asinhf.S937
-rw-r--r--sysdeps/ia64/fpu/s_asinhl.S1347
-rw-r--r--sysdeps/ia64/fpu/s_atan.S1193
-rw-r--r--sysdeps/ia64/fpu/s_atanf.S76
-rw-r--r--sysdeps/ia64/fpu/s_atanl.S2158
-rw-r--r--sysdeps/ia64/fpu/s_cbrt.S1224
-rw-r--r--sysdeps/ia64/fpu/s_cbrtf.S1227
-rw-r--r--sysdeps/ia64/fpu/s_cbrtl.S1720
-rw-r--r--sysdeps/ia64/fpu/s_ceil.S274
-rw-r--r--sysdeps/ia64/fpu/s_ceilf.S274
-rw-r--r--sysdeps/ia64/fpu/s_ceill.S276
-rw-r--r--sysdeps/ia64/fpu/s_copysign.S6
-rw-r--r--sysdeps/ia64/fpu/s_cos.S3497
-rw-r--r--sysdeps/ia64/fpu/s_cosf.S1182
-rw-r--r--sysdeps/ia64/fpu/s_cosl.S2760
-rw-r--r--sysdeps/ia64/fpu/s_erf.S926
-rw-r--r--sysdeps/ia64/fpu/s_erfc.S1199
-rw-r--r--sysdeps/ia64/fpu/s_erfcf.S983
-rw-r--r--sysdeps/ia64/fpu/s_erfcl.S2066
-rw-r--r--sysdeps/ia64/fpu/s_erff.S558
-rw-r--r--sysdeps/ia64/fpu/s_erfl.S1240
-rw-r--r--sysdeps/ia64/fpu/s_expm1.S2150
-rw-r--r--sysdeps/ia64/fpu/s_expm1f.S2062
-rw-r--r--sysdeps/ia64/fpu/s_expm1l.S1947
-rw-r--r--sysdeps/ia64/fpu/s_fabs.S116
-rw-r--r--sysdeps/ia64/fpu/s_fabsf.S83
-rw-r--r--sysdeps/ia64/fpu/s_fabsl.S83
-rw-r--r--sysdeps/ia64/fpu/s_fdim.S228
-rw-r--r--sysdeps/ia64/fpu/s_fdimf.S228
-rw-r--r--sysdeps/ia64/fpu/s_fdiml.S228
-rw-r--r--sysdeps/ia64/fpu/s_floor.S252
-rw-r--r--sysdeps/ia64/fpu/s_floorf.S250
-rw-r--r--sysdeps/ia64/fpu/s_floorl.S250
-rw-r--r--sysdeps/ia64/fpu/s_fma.S71
-rw-r--r--sysdeps/ia64/fpu/s_fmaf.S71
-rw-r--r--sysdeps/ia64/fpu/s_fmal.S71
-rw-r--r--sysdeps/ia64/fpu/s_fmax.S114
-rw-r--r--sysdeps/ia64/fpu/s_fmaxf.S114
-rw-r--r--sysdeps/ia64/fpu/s_fmaxl.S114
-rw-r--r--sysdeps/ia64/fpu/s_frexp.c34
-rw-r--r--sysdeps/ia64/fpu/s_frexpf.c34
-rw-r--r--sysdeps/ia64/fpu/s_frexpl.c34
-rw-r--r--sysdeps/ia64/fpu/s_ilogb.S305
-rw-r--r--sysdeps/ia64/fpu/s_ilogbf.S305
-rw-r--r--sysdeps/ia64/fpu/s_ilogbl.S305
-rw-r--r--sysdeps/ia64/fpu/s_ldexp.S380
-rw-r--r--sysdeps/ia64/fpu/s_ldexp.c61
-rw-r--r--sysdeps/ia64/fpu/s_ldexpf.S379
-rw-r--r--sysdeps/ia64/fpu/s_ldexpf.c61
-rw-r--r--sysdeps/ia64/fpu/s_ldexpl.S379
-rw-r--r--sysdeps/ia64/fpu/s_ldexpl.c61
-rw-r--r--sysdeps/ia64/fpu/s_libm_ldexp.S452
-rw-r--r--sysdeps/ia64/fpu/s_libm_ldexpf.S452
-rw-r--r--sysdeps/ia64/fpu/s_libm_ldexpl.S452
-rw-r--r--sysdeps/ia64/fpu/s_libm_scalbn.S452
-rw-r--r--sysdeps/ia64/fpu/s_libm_scalbnf.S452
-rw-r--r--sysdeps/ia64/fpu/s_libm_scalbnl.S452
-rw-r--r--sysdeps/ia64/fpu/s_log1p.S2314
-rw-r--r--sysdeps/ia64/fpu/s_log1pf.S2030
-rw-r--r--sysdeps/ia64/fpu/s_log1pl.S2068
-rw-r--r--sysdeps/ia64/fpu/s_logb.S314
-rw-r--r--sysdeps/ia64/fpu/s_logbf.S333
-rw-r--r--sysdeps/ia64/fpu/s_logbl.S310
-rw-r--r--sysdeps/ia64/fpu/s_modf.S47
-rw-r--r--sysdeps/ia64/fpu/s_modff.S47
-rw-r--r--sysdeps/ia64/fpu/s_modfl.S49
-rw-r--r--sysdeps/ia64/fpu/s_nearbyint.S263
-rw-r--r--sysdeps/ia64/fpu/s_nearbyintf.S261
-rw-r--r--sysdeps/ia64/fpu/s_nearbyintl.S260
-rw-r--r--sysdeps/ia64/fpu/s_nextafter.S498
-rw-r--r--sysdeps/ia64/fpu/s_nextafterf.S504
-rw-r--r--sysdeps/ia64/fpu/s_nextafterl.S503
-rw-r--r--sysdeps/ia64/fpu/s_nextafterl.c1
-rw-r--r--sysdeps/ia64/fpu/s_nexttoward.S490
-rw-r--r--sysdeps/ia64/fpu/s_nexttoward.c1
-rw-r--r--sysdeps/ia64/fpu/s_nexttowardf.S496
-rw-r--r--sysdeps/ia64/fpu/s_nexttowardf.c1
-rw-r--r--sysdeps/ia64/fpu/s_nexttowardl.S494
-rw-r--r--sysdeps/ia64/fpu/s_rint.S287
-rw-r--r--sysdeps/ia64/fpu/s_rintf.S289
-rw-r--r--sysdeps/ia64/fpu/s_rintl.S289
-rw-r--r--sysdeps/ia64/fpu/s_round.S322
-rw-r--r--sysdeps/ia64/fpu/s_roundf.S322
-rw-r--r--sysdeps/ia64/fpu/s_roundl.S322
-rw-r--r--sysdeps/ia64/fpu/s_scalblnf.c61
-rw-r--r--sysdeps/ia64/fpu/s_scalbn.S379
-rw-r--r--sysdeps/ia64/fpu/s_scalbn.c61
-rw-r--r--sysdeps/ia64/fpu/s_scalbnf.S379
-rw-r--r--sysdeps/ia64/fpu/s_scalbnf.c61
-rw-r--r--sysdeps/ia64/fpu/s_scalbnl.S379
-rw-r--r--sysdeps/ia64/fpu/s_scalbnl.c61
-rw-r--r--sysdeps/ia64/fpu/s_significand.S61
-rw-r--r--sysdeps/ia64/fpu/s_significandf.S61
-rw-r--r--sysdeps/ia64/fpu/s_significandl.S61
-rw-r--r--sysdeps/ia64/fpu/s_sincos.c10
-rw-r--r--sysdeps/ia64/fpu/s_sincosf.c10
-rw-r--r--sysdeps/ia64/fpu/s_sincosl.c10
-rw-r--r--sysdeps/ia64/fpu/s_tan.S554
-rw-r--r--sysdeps/ia64/fpu/s_tanf.S1004
-rw-r--r--sysdeps/ia64/fpu/s_tanh.S986
-rw-r--r--sysdeps/ia64/fpu/s_tanhf.S581
-rw-r--r--sysdeps/ia64/fpu/s_tanhl.S1348
-rw-r--r--sysdeps/ia64/fpu/s_tanl.S3032
-rw-r--r--sysdeps/ia64/fpu/s_trunc.S207
-rw-r--r--sysdeps/ia64/fpu/s_truncf.S207
-rw-r--r--sysdeps/ia64/fpu/s_truncl.S209
-rw-r--r--sysdeps/ia64/fpu/t_exp.c1
-rw-r--r--sysdeps/ia64/fpu/w_acosh.c1
-rw-r--r--sysdeps/ia64/fpu/w_acoshf.c1
-rw-r--r--sysdeps/ia64/fpu/w_acoshl.c1
-rw-r--r--sysdeps/ia64/fpu/w_atanh.c1
-rw-r--r--sysdeps/ia64/fpu/w_atanhf.c1
-rw-r--r--sysdeps/ia64/fpu/w_atanhl.c1
-rw-r--r--sysdeps/ia64/fpu/w_exp10.c1
-rw-r--r--sysdeps/ia64/fpu/w_exp10f.c1
-rw-r--r--sysdeps/ia64/fpu/w_exp10l.c1
-rw-r--r--sysdeps/ia64/fpu/w_exp2.c1
-rw-r--r--sysdeps/ia64/fpu/w_exp2f.c1
-rw-r--r--sysdeps/ia64/fpu/w_exp2l.c1
-rw-r--r--sysdeps/ia64/fpu/w_expl.c1
-rw-r--r--sysdeps/ia64/fpu/w_lgamma.c80
-rw-r--r--sysdeps/ia64/fpu/w_lgamma_r.c1
-rw-r--r--sysdeps/ia64/fpu/w_lgammaf.c80
-rw-r--r--sysdeps/ia64/fpu/w_lgammaf_r.c1
-rw-r--r--sysdeps/ia64/fpu/w_lgammal.c79
-rw-r--r--sysdeps/ia64/fpu/w_lgammal_r.c1
-rw-r--r--sysdeps/ia64/fpu/w_log2.c1
-rw-r--r--sysdeps/ia64/fpu/w_log2f.c1
-rw-r--r--sysdeps/ia64/fpu/w_log2l.c1
-rw-r--r--sysdeps/ia64/fpu/w_sinh.c1
-rw-r--r--sysdeps/ia64/fpu/w_sinhf.c1
-rw-r--r--sysdeps/ia64/fpu/w_sinhl.c1
-rw-r--r--sysdeps/ia64/fpu/w_tgamma.S1836
-rw-r--r--sysdeps/ia64/fpu/w_tgammaf.S1331
-rw-r--r--sysdeps/ia64/fpu/w_tgammal.S4487
225 files changed, 46401 insertions, 103552 deletions
diff --git a/sysdeps/ia64/fpu/Dist b/sysdeps/ia64/fpu/Dist
new file mode 100644
index 0000000000..afd3153506
--- /dev/null
+++ b/sysdeps/ia64/fpu/Dist
@@ -0,0 +1,11 @@
+libc_libm_error.c
+libm_atan2_reg.S
+libm_error.c
+libm_frexp4.S
+libm_frexp4f.S
+libm_frexp4l.S
+libm_reduce.S
+libm_support.h
+libm_tan.S
+s_matherrf.c
+s_matherrl.c
diff --git a/sysdeps/ia64/fpu/Makefile b/sysdeps/ia64/fpu/Makefile
index 384fc836af..6d1b0c1717 100644
--- a/sysdeps/ia64/fpu/Makefile
+++ b/sysdeps/ia64/fpu/Makefile
@@ -1,34 +1,8 @@
ifeq ($(subdir),math)
-#
-# Some files which need to go both into libc and libm have external
-# dependencies which need to be resolved differently for libc
-# vs. libm. For example, inside libc, __libm_error_support needs to
-# resolve to HIDDEN_JUMPTARGET(__libm_error_support) whereas within
-# libm it always resolves to __libm_error_support. Such files need to
-# be compiled twice. Fortunately, math/Makefile already has logic to
-# support this: if a file starts with "s_", make will automatically
-# generate a matching file whose name starts with "m_" which simply
-# includes the corresponding "s_" file.
-#
-duplicated-routines = s_libm_ldexp s_libm_ldexpf s_libm_ldexpl \
- s_libm_scalbn s_libm_scalbnf s_libm_scalbnl
+libm-sysdep_routines += libm_atan2_reg s_matherrf s_matherrl libm_reduce \
+ libm_tan libm_error \
+ libm_frexp4 libm_frexp4f libm_frexp4l
-libm-sysdep_routines += s_erfc s_erfcf s_erfcl \
- s_matherrf s_matherrl libm_reduce \
- libm_error \
- libm_frexp libm_frexpf libm_frexpl \
- libm_sincos libm_sincosf libm_sincosl \
- libm_sincos_large \
- libm_lgamma libm_lgammaf libm_lgammal \
- libm_scalblnf \
- $(duplicated-routines:s_%=m_%)
-
-sysdep_routines += libc_libm_error libm_frexp libm_frexpf libm_frexpl \
- $(duplicated-routines)
-
-sysdep-CPPFLAGS += -include libm-symbols.h \
- -D__POSIX__ -Dopensource \
- -D_LIB_VERSIONIMF=_LIB_VERSION \
- -DSIZE_INT_32 -DSIZE_LONG_INT_64 -DSIZE_LONG_LONG_INT_64 \
- -DSIZE_LONG_64 -DIA64
+sysdep_routines += libm_frexp4 libm_frexp4f libm_frexp4l libc_libm_error
+sysdep-CPPFLAGS += -DSIZE_INT_32
endif
diff --git a/sysdeps/ia64/fpu/README b/sysdeps/ia64/fpu/README
deleted file mode 100644
index 6f4af0678a..0000000000
--- a/sysdeps/ia64/fpu/README
+++ /dev/null
@@ -1,50 +0,0 @@
- ----------------------------------------------------------
- Notes on how to update libm based on Intel's libm releases
- ----------------------------------------------------------
-
-This source code in this directory is currently based on Intel libm
-v2.1 as available from:
-
- http://www.intel.com/software/products/opensource/libraries/num.htm
-
-To ease importing, fix some bugs, and simplify integration into libc,
-it is also necessary to apply the patch at:
-
- ftp://ftp.hpl.hp.com/pub/linux-ia64/intel-libm-041228.diff.gz
-
-The expectation is that Intel will integrate most if not all of these
-changes into future releases of libm, so this patching step can
-hopefully be omitted in the future.
-
-Once the patched libm sources are extracted in a directory $LIBM, they
-can be imported into the libc source tree at $LIBC with the following
-step:
-
- $ cd $LIBC/src/sysdep/ia64/fpu
- $ ./import_intel_libm $LIBM
-
-This should produce a number of "Importing..." messages, without
-showing any errors.
-
-At this point, you should be able to build glibc in the usual fashion.
-We assume you do this in directory $OBJ. Once the build has
-completed, run "make check" to verify that all (math) checks succeed.
-If these checks succeed, you should also run the following commands to
-verify that the new libm doesn't pollute the name-space and has proper
-size-info for the data objects:
-
- $ cd $LIBC/src/sysdep/ia64/fpu
- $ import_check $OBJ/math/
-
-There should be no (unexpected) errors reported by this script.
-
-As an optional step, you may also want to confirm that the new libm
-exports the exact same global symbols as the old one.
-
-If you want to see the changes introduced by the "import_intel_libm"
-script, you can run the commands:
-
- $ cd $LIBC/src/sysdep/ia64/fpu
- $ import_diffs
-
-That's it.
diff --git a/sysdeps/ia64/fpu/bits/mathdef.h b/sysdeps/ia64/fpu/bits/mathdef.h
new file mode 100644
index 0000000000..3dc2860223
--- /dev/null
+++ b/sysdeps/ia64/fpu/bits/mathdef.h
@@ -0,0 +1,37 @@
+/* Copyright (C) 2000, 2001, 2004 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#if !defined _MATH_H && !defined _COMPLEX_H
+# error "Never use <bits/mathdef.h> directly; include <math.h> instead"
+#endif
+
+#if defined __USE_ISOC99 && defined _MATH_H && !defined _MATH_H_MATHDEF
+# define _MATH_H_MATHDEF 1
+
+/* The IA-64 architecture computes values with the precision of the
+ used type. */
+typedef float float_t; /* `float' expressions are evaluated as
+ `float'. */
+typedef double double_t; /* `double' expressions are evaluated as
+ `double'. */
+
+/* The values returned by `ilogb' for 0 and NaN respectively. */
+# define FP_ILOGB0 (-2147483647 - 1)
+# define FP_ILOGBNAN 2147483647
+
+#endif /* ISO C99 */
diff --git a/sysdeps/ia64/fpu/e_acos.S b/sysdeps/ia64/fpu/e_acos.S
index c2b31ab85e..7e83811727 100644
--- a/sysdeps/ia64/fpu/e_acos.S
+++ b/sysdeps/ia64/fpu/e_acos.S
@@ -1,10 +1,10 @@
.file "acos.s"
-
-// Copyright (c) 2000 - 2003 Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,9 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
+// WARRANTY DISCLAIMER
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,801 +37,838 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
//==============================================================
-// 02/02/00 Initial version
-// 08/17/00 New and much faster algorithm.
-// 08/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths,
+// 2/02/00 Initial version
+// 8/17/00 New and much faster algorithm.
+// 8/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths,
// fixed mfb split issue stalls.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/02/02 New and much faster algorithm II
-// 02/06/03 Reordered header: .section, .global, .proc, .align
// Description
//=========================================
-// The acos function computes the principal value of the arc cosine of x.
-// acos(0) returns Pi/2, acos(1) returns 0, acos(-1) returns Pi.
+// The acos function computes the principle value of the arc sine of x.
// A doman error occurs for arguments not in the range [-1,+1].
-//
-// The acos function returns the arc cosine in the range [0, Pi] radians.
-//
-// There are 8 paths:
-// 1. x = +/-0.0
-// Return acos(x) = Pi/2 + x
-//
-// 2. 0.0 < |x| < 0.625
-// Return acos(x) = Pi/2 - x - x^3 *PolA(x^2)
-// where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32
-//
-// 3. 0.625 <=|x| < 1.0
-// Return acos(x) = Pi/2 - asin(x) =
-// = Pi/2 - sign(x) * ( Pi/2 - sqrt(R) * PolB(R))
-// Where R = 1 - |x|,
-// PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12
-//
-// sqrt(R) is approximated using the following sequence:
-// y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta,
-// |eps| < 2^(-8)
-// Then 3 iterations are used to refine the result:
-// H0 = 0.5*y0
-// S0 = R*y0
-//
-// d0 = 0.5 - H0*S0
-// H1 = H0 + d0*H0
-// S1 = S0 + d0*S0
-//
-// d1 = 0.5 - H1*S1
-// H2 = H1 + d0*H1
-// S2 = S1 + d0*S1
-//
-// d2 = 0.5 - H2*S2
-// S3 = S3 + d2*S3
-//
-// S3 approximates sqrt(R) with enough accuracy for this algorithm
-//
-// So, the result should be reconstracted as follows:
-// acos(x) = Pi/2 - sign(x) * (Pi/2 - S3*PolB(R))
-//
-// But for optimization purposes the reconstruction step is slightly
-// changed:
-// acos(x) = Cpi + sign(x)*PolB(R)*S2 - sign(x)*d2*S2*PolB(R)
-// where Cpi = 0 if x > 0 and Cpi = Pi if x < 0
-//
-// 4. |x| = 1.0
-// Return acos(1.0) = 0.0, acos(-1.0) = Pi
-//
-// 5. 1.0 < |x| <= +INF
-// A doman error occurs for arguments not in the range [-1,+1]
-//
-// 6. x = [S,Q]NaN
-// Return acos(x) = QNaN
-//
-// 7. x is denormal
-// Return acos(x) = Pi/2 - x,
-//
-// 8. x is unnormal
-// Normalize input in f8 and return to the very beginning of the function
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6, f7, f9 -> f15, f32 -> f64
-// General registers used:
-// r3, r21 -> r31, r32 -> r38
+// The acos function returns the arc cosine in the range [0, +pi] radians.
+// acos(1) returns +0, acos(-1) returns pi, acos(0) returns pi/2.
+// acos(x) returns a Nan and raises the invalid exception for |x| >1
-// Predicate registers used:
-// p0, p6 -> p14
+// The acos function is just like asin except that pi/2 is added at the end.
//
// Assembly macros
//=========================================
-// integer registers used
-// scratch
-rTblAddr = r3
-
-rPiBy2Ptr = r21
-rTmpPtr3 = r22
-rDenoBound = r23
-rOne = r24
-rAbsXBits = r25
-rHalf = r26
-r0625 = r27
-rSign = r28
-rXBits = r29
-rTmpPtr2 = r30
-rTmpPtr1 = r31
-
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
-
-// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-// scratch
-fXSqr = f6
-fXCube = f7
-fXQuadr = f9
-f1pX = f10
-f1mX = f11
-f1pXRcp = f12
-f1mXRcp = f13
-fH = f14
-fS = f15
-// stacked
-fA3 = f32
-fB1 = f32
-fA5 = f33
-fB2 = f33
-fA7 = f34
-fPiBy2 = f34
-fA9 = f35
-fA11 = f36
-fB10 = f35
-fB11 = f36
-fA13 = f37
-fA15 = f38
-fB4 = f37
-fB5 = f38
-fA17 = f39
-fA19 = f40
-fB6 = f39
-fB7 = f40
-fA21 = f41
-fA23 = f42
-fB3 = f41
-fB8 = f42
-fA25 = f43
-fA27 = f44
-fB9 = f43
-fB12 = f44
-fA29 = f45
-fA31 = f46
-fA33 = f47
-fA35 = f48
-fBaseP = f49
-fB0 = f50
-fSignedS = f51
-fD = f52
-fHalf = f53
-fR = f54
-fCloseTo1Pol = f55
-fSignX = f56
-fDenoBound = f57
-fNormX = f58
-fX8 = f59
-fRSqr = f60
-fRQuadr = f61
-fR8 = f62
-fX16 = f63
-fCpi = f64
+
+#include "libm_support.h"
+
+// predicate registers
+//acos_pred_LEsqrt2by2 = p7
+//acos_pred_GTsqrt2by2 = p8
+
+// integer registers
+ASIN_Addr1 = r33
+ASIN_Addr2 = r34
+ASIN_FFFE = r35
+
+GR_SAVE_B0 = r36
+GR_SAVE_PFS = r37
+GR_SAVE_GP = r38
+
+GR_Parameter_X = r39
+GR_Parameter_Y = r40
+GR_Parameter_RESULT = r41
+GR_Parameter_Tag = r42
+
+// floating point registers
+acos_coeff_P1 = f32
+acos_coeff_P2 = f33
+acos_coeff_P3 = f34
+acos_coeff_P4 = f35
+
+acos_coeff_P5 = f36
+acos_coeff_P6 = f37
+acos_coeff_P7 = f38
+acos_coeff_P8 = f39
+acos_coeff_P9 = f40
+
+acos_coeff_P10 = f41
+acos_coeff_P11 = f42
+acos_coeff_P12 = f43
+acos_coeff_P13 = f44
+acos_coeff_P14 = f45
+
+acos_coeff_P15 = f46
+acos_coeff_P16 = f47
+acos_coeff_P17 = f48
+acos_coeff_P18 = f49
+acos_coeff_P19 = f50
+
+acos_coeff_P20 = f51
+acos_coeff_P21 = f52
+acos_const_sqrt2by2 = f53
+acos_const_piby2 = f54
+acos_abs_x = f55
+
+acos_tx = f56
+acos_tx2 = f57
+acos_tx3 = f58
+acos_tx4 = f59
+acos_tx8 = f60
+
+acos_tx11 = f61
+acos_1poly_p8 = f62
+acos_1poly_p19 = f63
+acos_1poly_p4 = f64
+acos_1poly_p15 = f65
+
+acos_1poly_p6 = f66
+acos_1poly_p17 = f67
+acos_1poly_p0 = f68
+acos_1poly_p11 = f69
+acos_1poly_p2 = f70
+
+acos_1poly_p13 = f71
+acos_series_tx = f72
+acos_t = f73
+acos_t2 = f74
+acos_t3 = f75
+
+acos_t4 = f76
+acos_t8 = f77
+acos_t11 = f78
+acos_poly_p8 = f79
+acos_poly_p19 = f80
+
+acos_poly_p4 = f81
+acos_poly_p15 = f82
+acos_poly_p6 = f83
+acos_poly_p17 = f84
+acos_poly_p0 = f85
+
+acos_poly_p11 = f86
+acos_poly_p2 = f87
+acos_poly_p13 = f88
+acos_series_t = f89
+acos_1by2 = f90
+
+acos_3by2 = f91
+acos_5by2 = f92
+acos_11by4 = f93
+acos_35by8 = f94
+acos_63by8 = f95
+
+acos_231by16 = f96
+acos_y0 = f97
+acos_H0 = f98
+acos_S0 = f99
+acos_d = f100
+
+acos_l1 = f101
+acos_d2 = f102
+acos_T0 = f103
+acos_d1 = f104
+acos_e0 = f105
+
+acos_l2 = f106
+acos_d3 = f107
+acos_T3 = f108
+acos_S1 = f109
+acos_e1 = f110
+
+acos_z = f111
+answer2 = f112
+acos_sgn_x = f113
+acos_429by16 = f114
+acos_18by4 = f115
+
+acos_3by4 = f116
+acos_l3 = f117
+acos_T6 = f118
+acos_const_add = f119
// Data tables
//==============================================================
-RODATA
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
-LOCAL_OBJECT_START(acos_base_range_table)
-// Ai: Polynomial coefficients for the acos(x), |x| < .625000
-// Bi: Polynomial coefficients for the acos(x), |x| > .625000
-data8 0xBFDAAB56C01AE468 //A29
-data8 0x3FE1C470B76A5B2B //A31
-data8 0xBFDC5FF82A0C4205 //A33
-data8 0x3FC71FD88BFE93F0 //A35
-data8 0xB504F333F9DE6487, 0x00003FFF //B0
-data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3
-data8 0x3F9F1C71BC4A7823 //A9
-data8 0x3F96E8BBAAB216B2 //A11
-data8 0x3F91C4CA1F9F8A98 //A13
-data8 0x3F8C9DDCEDEBE7A6 //A15
-data8 0x3F877784442B1516 //A17
-data8 0x3F859C0491802BA2 //A19
-data8 0x9999999998C88B8F, 0x00003FFB //A5
-data8 0x3F6BD7A9A660BF5E //A21
-data8 0x3F9FC1659340419D //A23
-data8 0xB6DB6DB798149BDF, 0x00003FFA //A7
-data8 0xBFB3EF18964D3ED3 //A25
-data8 0x3FCD285315542CF2 //A27
-data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1
-data8 0x3EF0DDA376D10FB3 //B10
-data8 0xBEB83CAFE05EBAC9 //B11
-data8 0x3F65FFB67B513644 //B4
-data8 0x3F5032FBB86A4501 //B5
-data8 0x3F392162276C7CBA //B6
-data8 0x3F2435949FD98BDF //B7
-data8 0xD93923D7FA08341C, 0x00003FF9 //B2
-data8 0x3F802995B6D90BDB //B3
-data8 0x3F10DF86B341A63F //B8
-data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2
-data8 0x3EFA3EBD6B0ECB9D //B9
-data8 0x3EDE18BA080E9098 //B12
-LOCAL_OBJECT_END(acos_base_range_table)
+
+acos_coeff_1_table:
+ASM_TYPE_DIRECTIVE(acos_coeff_1_table,@object)
+data8 0xE4E7E0A423A21249 , 0x00003FF8 //P7
+data8 0xC2F7EE0200FCE2A5 , 0x0000C003 //P18
+data8 0xB745D7F6C65C20E0 , 0x00003FF9 //P5
+data8 0xF75E381A323D4D94 , 0x0000C002 //P16
+data8 0x8959C2629C1024C0 , 0x0000C002 //P20
+data8 0xAFF68E7D241292C5 , 0x00003FF8 //P9
+data8 0xB6DB6DB7260AC30D , 0x00003FFA //P3
+data8 0xD0417CE2B41CB7BF , 0x0000C000 //P14
+data8 0x81D570FEA724E3E4 , 0x0000BFFD //P12
+data8 0xAAAAAAAAAAAAC277 , 0x00003FFC //P1
+data8 0xF534912FF3E7B76F , 0x00003FFF //P21
+data8 0xc90fdaa22168c235 , 0x00003fff // pi/2
+data8 0x0000000000000000 , 0x00000000 // pad to avoid bank conflicts
+ASM_SIZE_DIRECTIVE(acos_coeff_1_table)
+
+
+acos_coeff_2_table:
+ASM_TYPE_DIRECTIVE(acos_coeff_2_table,@object)
+data8 0x8E26AF5F29B39A2A , 0x00003FF9 //P6
+data8 0xB4F118A4B1015470 , 0x00004003 //P17
+data8 0xF8E38E10C25990E0 , 0x00003FF9 //P4
+data8 0x80F50489AEF1CAC6 , 0x00004002 //P15
+data8 0x92728015172CFE1C , 0x00004003 //P19
+data8 0xBBC3D831D4595971 , 0x00003FF8 //P8
+data8 0x999999999952A5C3 , 0x00003FFB //P2
+data8 0x855576BE6F0975EC , 0x00003FFF //P13
+data8 0xF12420E778077D89 , 0x00003FFA //P11
+data8 0xB6590FF4D23DE003 , 0x00003FF3 //P10
+data8 0xb504f333f9de6484 , 0x00003ffe // sqrt(2)/2
+ASM_SIZE_DIRECTIVE(acos_coeff_2_table)
+
+
+.align 32
+.global acos
+ASM_TYPE_DIRECTIVE(acos,@function)
.section .text
-GLOBAL_LIBM_ENTRY(acos)
-acos_unnormal_back:
-{ .mfi
- getf.d rXBits = f8 // grab bits of input value
- // set p12 = 1 if x is a NaN, denormal, or zero
- fclass.m p12, p0 = f8, 0xcf
- adds rSign = 1, r0
-}
-{ .mfi
- addl rTblAddr = @ltoff(acos_base_range_table),gp
- // 1 - x = 1 - |x| for positive x
- fms.s1 f1mX = f1, f1, f8
- addl rHalf = 0xFFFE, r0 // exponent of 1/2
-}
-;;
-{ .mfi
- addl r0625 = 0x3FE4, r0 // high 16 bits of 0.625
- // set p8 = 1 if x < 0
- fcmp.lt.s1 p8, p9 = f8, f0
- shl rSign = rSign, 63 // sign bit
-}
-{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- // 1 + x = 1 - |x| for negative x
- fma.s1 f1pX = f1, f1, f8
- adds rOne = 0x3FF, r0
-}
-;;
-{ .mfi
- andcm rAbsXBits = rXBits, rSign // bits of |x|
- fmerge.s fSignX = f8, f1 // signum(x)
- shl r0625 = r0625, 48 // bits of DP representation of 0.625
-}
-{ .mfb
- setf.exp fHalf = rHalf // load A2 to FP reg
- fma.s1 fXSqr = f8, f8, f0 // x^2
- // branch on special path if x is a NaN, denormal, or zero
-(p12) br.cond.spnt acos_special
-}
-;;
-{ .mfi
- adds rPiBy2Ptr = 272, rTblAddr
- nop.f 0
- shl rOne = rOne, 52 // bits of 1.0
-}
-{ .mfi
- adds rTmpPtr1 = 16, rTblAddr
- nop.f 0
- // set p6 = 1 if |x| < 0.625
- cmp.lt p6, p7 = rAbsXBits, r0625
-}
-;;
-{ .mfi
- ldfpd fA29, fA31 = [rTblAddr] // A29, fA31
- // 1 - x = 1 - |x| for positive x
-(p9) fms.s1 fR = f1, f1, f8
- // point to coefficient of "near 1" polynomial
-(p7) adds rTmpPtr2 = 176, rTblAddr
-}
-{ .mfi
- ldfpd fA33, fA35 = [rTmpPtr1], 16 // A33, fA35
- // 1 + x = 1 - |x| for negative x
-(p8) fma.s1 fR = f1, f1, f8
-(p6) adds rTmpPtr2 = 48, rTblAddr
-}
-;;
-{ .mfi
- ldfe fB0 = [rTmpPtr1], 16 // B0
- nop.f 0
- nop.i 0
-}
-{ .mib
- adds rTmpPtr3 = 16, rTmpPtr2
- // set p10 = 1 if |x| = 1.0
- cmp.eq p10, p0 = rAbsXBits, rOne
- // branch on special path for |x| = 1.0
-(p10) br.cond.spnt acos_abs_1
-}
-;;
-{ .mfi
- ldfe fA3 = [rTmpPtr2], 48 // A3 or B1
- nop.f 0
- adds rTmpPtr1 = 64, rTmpPtr3
-}
-{ .mib
- ldfpd fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11
- // set p11 = 1 if |x| > 1.0
- cmp.gt p11, p0 = rAbsXBits, rOne
- // branch on special path for |x| > 1.0
-(p11) br.cond.spnt acos_abs_gt_1
-}
-;;
-{ .mfi
- ldfpd fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7
- // initial approximation of 1 / sqrt(1 - x)
- frsqrta.s1 f1mXRcp, p0 = f1mX
- nop.i 0
-}
-{ .mfi
- ldfpd fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5
- fma.s1 fXCube = fXSqr, f8, f0 // x^3
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA5 = [rTmpPtr2], 48 // A5 or B2
- // initial approximation of 1 / sqrt(1 + x)
- frsqrta.s1 f1pXRcp, p0 = f1pX
- nop.i 0
-}
-{ .mfi
- ldfpd fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8
- fma.s1 fXQuadr = fXSqr, fXSqr, f0 // x^4
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA7 = [rTmpPtr1] // A7 or Pi/2
- fma.s1 fRSqr = fR, fR, f0 // R^2
- nop.i 0
-}
-{ .mfb
- ldfpd fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12
- nop.f 0
-(p6) br.cond.spnt acos_base_range;
-}
-;;
+.proc acos
+.align 32
-{ .mfi
- nop.m 0
-(p9) fma.s1 fH = fHalf, f1mXRcp, f0 // H0 for x > 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 fS = f1mX, f1mXRcp, f0 // S0 for x > 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
-(p8) fma.s1 fH = fHalf, f1pXRcp, f0 // H0 for x < 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fma.s1 fS = f1pX, f1pXRcp, f0 // S0 for x > 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRQuadr = fRSqr, fRSqr, f0 // R^4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB11 = fB11, fR, fB10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB1 = fB1, fR, fB0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB5 = fB5, fR, fB4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB7 = fB7, fR, fB6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB3 = fB3, fR, fB2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fnma.s1 fD = fH, fS, fHalf // d0 = 1/2 - H0*S0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fR8 = fRQuadr, fRQuadr, f0 // R^4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB9 = fB9, fR, fB8
- nop.i 0
+
+acos:
+
+{ .mfi
+ alloc r32 = ar.pfs,1,6,4,0
+ fma.s1 acos_tx = f8,f8,f0
+ addl ASIN_Addr2 = @ltoff(acos_coeff_2_table),gp
+}
+{ .mfi
+ mov ASIN_FFFE = 0xFFFE
+ fnma.s1 acos_t = f8,f8,f1
+ addl ASIN_Addr1 = @ltoff(acos_coeff_1_table),gp
}
;;
-{.mfi
- nop.m 0
- fma.s1 fB12 = fB12, fRSqr, fB11
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fB7 = fB7, fRSqr, fB5
- nop.i 0
-}
+
+
+{ .mfi
+ setf.exp acos_1by2 = ASIN_FFFE
+ fmerge.s acos_abs_x = f1,f8
+ nop.i 999 ;;
+}
+
+
+{ .mmf
+ ld8 ASIN_Addr1 = [ASIN_Addr1]
+ ld8 ASIN_Addr2 = [ASIN_Addr2]
+ fmerge.s acos_sgn_x = f8,f1
+}
;;
-{.mfi
- nop.m 0
- fma.s1 fB3 = fB3, fRSqr, fB1
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fcmp.lt.s1 p11,p12 = f8, f0
+ nop.i 999 ;;
+}
+
+
+{ .mfi
+ ldfe acos_coeff_P7 = [ASIN_Addr1],16
+ fma.s1 acos_tx2 = acos_tx,acos_tx,f0
+ nop.i 999
+}
+{ .mfi
+ ldfe acos_coeff_P6 = [ASIN_Addr2],16
+ fma.s1 acos_t2 = acos_t,acos_t,f0
+ nop.i 999;;
}
+
+
+{ .mmf
+ ldfe acos_coeff_P18 = [ASIN_Addr1],16
+ ldfe acos_coeff_P17 = [ASIN_Addr2],16
+ fclass.m.unc p8,p0 = f8, 0xc3 //@qnan |@snan
+}
;;
-{ .mfi
- nop.m 0
- fma.s1 fH = fH, fD, fH // H1 = H0 + H0*d0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fS = fS, fD, fS // S1 = S0 + S0*d0
- nop.i 0
-}
+
+
+{ .mmf
+ ldfe acos_coeff_P5 = [ASIN_Addr1],16
+ ldfe acos_coeff_P4 = [ASIN_Addr2],16
+ frsqrta.s1 acos_y0,p0 = acos_t
+}
;;
-{.mfi
- nop.m 0
-(p9) fma.s1 fCpi = f1, f0, f0 // Cpi = 0 if x > 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fma.s1 fCpi = fPiBy2, f1, fPiBy2 // Cpi = Pi if x < 0
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_coeff_P16 = [ASIN_Addr1],16
+ fcmp.gt.s1 p9,p0 = acos_abs_x,f1
+ nop.i 999
+}
+{ .mfb
+ ldfe acos_coeff_P15 = [ASIN_Addr2],16
+(p8) fma.d f8 = f8,f1,f0
+(p8) br.ret.spnt b0
}
;;
-{ .mfi
- nop.m 0
- fma.s1 fB12 = fB12, fRSqr, fB9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB7 = fB7, fRQuadr, fB3
- nop.i 0
-}
+
+
+{ .mmf
+ ldfe acos_coeff_P20 = [ASIN_Addr1],16
+ ldfe acos_coeff_P19 = [ASIN_Addr2],16
+ fclass.m.unc p10,p0 = f8, 0x07 //@zero
+}
;;
-{.mfi
- nop.m 0
- fnma.s1 fD = fH, fS, fHalf // d1 = 1/2 - H1*S1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fSignedS = fSignX, fS, f0 // -signum(x)*S1
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_coeff_P9 = [ASIN_Addr1],16
+ fma.s1 acos_t4 = acos_t2,acos_t2,f0
+(p9) mov GR_Parameter_Tag = 58
+}
+{ .mfi
+ ldfe acos_coeff_P8 = [ASIN_Addr2],16
+ fma.s1 acos_3by2 = acos_1by2,f1,f1
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fCloseTo1Pol = fB12, fR8, fB7
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_coeff_P2 = [ASIN_Addr2],16
+ fma.s1 acos_tx4 = acos_tx2,acos_tx2,f0
+ nop.i 999
+}
+{ .mfb
+ ldfe acos_coeff_P3 = [ASIN_Addr1],16
+ fma.s1 acos_t3 = acos_t,acos_t2,f0
+(p9) br.cond.spnt __libm_error_region
}
;;
-{ .mfi
- nop.m 0
- fma.s1 fH = fH, fD, fH // H2 = H1 + H1*d1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fS = fS, fD, fS // S2 = S1 + S1*d1
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_coeff_P13 = [ASIN_Addr2],16
+ fma.s1 acos_H0 = acos_y0,acos_1by2,f0
+ nop.i 999
+}
+{ .mfi
+ ldfe acos_coeff_P14 = [ASIN_Addr1],16
+ fma.s1 acos_S0 = acos_y0,acos_t,f0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- // -signum(x)* S2 = -signum(x)*(S1 + S1*d1)
- fma.s1 fSignedS = fSignedS, fD, fSignedS
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_coeff_P11 = [ASIN_Addr2],16
+ fcmp.eq.s1 p6,p0 = acos_abs_x, f1
+ nop.i 999
+}
+{ .mfi
+ ldfe acos_coeff_P12 = [ASIN_Addr1],16
+ fma.s1 acos_tx3 = acos_tx,acos_tx2,f0
+ nop.i 999
}
;;
-{.mfi
- nop.m 0
- fnma.s1 fD = fH, fS, fHalf // d2 = 1/2 - H2*S2
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_coeff_P10 = [ASIN_Addr2],16
+ fma.s1 acos_1poly_p6 = acos_tx,acos_coeff_P7,acos_coeff_P6
+ nop.i 999
+}
+{ .mfi
+ ldfe acos_coeff_P1 = [ASIN_Addr1],16
+ fma.s1 acos_poly_p6 = acos_t,acos_coeff_P7,acos_coeff_P6
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- // Cpi + signum(x)*PolB*S2
- fnma.s1 fCpi = fSignedS, fCloseTo1Pol, fCpi
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_const_sqrt2by2 = [ASIN_Addr2],16
+ fma.s1 acos_5by2 = acos_3by2,f1,f1
+ nop.i 999
+}
+{ .mfi
+ ldfe acos_coeff_P21 = [ASIN_Addr1],16
+ fma.s1 acos_11by4 = acos_3by2,acos_3by2,acos_1by2
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- // signum(x)*PolB * S2
- fnma.s1 fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0
- nop.i 0
+
+
+{ .mfi
+ ldfe acos_const_piby2 = [ASIN_Addr1],16
+ fma.s1 acos_poly_p17 = acos_t,acos_coeff_P18,acos_coeff_P17
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+ fma.s1 acos_3by4 = acos_3by2,acos_1by2,f0
+(p10) br.cond.spnt L(ACOS_ZERO) // Branch to short path if x=0
}
;;
-{ .mfb
- nop.m 0
- // final result for 0.625 <= |x| < 1
- fma.d.s0 f8 = fCloseTo1Pol, fD, fCpi
- // exit here for 0.625 <= |x| < 1
- br.ret.sptk b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p15 = acos_t,acos_coeff_P16,acos_coeff_P15
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+ fnma.s1 acos_d = acos_S0,acos_H0,acos_1by2
+(p6) br.cond.spnt L(ACOS_ABS_ONE) // Branch to short path if |x|=1
}
;;
-
-// here if |x| < 0.625
-.align 32
-acos_base_range:
-{ .mfi
- ldfe fCpi = [rPiBy2Ptr] // Pi/2
- fma.s1 fA33 = fA33, fXSqr, fA31
- nop.i 0
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p19 = acos_t,acos_coeff_P20,acos_coeff_P19
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p4 = acos_t,acos_coeff_P5,acos_coeff_P4
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fXSqr, fA13
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA29 = fA29, fXSqr, fA27
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p17 = acos_tx,acos_coeff_P18,acos_coeff_P17
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p8 = acos_t,acos_coeff_P9,acos_coeff_P8
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fXSqr, fA23
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fms.s1 acos_35by8 = acos_5by2,acos_11by4,acos_5by2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_63by8 = acos_5by2,acos_11by4,f1
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA21 = fA21, fXSqr, fA19
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p13 = acos_t,acos_coeff_P14,acos_coeff_P13
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_18by4 = acos_3by2,acos_5by2,acos_3by4
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fXSqr, fA7
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_l1 = acos_5by2,acos_d,acos_3by2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_d2 = acos_d,acos_d,f0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, fXSqr, fA3
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p15 = acos_t2,acos_poly_p17,acos_poly_p15
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_T0 = acos_d,acos_S0,f0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA35 = fA35, fXQuadr, fA33
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p19 = acos_t2,acos_coeff_P21,acos_poly_p19
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p4 = acos_t2,acos_poly_p6,acos_poly_p4
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fXQuadr, fA15
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_d1 = acos_35by8,acos_d,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_231by16 = acos_3by2,acos_35by8,acos_63by8
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fX8 = fXQuadr, fXQuadr, f0 // x^8
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p2 = acos_t,acos_coeff_P3,acos_coeff_P2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p8 = acos_t2,acos_coeff_P10,acos_poly_p8
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fXQuadr, fA21
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p11 = acos_t,acos_coeff_P12,acos_coeff_P11
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_e0 = acos_d2,acos_l1,acos_d
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fXQuadr, fA5
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p15 = acos_tx,acos_coeff_P16,acos_coeff_P15
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p0 = acos_t,acos_coeff_P1,f1
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fCpi = fCpi, f1, f8 // Pi/2 - x
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p19 = acos_tx,acos_coeff_P20,acos_coeff_P19
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p4 = acos_tx,acos_coeff_P5,acos_coeff_P4
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA35 = fA35, fXQuadr, fA29
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p8 = acos_tx,acos_coeff_P9,acos_coeff_P8
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_l2 = acos_231by16,acos_d,acos_63by8
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fXSqr, fA11
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_d3 = acos_d2,acos_d,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_T3 = acos_d2,acos_T0,f0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fX16 = fX8, fX8, f0 // x^16
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_429by16 = acos_18by4,acos_11by4,acos_231by16
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_S1 = acos_e0,acos_S0,acos_S0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA35 = fA35, fX8, fA25
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p4 = acos_t4,acos_poly_p8,acos_poly_p4
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p15 = acos_t4,acos_poly_p19,acos_poly_p15
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fX8, fA9
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p0 = acos_t2,acos_poly_p2,acos_poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p11 = acos_t2,acos_poly_p13,acos_poly_p11
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fBaseP = fA35, fX16, fA17
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_t8 = acos_t4,acos_t4,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_e1 = acos_d2,acos_l2,acos_d1
+ nop.i 999;;
}
-;;
-{ .mfb
- nop.m 0
- // final result for |x| < 0.625
- fnma.d.s0 f8 = fBaseP, fXCube, fCpi
- // exit here for |x| < 0.625 path
- br.ret.sptk b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p4 = acos_tx2,acos_1poly_p6,acos_1poly_p4
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p15 = acos_tx2,acos_1poly_p17,acos_1poly_p15
+ nop.i 999;;
}
-;;
-// here if |x| = 1
-// acos(1) = 0
-// acos(-1) = Pi
-.align 32
-acos_abs_1:
-{ .mfi
- ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
- nop.f 0
- nop.i 0
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p8 = acos_tx2,acos_coeff_P10,acos_1poly_p8
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p19 = acos_tx2,acos_coeff_P21,acos_1poly_p19
+ nop.i 999;;
}
-;;
-.pred.rel "mutex", p8, p9
-{ .mfi
- nop.m 0
- // result for x = 1.0
-(p9) fma.d.s0 f8 = f1, f0, f0 // 0.0
- nop.i 0
-}
-{.mfb
- nop.m 0
- // result for x = -1.0
-(p8) fma.d.s0 f8 = fPiBy2, f1, fPiBy2 // Pi
- // exit here for |x| = 1.0
- br.ret.sptk b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p2 = acos_tx,acos_coeff_P3,acos_coeff_P2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p13 = acos_tx,acos_coeff_P14,acos_coeff_P13
+ nop.i 999;;
}
-;;
-// here if x is a NaN, denormal, or zero
-.align 32
-acos_special:
-{ .mfi
- // point to Pi/2
- adds rPiBy2Ptr = 272, rTblAddr
- // set p12 = 1 if x is a NaN
- fclass.m p12, p0 = f8, 0xc3
- nop.i 0
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p0 = acos_tx,acos_coeff_P1,f1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p11 = acos_tx,acos_coeff_P12,acos_coeff_P11
+ nop.i 999;;
}
-{ .mlx
- nop.m 0
- // smallest positive DP normalized number
- movl rDenoBound = 0x0010000000000000
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_l3 = acos_429by16,acos_d,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_z = acos_e1,acos_T3,acos_S1
+ nop.i 999;;
}
-;;
-{ .mfi
- ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
- // set p13 = 1 if x = 0.0
- fclass.m p13, p0 = f8, 0x07
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p11 = acos_t4,acos_poly_p15,acos_poly_p11
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_T6 = acos_T3,acos_d3,f0
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_t11 = acos_t8,acos_t3,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_poly_p0 = acos_t4,acos_poly_p4,acos_poly_p0
+ nop.i 999;;
}
-;;
-{ .mfb
- // load smallest normal to FP reg
- setf.d fDenoBound = rDenoBound
- // answer if x is a NaN
-(p12) fma.d.s0 f8 = f8,f1,f0
- // exit here if x is a NaN
-(p12) br.ret.spnt b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p4 = acos_tx4,acos_1poly_p8,acos_1poly_p4
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p15 = acos_tx4,acos_1poly_p19,acos_1poly_p15
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- // absolute value of normalized x
- fmerge.s fNormX = f1, fNormX
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p0 = acos_tx2,acos_1poly_p2,acos_1poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p11 = acos_tx2,acos_1poly_p13,acos_1poly_p11
+ nop.i 999;;
}
-;;
-{ .mfb
- nop.m 0
- // final result for x = 0
-(p13) fma.d.s0 f8 = fPiBy2, f1, f8
- // exit here if x = 0.0
-(p13) br.ret.spnt b0
+
+
+{ .mfi
+ nop.m 999
+// fcmp.le.s1 acos_pred_LEsqrt2by2,acos_pred_GTsqrt2by2 = acos_abs_x,acos_const_sqrt2by2
+ fcmp.le.s1 p7,p8 = acos_abs_x,acos_const_sqrt2by2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_tx8 = acos_tx4,acos_tx4,f0
+ nop.i 999;;
}
-;;
-// if we still here then x is denormal or unnormal
-{ .mfi
- nop.m 0
- // set p14 = 1 if normalized x is greater than or
- // equal to the smallest denormalized value
- // So, if p14 is set to 1 it means that we deal with
- // unnormal rather than with "true" denormal
- fcmp.ge.s1 p14, p0 = fNormX, fDenoBound
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_z = acos_l3,acos_T6,acos_z
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_series_t = acos_t11,acos_poly_p11,acos_poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p11) fma.s1 acos_const_add = acos_const_piby2, f1, acos_const_piby2
+ nop.i 999
}
;;
+
{ .mfi
- nop.m 0
-(p14) fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag if x unnormal
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // normalize unnormal input
-(p14) fnorm.s1 f8 = f8
- // return to the main path
-(p14) br.cond.sptk acos_unnormal_back
+ nop.m 999
+(p12) fma.s1 acos_const_add = f1,f0,f0
+ nop.i 999
}
;;
-// if we still here it means that input is "true" denormal
-{ .mfb
- nop.m 0
- // final result if x is denormal
- fms.d.s0 f8 = fPiBy2, f1, f8 // Pi/2 - x
- // exit here if x is denormal
- br.ret.sptk b0
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p0 = acos_tx4,acos_1poly_p4,acos_1poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 acos_1poly_p11 = acos_tx4,acos_1poly_p15,acos_1poly_p11
+ nop.i 999;;
}
-;;
-// here if |x| > 1.0
-// error handler should be called
-.align 32
-acos_abs_gt_1:
-{ .mfi
- alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 58 // error code
- frcpa.s0 FR_RESULT, p0 = f0,f0
- // call error handler routine
- br.cond.sptk __libm_error_region
-}
-;;
-GLOBAL_LIBM_END(acos)
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_tx11 = acos_tx8,acos_tx3,f0
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+//(acos_pred_GTsqrt2by2) fnma.s1 answer2 = acos_z,acos_series_t,acos_const_piby2
+(p8) fnma.s1 answer2 = acos_z,acos_series_t,f0
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 acos_series_tx = acos_tx11,acos_1poly_p11,acos_1poly_p0
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+//(acos_pred_GTsqrt2by2) fnma.d f8 = acos_sgn_x,answer2,acos_const_piby2
+(p8) fnma.d f8 = acos_sgn_x,answer2,acos_const_add
+ nop.i 999;;
+}
+
+{ .mfb
+ nop.m 999
+//(acos_pred_LEsqrt2by2) fnma.d f8 = f8,acos_series_tx,acos_const_piby2
+(p7) fnma.d f8 = f8,acos_series_tx,acos_const_piby2
+ br.ret.sptk b0 ;;
+}
+
+
+L(ACOS_ZERO):
+// Here if x=0
+{ .mfb
+ nop.m 999
+ fma.d f8 = acos_const_piby2,f1,f0
+ br.ret.sptk b0 ;;
+}
+
+
+L(ACOS_ABS_ONE):
+.pred.rel "mutex",p11,p12
+// Here if |x|=1
+{ .mfi
+ nop.m 999
+(p11) fma.d f8 = acos_const_piby2,f1,acos_const_piby2 // acos(-1)=pi
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p12) fma.d f8 = f1,f0,f0 // acos(1)=0
+ br.ret.sptk b0 ;;
+}
+.endp acos
+ASM_SIZE_DIRECTIVE(acos)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
@@ -840,29 +879,28 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ stfs [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+ frcpa.s0 f9,p0 = f0,f0
+;;
+
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] = f8 // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfd [GR_Parameter_Y] = f9,-16 // Store Parameter 3 on stack
+ adds r32 = 48,sp
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfd f8 = [r32] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
@@ -871,8 +909,11 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
+
};;
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support,@function
+.global __libm_error_support
diff --git a/sysdeps/ia64/fpu/e_acosf.S b/sysdeps/ia64/fpu/e_acosf.S
index 68b0b2ee8d..a3425414cf 100644
--- a/sysdeps/ia64/fpu/e_acosf.S
+++ b/sysdeps/ia64/fpu/e_acosf.S
@@ -1,10 +1,10 @@
.file "acosf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,23 +35,19 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/28/00 Improved speed
-// 06/31/00 Changed register allocation because of some duplicate macros
+// 2/02/00 Initial revision
+// 6/28/00 Improved speed
+// 6/31/00 Changed register allocation because of some duplicate macros
// moved nan exit bundle up to gain a cycle.
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 08/17/00 Changed predicate register macro-usage to direct predicate
+// 8/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
// 10/17/00 Improved speed of x=0 and x=1 paths, set D flag if x denormal.
-// 03/13/01 Corrected sign of imm1 value in dep instruction.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 04/17/03 Moved mutex after label
// Description
@@ -119,6 +115,7 @@
// answer2 = sign(x) z P(t) if x>0
// = sign(x) z P(t) + pi if x<0
+#include "libm_support.h"
//
// Assembly macros
@@ -225,30 +222,42 @@ acosf_poly_p1a = f90
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(acosf_coeff_1_table)
+acosf_coeff_1_table:
+ASM_TYPE_DIRECTIVE(acosf_coeff_1_table,@object)
data8 0x3FC5555607DCF816 // P1
data8 0x3F9CF81AD9BAB2C6 // P4
data8 0x3FC59E0975074DF3 // P7
data8 0xBFA6F4CC2780AA1D // P6
data8 0x3FC2DD45292E93CB // P9
data8 0x3fe6a09e667f3bcd // sqrt(2)/2
-LOCAL_OBJECT_END(acosf_coeff_1_table)
+ASM_SIZE_DIRECTIVE(acosf_coeff_1_table)
-LOCAL_OBJECT_START(acosf_coeff_2_table)
+acosf_coeff_2_table:
+ASM_TYPE_DIRECTIVE(acosf_coeff_2_table,@object)
data8 0x3FA6F108E31EFBA6 // P3
data8 0xBFCA31BF175D82A0 // P8
data8 0x3FA30C0337F6418B // P5
data8 0x3FB332C9266CB1F9 // P2
data8 0x3ff921fb54442d18 // pi_by_2
-LOCAL_OBJECT_END(acosf_coeff_2_table)
+ASM_SIZE_DIRECTIVE(acosf_coeff_2_table)
+.align 32
+.global acosf
+ASM_TYPE_DIRECTIVE(acosf,@function)
.section .text
-GLOBAL_LIBM_ENTRY(acosf)
+.proc acosf
+.align 32
+
+acosf:
// Load the addresses of the two tables.
// Then, load the coefficients and other constants.
@@ -333,7 +342,7 @@ GLOBAL_LIBM_ENTRY(acosf)
}
{ .mfb
nop.m 999
-(p8) fma.s.s0 f8 = f8,f1,f0
+(p8) fma.s f8 = f8,f1,f0
(p8) br.ret.spnt b0 ;; // Exit if x=nan
}
@@ -341,7 +350,7 @@ GLOBAL_LIBM_ENTRY(acosf)
{ .mfb
nop.m 999
fcmp.eq.s1 p6,p0 = acosf_abs_x,f1
-(p10) br.cond.spnt ACOSF_ZERO ;; // Branch if x=0
+(p10) br.cond.spnt L(ACOSF_ZERO) ;; // Branch if x=0
}
{ .mfi
@@ -358,7 +367,7 @@ GLOBAL_LIBM_ENTRY(acosf)
{ .mfb
nop.m 999
fma.s1 acosf_t4 = acosf_t2,acosf_t2,f0
-(p6) br.cond.spnt ACOSF_ABS_ONE ;; // Branch if |x|=1
+(p6) br.cond.spnt L(ACOSF_ABS_ONE) ;; // Branch if |x|=1
}
{ .mfi
@@ -566,40 +575,41 @@ GLOBAL_LIBM_ENTRY(acosf)
.pred.rel "mutex",p8,p7 //acosf_pred_GTsqrt2by2,acosf_pred_LEsqrt2by2
{ .mfi
nop.m 999
-(p8) fma.s.s0 f8 = acosf_z,acosf_Pt,acosf_sgn_x_piby2
+(p8) fma.s f8 = acosf_z,acosf_Pt,acosf_sgn_x_piby2
nop.i 999
}
{ .mfb
nop.m 999
-(p7) fms.s.s0 f8 = acosf_const_piby2,f1,acosf_sinf1
+(p7) fms.s f8 = acosf_const_piby2,f1,acosf_sinf1
br.ret.sptk b0 ;;
}
-ACOSF_ZERO:
+L(ACOSF_ZERO):
// Here if x=0
{ .mfb
nop.m 999
- fma.s.s0 f8 = acosf_const_piby2,f1,f0 // acosf(0)=pi/2
+ fma.s f8 = acosf_const_piby2,f1,f0 // acosf(0)=pi/2
br.ret.sptk b0 ;;
}
-ACOSF_ABS_ONE:
+L(ACOSF_ABS_ONE):
.pred.rel "mutex",p11,p12
// Here if |x|=1
{ .mfi
nop.m 999
-(p11) fma.s.s0 f8 = acosf_const_piby2,f1,acosf_const_piby2 // acosf(-1)=pi
+(p11) fma.s f8 = acosf_const_piby2,f1,acosf_const_piby2 // acosf(-1)=pi
nop.i 999
}
{ .mfb
nop.m 999
-(p12) fma.s.s0 f8 = f1,f0,f0 // acosf(1)=0
+(p12) fma.s f8 = f1,f0,f0 // acosf(1)=0
br.ret.sptk b0 ;;
}
-GLOBAL_LIBM_END(acosf)
+.endp acosf
+ASM_SIZE_DIRECTIVE(acosf)
// Stack operations when calling error support.
@@ -632,7 +642,8 @@ GLOBAL_LIBM_END(acosf)
// restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -688,7 +699,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_acosh.S b/sysdeps/ia64/fpu/e_acosh.S
deleted file mode 100644
index fb25fa0053..0000000000
--- a/sysdeps/ia64/fpu/e_acosh.S
+++ /dev/null
@@ -1,1202 +0,0 @@
-.file "acosh.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// ==============================================================
-// History
-// ==============================================================
-// 03/23/01 Initial version
-// 04/19/01 Improved speed of the paths #1,2,3,4,5
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/14/03 Improved performance, set denormal flag for unorms >= 1.0
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-// ==============================================================
-// double acosh(double)
-//
-// Overview of operation
-// ==============================================================
-//
-// There are 7 paths:
-// 1. x = 1.0
-// Return acosh(x) = 0.0
-// 2. 1.0 < x < 1.000499725341796875(0x3FF0020C00000000)
-// Return acosh(x) = sqrt(x-1) * Pol4(x), where Pol4(x) =
-// (((x*C4 + C3)*(x-1) + C2)*(x-1) + C1)*(x-1) + C0
-
-// 3. 1.000499725341796875(0x3FF0020C00000000) <= x < 2^63
-// Return acosh(x) = log(x + sqrt(x^2 -1.0))
-// To compute x + sqrt(x^2 -1.0) modified Newton Raphson method is used
-// (3 iterations)
-// Algorithm description for log function see below.
-//
-// 4. 2^63 <= x < +INF
-// Return acosh(x) = log(2*x)
-// Algorithm description for log function see below.
-//
-// 5. x = +INF
-// Return acosh(x) = +INF
-//
-// 6. x = [S,Q]NaN
-// Return acosh(x) = QNaN
-//
-// 7. x < 1.0
-// It's domain error. Error handler with tag = 136 is called
-//
-//==============================================================
-// Algorithm Description for log(x) function
-// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always
-// true for this acosh implementation
-//
-// Consider x = 2^N 1.f1 f2 f3 f4...f63
-// Log(x) = log(frcpa(x) x/frcpa(x))
-// = log(1/frcpa(x)) + log(frcpa(x) x)
-// = -log(frcpa(x)) + log(frcpa(x) x)
-//
-// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
-//
-// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 + T + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + T + log(C x)
-//
-// Cx = 1 + r
-//
-// Log(x) = +Nlog2 + T + log(1+r)
-// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
-//
-// x = f * 2*n where f is 1.f_1f_2f_3....f_63
-// Nfloat = float(n) where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 16
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-// y_k = frcpa(x_k)
-// log(1/y_k) in quad and round to double-extended
-//
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f15, f32 -> f65
-
-// General registers used:
-// r14 -> r27, r32 -> r39
-
-// Predicate registers used:
-// p6 -> p15
-
-// p6 to filter out case when x = [Q,S]NaN
-// p7,p8 to filter out case when x < 1.0
-// p10 to select path #1
-// p11 to filter out case when x = +INF
-// p12 used in the frcpa
-// p13 to select path #4
-// p14,p15 to select path #2
-
-// Assembly macros
-//==============================================================
-log_GR_exp_17_ones = r14
-log_GR_signexp_f8 = r15
-log_table_address2 = r16
-log_GR_exp_16_ones = r17
-log_GR_exp_f8 = r18
-log_GR_true_exp_f8 = r19
-log_GR_significand_f8 = r20
-log_GR_index = r21
-log_GR_comp2 = r22
-acosh_GR_f8 = r23
-log_GR_comp = r24
-acosh_GR_f8_sig = r25
-log_table_address3 = r26
-NR_table_address = r27
-
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-acosh_GR_tag = r39
-
-//==============================================================
-log_y = f9
-NR1 = f10
-NR2 = f11
-log_y_rs = f12
-log_y_rs_iter = f13
-log_y_rs_iter1 = f14
-log_NORM_f8 = f15
-acosh_comp = f32
-log_w = f34
-log_P5 = f35
-log_P4 = f36
-log_P3 = f37
-log_P2 = f38
-log_P1 = f39
-log_C0 = f40
-log_C1 = f41
-log_C2 = f42
-log2 = f43
-acosh_w_rs = f44
-log_C = f45
-log_arg = f46
-acosh_w_iter1 = f47
-acosh_w_iter2 = f48
-log_int_Nfloat = f49
-log_r = f50
-log_rsq = f51
-log_rp_p4 = f52
-log_rp_p32 = f53
-log_rcube = f54
-log_rp_p10 = f55
-log_rp_p2 = f56
-log_Nfloat = f57
-log_T = f58
-log_r2P_r = f59
-log_T_plus_Nlog2 = f60
-acosh_w_sqrt = f61
-acosh_w_1 = f62
-log_C3 = f63
-log_C4 = f64
-log_arg_early = f65
-
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(log_table_1)
-data8 0x3FF0020C49BA5E35 // 1.0005
-data8 0xBFC5555DA7212371 // P5
-data8 0x3FC999A19EEF5826 // P4
-data8 0xBFCFFFFFFFFEF009 // P3
-data8 0x3FD555555554ECB2 // P2
-data8 0xBFE0000000000000 // P1 = -0.5
-//
-data8 0xb17217f7d1cf79ac, 0x00003ffe // log2
-LOCAL_OBJECT_END(log_table_1)
-
-LOCAL_OBJECT_START(log_table_2)
-data8 0x3FE0000000000000 // 0.5
-data8 0x4008000000000000 // 3.0
-//
-data8 0xAFE8F9203939CCF8, 0x00003FF6 // C4 3FF6AFE8F9203939CCF8
-data8 0xAD46EB6AE752D809, 0x0000BFF8 // C3 BFF8AD46EB6AE752D809
-data8 0xD93923D7F53F3627, 0x00003FF9 // C2 3FF9D93923D7F53F3627
-data8 0xF15BEEEFF7D32D36, 0x0000BFFB // C1 BFFBF15BEEEFF7D32D36
-data8 0xB504F333F9DE6484, 0x00003FFF // C0 3FFFB504F333F9DE6484
-LOCAL_OBJECT_END(log_table_2)
-
-
-LOCAL_OBJECT_START(log_table_3)
-data8 0x80200aaeac44ef38 , 0x00003ff6 // log(1/frcpa(1+ 0/2^-8))
-//
-data8 0xc09090a2c35aa070 , 0x00003ff7 // log(1/frcpa(1+ 1/2^-8))
-data8 0xa0c94fcb41977c75 , 0x00003ff8 // log(1/frcpa(1+ 2/2^-8))
-data8 0xe18b9c263af83301 , 0x00003ff8 // log(1/frcpa(1+ 3/2^-8))
-data8 0x8d35c8d6399c30ea , 0x00003ff9 // log(1/frcpa(1+ 4/2^-8))
-data8 0xadd4d2ecd601cbb8 , 0x00003ff9 // log(1/frcpa(1+ 5/2^-8))
-//
-data8 0xce95403a192f9f01 , 0x00003ff9 // log(1/frcpa(1+ 6/2^-8))
-data8 0xeb59392cbcc01096 , 0x00003ff9 // log(1/frcpa(1+ 7/2^-8))
-data8 0x862c7d0cefd54c5d , 0x00003ffa // log(1/frcpa(1+ 8/2^-8))
-data8 0x94aa63c65e70d499 , 0x00003ffa // log(1/frcpa(1+ 9/2^-8))
-data8 0xa54a696d4b62b382 , 0x00003ffa // log(1/frcpa(1+ 10/2^-8))
-//
-data8 0xb3e4a796a5dac208 , 0x00003ffa // log(1/frcpa(1+ 11/2^-8))
-data8 0xc28c45b1878340a9 , 0x00003ffa // log(1/frcpa(1+ 12/2^-8))
-data8 0xd35c55f39d7a6235 , 0x00003ffa // log(1/frcpa(1+ 13/2^-8))
-data8 0xe220f037b954f1f5 , 0x00003ffa // log(1/frcpa(1+ 14/2^-8))
-data8 0xf0f3389b036834f3 , 0x00003ffa // log(1/frcpa(1+ 15/2^-8))
-//
-data8 0xffd3488d5c980465 , 0x00003ffa // log(1/frcpa(1+ 16/2^-8))
-data8 0x87609ce2ed300490 , 0x00003ffb // log(1/frcpa(1+ 17/2^-8))
-data8 0x8ede9321e8c85927 , 0x00003ffb // log(1/frcpa(1+ 18/2^-8))
-data8 0x96639427f2f8e2f4 , 0x00003ffb // log(1/frcpa(1+ 19/2^-8))
-data8 0x9defad3e8f73217b , 0x00003ffb // log(1/frcpa(1+ 20/2^-8))
-//
-data8 0xa582ebd50097029c , 0x00003ffb // log(1/frcpa(1+ 21/2^-8))
-data8 0xac06dbe75ab80fee , 0x00003ffb // log(1/frcpa(1+ 22/2^-8))
-data8 0xb3a78449b2d3ccca , 0x00003ffb // log(1/frcpa(1+ 23/2^-8))
-data8 0xbb4f79635ab46bb2 , 0x00003ffb // log(1/frcpa(1+ 24/2^-8))
-data8 0xc2fec93a83523f3f , 0x00003ffb // log(1/frcpa(1+ 25/2^-8))
-//
-data8 0xc99af2eaca4c4571 , 0x00003ffb // log(1/frcpa(1+ 26/2^-8))
-data8 0xd1581106472fa653 , 0x00003ffb // log(1/frcpa(1+ 27/2^-8))
-data8 0xd8002560d4355f2e , 0x00003ffb // log(1/frcpa(1+ 28/2^-8))
-data8 0xdfcb43b4fe508632 , 0x00003ffb // log(1/frcpa(1+ 29/2^-8))
-data8 0xe67f6dff709d4119 , 0x00003ffb // log(1/frcpa(1+ 30/2^-8))
-//
-data8 0xed393b1c22351280 , 0x00003ffb // log(1/frcpa(1+ 31/2^-8))
-data8 0xf5192bff087bcc35 , 0x00003ffb // log(1/frcpa(1+ 32/2^-8))
-data8 0xfbdf4ff6dfef2fa3 , 0x00003ffb // log(1/frcpa(1+ 33/2^-8))
-data8 0x81559a97f92f9cc7 , 0x00003ffc // log(1/frcpa(1+ 34/2^-8))
-data8 0x84be72bce90266e8 , 0x00003ffc // log(1/frcpa(1+ 35/2^-8))
-//
-data8 0x88bc74113f23def2 , 0x00003ffc // log(1/frcpa(1+ 36/2^-8))
-data8 0x8c2ba3edf6799d11 , 0x00003ffc // log(1/frcpa(1+ 37/2^-8))
-data8 0x8f9dc92f92ea08b1 , 0x00003ffc // log(1/frcpa(1+ 38/2^-8))
-data8 0x9312e8f36efab5a7 , 0x00003ffc // log(1/frcpa(1+ 39/2^-8))
-data8 0x968b08643409ceb6 , 0x00003ffc // log(1/frcpa(1+ 40/2^-8))
-//
-data8 0x9a062cba08a1708c , 0x00003ffc // log(1/frcpa(1+ 41/2^-8))
-data8 0x9d845b3abf95485c , 0x00003ffc // log(1/frcpa(1+ 42/2^-8))
-data8 0xa06fd841bc001bb4 , 0x00003ffc // log(1/frcpa(1+ 43/2^-8))
-data8 0xa3f3a74652fbe0db , 0x00003ffc // log(1/frcpa(1+ 44/2^-8))
-data8 0xa77a8fb2336f20f5 , 0x00003ffc // log(1/frcpa(1+ 45/2^-8))
-//
-data8 0xab0497015d28b0a0 , 0x00003ffc // log(1/frcpa(1+ 46/2^-8))
-data8 0xae91c2be6ba6a615 , 0x00003ffc // log(1/frcpa(1+ 47/2^-8))
-data8 0xb189d1b99aebb20b , 0x00003ffc // log(1/frcpa(1+ 48/2^-8))
-data8 0xb51cced5de9c1b2c , 0x00003ffc // log(1/frcpa(1+ 49/2^-8))
-data8 0xb819bee9e720d42f , 0x00003ffc // log(1/frcpa(1+ 50/2^-8))
-//
-data8 0xbbb2a0947b093a5d , 0x00003ffc // log(1/frcpa(1+ 51/2^-8))
-data8 0xbf4ec1505811684a , 0x00003ffc // log(1/frcpa(1+ 52/2^-8))
-data8 0xc2535bacfa8975ff , 0x00003ffc // log(1/frcpa(1+ 53/2^-8))
-data8 0xc55a3eafad187eb8 , 0x00003ffc // log(1/frcpa(1+ 54/2^-8))
-data8 0xc8ff2484b2c0da74 , 0x00003ffc // log(1/frcpa(1+ 55/2^-8))
-//
-data8 0xcc0b1a008d53ab76 , 0x00003ffc // log(1/frcpa(1+ 56/2^-8))
-data8 0xcfb6203844b3209b , 0x00003ffc // log(1/frcpa(1+ 57/2^-8))
-data8 0xd2c73949a47a19f5 , 0x00003ffc // log(1/frcpa(1+ 58/2^-8))
-data8 0xd5daae18b49d6695 , 0x00003ffc // log(1/frcpa(1+ 59/2^-8))
-data8 0xd8f08248cf7e8019 , 0x00003ffc // log(1/frcpa(1+ 60/2^-8))
-//
-data8 0xdca7749f1b3e540e , 0x00003ffc // log(1/frcpa(1+ 61/2^-8))
-data8 0xdfc28e033aaaf7c7 , 0x00003ffc // log(1/frcpa(1+ 62/2^-8))
-data8 0xe2e012a5f91d2f55 , 0x00003ffc // log(1/frcpa(1+ 63/2^-8))
-data8 0xe600064ed9e292a8 , 0x00003ffc // log(1/frcpa(1+ 64/2^-8))
-data8 0xe9226cce42b39f60 , 0x00003ffc // log(1/frcpa(1+ 65/2^-8))
-//
-data8 0xec4749fd97a28360 , 0x00003ffc // log(1/frcpa(1+ 66/2^-8))
-data8 0xef6ea1bf57780495 , 0x00003ffc // log(1/frcpa(1+ 67/2^-8))
-data8 0xf29877ff38809091 , 0x00003ffc // log(1/frcpa(1+ 68/2^-8))
-data8 0xf5c4d0b245cb89be , 0x00003ffc // log(1/frcpa(1+ 69/2^-8))
-data8 0xf8f3afd6fcdef3aa , 0x00003ffc // log(1/frcpa(1+ 70/2^-8))
-//
-data8 0xfc2519756be1abc7 , 0x00003ffc // log(1/frcpa(1+ 71/2^-8))
-data8 0xff59119f503e6832 , 0x00003ffc // log(1/frcpa(1+ 72/2^-8))
-data8 0x8147ce381ae0e146 , 0x00003ffd // log(1/frcpa(1+ 73/2^-8))
-data8 0x82e45f06cb1ad0f2 , 0x00003ffd // log(1/frcpa(1+ 74/2^-8))
-data8 0x842f5c7c573cbaa2 , 0x00003ffd // log(1/frcpa(1+ 75/2^-8))
-//
-data8 0x85ce471968c8893a , 0x00003ffd // log(1/frcpa(1+ 76/2^-8))
-data8 0x876e8305bc04066d , 0x00003ffd // log(1/frcpa(1+ 77/2^-8))
-data8 0x891012678031fbb3 , 0x00003ffd // log(1/frcpa(1+ 78/2^-8))
-data8 0x8a5f1493d766a05f , 0x00003ffd // log(1/frcpa(1+ 79/2^-8))
-data8 0x8c030c778c56fa00 , 0x00003ffd // log(1/frcpa(1+ 80/2^-8))
-//
-data8 0x8da85df17e31d9ae , 0x00003ffd // log(1/frcpa(1+ 81/2^-8))
-data8 0x8efa663e7921687e , 0x00003ffd // log(1/frcpa(1+ 82/2^-8))
-data8 0x90a22b6875c6a1f8 , 0x00003ffd // log(1/frcpa(1+ 83/2^-8))
-data8 0x91f62cc8f5d24837 , 0x00003ffd // log(1/frcpa(1+ 84/2^-8))
-data8 0x93a06cfc3857d980 , 0x00003ffd // log(1/frcpa(1+ 85/2^-8))
-//
-data8 0x94f66d5e6fd01ced , 0x00003ffd // log(1/frcpa(1+ 86/2^-8))
-data8 0x96a330156e6772f2 , 0x00003ffd // log(1/frcpa(1+ 87/2^-8))
-data8 0x97fb3582754ea25b , 0x00003ffd // log(1/frcpa(1+ 88/2^-8))
-data8 0x99aa8259aad1bbf2 , 0x00003ffd // log(1/frcpa(1+ 89/2^-8))
-data8 0x9b0492f6227ae4a8 , 0x00003ffd // log(1/frcpa(1+ 90/2^-8))
-//
-data8 0x9c5f8e199bf3a7a5 , 0x00003ffd // log(1/frcpa(1+ 91/2^-8))
-data8 0x9e1293b9998c1daa , 0x00003ffd // log(1/frcpa(1+ 92/2^-8))
-data8 0x9f6fa31e0b41f308 , 0x00003ffd // log(1/frcpa(1+ 93/2^-8))
-data8 0xa0cda11eaf46390e , 0x00003ffd // log(1/frcpa(1+ 94/2^-8))
-data8 0xa22c8f029cfa45aa , 0x00003ffd // log(1/frcpa(1+ 95/2^-8))
-//
-data8 0xa3e48badb7856b34 , 0x00003ffd // log(1/frcpa(1+ 96/2^-8))
-data8 0xa5459a0aa95849f9 , 0x00003ffd // log(1/frcpa(1+ 97/2^-8))
-data8 0xa6a79c84480cfebd , 0x00003ffd // log(1/frcpa(1+ 98/2^-8))
-data8 0xa80a946d0fcb3eb2 , 0x00003ffd // log(1/frcpa(1+ 99/2^-8))
-data8 0xa96e831a3ea7b314 , 0x00003ffd // log(1/frcpa(1+100/2^-8))
-//
-data8 0xaad369e3dc544e3b , 0x00003ffd // log(1/frcpa(1+101/2^-8))
-data8 0xac92e9588952c815 , 0x00003ffd // log(1/frcpa(1+102/2^-8))
-data8 0xadfa035aa1ed8fdc , 0x00003ffd // log(1/frcpa(1+103/2^-8))
-data8 0xaf6219eae1ad6e34 , 0x00003ffd // log(1/frcpa(1+104/2^-8))
-data8 0xb0cb2e6d8160f753 , 0x00003ffd // log(1/frcpa(1+105/2^-8))
-//
-data8 0xb2354249ad950f72 , 0x00003ffd // log(1/frcpa(1+106/2^-8))
-data8 0xb3a056e98ef4a3b4 , 0x00003ffd // log(1/frcpa(1+107/2^-8))
-data8 0xb50c6dba52c6292a , 0x00003ffd // log(1/frcpa(1+108/2^-8))
-data8 0xb679882c33876165 , 0x00003ffd // log(1/frcpa(1+109/2^-8))
-data8 0xb78c07429785cedc , 0x00003ffd // log(1/frcpa(1+110/2^-8))
-//
-data8 0xb8faeb8dc4a77d24 , 0x00003ffd // log(1/frcpa(1+111/2^-8))
-data8 0xba6ad77eb36ae0d6 , 0x00003ffd // log(1/frcpa(1+112/2^-8))
-data8 0xbbdbcc915e9bee50 , 0x00003ffd // log(1/frcpa(1+113/2^-8))
-data8 0xbd4dcc44f8cf12ef , 0x00003ffd // log(1/frcpa(1+114/2^-8))
-data8 0xbec0d81bf5b531fa , 0x00003ffd // log(1/frcpa(1+115/2^-8))
-//
-data8 0xc034f19c139186f4 , 0x00003ffd // log(1/frcpa(1+116/2^-8))
-data8 0xc14cb69f7c5e55ab , 0x00003ffd // log(1/frcpa(1+117/2^-8))
-data8 0xc2c2abbb6e5fd56f , 0x00003ffd // log(1/frcpa(1+118/2^-8))
-data8 0xc439b2c193e6771e , 0x00003ffd // log(1/frcpa(1+119/2^-8))
-data8 0xc553acb9d5c67733 , 0x00003ffd // log(1/frcpa(1+120/2^-8))
-//
-data8 0xc6cc96e441272441 , 0x00003ffd // log(1/frcpa(1+121/2^-8))
-data8 0xc8469753eca88c30 , 0x00003ffd // log(1/frcpa(1+122/2^-8))
-data8 0xc962cf3ce072b05c , 0x00003ffd // log(1/frcpa(1+123/2^-8))
-data8 0xcadeba8771f694aa , 0x00003ffd // log(1/frcpa(1+124/2^-8))
-data8 0xcc5bc08d1f72da94 , 0x00003ffd // log(1/frcpa(1+125/2^-8))
-//
-data8 0xcd7a3f99ea035c29 , 0x00003ffd // log(1/frcpa(1+126/2^-8))
-data8 0xcef93860c8a53c35 , 0x00003ffd // log(1/frcpa(1+127/2^-8))
-data8 0xd0192f68a7ed23df , 0x00003ffd // log(1/frcpa(1+128/2^-8))
-data8 0xd19a201127d3c645 , 0x00003ffd // log(1/frcpa(1+129/2^-8))
-data8 0xd2bb92f4061c172c , 0x00003ffd // log(1/frcpa(1+130/2^-8))
-//
-data8 0xd43e80b2ee8cc8fc , 0x00003ffd // log(1/frcpa(1+131/2^-8))
-data8 0xd56173601fc4ade4 , 0x00003ffd // log(1/frcpa(1+132/2^-8))
-data8 0xd6e6637efb54086f , 0x00003ffd // log(1/frcpa(1+133/2^-8))
-data8 0xd80ad9f58f3c8193 , 0x00003ffd // log(1/frcpa(1+134/2^-8))
-data8 0xd991d1d31aca41f8 , 0x00003ffd // log(1/frcpa(1+135/2^-8))
-//
-data8 0xdab7d02231484a93 , 0x00003ffd // log(1/frcpa(1+136/2^-8))
-data8 0xdc40d532cde49a54 , 0x00003ffd // log(1/frcpa(1+137/2^-8))
-data8 0xdd685f79ed8b265e , 0x00003ffd // log(1/frcpa(1+138/2^-8))
-data8 0xde9094bbc0e17b1d , 0x00003ffd // log(1/frcpa(1+139/2^-8))
-data8 0xe01c91b78440c425 , 0x00003ffd // log(1/frcpa(1+140/2^-8))
-//
-data8 0xe14658f26997e729 , 0x00003ffd // log(1/frcpa(1+141/2^-8))
-data8 0xe270cdc2391e0d23 , 0x00003ffd // log(1/frcpa(1+142/2^-8))
-data8 0xe3ffce3a2aa64922 , 0x00003ffd // log(1/frcpa(1+143/2^-8))
-data8 0xe52bdb274ed82887 , 0x00003ffd // log(1/frcpa(1+144/2^-8))
-data8 0xe6589852e75d7df6 , 0x00003ffd // log(1/frcpa(1+145/2^-8))
-//
-data8 0xe786068c79937a7d , 0x00003ffd // log(1/frcpa(1+146/2^-8))
-data8 0xe91903adad100911 , 0x00003ffd // log(1/frcpa(1+147/2^-8))
-data8 0xea481236f7d35bb0 , 0x00003ffd // log(1/frcpa(1+148/2^-8))
-data8 0xeb77d48c692e6b14 , 0x00003ffd // log(1/frcpa(1+149/2^-8))
-data8 0xeca84b83d7297b87 , 0x00003ffd // log(1/frcpa(1+150/2^-8))
-//
-data8 0xedd977f4962aa158 , 0x00003ffd // log(1/frcpa(1+151/2^-8))
-data8 0xef7179a22f257754 , 0x00003ffd // log(1/frcpa(1+152/2^-8))
-data8 0xf0a450d139366ca7 , 0x00003ffd // log(1/frcpa(1+153/2^-8))
-data8 0xf1d7e0524ff9ffdb , 0x00003ffd // log(1/frcpa(1+154/2^-8))
-data8 0xf30c29036a8b6cae , 0x00003ffd // log(1/frcpa(1+155/2^-8))
-//
-data8 0xf4412bc411ea8d92 , 0x00003ffd // log(1/frcpa(1+156/2^-8))
-data8 0xf576e97564c8619d , 0x00003ffd // log(1/frcpa(1+157/2^-8))
-data8 0xf6ad62fa1b5f172f , 0x00003ffd // log(1/frcpa(1+158/2^-8))
-data8 0xf7e499368b55c542 , 0x00003ffd // log(1/frcpa(1+159/2^-8))
-data8 0xf91c8d10abaffe22 , 0x00003ffd // log(1/frcpa(1+160/2^-8))
-//
-data8 0xfa553f7018c966f3 , 0x00003ffd // log(1/frcpa(1+161/2^-8))
-data8 0xfb8eb13e185d802c , 0x00003ffd // log(1/frcpa(1+162/2^-8))
-data8 0xfcc8e3659d9bcbed , 0x00003ffd // log(1/frcpa(1+163/2^-8))
-data8 0xfe03d6d34d487fd2 , 0x00003ffd // log(1/frcpa(1+164/2^-8))
-data8 0xff3f8c7581e9f0ae , 0x00003ffd // log(1/frcpa(1+165/2^-8))
-//
-data8 0x803e029e280173ae , 0x00003ffe // log(1/frcpa(1+166/2^-8))
-data8 0x80dca10cc52d0757 , 0x00003ffe // log(1/frcpa(1+167/2^-8))
-data8 0x817ba200632755a1 , 0x00003ffe // log(1/frcpa(1+168/2^-8))
-data8 0x821b05f3b01d6774 , 0x00003ffe // log(1/frcpa(1+169/2^-8))
-data8 0x82bacd623ff19d06 , 0x00003ffe // log(1/frcpa(1+170/2^-8))
-//
-data8 0x835af8c88e7a8f47 , 0x00003ffe // log(1/frcpa(1+171/2^-8))
-data8 0x83c5f8299e2b4091 , 0x00003ffe // log(1/frcpa(1+172/2^-8))
-data8 0x8466cb43f3d87300 , 0x00003ffe // log(1/frcpa(1+173/2^-8))
-data8 0x850803a67c80ca4b , 0x00003ffe // log(1/frcpa(1+174/2^-8))
-data8 0x85a9a1d11a23b461 , 0x00003ffe // log(1/frcpa(1+175/2^-8))
-//
-data8 0x864ba644a18e6e05 , 0x00003ffe // log(1/frcpa(1+176/2^-8))
-data8 0x86ee1182dcc432f7 , 0x00003ffe // log(1/frcpa(1+177/2^-8))
-data8 0x875a925d7e48c316 , 0x00003ffe // log(1/frcpa(1+178/2^-8))
-data8 0x87fdaa109d23aef7 , 0x00003ffe // log(1/frcpa(1+179/2^-8))
-data8 0x88a129ed4becfaf2 , 0x00003ffe // log(1/frcpa(1+180/2^-8))
-//
-data8 0x89451278ecd7f9cf , 0x00003ffe // log(1/frcpa(1+181/2^-8))
-data8 0x89b29295f8432617 , 0x00003ffe // log(1/frcpa(1+182/2^-8))
-data8 0x8a572ac5a5496882 , 0x00003ffe // log(1/frcpa(1+183/2^-8))
-data8 0x8afc2d0ce3b2dadf , 0x00003ffe // log(1/frcpa(1+184/2^-8))
-data8 0x8b6a69c608cfd3af , 0x00003ffe // log(1/frcpa(1+185/2^-8))
-//
-data8 0x8c101e106e899a83 , 0x00003ffe // log(1/frcpa(1+186/2^-8))
-data8 0x8cb63de258f9d626 , 0x00003ffe // log(1/frcpa(1+187/2^-8))
-data8 0x8d2539c5bd19e2b1 , 0x00003ffe // log(1/frcpa(1+188/2^-8))
-data8 0x8dcc0e064b29e6f1 , 0x00003ffe // log(1/frcpa(1+189/2^-8))
-data8 0x8e734f45d88357ae , 0x00003ffe // log(1/frcpa(1+190/2^-8))
-//
-data8 0x8ee30cef034a20db , 0x00003ffe // log(1/frcpa(1+191/2^-8))
-data8 0x8f8b0515686d1d06 , 0x00003ffe // log(1/frcpa(1+192/2^-8))
-data8 0x90336bba039bf32f , 0x00003ffe // log(1/frcpa(1+193/2^-8))
-data8 0x90a3edd23d1c9d58 , 0x00003ffe // log(1/frcpa(1+194/2^-8))
-data8 0x914d0de2f5d61b32 , 0x00003ffe // log(1/frcpa(1+195/2^-8))
-//
-data8 0x91be0c20d28173b5 , 0x00003ffe // log(1/frcpa(1+196/2^-8))
-data8 0x9267e737c06cd34a , 0x00003ffe // log(1/frcpa(1+197/2^-8))
-data8 0x92d962ae6abb1237 , 0x00003ffe // log(1/frcpa(1+198/2^-8))
-data8 0x9383fa6afbe2074c , 0x00003ffe // log(1/frcpa(1+199/2^-8))
-data8 0x942f0421651c1c4e , 0x00003ffe // log(1/frcpa(1+200/2^-8))
-//
-data8 0x94a14a3845bb985e , 0x00003ffe // log(1/frcpa(1+201/2^-8))
-data8 0x954d133857f861e7 , 0x00003ffe // log(1/frcpa(1+202/2^-8))
-data8 0x95bfd96468e604c4 , 0x00003ffe // log(1/frcpa(1+203/2^-8))
-data8 0x9632d31cafafa858 , 0x00003ffe // log(1/frcpa(1+204/2^-8))
-data8 0x96dfaabd86fa1647 , 0x00003ffe // log(1/frcpa(1+205/2^-8))
-//
-data8 0x9753261fcbb2a594 , 0x00003ffe // log(1/frcpa(1+206/2^-8))
-data8 0x9800c11b426b996d , 0x00003ffe // log(1/frcpa(1+207/2^-8))
-data8 0x9874bf4d45ae663c , 0x00003ffe // log(1/frcpa(1+208/2^-8))
-data8 0x99231f5ee9a74f79 , 0x00003ffe // log(1/frcpa(1+209/2^-8))
-data8 0x9997a18a56bcad28 , 0x00003ffe // log(1/frcpa(1+210/2^-8))
-//
-data8 0x9a46c873a3267e79 , 0x00003ffe // log(1/frcpa(1+211/2^-8))
-data8 0x9abbcfc621eb6cb6 , 0x00003ffe // log(1/frcpa(1+212/2^-8))
-data8 0x9b310cb0d354c990 , 0x00003ffe // log(1/frcpa(1+213/2^-8))
-data8 0x9be14cf9e1b3515c , 0x00003ffe // log(1/frcpa(1+214/2^-8))
-data8 0x9c5710b8cbb73a43 , 0x00003ffe // log(1/frcpa(1+215/2^-8))
-//
-data8 0x9ccd0abd301f399c , 0x00003ffe // log(1/frcpa(1+216/2^-8))
-data8 0x9d7e67f3bdce8888 , 0x00003ffe // log(1/frcpa(1+217/2^-8))
-data8 0x9df4ea81a99daa01 , 0x00003ffe // log(1/frcpa(1+218/2^-8))
-data8 0x9e6ba405a54514ba , 0x00003ffe // log(1/frcpa(1+219/2^-8))
-data8 0x9f1e21c8c7bb62b3 , 0x00003ffe // log(1/frcpa(1+220/2^-8))
-//
-data8 0x9f956593f6b6355c , 0x00003ffe // log(1/frcpa(1+221/2^-8))
-data8 0xa00ce1092e5498c3 , 0x00003ffe // log(1/frcpa(1+222/2^-8))
-data8 0xa0c08309c4b912c1 , 0x00003ffe // log(1/frcpa(1+223/2^-8))
-data8 0xa1388a8c6faa2afa , 0x00003ffe // log(1/frcpa(1+224/2^-8))
-data8 0xa1b0ca7095b5f985 , 0x00003ffe // log(1/frcpa(1+225/2^-8))
-//
-data8 0xa22942eb47534a00 , 0x00003ffe // log(1/frcpa(1+226/2^-8))
-data8 0xa2de62326449d0a3 , 0x00003ffe // log(1/frcpa(1+227/2^-8))
-data8 0xa357690f88bfe345 , 0x00003ffe // log(1/frcpa(1+228/2^-8))
-data8 0xa3d0a93f45169a4b , 0x00003ffe // log(1/frcpa(1+229/2^-8))
-data8 0xa44a22f7ffe65f30 , 0x00003ffe // log(1/frcpa(1+230/2^-8))
-//
-data8 0xa500c5e5b4c1aa36 , 0x00003ffe // log(1/frcpa(1+231/2^-8))
-data8 0xa57ad064eb2ebbc2 , 0x00003ffe // log(1/frcpa(1+232/2^-8))
-data8 0xa5f5152dedf4384e , 0x00003ffe // log(1/frcpa(1+233/2^-8))
-data8 0xa66f9478856233ec , 0x00003ffe // log(1/frcpa(1+234/2^-8))
-data8 0xa6ea4e7cca02c32e , 0x00003ffe // log(1/frcpa(1+235/2^-8))
-//
-data8 0xa765437325341ccf , 0x00003ffe // log(1/frcpa(1+236/2^-8))
-data8 0xa81e21e6c75b4020 , 0x00003ffe // log(1/frcpa(1+237/2^-8))
-data8 0xa899ab333fe2b9ca , 0x00003ffe // log(1/frcpa(1+238/2^-8))
-data8 0xa9157039c51ebe71 , 0x00003ffe // log(1/frcpa(1+239/2^-8))
-data8 0xa991713433c2b999 , 0x00003ffe // log(1/frcpa(1+240/2^-8))
-//
-data8 0xaa0dae5cbcc048b3 , 0x00003ffe // log(1/frcpa(1+241/2^-8))
-data8 0xaa8a27ede5eb13ad , 0x00003ffe // log(1/frcpa(1+242/2^-8))
-data8 0xab06de228a9e3499 , 0x00003ffe // log(1/frcpa(1+243/2^-8))
-data8 0xab83d135dc633301 , 0x00003ffe // log(1/frcpa(1+244/2^-8))
-data8 0xac3fb076adc7fe7a , 0x00003ffe // log(1/frcpa(1+245/2^-8))
-//
-data8 0xacbd3cbbe47988f1 , 0x00003ffe // log(1/frcpa(1+246/2^-8))
-data8 0xad3b06b1a5dc57c3 , 0x00003ffe // log(1/frcpa(1+247/2^-8))
-data8 0xadb90e94af887717 , 0x00003ffe // log(1/frcpa(1+248/2^-8))
-data8 0xae3754a218f7c816 , 0x00003ffe // log(1/frcpa(1+249/2^-8))
-data8 0xaeb5d9175437afa2 , 0x00003ffe // log(1/frcpa(1+250/2^-8))
-//
-data8 0xaf349c322e9c7cee , 0x00003ffe // log(1/frcpa(1+251/2^-8))
-data8 0xafb39e30d1768d1c , 0x00003ffe // log(1/frcpa(1+252/2^-8))
-data8 0xb032df51c2c93116 , 0x00003ffe // log(1/frcpa(1+253/2^-8))
-data8 0xb0b25fd3e6035ad9 , 0x00003ffe // log(1/frcpa(1+254/2^-8))
-data8 0xb1321ff67cba178c , 0x00003ffe // log(1/frcpa(1+255/2^-8))
-LOCAL_OBJECT_END(log_table_3)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(acosh)
-
-{ .mfi
- getf.exp acosh_GR_f8 = f8
- fclass.m p6,p0 = f8, 0xc3 // Test for x = NaN
- mov log_GR_comp2 = 0x1003e
-}
-{ .mfi
- addl NR_table_address = @ltoff(log_table_1), gp
- fms.s1 log_y = f8, f8, f1 // y = x^2-1
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig acosh_GR_f8_sig = f8
- fclass.m p11,p0 = f8, 0x21 // Test for x=+inf
- mov log_GR_exp_17_ones = 0x1ffff
-}
-{ .mfi
- ld8 NR_table_address = [NR_table_address]
- fms.s1 log_w = f8,f1,f1 // w = x - 1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p7,p8 = f8, f1 // Test for x<1.0
- addl log_GR_comp = 0x10020C,r0 // Upper 21 bits of signif of 1.0005
-}
-{ .mfb
- mov log_GR_exp_16_ones = 0xffff //BIAS
-(p6) fma.d.s0 f8 = f8,f1,f0 // quietize nan result if x=nan
-(p6) br.ret.spnt b0 // Exit for x=nan
-}
-;;
-
-{ .mfb
- //get second table address
- adds log_table_address2 = 0x40, NR_table_address
- fcmp.eq.s1 p10,p0 = f8, f1 // Test for x=+1.0
-(p11) br.ret.spnt b0 // Exit for x=+inf
-}
-;;
-
-{ .mfi
- ldfpd NR1,NR2 = [log_table_address2],16
- frsqrta.s1 log_y_rs,p0 = log_y // z=1/sqrt(y)
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s1 log_arg = f8,f1,f8
-(p7) br.cond.spnt ACOSH_LESS_ONE // Branch if path 7, x < 1.0
-}
-;;
-
-{ .mfi
- ldfe log_C4 = [log_table_address2],16
-(p8) fcmp.eq.s0 p6,p0 = f8, f0 // Dummy op sets denorm flag if unorm>=1.0
- nop.i 0
-}
-{ .mfb
-(p8) cmp.le.unc p13,p0 = log_GR_comp2,acosh_GR_f8
- nop.f 0
-(p13) br.cond.spnt LOG_COMMON1 // Branch if path 4, x >= 2^63
-}
-;;
-
-{ .mfi
- ldfe log_C3 = [log_table_address2],16
-(p10) fmerge.s f8 = f0, f0 // Return 0 if x=1.0
- shr.u acosh_GR_f8_sig = acosh_GR_f8_sig,43
-}
-{ .mib
- cmp.eq p14,p0 = log_GR_exp_16_ones,acosh_GR_f8
- nop.i 0
-(p10) br.ret.spnt b0 // Exit for x=1.0
-}
-;;
-
-{ .mfi
- ldfe log_C2 = [log_table_address2],16
- frsqrta.s1 acosh_w_rs,p0 = log_w // t=1/sqrt(w)
- nop.i 0
-}
-{ .mfb
-(p14) cmp.lt.unc p15,p0 = acosh_GR_f8_sig,log_GR_comp
- nop.f 0
-(p15) br.cond.spnt ACOSH_NEAR_ONE // Branch if path 2, 1.0 < x < 1.0005
-}
-;;
-
-// Here is main path, 1.0005 <= x < 2^63
-/////////////// The first iteration //////////////////////////////////
-{ .mfi
- ldfpd acosh_comp,log_P5 = [NR_table_address],16
- fma.s1 log_y_rs_iter = log_y_rs,log_y,f0 // y*z
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P4,log_P3 = [NR_table_address],16
- fnma.s1 log_y_rs_iter = log_y_rs_iter,log_y_rs,NR2 // 3-(y*z)*z
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs,NR1,f0 // 0.5*z
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P2,log_P1 = [NR_table_address],16
- //(0.5*z)*(3-(y*z)*z)
- fma.s1 log_y_rs_iter = log_y_rs_iter1,log_y_rs_iter,f0
- nop.i 0
-}
-;;
-
-/////////////////////////// The second iteration /////////////////////////////
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs = log_y_rs_iter,log_y,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 log_y_rs = log_y_rs,log_y_rs_iter,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //(0.5*z)*(3-(y*z)*z)
- fma.s1 log_y_rs_iter = log_y_rs_iter1,log_y_rs,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //(0.5*z)*(3-(y*z)*z)
- fma.s1 log_arg_early = log_y_rs_iter1,log_y_rs,f0
- nop.i 0
-}
-;;
-
-//////////////////////////////////////// The third iteration /////////////////
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs = log_y_rs_iter,log_y,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_arg_early = log_arg_early,log_y,f8
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 log_y_rs = log_y_rs,log_y_rs_iter,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter1,log_y,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- frcpa.s1 log_C,p0 = f1,log_arg_early
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp log_GR_signexp_f8 = log_arg_early
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig log_GR_significand_f8 = log_arg_early
- fma.s1 log_arg = log_y_rs_iter1,log_y_rs,f8 // (0.5*z)*(3-(y*z)*z)
- adds log_table_address3 = 0x70, NR_table_address
-}
-;;
-
-///////////////////////////////// The end NR iterations /////////////////////
-{ .mfi
- ldfe log2 = [NR_table_address],16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mmi
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-;;
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- fms.s1 log_r = log_C,log_arg,f1 // C = frcpa(x); r = C * x - 1
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*16 + index
- shladd log_table_address3 = log_GR_index,4,log_table_address3
-;;
- ldfe log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p4 = log_P5, log_r, log_P4 //P5*r + P4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format log_Nfloat
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rcube = log_rsq, log_r, f0 //r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //(P5*r + P4)*r^2 + P3*r + P2
- fma.s1 log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
- fma.s1 log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- // N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
- fadd.d.s0 f8 = log_T_plus_Nlog2, log_r2P_r
- br.ret.sptk b0 // Exit main path, path 3: 1.0005 <= x < 2^63
-}
-;;
-
-// Here if path 2, 1.0 < x < 1.0005
-ACOSH_NEAR_ONE:
-// The first NR iteration
-{ .mfi
- ldfe log_C1 = [log_table_address2],16
- fma.s1 acosh_w_iter1 = acosh_w_rs,log_w,f0 //t*w
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_1 = f8,log_C4,log_C3 //x*C4 + C3
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log_C0 = [log_table_address2],16
- fma.s1 acosh_w_iter2 = acosh_w_rs,NR1,f0 //t*0.5
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 acosh_w_iter1 = acosh_w_iter1,acosh_w_rs,NR2 //3-t*t*w
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //(3-t*t*w)*t*0.5
- fma.s1 acosh_w_iter2 = acosh_w_iter2,acosh_w_iter1,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_1 = acosh_w_1,log_w,log_C2 //(x*C4 + C3)*(x-1) + C2
- nop.i 0
-}
-;;
-
-// The second NR iteration
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_rs = acosh_w_iter2,log_w,f0 //t*w
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //((x*C4 + C3)*(x-1) + C2)*(x-1) + C1
- fma.s1 acosh_w_1 = acosh_w_1,log_w,log_C1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 acosh_w_iter1 = acosh_w_iter2,acosh_w_rs,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_iter2,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_iter2,acosh_w_iter1,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //(((x*C4 + C3)*(x-1) + C2)*(x-1) + C1)*(x-1) + C0
- fma.s1 acosh_w_1 = acosh_w_1,log_w,log_C0
- nop.i 0
-}
-;;
-
-//The third NR iteration
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_rs = acosh_w_iter2,log_w,f0 //t*w
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 acosh_w_iter1 = acosh_w_iter2,acosh_w_rs,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_iter2,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_iter2,acosh_w_iter1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_sqrt = acosh_w_iter2,log_w,f0
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = acosh_w_1,acosh_w_sqrt,f0
- br.ret.sptk b0 // Exit path 2, 1.0 < x < 1.0005
-}
-;;
-
-// Here if path 4, x >= 2^63
-LOG_COMMON1:
-{ .mfi
- ldfpd acosh_comp,log_P5 = [NR_table_address],16
- frcpa.s1 log_C,p0 = f1,log_arg
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.exp log_GR_signexp_f8 = log_arg
- ldfpd log_P4,log_P3 = [NR_table_address],16
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.sig log_GR_significand_f8 = log_arg
- ldfpd log_P2,log_P1 = [NR_table_address],16
- nop.i 0
-}
-;;
-
-{ .mfi
- adds log_table_address3 = 0x70, NR_table_address
- nop.f 0
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-}
-;;
-
-{ .mmf
- ldfe log2 = [NR_table_address],16
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
- fms.s1 log_r = log_C,log_arg,f1 // C = frcpa(x); r = C * x - 1
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- nop.f 0
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*16 + index
- shladd log_table_address3 = log_GR_index,4,log_table_address3
-;;
- ldfe log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p4 = log_P5, log_r, log_P4 //P5*r + P4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rcube = log_rsq, log_r, f0 //r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format log_Nfloat
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //(P5*r + P4)*r^2 + P3*r + P2
- fma.s1 log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
- fma.s1 log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- // N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
- fadd.d.s0 f8 = log_T_plus_Nlog2, log_r2P_r
- br.ret.sptk b0 // Exit path 4, x >= 2^63
-}
-;;
-
-// Here if path 7, x < 1.0
-ACOSH_LESS_ONE:
-{ .mfi
- alloc r32 = ar.pfs,1,3,4,0
- fmerge.s f10 = f8,f8
- nop.i 0
-}
-;;
-
-{ .mfb
- mov acosh_GR_tag = 136
- frcpa.s0 f8,p0 = f0,f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-GLOBAL_LIBM_END(acosh)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfd [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfd [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_acoshf.S b/sysdeps/ia64/fpu/e_acoshf.S
deleted file mode 100644
index 58ef5f2adb..0000000000
--- a/sysdeps/ia64/fpu/e_acoshf.S
+++ /dev/null
@@ -1,1030 +0,0 @@
-.file "acoshf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// ==============================================================
-// History
-// ==============================================================
-// 03/28/01 Initial version
-// 04/19/01 Improved speed of the paths #1,2,3,4,5
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/14/03 Improved performance, set denormal flag for unorms >= 1.0
-//
-// API
-// ==============================================================
-// float acoshf(float)
-//
-// Overview of operation
-// ==============================================================
-//
-// There are 7 paths:
-// 1. x = 1.0
-// Return acoshf(x) = 0.0
-// 2. 1.0 < x < 1.000499725341796875(0x3FF0020C00000000)
-// Return acoshf(x) = sqrt(x-1) * Pol4(x),
-// where Pol4(x) = (x*C2 + C1)*(x-1) + C0
-//
-// 3. 1.000499725341796875(0x3FF0020C00000000) <= x < 2^51
-// Return acoshf(x) = log(x + sqrt(x^2 -1.0))
-// To compute x + sqrt(x^2 -1.0) modified Newton Raphson method is used
-// (2 iterations)
-// Algorithm description for log function see below.
-//
-// 4. 2^51 <= x < +INF
-// Return acoshf(x) = log(2*x)
-// Algorithm description for log function see below.
-//
-// 5. x = +INF
-// Return acoshf(x) = +INF
-//
-// 6. x = [S,Q]NaN
-// Return acoshf(x) = QNaN
-//
-// 7. x < 1.0
-// It's domain error. Error handler with tag = 137 is called
-//
-//==============================================================
-// Algorithm Description for log(x) function
-// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always
-// true for this acosh implementation
-//
-// Consider x = 2^N 1.f1 f2 f3 f4...f63
-// Log(x) = log(frcpa(x) x/frcpa(x))
-// = log(1/frcpa(x)) + log(frcpa(x) x)
-// = -log(frcpa(x)) + log(frcpa(x) x)
-//
-// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
-//
-// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 + T + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + T + log(C x)
-//
-// Cx = 1 + r
-//
-// Log(x) = +Nlog2 + T + log(1+r)
-// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4
-//
-// x = f * 2*n where f is 1.f_1f_2f_3....f_63
-// Nfloat = float(n) where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 8
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-// y_k = frcpa(x_k)
-// log(1/y_k) in quad and round to double
-//
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f15, f32 -> f62
-//
-// General registers used:
-// r14 -> r27, r32 -> r39
-//
-// Predicate registers used:
-// p6 -> p15
-//
-// p6 to filter out case when x = [Q,S]NaN
-// p7,p8 to filter out case when x < 1.0
-//
-// p10 to select path #1
-// p11 to filter out case when x = +INF
-// p12 used in the frcpa
-// p13 to select path #4
-// p14,p15 to select path #2
-
-// Assembly macros
-//==============================================================
-log_GR_exp_17_ones = r14
-log_GR_signexp_f8 = r15
-log_table_address2 = r16
-log_GR_exp_16_ones = r17
-log_GR_exp_f8 = r18
-log_GR_true_exp_f8 = r19
-log_GR_significand_f8 = r20
-log_GR_index = r21
-log_GR_comp2 = r22
-acosh_GR_f8 = r23
-log_GR_comp = r24
-acosh_GR_f8_sig = r25
-log_table_address3 = r26
-NR_table_address = r27
-
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-acosh_GR_tag = r39
-
-//==============================================================
-log_y = f9
-NR1 = f10
-NR2 = f11
-log_y_rs = f12
-log_y_rs_iter = f13
-log_y_rs_iter1 = f14
-log_NORM_f8 = f15
-log_w = f32
-acosh_comp = f34
-acosh_comp2 = f33
-log_P3 = f35
-log_P2 = f36
-log_P1 = f37
-log2 = f38
-log_C0 = f39
-log_C1 = f40
-log_C2 = f41
-acosh_w_rs = f42
-log_C = f43
-log_arg = f44
-acosh_w_iter1 = f45
-acosh_w_iter2 = f46
-log_int_Nfloat = f47
-log_r = f48
-log_rsq = f49
-log_rp_p4 = f50
-log_rp_p32 = f51
-log_rcube = f52
-log_rp_p10 = f53
-log_rp_p2 = f54
-log_Nfloat = f55
-log_T = f56
-log_r2P_r = f57
-log_T_plus_Nlog2 = f58
-acosh_w_sqrt = f59
-acosh_w_1 = f60
-log_arg_early = f61
-log_y_rs_iter2 = f62
-
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(log_table_1)
-data8 0xbfd0001008f39d59 // p3
-data8 0x3fd5556073e0c45a // p2
-data8 0xbfdffffffffaea15 // p1
-data8 0x3FE62E42FEFA39EF // log2
-LOCAL_OBJECT_END(log_table_1)
-
-LOCAL_OBJECT_START(log_table_2)
-
-data8 0x3FE0000000000000 // 0.5
-data8 0x4008000000000000 // 3.0
-data8 0xD92CBAD213719F11, 0x00003FF9 // C2 3FF9D92CBAD213719F11
-data8 0x93D38EBF2EC9B073, 0x0000BFFC // C1 BFFC93D38EBF2EC9B073
-data8 0xB504F333F9DA0E32, 0x00003FFF // C0 3FFFB504F333F9DA0E32
-LOCAL_OBJECT_END(log_table_2)
-
-LOCAL_OBJECT_START(log_table_3)
-data8 0x3F60040155D5889E //log(1/frcpa(1+ 0/256)
-data8 0x3F78121214586B54 //log(1/frcpa(1+ 1/256)
-data8 0x3F841929F96832F0 //log(1/frcpa(1+ 2/256)
-data8 0x3F8C317384C75F06 //log(1/frcpa(1+ 3/256)
-data8 0x3F91A6B91AC73386 //log(1/frcpa(1+ 4/256)
-data8 0x3F95BA9A5D9AC039 //log(1/frcpa(1+ 5/256)
-data8 0x3F99D2A8074325F4 //log(1/frcpa(1+ 6/256)
-data8 0x3F9D6B2725979802 //log(1/frcpa(1+ 7/256)
-data8 0x3FA0C58FA19DFAAA //log(1/frcpa(1+ 8/256)
-data8 0x3FA2954C78CBCE1B //log(1/frcpa(1+ 9/256)
-data8 0x3FA4A94D2DA96C56 //log(1/frcpa(1+ 10/256)
-data8 0x3FA67C94F2D4BB58 //log(1/frcpa(1+ 11/256)
-data8 0x3FA85188B630F068 //log(1/frcpa(1+ 12/256)
-data8 0x3FAA6B8ABE73AF4C //log(1/frcpa(1+ 13/256)
-data8 0x3FAC441E06F72A9E //log(1/frcpa(1+ 14/256)
-data8 0x3FAE1E6713606D07 //log(1/frcpa(1+ 15/256)
-data8 0x3FAFFA6911AB9301 //log(1/frcpa(1+ 16/256)
-data8 0x3FB0EC139C5DA601 //log(1/frcpa(1+ 17/256)
-data8 0x3FB1DBD2643D190B //log(1/frcpa(1+ 18/256)
-data8 0x3FB2CC7284FE5F1C //log(1/frcpa(1+ 19/256)
-data8 0x3FB3BDF5A7D1EE64 //log(1/frcpa(1+ 20/256)
-data8 0x3FB4B05D7AA012E0 //log(1/frcpa(1+ 21/256)
-data8 0x3FB580DB7CEB5702 //log(1/frcpa(1+ 22/256)
-data8 0x3FB674F089365A7A //log(1/frcpa(1+ 23/256)
-data8 0x3FB769EF2C6B568D //log(1/frcpa(1+ 24/256)
-data8 0x3FB85FD927506A48 //log(1/frcpa(1+ 25/256)
-data8 0x3FB9335E5D594989 //log(1/frcpa(1+ 26/256)
-data8 0x3FBA2B0220C8E5F5 //log(1/frcpa(1+ 27/256)
-data8 0x3FBB0004AC1A86AC //log(1/frcpa(1+ 28/256)
-data8 0x3FBBF968769FCA11 //log(1/frcpa(1+ 29/256)
-data8 0x3FBCCFEDBFEE13A8 //log(1/frcpa(1+ 30/256)
-data8 0x3FBDA727638446A2 //log(1/frcpa(1+ 31/256)
-data8 0x3FBEA3257FE10F7A //log(1/frcpa(1+ 32/256)
-data8 0x3FBF7BE9FEDBFDE6 //log(1/frcpa(1+ 33/256)
-data8 0x3FC02AB352FF25F4 //log(1/frcpa(1+ 34/256)
-data8 0x3FC097CE579D204D //log(1/frcpa(1+ 35/256)
-data8 0x3FC1178E8227E47C //log(1/frcpa(1+ 36/256)
-data8 0x3FC185747DBECF34 //log(1/frcpa(1+ 37/256)
-data8 0x3FC1F3B925F25D41 //log(1/frcpa(1+ 38/256)
-data8 0x3FC2625D1E6DDF57 //log(1/frcpa(1+ 39/256)
-data8 0x3FC2D1610C86813A //log(1/frcpa(1+ 40/256)
-data8 0x3FC340C59741142E //log(1/frcpa(1+ 41/256)
-data8 0x3FC3B08B6757F2A9 //log(1/frcpa(1+ 42/256)
-data8 0x3FC40DFB08378003 //log(1/frcpa(1+ 43/256)
-data8 0x3FC47E74E8CA5F7C //log(1/frcpa(1+ 44/256)
-data8 0x3FC4EF51F6466DE4 //log(1/frcpa(1+ 45/256)
-data8 0x3FC56092E02BA516 //log(1/frcpa(1+ 46/256)
-data8 0x3FC5D23857CD74D5 //log(1/frcpa(1+ 47/256)
-data8 0x3FC6313A37335D76 //log(1/frcpa(1+ 48/256)
-data8 0x3FC6A399DABBD383 //log(1/frcpa(1+ 49/256)
-data8 0x3FC70337DD3CE41B //log(1/frcpa(1+ 50/256)
-data8 0x3FC77654128F6127 //log(1/frcpa(1+ 51/256)
-data8 0x3FC7E9D82A0B022D //log(1/frcpa(1+ 52/256)
-data8 0x3FC84A6B759F512F //log(1/frcpa(1+ 53/256)
-data8 0x3FC8AB47D5F5A310 //log(1/frcpa(1+ 54/256)
-data8 0x3FC91FE49096581B //log(1/frcpa(1+ 55/256)
-data8 0x3FC981634011AA75 //log(1/frcpa(1+ 56/256)
-data8 0x3FC9F6C407089664 //log(1/frcpa(1+ 57/256)
-data8 0x3FCA58E729348F43 //log(1/frcpa(1+ 58/256)
-data8 0x3FCABB55C31693AD //log(1/frcpa(1+ 59/256)
-data8 0x3FCB1E104919EFD0 //log(1/frcpa(1+ 60/256)
-data8 0x3FCB94EE93E367CB //log(1/frcpa(1+ 61/256)
-data8 0x3FCBF851C067555F //log(1/frcpa(1+ 62/256)
-data8 0x3FCC5C0254BF23A6 //log(1/frcpa(1+ 63/256)
-data8 0x3FCCC000C9DB3C52 //log(1/frcpa(1+ 64/256)
-data8 0x3FCD244D99C85674 //log(1/frcpa(1+ 65/256)
-data8 0x3FCD88E93FB2F450 //log(1/frcpa(1+ 66/256)
-data8 0x3FCDEDD437EAEF01 //log(1/frcpa(1+ 67/256)
-data8 0x3FCE530EFFE71012 //log(1/frcpa(1+ 68/256)
-data8 0x3FCEB89A1648B971 //log(1/frcpa(1+ 69/256)
-data8 0x3FCF1E75FADF9BDE //log(1/frcpa(1+ 70/256)
-data8 0x3FCF84A32EAD7C35 //log(1/frcpa(1+ 71/256)
-data8 0x3FCFEB2233EA07CD //log(1/frcpa(1+ 72/256)
-data8 0x3FD028F9C7035C1C //log(1/frcpa(1+ 73/256)
-data8 0x3FD05C8BE0D9635A //log(1/frcpa(1+ 74/256)
-data8 0x3FD085EB8F8AE797 //log(1/frcpa(1+ 75/256)
-data8 0x3FD0B9C8E32D1911 //log(1/frcpa(1+ 76/256)
-data8 0x3FD0EDD060B78081 //log(1/frcpa(1+ 77/256)
-data8 0x3FD122024CF0063F //log(1/frcpa(1+ 78/256)
-data8 0x3FD14BE2927AECD4 //log(1/frcpa(1+ 79/256)
-data8 0x3FD180618EF18ADF //log(1/frcpa(1+ 80/256)
-data8 0x3FD1B50BBE2FC63B //log(1/frcpa(1+ 81/256)
-data8 0x3FD1DF4CC7CF242D //log(1/frcpa(1+ 82/256)
-data8 0x3FD214456D0EB8D4 //log(1/frcpa(1+ 83/256)
-data8 0x3FD23EC5991EBA49 //log(1/frcpa(1+ 84/256)
-data8 0x3FD2740D9F870AFB //log(1/frcpa(1+ 85/256)
-data8 0x3FD29ECDABCDFA04 //log(1/frcpa(1+ 86/256)
-data8 0x3FD2D46602ADCCEE //log(1/frcpa(1+ 87/256)
-data8 0x3FD2FF66B04EA9D4 //log(1/frcpa(1+ 88/256)
-data8 0x3FD335504B355A37 //log(1/frcpa(1+ 89/256)
-data8 0x3FD360925EC44F5D //log(1/frcpa(1+ 90/256)
-data8 0x3FD38BF1C3337E75 //log(1/frcpa(1+ 91/256)
-data8 0x3FD3C25277333184 //log(1/frcpa(1+ 92/256)
-data8 0x3FD3EDF463C1683E //log(1/frcpa(1+ 93/256)
-data8 0x3FD419B423D5E8C7 //log(1/frcpa(1+ 94/256)
-data8 0x3FD44591E0539F49 //log(1/frcpa(1+ 95/256)
-data8 0x3FD47C9175B6F0AD //log(1/frcpa(1+ 96/256)
-data8 0x3FD4A8B341552B09 //log(1/frcpa(1+ 97/256)
-data8 0x3FD4D4F3908901A0 //log(1/frcpa(1+ 98/256)
-data8 0x3FD501528DA1F968 //log(1/frcpa(1+ 99/256)
-data8 0x3FD52DD06347D4F6 //log(1/frcpa(1+ 100/256)
-data8 0x3FD55A6D3C7B8A8A //log(1/frcpa(1+ 101/256)
-data8 0x3FD5925D2B112A59 //log(1/frcpa(1+ 102/256)
-data8 0x3FD5BF406B543DB2 //log(1/frcpa(1+ 103/256)
-data8 0x3FD5EC433D5C35AE //log(1/frcpa(1+ 104/256)
-data8 0x3FD61965CDB02C1F //log(1/frcpa(1+ 105/256)
-data8 0x3FD646A84935B2A2 //log(1/frcpa(1+ 106/256)
-data8 0x3FD6740ADD31DE94 //log(1/frcpa(1+ 107/256)
-data8 0x3FD6A18DB74A58C5 //log(1/frcpa(1+ 108/256)
-data8 0x3FD6CF31058670EC //log(1/frcpa(1+ 109/256)
-data8 0x3FD6F180E852F0BA //log(1/frcpa(1+ 110/256)
-data8 0x3FD71F5D71B894F0 //log(1/frcpa(1+ 111/256)
-data8 0x3FD74D5AEFD66D5C //log(1/frcpa(1+ 112/256)
-data8 0x3FD77B79922BD37E //log(1/frcpa(1+ 113/256)
-data8 0x3FD7A9B9889F19E2 //log(1/frcpa(1+ 114/256)
-data8 0x3FD7D81B037EB6A6 //log(1/frcpa(1+ 115/256)
-data8 0x3FD8069E33827231 //log(1/frcpa(1+ 116/256)
-data8 0x3FD82996D3EF8BCB //log(1/frcpa(1+ 117/256)
-data8 0x3FD85855776DCBFB //log(1/frcpa(1+ 118/256)
-data8 0x3FD8873658327CCF //log(1/frcpa(1+ 119/256)
-data8 0x3FD8AA75973AB8CF //log(1/frcpa(1+ 120/256)
-data8 0x3FD8D992DC8824E5 //log(1/frcpa(1+ 121/256)
-data8 0x3FD908D2EA7D9512 //log(1/frcpa(1+ 122/256)
-data8 0x3FD92C59E79C0E56 //log(1/frcpa(1+ 123/256)
-data8 0x3FD95BD750EE3ED3 //log(1/frcpa(1+ 124/256)
-data8 0x3FD98B7811A3EE5B //log(1/frcpa(1+ 125/256)
-data8 0x3FD9AF47F33D406C //log(1/frcpa(1+ 126/256)
-data8 0x3FD9DF270C1914A8 //log(1/frcpa(1+ 127/256)
-data8 0x3FDA0325ED14FDA4 //log(1/frcpa(1+ 128/256)
-data8 0x3FDA33440224FA79 //log(1/frcpa(1+ 129/256)
-data8 0x3FDA57725E80C383 //log(1/frcpa(1+ 130/256)
-data8 0x3FDA87D0165DD199 //log(1/frcpa(1+ 131/256)
-data8 0x3FDAAC2E6C03F896 //log(1/frcpa(1+ 132/256)
-data8 0x3FDADCCC6FDF6A81 //log(1/frcpa(1+ 133/256)
-data8 0x3FDB015B3EB1E790 //log(1/frcpa(1+ 134/256)
-data8 0x3FDB323A3A635948 //log(1/frcpa(1+ 135/256)
-data8 0x3FDB56FA04462909 //log(1/frcpa(1+ 136/256)
-data8 0x3FDB881AA659BC93 //log(1/frcpa(1+ 137/256)
-data8 0x3FDBAD0BEF3DB165 //log(1/frcpa(1+ 138/256)
-data8 0x3FDBD21297781C2F //log(1/frcpa(1+ 139/256)
-data8 0x3FDC039236F08819 //log(1/frcpa(1+ 140/256)
-data8 0x3FDC28CB1E4D32FD //log(1/frcpa(1+ 141/256)
-data8 0x3FDC4E19B84723C2 //log(1/frcpa(1+ 142/256)
-data8 0x3FDC7FF9C74554C9 //log(1/frcpa(1+ 143/256)
-data8 0x3FDCA57B64E9DB05 //log(1/frcpa(1+ 144/256)
-data8 0x3FDCCB130A5CEBB0 //log(1/frcpa(1+ 145/256)
-data8 0x3FDCF0C0D18F326F //log(1/frcpa(1+ 146/256)
-data8 0x3FDD232075B5A201 //log(1/frcpa(1+ 147/256)
-data8 0x3FDD490246DEFA6B //log(1/frcpa(1+ 148/256)
-data8 0x3FDD6EFA918D25CD //log(1/frcpa(1+ 149/256)
-data8 0x3FDD9509707AE52F //log(1/frcpa(1+ 150/256)
-data8 0x3FDDBB2EFE92C554 //log(1/frcpa(1+ 151/256)
-data8 0x3FDDEE2F3445E4AF //log(1/frcpa(1+ 152/256)
-data8 0x3FDE148A1A2726CE //log(1/frcpa(1+ 153/256)
-data8 0x3FDE3AFC0A49FF40 //log(1/frcpa(1+ 154/256)
-data8 0x3FDE6185206D516E //log(1/frcpa(1+ 155/256)
-data8 0x3FDE882578823D52 //log(1/frcpa(1+ 156/256)
-data8 0x3FDEAEDD2EAC990C //log(1/frcpa(1+ 157/256)
-data8 0x3FDED5AC5F436BE3 //log(1/frcpa(1+ 158/256)
-data8 0x3FDEFC9326D16AB9 //log(1/frcpa(1+ 159/256)
-data8 0x3FDF2391A2157600 //log(1/frcpa(1+ 160/256)
-data8 0x3FDF4AA7EE03192D //log(1/frcpa(1+ 161/256)
-data8 0x3FDF71D627C30BB0 //log(1/frcpa(1+ 162/256)
-data8 0x3FDF991C6CB3B379 //log(1/frcpa(1+ 163/256)
-data8 0x3FDFC07ADA69A910 //log(1/frcpa(1+ 164/256)
-data8 0x3FDFE7F18EB03D3E //log(1/frcpa(1+ 165/256)
-data8 0x3FE007C053C5002E //log(1/frcpa(1+ 166/256)
-data8 0x3FE01B942198A5A1 //log(1/frcpa(1+ 167/256)
-data8 0x3FE02F74400C64EB //log(1/frcpa(1+ 168/256)
-data8 0x3FE04360BE7603AD //log(1/frcpa(1+ 169/256)
-data8 0x3FE05759AC47FE34 //log(1/frcpa(1+ 170/256)
-data8 0x3FE06B5F1911CF52 //log(1/frcpa(1+ 171/256)
-data8 0x3FE078BF0533C568 //log(1/frcpa(1+ 172/256)
-data8 0x3FE08CD9687E7B0E //log(1/frcpa(1+ 173/256)
-data8 0x3FE0A10074CF9019 //log(1/frcpa(1+ 174/256)
-data8 0x3FE0B5343A234477 //log(1/frcpa(1+ 175/256)
-data8 0x3FE0C974C89431CE //log(1/frcpa(1+ 176/256)
-data8 0x3FE0DDC2305B9886 //log(1/frcpa(1+ 177/256)
-data8 0x3FE0EB524BAFC918 //log(1/frcpa(1+ 178/256)
-data8 0x3FE0FFB54213A476 //log(1/frcpa(1+ 179/256)
-data8 0x3FE114253DA97D9F //log(1/frcpa(1+ 180/256)
-data8 0x3FE128A24F1D9AFF //log(1/frcpa(1+ 181/256)
-data8 0x3FE1365252BF0865 //log(1/frcpa(1+ 182/256)
-data8 0x3FE14AE558B4A92D //log(1/frcpa(1+ 183/256)
-data8 0x3FE15F85A19C765B //log(1/frcpa(1+ 184/256)
-data8 0x3FE16D4D38C119FA //log(1/frcpa(1+ 185/256)
-data8 0x3FE18203C20DD133 //log(1/frcpa(1+ 186/256)
-data8 0x3FE196C7BC4B1F3B //log(1/frcpa(1+ 187/256)
-data8 0x3FE1A4A738B7A33C //log(1/frcpa(1+ 188/256)
-data8 0x3FE1B981C0C9653D //log(1/frcpa(1+ 189/256)
-data8 0x3FE1CE69E8BB106B //log(1/frcpa(1+ 190/256)
-data8 0x3FE1DC619DE06944 //log(1/frcpa(1+ 191/256)
-data8 0x3FE1F160A2AD0DA4 //log(1/frcpa(1+ 192/256)
-data8 0x3FE2066D7740737E //log(1/frcpa(1+ 193/256)
-data8 0x3FE2147DBA47A394 //log(1/frcpa(1+ 194/256)
-data8 0x3FE229A1BC5EBAC3 //log(1/frcpa(1+ 195/256)
-data8 0x3FE237C1841A502E //log(1/frcpa(1+ 196/256)
-data8 0x3FE24CFCE6F80D9A //log(1/frcpa(1+ 197/256)
-data8 0x3FE25B2C55CD5762 //log(1/frcpa(1+ 198/256)
-data8 0x3FE2707F4D5F7C41 //log(1/frcpa(1+ 199/256)
-data8 0x3FE285E0842CA384 //log(1/frcpa(1+ 200/256)
-data8 0x3FE294294708B773 //log(1/frcpa(1+ 201/256)
-data8 0x3FE2A9A2670AFF0C //log(1/frcpa(1+ 202/256)
-data8 0x3FE2B7FB2C8D1CC1 //log(1/frcpa(1+ 203/256)
-data8 0x3FE2C65A6395F5F5 //log(1/frcpa(1+ 204/256)
-data8 0x3FE2DBF557B0DF43 //log(1/frcpa(1+ 205/256)
-data8 0x3FE2EA64C3F97655 //log(1/frcpa(1+ 206/256)
-data8 0x3FE3001823684D73 //log(1/frcpa(1+ 207/256)
-data8 0x3FE30E97E9A8B5CD //log(1/frcpa(1+ 208/256)
-data8 0x3FE32463EBDD34EA //log(1/frcpa(1+ 209/256)
-data8 0x3FE332F4314AD796 //log(1/frcpa(1+ 210/256)
-data8 0x3FE348D90E7464D0 //log(1/frcpa(1+ 211/256)
-data8 0x3FE35779F8C43D6E //log(1/frcpa(1+ 212/256)
-data8 0x3FE36621961A6A99 //log(1/frcpa(1+ 213/256)
-data8 0x3FE37C299F3C366A //log(1/frcpa(1+ 214/256)
-data8 0x3FE38AE2171976E7 //log(1/frcpa(1+ 215/256)
-data8 0x3FE399A157A603E7 //log(1/frcpa(1+ 216/256)
-data8 0x3FE3AFCCFE77B9D1 //log(1/frcpa(1+ 217/256)
-data8 0x3FE3BE9D503533B5 //log(1/frcpa(1+ 218/256)
-data8 0x3FE3CD7480B4A8A3 //log(1/frcpa(1+ 219/256)
-data8 0x3FE3E3C43918F76C //log(1/frcpa(1+ 220/256)
-data8 0x3FE3F2ACB27ED6C7 //log(1/frcpa(1+ 221/256)
-data8 0x3FE4019C2125CA93 //log(1/frcpa(1+ 222/256)
-data8 0x3FE4181061389722 //log(1/frcpa(1+ 223/256)
-data8 0x3FE42711518DF545 //log(1/frcpa(1+ 224/256)
-data8 0x3FE436194E12B6BF //log(1/frcpa(1+ 225/256)
-data8 0x3FE445285D68EA69 //log(1/frcpa(1+ 226/256)
-data8 0x3FE45BCC464C893A //log(1/frcpa(1+ 227/256)
-data8 0x3FE46AED21F117FC //log(1/frcpa(1+ 228/256)
-data8 0x3FE47A1527E8A2D3 //log(1/frcpa(1+ 229/256)
-data8 0x3FE489445EFFFCCC //log(1/frcpa(1+ 230/256)
-data8 0x3FE4A018BCB69835 //log(1/frcpa(1+ 231/256)
-data8 0x3FE4AF5A0C9D65D7 //log(1/frcpa(1+ 232/256)
-data8 0x3FE4BEA2A5BDBE87 //log(1/frcpa(1+ 233/256)
-data8 0x3FE4CDF28F10AC46 //log(1/frcpa(1+ 234/256)
-data8 0x3FE4DD49CF994058 //log(1/frcpa(1+ 235/256)
-data8 0x3FE4ECA86E64A684 //log(1/frcpa(1+ 236/256)
-data8 0x3FE503C43CD8EB68 //log(1/frcpa(1+ 237/256)
-data8 0x3FE513356667FC57 //log(1/frcpa(1+ 238/256)
-data8 0x3FE522AE0738A3D8 //log(1/frcpa(1+ 239/256)
-data8 0x3FE5322E26867857 //log(1/frcpa(1+ 240/256)
-data8 0x3FE541B5CB979809 //log(1/frcpa(1+ 241/256)
-data8 0x3FE55144FDBCBD62 //log(1/frcpa(1+ 242/256)
-data8 0x3FE560DBC45153C7 //log(1/frcpa(1+ 243/256)
-data8 0x3FE5707A26BB8C66 //log(1/frcpa(1+ 244/256)
-data8 0x3FE587F60ED5B900 //log(1/frcpa(1+ 245/256)
-data8 0x3FE597A7977C8F31 //log(1/frcpa(1+ 246/256)
-data8 0x3FE5A760D634BB8B //log(1/frcpa(1+ 247/256)
-data8 0x3FE5B721D295F10F //log(1/frcpa(1+ 248/256)
-data8 0x3FE5C6EA94431EF9 //log(1/frcpa(1+ 249/256)
-data8 0x3FE5D6BB22EA86F6 //log(1/frcpa(1+ 250/256)
-data8 0x3FE5E6938645D390 //log(1/frcpa(1+ 251/256)
-data8 0x3FE5F673C61A2ED2 //log(1/frcpa(1+ 252/256)
-data8 0x3FE6065BEA385926 //log(1/frcpa(1+ 253/256)
-data8 0x3FE6164BFA7CC06B //log(1/frcpa(1+ 254/256)
-data8 0x3FE62643FECF9743 //log(1/frcpa(1+ 255/256)
-LOCAL_OBJECT_END(log_table_3)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(acoshf)
-
-{ .mfi
- getf.exp acosh_GR_f8 = f8
- fclass.m p6,p0 = f8, 0xc3 // Test for x = NaN
- mov log_GR_comp2 = 0x10032
-}
-{ .mfi
- addl NR_table_address = @ltoff(log_table_1), gp
- fms.s1 log_y = f8, f8, f1 // y = x^2-1
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig acosh_GR_f8_sig = f8
- fclass.m p11,p0 = f8, 0x21 // Test for x=+inf
- mov log_GR_exp_17_ones = 0x1ffff
-}
-{ .mfi
- ld8 NR_table_address = [NR_table_address]
- fms.s1 log_w = f8,f1,f1 // w = x - 1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p7,p8 = f8, f1 // Test for x<1.0
- addl log_GR_comp = 0x10020C,r0 // Upper 21 bits of signif of 1.0005
-}
-{ .mfb
- mov log_GR_exp_16_ones = 0xffff //BIAS
-(p6) fma.s.s0 f8 = f8,f1,f0 // quietize nan result if x=nan
-(p6) br.ret.spnt b0 // Exit for x=nan
-}
-;;
-
-{ .mfb
- //get second table address
- adds log_table_address2 = 0x20, NR_table_address
- fcmp.eq.s1 p10,p0 = f8, f1 // Test for x=+1.0
-(p11) br.ret.spnt b0 // Exit for x=+inf
-}
-;;
-
-{ .mfi
- ldfpd NR1,NR2 = [log_table_address2],16
- frsqrta.s1 log_y_rs,p0 = log_y // z=1/sqrt(y)
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s1 log_arg = f8,f1,f8
-(p7) br.cond.spnt ACOSH_LESS_ONE // Branch if path 7, x < 1.0
-}
-;;
-
-{ .mfi
- ldfe log_C2 = [log_table_address2],16
-(p8) fcmp.eq.s0 p6,p0 = f8, f0 // Dummy op sets denorm flag if unorm>=1.0
- nop.i 0
-}
-{ .mfb
-(p8) cmp.le.unc p13,p0 = log_GR_comp2,acosh_GR_f8
- nop.f 0
-(p13) br.cond.spnt LOG_COMMON1 // Branch if path 4, x >= 2^51
-}
-;;
-
-{ .mfi
- ldfe log_C1 = [log_table_address2],16
-(p10) fmerge.s f8 = f0, f0 // Return 0 if x=1.0
- shr.u acosh_GR_f8_sig = acosh_GR_f8_sig,43
-}
-{ .mib
- cmp.eq p14,p0 = log_GR_exp_16_ones,acosh_GR_f8
- nop.i 0
-(p10) br.ret.spnt b0 // Exit for x=1.0
-}
-;;
-
-{ .mfi
- ldfe log_C0 = [log_table_address2],16
- frsqrta.s1 acosh_w_rs,p0 = log_w // t=1/sqrt(w)
- nop.i 0
-}
-{ .mfb
-(p14) cmp.lt.unc p15,p0 = acosh_GR_f8_sig,log_GR_comp
- nop.f 0
-(p15) br.cond.spnt ACOSH_NEAR_ONE // Branch if path 2, 1.0 < x < 1.0005
-}
-;;
-
-// Here is main path, 1.0005 <= x < 2^51
-/////////////// The first iteration //////////////////////////////////
-{ .mfi
- ldfpd log_P3,log_P2 = [NR_table_address],16
- fma.s1 log_y_rs_iter = log_y_rs,log_y,f0 // y*z
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P1,log2 = [NR_table_address],16
- fnma.s1 log_y_rs_iter2 = log_y_rs_iter,log_y_rs,NR2 // 3-(y*z)*z
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs,NR1,f0 // 0.5*z
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_y_rs_iter = log_y_rs_iter1,log_y_rs_iter2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_arg_early = log_y_rs_iter1,log_y_rs_iter2,f0
- nop.i 0
-}
-;;
-
-/////////////////////////// The second iteration /////////////////////////////
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs = log_y_rs_iter,log_y,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_arg_early = log_arg_early,log_y,f8
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 log_y_rs = log_y_rs,log_y_rs_iter,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter1,log_y,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- frcpa.s1 log_C,p0 = f1,log_arg_early
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp log_GR_signexp_f8 = log_arg_early
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig log_GR_significand_f8 = log_arg_early
- fma.s1 log_arg = log_y_rs_iter1,log_y_rs,f8 // (0.5*z)*(3-(y*z)*z)
- adds log_table_address3 = 0x40, NR_table_address
-}
-;;
-
-///////////////////////////////// The end NR iterations /////////////////////
-
-{ .mmi
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-;;
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- fms.s1 log_r = log_C,log_arg,f1 // C = frcpa(x); r = C * x - 1
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*8 + index
- shladd log_table_address3 = log_GR_index,3,log_table_address3
-;;
- ldfd log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_P1, log_r, f1 //P1*r + 1.0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format log_Nfloat
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //(P3*r + P2)*r^2 + P1*r + 1.0
- fma.s1 log_rp_p2 = log_rp_p32, log_rsq, log_rp_p10
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = log_rp_p2,log_r,log_T_plus_Nlog2
- br.ret.sptk b0 // Exit main path, path 3: 1.0005 <= x < 2^51
-}
-;;
-
-// Here if path 2, 1.0 < x < 1.0005
-ACOSH_NEAR_ONE:
-// The first NR iteration
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter1 = acosh_w_rs,log_w,f0 //t*w
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_1 = f8,log_C2,log_C1 //x*C2 + C1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_rs,NR1,f0 //t*0.5
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 acosh_w_iter1 = acosh_w_iter1,acosh_w_rs,NR2 //3-t*t*w
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //(3-t*t*w)*t*0.5
- fma.s1 acosh_w_iter2 = acosh_w_iter2,acosh_w_iter1,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_1 = acosh_w_1,log_w,log_C0 //(x*C2 + C1)*(x-1) + C0
- nop.i 0
-}
-;;
-
-// The second NR iteration
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_rs = acosh_w_iter2,log_w,f0 //t*w
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 acosh_w_iter1 = acosh_w_iter2,acosh_w_rs,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_iter2,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_iter2 = acosh_w_iter2,acosh_w_iter1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 acosh_w_sqrt = acosh_w_iter2,log_w,f0
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = acosh_w_1,acosh_w_sqrt,f0
- br.ret.sptk b0 // Exit path 2, 1.0 < x < 1.0005
-}
-;;
-
-// Here if path 4, x >= 2^51
-LOG_COMMON1:
-{ .mfi
- ldfpd log_P3,log_P2 = [NR_table_address],16
- frcpa.s1 log_C,p0 = f1,log_arg
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.exp log_GR_signexp_f8 = log_arg
- ldfpd log_P1,log2 = [NR_table_address],16
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.sig log_GR_significand_f8 = log_arg
- nop.m 0
- nop.i 0
-}
-;;
-
-{ .mfi
- adds log_table_address3 = 0x40, NR_table_address
- nop.f 0
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-}
-;;
-
-{ .mmf
- nop.m 0
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
- fms.s1 log_r = log_C,log_arg,f1 // C = frcpa(x); r = C * x - 1
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- nop.f 0
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*8 + index
- shladd log_table_address3 = log_GR_index,3,log_table_address3
-;;
- ldfd log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_P1, log_r, f1 //P1*r + 1.0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format log_Nfloat
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p2 = log_rp_p32, log_rsq, log_rp_p10
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = log_rp_p2,log_r,log_T_plus_Nlog2
- br.ret.sptk b0 // Exit path 4, x >= 2^51
-}
-;;
-
-// Here if path 7, x < 1.0
-ACOSH_LESS_ONE:
-{ .mfi
- alloc r32 = ar.pfs,1,3,4,0
- fmerge.s f10 = f8,f8
- nop.i 0
-}
-;;
-
-{ .mfb
- mov acosh_GR_tag = 137
- frcpa.s0 f8,p0 = f0,f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-GLOBAL_LIBM_END(acoshf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_acoshl.S b/sysdeps/ia64/fpu/e_acoshl.S
deleted file mode 100644
index 42e1f394ef..0000000000
--- a/sysdeps/ia64/fpu/e_acoshl.S
+++ /dev/null
@@ -1,1716 +0,0 @@
-.file "acoshl.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 10/01/01 Initial version
-// 10/10/01 Performance inproved
-// 12/11/01 Changed huges_logp to not be global
-// 01/02/02 Corrected .restore syntax
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/14/02 Changed mli templates to mlx
-// 02/06/03 Reorganized data tables
-// 03/31/05 Reformatted delimiters between data tables
-//
-//*********************************************************************
-//
-// API
-//==============================================================
-// long double acoshl(long double);
-//
-// Overview of operation
-//==============================================================
-//
-// There are 6 paths:
-// 1. x = 1
-// Return acoshl(x) = 0;
-//
-// 2. x < 1
-// Return acoshl(x) = Nan (Domain error, error handler call with tag 135);
-//
-// 3. x = [S,Q]Nan or +INF
-// Return acoshl(x) = x + x;
-//
-// 4. 'Near 1': 1 < x < 1+1/8
-// Return acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
-// where y = 1, P(y)/Q(y) - rational approximation
-//
-// 5. 'Huges': x > 0.5*2^64
-// Return acoshl(x) = (logl(2*x-1));
-//
-// 6. 'Main path': 1+1/8 < x < 0.5*2^64
-// b_hi + b_lo = x + sqrt(x^2 - 1);
-// acoshl(x) = logl_special(b_hi, b_lo);
-//
-// Algorithm description
-//==============================================================
-//
-// I. Near 1 path algorithm
-// **************************************************************
-// The formula is acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
-// where y = 1, P(y)/Q(y) - rational approximation
-//
-// 1) y = x - 1, y2 = 2 * y
-//
-// 2) Compute in parallel sqrtl(2*y) and P(y)/Q(y)
-// a) sqrtl computation method described below (main path algorithm, item 2))
-// As result we obtain (gg+gl) - multiprecision result
-// as pair of double extended values
-// b) P(y) and Q(y) calculated without any extra precision manipulations
-// c) P/Q division:
-// y = frcpa(Q) initial approximation of 1/Q
-// z = P*y initial approximation of P/Q
-//
-// e = 1 - b*y
-// e2 = e + e^2
-// e1 = e^2
-// y1 = y + y*e2 = y + y*(e+e^2)
-//
-// e3 = e + e1^2
-// y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
-//
-// r = P - Q*z
-// e = 1 - Q*y2
-// xx = z + r*y2 high part of a/b
-//
-// y3 = y2 + y2*e4
-// r1 = P - Q*xx
-// xl = r1*y3 low part of a/b
-//
-// 3) res = sqrt(2*y) - sqrt(2*y)*(P(y)/Q(y)) =
-// = (gg+gl) - (gg + gl)*(xx+xl);
-//
-// a) hh = gg*xx; hl = gg*xl; lh = gl*xx; ll = gl*xl;
-// b) res = ((((gl + ll) + lh) + hl) + hh) + gg;
-// (exactly in this order)
-//
-// II. Main path algorithm
-// ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )
-// **********************************************************************
-//
-// There are 3 parts of x+sqrt(x^2-1) computation:
-//
-// 1) m2 = (m2_hi+m2_lo) = x^2-1 obtaining
-// ------------------------------------
-// m2_hi = x2_hi - 1, where x2_hi = x * x;
-// m2_lo = x2_lo + p1_lo, where
-// x2_lo = FMS(x*x-x2_hi),
-// p1_lo = (1 + m2_hi) - x2_hi;
-//
-// 2) g = (g_hi+g_lo) = sqrt(m2) = sqrt(m2_hi+m2_lo)
-// ----------------------------------------------
-// r = invsqrt(m2_hi) (8-bit reciprocal square root approximation);
-// g = m2_hi * r (first 8 bit-approximation of sqrt);
-//
-// h = 0.5 * r;
-// e = 0.5 - g * h;
-// g = g * e + g (second 16 bit-approximation of sqrt);
-//
-// h = h * e + h;
-// e = 0.5 - g * h;
-// g = g * e + g (third 32 bit-approximation of sqrt);
-//
-// h = h * e + h;
-// e = 0.5 - g * h;
-// g_hi = g * e + g (fourth 64 bit-approximation of sqrt);
-//
-// Remainder computation:
-// h = h * e + h;
-// d = (m2_hi - g_hi * g_hi) + m2_lo;
-// g_lo = d * h;
-//
-// 3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2-1)
-// -------------------------------------------------------------------
-// b_hi = (g_hi + x) + gl;
-// b_lo = (x - b_hi) + g_hi + gl;
-//
-// Now we pass b presented as sum b_hi + b_lo to special version
-// of logl function which accept a pair of arguments as
-// mutiprecision value.
-//
-// Special log algorithm overview
-// ================================
-// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) for an argument Arg in [1,2),
-// we construct a value G such that G*Arg is close to 1 and that
-// logl(1/G) is obtainable easily from a table of values calculated
-// beforehand. Thus
-//
-// logl(Arg) = logl(1/G) + logl((G*Arg - 1))
-//
-// Because |G*Arg - 1| is small, the second term on the right hand
-// side can be approximated by a short polynomial. We elaborate
-// this method in four steps.
-//
-// Step 0: Initialization
-//
-// We need to calculate logl( X+1 ). Obtain N, S_hi such that
-//
-// X = 2^N * ( S_hi + S_lo ) exactly
-//
-// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
-// that |S_lo| <= ulp(S_hi).
-//
-// For the special version of logl: S_lo = b_lo
-// !-----------------------------------------------!
-//
-// Step 1: Argument Reduction
-//
-// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1) + G * S_lo
-//
-// These G_j's have the property that the product is exactly
-// representable and that |r| < 2^(-12) as a result.
-//
-// Step 2: Approximation
-//
-// logl(1 + r) is approximated by a short polynomial poly(r).
-//
-// Step 3: Reconstruction
-//
-// Finally, logl( X ) = logl( X+1 ) is given by
-//
-// logl( X ) = logl( 2^N * (S_hi + S_lo) )
-// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
-// ~=~ N*logl(2) + logl(1/G) + poly(r).
-//
-// For detailed description see logl or log1pl function, regular path.
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f95 (64 registers)
-
-// General registers used:
-// r32 -> r67 (36 registers)
-
-// Predicate registers used:
-// p7 -> p11
-// p7 for 'NaNs, Inf' path
-// p8 for 'near 1' path
-// p9 for 'huges' path
-// p10 for x = 1
-// p11 for x < 1
-//
-//*********************************************************************
-// IEEE Special Conditions:
-//
-// acoshl(+inf) = +inf
-// acoshl(-inf) = QNaN
-// acoshl(1) = 0
-// acoshl(x<1) = QNaN
-// acoshl(SNaN) = QNaN
-// acoshl(QNaN) = QNaN
-//
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 64
-
-// Near 1 path rational aproximation coefficients
-LOCAL_OBJECT_START(Poly_P)
-data8 0xB0978143F695D40F, 0x3FF1 // .84205539791447100108478906277453574946e-4
-data8 0xB9800D841A8CAD29, 0x3FF6 // .28305085180397409672905983082168721069e-2
-data8 0xC889F455758C1725, 0x3FF9 // .24479844297887530847660233111267222945e-1
-data8 0x9BE1DFF006F45F12, 0x3FFB // .76114415657565879842941751209926938306e-1
-data8 0x9E34AF4D372861E0, 0x3FFB // .77248925727776366270605984806795850504e-1
-data8 0xF3DC502AEE14C4AE, 0x3FA6 // .3077953476682583606615438814166025592e-26
-LOCAL_OBJECT_END(Poly_P)
-
-//
-LOCAL_OBJECT_START(Poly_Q)
-data8 0xF76E3FD3C7680357, 0x3FF1 // .11798413344703621030038719253730708525e-3
-data8 0xD107D2E7273263AE, 0x3FF7 // .63791065024872525660782716786703188820e-2
-data8 0xB609BE5CDE206AEF, 0x3FFB // .88885771950814004376363335821980079985e-1
-data8 0xF7DEACAC28067C8A, 0x3FFD // .48412074662702495416825113623936037072302
-data8 0x8F9BE5890CEC7E38, 0x3FFF // 1.1219450873557867470217771071068369729526
-data8 0xED4F06F3D2BC92D1, 0x3FFE // .92698710873331639524734537734804056798748
-LOCAL_OBJECT_END(Poly_Q)
-
-// Q coeffs
-LOCAL_OBJECT_START(Constants_Q)
-data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
-data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
-data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
-data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
-data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
-LOCAL_OBJECT_END(Constants_Q)
-
-// Z1 - 16 bit fixed
-LOCAL_OBJECT_START(Constants_Z_1)
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F70F0F0,0x3D785196
-data8 0x3DA163A6617D741C
-data4 0x3F638E38,0x3DF13843
-data8 0x3E2C55E6CBD3D5BB
-data4 0x3F579430,0x3E2FF9A0
-data8 0xBE3EB0BFD86EA5E7
-data4 0x3F4CCCC8,0x3E647FD6
-data8 0x3E2E6A8C86B12760
-data4 0x3F430C30,0x3E8B3AE7
-data8 0x3E47574C5C0739BA
-data4 0x3F3A2E88,0x3EA30C68
-data8 0x3E20E30F13E8AF2F
-data4 0x3F321640,0x3EB9CEC8
-data8 0xBE42885BF2C630BD
-data4 0x3F2AAAA8,0x3ECF9927
-data8 0x3E497F3497E577C6
-data4 0x3F23D708,0x3EE47FC5
-data8 0x3E3E6A6EA6B0A5AB
-data4 0x3F1D89D8,0x3EF8947D
-data8 0xBDF43E3CD328D9BE
-data4 0x3F17B420,0x3F05F3A1
-data8 0x3E4094C30ADB090A
-data4 0x3F124920,0x3F0F4303
-data8 0xBE28FBB2FC1FE510
-data4 0x3F0D3DC8,0x3F183EBF
-data8 0x3E3A789510FDE3FA
-data4 0x3F088888,0x3F20EC80
-data8 0x3E508CE57CC8C98F
-data4 0x3F042108,0x3F29516A
-data8 0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-LOCAL_OBJECT_START(Constants_Z_2)
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F7F00F8,0x3B7F875D
-data8 0x3DB5A11622C42273
-data4 0x3F7E03F8,0x3BFF015B
-data8 0x3DE620CF21F86ED3
-data4 0x3F7D08E0,0x3C3EE393
-data8 0xBDAFA07E484F34ED
-data4 0x3F7C0FC0,0x3C7E0586
-data8 0xBDFE07F03860BCF6
-data4 0x3F7B1880,0x3C9E75D2
-data8 0x3DEA370FA78093D6
-data4 0x3F7A2328,0x3CBDC97A
-data8 0x3DFF579172A753D0
-data4 0x3F792FB0,0x3CDCFE47
-data8 0x3DFEBE6CA7EF896B
-data4 0x3F783E08,0x3CFC15D0
-data8 0x3E0CF156409ECB43
-data4 0x3F774E38,0x3D0D874D
-data8 0xBE0B6F97FFEF71DF
-data4 0x3F766038,0x3D1CF49B
-data8 0xBE0804835D59EEE8
-data4 0x3F757400,0x3D2C531D
-data8 0x3E1F91E9A9192A74
-data4 0x3F748988,0x3D3BA322
-data8 0xBE139A06BF72A8CD
-data4 0x3F73A0D0,0x3D4AE46F
-data8 0x3E1D9202F8FBA6CF
-data4 0x3F72B9D0,0x3D5A1756
-data8 0xBE1DCCC4BA796223
-data4 0x3F71D488,0x3D693B9D
-data8 0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4 0x3F7FFC00,0x38800100
-data8 0x3D355595562224CD
-data4 0x3F7FF400,0x39400480
-data8 0x3D8200A206136FF6
-data4 0x3F7FEC00,0x39A00640
-data8 0x3DA4D68DE8DE9AF0
-data4 0x3F7FE400,0x39E00C41
-data8 0xBD8B4291B10238DC
-data4 0x3F7FDC00,0x3A100A21
-data8 0xBD89CCB83B1952CA
-data4 0x3F7FD400,0x3A300F22
-data8 0xBDB107071DC46826
-data4 0x3F7FCC08,0x3A4FF51C
-data8 0x3DB6FCB9F43307DB
-data4 0x3F7FC408,0x3A6FFC1D
-data8 0xBD9B7C4762DC7872
-data4 0x3F7FBC10,0x3A87F20B
-data8 0xBDC3725E3F89154A
-data4 0x3F7FB410,0x3A97F68B
-data8 0xBD93519D62B9D392
-data4 0x3F7FAC18,0x3AA7EB86
-data8 0x3DC184410F21BD9D
-data4 0x3F7FA420,0x3AB7E101
-data8 0xBDA64B952245E0A6
-data4 0x3F7F9C20,0x3AC7E701
-data8 0x3DB4B0ECAABB34B8
-data4 0x3F7F9428,0x3AD7DD7B
-data8 0x3D9923376DC40A7E
-data4 0x3F7F8C30,0x3AE7D474
-data8 0x3DC6E17B4F2083D3
-data4 0x3F7F8438,0x3AF7CBED
-data8 0x3DAE314B811D4394
-data4 0x3F7F7C40,0x3B03E1F3
-data8 0xBDD46F21B08F2DB1
-data4 0x3F7F7448,0x3B0BDE2F
-data8 0xBDDC30A46D34522B
-data4 0x3F7F6C50,0x3B13DAAA
-data8 0x3DCB0070B1F473DB
-data4 0x3F7F6458,0x3B1BD766
-data8 0xBDD65DDC6AD282FD
-data4 0x3F7F5C68,0x3B23CC5C
-data8 0xBDCDAB83F153761A
-data4 0x3F7F5470,0x3B2BC997
-data8 0xBDDADA40341D0F8F
-data4 0x3F7F4C78,0x3B33C711
-data8 0x3DCD1BD7EBC394E8
-data4 0x3F7F4488,0x3B3BBCC6
-data8 0xBDC3532B52E3E695
-data4 0x3F7F3C90,0x3B43BAC0
-data8 0xBDA3961EE846B3DE
-data4 0x3F7F34A0,0x3B4BB0F4
-data8 0xBDDADF06785778D4
-data4 0x3F7F2CA8,0x3B53AF6D
-data8 0x3DCC3ED1E55CE212
-data4 0x3F7F24B8,0x3B5BA620
-data8 0xBDBA31039E382C15
-data4 0x3F7F1CC8,0x3B639D12
-data8 0x3D635A0B5C5AF197
-data4 0x3F7F14D8,0x3B6B9444
-data8 0xBDDCCB1971D34EFC
-data4 0x3F7F0CE0,0x3B7393BC
-data8 0x3DC7450252CD7ADA
-data4 0x3F7F04F0,0x3B7B8B6D
-data8 0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-// Assembly macros
-//==============================================================
-
-// Floating Point Registers
-
-FR_Arg = f8
-FR_Res = f8
-
-
-FR_PP0 = f32
-FR_PP1 = f33
-FR_PP2 = f34
-FR_PP3 = f35
-FR_PP4 = f36
-FR_PP5 = f37
-FR_QQ0 = f38
-FR_QQ1 = f39
-FR_QQ2 = f40
-FR_QQ3 = f41
-FR_QQ4 = f42
-FR_QQ5 = f43
-
-FR_Q1 = f44
-FR_Q2 = f45
-FR_Q3 = f46
-FR_Q4 = f47
-
-FR_Half = f48
-FR_Two = f49
-
-FR_log2_hi = f50
-FR_log2_lo = f51
-
-
-FR_X2 = f52
-FR_M2 = f53
-FR_M2L = f54
-FR_Rcp = f55
-FR_GG = f56
-FR_HH = f57
-FR_EE = f58
-FR_DD = f59
-FR_GL = f60
-FR_Tmp = f61
-
-
-FR_XM1 = f62
-FR_2XM1 = f63
-FR_XM12 = f64
-
-
-
- // Special logl registers
-FR_XLog_Hi = f65
-FR_XLog_Lo = f66
-
-FR_Y_hi = f67
-FR_Y_lo = f68
-
-FR_S_hi = f69
-FR_S_lo = f70
-
-FR_poly_lo = f71
-FR_poly_hi = f72
-
-FR_G = f73
-FR_H = f74
-FR_h = f75
-
-FR_G2 = f76
-FR_H2 = f77
-FR_h2 = f78
-
-FR_r = f79
-FR_rsq = f80
-FR_rcub = f81
-
-FR_float_N = f82
-
-FR_G3 = f83
-FR_H3 = f84
-FR_h3 = f85
-
-FR_2_to_minus_N = f86
-
-
- // Near 1 registers
-FR_PP = f65
-FR_QQ = f66
-
-
-FR_PV6 = f69
-FR_PV4 = f70
-FR_PV3 = f71
-FR_PV2 = f72
-
-FR_QV6 = f73
-FR_QV4 = f74
-FR_QV3 = f75
-FR_QV2 = f76
-
-FR_Y0 = f77
-FR_Q0 = f78
-FR_E0 = f79
-FR_E2 = f80
-FR_E1 = f81
-FR_Y1 = f82
-FR_E3 = f83
-FR_Y2 = f84
-FR_R0 = f85
-FR_E4 = f86
-FR_Y3 = f87
-FR_R1 = f88
-FR_X_Hi = f89
-FR_X_lo = f90
-
-FR_HH = f91
-FR_LL = f92
-FR_HL = f93
-FR_LH = f94
-
-
-
- // Error handler registers
-FR_Arg_X = f95
-FR_Arg_Y = f0
-
-
-// General Purpose Registers
-
- // General prolog registers
-GR_PFS = r32
-GR_OneP125 = r33
-GR_TwoP63 = r34
-GR_Arg = r35
-GR_Half = r36
-
- // Near 1 path registers
-GR_Poly_P = r37
-GR_Poly_Q = r38
-
- // Special logl registers
-GR_Index1 = r39
-GR_Index2 = r40
-GR_signif = r41
-GR_X_0 = r42
-GR_X_1 = r43
-GR_X_2 = r44
-GR_minus_N = r45
-GR_Z_1 = r46
-GR_Z_2 = r47
-GR_N = r48
-GR_Bias = r49
-GR_M = r50
-GR_Index3 = r51
-GR_exp_2tom80 = r52
-GR_exp_mask = r53
-GR_exp_2tom7 = r54
-GR_ad_ln10 = r55
-GR_ad_tbl_1 = r56
-GR_ad_tbl_2 = r57
-GR_ad_tbl_3 = r58
-GR_ad_q = r59
-GR_ad_z_1 = r60
-GR_ad_z_2 = r61
-GR_ad_z_3 = r62
-
-//
-// Added for unwind support
-//
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-
-GR_Parameter_X = r64
-GR_Parameter_Y = r65
-GR_Parameter_RESULT = r66
-GR_Parameter_TAG = r67
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(acoshl)
-
-{ .mfi
- alloc GR_PFS = ar.pfs,0,32,4,0 // Local frame allocation
- fcmp.lt.s1 p11, p0 = FR_Arg, f1 // if arg is less than 1
- mov GR_Half = 0xfffe // 0.5's exp
-}
-{ .mfi
- addl GR_Poly_Q = @ltoff(Poly_Q), gp // Address of Q-coeff table
- fma.s1 FR_X2 = FR_Arg, FR_Arg, f0 // Obtain x^2
- addl GR_Poly_P = @ltoff(Poly_P), gp // Address of P-coeff table
-};;
-
-{ .mfi
- getf.d GR_Arg = FR_Arg // get arument as double (int64)
- fma.s0 FR_Two = f1, f1, f1 // construct 2.0
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp // logl tables
-}
-{ .mlx
- nop.m 0
- movl GR_TwoP63 = 0x43E8000000000000 // 0.5*2^63 (huge arguments)
-};;
-
-{ .mfi
- ld8 GR_Poly_P = [GR_Poly_P] // get actual P-coeff table address
- fcmp.eq.s1 p10, p0 = FR_Arg, f1 // if arg == 1 (return 0)
- nop.i 0
-}
-{ .mlx
- ld8 GR_Poly_Q = [GR_Poly_Q] // get actual Q-coeff table address
- movl GR_OneP125 = 0x3FF2000000000000 // 1.125 (near 1 path bound)
-};;
-
-{ .mfi
- ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
- fclass.m p7,p0 = FR_Arg, 0xe3 // if arg NaN inf
- cmp.le p9, p0 = GR_TwoP63, GR_Arg // if arg > 0.5*2^63 ('huges')
-}
-{ .mfb
- cmp.ge p8, p0 = GR_OneP125, GR_Arg // if arg<1.125 -near 1 path
- fms.s1 FR_XM1 = FR_Arg, f1, f1 // X0 = X-1 (for near 1 path)
-(p11) br.cond.spnt acoshl_lt_pone // error branch (less than 1)
-};;
-
-{ .mmi
- setf.exp FR_Half = GR_Half // construct 0.5
-(p9) setf.s FR_XLog_Lo = r0 // Low of logl arg=0 (Huges path)
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
-};;
-
-{ .mmf
-(p8) ldfe FR_PP5 = [GR_Poly_P],16 // Load P5
-(p8) ldfe FR_QQ5 = [GR_Poly_Q],16 // Load Q5
- fms.s1 FR_M2 = FR_X2, f1, f1 // m2 = x^2 - 1
-};;
-
-{ .mfi
-(p8) ldfe FR_QQ4 = [GR_Poly_Q],16 // Load Q4
- fms.s1 FR_M2L = FR_Arg, FR_Arg, FR_X2 // low part of
- // m2 = fma(X*X - m2)
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
-}
-{ .mfb
-(p8) ldfe FR_PP4 = [GR_Poly_P],16 // Load P4
-(p7) fma.s0 FR_Res = FR_Arg,f1,FR_Arg // r = a + a (Nan, Inf)
-(p7) br.ret.spnt b0 // return (Nan, Inf)
-};;
-
-{ .mfi
-(p8) ldfe FR_PP3 = [GR_Poly_P],16 // Load P3
- nop.f 0
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
-}
-{ .mfb
-(p8) ldfe FR_QQ3 = [GR_Poly_Q],16 // Load Q3
-(p9) fms.s1 FR_XLog_Hi = FR_Two, FR_Arg, f1 // Hi of log arg = 2*X-1
-(p9) br.cond.spnt huges_logl // special version of log
-}
-;;
-
-{ .mfi
-(p8) ldfe FR_PP2 = [GR_Poly_P],16 // Load P2
-(p8) fma.s1 FR_2XM1 = FR_Two, FR_XM1, f0 // 2X0 = 2 * X0
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
-}
-{ .mfb
-(p8) ldfe FR_QQ2 = [GR_Poly_Q],16 // Load Q2
-(p10) fma.s0 FR_Res = f0,f1,f0 // r = 0 (arg = 1)
-(p10) br.ret.spnt b0 // return (arg = 1)
-};;
-
-{ .mmi
-(p8) ldfe FR_PP1 = [GR_Poly_P],16 // Load P1
-(p8) ldfe FR_QQ1 = [GR_Poly_Q],16 // Load Q1
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
-}
-;;
-
-{ .mfi
-(p8) ldfe FR_PP0 = [GR_Poly_P] // Load P0
- fma.s1 FR_Tmp = f1, f1, FR_M2 // Tmp = 1 + m2
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
-}
-{ .mfb
-(p8) ldfe FR_QQ0 = [GR_Poly_Q]
- nop.f 0
-(p8) br.cond.spnt near_1 // near 1 path
-};;
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- nop.f 0
- mov GR_Bias = 0x0FFFF // Create exponent bias
-};;
-{ .mfi
- nop.m 0
- frsqrta.s1 FR_Rcp, p0 = FR_M2 // Rcp = 1/m2 reciprocal appr.
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
- fms.s1 FR_Tmp = FR_X2, f1, FR_Tmp // Tmp = x^2 - Tmp
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
- fma.s1 FR_GG = FR_Rcp, FR_M2, f0 // g = Rcp * m2
- // 8 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp
- nop.i 0
-};;
-{ .mfi
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_M2L = FR_Tmp, f1, FR_M2L // low part of m2 = Tmp+m2l
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
- // 16 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
- // 32 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
- // 64 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_DD = FR_GG, FR_GG, FR_M2 // Remainder d = g * g - p2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_XLog_Hi = FR_Arg, f1, FR_GG // bh = z + gh
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_DD = FR_DD, f1, FR_M2L // add p2l: d = d + p2l
- nop.i 0
-};;
-
-{ .mfi
- getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
- nop.f 0
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_XLog_Hi = FR_DD, FR_HH, FR_XLog_Hi // bh = bh + gl
- nop.i 0
-};;
-
-
-
-{ .mmi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
-};;
-
-{ .mmi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- nop.m 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_XLog_Lo = FR_Arg, f1, FR_XLog_Hi // bl = x - bh
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
-};;
-
-// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// "DEAD" ZONE!
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1|
- nop.i 0
-};;
-
-
-{ .mmi
- getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-};;
-
-{ .mfi
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GG // bl = bl + gg
- mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
-}
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- nop.f 0
- sub GR_N = GR_N, GR_Bias // sub bias from exp
-};;
-
-{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
-};;
-
-{ .mmi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
- setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
-};;
-
-// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
-// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// (Just nops added - nothing to do here)
-
-{ .mfi
- nop.m 0
- fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GL // bl = bl + gl
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-};;
-
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fcvt.xf FR_float_N = FR_float_N
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S_lo = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^(-N)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r=G*S_lo+(G*S_hi-1)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo
- // Y_lo=poly_hi+poly_lo
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
- br.ret.sptk b0 // Common exit for 2^-7 < x < inf
-};;
-
-
-huges_logl:
-{ .mmi
- getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
- nop.i 0
-};;
-
-{ .mfi
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
- nop.f 0
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
-}
-{ .mfi
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
- nop.f 0
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
-};;
-
-{ .mfi
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
- nop.f 0
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
-};;
-
-{ .mfi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- nop.f 0
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
-};;
-
-{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.f 0
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
-}
-{ .mfi
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- nop.f 0
- mov GR_Bias = 0x0FFFF // Create exponent bias
-};;
-
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x|
- nop.i 0
-};;
-
-{ .mmi
- getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- nop.f 0
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
-};;
-
-{ .mmi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
- sub GR_N = GR_N, GR_Bias
- mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
-};;
-
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
- nop.f 0
- sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
-};;
-
-{ .mmf
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
- nop.f 0
-};;
-
-{ .mmi
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- nop.m 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-};;
-
-{ .mmi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- nop.i 0
-};;
-
-{ .mmi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- nop.i 0
-};;
-
-{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- nop.m 0
- nop.i 0
-};;
-
-{ .mmf
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
- nop.f 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1*Z_2
-};;
-
-// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
-// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// (Just nops added - nothing to do here)
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-};;
-
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
- fcvt.xf FR_float_N = FR_float_N
- nop.i 0
-};;
-
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-};;
-
-{ .mmf
- nop.m 0
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2)*G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2)+H_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N*log2_lo+h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo=poly_hi+poly_lo
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
- br.ret.sptk b0 // Common exit
-};;
-
-
-// NEAR ONE INTERVAL
-near_1:
-{ .mfi
- nop.m 0
- frsqrta.s1 FR_Rcp, p0 = FR_2XM1 // Rcp = 1/x reciprocal appr. &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_PV6 = FR_PP5, FR_XM1, FR_PP4 // pv6 = P5*xm1+P4 $POLY$
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_QV6 = FR_QQ5, FR_XM1, FR_QQ4 // qv6 = Q5*xm1+Q4 $POLY$
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_PV4 = FR_PP3, FR_XM1, FR_PP2 // pv4 = P3*xm1+P2 $POLY$
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_QV4 = FR_QQ3, FR_XM1, FR_QQ2 // qv4 = Q3*xm1+Q2 $POLY$
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_XM12 = FR_XM1, FR_XM1, f0 // xm1^2 = xm1 * xm1 $POLY$
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_PV2 = FR_PP1, FR_XM1, FR_PP0 // pv2 = P1*xm1+P0 $POLY$
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_QV2 = FR_QQ1, FR_XM1, FR_QQ0 // qv2 = Q1*xm1+Q0 $POLY$
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_Rcp, FR_2XM1, f0 // g = Rcp * x &SQRT&
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp &SQRT&
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_PV3 = FR_XM12, FR_PV6, FR_PV4//pv3=pv6*xm1^2+pv4 $POLY$
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_QV3 = FR_XM12, FR_QV6, FR_QV4//qv3=qv6*xm1^2+qv4 $POLY$
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_PP = FR_XM12, FR_PV3, FR_PV2 //pp=pv3*xm1^2+pv2 $POLY$
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_QQ = FR_XM12, FR_QV3, FR_QV2 //qq=qv3*xm1^2+qv2 $POLY$
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- frcpa.s1 FR_Y0,p0 = f1,FR_QQ // y = frcpa(b) #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g*h &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Q0 = FR_PP,FR_Y0,f0 // q = a*y #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_E0 = FR_Y0,FR_QQ,f1 // e = 1 - b*y #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2 #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2 #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2 #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2 #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_DD, FR_HH, FR_GG // g = d * h + g &SQRT&
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3 #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_R0 = FR_QQ,FR_Q0,FR_PP // r = a-b*q #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_E4 = FR_QQ,FR_Y2,f1 // e4 = 1-b*y2 #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_X_Hi = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2 #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h &SQRT&
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4 #DIV#
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_R1 = FR_QQ,FR_X_Hi,FR_PP // r1 = a-b*x #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_GG, FR_X_Hi, f0 // hh = gg * x_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_LH = FR_GL, FR_X_Hi, f0 // lh = gl * x_hi
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3 #DIV#
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_LL = FR_GL, FR_X_lo, f0 // ll = gl*x_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HL = FR_GG, FR_X_lo, f0 // hl = gg * x_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_Res = FR_GL, f1, FR_LL // res = gl + ll
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_Res = FR_Res, f1, FR_LH // res = res + lh
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_Res = FR_Res, f1, FR_HL // res = res + hl
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_Res = FR_Res, f1, FR_HH // res = res + hh
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s0 FR_Res = FR_Res, f1, FR_GG // result = res + gg
- br.ret.sptk b0 // Exit for near 1 path
-};;
-// NEAR ONE INTERVAL END
-
-
-
-
-acoshl_lt_pone:
-{ .mfi
- nop.m 0
- fmerge.s FR_Arg_X = FR_Arg, FR_Arg
- nop.i 0
-};;
-{ .mfb
- mov GR_Parameter_TAG = 135
- frcpa.s0 FR_Res,p0 = f0,f0 // get QNaN,and raise invalid
- br.cond.sptk __libm_error_region // exit if x < 1.0
-};;
-
-GLOBAL_LIBM_END(acoshl)
-
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y = -32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp = -64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP = gp // Save gp
-};;
-
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Parameter 2 to stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0,GR_SAVE_B0
- mov GR_SAVE_B0 = b0 // Save b0
-};;
-
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_Arg_X // Parameter 1 to stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_Res // Parameter 3 to stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0 = __libm_error_support# // Error handling function
-};;
-
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return res
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
-
-
diff --git a/sysdeps/ia64/fpu/e_acosl.S b/sysdeps/ia64/fpu/e_acosl.S
index 4fd345bedd..ab1bbf41a7 100644
--- a/sysdeps/ia64/fpu/e_acosl.S
+++ b/sysdeps/ia64/fpu/e_acosl.S
@@ -1,10 +1,10 @@
.file "acosl.s"
-
-// Copyright (c) 2001 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,2470 +20,1027 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 08/28/01 New version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
+// 2/02/00 Initial version
+// 2/07/00 Modified calculation of acos_corr to correct acosl
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
+// 12/20/00 Set denormal flag properly.
//
// API
//==============================================================
-// long double acosl(long double)
+// double-extended = acosl (double-extended)
+// input floating point f8
+// output floating point f8
//
-// Overview of operation
+// Registers used
//==============================================================
-// Background
//
-// Implementation
+// predicate registers used:
+// p6 -> p12
//
-// For |s| in [2^{-4}, sqrt(2)/2]:
-// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52
-// acos(s)= pi/2-asin(t)-asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e.
-// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1)
-// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9)
-// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table,
-// along with the high and low parts of asin(t) (stored as two double precision
-// values)
+// floating-point registers used:
+// f8 has input, then output
+// f8 -> f15, f32 ->f99
//
-// |s| in (sqrt(2)/2, sqrt(255/256)):
-// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6..
-// acos(|s|)= asin(t)-asin(r)
-// acos(-|s|)=pi-asin(t)+asin(r), r= s*t-sqrt(1-s^2)*sqrt(1-t^2)
-// To minimize accumulated errors, r is computed as
-// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+
-// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+
-// +ez*z'*y*(1-s^2)*(1-x),
-// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits)
-// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2
+// general registers used:
+// r32 -> r48
//
-// |s|<2^{-4}: evaluate asin(s) as 17-degree polynomial, return pi/2-asin(s)
-// (or simply return pi/2-s, if|s|<2^{-64})
-//
-// |s| in [sqrt(255/256), 1): acos(|s|)= asin(sqrt(1-s^2))
-// acos(-|s|)= pi-asin(sqrt(1-s^2))
-// use 17-degree polynomial for asin(sqrt(1-s^2)),
-// 9-degree polynomial to evaluate sqrt(1-s^2)
-// High order term is (pi)_high-(y*(1-s^2))_high, for s<0,
-// or y*(1-s^2)_s, for s>0
-//
-
-
-
-// Registers used
+// Overview of operation
//==============================================================
-// f6-f15, f32-f36
-// r2-r3, r23-r23
-// p6, p7, p8, p12
-//
-
-
- GR_SAVE_B0= r33
- GR_SAVE_PFS= r34
- GR_SAVE_GP= r35 // This reg. can safely be used
- GR_SAVE_SP= r36
-
- GR_Parameter_X= r37
- GR_Parameter_Y= r38
- GR_Parameter_RESULT= r39
- GR_Parameter_TAG= r40
-
- FR_X= f10
- FR_Y= f1
- FR_RESULT= f8
-
-
+// There are three paths
+// 1. |x| < 2^-25 ACOS_TINY
+// 2. 2^-25 <= |x| < 1/4 ACOS_POLY
+// 3. 1/4 <= |x| < 1 ACOS_ATAN
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(T_table)
-
-// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2),
-// asin(t)_high (double precision), asin(t)_low (double precision)
-
-data8 0x80828692b71c4391, 0xff7ddcec2d87e879
-data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6
-data8 0x80869f0163d0b082, 0xff79cad2247914d3
-data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c
-data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9
-data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc
-data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb
-data8 0x3fb0e32279319d80, 0x3caee31546582c43
-data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31
-data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd
-data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63
-data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f
-data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0
-data8 0x3fb1a392756ed280, 0x3c964f1a927461ae
-data8 0x80a08a5f33fadc66, 0xff600c07846a6830
-data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332
-data8 0x80a515d91d71acd4, 0xff5b892bc475affa
-data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6
-data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d
-data8 0x3fb2640c6dd76260, 0x3c62041160e0849e
-data8 0x80ae5e46b78b0d68, 0xff5253166bc17794
-data8 0x3fb2a43761187c80, 0x3cac61651af678c0
-data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8
-data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1
-data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738
-data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5
-data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37
-data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9
-data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e
-data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1
-data8 0x80c6b49bc72ec446, 0xff3a319453ebd961
-data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2
-data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6
-data8 0x3fb425524827a720, 0x3cb75a855e7c6053
-data8 0x80d0e4c033bee9c4, 0xff301994c79afb32
-data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab
-data8 0x80d615bdb87556db, 0xff2af55aa431f291
-data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5
-data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9
-data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb
-data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd
-data8 0x3fb526280fa74620, 0x3c940656e5549b91
-data8 0x80e60c93498e32cd, 0xff1b27b703a19c98
-data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd
-data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8
-data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a
-data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4
-data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958
-data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926
-data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16
-data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec
-data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a
-data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb
-data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad
-data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29
-data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7
-data8 0x810d95237e38766a, 0xfef411ca9f80b5f7
-data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6
-data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009
-data8 0x3fb76858ac403a00, 0x3c74df3dd959141a
-data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c
-data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc
-data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91
-data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7
-data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d
-data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9
-data8 0x812bc9c451e5a257, 0xfed640d974eb6068
-data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b
-data8 0x813206e3da0f3124, 0xfed0199e6ad6b585
-data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe
-data8 0x813854ec231172f9, 0xfec9e229dcf4747d
-data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd
-data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b
-data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07
-data8 0x814523ca796f56ce, 0xfebd428f72561efe
-data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c
-data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4
-data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f
-data8 0x81523686e29bbdd7, 0xfeb062008df81f50
-data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1
-data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a
-data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446
-data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8
-data8 0x3fba6c009e9f9260, 0x3c741e989a60938a
-data8 0x8166523a8b24f626, 0xfe9c974a367f785c
-data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d
-data8 0x816d283c793e0114, 0xfe95ddddb94166cb
-data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d
-data8 0x81740f54e06d55bd, 0xfe8f142c93750c50
-data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb
-data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb
-data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307
-data8 0x818210de91bba6c8, 0xfe814ff7162cf62f
-data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24
-data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1
-data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356
-data8 0x819057031bf7760e, 0xfe734a9f2dfa1810
-data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad
-data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b
-data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d
-data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c
-data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2
-data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f
-data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4
-data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5
-data8 0x3fbd302dcae51600, 0x3ca995b83421756a
-data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f
-data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f
-data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb
-data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026
-data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6
-data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434
-data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36
-data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd
-data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a
-data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027
-data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15
-data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1
-data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3
-data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72
-data8 0x81eba6861683cb97, 0xfe19d0537a0946e2
-data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca
-data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2
-data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a
-data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063
-data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813
-data8 0x820401efbf87e248, 0xfe020201fff9efea
-data8 0x3fbff53b970d1e80, 0x3ca625444b260078
-data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e
-data8 0x3fc02aff52065460, 0x3c9125d113e22a57
-data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0
-data8 0x3fc06b84f8e03220, 0x3caccf362295894b
-data8 0x82324434adbf99c2, 0xfdd4de1a001fb775
-data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af
-data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03
-data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628
-data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66
-data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4
-data8 0x82671d86345c5cee, 0xfda1695934d723e7
-data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f
-data8 0x827949d46a121770, 0xfd8fbee13cbbb823
-data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e
-data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34
-data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee
-data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca
-data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3
-data8 0x82b17d7fa5bbc982, 0xfd5934119557883a
-data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e
-data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161
-data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312
-data8 0x82d85e93fba50136, 0xfd338d7790ca0f41
-data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9
-data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727
-data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5
-data8 0x830062f46abf6022, 0xfd0cde480c43b327
-data8 0x3fc373237b34de60, 0x3cc95806d4928adb
-data8 0x8314d30108ea35f0, 0xfcf923526c1562b2
-data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54
-data8 0x83298ca29434df97, 0xfce526099d0737ed
-data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc
-data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c
-data8 0x3fc435774fea2a60, 0x3c9ec18b43340914
-data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055
-data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6
-data8 0x836975a60a70c52e, 0xfca79f9da4fab13a
-data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365
-data8 0x837f5841ddfa7a46, 0xfc92986889284148
-data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd
-data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f
-data8 0x3fc538db36ee6960, 0x3cb910b773d4c578
-data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68
-data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc
-data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5
-data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5
-data8 0x83d9d2cfc2813637, 0xfc3be08165519325
-data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29
-data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f
-data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e
-data8 0x8408d76990b9296e, 0xfc0ef35db402af94
-data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566
-data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4
-data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5
-data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390
-data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4
-data8 0x84519e3a29df811a, 0xfbc9989a85ce0954
-data8 0x3fc740afcccca000, 0x3cc19692a5301ca6
-data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4
-data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508
-data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45
-data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420
-data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1
-data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6
-data8 0x84b6e795650817ea, 0xfb6971805af8411e
-data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94
-data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5
-data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278
-data8 0x84eb649000a73014, 0xfb37c8d84414755c
-data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7
-data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b
-data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe
-data8 0x8521200b1fb8916e, 0xfb05114998f76a83
-data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c
-data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19
-data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a
-data8 0x85581cd97f45e274, 0xfad14a3004259931
-data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54
-data8 0x857414a74f8446b4, 0xfab7009ab1945a54
-data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2
-data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc
-data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef
-data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9
-data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e
-data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1
-data8 0x3fcad2224cf814e0, 0x3c303de5980d071c
-data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe
-data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e
-data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543
-data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf
-data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1
-data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518
-data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b
-data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187
-data8 0x865f669fe390c7f5, 0xf9db17e65944eacf
-data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14
-data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e
-data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7
-data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a
-data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf
-data8 0x86bd0dd45f4f8265, 0xf98433446a806e70
-data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0
-data8 0x86dcf0b16613e37a, 0xf966b246a8606170
-data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849
-data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b
-data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217
-data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941
-data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211
-data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363
-data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9
-data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319
-data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9
-data8 0x878176321154e2bc, 0xf8cf1d20f87270b8
-data8 0x3fce6907cca0d060, 0x3cb6ca4804750830
-data8 0x87a36580fe6bccf5, 0xf8affb5e20412199
-data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c
-data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233
-data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20
-data8 0x87e84fa9057914ca, 0xf870e64d40a15036
-data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9
-data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78
-data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a
-data8 0x882ea1bfc0f228ac, 0xf830b926379e6465
-data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985
-data8 0x885252ff21146108, 0xf810394699fe0e8e
-data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703
-data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0
-data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd
-data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97
-data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a
-data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e
-data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889
-data8 0x89431fc7bc0c2910, 0xf73642973c91298e
-data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf
-data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6
-data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f
-data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2
-data8 0x3fd156134ada6fe0, 0x3cc87369da09600c
-data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249
-data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c
-data8 0x8a811046373e0819, 0xf619e180181d97cc
-data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4
-data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2
-data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b
-data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6
-data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa
-data8 0x8b7fc95f35647757, 0xf538ca65c960b582
-data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126
-data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb
-data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a
-data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689
-data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552
-data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2
-data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d
-data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b
-data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d
-data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908
-data8 0x3fd3f2438d754b40, 0x3ca03304f667109a
-data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e
-data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d
-data8 0x8e0baad75555e361, 0xf3038e323ae9463a
-data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971
-data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7
-data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2
-data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c
-data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394
-data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909
-data8 0x3fd5439a4436d000, 0x3cc38d46d310526b
-data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669
-data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a
-data8 0x901206c1686317a6, 0xf14cd4f2a730d480
-data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431
-data8 0x907f4ca5fe9cf739, 0xf0f186784a125726
-data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33
-data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18
-data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e
-data8 0x915fab35e37421c6, 0xf0374ef5daab5c45
-data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6
-data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51
-data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b
-data8 0x9248000249200009, 0xef7840021aca5a72
-data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9
-data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5
-data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46
-data8 0x93388a8386725713, 0xeeb44dfce6820283
-data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9
-data8 0x93b3f8aa8e653812, 0xee507c126774fa45
-data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb
-data8 0x94318d99d341ade4, 0xedeb6cd32f891afb
-data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a
-data8 0x94b1523e3dedc630, 0xed851eaa3168f43c
-data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16
-data8 0x95334fc20577563f, 0xed1d8ffaa2279669
-data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2
-data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da
-data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d
-data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1
-data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1
-data8 0x96c6fcef314074fc, 0xebdf502d53d65fea
-data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9
-data8 0x97523ea3eab028b2, 0xeb72aea36720793e
-data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70
-data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94
-data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7
-data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7
-data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe
-data8 0x9902ae7487a9caa1, 0xea250c6224aab21a
-data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4
-data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638
-data8 0x3fdae939540d3f00, 0x3cc545c014943439
-data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706
-data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2
-data8 0x9aca09f835466186, 0xe8cba69df9f0bf35
-data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec
-data8 0x9b672266ab1e0136, 0xe855de74266193d4
-data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44
-data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b
-data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922
-data8 0x9ca995db058cabdc, 0xe76648a991511c6e
-data8 0x3fdc497a9c224780, 0x3cde08101c5b825b
-data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7
-data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120
-data8 0x9df765b9eecad5e6, 0xe6714846bdda7318
-data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf
-data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b
-data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c
-data8 0x9f51023562fc5676, 0xe576cbf239235ecb
-data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250
-data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7
-data8 0x3fddad5b02a82420, 0x3c89743b0b57534b
-data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e
-data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338
-data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191
-data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6
-data8 0xa22983528f3d8d49, 0xe3711694552da8a8
-data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31
-data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb
-data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825
-data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9
-data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65
-data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f
-data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a
-data8 0xa53727ca3e11b99e, 0xe1548f662951b00d
-data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd
-data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481
-data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a
-data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81
-data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057
-data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54
-data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d
-data8 0xa87e811a861df9b9, 0xdf20909061bb9760
-data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278
-data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd
-data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274
-data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22
-data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46
-data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed
-data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1
-data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92
-data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5
-data8 0xaf524e15640ebee4, 0xdabd54896f1029f6
-data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1
-data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41
-data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7
-data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6
-data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2
-data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930
-data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351
-data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1
-data8 0x3fe2aa64b32f7780, 0x3cba67314933077c
-data8 0xba0dc64d126cc135, 0xd4564563ce924481
-data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec
-data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8
-data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac
-data8 0xbef78e31985291a9, 0xd19672e2182f78be
-data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c
-data8 0xc19368b2b0629572, 0xd02baca5427e436a
-data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689
-data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d
-data8 0x3fe4300c7e945020, 0x3cbd367143da6582
-data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a
-data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63
-data8 0xca14e1b0622de526, 0xcbbe13773c3c5338
-data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c
-data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9
-data8 0x3fe5206cc637e000, 0x3ce2798b38e54193
-data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0
-data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68
-data8 0xd3c0d9f50057adda, 0xc70901152d59d16b
-data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab
-data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828
-data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5
-data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02
-data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee
-data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af
-data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d
-data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b
-data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321
-data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91
-data8 0x3fe76840418978a0, 0x3ccda46e85432c3d
-data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3
-data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3
-data8 0xf049183c3f53c39b, 0xbad848720223d3a8
-data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b
-data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48
-data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f
-data8 0xfa718f05adbf2c33, 0xb70432500286b185
-data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9
-data8 0xfff200c3f5489608, 0xb509e6454dca33cc
-data8 0x3fe9211b54441080, 0x3cb789cb53515688
-// The following table entries are not used
-//data8 0x82e138a0fac48700, 0xb3044a513a8e6132
-//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0
-//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88
-//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039
-//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c
-//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58
-//data8 0x8cad7a2c98dec333, 0xacab929ce114d451
-//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f
-//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec
-//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5
-//data8 0x9446d8191f80dd42, 0xa82ff92687235baf
-//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e
-//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58
-//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613
-//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b
-//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177
-//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03
-//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959
-//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec
-//data8 0x3fece4f404e29b20, 0x3cea3413401132b5
-//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c
-//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276
-//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb
-//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2
-//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c
-//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71
-//data8 0xbfea427678945732, 0x93d5990f9ee787af
-//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5
-//data8 0xc79611399b8c90c5, 0x90f72bde80febc31
-//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56
-//data8 0xcffa8425040624d7, 0x8e02b4418574ebed
-//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f
-//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024
-//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94
-//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b
-//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc
-//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a
-//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02
-//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6
-//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3
-//data8 0x84ac1fcec4203245, 0xfb73a828893df19e
-//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de
-//data8 0x8ca50621110c60e6, 0xf438a14c158d867c
-//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6
-//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da
-//data8 0x3ff1717418520340, 0x3ca5c2732533177c
-//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119
-//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5
-//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d
-//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a
-//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f
-//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7
-//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec
-//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746
-//data8 0xdfe323b8653af367, 0xc19107d99ab27e42
-//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02
-//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff
-//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43
-//data8 0x8ca77052f6c340f0, 0xacaf476f13806648
-//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff
-//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50
-//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c
-//data8 0xbe45074b05579024, 0x9478e362a07dd287
-//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12
-//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b
-//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69
-//data8 0x94503d69396d91c7, 0xedd2ce885ff04028
-//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b
-//data8 0xced1d96c5bb209e6, 0xc965278083808702
-//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c
-//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd
-//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e
-//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4
-//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb
-LOCAL_OBJECT_END(T_table)
-
-
-
-.align 16
+#include "libm_support.h"
-LOCAL_OBJECT_START(poly_coeffs)
- // C_3
-data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc
- // C_5
-data8 0x999999999999999a, 0x0000000000003ffb
- // C_7, C_9
-data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8
- // pi/2 (low, high)
-data8 0x3C91A62633145C07, 0x3FF921FB54442D18
- // C_11, C_13
-data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e
- // C_15, C_17
-data8 0x3f8c99999999999a, 0x3f87a87878787223
- // pi (low, high)
-data8 0x3CA1A62633145C07, 0x400921FB54442D18
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-R_DBL_S = r21
-R_EXP0 = r22
-R_EXP = r15
-R_SGNMASK = r23
-R_TMP = r24
-R_TMP2 = r25
-R_INDEX = r26
-R_TMP3 = r27
-R_TMP03 = r27
-R_TMP4 = r28
-R_TMP5 = r23
-R_TMP6 = r22
-R_TMP7 = r21
-R_T = r29
-R_BIAS = r20
-
-F_T = f6
-F_1S2 = f7
-F_1S2_S = f9
-F_INV_1T2 = f10
-F_SQRT_1T2 = f11
-F_S2T2 = f12
-F_X = f13
-F_D = f14
-F_2M64 = f15
-
-F_CS2 = f32
-F_CS3 = f33
-F_CS4 = f34
-F_CS5 = f35
-F_CS6 = f36
-F_CS7 = f37
-F_CS8 = f38
-F_CS9 = f39
-F_S23 = f40
-F_S45 = f41
-F_S67 = f42
-F_S89 = f43
-F_S25 = f44
-F_S69 = f45
-F_S29 = f46
-F_X2 = f47
-F_X4 = f48
-F_TSQRT = f49
-F_DTX = f50
-F_R = f51
-F_R2 = f52
-F_R3 = f53
-F_R4 = f54
-
-F_C3 = f55
-F_C5 = f56
-F_C7 = f57
-F_C9 = f58
-F_P79 = f59
-F_P35 = f60
-F_P39 = f61
-
-F_ATHI = f62
-F_ATLO = f63
-
-F_T1 = f64
-F_Y = f65
-F_Y2 = f66
-F_ANDMASK = f67
-F_ORMASK = f68
-F_S = f69
-F_05 = f70
-F_SQRT_1S2 = f71
-F_DS = f72
-F_Z = f73
-F_1T2 = f74
-F_DZ = f75
-F_ZE = f76
-F_YZ = f77
-F_Y1S2 = f78
-F_Y1S2X = f79
-F_1X = f80
-F_ST = f81
-F_1T2_ST = f82
-F_TSS = f83
-F_Y1S2X2 = f84
-F_DZ_TERM = f85
-F_DTS = f86
-F_DS2X = f87
-F_T2 = f88
-F_ZY1S2S = f89
-F_Y1S2_1X = f90
-F_TS = f91
-F_PI2_LO = f92
-F_PI2_HI = f93
-F_S19 = f94
-F_INV1T2_2 = f95
-F_CORR = f96
-F_DZ0 = f97
-
-F_C11 = f98
-F_C13 = f99
-F_C15 = f100
-F_C17 = f101
-F_P1113 = f102
-F_P1517 = f103
-F_P1117 = f104
-F_P317 = f105
-F_R8 = f106
-F_HI = f107
-F_1S2_HI = f108
-F_DS2 = f109
-F_Y2_2 = f110
-//F_S2 = f111
-//F_S_DS2 = f112
-F_S_1S2S = f113
-F_XL = f114
-F_2M128 = f115
-F_1AS = f116
-F_AS = f117
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(acosl)
-
-{.mfi
- // get exponent, mantissa (rounded to double precision) of s
- getf.d R_DBL_S = f8
- // 1-s^2
- fnma.s1 F_1S2 = f8, f8, f1
- // r2 = pointer to T_table
- addl r2 = @ltoff(T_table), gp
-}
-
-{.mfi
- // sign mask
- mov R_SGNMASK = 0x20000
- nop.f 0
- // bias-63-1
- mov R_TMP03 = 0xffff-64;;
-}
-
-
-{.mfi
- // get exponent of s
- getf.exp R_EXP = f8
- nop.f 0
- // R_TMP4 = 2^45
- shl R_TMP4 = R_SGNMASK, 45-17
-}
-
-{.mlx
- // load bias-4
- mov R_TMP = 0xffff-4
- // load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1)
- movl R_TMP2 = 0x7fcd413cccfe779a;;
-}
-
-
-{.mfi
- // load 2^{-64} in FP register
- setf.exp F_2M64 = R_TMP03
- nop.f 0
- // index = (0x7-exponent)|b1 b2.. b6
- extr.u R_INDEX = R_DBL_S, 46, 9
-}
-
-{.mfi
- // get t = sign|exponent|b1 b2.. b6 1 x.. x
- or R_T = R_DBL_S, R_TMP4
- nop.f 0
- // R_TMP4 = 2^45-1
- sub R_TMP4 = R_TMP4, r0, 1;;
-}
-
-
-{.mfi
- // get t = sign|exponent|b1 b2.. b6 1 0.. 0
- andcm R_T = R_T, R_TMP4
- nop.f 0
- // eliminate sign from R_DBL_S (shift left by 1)
- shl R_TMP3 = R_DBL_S, 1
-}
-
-{.mfi
- // R_BIAS = 3*2^6
- mov R_BIAS = 0xc0
- nop.f 0
- // eliminate sign from R_EXP
- andcm R_EXP0 = R_EXP, R_SGNMASK;;
-}
-
-
-
-{.mfi
- // load start address for T_table
- ld8 r2 = [r2]
- nop.f 0
- // p8 = 1 if |s|> = sqrt(2)/2
- cmp.geu p8, p0 = R_TMP3, R_TMP2
-}
-
-{.mlx
- // p7 = 1 if |s|<2^{-4} (exponent of s<bias-4)
- cmp.lt p7, p0 = R_EXP0, R_TMP
- // sqrt coefficient cs8 = -33*13/128
- movl R_TMP2 = 0xc0568000;;
-}
-
-
-
-{.mbb
- // load t in FP register
- setf.d F_T = R_T
- // if |s|<2^{-4}, take alternate path
- (p7) br.cond.spnt SMALL_S
- // if |s|> = sqrt(2)/2, take alternate path
- (p8) br.cond.sptk LARGE_S
-}
-
-{.mlx
- // index = (4-exponent)|b1 b2.. b6
- sub R_INDEX = R_INDEX, R_BIAS
- // sqrt coefficient cs9 = 55*13/128
- movl R_TMP = 0x40b2c000;;
-}
-
-
-{.mfi
- // sqrt coefficient cs8 = -33*13/128
- setf.s F_CS8 = R_TMP2
- nop.f 0
- // shift R_INDEX by 5
- shl R_INDEX = R_INDEX, 5
-}
-
-{.mfi
- // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
- mov R_TMP4 = 0xffff - 1
- nop.f 0
- // sqrt coefficient cs6 = -21/16
- mov R_TMP6 = 0xbfa8;;
-}
-
-
-{.mlx
- // table index
- add r2 = r2, R_INDEX
- // sqrt coefficient cs7 = 33/16
- movl R_TMP2 = 0x40040000;;
-}
-
-
-{.mmi
- // load cs9 = 55*13/128
- setf.s F_CS9 = R_TMP
- // sqrt coefficient cs5 = 7/8
- mov R_TMP3 = 0x3f60
- // sqrt coefficient cs6 = 21/16
- shl R_TMP6 = R_TMP6, 16;;
-}
-
-
-{.mmi
- // load significand of 1/(1-t^2)
- ldf8 F_INV_1T2 = [r2], 8
- // sqrt coefficient cs7 = 33/16
- setf.s F_CS7 = R_TMP2
- // sqrt coefficient cs4 = -5/8
- mov R_TMP5 = 0xbf20;;
-}
-
-
-{.mmi
- // load significand of sqrt(1-t^2)
- ldf8 F_SQRT_1T2 = [r2], 8
- // sqrt coefficient cs6 = 21/16
- setf.s F_CS6 = R_TMP6
- // sqrt coefficient cs5 = 7/8
- shl R_TMP3 = R_TMP3, 16;;
-}
-
-
-{.mmi
- // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
- setf.exp F_CS3 = R_TMP4
- // r3 = pointer to polynomial coefficients
- addl r3 = @ltoff(poly_coeffs), gp
- // sqrt coefficient cs4 = -5/8
- shl R_TMP5 = R_TMP5, 16;;
-}
-
-
-{.mfi
- // sqrt coefficient cs5 = 7/8
- setf.s F_CS5 = R_TMP3
- // d = s-t
- fms.s1 F_D = f8, f1, F_T
- // set p6 = 1 if s<0, p11 = 1 if s> = 0
- cmp.ge p6, p11 = R_EXP, R_DBL_S
-}
-
-{.mfi
- // r3 = load start address to polynomial coefficients
- ld8 r3 = [r3]
- // s+t
- fma.s1 F_S2T2 = f8, f1, F_T
- nop.i 0;;
-}
-
-
-{.mfi
- // sqrt coefficient cs4 = -5/8
- setf.s F_CS4 = R_TMP5
- // s^2-t^2
- fma.s1 F_S2T2 = F_S2T2, F_D, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load C3
- ldfe F_C3 = [r3], 16
- // 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2))
- fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
- nop.i 0;;
-}
-
-{.mfi
- // load C_5
- ldfe F_C5 = [r3], 16
- // set correct exponent for sqrt(1-t^2)
- fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load C_7, C_9
- ldfpd F_C7, F_C9 = [r3], 16
- // x = -(s^2-t^2)/(1-t^2)/2
- fnma.s1 F_X = F_INV_1T2, F_S2T2, f0
- nop.i 0;;
-}
-
-
-{.mmf
- // load asin(t)_high, asin(t)_low
- ldfpd F_ATHI, F_ATLO = [r2]
- // load pi/2
- ldfpd F_PI2_LO, F_PI2_HI = [r3]
- // t*sqrt(1-t^2)
- fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0;;
-}
-
-
-{.mfi
- nop.m 0
- // cs9*x+cs8
- fma.s1 F_S89 = F_CS9, F_X, F_CS8
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // cs7*x+cs6
- fma.s1 F_S67 = F_CS7, F_X, F_CS6
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // cs5*x+cs4
- fma.s1 F_S45 = F_CS5, F_X, F_CS4
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x*x
- fma.s1 F_X2 = F_X, F_X, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (s-t)-t*x
- fnma.s1 F_DTX = F_T, F_X, F_D
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // cs3*x+cs2 (cs2 = -0.5 = -cs3)
- fms.s1 F_S23 = F_CS3, F_X, F_CS3
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // if sign is negative, negate table values: asin(t)_low
- (p6) fnma.s1 F_ATLO = F_ATLO, f1, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // if sign is negative, negate table values: asin(t)_high
- (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // cs9*x^3+cs8*x^2+cs7*x+cs6
- fma.s1 F_S69 = F_S89, F_X2, F_S67
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x^4
- fma.s1 F_X4 = F_X2, F_X2, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // t*sqrt(1-t^2)*x^2
- fma.s1 F_TSQRT = F_TSQRT, F_X2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // cs5*x^3+cs4*x^2+cs3*x+cs2
- fma.s1 F_S25 = F_S45, F_X2, F_S23
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // ((s-t)-t*x)*sqrt(1-t^2)
- fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // (pi/2)_high - asin(t)_high
- fnma.s1 F_ATHI = F_ATHI, f1, F_PI2_HI
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // asin(t)_low - (pi/2)_low
- fnma.s1 F_ATLO = F_PI2_LO, f1, F_ATLO
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2
- fma.s1 F_S29 = F_S69, F_X4, F_S25
- nop.i 0;;
-}
-
-
-
-{.mfi
- nop.m 0
- // R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29
- fnma.s1 F_R = F_S29, F_TSQRT, F_DTX
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // R^2
- fma.s1 F_R2 = F_R, F_R, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // c7+c9*R^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R3 = F_R2, F_R, f0
- nop.i 0;;
-}
-
-
-
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_P39 = F_P39, F_R3, F_ATLO
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_P39 = F_P39, f1, F_R
- nop.i 0;;
-}
-
-
-{.mfb
- nop.m 0
- // result = (pi/2)-asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fnma.s0 f8 = F_P39, f1, F_ATHI
- // return
- br.ret.sptk b0;;
-}
-
-
-
-
-LARGE_S:
-
-{.mfi
- // bias-1
- mov R_TMP3 = 0xffff - 1
- // y ~ 1/sqrt(1-s^2)
- frsqrta.s1 F_Y, p7 = F_1S2
- // c9 = 55*13*17/128
- mov R_TMP4 = 0x10af7b
-}
-
-{.mlx
- // c8 = -33*13*15/128
- mov R_TMP5 = 0x184923
- movl R_TMP2 = 0xff00000000000000;;
-}
-
-{.mfi
- // set p6 = 1 if s<0, p11 = 1 if s>0
- cmp.ge p6, p11 = R_EXP, R_DBL_S
- // 1-s^2
- fnma.s1 F_1S2 = f8, f8, f1
- // set p9 = 1
- cmp.eq p9, p0 = r0, r0;;
-}
-
-
-{.mfi
- // load 0.5
- setf.exp F_05 = R_TMP3
- // (1-s^2) rounded to single precision
- fnma.s.s1 F_1S2_S = f8, f8, f1
- // c9 = 55*13*17/128
- shl R_TMP4 = R_TMP4, 10
-}
-
-{.mlx
- // AND mask for getting t ~ sqrt(1-s^2)
- setf.sig F_ANDMASK = R_TMP2
- // OR mask
- movl R_TMP2 = 0x0100000000000000;;
-}
-
-.pred.rel "mutex", p6, p11
-{.mfi
- nop.m 0
- // 1-|s|
- (p6) fma.s1 F_1AS = f8, f1, f1
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // 1-|s|
- (p11) fnma.s1 F_1AS = f8, f1, f1
- nop.i 0;;
-}
-
-
-{.mfi
- // c9 = 55*13*17/128
- setf.s F_CS9 = R_TMP4
- // |s|
- (p6) fnma.s1 F_AS = f8, f1, f0
- // c8 = -33*13*15/128
- shl R_TMP5 = R_TMP5, 11
-}
+// Assembly macros
+//==============================================================
-{.mfi
- // c7 = 33*13/16
- mov R_TMP4 = 0x41d68
- // |s|
- (p11) fma.s1 F_AS = f8, f1, f0
- nop.i 0;;
-}
+// f8 is input, but acos_V must be put in f8
+// when __libm_atan2_reg is called, f8 must get V
+// f9 gets U when __libm_atan2_reg is called
-{.mfi
- setf.sig F_ORMASK = R_TMP2
- // y^2
- fma.s1 F_Y2 = F_Y, F_Y, f0
- // c7 = 33*13/16
- shl R_TMP4 = R_TMP4, 12
-}
+// __libm_atan2_reg returns
+// f8 = Z_hi
+// f10 = Z_lo
+// f11 = s_lo
-{.mfi
- // c6 = -33*7/16
- mov R_TMP6 = 0xc1670
- // y' ~ sqrt(1-s^2)
- fma.s1 F_T1 = F_Y, F_1S2, f0
- // c5 = 63/8
- mov R_TMP7 = 0x40fc;;
-}
+acos_Z_hi = f8
+acos_Z_lo = f10
+acos_S_lo = f11
+// When we call __libm_atan2_reg, we must save
+// the following:
-{.mlx
- // load c8 = -33*13*15/128
- setf.s F_CS8 = R_TMP5
- // c4 = -35/8
- movl R_TMP5 = 0xc08c0000;;
-}
+acos_corr = f12
+acos_X = f13
+acos_pi_hi = f14
+acos_pi_lo = f15
-{.mfi
- // r3 = pointer to polynomial coefficients
- addl r3 = @ltoff(poly_coeffs), gp
- // 1-s-(1-s^2)_s
- fnma.s1 F_DS = F_1S2_S, f1, F_1AS
- // p9 = 0 if p7 = 1 (p9 = 1 for special cases only)
- (p7) cmp.ne p9, p0 = r0, r0
-}
+// The rest of the assembly macros
+
+acos_P79 = f32
+acos_P59 = f33
+acos_P39 = f34
+acos_P19 = f35
-{.mlx
- // load c7 = 33*13/16
- setf.s F_CS7 = R_TMP4
- // c3 = 5/2
- movl R_TMP4 = 0x40200000;;
-}
+acos_P810 = f36
+acos_P610 = f37
+acos_P410 = f38
+acos_P210 = f39
+acos_A1 = f41
+acos_A2 = f42
+acos_A3 = f43
+acos_A4 = f44
+acos_A5 = f45
+acos_A6 = f46
+acos_A7 = f47
+acos_A8 = f48
+acos_A9 = f49
+acos_A10 = f50
-{.mlx
- // load c4 = -35/8
- setf.s F_CS4 = R_TMP5
- // c2 = -3/2
- movl R_TMP5 = 0xbfc00000;;
-}
+acos_X2 = f51
+acos_X4 = f52
+acos_B = f53
+acos_Bb = f54
+acos_A = f55
+acos_Aa = f56
-{.mfi
- // load c3 = 5/2
- setf.s F_CS3 = R_TMP4
- // x = (1-s^2)_s*y^2-1
- fms.s1 F_X = F_1S2_S, F_Y2, f1
- // c6 = -33*7/16
- shl R_TMP6 = R_TMP6, 12
-}
+acos_1mA = f57
-{.mfi
- nop.m 0
- // y^2/2
- fma.s1 F_Y2_2 = F_Y2, F_05, f0
- nop.i 0;;
-}
+acos_W = f58
+acos_Ww = f59
+acos_y0 = f60
+acos_y1 = f61
+acos_y2 = f62
-{.mfi
- // load c6 = -33*7/16
- setf.s F_CS6 = R_TMP6
- // eliminate lower bits from y'
- fand F_T = F_T1, F_ANDMASK
- // c5 = 63/8
- shl R_TMP7 = R_TMP7, 16
-}
+acos_H = f63
+acos_Hh = f64
+acos_t1 = f65
+acos_t2 = f66
+acos_t3 = f67
+acos_t4 = f68
+acos_t5 = f69
-{.mfb
- // r3 = load start address to polynomial coefficients
- ld8 r3 = [r3]
- // 1-(1-s^2)_s-s^2
- fma.s1 F_DS = F_AS, F_1AS, F_DS
- // p9 = 1 if s is a special input (NaN, or |s|> = 1)
- (p9) br.cond.spnt acosl_SPECIAL_CASES;;
-}
+acos_Pseries = f70
+acos_NORM_f8 = f71
+acos_ABS_NORM_f8 = f72
-{.mmf
- // get exponent, significand of y' (in single prec.)
- getf.s R_TMP = F_T1
- // load c3 = -3/2
- setf.s F_CS2 = R_TMP5
- // y*(1-s^2)
- fma.s1 F_Y1S2 = F_Y, F_1S2, f0;;
-}
+acos_2 = f73
+acos_P1P2 = f74
+acos_HALF = f75
+acos_U = f76
+acos_1mB = f77
+acos_V = f78
+acos_S = f79
+acos_BmUU = f80
+acos_BmUUpb = f81
+acos_2U = f82
+acos_1d2U = f83
-{.mfi
- nop.m 0
- // if s<0, set s = -s
- (p6) fnma.s1 f8 = f8, f1, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load c5 = 63/8
- setf.s F_CS5 = R_TMP7
- // x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2
- fma.s1 F_X = F_DS, F_Y2, F_X
- // for t = 2^k*1.b1 b2.., get 7-k|b1.. b6
- extr.u R_INDEX = R_TMP, 17, 9;;
-}
+acos_Dd = f84
+acos_pi_by_2_hi = f85
+acos_pi_by_2_lo = f86
+acos_xmpi_by_2_lo = f87
+acos_xPmw = f88
-{.mmi
- // index = (4-exponent)|b1 b2.. b6
- sub R_INDEX = R_INDEX, R_BIAS
- nop.m 0
- // get exponent of y
- shr.u R_TMP2 = R_TMP, 23;;
-}
-
-{.mmi
- // load C3
- ldfe F_C3 = [r3], 16
- // set p8 = 1 if y'<2^{-4}
- cmp.gt p8, p0 = 0x7b, R_TMP2
- // shift R_INDEX by 5
- shl R_INDEX = R_INDEX, 5;;
-}
+acos_Uu = f89
+acos_AmVV = f90
+acos_AmVVpa = f91
+acos_2V = f92
+acos_1d2V = f93
+acos_Vv = f94
-{.mfb
- // get table index for sqrt(1-t^2)
- add r2 = r2, R_INDEX
- // get t = 2^k*1.b1 b2.. b7 1
- for F_T = F_T, F_ORMASK
- (p8) br.cond.spnt VERY_LARGE_INPUT;;
-}
-
-
-
-{.mmf
- // load C5
- ldfe F_C5 = [r3], 16
- // load 1/(1-t^2)
- ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16
- // x = ((1-s^2)*y^2-1)/2
- fma.s1 F_X = F_X, F_05, f0;;
-}
-
+acos_Vu = f95
+acos_Uv = f96
+
+acos_2_Z_hi = f97
+acos_s_lo_Z_lo = f98
+acos_result_lo = f99
+
+acos_Z_hi = f8
+acos_Z_lo = f10
+acos_s_lo = f11
+
+acos_GR_17_ones = r33
+acos_GR_16_ones = r34
+acos_GR_signexp_f8 = r35
+acos_GR_exp = r36
+acos_GR_true_exp = r37
+acos_GR_fffe = r38
+
+GR_SAVE_PFS = r43
+GR_SAVE_B0 = r39
+GR_SAVE_GP = r41
+
+// r40 is address of table of coefficients
+// r42
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
+GR_Parameter_TAG = r47
+
+
+// 2^-40:
+// A true exponent of -40 is
+// : -40 + register_bias
+// : -28 + ffff = ffd7
+// A true exponent of 1 is
+// : 1 + register_bias
+// : 1 + ffff = 10000
-{.mmf
- nop.m 0
- // C7, C9
- ldfpd F_C7, F_C9 = [r3], 16
- // set correct exponent for t
- fmerge.se F_T = F_T1, F_T;;
-}
+// Data tables
+//==============================================================
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+.align 16
-{.mfi
- // get address for loading pi
- add r3 = 48, r3
- // c9*x+c8
- fma.s1 F_S89 = F_X, F_CS9, F_CS8
- nop.i 0
-}
+acos_coefficients:
+ASM_TYPE_DIRECTIVE(acos_coefficients,@object)
+data8 0xc90fdaa22168c234, 0x00003FFF // pi_by_2_hi
+data8 0xc4c6628b80dc1cd1, 0x00003FBF // pi_by_2_lo
+data8 0xc90fdaa22168c234, 0x00004000 // pi_hi
+data8 0xc4c6628b80dc1cd1, 0x00003FC0 // pi_lo
+
+data8 0xBB08911F2013961E, 0x00003FF8 // A10
+data8 0x981F1095A23A87D3, 0x00003FF8 // A9
+data8 0xBDF09C6C4177BCC6, 0x00003FF8 // A8
+data8 0xE4C3A60B049ACCEA, 0x00003FF8 // A7
+data8 0x8E2789F4E8A8F1AD, 0x00003FF9 // A6
+data8 0xB745D09B2B0E850B, 0x00003FF9 // A5
+data8 0xF8E38E3BC4C50920, 0x00003FF9 // A4
+data8 0xB6DB6DB6D89FCD81, 0x00003FFA // A3
+data8 0x99999999999AF376, 0x00003FFB // A2
+data8 0xAAAAAAAAAAAAAA71, 0x00003FFC // A1
+ASM_SIZE_DIRECTIVE(acos_coefficients)
+
+
+.align 32
+.global acosl#
+ASM_TYPE_DIRECTIVE(acosl#,@function)
-{.mfi
- nop.m 0
- // x^2
- fma.s1 F_X2 = F_X, F_X, f0
- nop.i 0;;
-}
+.section .text
+.proc acosl#
+.align 32
-{.mfi
- // pi (low, high)
- ldfpd F_PI2_LO, F_PI2_HI = [r3]
- // y*(1-s^2)*x
- fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
- nop.i 0
-}
+acosl:
-{.mfi
- nop.m 0
- // c7*x+c6
- fma.s1 F_S67 = F_X, F_CS7, F_CS6
- nop.i 0;;
+// After normalizing f8, get its true exponent
+{ .mfi
+ alloc r32 = ar.pfs,1,11,4,0
+(p0) fnorm.s1 acos_NORM_f8 = f8
+(p0) mov acos_GR_17_ones = 0x1ffff
}
-
-{.mfi
- nop.m 0
- // 1-x
- fnma.s1 F_1X = F_X, f1, f1
- nop.i 0
+{ .mmi
+(p0) mov acos_GR_16_ones = 0xffff
+(p0) addl r40 = @ltoff(acos_coefficients), gp
+ nop.i 999
}
+;;
-{.mfi
- nop.m 0
- // c3*x+c2
- fma.s1 F_S23 = F_X, F_CS3, F_CS2
- nop.i 0;;
+// Set denormal flag on denormal input with fcmp
+{ .mfi
+ ld8 r40 = [r40]
+ fcmp.eq p6,p0 = f8,f0
+ nop.i 999
}
+;;
-{.mfi
- nop.m 0
- // 1-t^2
- fnma.s1 F_1T2 = F_T, F_T, f1
- nop.i 0
-}
+// Load the constants pi_by_2 and pi.
+// Each is stored as hi and lo values
+// Also load the coefficients for ACOS_POLY
-{.mfi
- // load asin(t)_high, asin(t)_low
- ldfpd F_ATHI, F_ATLO = [r2]
- // c5*x+c4
- fma.s1 F_S45 = F_X, F_CS5, F_CS4
- nop.i 0;;
+{ .mmi
+(p0) ldfe acos_pi_by_2_hi = [r40],16 ;;
+(p0) ldfe acos_pi_by_2_lo = [r40],16
+ nop.i 999 ;;
}
-
-
-{.mfi
- nop.m 0
- // t*s
- fma.s1 F_TS = F_T, f8, f0
- nop.i 0
+{ .mmi
+(p0) ldfe acos_pi_hi = [r40],16 ;;
+(p0) ldfe acos_pi_lo = [r40],16
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // 0.5/(1-t^2)
- fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
- nop.i 0;;
+{ .mmi
+(p0) ldfe acos_A10 = [r40],16 ;;
+(p0) ldfe acos_A9 = [r40],16
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // z~sqrt(1-t^2), rounded to 24 significant bits
- fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0
- nop.i 0
+// Take the absolute value of f8
+{ .mmf
+ nop.m 999
+(p0) getf.exp acos_GR_signexp_f8 = acos_NORM_f8
+(p0) fmerge.s acos_ABS_NORM_f8 = f0, acos_NORM_f8
}
-{.mfi
- nop.m 0
- // sqrt(1-t^2)
- fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
- nop.i 0;;
+{ .mii
+(p0) ldfe acos_A8 = [r40],16
+ nop.i 999 ;;
+(p0) and acos_GR_exp = acos_GR_signexp_f8, acos_GR_17_ones ;;
}
+// case 1: |x| < 2^-25 ==> p6 ACOS_TINY
+// case 2: 2^-25 <= |x| < 2^-2 ==> p8 ACOS_POLY
+// case 3: 2^-2 <= |x| < 1 ==> p9 ACOS_ATAN
+// case 4: 1 <= |x| ==> p11 ACOS_ERROR_RETURN
+// Admittedly |x| = 1 is not an error but this is where that case is
+// handled.
-{.mfi
- nop.m 0
- // y*(1-s^2)*x^2
- fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
- nop.i 0
+{ .mii
+(p0) ldfe acos_A7 = [r40],16
+(p0) sub acos_GR_true_exp = acos_GR_exp, acos_GR_16_ones ;;
+(p0) cmp.ge.unc p6, p7 = -26, acos_GR_true_exp ;;
}
-{.mfi
- nop.m 0
- // x^4
- fma.s1 F_X4 = F_X2, F_X2, f0
- nop.i 0;;
+{ .mii
+(p0) ldfe acos_A6 = [r40],16
+(p7) cmp.ge.unc p8, p9 = -3, acos_GR_true_exp ;;
+(p9) cmp.ge.unc p10, p11 = -1, acos_GR_true_exp
}
-
-{.mfi
- nop.m 0
- // s*t rounded to 24 significant bits
- fma.s.s1 F_TSS = F_T, f8, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c9*x^3+..+c6
- fma.s1 F_S69 = F_X2, F_S89, F_S67
- nop.i 0;;
+{ .mmi
+(p0) ldfe acos_A5 = [r40],16 ;;
+(p0) ldfe acos_A4 = [r40],16
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // ST = (t^2-1+s^2) rounded to 24 significant bits
- fms.s.s1 F_ST = f8, f8, F_1T2
- nop.i 0
+{ .mmi
+(p0) ldfe acos_A3 = [r40],16 ;;
+(p0) ldfe acos_A2 = [r40],16
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c5*x^3+..+c2
- fma.s1 F_S25 = F_X2, F_S45, F_S23
- nop.i 0;;
+// ACOS_ERROR_RETURN ==> p11 is true
+// case 4: |x| >= 1
+{ .mib
+(p0) ldfe acos_A1 = [r40],16
+ nop.i 999
+(p11) br.spnt L(ACOS_ERROR_RETURN) ;;
}
-
-{.mfi
- nop.m 0
- // 0.25/(1-t^2)
- fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0
- nop.i 0
+// ACOS_TINY ==> p6 is true
+// case 1: |x| < 2^-25
+{ .mfi
+ nop.m 999
+(p6) fms.s1 acos_xmpi_by_2_lo = acos_NORM_f8,f1, acos_pi_by_2_lo
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // t*s-sqrt(1-t^2)*(1-s^2)*y
- fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS
- nop.i 0;;
+{ .mfb
+ nop.m 999
+(p6) fms.s0 f8 = acos_pi_by_2_hi,f1, acos_xmpi_by_2_lo
+(p6) br.ret.spnt b0 ;;
}
-{.mfi
- nop.m 0
- // z*0.5/(1-t^2)
- fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0
- nop.i 0
-}
-{.mfi
- nop.m 0
- // z^2+t^2-1
- fms.s1 F_DZ0 = F_Z, F_Z, F_1T2
- nop.i 0;;
+// ACOS_POLY ==> p8 is true
+// case 2: 2^-25 <= |x| < 2^-2
+{ .mfi
+ nop.m 999
+(p8) fms.s1 acos_W = acos_pi_by_2_hi, f1, acos_NORM_f8
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (1-s^2-(1-s^2)_s)*x
- fma.s1 F_DS2X = F_X, F_DS, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_X2 = f8,f8, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // t*s-(t*s)_s
- fms.s1 F_DTS = F_T, f8, F_TSS
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fms.s1 acos_Ww = acos_pi_by_2_hi, f1, acos_W
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c9*x^7+..+c2
- fma.s1 F_S29 = F_X4, F_S69, F_S25
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_X4 = acos_X2,acos_X2, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // y*z
- fma.s1 F_YZ = F_Z, F_Y, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fms.s1 acos_Ww = acos_Ww, f1, acos_NORM_f8
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // t^2
- fma.s1 F_T2 = F_T, F_T, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P810 = acos_X4, acos_A10, acos_A8
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // 1-t^2+ST
- fma.s1 F_1T2_ST = F_ST, f1, F_1T2
- nop.i 0;;
+// acos_P79 = X4*A9 + A7
+// acos_P810 = X4*A10 + A8
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P79 = acos_X4, acos_A9, acos_A7
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // y*(1-s^2)(1-x)
- fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_Ww = acos_Ww, f1, acos_pi_by_2_lo
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // dz ~ sqrt(1-t^2)-z
- fma.s1 F_DZ = F_DZ0, F_ZE, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P610 = acos_X4, acos_P810, acos_A6
+ nop.i 999
}
-{.mfi
- nop.m 0
- // -1+correction for sqrt(1-t^2)-z
- fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0
- nop.i 0;;
+// acos_P59 = X4*(X4*A9 + A7) + A5
+// acos_P610 = X4*(X4*A10 + A8) + A6
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P59 = acos_X4, acos_P79, acos_A5
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (PS29*x^2+x)*y*(1-s^2)
- fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P410 = acos_X4, acos_P610, acos_A4
+ nop.i 999
}
-{.mfi
- nop.m 0
- // z*y*(1-s^2)_s
- fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0
- nop.i 0
+// acos_P39 = X4*(X4*(X4*A9 + A7) + A5) + A3
+// acos_P410 = X4*(X4*(X4*A10 + A8) + A6) + A4
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P39 = acos_X4, acos_P59, acos_A3
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // s^2-(1-t^2+ST)
- fms.s1 F_1T2_ST = f8, f8, F_1T2_ST
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P210 = acos_X4, acos_P410, acos_A2
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x
- fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS
- nop.i 0
+// acos_P19 = X4*(X4*(X4*(X4*A9 + A7) + A5) + A3) + A1 = P1
+// acos_P210 = X4*(X4*(X4*(X4*A10 + A8) + A6) + A4) + A2 = P2
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P19 = acos_X4, acos_P39, acos_A1
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // dz*y*(1-s^2)*(1-x)
- fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0
- nop.i 0;;
+// acos_P1P2 = Xsq*P2 + P1
+// acos_P1P2 = Xsq*(Xsq*P2 + P1)
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P1P2 = acos_X2, acos_P210, acos_P19
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19
- // (used for polynomial evaluation)
- fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 acos_P1P2 = acos_X2, acos_P1P2, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (PS29*x^2)*y*(1-s^2)
- fma.s1 F_S29 = F_Y1S2X2, F_S29, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fms.s1 acos_xPmw = acos_NORM_f8, acos_P1P2, acos_Ww
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // apply correction to dz*y*(1-s^2)*(1-x)
- fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM
- nop.i 0;;
+{ .mfb
+ nop.m 999
+(p8) fms.s0 f8 = acos_W, f1, acos_xPmw
+(p8) br.ret.spnt b0 ;;
}
-{.mfi
- nop.m 0
- // R^2
- fma.s1 F_R2 = F_R, F_R, f0
- nop.i 0;;
-}
+// ACOS_ATAN
+// case 3: 2^-2 <= |x| < 1
+// case 3: 2^-2 <= |x| < 1 ==> p9 ACOS_ATAN
+// Step 1.1: Get A,B and a,b
+// A + a = 1- |X|
+// B + b = 1+ |X|
+// Note also that we will use acos_corr (f13)
+// and acos_W
-{.mfi
- nop.m 0
- // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x)
- fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS
- nop.i 0;;
-}
+// Step 2
+// Call __libm_atan2_reg
-{.mfi
- nop.m 0
- // c7+c9*R^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0;;
+{ .mfi
+(p0) mov acos_GR_fffe = 0xfffe
+(p0) fma.s1 acos_B = f1,f1, acos_ABS_NORM_f8
+(p0) mov GR_SAVE_B0 = b0 ;;
}
-{.mfi
- nop.m 0
- // asin(t)_low-(pi)_low (if s<0)
- (p6) fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO
- nop.i 0
+{ .mmf
+(p0) mov GR_SAVE_GP = gp
+ nop.m 999
+(p0) fms.s1 acos_A = f1,f1, acos_ABS_NORM_f8
}
-{.mfi
- nop.m 0
- // R^4
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0;;
+{ .mfi
+(p0) setf.exp acos_HALF = acos_GR_fffe
+ nop.f 999
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R3 = F_R2, F_R, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fms.s1 acos_1mB = f1,f1, acos_B
+ nop.i 999 ;;
}
+// We want atan2(V,U)
+// so put V in f8 and U in f9
+// but save X in acos_X
-{.mfi
- nop.m 0
- // (t*s)_s-t^2*y*z
- fnma.s1 F_TSS = F_T2, F_YZ, F_TSS
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)
- fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fmerge.se acos_X = f8, f8
+ nop.i 999 ;;
}
+// Step 1.2:
+/////////////////////////
+// Get U = sqrt(B)
+/////////////////////////
-{.mfi
- nop.m 0
- // (pi)_hi-asin(t)_hi (if s<0)
- (p6) fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) frsqrta.s1 acos_y0,p8 = acos_B
+ nop.i 999
}
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fms.s1 acos_1mA = f1,f1, acos_A
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29
- fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_Bb = acos_1mB,f1, acos_ABS_NORM_f8
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (t*s)_s-t^2*y*z+z*y*ST
- fma.s1 F_TSS = F_YZ, F_ST, F_TSS
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_Hh = acos_HALF, acos_B, f0
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fms.s1 F_P39 = F_P39, F_R3, F_ATLO
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_t1 = acos_y0, acos_y0, f0
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 +
- // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fms.s1 acos_Aa = acos_1mA,f1, acos_ABS_NORM_f8
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
- // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_t2 = acos_t1, acos_Hh, acos_HALF
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
- // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) +
- // + (t*s)_s-t^2*y*z+z*y*ST
- fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_y1 = acos_t2, acos_y0, acos_y0
+ nop.i 999
}
-.pred.rel "mutex", p6, p11
-{.mfi
- nop.m 0
- // result: add high part of table value
- // s>0 in this case
- (p11) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI
- nop.i 0
+// Step 1.2:
+/////////////////////////
+// Get V = sqrt(A)
+/////////////////////////
+{ .mfi
+ nop.m 999
+(p0) frsqrta.s1 acos_y0,p8 = acos_A
+ nop.i 999 ;;
}
-{.mfb
- nop.m 0
- // result: add high part of pi-table value
- // if s<0
- (p6) fma.s0 f8 = F_DZ_TERM, f1, F_ATHI
- br.ret.sptk b0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_t3 = acos_y1, acos_Hh, f0
+ nop.i 999 ;;
}
-
-
-
-
-
-SMALL_S:
-
- // use 15-term polynomial approximation
-
-{.mmi
- // r3 = pointer to polynomial coefficients
- addl r3 = @ltoff(poly_coeffs), gp;;
- // load start address for coefficients
- ld8 r3 = [r3]
- mov R_TMP = 0x3fbf;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_t1 = acos_y0, acos_y0, f0
+ nop.i 999 ;;
}
-
-{.mmi
- add r2 = 64, r3
- ldfe F_C3 = [r3], 16
- // p7 = 1 if |s|<2^{-64} (exponent of s<bias-64)
- cmp.lt p7, p0 = R_EXP0, R_TMP;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_t4 = acos_t3, acos_y1, acos_HALF
+ nop.i 999 ;;
}
-{.mmf
- ldfe F_C5 = [r3], 16
- ldfpd F_C11, F_C13 = [r2], 16
- nop.f 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_y2 = acos_t4, acos_y1, acos_y1
+ nop.i 999 ;;
}
-{.mmf
- ldfpd F_C7, F_C9 = [r3], 16
- ldfpd F_C15, F_C17 = [r2]
- nop.f 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_S = acos_B, acos_y2, f0
+ nop.i 999
}
-
-
-{.mfb
- // load pi/2
- ldfpd F_PI2_LO, F_PI2_HI = [r3]
- // s^2
- fma.s1 F_R2 = f8, f8, f0
- // |s|<2^{-64}
- (p7) br.cond.spnt RETURN_PI2;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_H = acos_y2, acos_HALF, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // s^3
- fma.s1 F_R3 = f8, F_R2, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_t5 = acos_Hh, acos_y2, f0
+ nop.i 999
}
-{.mfi
- nop.m 0
- // s^4
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_Hh = acos_HALF, acos_A, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+c5*s^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_Dd = acos_S, acos_S, acos_B
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c11+c13*s^2
- fma.s1 F_P1113 = F_C13, F_R2, F_C11
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_t2 = acos_t1, acos_Hh, acos_HALF
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c7+c9*s^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_U = acos_Dd, acos_H, acos_S
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c15+c17*s^2
- fma.s1 F_P1517 = F_C17, F_R2, F_C15
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_y1 = acos_t2, acos_y0, acos_y0
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // (pi/2)_high-s_high
- fnma.s1 F_T = f8, f1, F_PI2_HI
- nop.i 0
-}
-{.mfi
- nop.m 0
- // s^8
- fma.s1 F_R8 = F_R4, F_R4, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_2U = acos_U, f1, acos_U
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+c5*s^2+c7*s^4+c9*s^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_t3 = acos_y1, acos_Hh, f0
+ nop.i 999
}
-{.mfi
- nop.m 0
- // c11+c13*s^2+c15*s^4+c17*s^6
- fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // -s_high
- fms.s1 F_S = F_T, f1, F_PI2_HI
- nop.i 0;;
-}
+// Step 1.3:
+// sqrt(A + a) = V + v
+// sqrt(B + b) = U + u
-{.mfi
- nop.m 0
- // c3+..+c17*s^14
- fma.s1 F_P317 = F_R8, F_P1117, F_P39
- nop.i 0;;
-}
+/////////////////////////
+// Get u
+/////////////////////////
-{.mfi
- nop.m 0
- // s_low
- fma.s1 F_DS = f8, f1, F_S
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // (pi/2)_low-s^3*(c3+..+c17*s^14)
- fnma.s0 F_P317 = F_P317, F_R3, F_PI2_LO
- nop.i 0;;
-}
+// acos_BmUU = B - UU
+// acos_BmUUpb = (B - UU) + b
-{.mfi
- nop.m 0
- // (pi/2)_low-s_low-s^3*(c3+..+c17*s^14)
- fms.s1 F_P317 = F_P317, f1, F_DS
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_BmUU = acos_U, acos_U, acos_B
+ nop.i 999 ;;
}
-{.mfb
- nop.m 0
- // result: pi/2-s-c3*s^3-..-c17*s^17
- fma.s0 f8 = F_T, f1, F_P317
- br.ret.sptk b0;;
+{ .mfi
+ nop.m 999
+(p0) fmerge.se f9 = acos_U, acos_U
+ nop.i 999 ;;
}
-
-
-
-
-RETURN_PI2:
-
-{.mfi
- nop.m 0
- // (pi/2)_low-s
- fms.s0 F_PI2_LO = F_PI2_LO, f1, f8
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_t4 = acos_t3, acos_y1, acos_HALF
+ nop.i 999 ;;
}
-{.mfb
- nop.m 0
- // (pi/2)-s
- fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
- br.ret.sptk b0;;
+// acos_1d2U = frcpa(2U)
+{ .mfi
+ nop.m 999
+(p0) frcpa.s1 acos_1d2U,p9 = f1, acos_2U
+ nop.i 999
}
-
-
-
-
-VERY_LARGE_INPUT:
-
-
-{.mmf
- // pointer to pi_low, pi_high
- add r2 = 80, r3
- // load C5
- ldfe F_C5 = [r3], 16
- // x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2
- fma.s1 F_X = F_X, F_05, f0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_BmUUpb = acos_BmUU, f1, acos_Bb
+ nop.i 999 ;;
}
-.pred.rel "mutex", p6, p11
-{.mmf
- // load pi (low, high), if s<0
- (p6) ldfpd F_PI2_LO, F_PI2_HI = [r2]
- // C7, C9
- ldfpd F_C7, F_C9 = [r3], 16
- // if s>0, set F_PI2_LO=0
- (p11) fma.s1 F_PI2_HI = f0, f0, f0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_y2 = acos_t4, acos_y1, acos_y1
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- (p11) fma.s1 F_PI2_LO = f0, f0, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+// acos_Uu = ((B - UU) + b) * frcpa(2U)
+(p0) fma.s1 acos_Uu = acos_BmUUpb, acos_1d2U, f0
+ nop.i 999 ;;
}
-{.mfi
- // adjust address for C_11
- add r3 = 16, r3
- // c9*x+c8
- fma.s1 F_S89 = F_X, F_CS9, F_CS8
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_S = acos_A, acos_y2, f0
+ nop.i 999
}
-{.mfi
- nop.m 0
- // x^2
- fma.s1 F_X2 = F_X, F_X, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_H = acos_y2, acos_HALF, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // y*(1-s^2)*x
- fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_t5 = acos_Hh, acos_y2, f0
+ nop.i 999 ;;
}
-{.mfi
- // C11, C13
- ldfpd F_C11, F_C13 = [r3], 16
- // c7*x+c6
- fma.s1 F_S67 = F_X, F_CS7, F_CS6
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_Dd = acos_S, acos_S, acos_A
+ nop.i 999 ;;
}
-
-{.mfi
- // C15, C17
- ldfpd F_C15, F_C17 = [r3], 16
- // c3*x+c2
- fma.s1 F_S23 = F_X, F_CS3, F_CS2
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_V = acos_Dd, acos_H, acos_S
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c5*x+c4
- fma.s1 F_S45 = F_X, F_CS5, F_CS4
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_2V = acos_V, f1, acos_V
+ nop.i 999
}
+// Step 3
+/////////////////////////
+// Calculate the correction, acos_corr
+/////////////////////////
+// acos_corr = U*v - (V*u)
-
-
-{.mfi
- nop.m 0
- // y*(1-s^2)*x^2
- fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x^4
- fma.s1 F_X4 = F_X2, F_X2, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_Vu = acos_V,acos_Uu, f0
+ nop.i 999 ;;
}
+/////////////////////////
+// Get v
+/////////////////////////
+// acos_AmVV = A - VV
+// acos_AmVVpa = (A - VV) + a
-{.mfi
- nop.m 0
- // c9*x^3+..+c6
- fma.s1 F_S69 = F_X2, F_S89, F_S67
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 acos_AmVV = acos_V, acos_V, acos_A
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c5*x^3+..+c2
- fma.s1 F_S25 = F_X2, F_S45, F_S23
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fmerge.se f8 = acos_V, acos_V
+ nop.i 999 ;;
}
-
-
-{.mfi
- nop.m 0
- // (pi)_high-y*(1-s^2)_s
- fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_AmVVpa = acos_AmVV, f1, acos_Aa
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c9*x^7+..+c2
- fma.s1 F_S29 = F_X4, F_S69, F_S25
- nop.i 0;;
+// acos_1d2V = frcpa(2V)
+{ .mfi
+ nop.m 999
+(p0) frcpa.s1 acos_1d2V,p9 = f1, acos_2V
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // -(y*(1-s^2)_s)_high
- fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI
- nop.i 0;;
+// acos_Vv = ((A - VV) + a) * frcpa(2V)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_Vv = acos_AmVVpa, acos_1d2V, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (PS29*x^2+x)*y*(1-s^2)
- fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_Uv = acos_U,acos_Vv, f0
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // y*(1-s^2)_s-(y*(1-s^2))_high
- fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI
- nop.i 0;;
-}
+.endp acosl#
+ASM_SIZE_DIRECTIVE(acosl#)
-
-{.mfi
- nop.m 0
- // R ~ sqrt(1-s^2)
- // (used for polynomial evaluation)
- fnma.s1 F_R = F_S19, f1, F_Y1S2
- nop.i 0;;
+.proc __libm_callout
+__libm_callout:
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
}
+;;
-
-{.mfi
- nop.m 0
- // y*(1-s^2)-(y*(1-s^2))_high
- fma.s1 F_DS2 = F_Y, F_DS, F_DS2
- nop.i 0
+{ .mfi
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
}
-{.mfi
- nop.m 0
- // (pi)_low+(PS29*x^2)*y*(1-s^2)
- fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO
- nop.i 0;;
+.body
+{ .mfb
+ nop.m 999
+(p0) fms.s1 acos_corr = acos_Uv,f1, acos_Vu
+(p0) br.call.sptk.many b0=__libm_atan2_reg# ;;
}
-{.mfi
- nop.m 0
- // R^2
- fma.s1 F_R2 = F_R, F_R, f0
- nop.i 0;;
-}
-
+// p6 ==> X is negative
+// p7 ==> x is positive
+// We know that |X| >= 1/4
-{.mfi
- nop.m 0
- // if s<0
- // (pi)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)
- fms.s1 F_S29 = F_S29, f1, F_DS2
- nop.i 0;;
+{ .mfi
+(p0) mov gp = GR_SAVE_GP
+(p0) fcmp.lt.unc p6,p7 = acos_X , f0
+(p0) mov b0 = GR_SAVE_B0 ;;
}
+// acos_2_Z_hi = 2 * acos_Z_hi
+// acos_s_lo_Z_lo = s_lo * Z_lo
-{.mfi
- nop.m 0
- // c7+c9*R^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_2_Z_hi = acos_Z_hi, f1, acos_Z_hi
+(p0) mov ar.pfs = GR_SAVE_PFS
}
-
-
-{.mfi
- nop.m 0
- // R^4
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_s_lo_Z_lo = acos_s_lo, acos_Z_lo, f0
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R3 = F_R2, F_R, f0
- nop.i 0;;
+// 2 is a constant needed later
+{ .mfi
+ nop.m 999
+(p0) fma.s1 acos_2 = f1,f1,f1
+ nop.i 999 ;;
}
+// X >= 1/4
+// acos_result_lo = 2(s_lo * Z_lo) - corr
+// f8 = (2*Z_hi) + (2(s_lo * Z_lo) - corr)
-{.mfi
- nop.m 0
- // c11+c13*R^2
- fma.s1 F_P1113 = F_C13, F_R2, F_C11
- nop.i 0
+{ .mfi
+ nop.m 999
+(p7) fma.s1 acos_result_lo = acos_s_lo_Z_lo, acos_2, acos_corr
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c15+c17*R^2
- fma.s1 F_P1517 = F_C17, F_R2, F_C15
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p7) fma.s0 f8 = acos_2_Z_hi, f1, acos_result_lo
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // (pi)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x
- fma.s1 F_S29 = F_Y1S2, F_X, F_S29
- nop.i 0;;
+// acos_result_lo = (pi_lo - corr)
+// acos_result_lo = (pi_lo - corr) + acos_Ww
+{ .mfi
+ nop.m 999
+(p6) fms.s1 acos_result_lo = acos_pi_lo, f1, acos_corr
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c11+c13*R^2+c15*R^4+c17*R^6
- fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
- nop.i 0
+// X <= -1/4
+// acos_W = pi_hi - 2 * Z_hi
+{ .mfi
+ nop.m 999
+(p6) fnma.s1 acos_W = acos_2, acos_Z_hi, acos_pi_hi
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0;;
+// acos_Ww = pi_hi - W
+// acos_Ww = (pi_hi - W) + (2 * Z_hi)
+{ .mfi
+ nop.m 999
+(p6) fms.s1 acos_Ww = acos_pi_hi, f1, acos_W
+ nop.i 999 ;;
}
-
-
-{.mfi
- nop.m 0
- // R^8
- fma.s1 F_R8 = F_R4, F_R4, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p6) fms.s1 acos_Ww = acos_Ww, f1, acos_2_Z_hi
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14
- fma.s1 F_P317 = F_P1117, F_R8, F_P39
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p6) fma.s1 acos_result_lo = acos_result_lo, f1, acos_Ww
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (pi)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
- // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
- fnma.s1 F_S29 = F_P317, F_R3, F_S29
- nop.i 0;;
+// acos_Z_lo = ((pi_lo - corr) + acos_Ww) - 2 * (s_lo * Z_lo)
+{ .mfi
+ nop.m 999
+(p6) fnma.s1 acos_Z_lo = acos_s_lo_Z_lo, acos_2, acos_result_lo
+ nop.i 999 ;;
}
-.pred.rel "mutex", p6, p11
-{.mfi
- nop.m 0
- // Result (if s<0):
- // (pi)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
- // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
- // +(pi)_high-(y*(1-s^2))_high
- (p6) fma.s0 f8 = F_S29, f1, F_HI
- nop.i 0
+{ .mfb
+ nop.m 999
+(p6) fma.s0 f8 = acos_W, f1, acos_Z_lo
+(p0) br.ret.sptk b0 ;;
}
+.endp __libm_callout
+ASM_SIZE_DIRECTIVE(__libm_callout)
-{.mfb
- nop.m 0
- // Result (if s>0):
- // (PS29*x^2)*y*(1-s^2)-
- // -y*(1-s^2)*x + P3, 17
- // +(y*(1-s^2))
- (p11) fms.s0 f8 = F_Y, F_1S2_S, F_S29
- br.ret.sptk b0;;
+.proc SPECIAL
+SPECIAL:
+L(ACOS_NAN):
+{ .mfb
+ nop.m 999
+(p0) fma.s0 f8 = f8,f1,f0
+(p0) br.ret.sptk b0 ;;
}
+L(ACOS_ERROR_RETURN):
+// Save ar.pfs, b0, and gp; restore on exit
+// qnan snan inf norm unorm 0 -+
+// 1 1 0 0 0 0 11 = 0xc3
+// Coming in as X = +- 1
+// What should we return?
+// If X is 1, return (sign of X)pi/2
-acosl_SPECIAL_CASES:
-
-{.mfi
- alloc r32 = ar.pfs, 1, 4, 4, 0
- // check if the input is a NaN, or unsupported format
- // (i.e. not infinity or normal/denormal)
- fclass.nm p7, p8 = f8, 0x3f
- // pointer to pi/2
- add r3 = 96, r3;;
-}
-
-
-{.mfi
- // load pi/2
- ldfpd F_PI2_HI, F_PI2_LO = [r3]
- // get |s|
- fmerge.s F_S = f0, f8
- nop.i 0
-}
-
-{.mfb
- nop.m 0
- // if NaN, quietize it, and return
- (p7) fma.s0 f8 = f8, f1, f0
- (p7) br.ret.spnt b0;;
-}
-
-
-{.mfi
- nop.m 0
- // |s| = 1 ?
- fcmp.eq.s0 p9, p10 = F_S, f1
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fcmp.eq.unc p6,p7 = acos_ABS_NORM_f8,f1
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // load FR_X
- fma.s1 FR_X = f8, f1, f0
- // load error tag
- mov GR_Parameter_TAG = 57;;
+{ .mfi
+ nop.m 999
+(p6) fcmp.lt.unc p8,p9 = f8,f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // if s = 1, result is 0
- (p9) fma.s0 f8 = f0, f0, f0
- // set p6=0 for |s|>1
- (p10) cmp.ne p6, p0 = r0, r0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s0 f8 = acos_pi_hi, f1, acos_pi_lo
+ nop.i 999
}
-
-{.mfb
- nop.m 0
- // if s = -1, result is pi
- (p6) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
- // return if |s| = 1
- (p9) br.ret.sptk b0;;
+{ .mfb
+ nop.m 999
+(p9) fmerge.s f8 = f8,f0
+(p6) br.ret.spnt b0 ;;
}
-
-{.mfi
- nop.m 0
- // get Infinity
- frcpa.s1 FR_RESULT, p0 = f1, f0
- nop.i 0;;
+// If X is a NAN, leave
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p12,p0 = f8, 0xc3
+ nop.i 999 ;;
}
-
-{.mfb
- nop.m 0
- // return QNaN indefinite (0*Infinity)
- fma.s0 FR_RESULT = f0, FR_RESULT, f0
- nop.b 0;;
+{ .mfb
+ nop.m 999
+(p12) fma.s0 f8 = f8,f1,f0
+(p12) br.ret.spnt b0 ;;
}
+{ .mfi
+(p0) mov GR_Parameter_TAG = 57
+(p0) frcpa f10, p6 = f0, f0
+nop.i 999
+};;
-GLOBAL_LIBM_END(acosl)
-
+.endp SPECIAL
+ASM_SIZE_DIRECTIVE(SPECIAL)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
// (1)
{ .mfi
@@ -2511,12 +1068,12 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
.body
// (3)
{ .mib
- stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ stfe [GR_Parameter_X] = f8 // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ stfe [GR_Parameter_Y] = f10 // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
@@ -2540,13 +1097,11 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
-
-
-
+.type __libm_atan2_reg#,@function
+.global __libm_atan2_reg#
diff --git a/sysdeps/ia64/fpu/e_asin.S b/sysdeps/ia64/fpu/e_asin.S
index f995c597f4..bb4c242fb2 100644
--- a/sysdeps/ia64/fpu/e_asin.S
+++ b/sysdeps/ia64/fpu/e_asin.S
@@ -1,10 +1,10 @@
.file "asin.s"
-
-// Copyright (c) 2000 - 2003 Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,777 +35,818 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
//==============================================================
-// 02/02/00 Initial version
-// 08/17/00 New and much faster algorithm.
-// 08/31/00 Avoided bank conflicts on loads, shortened |x|=1 path,
+// 2/02/00 Initial version
+// 8/17/00 New and much faster algorithm.
+// 8/31/00 Avoided bank conflicts on loads, shortened |x|=1 path,
// fixed mfb split issue stalls.
// 12/19/00 Fixed small arg cases to force inexact, or inexact and underflow.
-// 08/02/02 New and much faster algorithm II
-// 02/06/03 Reordered header: .section, .global, .proc, .align
// Description
//=========================================
-// The asin function computes the principal value of the arc sine of x.
+// The asin function computes the principle value of the arc sine of x.
// asin(0) returns 0, asin(1) returns pi/2, asin(-1) returns -pi/2.
// A doman error occurs for arguments not in the range [-1,+1].
-//
-// The asin function returns the arc sine in the range [-pi/2, +pi/2] radians.
-//
-// There are 8 paths:
-// 1. x = +/-0.0
-// Return asin(x) = +/-0.0
-//
-// 2. 0.0 < |x| < 0.625
-// Return asin(x) = x + x^3 *PolA(x^2)
-// where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32
-//
-// 3. 0.625 <=|x| < 1.0
-// Return asin(x) = sign(x) * ( Pi/2 - sqrt(R) * PolB(R))
-// Where R = 1 - |x|,
-// PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12
-//
-// sqrt(R) is approximated using the following sequence:
-// y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta,
-// |eps| < 2^(-8)
-// Then 3 iterations are used to refine the result:
-// H0 = 0.5*y0
-// S0 = R*y0
-//
-// d0 = 0.5 - H0*S0
-// H1 = H0 + d0*H0
-// S1 = S0 + d0*S0
-//
-// d1 = 0.5 - H1*S1
-// H2 = H1 + d0*H1
-// S2 = S1 + d0*S1
-//
-// d2 = 0.5 - H2*S2
-// S3 = S3 + d2*S3
-//
-// S3 approximates sqrt(R) with enough accuracy for this algorithm
-//
-// So, the result should be reconstracted as follows:
-// asin(x) = sign(x) * (Pi/2 - S3*PolB(R))
-//
-// But for optimization perposes the reconstruction step is slightly
-// changed:
-// asin(x) = sign(x)*(Pi/2 - PolB(R)*S2) + sign(x)*d2*S2*PolB(R)
-//
-// 4. |x| = 1.0
-// Return asin(x) = sign(x)*Pi/2
-//
-// 5. 1.0 < |x| <= +INF
-// A doman error occurs for arguments not in the range [-1,+1]
-//
-// 6. x = [S,Q]NaN
-// Return asin(x) = QNaN
-//
-// 7. x is denormal
-// Return asin(x) = x + x^3,
-//
-// 8. x is unnormal
-// Normalize input in f8 and return to the very beginning of the function
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6, f7, f9 -> f15, f32 -> f63
-// General registers used:
-// r3, r21 -> r31, r32 -> r38
+// The asin function returns the arc sine in the range [-pi/2, +pi/2] radians.
-// Predicate registers used:
-// p0, p6 -> p14
+#include "libm_support.h"
//
// Assembly macros
//=========================================
-// integer registers used
-// scratch
-rTblAddr = r3
-
-rPiBy2Ptr = r21
-rTmpPtr3 = r22
-rDenoBound = r23
-rOne = r24
-rAbsXBits = r25
-rHalf = r26
-r0625 = r27
-rSign = r28
-rXBits = r29
-rTmpPtr2 = r30
-rTmpPtr1 = r31
-
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
-
-// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-// scratch
-fXSqr = f6
-fXCube = f7
-fXQuadr = f9
-f1pX = f10
-f1mX = f11
-f1pXRcp = f12
-f1mXRcp = f13
-fH = f14
-fS = f15
-// stacked
-fA3 = f32
-fB1 = f32
-fA5 = f33
-fB2 = f33
-fA7 = f34
-fPiBy2 = f34
-fA9 = f35
-fA11 = f36
-fB10 = f35
-fB11 = f36
-fA13 = f37
-fA15 = f38
-fB4 = f37
-fB5 = f38
-fA17 = f39
-fA19 = f40
-fB6 = f39
-fB7 = f40
-fA21 = f41
-fA23 = f42
-fB3 = f41
-fB8 = f42
-fA25 = f43
-fA27 = f44
-fB9 = f43
-fB12 = f44
-fA29 = f45
-fA31 = f46
-fA33 = f47
-fA35 = f48
-fBaseP = f49
-fB0 = f50
-fSignedS = f51
-fD = f52
-fHalf = f53
-fR = f54
-fCloseTo1Pol = f55
-fSignX = f56
-fDenoBound = f57
-fNormX = f58
-fX8 = f59
-fRSqr = f60
-fRQuadr = f61
-fR8 = f62
-fX16 = f63
+
+
+// predicate registers
+//asin_pred_LEsqrt2by2 = p7
+//asin_pred_GTsqrt2by2 = p8
+
+// integer registers
+ASIN_Addr1 = r33
+ASIN_Addr2 = r34
+ASIN_FFFE = r35
+ASIN_lnorm_sig = r36
+ASIN_snorm_exp = r37
+
+GR_SAVE_B0 = r36
+GR_SAVE_PFS = r37
+GR_SAVE_GP = r38
+
+GR_Parameter_X = r39
+GR_Parameter_Y = r40
+GR_Parameter_RESULT = r41
+GR_Parameter_Tag = r42
+
+// floating point registers
+asin_coeff_P1 = f32
+asin_coeff_P2 = f33
+asin_coeff_P3 = f34
+asin_coeff_P4 = f35
+
+asin_coeff_P5 = f36
+asin_coeff_P6 = f37
+asin_coeff_P7 = f38
+asin_coeff_P8 = f39
+asin_coeff_P9 = f40
+
+asin_coeff_P10 = f41
+asin_coeff_P11 = f42
+asin_coeff_P12 = f43
+asin_coeff_P13 = f44
+asin_coeff_P14 = f45
+
+asin_coeff_P15 = f46
+asin_coeff_P16 = f47
+asin_coeff_P17 = f48
+asin_coeff_P18 = f49
+asin_coeff_P19 = f50
+
+asin_coeff_P20 = f51
+asin_coeff_P21 = f52
+asin_const_sqrt2by2 = f53
+asin_const_piby2 = f54
+asin_abs_x = f55
+
+asin_tx = f56
+asin_tx2 = f57
+asin_tx3 = f58
+asin_tx4 = f59
+asin_tx8 = f60
+
+asin_tx11 = f61
+asin_1poly_p8 = f62
+asin_1poly_p19 = f63
+asin_1poly_p4 = f64
+asin_1poly_p15 = f65
+
+asin_1poly_p6 = f66
+asin_1poly_p17 = f67
+asin_1poly_p0 = f68
+asin_1poly_p11 = f69
+asin_1poly_p2 = f70
+
+asin_1poly_p13 = f71
+asin_series_tx = f72
+asin_t = f73
+asin_t2 = f74
+asin_t3 = f75
+
+asin_t4 = f76
+asin_t8 = f77
+asin_t11 = f78
+asin_poly_p8 = f79
+asin_poly_p19 = f80
+
+asin_poly_p4 = f81
+asin_poly_p15 = f82
+asin_poly_p6 = f83
+asin_poly_p17 = f84
+asin_poly_p0 = f85
+
+asin_poly_p11 = f86
+asin_poly_p2 = f87
+asin_poly_p13 = f88
+asin_series_t = f89
+asin_1by2 = f90
+
+asin_3by2 = f91
+asin_5by2 = f92
+asin_11by4 = f93
+asin_35by8 = f94
+asin_63by8 = f95
+
+asin_231by16 = f96
+asin_y0 = f97
+asin_H0 = f98
+asin_S0 = f99
+asin_d = f100
+
+asin_l1 = f101
+asin_d2 = f102
+asin_T0 = f103
+asin_d1 = f104
+asin_e0 = f105
+
+asin_l2 = f106
+asin_d3 = f107
+asin_T3 = f108
+asin_S1 = f109
+asin_e1 = f110
+
+asin_z = f111
+answer2 = f112
+asin_sgn_x = f113
+asin_429by16 = f114
+asin_18by4 = f115
+
+asin_3by4 = f116
+asin_l3 = f117
+asin_T6 = f118
+asin_eps_exp = f119
+asin_eps_sig = f120
+asin_eps = f120
+
// Data tables
//==============================================================
-RODATA
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
-LOCAL_OBJECT_START(asin_base_range_table)
-// Ai: Polynomial coefficients for the asin(x), |x| < .625000
-// Bi: Polynomial coefficients for the asin(x), |x| > .625000
-data8 0xBFDAAB56C01AE468 //A29
-data8 0x3FE1C470B76A5B2B //A31
-data8 0xBFDC5FF82A0C4205 //A33
-data8 0x3FC71FD88BFE93F0 //A35
-data8 0xB504F333F9DE6487, 0x00003FFF //B0
-data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3
-data8 0x3F9F1C71BC4A7823 //A9
-data8 0x3F96E8BBAAB216B2 //A11
-data8 0x3F91C4CA1F9F8A98 //A13
-data8 0x3F8C9DDCEDEBE7A6 //A15
-data8 0x3F877784442B1516 //A17
-data8 0x3F859C0491802BA2 //A19
-data8 0x9999999998C88B8F, 0x00003FFB //A5
-data8 0x3F6BD7A9A660BF5E //A21
-data8 0x3F9FC1659340419D //A23
-data8 0xB6DB6DB798149BDF, 0x00003FFA //A7
-data8 0xBFB3EF18964D3ED3 //A25
-data8 0x3FCD285315542CF2 //A27
-data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1
-data8 0x3EF0DDA376D10FB3 //B10
-data8 0xBEB83CAFE05EBAC9 //B11
-data8 0x3F65FFB67B513644 //B4
-data8 0x3F5032FBB86A4501 //B5
-data8 0x3F392162276C7CBA //B6
-data8 0x3F2435949FD98BDF //B7
-data8 0xD93923D7FA08341C, 0x00003FF9 //B2
-data8 0x3F802995B6D90BDB //B3
-data8 0x3F10DF86B341A63F //B8
-data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2
-data8 0x3EFA3EBD6B0ECB9D //B9
-data8 0x3EDE18BA080E9098 //B12
-LOCAL_OBJECT_END(asin_base_range_table)
+
+asin_coeff_1_table:
+ASM_TYPE_DIRECTIVE(asin_coeff_1_table,@object)
+data8 0xE4E7E0A423A21249 , 0x00003FF8 //P7
+data8 0xC2F7EE0200FCE2A5 , 0x0000C003 //P18
+data8 0xB745D7F6C65C20E0 , 0x00003FF9 //P5
+data8 0xF75E381A323D4D94 , 0x0000C002 //P16
+data8 0x8959C2629C1024C0 , 0x0000C002 //P20
+data8 0xAFF68E7D241292C5 , 0x00003FF8 //P9
+data8 0xB6DB6DB7260AC30D , 0x00003FFA //P3
+data8 0xD0417CE2B41CB7BF , 0x0000C000 //P14
+data8 0x81D570FEA724E3E4 , 0x0000BFFD //P12
+data8 0xAAAAAAAAAAAAC277 , 0x00003FFC //P1
+data8 0xF534912FF3E7B76F , 0x00003FFF //P21
+data8 0xc90fdaa22168c235 , 0x00003fff // pi/2
+data8 0x0000000000000000 , 0x00000000 // pad to avoid data bank conflict
+ASM_SIZE_DIRECTIVE(asin_coeff_1_table)
+
+
+asin_coeff_2_table:
+ASM_TYPE_DIRECTIVE(asin_coeff_2_table,@object)
+data8 0x8E26AF5F29B39A2A , 0x00003FF9 //P6
+data8 0xB4F118A4B1015470 , 0x00004003 //P17
+data8 0xF8E38E10C25990E0 , 0x00003FF9 //P4
+data8 0x80F50489AEF1CAC6 , 0x00004002 //P15
+data8 0x92728015172CFE1C , 0x00004003 //P19
+data8 0xBBC3D831D4595971 , 0x00003FF8 //P8
+data8 0x999999999952A5C3 , 0x00003FFB //P2
+data8 0x855576BE6F0975EC , 0x00003FFF //P13
+data8 0xF12420E778077D89 , 0x00003FFA //P11
+data8 0xB6590FF4D23DE003 , 0x00003FF3 //P10
+data8 0xb504f333f9de6484 , 0x00003ffe // sqrt(2)/2
+ASM_SIZE_DIRECTIVE(asin_coeff_2_table)
+
+.align 32
+.global asin
+
.section .text
-GLOBAL_LIBM_ENTRY(asin)
-asin_unnormal_back:
-{ .mfi
- getf.d rXBits = f8 // grab bits of input value
- // set p12 = 1 if x is a NaN, denormal, or zero
- fclass.m p12, p0 = f8, 0xcf
- adds rSign = 1, r0
-}
-{ .mfi
- addl rTblAddr = @ltoff(asin_base_range_table),gp
- // 1 - x = 1 - |x| for positive x
- fms.s1 f1mX = f1, f1, f8
- addl rHalf = 0xFFFE, r0 // exponent of 1/2
-}
-;;
-{ .mfi
- addl r0625 = 0x3FE4, r0 // high 16 bits of 0.625
- // set p8 = 1 if x < 0
- fcmp.lt.s1 p8, p9 = f8, f0
- shl rSign = rSign, 63 // sign bit
-}
-{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- // 1 + x = 1 - |x| for negative x
- fma.s1 f1pX = f1, f1, f8
- adds rOne = 0x3FF, r0
-}
-;;
-{ .mfi
- andcm rAbsXBits = rXBits, rSign // bits of |x|
- fmerge.s fSignX = f8, f1 // signum(x)
- shl r0625 = r0625, 48 // bits of DP representation of 0.625
-}
-{ .mfb
- setf.exp fHalf = rHalf // load A2 to FP reg
- fma.s1 fXSqr = f8, f8, f0 // x^2
- // branch on special path if x is a NaN, denormal, or zero
-(p12) br.cond.spnt asin_special
-}
-;;
-{ .mfi
- adds rPiBy2Ptr = 272, rTblAddr
- nop.f 0
- shl rOne = rOne, 52 // bits of 1.0
-}
-{ .mfi
- adds rTmpPtr1 = 16, rTblAddr
- nop.f 0
- // set p6 = 1 if |x| < 0.625
- cmp.lt p6, p7 = rAbsXBits, r0625
-}
-;;
-{ .mfi
- ldfpd fA29, fA31 = [rTblAddr] // A29, fA31
- // 1 - x = 1 - |x| for positive x
-(p9) fms.s1 fR = f1, f1, f8
- // point to coefficient of "near 1" polynomial
-(p7) adds rTmpPtr2 = 176, rTblAddr
-}
-{ .mfi
- ldfpd fA33, fA35 = [rTmpPtr1], 16 // A33, fA35
- // 1 + x = 1 - |x| for negative x
-(p8) fma.s1 fR = f1, f1, f8
-(p6) adds rTmpPtr2 = 48, rTblAddr
-}
-;;
-{ .mfi
- ldfe fB0 = [rTmpPtr1], 16 // B0
- nop.f 0
- nop.i 0
-}
-{ .mib
- adds rTmpPtr3 = 16, rTmpPtr2
- // set p10 = 1 if |x| = 1.0
- cmp.eq p10, p0 = rAbsXBits, rOne
- // branch on special path for |x| = 1.0
-(p10) br.cond.spnt asin_abs_1
-}
-;;
-{ .mfi
- ldfe fA3 = [rTmpPtr2], 48 // A3 or B1
- nop.f 0
- adds rTmpPtr1 = 64, rTmpPtr3
-}
-{ .mib
- ldfpd fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11
- // set p11 = 1 if |x| > 1.0
- cmp.gt p11, p0 = rAbsXBits, rOne
- // branch on special path for |x| > 1.0
-(p11) br.cond.spnt asin_abs_gt_1
-}
-;;
-{ .mfi
- ldfpd fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7
- // initial approximation of 1 / sqrt(1 - x)
- frsqrta.s1 f1mXRcp, p0 = f1mX
- nop.i 0
-}
-{ .mfi
- ldfpd fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5
- fma.s1 fXCube = fXSqr, f8, f0 // x^3
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA5 = [rTmpPtr2], 48 // A5 or B2
- // initial approximation of 1 / sqrt(1 + x)
- frsqrta.s1 f1pXRcp, p0 = f1pX
- nop.i 0
-}
-{ .mfi
- ldfpd fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8
- fma.s1 fXQuadr = fXSqr, fXSqr, f0 // x^4
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA7 = [rTmpPtr1] // A7 or Pi/2
- fma.s1 fRSqr = fR, fR, f0 // R^2
- nop.i 0
-}
-{ .mfb
- ldfpd fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12
- nop.f 0
-(p6) br.cond.spnt asin_base_range;
-}
-;;
+.proc asin
+.align 32
-{ .mfi
- nop.m 0
-(p9) fma.s1 fH = fHalf, f1mXRcp, f0 // H0 for x > 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 fS = f1mX, f1mXRcp, f0 // S0 for x > 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
-(p8) fma.s1 fH = fHalf, f1pXRcp, f0 // H0 for x < 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fma.s1 fS = f1pX, f1pXRcp, f0 // S0 for x > 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRQuadr = fRSqr, fRSqr, f0 // R^4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB11 = fB11, fR, fB10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB1 = fB1, fR, fB0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB5 = fB5, fR, fB4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB7 = fB7, fR, fB6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB3 = fB3, fR, fB2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fnma.s1 fD = fH, fS, fHalf // d0 = 1/2 - H0*S0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fR8 = fRQuadr, fRQuadr, f0 // R^4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB9 = fB9, fR, fB8
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fB12 = fB12, fRSqr, fB11
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fB7 = fB7, fRSqr, fB5
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fB3 = fB3, fRSqr, fB1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fH = fH, fD, fH // H1 = H0 + H0*d0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fS = fS, fD, fS // S1 = S0 + S0*d0
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fPiBy2 = fPiBy2, fSignX, f0 // signum(x)*Pi/2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB12 = fB12, fRSqr, fB9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB7 = fB7, fRQuadr, fB3
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fnma.s1 fD = fH, fS, fHalf // d1 = 1/2 - H1*S1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fSignedS = fSignX, fS, f0 // -signum(x)*S1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fCloseTo1Pol = fB12, fR8, fB7
- nop.i 0
+
+asin:
+
+{ .mfi
+ alloc r32 = ar.pfs,1,6,4,0
+ fma.s1 asin_tx = f8,f8,f0
+ addl ASIN_Addr2 = @ltoff(asin_coeff_2_table),gp
+}
+{ .mfi
+ mov ASIN_FFFE = 0xFFFE
+ fnma.s1 asin_t = f8,f8,f1
+ addl ASIN_Addr1 = @ltoff(asin_coeff_1_table),gp
}
;;
-{ .mfi
- nop.m 0
- fma.s1 fH = fH, fD, fH // H2 = H1 + H1*d1
- nop.i 0
+
+
+{ .mfi
+ setf.exp asin_1by2 = ASIN_FFFE
+ fmerge.s asin_abs_x = f1,f8
+ nop.i 999 ;;
+}
+
+{ .mmf
+ ld8 ASIN_Addr1 = [ASIN_Addr1]
+ ld8 ASIN_Addr2 = [ASIN_Addr2]
+ fmerge.s asin_sgn_x = f8,f1 ;;
+}
+
+
+{ .mfi
+ ldfe asin_coeff_P7 = [ASIN_Addr1],16
+ fma.s1 asin_tx2 = asin_tx,asin_tx,f0
+ nop.i 999
+}
+{ .mfi
+ ldfe asin_coeff_P6 = [ASIN_Addr2],16
+ fma.s1 asin_t2 = asin_t,asin_t,f0
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fS = fS, fD, fS // S2 = S1 + S1*d1
- nop.i 0
+
+
+{ .mmf
+ ldfe asin_coeff_P18 = [ASIN_Addr1],16
+ ldfe asin_coeff_P17 = [ASIN_Addr2],16
+ fclass.m.unc p8,p0 = f8, 0xc3 //@qnan |@snan
+}
+;;
+
+{ .mmf
+ ldfe asin_coeff_P5 = [ASIN_Addr1],16
+ ldfe asin_coeff_P4 = [ASIN_Addr2],16
+ frsqrta.s1 asin_y0,p0 = asin_t
+}
+;;
+
+{ .mfi
+ ldfe asin_coeff_P16 = [ASIN_Addr1],16
+ fcmp.gt.s1 p9,p0 = asin_abs_x,f1
+ nop.i 999
+}
+{ .mfb
+ ldfe asin_coeff_P15 = [ASIN_Addr2],16
+(p8) fma.d f8 = f8,f1,f0
+(p8) br.ret.spnt b0
}
;;
-{ .mfi
- nop.m 0
- // -signum(x)* S2 = -signum(x)*(S1 + S1*d1)
- fma.s1 fSignedS = fSignedS, fD, fSignedS
- nop.i 0
+
+
+{ .mmf
+ ldfe asin_coeff_P20 = [ASIN_Addr1],16
+ ldfe asin_coeff_P19 = [ASIN_Addr2],16
+ fclass.m.unc p8,p0 = f8, 0x07 //@zero
+}
+;;
+
+
+{ .mfi
+ ldfe asin_coeff_P9 = [ASIN_Addr1],16
+ fma.s1 asin_t4 = asin_t2,asin_t2,f0
+(p9) mov GR_Parameter_Tag = 61
+}
+{ .mfi
+ ldfe asin_coeff_P8 = [ASIN_Addr2],16
+ fma.s1 asin_3by2 = asin_1by2,f1,f1
+ nop.i 999;;
}
-;;
-{.mfi
- nop.m 0
- fnma.s1 fD = fH, fS, fHalf // d2 = 1/2 - H2*S2
- nop.i 0
+
+
+{ .mfi
+ ldfe asin_coeff_P2 = [ASIN_Addr2],16
+ fma.s1 asin_tx4 = asin_tx2,asin_tx2,f0
+ nop.i 999
+}
+{ .mfb
+ ldfe asin_coeff_P3 = [ASIN_Addr1],16
+ fma.s1 asin_t3 = asin_t,asin_t2,f0
+(p8) br.ret.spnt b0
}
;;
-{ .mfi
- nop.m 0
- // signum(x)*(Pi/2 - PolB*S2)
- fma.s1 fPiBy2 = fSignedS, fCloseTo1Pol, fPiBy2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // -signum(x)*PolB * S2
- fma.s1 fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0
- nop.i 0
+
+
+{ .mfi
+ ldfe asin_coeff_P13 = [ASIN_Addr2],16
+ fma.s1 asin_H0 = asin_y0,asin_1by2,f0
+ nop.i 999
+}
+{ .mfb
+ ldfe asin_coeff_P14 = [ASIN_Addr1],16
+ fma.s1 asin_S0 = asin_y0,asin_t,f0
+(p9) br.cond.spnt __libm_error_region
}
;;
-{ .mfb
- nop.m 0
- // final result for 0.625 <= |x| < 1
- fma.d.s0 f8 = fCloseTo1Pol, fD, fPiBy2
- // exit here for 0.625 <= |x| < 1
- br.ret.sptk b0
+
+
+{ .mfi
+ ldfe asin_coeff_P11 = [ASIN_Addr2],16
+ fcmp.eq.s1 p6,p0 = asin_abs_x,f1
+ nop.i 999
+}
+{ .mfi
+ ldfe asin_coeff_P12 = [ASIN_Addr1],16
+ fma.s1 asin_tx3 = asin_tx,asin_tx2,f0
+ nop.i 999;;
}
-;;
+
+{ .mfi
+ ldfe asin_coeff_P10 = [ASIN_Addr2],16
+ fma.s1 asin_1poly_p6 = asin_tx,asin_coeff_P7,asin_coeff_P6
+ nop.i 999
+}
+{ .mfi
+ ldfe asin_coeff_P1 = [ASIN_Addr1],16
+ fma.s1 asin_poly_p6 = asin_t,asin_coeff_P7,asin_coeff_P6
+ nop.i 999;;
+}
-// here if |x| < 0.625
-.align 32
-asin_base_range:
-{ .mfi
- nop.m 0
- fma.s1 fA33 = fA33, fXSqr, fA31
- nop.i 0
+
+{ .mfi
+ ldfe asin_const_sqrt2by2 = [ASIN_Addr2],16
+ fma.s1 asin_5by2 = asin_3by2,f1,f1
+ nop.i 999
+}
+{ .mfi
+ ldfe asin_coeff_P21 = [ASIN_Addr1],16
+ fma.s1 asin_11by4 = asin_3by2,asin_3by2,asin_1by2
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fXSqr, fA13
- nop.i 0
+
+
+{ .mfi
+ ldfe asin_const_piby2 = [ASIN_Addr1],16
+ fma.s1 asin_poly_p17 = asin_t,asin_coeff_P18,asin_coeff_P17
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+ fma.s1 asin_3by4 = asin_3by2,asin_1by2,f0
+(p6) br.cond.spnt L(ASIN_ABS_1) // Branch to short exit if |x|=1
}
;;
-{ .mfi
- nop.m 0
- fma.s1 fA29 = fA29, fXSqr, fA27
- nop.i 0
+
+
+{ .mfi
+ addl ASIN_lnorm_sig = -0x1,r0 // Form significand 0xffffffffffffffff
+ fma.s1 asin_poly_p15 = asin_t,asin_coeff_P16,asin_coeff_P15
+ nop.i 999
+}
+{ .mfi
+ addl ASIN_snorm_exp = 0x0c001,r0 // Form small exponent
+ fnma.s1 asin_d = asin_S0,asin_H0,asin_1by2
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fXSqr, fA23
- nop.i 0
+
+
+// Form the exponent and significand of a small number
+{ .mfi
+ setf.sig asin_eps_sig = ASIN_lnorm_sig
+ fma.s1 asin_poly_p19 = asin_t,asin_coeff_P20,asin_coeff_P19
+ nop.i 999
+}
+{ .mfi
+ setf.exp asin_eps_exp = ASIN_snorm_exp
+ fma.s1 asin_poly_p4 = asin_t,asin_coeff_P5,asin_coeff_P4
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA21 = fA21, fXSqr, fA19
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p17 = asin_tx,asin_coeff_P18,asin_coeff_P17
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p8 = asin_t,asin_coeff_P9,asin_coeff_P8
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fXSqr, fA7
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fms.s1 asin_35by8 = asin_5by2,asin_11by4,asin_5by2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_63by8 = asin_5by2,asin_11by4,f1
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, fXSqr, fA3
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p13 = asin_t,asin_coeff_P14,asin_coeff_P13
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_18by4 = asin_3by2,asin_5by2,asin_3by4
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA35 = fA35, fXQuadr, fA33
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_l1 = asin_5by2,asin_d,asin_3by2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_d2 = asin_d,asin_d,f0
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fXQuadr, fA15
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p15 = asin_t2,asin_poly_p17,asin_poly_p15
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_T0 = asin_d,asin_S0,f0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fX8 = fXQuadr, fXQuadr, f0 // x^8
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p19 = asin_t2,asin_coeff_P21,asin_poly_p19
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p4 = asin_t2,asin_poly_p6,asin_poly_p4
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fXQuadr, fA21
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_d1 = asin_35by8,asin_d,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_231by16 = asin_3by2,asin_35by8,asin_63by8
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fXQuadr, fA5
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p2 = asin_t,asin_coeff_P3,asin_coeff_P2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p8 = asin_t2,asin_coeff_P10,asin_poly_p8
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA35 = fA35, fXQuadr, fA29
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p11 = asin_t,asin_coeff_P12,asin_coeff_P11
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_e0 = asin_d2,asin_l1,asin_d
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fXSqr, fA11
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p15 = asin_tx,asin_coeff_P16,asin_coeff_P15
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p0 = asin_t,asin_coeff_P1,f1
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fX16 = fX8, fX8, f0 // x^16
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p19 = asin_tx,asin_coeff_P20,asin_coeff_P19
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p4 = asin_tx,asin_coeff_P5,asin_coeff_P4
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA35 = fA35, fX8, fA25
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p8 = asin_tx,asin_coeff_P9,asin_coeff_P8
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_l2 = asin_231by16,asin_d,asin_63by8
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fX8, fA9
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_d3 = asin_d2,asin_d,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_T3 = asin_d2,asin_T0,f0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fBaseP = fA35, fX16, fA17
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_429by16 = asin_18by4,asin_11by4,asin_231by16
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_S1 = asin_e0,asin_S0,asin_S0
+ nop.i 999;;
}
-;;
-{ .mfb
- nop.m 0
- // final result for |x| < 0.625
- fma.d.s0 f8 = fBaseP, fXCube, f8
- // exit here for |x| < 0.625 path
- br.ret.sptk b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p4 = asin_t4,asin_poly_p8,asin_poly_p4
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p15 = asin_t4,asin_poly_p19,asin_poly_p15
+ nop.i 999;;
}
-;;
-// here if |x| = 1
-// asin(x) = sign(x) * Pi/2
-.align 32
-asin_abs_1:
-{ .mfi
- ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
- nop.f 0
- nop.i 0
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p0 = asin_t2,asin_poly_p2,asin_poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p11 = asin_t2,asin_poly_p13,asin_poly_p11
+ nop.i 999;;
}
-;;
-{.mfb
- nop.m 0
- // result for |x| = 1.0
- fma.d.s0 f8 = fPiBy2, fSignX, f0
- // exit here for |x| = 1.0
- br.ret.sptk b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_t8 = asin_t4,asin_t4,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_e1 = asin_d2,asin_l2,asin_d1
+ nop.i 999;;
}
-;;
-// here if x is a NaN, denormal, or zero
-.align 32
-asin_special:
-{ .mfi
- nop.m 0
- // set p12 = 1 if x is a NaN
- fclass.m p12, p0 = f8, 0xc3
- nop.i 0
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p4 = asin_tx2,asin_1poly_p6,asin_1poly_p4
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p15 = asin_tx2,asin_1poly_p17,asin_1poly_p15
+ nop.i 999;;
}
-{ .mlx
- nop.m 0
- // smallest positive DP normalized number
- movl rDenoBound = 0x0010000000000000
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p8 = asin_tx2,asin_coeff_P10,asin_1poly_p8
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p19 = asin_tx2,asin_coeff_P21,asin_1poly_p19
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- // set p13 = 1 if x = 0.0
- fclass.m p13, p0 = f8, 0x07
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p2 = asin_tx,asin_coeff_P3,asin_coeff_P2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p13 = asin_tx,asin_coeff_P14,asin_coeff_P13
+ nop.i 999;;
}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p0 = asin_tx,asin_coeff_P1,f1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p11 = asin_tx,asin_coeff_P12,asin_coeff_P11
+ nop.i 999;;
}
-;;
-{ .mfb
- // load smallest normal to FP reg
- setf.d fDenoBound = rDenoBound
- // answer if x is a NaN
-(p12) fma.d.s0 f8 = f8,f1,f0
- // exit here if x is a NaN
-(p12) br.ret.spnt b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_l3 = asin_429by16,asin_d,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_z = asin_e1,asin_T3,asin_S1
+ nop.i 999;;
}
-;;
-{ .mfb
- nop.m 0
- nop.f 0
- // exit here if x = 0.0
-(p13) br.ret.spnt b0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p11 = asin_t4,asin_poly_p15,asin_poly_p11
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_T6 = asin_T3,asin_d3,f0
+ nop.i 999;;
}
-;;
-// if we still here then x is denormal or unnormal
-{ .mfi
- nop.m 0
- // absolute value of normalized x
- fmerge.s fNormX = f1, fNormX
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_t11 = asin_t8,asin_t3,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_poly_p0 = asin_t4,asin_poly_p4,asin_poly_p0
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
- // set p14 = 1 if normalized x is greater than or
- // equal to the smallest denormalized value
- // So, if p14 is set to 1 it means that we deal with
- // unnormal rather than with "true" denormal
- fcmp.ge.s1 p14, p0 = fNormX, fDenoBound
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p4 = asin_tx4,asin_1poly_p8,asin_1poly_p4
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p15 = asin_tx4,asin_1poly_p19,asin_1poly_p15
+ nop.i 999;;
}
-;;
-{ .mfi
- nop.m 0
-(p14) fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag if x unnormal
- nop.i 0
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p0 = asin_tx2,asin_1poly_p2,asin_1poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p11 = asin_tx2,asin_1poly_p13,asin_1poly_p11
+ nop.i 999;;
}
-{ .mfb
- nop.m 0
- // normalize unnormal input
-(p14) fnorm.s1 f8 = f8
- // return to the main path
-(p14) br.cond.sptk asin_unnormal_back
+
+
+{ .mfi
+ nop.m 999
+// fcmp.le.s1 asin_pred_LEsqrt2by2,asin_pred_GTsqrt2by2 = asin_abs_x,asin_const_sqrt2by2
+ fcmp.le.s1 p7,p8 = asin_abs_x,asin_const_sqrt2by2
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_tx8 = asin_tx4,asin_tx4,f0
+ nop.i 999;;
}
-;;
-// if we still here it means that input is "true" denormal
-{ .mfb
- nop.m 0
- // final result if x is denormal
- fma.d.s0 f8 = f8, fXSqr, f8
- // exit here if x is denormal
- br.ret.sptk b0
+
+
+// Form a small number to force inexact flag for small args
+{ .mfi
+ nop.m 999
+ fmerge.se asin_eps = asin_eps_exp,asin_eps_sig
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_z = asin_l3,asin_T6,asin_z
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_series_t = asin_t11,asin_poly_p11,asin_poly_p0
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p0 = asin_tx4,asin_1poly_p4,asin_1poly_p0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 asin_1poly_p11 = asin_tx4,asin_1poly_p15,asin_1poly_p11
+ nop.i 999;;
}
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_tx11 = asin_tx8,asin_tx3,f0
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+//(asin_pred_GTsqrt2by2) fnma.s1 answer2 = asin_z,asin_series_t,asin_const_piby2
+(p8) fnma.s1 answer2 = asin_z,asin_series_t,asin_const_piby2
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 asin_series_tx = asin_tx11,asin_1poly_p11,asin_1poly_p0
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+//(asin_pred_GTsqrt2by2) fma.d f8 = asin_sgn_x,answer2,f0
+(p8) fma.d f8 = asin_sgn_x,answer2,f0
+ nop.i 999;;
+}
+
+// asin_eps is added only to force inexact and possibly underflow flag
+// in case asin_series_tx is zero
+//
+{ .mfi
+ nop.m 999
+(p7) fma.d asin_eps = f8,asin_series_tx,asin_eps
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+//(asin_pred_LEsqrt2by2) fma.d f8 = f8,asin_series_tx,f0
+(p7) fma.d f8 = f8,asin_series_tx,f0
+ br.ret.sptk b0
+}
;;
-// here if |x| > 1.0
-// error handler should be called
-.align 32
-asin_abs_gt_1:
-{ .mfi
- alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 61 // error code
- frcpa.s0 FR_RESULT, p0 = f0,f0
- // call error handler routine
- br.cond.sptk __libm_error_region
-}
+
+L(ASIN_ABS_1):
+// Here for short exit if |x|=1
+{ .mfb
+ nop.m 999
+ fma.d f8 = asin_sgn_x,asin_const_piby2,f0
+ br.ret.sptk b0
+}
;;
-GLOBAL_LIBM_END(asin)
+.endp asin
+ASM_SIZE_DIRECTIVE(asin)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
@@ -816,29 +857,28 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ stfs [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+ frcpa.s0 f9,p0 = f0,f0
+;;
+
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] = f8 // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfd [GR_Parameter_Y] = f9,-16 // Store Parameter 3 on stack
+ adds r32 = 48,sp
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfd f8 = [r32] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
@@ -847,8 +887,11 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
+
};;
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support,@function
+.global __libm_error_support
diff --git a/sysdeps/ia64/fpu/e_asinf.S b/sysdeps/ia64/fpu/e_asinf.S
index af24165d8e..ddae85880b 100644
--- a/sysdeps/ia64/fpu/e_asinf.S
+++ b/sysdeps/ia64/fpu/e_asinf.S
@@ -1,10 +1,10 @@
.file "asinf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/02/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,25 +35,21 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/28/00 Improved speed
-// 06/31/00 Changed register allocation because of some duplicate macros
+// 2/02/00 Initial revision
+// 6/28/00 Improved speed
+// 6/31/00 Changed register allocation because of some duplicate macros
// moved nan exit bundle up to gain a cycle.
-// 08/08/00 Improved speed by avoiding SIR flush.
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/08/00 Improved speed by avoiding SIR flush.
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 08/17/00 Changed predicate register macro-usage to direct predicate
+// 8/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
// 10/17/00 Improved speed of x=0 and x=1 paths, set D flag if x denormal.
-// 03/13/01 Corrected sign of imm1 value in dep instruction.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-
// Description
//=========================================
// The asinf function computes the arc sine of x in the range [-pi,+pi].
@@ -123,6 +119,7 @@
// answer2 = - sign(x) z P(t) + (sign(x) pi/2)
//
+#include "libm_support.h"
// Assembly macros
//=========================================
@@ -228,30 +225,42 @@ asinf_poly_p1a = f90
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(asinf_coeff_1_table)
+asinf_coeff_1_table:
+ASM_TYPE_DIRECTIVE(asinf_coeff_1_table,@object)
data8 0x3FC5555607DCF816 // P1
data8 0x3F9CF81AD9BAB2C6 // P4
data8 0x3FC59E0975074DF3 // P7
data8 0xBFA6F4CC2780AA1D // P6
data8 0x3FC2DD45292E93CB // P9
data8 0x3fe6a09e667f3bcd // sqrt(2)/2
-LOCAL_OBJECT_END(asinf_coeff_1_table)
+ASM_SIZE_DIRECTIVE(asinf_coeff_1_table)
-LOCAL_OBJECT_START(asinf_coeff_2_table)
+asinf_coeff_2_table:
+ASM_TYPE_DIRECTIVE(asinf_coeff_2_table,@object)
data8 0x3FA6F108E31EFBA6 // P3
data8 0xBFCA31BF175D82A0 // P8
data8 0x3FA30C0337F6418B // P5
data8 0x3FB332C9266CB1F9 // P2
data8 0x3ff921fb54442d18 // pi_by_2
-LOCAL_OBJECT_END(asinf_coeff_2_table)
+ASM_SIZE_DIRECTIVE(asinf_coeff_2_table)
+.align 32
+.global asinf
+
.section .text
-GLOBAL_LIBM_ENTRY(asinf)
+.proc asinf
+.align 32
+
+asinf:
// Load the addresses of the two tables.
// Then, load the coefficients and other constants.
@@ -336,7 +345,7 @@ GLOBAL_LIBM_ENTRY(asinf)
}
{ .mfb
nop.m 999
-(p8) fma.s.s0 f8 = f8,f1,f0
+(p8) fma.s f8 = f8,f1,f0
(p8) br.ret.spnt b0 ;; // Exit if x=nan
}
@@ -361,7 +370,7 @@ GLOBAL_LIBM_ENTRY(asinf)
{ .mfb
nop.m 999
fma.s1 asinf_t4 = asinf_t2,asinf_t2,f0
-(p6) br.cond.spnt ASINF_ABS_ONE ;; // Branch if |x|=1
+(p6) br.cond.spnt L(ASINF_ABS_ONE) ;; // Branch if |x|=1
}
{ .mfi
@@ -563,26 +572,27 @@ GLOBAL_LIBM_ENTRY(asinf)
.pred.rel "mutex",p8,p7 //asinf_pred_GTsqrt2by2,asinf_pred_LEsqrt2by2
{ .mfi
nop.m 999
-(p8) fnma.s.s0 f8 = asinf_z,asinf_Pt,asinf_sgn_x_piby2
+(p8) fnma.s f8 = asinf_z,asinf_Pt,asinf_sgn_x_piby2
nop.i 999
}
{ .mfb
nop.m 999
-(p7) fma.s.s0 f8 = asinf_x11,asinf_poly_Bx,asinf_poly_Ax
+(p7) fma.s f8 = asinf_x11,asinf_poly_Bx,asinf_poly_Ax
br.ret.sptk b0 ;;
}
-ASINF_ABS_ONE:
+L(ASINF_ABS_ONE):
// Here for short exit if |x|=1
{ .mfb
nop.m 999
- fma.s.s0 f8 = asinf_sgn_x,asinf_const_piby2,f0
+ fma.s f8 = asinf_sgn_x,asinf_const_piby2,f0
br.ret.sptk b0
}
;;
-GLOBAL_LIBM_END(asinf)
+.endp asinf
+ASM_SIZE_DIRECTIVE(asinf)
// Stack operations when calling error support.
// (1) (2)
@@ -613,7 +623,8 @@ GLOBAL_LIBM_END(asinf)
// restore gp
// restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -669,7 +680,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_asinl.S b/sysdeps/ia64/fpu/e_asinl.S
index ad65a731fc..9153832090 100644
--- a/sysdeps/ia64/fpu/e_asinl.S
+++ b/sysdeps/ia64/fpu/e_asinl.S
@@ -1,10 +1,10 @@
.file "asinl.s"
-
-// Copyright (c) 2001 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,2449 +20,720 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 08/28/01 New version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
//
// API
//==============================================================
-// long double asinl(long double)
+// long double = asinl(long double)
+// input floating point f8
+// output floating point f8
//
-// Overview of operation
+// Registers used
//==============================================================
-// Background
-//
-// Implementation
-//
-// For |s| in [2^{-4}, sqrt(2)/2]:
-// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52
-// asin(s)= asin(t)+asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e.
-// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1)
-// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9)
-// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table,
-// along with the high and low parts of asin(t) (stored as two double precision
-// values)
//
-// |s| in (sqrt(2)/2, sqrt(255/256)):
-// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6..
-// asin(|s|)= pi/2-asin(t)+asin(r), r= s*t-sqrt(1-s^2)*sqrt(1-t^2)
-// To minimize accumulated errors, r is computed as
-// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+
-// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+
-// +ez*z'*y*(1-s^2)*(1-x),
-// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits)
-// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2
+// predicate registers used:
+// p6 -> p12
//
-// |s|<2^{-4}: evaluate as 17-degree polynomial
-// (or simply return s, if|s|<2^{-64})
+// floating-point registers used:
+// f8 has input, then output
+// f32 -> f87, f8 -> f13, f32 -> f87
//
-// |s| in [sqrt(255/256), 1): asin(|s|)= pi/2-asin(sqrt(1-s^2))
-// use 17-degree polynomial for asin(sqrt(1-s^2)),
-// 9-degree polynomial to evaluate sqrt(1-s^2)
-// High order term is (pi/2)_high-(y*(1-s^2))_high
+// general registers used:
+// r32 -> r47
//
-
-
-
-// Registers used
+// Overview of operation
//==============================================================
-// f6-f15, f32-f36
-// r2-r3, r23-r23
-// p6, p7, p8, p12
-//
-
-
- GR_SAVE_B0= r33
- GR_SAVE_PFS= r34
- GR_SAVE_GP= r35 // This reg. can safely be used
- GR_SAVE_SP= r36
-
- GR_Parameter_X= r37
- GR_Parameter_Y= r38
- GR_Parameter_RESULT= r39
- GR_Parameter_TAG= r40
+// There are three paths
+// 1. |x| < 2^-40 ASIN_TINY
+// 2. 2^-40 <= |x| < 1/4 ASIN_POLY
+// 3. 1/4 <= |x| < 1 ASIN_ATAN
- FR_X= f10
- FR_Y= f1
- FR_RESULT= f8
-
-
-
-RODATA
-
-.align 16
-
-
-
-LOCAL_OBJECT_START(T_table)
-
-// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2),
-// asin(t)_high (double precision), asin(t)_low (double precision)
-
-data8 0x80828692b71c4391, 0xff7ddcec2d87e879
-data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6
-data8 0x80869f0163d0b082, 0xff79cad2247914d3
-data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c
-data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9
-data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc
-data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb
-data8 0x3fb0e32279319d80, 0x3caee31546582c43
-data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31
-data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd
-data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63
-data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f
-data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0
-data8 0x3fb1a392756ed280, 0x3c964f1a927461ae
-data8 0x80a08a5f33fadc66, 0xff600c07846a6830
-data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332
-data8 0x80a515d91d71acd4, 0xff5b892bc475affa
-data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6
-data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d
-data8 0x3fb2640c6dd76260, 0x3c62041160e0849e
-data8 0x80ae5e46b78b0d68, 0xff5253166bc17794
-data8 0x3fb2a43761187c80, 0x3cac61651af678c0
-data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8
-data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1
-data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738
-data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5
-data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37
-data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9
-data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e
-data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1
-data8 0x80c6b49bc72ec446, 0xff3a319453ebd961
-data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2
-data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6
-data8 0x3fb425524827a720, 0x3cb75a855e7c6053
-data8 0x80d0e4c033bee9c4, 0xff301994c79afb32
-data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab
-data8 0x80d615bdb87556db, 0xff2af55aa431f291
-data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5
-data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9
-data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb
-data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd
-data8 0x3fb526280fa74620, 0x3c940656e5549b91
-data8 0x80e60c93498e32cd, 0xff1b27b703a19c98
-data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd
-data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8
-data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a
-data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4
-data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958
-data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926
-data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16
-data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec
-data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a
-data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb
-data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad
-data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29
-data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7
-data8 0x810d95237e38766a, 0xfef411ca9f80b5f7
-data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6
-data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009
-data8 0x3fb76858ac403a00, 0x3c74df3dd959141a
-data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c
-data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc
-data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91
-data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7
-data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d
-data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9
-data8 0x812bc9c451e5a257, 0xfed640d974eb6068
-data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b
-data8 0x813206e3da0f3124, 0xfed0199e6ad6b585
-data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe
-data8 0x813854ec231172f9, 0xfec9e229dcf4747d
-data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd
-data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b
-data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07
-data8 0x814523ca796f56ce, 0xfebd428f72561efe
-data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c
-data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4
-data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f
-data8 0x81523686e29bbdd7, 0xfeb062008df81f50
-data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1
-data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a
-data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446
-data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8
-data8 0x3fba6c009e9f9260, 0x3c741e989a60938a
-data8 0x8166523a8b24f626, 0xfe9c974a367f785c
-data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d
-data8 0x816d283c793e0114, 0xfe95ddddb94166cb
-data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d
-data8 0x81740f54e06d55bd, 0xfe8f142c93750c50
-data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb
-data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb
-data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307
-data8 0x818210de91bba6c8, 0xfe814ff7162cf62f
-data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24
-data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1
-data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356
-data8 0x819057031bf7760e, 0xfe734a9f2dfa1810
-data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad
-data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b
-data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d
-data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c
-data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2
-data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f
-data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4
-data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5
-data8 0x3fbd302dcae51600, 0x3ca995b83421756a
-data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f
-data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f
-data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb
-data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026
-data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6
-data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434
-data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36
-data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd
-data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a
-data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027
-data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15
-data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1
-data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3
-data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72
-data8 0x81eba6861683cb97, 0xfe19d0537a0946e2
-data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca
-data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2
-data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a
-data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063
-data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813
-data8 0x820401efbf87e248, 0xfe020201fff9efea
-data8 0x3fbff53b970d1e80, 0x3ca625444b260078
-data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e
-data8 0x3fc02aff52065460, 0x3c9125d113e22a57
-data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0
-data8 0x3fc06b84f8e03220, 0x3caccf362295894b
-data8 0x82324434adbf99c2, 0xfdd4de1a001fb775
-data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af
-data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03
-data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628
-data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66
-data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4
-data8 0x82671d86345c5cee, 0xfda1695934d723e7
-data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f
-data8 0x827949d46a121770, 0xfd8fbee13cbbb823
-data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e
-data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34
-data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee
-data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca
-data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3
-data8 0x82b17d7fa5bbc982, 0xfd5934119557883a
-data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e
-data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161
-data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312
-data8 0x82d85e93fba50136, 0xfd338d7790ca0f41
-data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9
-data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727
-data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5
-data8 0x830062f46abf6022, 0xfd0cde480c43b327
-data8 0x3fc373237b34de60, 0x3cc95806d4928adb
-data8 0x8314d30108ea35f0, 0xfcf923526c1562b2
-data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54
-data8 0x83298ca29434df97, 0xfce526099d0737ed
-data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc
-data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c
-data8 0x3fc435774fea2a60, 0x3c9ec18b43340914
-data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055
-data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6
-data8 0x836975a60a70c52e, 0xfca79f9da4fab13a
-data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365
-data8 0x837f5841ddfa7a46, 0xfc92986889284148
-data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd
-data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f
-data8 0x3fc538db36ee6960, 0x3cb910b773d4c578
-data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68
-data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc
-data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5
-data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5
-data8 0x83d9d2cfc2813637, 0xfc3be08165519325
-data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29
-data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f
-data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e
-data8 0x8408d76990b9296e, 0xfc0ef35db402af94
-data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566
-data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4
-data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5
-data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390
-data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4
-data8 0x84519e3a29df811a, 0xfbc9989a85ce0954
-data8 0x3fc740afcccca000, 0x3cc19692a5301ca6
-data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4
-data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508
-data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45
-data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420
-data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1
-data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6
-data8 0x84b6e795650817ea, 0xfb6971805af8411e
-data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94
-data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5
-data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278
-data8 0x84eb649000a73014, 0xfb37c8d84414755c
-data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7
-data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b
-data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe
-data8 0x8521200b1fb8916e, 0xfb05114998f76a83
-data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c
-data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19
-data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a
-data8 0x85581cd97f45e274, 0xfad14a3004259931
-data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54
-data8 0x857414a74f8446b4, 0xfab7009ab1945a54
-data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2
-data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc
-data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef
-data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9
-data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e
-data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1
-data8 0x3fcad2224cf814e0, 0x3c303de5980d071c
-data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe
-data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e
-data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543
-data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf
-data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1
-data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518
-data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b
-data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187
-data8 0x865f669fe390c7f5, 0xf9db17e65944eacf
-data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14
-data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e
-data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7
-data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a
-data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf
-data8 0x86bd0dd45f4f8265, 0xf98433446a806e70
-data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0
-data8 0x86dcf0b16613e37a, 0xf966b246a8606170
-data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849
-data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b
-data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217
-data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941
-data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211
-data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363
-data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9
-data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319
-data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9
-data8 0x878176321154e2bc, 0xf8cf1d20f87270b8
-data8 0x3fce6907cca0d060, 0x3cb6ca4804750830
-data8 0x87a36580fe6bccf5, 0xf8affb5e20412199
-data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c
-data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233
-data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20
-data8 0x87e84fa9057914ca, 0xf870e64d40a15036
-data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9
-data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78
-data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a
-data8 0x882ea1bfc0f228ac, 0xf830b926379e6465
-data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985
-data8 0x885252ff21146108, 0xf810394699fe0e8e
-data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703
-data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0
-data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd
-data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97
-data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a
-data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e
-data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889
-data8 0x89431fc7bc0c2910, 0xf73642973c91298e
-data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf
-data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6
-data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f
-data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2
-data8 0x3fd156134ada6fe0, 0x3cc87369da09600c
-data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249
-data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c
-data8 0x8a811046373e0819, 0xf619e180181d97cc
-data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4
-data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2
-data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b
-data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6
-data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa
-data8 0x8b7fc95f35647757, 0xf538ca65c960b582
-data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126
-data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb
-data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a
-data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689
-data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552
-data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2
-data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d
-data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b
-data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d
-data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908
-data8 0x3fd3f2438d754b40, 0x3ca03304f667109a
-data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e
-data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d
-data8 0x8e0baad75555e361, 0xf3038e323ae9463a
-data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971
-data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7
-data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2
-data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c
-data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394
-data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909
-data8 0x3fd5439a4436d000, 0x3cc38d46d310526b
-data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669
-data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a
-data8 0x901206c1686317a6, 0xf14cd4f2a730d480
-data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431
-data8 0x907f4ca5fe9cf739, 0xf0f186784a125726
-data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33
-data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18
-data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e
-data8 0x915fab35e37421c6, 0xf0374ef5daab5c45
-data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6
-data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51
-data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b
-data8 0x9248000249200009, 0xef7840021aca5a72
-data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9
-data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5
-data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46
-data8 0x93388a8386725713, 0xeeb44dfce6820283
-data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9
-data8 0x93b3f8aa8e653812, 0xee507c126774fa45
-data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb
-data8 0x94318d99d341ade4, 0xedeb6cd32f891afb
-data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a
-data8 0x94b1523e3dedc630, 0xed851eaa3168f43c
-data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16
-data8 0x95334fc20577563f, 0xed1d8ffaa2279669
-data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2
-data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da
-data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d
-data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1
-data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1
-data8 0x96c6fcef314074fc, 0xebdf502d53d65fea
-data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9
-data8 0x97523ea3eab028b2, 0xeb72aea36720793e
-data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70
-data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94
-data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7
-data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7
-data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe
-data8 0x9902ae7487a9caa1, 0xea250c6224aab21a
-data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4
-data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638
-data8 0x3fdae939540d3f00, 0x3cc545c014943439
-data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706
-data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2
-data8 0x9aca09f835466186, 0xe8cba69df9f0bf35
-data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec
-data8 0x9b672266ab1e0136, 0xe855de74266193d4
-data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44
-data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b
-data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922
-data8 0x9ca995db058cabdc, 0xe76648a991511c6e
-data8 0x3fdc497a9c224780, 0x3cde08101c5b825b
-data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7
-data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120
-data8 0x9df765b9eecad5e6, 0xe6714846bdda7318
-data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf
-data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b
-data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c
-data8 0x9f51023562fc5676, 0xe576cbf239235ecb
-data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250
-data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7
-data8 0x3fddad5b02a82420, 0x3c89743b0b57534b
-data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e
-data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338
-data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191
-data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6
-data8 0xa22983528f3d8d49, 0xe3711694552da8a8
-data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31
-data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb
-data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825
-data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9
-data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65
-data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f
-data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a
-data8 0xa53727ca3e11b99e, 0xe1548f662951b00d
-data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd
-data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481
-data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a
-data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81
-data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057
-data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54
-data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d
-data8 0xa87e811a861df9b9, 0xdf20909061bb9760
-data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278
-data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd
-data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274
-data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22
-data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46
-data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed
-data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1
-data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92
-data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5
-data8 0xaf524e15640ebee4, 0xdabd54896f1029f6
-data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1
-data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41
-data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7
-data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6
-data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2
-data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930
-data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351
-data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1
-data8 0x3fe2aa64b32f7780, 0x3cba67314933077c
-data8 0xba0dc64d126cc135, 0xd4564563ce924481
-data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec
-data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8
-data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac
-data8 0xbef78e31985291a9, 0xd19672e2182f78be
-data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c
-data8 0xc19368b2b0629572, 0xd02baca5427e436a
-data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689
-data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d
-data8 0x3fe4300c7e945020, 0x3cbd367143da6582
-data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a
-data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63
-data8 0xca14e1b0622de526, 0xcbbe13773c3c5338
-data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c
-data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9
-data8 0x3fe5206cc637e000, 0x3ce2798b38e54193
-data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0
-data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68
-data8 0xd3c0d9f50057adda, 0xc70901152d59d16b
-data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab
-data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828
-data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5
-data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02
-data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee
-data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af
-data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d
-data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b
-data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321
-data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91
-data8 0x3fe76840418978a0, 0x3ccda46e85432c3d
-data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3
-data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3
-data8 0xf049183c3f53c39b, 0xbad848720223d3a8
-data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b
-data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48
-data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f
-data8 0xfa718f05adbf2c33, 0xb70432500286b185
-data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9
-data8 0xfff200c3f5489608, 0xb509e6454dca33cc
-data8 0x3fe9211b54441080, 0x3cb789cb53515688
-// The following table entries are not used
-//data8 0x82e138a0fac48700, 0xb3044a513a8e6132
-//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0
-//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88
-//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039
-//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c
-//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58
-//data8 0x8cad7a2c98dec333, 0xacab929ce114d451
-//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f
-//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec
-//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5
-//data8 0x9446d8191f80dd42, 0xa82ff92687235baf
-//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e
-//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58
-//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613
-//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b
-//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177
-//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03
-//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959
-//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec
-//data8 0x3fece4f404e29b20, 0x3cea3413401132b5
-//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c
-//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276
-//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb
-//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2
-//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c
-//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71
-//data8 0xbfea427678945732, 0x93d5990f9ee787af
-//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5
-//data8 0xc79611399b8c90c5, 0x90f72bde80febc31
-//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56
-//data8 0xcffa8425040624d7, 0x8e02b4418574ebed
-//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f
-//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024
-//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94
-//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b
-//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc
-//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a
-//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02
-//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6
-//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3
-//data8 0x84ac1fcec4203245, 0xfb73a828893df19e
-//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de
-//data8 0x8ca50621110c60e6, 0xf438a14c158d867c
-//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6
-//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da
-//data8 0x3ff1717418520340, 0x3ca5c2732533177c
-//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119
-//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5
-//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d
-//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a
-//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f
-//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7
-//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec
-//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746
-//data8 0xdfe323b8653af367, 0xc19107d99ab27e42
-//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02
-//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff
-//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43
-//data8 0x8ca77052f6c340f0, 0xacaf476f13806648
-//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff
-//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50
-//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c
-//data8 0xbe45074b05579024, 0x9478e362a07dd287
-//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12
-//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b
-//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69
-//data8 0x94503d69396d91c7, 0xedd2ce885ff04028
-//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b
-//data8 0xced1d96c5bb209e6, 0xc965278083808702
-//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c
-//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd
-//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e
-//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4
-//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb
-LOCAL_OBJECT_END(T_table)
+#include "libm_support.h"
+// Assembly macros
+//==============================================================
+FR_RESULT = f10
+FR_X = f8
+FR_Y = f1
+asin_P79 = f32
+asin_P59 = f33
+asin_P39 = f34
+asin_P19 = f35
+
+asin_P810 = f36
+asin_P610 = f37
+asin_P410 = f38
+asin_P210 = f39
+
+asin_A1 = f41
+asin_A2 = f42
+asin_A3 = f43
+asin_A4 = f44
+asin_A5 = f45
+asin_A6 = f46
+asin_A7 = f47
+asin_A8 = f48
+asin_A9 = f49
+asin_A10 = f50
+
+asin_X2 = f51
+asin_X4 = f52
+
+asin_B = f53
+asin_Bb = f54
+asin_C = f55
+asin_Cc = f56
+asin_D = f57
+
+asin_W = f58
+asin_Ww = f59
+
+asin_y0 = f60
+asin_y1 = f61
+asin_y2 = f62
+
+asin_H = f63
+asin_Hh = f64
+
+asin_t1 = f65
+asin_t2 = f66
+asin_t3 = f67
+asin_t4 = f68
+asin_t5 = f69
+
+asin_Pseries = f70
+asin_NORM_f8 = f71
+asin_ABS_NORM_f8 = f72
+
+asin_2m100 = f73
+asin_P1P2 = f74
+asin_HALF = f75
+asin_1mD = f76
+
+asin_1mB = f77
+asin_1mBmC = f78
+asin_S = f79
+
+asin_BmWW = f80
+asin_BmWWpb = f81
+asin_2W = f82
+asin_1d2W = f83
+asin_Dd = f84
+
+asin_XWw = f85
+asin_low = f86
+
+asin_pi_by_2 = f87
+asin_pi_by_2_lo = f88
+
+asin_GR_17_ones = r33
+asin_GR_16_ones = r34
+asin_GR_signexp_f8 = r35
+asin_GR_exp = r36
+asin_GR_true_exp = r37
+asin_GR_ff9b = r38
+
+GR_SAVE_B0 = r39
+GR_SAVE_SP = r40
+GR_SAVE_PFS = r33
+// r33 can be used safely.
+// r40 is address of table of coefficients
+// Later it is used to save sp across calls
+GR_SAVE_GP = r41
+asin_GR_fffe = r42
+asin_GR_retval = r43
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
+GR_Parameter_TAG = r47
+
+
+// 2^-40:
+// A true exponent of -40 is
+// : -40 + register_bias
+// : -28 + ffff = ffd7
+
+// A true exponent of -100 is
+// : -100 + register_bias
+// : -64 + ffff = ff9b
+
+// Data tables
+//==============================================================
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(poly_coeffs)
- // C_3
-data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc
- // C_5
-data8 0x999999999999999a, 0x0000000000003ffb
- // C_7, C_9
-data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8
- // pi/2 (low, high)
-data8 0x3C91A62633145C07, 0x3FF921FB54442D18
- // C_11, C_13
-data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e
- // C_15, C_17
-data8 0x3f8c99999999999a, 0x3f87a87878787223
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-R_DBL_S = r21
-R_EXP0 = r22
-R_EXP = r15
-R_SGNMASK = r23
-R_TMP = r24
-R_TMP2 = r25
-R_INDEX = r26
-R_TMP3 = r27
-R_TMP03 = r27
-R_TMP4 = r28
-R_TMP5 = r23
-R_TMP6 = r22
-R_TMP7 = r21
-R_T = r29
-R_BIAS = r20
-
-F_T = f6
-F_1S2 = f7
-F_1S2_S = f9
-F_INV_1T2 = f10
-F_SQRT_1T2 = f11
-F_S2T2 = f12
-F_X = f13
-F_D = f14
-F_2M64 = f15
-
-F_CS2 = f32
-F_CS3 = f33
-F_CS4 = f34
-F_CS5 = f35
-F_CS6 = f36
-F_CS7 = f37
-F_CS8 = f38
-F_CS9 = f39
-F_S23 = f40
-F_S45 = f41
-F_S67 = f42
-F_S89 = f43
-F_S25 = f44
-F_S69 = f45
-F_S29 = f46
-F_X2 = f47
-F_X4 = f48
-F_TSQRT = f49
-F_DTX = f50
-F_R = f51
-F_R2 = f52
-F_R3 = f53
-F_R4 = f54
-
-F_C3 = f55
-F_C5 = f56
-F_C7 = f57
-F_C9 = f58
-F_P79 = f59
-F_P35 = f60
-F_P39 = f61
-
-F_ATHI = f62
-F_ATLO = f63
-
-F_T1 = f64
-F_Y = f65
-F_Y2 = f66
-F_ANDMASK = f67
-F_ORMASK = f68
-F_S = f69
-F_05 = f70
-F_SQRT_1S2 = f71
-F_DS = f72
-F_Z = f73
-F_1T2 = f74
-F_DZ = f75
-F_ZE = f76
-F_YZ = f77
-F_Y1S2 = f78
-F_Y1S2X = f79
-F_1X = f80
-F_ST = f81
-F_1T2_ST = f82
-F_TSS = f83
-F_Y1S2X2 = f84
-F_DZ_TERM = f85
-F_DTS = f86
-F_DS2X = f87
-F_T2 = f88
-F_ZY1S2S = f89
-F_Y1S2_1X = f90
-F_TS = f91
-F_PI2_LO = f92
-F_PI2_HI = f93
-F_S19 = f94
-F_INV1T2_2 = f95
-F_CORR = f96
-F_DZ0 = f97
-
-F_C11 = f98
-F_C13 = f99
-F_C15 = f100
-F_C17 = f101
-F_P1113 = f102
-F_P1517 = f103
-F_P1117 = f104
-F_P317 = f105
-F_R8 = f106
-F_HI = f107
-F_1S2_HI = f108
-F_DS2 = f109
-F_Y2_2 = f110
-F_S2 = f111
-F_S_DS2 = f112
-F_S_1S2S = f113
-F_XL = f114
-F_2M128 = f115
-
+asin_coefficients:
+ASM_TYPE_DIRECTIVE(asin_coefficients,@object)
+data8 0xBB08911F2013961E, 0x00003FF8 // A10
+data8 0x981F1095A23A87D3, 0x00003FF8 // A9
+data8 0xBDF09C6C4177BCC6, 0x00003FF8 // A8
+data8 0xE4C3A60B049ACCEA, 0x00003FF8 // A7
+data8 0x8E2789F4E8A8F1AD, 0x00003FF9 // A6
+data8 0xB745D09B2B0E850B, 0x00003FF9 // A5
+data8 0xF8E38E3BC4C50920, 0x00003FF9 // A4
+data8 0xB6DB6DB6D89FCD81, 0x00003FFA // A3
+data8 0x99999999999AF376, 0x00003FFB // A2
+data8 0xAAAAAAAAAAAAAA71, 0x00003FFC // A1
+
+data8 0xc90fdaa22168c234, 0x00003FFF // pi_by_2_hi
+data8 0xc4c6628b80dc1cd1, 0x00003FBF // pi_by_2_lo
+ASM_SIZE_DIRECTIVE(asin_coefficients)
+
+.align 32
+.global asinl#
.section .text
-GLOBAL_LIBM_ENTRY(asinl)
-
-{.mfi
- // get exponent, mantissa (rounded to double precision) of s
- getf.d R_DBL_S = f8
- // 1-s^2
- fnma.s1 F_1S2 = f8, f8, f1
- // r2 = pointer to T_table
- addl r2 = @ltoff(T_table), gp
-}
-
-{.mfi
- // sign mask
- mov R_SGNMASK = 0x20000
- nop.f 0
- // bias-63-1
- mov R_TMP03 = 0xffff-64;;
-}
-
-
-{.mfi
- // get exponent of s
- getf.exp R_EXP = f8
- nop.f 0
- // R_TMP4 = 2^45
- shl R_TMP4 = R_SGNMASK, 45-17
-}
-
-{.mlx
- // load bias-4
- mov R_TMP = 0xffff-4
- // load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1)
- movl R_TMP2 = 0x7fcd413cccfe779a;;
-}
-
-
-{.mfi
- // load 2^{-64} in FP register
- setf.exp F_2M64 = R_TMP03
- nop.f 0
- // index = (0x7-exponent)|b1 b2.. b6
- extr.u R_INDEX = R_DBL_S, 46, 9
-}
-
-{.mfi
- // get t = sign|exponent|b1 b2.. b6 1 x.. x
- or R_T = R_DBL_S, R_TMP4
- nop.f 0
- // R_TMP4 = 2^45-1
- sub R_TMP4 = R_TMP4, r0, 1;;
-}
-
-
-{.mfi
- // get t = sign|exponent|b1 b2.. b6 1 0.. 0
- andcm R_T = R_T, R_TMP4
- nop.f 0
- // eliminate sign from R_DBL_S (shift left by 1)
- shl R_TMP3 = R_DBL_S, 1
-}
-
-{.mfi
- // R_BIAS = 3*2^6
- mov R_BIAS = 0xc0
- nop.f 0
- // eliminate sign from R_EXP
- andcm R_EXP0 = R_EXP, R_SGNMASK;;
-}
-
-
-
-{.mfi
- // load start address for T_table
- ld8 r2 = [r2]
- nop.f 0
- // p8 = 1 if |s|> = sqrt(2)/2
- cmp.geu p8, p0 = R_TMP3, R_TMP2
-}
-
-{.mlx
- // p7 = 1 if |s|<2^{-4} (exponent of s<bias-4)
- cmp.lt p7, p0 = R_EXP0, R_TMP
- // sqrt coefficient cs8 = -33*13/128
- movl R_TMP2 = 0xc0568000;;
-}
-
-
-
-{.mbb
- // load t in FP register
- setf.d F_T = R_T
- // if |s|<2^{-4}, take alternate path
- (p7) br.cond.spnt SMALL_S
- // if |s|> = sqrt(2)/2, take alternate path
- (p8) br.cond.sptk LARGE_S
-}
-
-{.mlx
- // index = (4-exponent)|b1 b2.. b6
- sub R_INDEX = R_INDEX, R_BIAS
- // sqrt coefficient cs9 = 55*13/128
- movl R_TMP = 0x40b2c000;;
-}
-
-
-{.mfi
- // sqrt coefficient cs8 = -33*13/128
- setf.s F_CS8 = R_TMP2
- nop.f 0
- // shift R_INDEX by 5
- shl R_INDEX = R_INDEX, 5
-}
-
-{.mfi
- // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
- mov R_TMP4 = 0xffff - 1
- nop.f 0
- // sqrt coefficient cs6 = -21/16
- mov R_TMP6 = 0xbfa8;;
-}
-
-
-{.mlx
- // table index
- add r2 = r2, R_INDEX
- // sqrt coefficient cs7 = 33/16
- movl R_TMP2 = 0x40040000;;
-}
-
-
-{.mmi
- // load cs9 = 55*13/128
- setf.s F_CS9 = R_TMP
- // sqrt coefficient cs5 = 7/8
- mov R_TMP3 = 0x3f60
- // sqrt coefficient cs6 = 21/16
- shl R_TMP6 = R_TMP6, 16;;
-}
-
-
-{.mmi
- // load significand of 1/(1-t^2)
- ldf8 F_INV_1T2 = [r2], 8
- // sqrt coefficient cs7 = 33/16
- setf.s F_CS7 = R_TMP2
- // sqrt coefficient cs4 = -5/8
- mov R_TMP5 = 0xbf20;;
-}
-
-
-{.mmi
- // load significand of sqrt(1-t^2)
- ldf8 F_SQRT_1T2 = [r2], 8
- // sqrt coefficient cs6 = 21/16
- setf.s F_CS6 = R_TMP6
- // sqrt coefficient cs5 = 7/8
- shl R_TMP3 = R_TMP3, 16;;
-}
-
-
-{.mmi
- // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
- setf.exp F_CS3 = R_TMP4
- // r3 = pointer to polynomial coefficients
- addl r3 = @ltoff(poly_coeffs), gp
- // sqrt coefficient cs4 = -5/8
- shl R_TMP5 = R_TMP5, 16;;
-}
-
-
-{.mfi
- // sqrt coefficient cs5 = 7/8
- setf.s F_CS5 = R_TMP3
- // d = s-t
- fms.s1 F_D = f8, f1, F_T
- // set p6 = 1 if s<0, p11 = 1 if s> = 0
- cmp.ge p6, p11 = R_EXP, R_DBL_S
-}
-
-{.mfi
- // r3 = load start address to polynomial coefficients
- ld8 r3 = [r3]
- // s+t
- fma.s1 F_S2T2 = f8, f1, F_T
- nop.i 0;;
-}
-
-
-{.mfi
- // sqrt coefficient cs4 = -5/8
- setf.s F_CS4 = R_TMP5
- // s^2-t^2
- fma.s1 F_S2T2 = F_S2T2, F_D, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load C3
- ldfe F_C3 = [r3], 16
- // 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2))
- fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
- nop.i 0;;
-}
-
-{.mfi
- // load C_5
- ldfe F_C5 = [r3], 16
- // set correct exponent for sqrt(1-t^2)
- fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load C_7, C_9
- ldfpd F_C7, F_C9 = [r3]
- // x = -(s^2-t^2)/(1-t^2)/2
- fnma.s1 F_X = F_INV_1T2, F_S2T2, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load asin(t)_high, asin(t)_low
- ldfpd F_ATHI, F_ATLO = [r2]
- // t*sqrt(1-t^2)
- fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // cs9*x+cs8
- fma.s1 F_S89 = F_CS9, F_X, F_CS8
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // cs7*x+cs6
- fma.s1 F_S67 = F_CS7, F_X, F_CS6
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // cs5*x+cs4
- fma.s1 F_S45 = F_CS5, F_X, F_CS4
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x*x
- fma.s1 F_X2 = F_X, F_X, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (s-t)-t*x
- fnma.s1 F_DTX = F_T, F_X, F_D
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // cs3*x+cs2 (cs2 = -0.5 = -cs3)
- fms.s1 F_S23 = F_CS3, F_X, F_CS3
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // cs9*x^3+cs8*x^2+cs7*x+cs6
- fma.s1 F_S69 = F_S89, F_X2, F_S67
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x^4
- fma.s1 F_X4 = F_X2, F_X2, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // t*sqrt(1-t^2)*x^2
- fma.s1 F_TSQRT = F_TSQRT, F_X2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // cs5*x^3+cs4*x^2+cs3*x+cs2
- fma.s1 F_S25 = F_S45, F_X2, F_S23
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // ((s-t)-t*x)*sqrt(1-t^2)
- fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // if sign is negative, negate table values: asin(t)_low
- (p6) fnma.s1 F_ATLO = F_ATLO, f1, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2
- fma.s1 F_S29 = F_S69, F_X4, F_S25
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // if sign is negative, negate table values: asin(t)_high
- (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29
- fnma.s1 F_R = F_S29, F_TSQRT, F_DTX
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // R^2
- fma.s1 F_R2 = F_R, F_R, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // c7+c9*R^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R3 = F_R2, F_R, f0
- nop.i 0;;
-}
-
-
-
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_P39 = F_P39, F_R3, F_ATLO
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_P39 = F_P39, f1, F_R
- nop.i 0;;
-}
-
-
-{.mfb
- nop.m 0
- // result = asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s0 f8 = F_ATHI, f1, F_P39
- // return
- br.ret.sptk b0;;
-}
-
-
-
-
-LARGE_S:
-
-{.mfi
- // bias-1
- mov R_TMP3 = 0xffff - 1
- // y ~ 1/sqrt(1-s^2)
- frsqrta.s1 F_Y, p7 = F_1S2
- // c9 = 55*13*17/128
- mov R_TMP4 = 0x10af7b
-}
-
-{.mlx
- // c8 = -33*13*15/128
- mov R_TMP5 = 0x184923
- movl R_TMP2 = 0xff00000000000000;;
-}
-
-{.mfi
- // set p6 = 1 if s<0, p11 = 1 if s>0
- cmp.ge p6, p11 = R_EXP, R_DBL_S
- // 1-s^2
- fnma.s1 F_1S2 = f8, f8, f1
- // set p9 = 1
- cmp.eq p9, p0 = r0, r0;;
-}
+.proc asinl#
+.align 32
-{.mfi
- // load 0.5
- setf.exp F_05 = R_TMP3
- // (1-s^2) rounded to single precision
- fnma.s.s1 F_1S2_S = f8, f8, f1
- // c9 = 55*13*17/128
- shl R_TMP4 = R_TMP4, 10
-}
-
-{.mlx
- // AND mask for getting t ~ sqrt(1-s^2)
- setf.sig F_ANDMASK = R_TMP2
- // OR mask
- movl R_TMP2 = 0x0100000000000000;;
-}
-
-
-{.mfi
- nop.m 0
- // (s^2)_s
- fma.s.s1 F_S2 = f8, f8, f0
- nop.i 0;;
-}
-
-
-{.mmi
- // c9 = 55*13*17/128
- setf.s F_CS9 = R_TMP4
- // c7 = 33*13/16
- mov R_TMP4 = 0x41d68
- // c8 = -33*13*15/128
- shl R_TMP5 = R_TMP5, 11;;
-}
-
-
-{.mfi
- setf.sig F_ORMASK = R_TMP2
- // y^2
- fma.s1 F_Y2 = F_Y, F_Y, f0
- // c7 = 33*13/16
- shl R_TMP4 = R_TMP4, 12
-}
-
-{.mfi
- // c6 = -33*7/16
- mov R_TMP6 = 0xc1670
- // y' ~ sqrt(1-s^2)
- fma.s1 F_T1 = F_Y, F_1S2, f0
- // c5 = 63/8
- mov R_TMP7 = 0x40fc;;
-}
-
-
-{.mlx
- // load c8 = -33*13*15/128
- setf.s F_CS8 = R_TMP5
- // c4 = -35/8
- movl R_TMP5 = 0xc08c0000;;
-}
-
-{.mfi
- // r3 = pointer to polynomial coefficients
- addl r3 = @ltoff(poly_coeffs), gp
- // 1-(1-s^2)_s
- fnma.s1 F_DS = F_1S2_S, f1, f1
- // p9 = 0 if p7 = 1 (p9 = 1 for special cases only)
- (p7) cmp.ne p9, p0 = r0, r0
-}
-
-{.mlx
- // load c7 = 33*13/16
- setf.s F_CS7 = R_TMP4
- // c3 = 5/2
- movl R_TMP4 = 0x40200000;;
-}
-
-
-{.mfi
- nop.m 0
- // 1-(s^2)_s
- fnma.s1 F_S_1S2S = F_S2, f1, f1
- nop.i 0
-}
-
-{.mlx
- // load c4 = -35/8
- setf.s F_CS4 = R_TMP5
- // c2 = -3/2
- movl R_TMP5 = 0xbfc00000;;
-}
-
-
-{.mfi
- // load c3 = 5/2
- setf.s F_CS3 = R_TMP4
- // x = (1-s^2)_s*y^2-1
- fms.s1 F_X = F_1S2_S, F_Y2, f1
- // c6 = -33*7/16
- shl R_TMP6 = R_TMP6, 12
-}
-
-{.mfi
- nop.m 0
- // y^2/2
- fma.s1 F_Y2_2 = F_Y2, F_05, f0
- nop.i 0;;
-}
-
-
-{.mfi
- // load c6 = -33*7/16
- setf.s F_CS6 = R_TMP6
- // eliminate lower bits from y'
- fand F_T = F_T1, F_ANDMASK
- // c5 = 63/8
- shl R_TMP7 = R_TMP7, 16
-}
-
-{.mfb
- // r3 = load start address to polynomial coefficients
- ld8 r3 = [r3]
- // 1-(1-s^2)_s-s^2
- fnma.s1 F_DS = f8, f8, F_DS
- // p9 = 1 if s is a special input (NaN, or |s|> = 1)
- (p9) br.cond.spnt ASINL_SPECIAL_CASES;;
-}
-
-{.mmf
- // get exponent, significand of y' (in single prec.)
- getf.s R_TMP = F_T1
- // load c3 = -3/2
- setf.s F_CS2 = R_TMP5
- // y*(1-s^2)
- fma.s1 F_Y1S2 = F_Y, F_1S2, f0;;
-}
-
-
-{.mfi
- nop.m 0
- // x' = (y^2/2)*(1-(s^2)_s)-0.5
- fms.s1 F_XL = F_Y2_2, F_S_1S2S, F_05
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // s^2-(s^2)_s
- fms.s1 F_S_DS2 = f8, f8, F_S2
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // if s<0, set s = -s
- (p6) fnma.s1 f8 = f8, f1, f0
- nop.i 0;;
-}
-
-{.mfi
- // load c5 = 63/8
- setf.s F_CS5 = R_TMP7
- // x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2
- fma.s1 F_X = F_DS, F_Y2, F_X
- // for t = 2^k*1.b1 b2.., get 7-k|b1.. b6
- extr.u R_INDEX = R_TMP, 17, 9;;
-}
-
-
-{.mmi
- // index = (4-exponent)|b1 b2.. b6
- sub R_INDEX = R_INDEX, R_BIAS
- nop.m 0
- // get exponent of y
- shr.u R_TMP2 = R_TMP, 23;;
-}
-
-{.mmi
- // load C3
- ldfe F_C3 = [r3], 16
- // set p8 = 1 if y'<2^{-4}
- cmp.gt p8, p0 = 0x7b, R_TMP2
- // shift R_INDEX by 5
- shl R_INDEX = R_INDEX, 5;;
-}
-
-
-{.mfb
- // get table index for sqrt(1-t^2)
- add r2 = r2, R_INDEX
- // get t = 2^k*1.b1 b2.. b7 1
- for F_T = F_T, F_ORMASK
- (p8) br.cond.spnt VERY_LARGE_INPUT;;
-}
-
-
-
-{.mmf
- // load C5
- ldfe F_C5 = [r3], 16
- // load 1/(1-t^2)
- ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16
- // x = ((1-s^2)*y^2-1)/2
- fma.s1 F_X = F_X, F_05, f0;;
-}
-
-
-
-{.mmf
- nop.m 0
- // C7, C9
- ldfpd F_C7, F_C9 = [r3], 16
- // set correct exponent for t
- fmerge.se F_T = F_T1, F_T;;
-}
-
-
-
-{.mfi
- // pi/2 (low, high)
- ldfpd F_PI2_LO, F_PI2_HI = [r3]
- // c9*x+c8
- fma.s1 F_S89 = F_X, F_CS9, F_CS8
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x^2
- fma.s1 F_X2 = F_X, F_X, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // y*(1-s^2)*x
- fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c7*x+c6
- fma.s1 F_S67 = F_X, F_CS7, F_CS6
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // 1-x
- fnma.s1 F_1X = F_X, f1, f1
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c3*x+c2
- fma.s1 F_S23 = F_X, F_CS3, F_CS2
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // 1-t^2
- fnma.s1 F_1T2 = F_T, F_T, f1
- nop.i 0
-}
-
-{.mfi
- // load asin(t)_high, asin(t)_low
- ldfpd F_ATHI, F_ATLO = [r2]
- // c5*x+c4
- fma.s1 F_S45 = F_X, F_CS5, F_CS4
- nop.i 0;;
-}
-
-
-
-{.mfi
- nop.m 0
- // t*s
- fma.s1 F_TS = F_T, f8, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // 0.5/(1-t^2)
- fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // z~sqrt(1-t^2), rounded to 24 significant bits
- fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // sqrt(1-t^2)
- fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // y*(1-s^2)*x^2
- fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // x^4
- fma.s1 F_X4 = F_X2, F_X2, f0
- nop.i 0;;
-}
+asinl:
-
-{.mfi
- nop.m 0
- // s*t rounded to 24 significant bits
- fma.s.s1 F_TSS = F_T, f8, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c9*x^3+..+c6
- fma.s1 F_S69 = F_X2, F_S89, F_S67
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // ST = (t^2-1+s^2) rounded to 24 significant bits
- fms.s.s1 F_ST = f8, f8, F_1T2
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c5*x^3+..+c2
- fma.s1 F_S25 = F_X2, F_S45, F_S23
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // 0.25/(1-t^2)
- fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // t*s-sqrt(1-t^2)*(1-s^2)*y
- fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // z*0.5/(1-t^2)
- fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // z^2+t^2-1
- fms.s1 F_DZ0 = F_Z, F_Z, F_1T2
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (1-s^2-(1-s^2)_s)*x
- fma.s1 F_DS2X = F_X, F_DS, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // t*s-(t*s)_s
- fms.s1 F_DTS = F_T, f8, F_TSS
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c9*x^7+..+c2
- fma.s1 F_S29 = F_X4, F_S69, F_S25
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // y*z
- fma.s1 F_YZ = F_Z, F_Y, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // t^2
- fma.s1 F_T2 = F_T, F_T, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // 1-t^2+ST
- fma.s1 F_1T2_ST = F_ST, f1, F_1T2
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // y*(1-s^2)(1-x)
- fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // dz ~ sqrt(1-t^2)-z
- fma.s1 F_DZ = F_DZ0, F_ZE, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // -1+correction for sqrt(1-t^2)-z
- fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (PS29*x^2+x)*y*(1-s^2)
- fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // z*y*(1-s^2)_s
- fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // s^2-(1-t^2+ST)
- fms.s1 F_1T2_ST = f8, f8, F_1T2_ST
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x
- fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // dz*y*(1-s^2)*(1-x)
- fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19
- // (used for polynomial evaluation)
- fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (PS29*x^2)*y*(1-s^2)
- fma.s1 F_S29 = F_Y1S2X2, F_S29, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // apply correction to dz*y*(1-s^2)*(1-x)
- fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // R^2
- fma.s1 F_R2 = F_R, F_R, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x)
- fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // c7+c9*R^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // asin(t)_low-(pi/2)_low
- fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // R^4
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R3 = F_R2, F_R, f0
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (t*s)_s-t^2*y*z
- fnma.s1 F_TSS = F_T2, F_YZ, F_TSS
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)
- fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (pi/2)_hi-asin(t)_hi
- fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI
- nop.i 0
+{ .mfi
+ alloc r32 = ar.pfs,1,11,4,0
+(p0) fnorm asin_NORM_f8 = f8
+(p0) mov asin_GR_17_ones = 0x1ffff
}
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0;;
+{ .mii
+(p0) mov asin_GR_16_ones = 0xffff
+(p0) mov asin_GR_ff9b = 0xff9b ;;
+ nop.i 999
}
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29
- fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM
- nop.i 0;;
+{ .mmi
+(p0) setf.exp asin_2m100 = asin_GR_ff9b
+(p0) addl r40 = @ltoff(asin_coefficients), gp
+ nop.i 999
}
+;;
-
-{.mfi
- nop.m 0
- // (t*s)_s-t^2*y*z+z*y*ST
- fma.s1 F_TSS = F_YZ, F_ST, F_TSS
- nop.i 0
+{ .mmi
+ ld8 r40 = [r40]
+ nop.m 999
+ nop.i 999
}
+;;
-{.mfi
- nop.m 0
- // -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fms.s1 F_P39 = F_P39, F_R3, F_ATLO
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // if s<0, change sign of F_ATHI
- (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
- nop.i 0
-}
+// Load the constants
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 +
- // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM
- nop.i 0;;
+{ .mmi
+(p0) ldfe asin_A10 = [r40],16 ;;
+(p0) ldfe asin_A9 = [r40],16
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
- // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
- fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM
- nop.i 0;;
+{ .mmi
+(p0) ldfe asin_A8 = [r40],16 ;;
+(p0) ldfe asin_A7 = [r40],16
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
- // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
- // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) +
- // + (t*s)_s-t^2*y*z+z*y*ST
- fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM
- nop.i 0;;
+{ .mmi
+(p0) ldfe asin_A6 = [r40],16 ;;
+(p0) getf.exp asin_GR_signexp_f8 = asin_NORM_f8
+ nop.i 999
}
-
-.pred.rel "mutex", p6, p11
-{.mfi
- nop.m 0
- // result: add high part of pi/2-table value
- // s>0 in this case
- (p11) fma.s0 f8 = F_DZ_TERM, f1, F_ATHI
- nop.i 0
+{ .mmi
+(p0) ldfe asin_A5 = [r40],16 ;;
+(p0) ldfe asin_A4 = [r40],16
+ nop.i 999 ;;
}
-{.mfb
- nop.m 0
- // result: add high part of pi/2-table value
- // if s<0
- (p6) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI
- br.ret.sptk b0;;
+{ .mfi
+ nop.m 999
+(p0) fmerge.s asin_ABS_NORM_f8 = f0, asin_NORM_f8
+(p0) and asin_GR_exp = asin_GR_signexp_f8, asin_GR_17_ones ;;
}
+// case 1: |x| < 2^-40 ==> p6 (includes x = +-0)
+// case 2: 2^-40 <= |x| < 2^-2 ==> p8
+// case 3: 2^-2 <= |x| < 1 ==> p9
+// case 4: 1 <= |x| ==> p11
+// In case 4, we pick up the special case x = +-1 and return +-pi/2
-
-
-
-
-SMALL_S:
-
- // use 15-term polynomial approximation
-
-{.mmi
- // r3 = pointer to polynomial coefficients
- addl r3 = @ltoff(poly_coeffs), gp;;
- // load start address for coefficients
- ld8 r3 = [r3]
- mov R_TMP = 0x3fbf;;
+{ .mii
+(p0) ldfe asin_A3 = [r40],16
+(p0) sub asin_GR_true_exp = asin_GR_exp, asin_GR_16_ones ;;
+(p0) cmp.ge.unc p6, p7 = -41, asin_GR_true_exp ;;
}
-
-{.mmi
- add r2 = 64, r3
- ldfe F_C3 = [r3], 16
- // p7 = 1 if |s|<2^{-64} (exponent of s<bias-64)
- cmp.lt p7, p0 = R_EXP0, R_TMP;;
+{ .mii
+(p0) ldfe asin_A2 = [r40],16
+(p7) cmp.ge.unc p8, p9 = -3, asin_GR_true_exp ;;
+(p9) cmp.ge.unc p10, p11 = -1, asin_GR_true_exp
}
-{.mmf
- ldfe F_C5 = [r3], 16
- ldfpd F_C11, F_C13 = [r2], 16
- // 2^{-128}
- fma.s1 F_2M128 = F_2M64, F_2M64, f0;;
+{ .mmi
+(p0) ldfe asin_A1 = [r40],16 ;;
+(p0) ldfe asin_pi_by_2 = [r40],16
+ nop.i 999
}
-{.mmf
- ldfpd F_C7, F_C9 = [r3]
- ldfpd F_C15, F_C17 = [r2]
- // if |s|<2^{-64}, return s+2^{-128}*s
- (p7) fma.s0 f8 = f8, F_2M128, f8;;
+// case 4: |x| >= 1
+{ .mib
+ nop.m 999
+ nop.i 999
+(p11) br.spnt L(ASIN_ERROR_RETURN) ;;
}
-
-
-{.mfb
- nop.m 0
- // s^2
- fma.s1 F_R2 = f8, f8, f0
- // if |s|<2^{-64}, return s
- (p7) br.ret.spnt b0;;
+// case 1: |x| < 2^-40
+{ .mfb
+ nop.m 999
+(p6) fma.s0 f8 = asin_2m100,f8,f8
+(p6) br.ret.spnt b0 ;;
}
-{.mfi
- nop.m 0
- // s^3
- fma.s1 F_R3 = f8, F_R2, f0
- nop.i 0
-}
-
-{.mfi
- nop.m 0
- // s^4
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0;;
+// case 2: 2^-40 <= |x| < 2^-2 ==> p8
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_X2 = f8,f8, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+c5*s^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_X4 = asin_X2,asin_X2, f0
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c11+c13*s^2
- fma.s1 F_P1113 = F_C13, F_R2, F_C11
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P810 = asin_X4, asin_A10, asin_A8
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // c7+c9*s^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P79 = asin_X4, asin_A9, asin_A7
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c15+c17*s^2
- fma.s1 F_P1517 = F_C17, F_R2, F_C15
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P610 = asin_X4, asin_P810, asin_A6
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // s^8
- fma.s1 F_R8 = F_R4, F_R4, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P59 = asin_X4, asin_P79, asin_A5
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+c5*s^2+c7*s^4+c9*s^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P410 = asin_X4, asin_P610, asin_A4
+ nop.i 999
}
-{.mfi
- nop.m 0
- // c11+c13*s^2+c15*s^4+c17*s^6
- fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P39 = asin_X4, asin_P59, asin_A3
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+..+c17*s^14
- fma.s1 F_P317 = F_R8, F_P1117, F_P39
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P210 = asin_X4, asin_P410, asin_A2
+ nop.i 999
}
-
-{.mfb
- nop.m 0
- // result
- fma.s0 f8 = F_P317, F_R3, f8
- br.ret.sptk b0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P19 = asin_X4, asin_P39, asin_A1
+ nop.i 999 ;;
}
-
-{.mfb
- nop.m 0
- fma.s0 f8 = F_P317, F_R3, f0//F_P317, F_R3, F_S29
- // nop.f 0//fma.s0 f8 = f13, f6, f0
- br.ret.sptk b0;;
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P1P2 = asin_X2, asin_P210, asin_P19
+ nop.i 999 ;;
}
-
-
-
-
- VERY_LARGE_INPUT:
-
-{.mfi
- nop.m 0
- // s rounded to 24 significant bits
- fma.s.s1 F_S = f8, f1, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p8) fma.s1 asin_P1P2 = asin_X2, asin_P1P2, f0
+ nop.i 999 ;;
}
-{.mfi
- // load C5
- ldfe F_C5 = [r3], 16
- // x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2
- fnma.s1 F_X = F_S_DS2, F_Y2_2, F_XL
- nop.i 0;;
+{ .mfb
+ nop.m 999
+(p8) fma.s0 f8 = asin_NORM_f8, asin_P1P2, asin_NORM_f8
+(p8) br.ret.spnt b0 ;;
}
+// case 3: 2^-2 <= |x| < 1
+// 1- X*X is computed as B + b
+// Step 1.1: Get B and b
-
-{.mmf
- nop.m 0
- // C7, C9
- ldfpd F_C7, F_C9 = [r3], 16
- nop.f 0;;
-}
-
+// atan2 will return
+// f8 = Z_hi
+// f10 = Z_lo
+// f11 = s_lo
-{.mfi
- // pi/2 (low, high)
- ldfpd F_PI2_LO, F_PI2_HI = [r3], 16
- // c9*x+c8
- fma.s1 F_S89 = F_X, F_CS9, F_CS8
- nop.i 0
-}
+{ .mfi
+(p0) mov asin_GR_fffe = 0xfffe
+(p0) fmerge.se f8 = asin_ABS_NORM_f8, asin_ABS_NORM_f8
+nop.i 0
+};;
-{.mfi
- nop.m 0
- // x^2
- fma.s1 F_X2 = F_X, F_X, f0
- nop.i 0;;
+{ .mmf
+nop.m 0
+(p0) setf.exp asin_HALF = asin_GR_fffe
+(p0) fmerge.se f12 = asin_NORM_f8, asin_NORM_f8 ;;
}
-{.mfi
- nop.m 0
- // y*(1-s^2)*x
- fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
- nop.i 0
-}
-
-{.mfi
- // C11, C13
- ldfpd F_C11, F_C13 = [r3], 16
- // c7*x+c6
- fma.s1 F_S67 = F_X, F_CS7, F_CS6
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p6,p7 = asin_ABS_NORM_f8, asin_HALF
+ nop.i 999 ;;
}
-
-{.mfi
- // C15, C17
- ldfpd F_C15, F_C17 = [r3], 16
- // c3*x+c2
- fma.s1 F_S23 = F_X, F_CS3, F_CS2
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p7) fma.s1 asin_D = f1,f1,asin_ABS_NORM_f8
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // c5*x+c4
- fma.s1 F_S45 = F_X, F_CS5, F_CS4
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p7) fms.s1 asin_C = f1,f1,asin_ABS_NORM_f8
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (s_s)^2
- fma.s1 F_DS = F_S, F_S, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p7) fma.s1 asin_B = asin_C, asin_D, f0
+ nop.i 999
}
-{.mfi
- nop.m 0
- // 1-(s_s)^2
- fnma.s1 F_1S2_S = F_S, F_S, f1
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p7) fms.s1 asin_1mD = f1,f1,asin_D
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // y*(1-s^2)*x^2
- fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p7) fma.s1 asin_Dd = asin_1mD,f1, asin_ABS_NORM_f8
+ nop.i 999
}
-{.mfi
- nop.m 0
- // x^4
- fma.s1 F_X4 = F_X2, F_X2, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p7) fms.s1 asin_Bb = asin_C, asin_D, asin_B
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c9*x^3+..+c6
- fma.s1 F_S69 = F_X2, F_S89, F_S67
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p7) fma.s1 asin_Bb = asin_C, asin_Dd, asin_Bb
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // c5*x^3+..+c2
- fma.s1 F_S25 = F_X2, F_S45, F_S23
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p6) fma.s1 asin_C = asin_ABS_NORM_f8, asin_ABS_NORM_f8, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // ((s_s)^2-s^2)
- fnma.s1 F_DS = f8, f8, F_DS
- nop.i 0
+{ .mfi
+ nop.m 999
+(p6) fms.s1 asin_B = f1, f1, asin_C
+ nop.i 999
}
-{.mfi
- nop.m 0
- // (pi/2)_high-y*(1-(s_s)^2)
- fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p6) fms.s1 asin_Cc = asin_ABS_NORM_f8, asin_ABS_NORM_f8, asin_C
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c9*x^7+..+c2
- fma.s1 F_S29 = F_X4, F_S69, F_S25
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_Hh = asin_HALF, asin_B, f0
+ nop.i 999
}
-
-{.mfi
- nop.m 0
- // -(y*(1-(s_s)^2))_high
- fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p6) fms.s1 asin_1mB = f1, f1, asin_B
+ nop.i 999 ;;
}
+// Step 1.2:
+// sqrt(B + b) is computed as W + w
+// Get W
-{.mfi
- nop.m 0
- // (PS29*x^2+x)*y*(1-s^2)
- fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) frsqrta.s1 asin_y0,p8 = asin_B
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // y*(1-(s_s)^2)-(y*(1-s^2))_high
- fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p6) fms.s1 asin_1mBmC = asin_1mB, f1, asin_C
+ nop.i 999 ;;
}
-
-
-{.mfi
- nop.m 0
- // R ~ sqrt(1-s^2)
- // (used for polynomial evaluation)
- fnma.s1 F_R = F_S19, f1, F_Y1S2
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_t1 = asin_y0, asin_y0, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // y*(1-s^2)-(y*(1-s^2))_high
- fma.s1 F_DS2 = F_Y, F_DS, F_DS2
- nop.i 0
+{ .mfi
+ nop.m 999
+(p6) fms.s1 asin_Bb = asin_1mBmC, f1, asin_Cc
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // (pi/2)_low+(PS29*x^2)*y*(1-s^2)
- fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 asin_t2 = asin_t1, asin_Hh, asin_HALF
+ nop.i 999 ;;
}
-
-
-{.mfi
- nop.m 0
- // R^2
- fma.s1 F_R2 = F_R, F_R, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_y1 = asin_t2, asin_y0, asin_y0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)
- fms.s1 F_S29 = F_S29, f1, F_DS2
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_t3 = asin_y1, asin_Hh, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c7+c9*R^2
- fma.s1 F_P79 = F_C9, F_R2, F_C7
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 asin_t4 = asin_t3, asin_y1, asin_HALF
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c3+c5*R^2
- fma.s1 F_P35 = F_C5, F_R2, F_C3
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_y2 = asin_t4, asin_y1, asin_y1
+ nop.i 999 ;;
}
-
-
-{.mfi
- nop.m 0
- // R^4
- fma.s1 F_R4 = F_R2, F_R2, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_S = asin_B, asin_y2, f0
+ nop.i 999
}
-{.mfi
- nop.m 0
- // R^3
- fma.s1 F_R3 = F_R2, F_R, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_H = asin_y2, asin_HALF, f0
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c11+c13*R^2
- fma.s1 F_P1113 = F_C13, F_R2, F_C11
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_t5 = asin_Hh, asin_y2, f0
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // c15+c17*R^2
- fma.s1 F_P1517 = F_C17, F_R2, F_C15
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 asin_Dd = asin_S, asin_S, asin_B
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x
- fma.s1 F_S29 = F_Y1S2, F_X, F_S29
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_W = asin_Dd, asin_H, asin_S
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c11+c13*R^2+c15*R^4+c17*R^6
- fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_2W = asin_W, f1, asin_W
+ nop.i 999
}
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6
- fma.s1 F_P39 = F_P79, F_R4, F_P35
- nop.i 0;;
+// Step 1.3
+// Get w
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 asin_BmWW = asin_W, asin_W, asin_B
+ nop.i 999 ;;
}
+// Step 2
+// asin(x) = atan2(X,sqrt(1-X*X))
+// = atan2(X, W) -Xw
+// corr = Xw
+// asin(x) = Z_hi + (s_lo*Z_lo - corr)
+// Call atan2(X, W)
+// Save W in f9
+// Save X in f12
+// Save w in f13
-{.mfi
- nop.m 0
- // R^8
- fma.s1 F_R8 = F_R4, F_R4, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fmerge.se f9 = asin_W, asin_W
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14
- fma.s1 F_P317 = F_P1117, F_R8, F_P39
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_BmWWpb = asin_BmWW, f1, asin_Bb
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
- // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
- fnma.s1 F_S29 = F_P317, F_R3, F_S29
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) frcpa.s1 asin_1d2W,p9 = f1, asin_2W
+ nop.i 999 ;;
}
-{.mfi
- nop.m 0
- // set sign
- (p6) fnma.s1 F_S29 = F_S29, f1, f0
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 asin_Ww = asin_BmWWpb, asin_1d2W, f0
+ nop.i 999 ;;
}
+.endp asinl
+ASM_SIZE_DIRECTIVE(asinl)
-{.mfi
- nop.m 0
- (p6) fnma.s1 F_HI = F_HI, f1, f0
- nop.i 0;;
+.proc __libm_callout
+__libm_callout:
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+};;
+{ .mfi
+ mov GR_SAVE_GP=gp // Save gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
}
-
-
+.body
{.mfb
- nop.m 0
- // Result:
- // (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
- // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
- // +(pi/2)_high-(y*(1-s^2))_high
- fma.s0 f8 = F_S29, f1, F_HI
- br.ret.sptk b0;;
-}
-
-
-
-
-
-
-
-
-
- ASINL_SPECIAL_CASES:
-
-{.mfi
- alloc r32 = ar.pfs, 1, 4, 4, 0
- // check if the input is a NaN, or unsupported format
- // (i.e. not infinity or normal/denormal)
- fclass.nm p7, p8 = f8, 0x3f
- // pointer to pi/2
- add r3 = 48, r3;;
-}
-
+ nop.m 0
+(p0) fmerge.se f13 = asin_Ww, asin_Ww
+(p0) br.call.sptk.many b0=__libm_atan2_reg#
+};;
+{ .mfi
+ mov gp = GR_SAVE_GP // Restore gp
+(p0) fma.s1 asin_XWw = asin_ABS_NORM_f8,f13,f0
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
+// asin_XWw = Xw = corr
+// asin_low = (s_lo * Z_lo - corr)
+// f8 = Z_hi + (s_lo * Z_lo - corr)
-{.mfi
- // load pi/2
- ldfpd F_PI2_HI, F_PI2_LO = [r3]
- // get |s|
- fmerge.s F_S = f0, f8
- nop.i 0
-}
+{ .mfi
+ nop.m 999
+(p0) fms.s1 asin_low = f11, f10, asin_XWw
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+};;
-{.mfb
- nop.m 0
- // if NaN, quietize it, and return
- (p7) fma.s0 f8 = f8, f1, f0
- (p7) br.ret.spnt b0;;
+{ .mfi
+ nop.m 999
+(p0) fma.s0 f8 = f8, f1, asin_low
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // |s| = 1 ?
- fcmp.eq.s0 p9, p0 = F_S, f1
- nop.i 0
+{ .mfb
+ nop.m 999
+(p0) fmerge.s f8 = f12,f8
+(p0) br.ret.sptk b0 ;;
}
+.endp __libm_callout
+ASM_SIZE_DIRECTIVE(__libm_callout)
-{.mfi
- nop.m 0
- // load FR_X
- fma.s1 FR_X = f8, f1, f0
- // load error tag
- mov GR_Parameter_TAG = 60;;
-}
+.proc SPECIAL
+SPECIAL:
+L(ASIN_ERROR_RETURN):
+// If X is 1, return (sign of X)pi/2
-{.mfb
- nop.m 0
- // change sign if s = -1
- (p6) fnma.s1 F_PI2_HI = F_PI2_HI, f1, f0
- nop.b 0
+{ .mfi
+ nop.m 999
+(p0) fcmp.eq.unc p6,p7 = asin_ABS_NORM_f8,f1
+ nop.i 999 ;;
}
-{.mfb
- nop.m 0
- // change sign if s = -1
- (p6) fnma.s1 F_PI2_LO = F_PI2_LO, f1, f0
- nop.b 0;;
+{ .mfb
+(p6) ldfe asin_pi_by_2_lo = [r40]
+(p6) fmerge.s asin_pi_by_2 = f8,asin_pi_by_2
+ nop.b 0;;
}
-{.mfb
- nop.m 0
- // if s = 1, result is pi/2
- (p9) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
- // return if |s| = 1
- (p9) br.ret.sptk b0;;
+// If X is a NAN, leave
+// qnan snan inf norm unorm 0 -+
+// 1 1 0 0 0 0 11
+{ .mfb
+ nop.m 999
+(p6) fma.s0 f8 = f8,asin_pi_by_2_lo,asin_pi_by_2
+(p6) br.ret.spnt b0
}
-
-
-{.mfi
- nop.m 0
- // get Infinity
- frcpa.s1 FR_RESULT, p0 = f1, f0
- nop.i 0;;
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p12,p0 = f8, 0xc3
+ nop.i 999 ;;
}
-
-{.mfi
- nop.m 0
- // return QNaN indefinite (0*Infinity)
- fma.s0 FR_RESULT = f0, FR_RESULT, f0
- nop.i 0;;
+{ .mfb
+ nop.m 999
+(p12) fma.s0 f8 = f8,f1,f0
+(p12) br.ret.spnt b0 ;;
}
+{ .mfi
+(p0) mov GR_Parameter_TAG = 60
+(p0) frcpa f10, p6 = f0, f0
+nop.i 0
+};;
+.endp SPECIAL
+ASM_SIZE_DIRECTIVE(SPECIAL)
-
-GLOBAL_LIBM_END(asinl)
-
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
-// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
@@ -2471,29 +742,24 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
-
-// (2)
{ .mmi
- stfe [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfe [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
-// (3)
{ .mib
- stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
@@ -2502,27 +768,23 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
-
-// (4)
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
+ mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
-};;
+};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
-
-
+.type __libm_atan2_reg#,@function
+.global __libm_atan2_reg#
diff --git a/sysdeps/ia64/fpu/e_atan2.S b/sysdeps/ia64/fpu/e_atan2.S
index 7a17fbfed4..38dd2f749a 100644
--- a/sysdeps/ia64/fpu/e_atan2.S
+++ b/sysdeps/ia64/fpu/e_atan2.S
@@ -1,10 +1,10 @@
.file "atan2.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,39 +20,33 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [the previously overwritten] GR_Parameter_RESULT.
-// 08/17/00 Changed predicate register macro-usage to direct predicate
-// names due to an assembler bug.
-// 09/28/00 Updated to set invalid on SNaN inputs
-// 01/19/01 Fixed flags for small results
-// 04/13/01 Rescheduled to make all paths faster
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/20/02 Corrected inexact flag and directed rounding symmetry bugs
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 04/17/03 Added missing mutex directive
-// 12/23/03 atan2(NaN1,NaN2) now QNaN1, for consistency with atan2f, atan2l
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
+// 8/17/00 Changed predicate register macro-usage to direct predicate
+// names due to an assembler bug.
+// 9/28/00 Updated to set invalid on SNaN inputs
+// 1/19/01 Fixed flags for small results
//
// API
//==============================================================
@@ -61,12 +55,10 @@
// Overview of operation
//==============================================================
//
-// The atan2 function returns values in the interval [-pi,+pi].
-//
// There are two basic paths: swap true and swap false.
// atan2(Y,X) ==> atan2(V/U) where U >= V. If Y > X, we must swap.
//
-// p6 swap True |Y| > |X|
+// p6 swap True |Y| > |X|
// p7 swap False |Y| <= |X|
// p8 X+ (If swap=True p8=p9=0)
// p9 X-
@@ -74,21 +66,21 @@
// all the other predicates p10 thru p15 are false for the main path
//
// Simple trigonometric identities show
-// Region 1 (-45 to +45 degrees):
+// Region 1 (-45 to +45 degrees):
// X>0, |Y|<=X, V=Y, U=X atan2(Y,X) = sgnY * (0 + atan(V/U))
//
-// Region 2 (-90 to -45 degrees, and +45 to +90 degrees):
+// Region 2 (-90 to -45 degrees, and +45 to +90 degrees):
// X>0, |Y|>X, V=X, U=Y atan2(Y,X) = sgnY * (pi/2 - atan(V/U))
//
-// Region 3 (-135 to -90 degrees, and +90 to +135 degrees):
+// Region 3 (-135 to -90 degrees, and +90 to +135 degrees):
// X<0, |Y|>X, V=X, U=Y atan2(Y,X) = sgnY * (pi/2 + atan(V/U))
//
-// Region 4 (-180 to -135 degrees, and +135 to +180 degrees):
+// Region 4 (-180 to -135 degrees, and +135 to +180 degrees):
// X<0, |Y|<=X, V=Y, U=X atan2(Y,X) = sgnY * (pi - atan(V/U))
//
// So the result is always of the form atan2(Y,X) = P + sgnXY * atan(V/U)
//
-// We compute atan(V/U) from the identity
+// We compute atan(V/U) from the identity
// atan(z) + atan([(V/U)-z] / [1+(V/U)z])
// where z is a limited precision approximation (16 bits) to V/U
//
@@ -132,40 +124,30 @@
// +number -0 +pi/2
// -number -0 -pi/2
//
-// +0 +number +0
-// -0 +number -0
+// +0 +number +0
+// -0 +number -0
// +0 -number +pi
// -0 -number -pi
//
-// +0 +0 +0
-// -0 +0 -0
+// +0 +0 +0
+// -0 +0 -0
// +0 -0 +pi
// -0 -0 -pi
//
// Nan anything quiet Y
-// Not NaN NaN quiet X
+// anything NaN quiet X
// atan2(+-0/+-0) sets double error tag to 37
+// atan2(+-0/+-0) sets single error tag to 38
-// Registers used
-//==============================================================
-
-// predicate registers used:
-// p6 -> p15
-
-// floating-point registers used:
-// f8, f9 input
-// f32 -> f119
-
-// general registers used
-// r32 -> r41
+#include "libm_support.h"
// Assembly macros
//==============================================================
EXP_AD_P1 = r33
EXP_AD_P2 = r34
-rsig_near_one = r35
+atan2_GR_sml_exp = r35
GR_SAVE_B0 = r35
@@ -177,23 +159,22 @@ GR_Parameter_Y = r39
GR_Parameter_RESULT = r40
atan2_GR_tag = r41
-atan2_Y = f8
+
atan2_X = f9
+atan2_Y = f8
atan2_u1_X = f32
atan2_u1_Y = f33
-atan2_z2_X = f34
-atan2_z2_Y = f35
-
+atan2_Umax = f34
+atan2_Vmin = f35
atan2_two = f36
-atan2_B1sq_Y = f37
+atan2_absX = f37
atan2_z1_X = f38
atan2_z1_Y = f39
atan2_B1X = f40
-
atan2_B1Y = f41
-atan2_wp_X = f42
-atan2_B1sq_X = f43
+atan2_wp = f42
+atan2_B1sq = f43
atan2_z = f44
atan2_w = f45
@@ -202,149 +183,178 @@ atan2_P1 = f47
atan2_P2 = f48
atan2_P3 = f49
atan2_P4 = f50
-
atan2_P5 = f51
atan2_P6 = f52
atan2_P7 = f53
atan2_P8 = f54
atan2_P9 = f55
-
atan2_P10 = f56
atan2_P11 = f57
atan2_P12 = f58
atan2_P13 = f59
atan2_P14 = f60
-
atan2_P15 = f61
atan2_P16 = f62
atan2_P17 = f63
atan2_P18 = f64
atan2_P19 = f65
-
atan2_P20 = f66
atan2_P21 = f67
atan2_P22 = f68
-atan2_tmp = f68
-atan2_pi_by_2 = f69
-atan2_sgn_pi_by_2 = f69
-atan2_V13 = f70
+atan2_Pi_by_2 = f69
+atan2_V13 = f70
atan2_W11 = f71
atan2_E = f72
-atan2_wp_Y = f73
+atan2_gamma = f73
atan2_V11 = f74
atan2_V12 = f75
-
atan2_V7 = f76
atan2_V8 = f77
atan2_W7 = f78
atan2_W8 = f79
atan2_W3 = f80
-
atan2_W4 = f81
atan2_V3 = f82
atan2_V4 = f83
atan2_F = f84
atan2_gV = f85
-
atan2_V10 = f86
atan2_zcub = f87
atan2_V6 = f88
atan2_V9 = f89
atan2_W10 = f90
-
atan2_W6 = f91
atan2_W2 = f92
atan2_V2 = f93
+
atan2_alpha = f94
atan2_alpha_1 = f95
-
atan2_gVF = f96
atan2_V5 = f97
atan2_W12 = f98
atan2_W5 = f99
atan2_alpha_sq = f100
-
atan2_Cp = f101
atan2_V1 = f102
-atan2_ysq = f103
+
+atan2_sml_norm = f103
+atan2_FR_tmp = f103
+
atan2_W1 = f104
atan2_alpha_cub = f105
-
atan2_C = f106
-atan2_xsq = f107
+atan2_P = f107
atan2_d = f108
atan2_A_hi = f109
atan2_dsq = f110
-
atan2_pd = f111
atan2_A_lo = f112
atan2_A = f113
+
atan2_Pp = f114
-atan2_sgnY = f115
-atan2_sig_near_one = f116
-atan2_near_one = f116
+atan2_sgnY = f116
atan2_pi = f117
-atan2_sgn_pi = f117
-atan2_3pi_by_4 = f118
-atan2_pi_by_4 = f119
+atan2_sgnX = f118
+atan2_sgnXY = f119
+
+atan2_3pi_by_4 = f120
+atan2_pi_by_4 = f121
+
+//atan2_sF = p7
+//atan2_sT = p6
+// These coefficients are for atan2.
+// You can also use this set to substitute those used in the |X| <= 1 case for atan;
+// BUT NOT vice versa.
/////////////////////////////////////////////////////////////
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(atan2_tb1)
-data8 0xA21922DC45605EA1 , 0x00003FFA // P11
+atan2_tb1:
+ASM_TYPE_DIRECTIVE(atan2_tb1,@object)
data8 0xB199DD6D2675C40F , 0x0000BFFA // P10
-data8 0xC2F01E5DDD100DBE , 0x00003FFA // P9
+data8 0xA21922DC45605EA1 , 0x00003FFA // P11
data8 0xD78F28FC2A592781 , 0x0000BFFA // P8
-data8 0xF0F03ADB3FC930D3 , 0x00003FFA // P7
-data8 0x88887EBB209E3543 , 0x0000BFFB // P6
+data8 0xC2F01E5DDD100DBE , 0x00003FFA // P9
data8 0x9D89D7D55C3287A5 , 0x00003FFB // P5
-data8 0xBA2E8B9793955C77 , 0x0000BFFB // P4
-data8 0xE38E38E320A8A098 , 0x00003FFB // P3
-data8 0x9249249247E37913 , 0x0000BFFC // P2
+data8 0xF0F03ADB3FC930D3 , 0x00003FFA // P7
+data8 0xF396268151CFB11C , 0x00003FF7 // P17
+data8 0x9D3436AABE218776 , 0x00003FF5 // P19
+data8 0x80D601879218B53A , 0x00003FFA // P13
+data8 0xA2270D30A90AA220 , 0x00003FF9 // P15
data8 0xCCCCCCCCCCC906CD , 0x00003FFC // P1
-data8 0xAAAAAAAAAAAAA8A9 , 0x0000BFFD // P0
-data8 0xC90FDAA22168C235 , 0x00004000 // pi
-LOCAL_OBJECT_END(atan2_tb1)
+data8 0xE38E38E320A8A098 , 0x00003FFB // P3
+data8 0xFE7E52D2A89995B3 , 0x0000BFEC // P22
+data8 0xC90FDAA22168C235 , 0x00003FFE // pi/4
+ASM_SIZE_DIRECTIVE(atan2_tb1)
-LOCAL_OBJECT_START(atan2_tb2)
-data8 0xCE585A259BD8374C , 0x00003FF0 // P21
+atan2_tb2:
+ASM_TYPE_DIRECTIVE(atan2_tb2,@object)
data8 0x9F90FB984D8E39D0 , 0x0000BFF3 // P20
-data8 0x9D3436AABE218776 , 0x00003FF5 // P19
-data8 0xDEC343E068A6D2A8 , 0x0000BFF6 // P18
-data8 0xF396268151CFB11C , 0x00003FF7 // P17
+data8 0xCE585A259BD8374C , 0x00003FF0 // P21
+data8 0xBA2E8B9793955C77 , 0x0000BFFB // P4
+data8 0x88887EBB209E3543 , 0x0000BFFB // P6
data8 0xD818B4BB43D84BF2 , 0x0000BFF8 // P16
-data8 0xA2270D30A90AA220 , 0x00003FF9 // P15
-data8 0xD5F4F2182E7A8725 , 0x0000BFF9 // P14
-data8 0x80D601879218B53A , 0x00003FFA // P13
+data8 0xDEC343E068A6D2A8 , 0x0000BFF6 // P18
data8 0x9297B23CCFFB291F , 0x0000BFFA // P12
-data8 0xFE7E52D2A89995B3 , 0x0000BFEC // P22
+data8 0xD5F4F2182E7A8725 , 0x0000BFF9 // P14
+data8 0xAAAAAAAAAAAAA8A9 , 0x0000BFFD // P0
+data8 0x9249249247E37913 , 0x0000BFFC // P2
data8 0xC90FDAA22168C235 , 0x00003FFF // pi/2
-data8 0xC90FDAA22168C235 , 0x00003FFE // pi/4
+data8 0xC90FDAA22168C235 , 0x00004000 // pi
data8 0x96cbe3f9990e91a8 , 0x00004000 // 3pi/4
-LOCAL_OBJECT_END(atan2_tb2)
+ASM_SIZE_DIRECTIVE(atan2_tb2)
+
+
+.align 32
+.global atan2#
+#ifdef _LIBC
+.global __atan2#
+.global __ieee754_atan2#
+#endif
+////////////////////////////////////////////////////////
.section .text
-GLOBAL_IEEE754_ENTRY(atan2)
+.align 32
+
+.proc atan2#
+atan2:
+#ifdef _LIBC
+.proc __atan2#
+__atan2:
+.proc __ieee754_atan2#
+__ieee754_atan2:
+#endif
+// qnan snan inf norm unorm 0 -+
+// 0 0 1 0 0 0 11
+
+
+// Y NAN? p10 p11
+// p10 ==> quiet Y and return
+// p11 X NAN? p12, p13
+// p12 ==> quiet X and return
{ .mfi
alloc r32 = ar.pfs,1,5,4,0
frcpa.s1 atan2_u1_X,p6 = f1,atan2_X
- nop.i 999
+ addl EXP_AD_P2 = @ltoff(atan2_tb2), gp
}
{ .mfi
addl EXP_AD_P1 = @ltoff(atan2_tb1), gp
- fma.s1 atan2_two = f1,f1,f1
+ fclass.m.unc p10,p11 = f8, 0xc3
nop.i 999
;;
}
@@ -356,233 +366,256 @@ GLOBAL_IEEE754_ENTRY(atan2)
}
{ .mfi
nop.m 999
- fma.s1 atan2_xsq = atan2_X,atan2_X,f0
+ fma.s1 atan2_two = f1,f1,f1
nop.i 999
;;
}
+
{ .mfi
- nop.m 999
- fclass.m p10,p0 = atan2_Y, 0xc3 // Test for y=nan
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fma.s1 atan2_ysq = atan2_Y,atan2_Y,f0
+ ld8 EXP_AD_P2 = [ EXP_AD_P2]
+ famax.s1 atan2_Umax = f8,f9
nop.i 999
}
;;
{ .mfi
- add EXP_AD_P2 = 0xd0,EXP_AD_P1
- fclass.m p12,p0 = atan2_X, 0xc3 // Test for x nan
+ nop.m 999
+ fmerge.s atan2_absX = f0,atan2_X
nop.i 999
}
;;
-
// p10 Y NAN, quiet and return
{ .mfi
- ldfe atan2_P11 = [EXP_AD_P1],16
+ ldfe atan2_P10 = [EXP_AD_P1],16
fmerge.s atan2_sgnY = atan2_Y,f1
nop.i 999
}
{ .mfb
- ldfe atan2_P21 = [EXP_AD_P2],16
-(p10) fma.d.s0 f8 = atan2_X,atan2_Y,f0 // If y=nan, result quietized y
-(p10) br.ret.spnt b0 // Exit if y=nan
+ nop.m 999
+(p10) fma.d f8 = f8,f9,f0
+(p10) br.ret.spnt b0
;;
}
-{ .mfi
- ldfe atan2_P10 = [EXP_AD_P1],16
+{ .mmf
+ ldfe atan2_P11 = [EXP_AD_P1],16
+ ldfe atan2_P20 = [EXP_AD_P2],16
+ fmerge.s atan2_sgnX = atan2_X,f1
+;;
+}
+
+
+{ .mfi
+ ldfe atan2_P8 = [EXP_AD_P1],16
fma.s1 atan2_z1_X = atan2_u1_X, atan2_Y, f0
nop.i 999
}
-{ .mfi
- ldfe atan2_P20 = [EXP_AD_P2],16
- fnma.s1 atan2_B1X = atan2_u1_X, atan2_X, atan2_two
+{ .mfi
+
+ ldfe atan2_P21 = [EXP_AD_P2],16
+ fma.s1 atan2_z1_Y = atan2_u1_Y, atan2_X, f0
nop.i 999
;;
}
-{ .mfi
+{ .mfi
ldfe atan2_P9 = [EXP_AD_P1],16
- fma.s1 atan2_z1_Y = atan2_u1_Y, atan2_X, f0
+ fnma.s1 atan2_B1X = atan2_u1_X, atan2_X, atan2_two
nop.i 999
}
-{ .mfi
- ldfe atan2_P19 = [EXP_AD_P2],16
+{ .mfi
+
+ ldfe atan2_P4 = [EXP_AD_P2],16
fnma.s1 atan2_B1Y = atan2_u1_Y, atan2_Y, atan2_two
nop.i 999
-}
;;
-
-{ .mfi
- ldfe atan2_P8 = [EXP_AD_P1],16
- fma.s1 atan2_z2_X = atan2_u1_X, atan2_ysq, f0
- nop.i 999
}
+
+// p6 (atan2_sT) true if swap
+// p7 (atan2_sF) true if no swap
+// p11 ==> Y !NAN; X NAN?
+
{ .mfi
- ldfe atan2_P18 = [EXP_AD_P2],16
- fma.s1 atan2_z2_Y = atan2_u1_Y, atan2_xsq, f0
+ ldfe atan2_P5 = [EXP_AD_P1],16
+// fcmp.eq.unc.s1 atan2_sF,atan2_sT = atan2_Umax, atan2_X
+ fcmp.eq.unc.s1 p7,p6 = atan2_Umax, atan2_X
nop.i 999
}
-;;
-
-// p10 ==> x inf y ?
-// p11 ==> x !inf y ?
{ .mfi
- ldfe atan2_P7 = [EXP_AD_P1],16
- fclass.m p10,p11 = atan2_X, 0x23 // test for x inf
+ ldfe atan2_P6 = [EXP_AD_P2],16
+(p11) fclass.m.unc p12,p13 = f9, 0xc3
nop.i 999
-}
-{ .mfb
- ldfe atan2_P17 = [EXP_AD_P2],16
-(p12) fma.d.s0 f8 = atan2_X,atan2_Y,f0 // If x nan, result quiet x
-(p12) br.ret.spnt b0 // Exit for x nan
;;
}
-// p6 true if swap, means |y| > |x| or ysq > xsq
-// p7 true if no swap, means |x| >= |y| or xsq >= ysq
{ .mmf
- ldfe atan2_P6 = [EXP_AD_P1],16
+ ldfe atan2_P7 = [EXP_AD_P1],16
ldfe atan2_P16 = [EXP_AD_P2],16
- fcmp.ge.s1 p7,p6 = atan2_xsq, atan2_ysq
+ famin.s1 atan2_Vmin = f8,f9
;;
}
+// p8 true if X positive
+// p9 true if X negative
+// both are false is swap is true
{ .mfi
- ldfe atan2_P5 = [EXP_AD_P1],16
- fma.s1 atan2_wp_X = atan2_z1_X, atan2_z1_X, f0
+ ldfe atan2_P17 = [EXP_AD_P1],16
+//(atan2_sF) fcmp.eq.unc.s1 p8,p9 = atan2_sgnX,f1
+(p7) fcmp.eq.unc.s1 p8,p9 = atan2_sgnX,f1
nop.i 999
}
{ .mfi
- ldfe atan2_P15 = [EXP_AD_P2],16
- fma.s1 atan2_B1sq_X = atan2_B1X, atan2_B1X, f0
+ ldfe atan2_P18 = [EXP_AD_P2],16
+ fma.s1 atan2_sgnXY = atan2_sgnX, atan2_sgnY, f0
nop.i 999
;;
}
+
{ .mfi
- ldfe atan2_P4 = [EXP_AD_P1],16
-(p6) fma.s1 atan2_wp_Y = atan2_z1_Y, atan2_z1_Y, f0
+ ldfe atan2_P19 = [EXP_AD_P1],16
+//(atan2_sF) fma.s1 atan2_wp = atan2_z1_X, atan2_z1_X, f0
+(p7) fma.s1 atan2_wp = atan2_z1_X, atan2_z1_X, f0
nop.i 999
}
{ .mfi
- ldfe atan2_P14 = [EXP_AD_P2],16
-(p6) fma.s1 atan2_B1sq_Y = atan2_B1Y, atan2_B1Y, f0
+ ldfe atan2_P12 = [EXP_AD_P2],16
+//(atan2_sT) fma.s1 atan2_wp = atan2_z1_Y, atan2_z1_Y, f0
+(p6) fma.s1 atan2_wp = atan2_z1_Y, atan2_z1_Y, f0
nop.i 999
;;
}
+
{ .mfi
- ldfe atan2_P3 = [EXP_AD_P1],16
-(p6) fma.s1 atan2_E = atan2_z2_Y, atan2_B1Y, atan2_Y
+ ldfe atan2_P13 = [EXP_AD_P1],16
+//(atan2_sF) fma.s1 atan2_z = atan2_z1_X, atan2_B1X, f0
+(p7) fma.s1 atan2_z = atan2_z1_X, atan2_B1X, f0
nop.i 999
}
{ .mfi
- ldfe atan2_P13 = [EXP_AD_P2],16
-(p7) fma.s1 atan2_E = atan2_z2_X, atan2_B1X, atan2_X
+ ldfe atan2_P14 = [EXP_AD_P2],16
+//(atan2_sT) fma.s1 atan2_z = atan2_z1_Y, atan2_B1Y, f0
+(p6) fma.s1 atan2_z = atan2_z1_Y, atan2_B1Y, f0
nop.i 999
;;
}
{ .mfi
- ldfe atan2_P2 = [EXP_AD_P1],16
-(p6) fma.s1 atan2_z = atan2_z1_Y, atan2_B1Y, f0
+ ldfe atan2_P15 = [EXP_AD_P1],16
+//(atan2_sF) fma.s1 atan2_B1sq = atan2_B1X, atan2_B1X, f0
+(p7) fma.s1 atan2_B1sq = atan2_B1X, atan2_B1X, f0
nop.i 999
}
{ .mfi
- ldfe atan2_P12 = [EXP_AD_P2],16
-(p7) fma.s1 atan2_z = atan2_z1_X, atan2_B1X, f0
+ ldfe atan2_P0 = [EXP_AD_P2],16
+//(atan2_sT) fma.s1 atan2_B1sq = atan2_B1Y, atan2_B1Y, f0
+(p6) fma.s1 atan2_B1sq = atan2_B1Y, atan2_B1Y, f0
nop.i 999
;;
}
+// p12 ==> X NAN, quiet and return
{ .mfi
ldfe atan2_P1 = [EXP_AD_P1],16
- fcmp.eq.s0 p14,p15=atan2_X,atan2_Y // Dummy for denorm and invalid
+ fmerge.s atan2_Umax = f0,atan2_Umax
nop.i 999
}
-{ .mlx
- ldfe atan2_P22 = [EXP_AD_P2],16
- movl rsig_near_one = 0x8000000000000001 // signif near 1.0
+{ .mfb
+ ldfe atan2_P2 = [EXP_AD_P2],16
+(p12) fma.d f8 = f9,f8,f0
+(p12) br.ret.spnt b0
;;
}
-// p12 ==> x inf y inf
-// p13 ==> x inf y !inf
-{ .mmf
- ldfe atan2_P0 = [EXP_AD_P1],16
- ldfe atan2_pi_by_2 = [EXP_AD_P2],16
-(p10) fclass.m.unc p12,p13 = atan2_Y, 0x23 // x inf, test if y inf
-;;
-}
-
+// p10 ==> x inf y ?
+// p11 ==> x !inf y ?
{ .mfi
- ldfe atan2_pi = [EXP_AD_P1],16
-(p6) fma.s1 atan2_w = atan2_wp_Y, atan2_B1sq_Y,f0
+ ldfe atan2_P3 = [EXP_AD_P1],16
+ fmerge.s atan2_Vmin = f0,atan2_Vmin
nop.i 999
}
{ .mfi
- ldfe atan2_pi_by_4 = [EXP_AD_P2],16
-(p7) fma.s1 atan2_w = atan2_wp_X, atan2_B1sq_X,f0
+ ldfe atan2_Pi_by_2 = [EXP_AD_P2],16
+ fclass.m.unc p10,p11 = f9, 0x23
nop.i 999
;;
}
+
+{ .mmf
+ ldfe atan2_P22 = [EXP_AD_P1],16
+ ldfe atan2_pi = [EXP_AD_P2],16
+ nop.f 999
+;;
+}
+
{ .mfi
- ldfe atan2_3pi_by_4 = [EXP_AD_P2],16
-(p11) fclass.m.unc p9,p0 = atan2_Y, 0x23 // x not inf, test if y inf
+ nop.m 999
+ fcmp.eq.s0 p12,p13=f9,f8 // Dummy to catch denormal and invalid
nop.i 999
;;
}
+
{ .mfi
- setf.sig atan2_sig_near_one = rsig_near_one
-(p12) fcmp.gt.unc.s1 p10,p11 = atan2_X,f0 // x inf, y inf, test if x +inf
+ ldfe atan2_pi_by_4 = [EXP_AD_P1],16
+//(atan2_sT) fmerge.ns atan2_sgnXY = atan2_sgnXY, atan2_sgnXY
+(p6) fmerge.ns atan2_sgnXY = atan2_sgnXY, atan2_sgnXY
nop.i 999
}
{ .mfi
- nop.m 999
-(p6) fnma.s1 atan2_gV = atan2_Y, atan2_z, atan2_X
+ ldfe atan2_3pi_by_4 = [EXP_AD_P2],16
+ fma.s1 atan2_w = atan2_wp, atan2_B1sq,f0
nop.i 999
;;
}
+// p12 ==> x inf y inf
+// p13 ==> x inf y !inf
{ .mfi
nop.m 999
- frcpa.s1 atan2_F,p0 = f1, atan2_E
+ fmerge.s atan2_z = f0, atan2_z
+ nop.i 999
+;;
+}
+
+{ .mfi
+ nop.m 99
+(p10) fclass.m.unc p12,p13 = f8, 0x23
nop.i 999
}
{ .mfi
- nop.m 999
-(p7) fnma.s1 atan2_gV = atan2_X, atan2_z, atan2_Y
+ nop.m 99
+(p11) fclass.m.unc p14,p15 = f8, 0x23
nop.i 999
;;
}
-// p13 ==> x inf y !inf
{ .mfi
nop.m 999
-(p13) fcmp.gt.unc.s1 p14,p15 = atan2_X,f0 // x inf, y !inf, test if x +inf
- nop.i 999
+(p12) fcmp.eq.unc.s1 p10,p11 = atan2_sgnX,f1
+ nop.i 99
+;;
}
+
+
{ .mfb
- nop.m 999
-(p9) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_2, f0 // +-pi/2 if x !inf, y inf
-(p9) br.ret.spnt b0 // exit if x not inf, y inf, result is +-pi/2
+ mov atan2_GR_sml_exp = 0x1 // Small exponent for making small norm
+(p14) fma.d f8 = atan2_sgnY, atan2_Pi_by_2, f0
+(p14) br.ret.spnt b0
;;
}
+// Make a very small normal in case need to force inexact and underflow
{ .mfi
- nop.m 999
+ setf.exp atan2_sml_norm = atan2_GR_sml_exp
fma.s1 atan2_V13 = atan2_w, atan2_P11, atan2_P10
nop.i 999
}
@@ -593,58 +626,58 @@ GLOBAL_IEEE754_ENTRY(atan2)
;;
}
+
{ .mfi
nop.m 999
- fma.s1 atan2_V11 = atan2_w, atan2_P9, atan2_P8
+ fma.s1 atan2_E = atan2_Vmin, atan2_z, atan2_Umax
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_V12 = atan2_w, atan2_w, f0
+ fnma.s1 atan2_gamma = atan2_Umax, atan2_z, f1
nop.i 999
;;
}
{ .mfi
nop.m 999
- fma.s1 atan2_V8 = atan2_w, atan2_P7 , atan2_P6
+ fma.s1 atan2_V11 = atan2_w, atan2_P9, atan2_P8
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_W8 = atan2_w, atan2_P19, atan2_P18
+ fma.s1 atan2_V12 = atan2_w, atan2_w, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
- fnma.s1 atan2_alpha = atan2_E, atan2_F, f1
+ fma.s1 atan2_V7 = atan2_w, atan2_P5 , atan2_P4
nop.i 999
}
{ .mfi
nop.m 999
- fnma.s1 atan2_alpha_1 = atan2_E, atan2_F, atan2_two
+ fma.s1 atan2_V8 = atan2_w, atan2_P7 , atan2_P6
nop.i 999
;;
}
-
{ .mfi
nop.m 999
- fma.s1 atan2_V7 = atan2_w, atan2_P5 , atan2_P4
+ fma.s1 atan2_W7 = atan2_w, atan2_P17, atan2_P16
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_W7 = atan2_w, atan2_P17, atan2_P16
+ fma.s1 atan2_W8 = atan2_w, atan2_P19, atan2_P18
nop.i 999
;;
}
{ .mfi
nop.m 999
- fma.s1 atan2_V4 = atan2_w, atan2_P3 , atan2_P2
+ fma.s1 atan2_W3 = atan2_w, atan2_P13, atan2_P12
nop.i 999
}
{ .mfi
@@ -656,55 +689,55 @@ GLOBAL_IEEE754_ENTRY(atan2)
{ .mfi
nop.m 999
- fma.s1 atan2_V3 = atan2_w, atan2_P1 , atan2_P0
+ fma.s1 atan2_V3 = atan2_w, atan2_P1 , atan2_P0
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_W3 = atan2_w, atan2_P13, atan2_P12
+ fma.s1 atan2_V4 = atan2_w, atan2_P3 , atan2_P2
nop.i 999
;;
}
{ .mfi
nop.m 999
- fma.s1 atan2_V10 = atan2_V12, atan2_V13, atan2_V11
+ fma.s1 atan2_zcub = atan2_z, atan2_w, f0
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_gVF = atan2_gV, atan2_F, f0
+ fnma.s1 atan2_gV = atan2_Umax, atan2_z, atan2_Vmin
nop.i 999
;;
}
{ .mfi
nop.m 999
- fma.s1 atan2_alpha_sq = atan2_alpha, atan2_alpha, f0
+ frcpa.s1 atan2_F,p15 = f1, atan2_E
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_Cp = atan2_alpha, atan2_alpha_1, f1
+ fma.s1 atan2_V10 = atan2_V12, atan2_V13, atan2_V11
nop.i 999
;;
}
{ .mfi
nop.m 999
- fma.s1 atan2_V9 = atan2_V12, atan2_V12, f0
+ fma.s1 atan2_V6 = atan2_V12, atan2_V8 , atan2_V7
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_W10 = atan2_V12, atan2_P22 , atan2_W11
+ fma.s1 atan2_V9 = atan2_V12, atan2_V12, f0
nop.i 999
;;
}
{ .mfi
nop.m 999
- fma.s1 atan2_V6 = atan2_V12, atan2_V8 , atan2_V7
+ fma.s1 atan2_W10 = atan2_V12, atan2_P22 , atan2_W11
nop.i 999
}
{ .mfi
@@ -716,47 +749,65 @@ GLOBAL_IEEE754_ENTRY(atan2)
{ .mfi
nop.m 999
- fma.s1 atan2_V2 = atan2_V12, atan2_V4 , atan2_V3
+ fma.s1 atan2_W2 = atan2_V12, atan2_W4 , atan2_W3
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_W2 = atan2_V12, atan2_W4 , atan2_W3
+ fma.s1 atan2_V2 = atan2_V12, atan2_V4 , atan2_V3
nop.i 999
;;
}
-// p8 ==> y 0 x?
-// p9 ==> y !0 x?
+
+// Both X and Y are INF
+// p10 ==> X +
+// p11 ==> X -
+.pred.rel "mutex",p10,p11
+{ .mfb
+ nop.m 999
+(p10) fma.d f8 = atan2_sgnY, atan2_pi_by_4, f0
+(p10) br.ret.spnt b0
+}
+{ .mfb
+ nop.m 999
+(p11) fma.d f8 = atan2_sgnY, atan2_3pi_by_4, f0
+(p11) br.ret.spnt b0
+;;
+}
+
+
+.pred.rel "mutex",p8,p9,p6
{ .mfi
nop.m 999
- fclass.m p8,p9 = atan2_Y, 0x07 // Test for y=0
+ fnma.s1 atan2_alpha = atan2_E, atan2_F, f1
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_zcub = atan2_z, atan2_w, f0
+ fnma.s1 atan2_alpha_1 = atan2_E, atan2_F, atan2_two
nop.i 999
;;
}
+
{ .mfi
nop.m 999
- fma.s1 atan2_alpha_cub = atan2_alpha, atan2_alpha_sq, f0
+//(atan2_sT) fmerge.s atan2_P = atan2_Y, atan2_Pi_by_2
+(p6) fmerge.s atan2_P = atan2_Y, atan2_Pi_by_2
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_C = atan2_gVF, atan2_Cp, f0
+ fma.s1 atan2_gVF = atan2_gV, atan2_F, f0
nop.i 999
;;
}
-// p12 ==> y0 x0
-// p13 ==> y0 x!0
+
{ .mfi
nop.m 999
-(p8) fclass.m.unc p12,p13 = atan2_X, 0x07 // y=0, test if x is 0
+ fma.s1 atan2_V5 = atan2_V9, atan2_V10, atan2_V6
nop.i 999
}
{ .mfi
@@ -766,9 +817,11 @@ GLOBAL_IEEE754_ENTRY(atan2)
;;
}
+
+
{ .mfi
nop.m 999
- fma.s1 atan2_V5 = atan2_V9, atan2_V10, atan2_V6
+(p8) fmerge.s atan2_P = atan2_sgnY, f0
nop.i 999
}
{ .mfi
@@ -779,215 +832,249 @@ GLOBAL_IEEE754_ENTRY(atan2)
}
-// p9 ==> y!0 x0
+
+
{ .mfi
nop.m 999
-(p9) fclass.m.unc p9,p0 = atan2_X, 0x07 // y not 0, test if x is 0
+(p9) fmerge.s atan2_P = atan2_sgnY, atan2_pi
nop.i 999
-}
-// p10 ==> X +INF, Y +-INF
-{ .mfb
- nop.m 999
-(p10) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_4, f0 // x=+inf, y=inf
-(p10) br.ret.spnt b0 // Exit for x=+inf, y=inf, result is +-pi/4
;;
}
-.pred.rel "mutex",p11,p14
+
{ .mfi
nop.m 999
-(p14) fmerge.s f8 = atan2_sgnY, f0 // x=+inf, y !inf, result +-0
+ fma.s1 atan2_alpha_sq = atan2_alpha, atan2_alpha, f0
nop.i 999
}
-// p11 ==> X -INF, Y +-INF
-{ .mfb
+{ .mfi
nop.m 999
-(p11) fma.d.s0 f8 = atan2_sgnY, atan2_3pi_by_4, f0 // x=-inf, y=inf
-(p11) br.ret.spnt b0 // Exit for x=-inf, y=inf, result is +-3pi/4
+ fma.s1 atan2_Cp = atan2_alpha, atan2_alpha_1, f1
+ nop.i 999
;;
}
+
{ .mfi
nop.m 999
-(p13) fcmp.gt.unc.s1 p10,p11 = atan2_X,f0 // x not 0, y=0, test if x>0
+ fma.s1 atan2_V1 = atan2_V9, atan2_V5, atan2_V2
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
- fma.s1 atan2_d = atan2_alpha_cub, atan2_C, atan2_C
-(p14) br.ret.spnt b0 // Exit if x=+inf, y !inf, result +-0
+ fma.s1 atan2_W12 = atan2_V9, atan2_W12, f0
+ nop.i 999
;;
}
+
+// p13 ==> x inf y !inf
{ .mfi
nop.m 999
- fma.s1 atan2_W12 = atan2_V9, atan2_W12, f0
+ fma.s1 atan2_W1 = atan2_V9, atan2_W5, atan2_W2
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
-(p9) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_2, f0 // x=0, y not 0
-(p9) br.ret.spnt b0 // Exit if x=0 and y not 0, result is +-pi/2
+(p13) fcmp.eq.unc.s1 p10,p11 = atan2_sgnX,f1
+ nop.i 999
;;
}
+
{ .mfi
nop.m 999
- fma.s1 atan2_V1 = atan2_V9, atan2_V5, atan2_V2
+ fma.s1 atan2_alpha_cub = atan2_alpha, atan2_alpha_sq, f0
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
- fma.s1 atan2_W1 = atan2_V9, atan2_W5, atan2_W2
-(p12) br.spnt ATAN2_ERROR // Branch if x=0 and y=0
+ fma.s1 atan2_C = atan2_gVF, atan2_Cp, f0
+ nop.i 999
;;
}
-{ .mfi
+.pred.rel "mutex",p10,p11
+// x inf y !inf
+{ .mfb
nop.m 999
-(p10) fmerge.s f8 = atan2_sgnY, f0 // +-0 if x>0, y=0
- nop.i 999
+(p10) fmerge.s f8 = atan2_sgnY, f0
+(p10) br.ret.spnt b0
}
{ .mfb
nop.m 999
-(p11) fma.d.s0 f8 = atan2_sgnY, atan2_pi, f0 // +-pi if x<0, y=0
-(p13) br.ret.spnt b0 // Exit if x!0 and y=0
+(p11) fma.d f8 = atan2_sgnY, atan2_pi, f0
+(p11) br.ret.spnt b0
;;
}
+
+// p10 ==> y 0 x?
+// p11 ==> y !0 x?
{ .mfi
nop.m 999
- fma.s1 atan2_pd = atan2_P0, atan2_d, f0
+ fclass.m.unc p10,p11 = f8, 0x07
nop.i 999
+;;
}
+
{ .mfi
nop.m 999
- fma.s1 atan2_dsq = atan2_d, atan2_d, f0
+(p8) fmerge.s atan2_sml_norm = atan2_sgnY, atan2_sml_norm
nop.i 999
;;
}
-
{ .mfi
nop.m 999
- fmerge.se atan2_near_one = f1, atan2_sig_near_one // Const ~1.0
+ fma.s1 atan2_Pp = atan2_W12, atan2_W1, atan2_V1
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_Pp = atan2_W12, atan2_W1, atan2_V1
+ fma.s1 atan2_d = atan2_alpha_cub, atan2_C, atan2_C
nop.i 999
;;
}
-// p8 true if no swap and X positive
-// p9 true if no swap and X negative
-// both are false is swap is true
+// p12 ==> y0 x0
+// p13 ==> y0 x!0
+// p14 ==> y!0 x0
+// p15 ==> y!0 x!0
+{ .mfi
+ nop.m 999
+(p10) fclass.m.unc p12,p13 = f9, 0x07
+ nop.i 999
+}
{ .mfi
nop.m 999
-(p7) fcmp.ge.unc.s1 p8,p9 = atan2_X,f0
+(p11) fclass.m.unc p14,p15 = f9, 0x07
nop.i 999
+;;
}
+
+
+
+
{ .mfb
nop.m 999
-(p15) fma.d.s0 f8 = atan2_sgnY, atan2_pi, f0
-(p15) br.ret.spnt b0 // Exit if x=-inf, y !inf, result +-pi
+(p13) fcmp.eq.unc.s1 p10,p11 = atan2_sgnX,f1
+(p12) br.spnt ATAN2_ERROR
;;
}
+
+
{ .mfi
nop.m 999
- fma.s1 atan2_sgn_pi_by_2 = atan2_pi_by_2, atan2_sgnY, f0
+ fma.s1 atan2_pd = atan2_P0, atan2_d, f0
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 atan2_A_lo = atan2_pd, atan2_dsq, atan2_d
+ fma.s1 atan2_dsq = atan2_d, atan2_d, f0
nop.i 999
;;
}
-
{ .mfi
nop.m 999
- fma.s1 atan2_sgn_pi = atan2_pi, atan2_sgnY, f0
+ fma.s1 atan2_A_hi = atan2_zcub, atan2_Pp, atan2_z
nop.i 999
}
-{ .mfi
+{ .mfb
nop.m 999
- fma.s1 atan2_A_hi = atan2_zcub, atan2_Pp, atan2_z
- nop.i 999
+(p14) fma.d f8 = atan2_sgnY, atan2_Pi_by_2, f0
+(p14) br.ret.spnt b0
;;
}
-// For |Y| <= |X| and X > 0, force inexact in case A_lo is zero
-{ .mfi
+
+{ .mfb
nop.m 999
-(p8) fmpy.s0 atan2_tmp = atan2_P22, atan2_P22
- nop.i 999
+(p10) fmerge.s f8 = atan2_sgnY, f0
+(p10) br.ret.spnt b0
+}
+{ .mfb
+ nop.m 999
+(p11) fma.d f8 = atan2_sgnY, atan2_pi, f0
+(p11) br.ret.spnt b0
;;
}
+
+
{ .mfi
nop.m 999
- fma.s1 atan2_A = atan2_A_hi, f1, atan2_A_lo
+ fma.s1 atan2_A_lo = atan2_pd, atan2_dsq, atan2_d
nop.i 999
+;;
}
-// For |Y| <= |X| and X > 0, result is A_hi + A_lo
+
+
{ .mfi
nop.m 999
-(p8) fma.d.s0 f8 = atan2_A_hi, f1, atan2_A_lo
+ fma.s1 atan2_A = atan2_A_hi, f1, atan2_A_lo
nop.i 999
;;
}
-.pred.rel "mutex",p6,p9
-// We perturb A by multiplying by 1.0+1ulp as we produce the result
-// in order to get symmetrically rounded results in directed rounding modes.
-// If we don't do this, there are a few cases where the trailing 11 bits of
-// the significand of the result, before converting to double, are zero. These
-// cases do not round symmetrically in round to +infinity or round to -infinity.
-// The perturbation also insures that the inexact flag is set.
-// For |Y| > |X|, result is +- pi/2 - (A_hi + A_lo)
+// Force inexact and possibly underflow if very small results
{ .mfi
nop.m 999
-(p6) fnma.d.s0 f8 = atan2_A, atan2_near_one, atan2_sgn_pi_by_2
+(p8) fma.d atan2_FR_tmp = atan2_sgnXY, atan2_A, atan2_sml_norm
nop.i 999
}
-// For |Y| <= |X|, and X < 0, result is +- pi + (A_hi + A_lo)
{ .mfb
nop.m 999
-(p9) fma.d.s0 f8 = atan2_A, atan2_near_one, atan2_sgn_pi
- br.ret.sptk b0
+ fma.d f8 = atan2_sgnXY, atan2_A, atan2_P
+ br.ret.sptk b0
;;
}
ATAN2_ERROR:
-// Here if x=0 and y=0
+
{ .mfi
nop.m 999
- fclass.m p10,p11 = atan2_X,0x05 // Test if x=+0
+ fcmp.eq.unc.s1 p10,p11 = atan2_sgnX,f1
nop.i 999
}
;;
{ .mfi
- mov atan2_GR_tag = 37
-(p10) fmerge.s f10 = atan2_sgnY, f0 // x=+0, y=0
- nop.i 999
+ mov atan2_GR_tag = 37
+(p10) fmerge.s f10 = atan2_sgnY, f0
+ nop.i 999
}
{ .mfi
nop.m 999
-(p11) fma.d.s0 f10 = atan2_sgnY, atan2_pi, f0 // x=-0, y=0
+(p11) fma.d f10 = atan2_sgnY, atan2_pi, f0
nop.i 999
;;
}
-GLOBAL_IEEE754_END(atan2)
+.endp atan2#
+ASM_SIZE_DIRECTIVE(atan2#)
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+
+.proc __libm_error_region
+__libm_error_region:
.prologue
// (1)
{ .mfi
@@ -1015,19 +1102,19 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
.body
// (3)
{ .mib
- stfd [GR_Parameter_X] = f9 // STORE Parameter 1 on stack
+ stfd [GR_Parameter_X] = f9 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = f10 // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = f10 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
// (4)
@@ -1043,7 +1130,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_atan2f.S b/sysdeps/ia64/fpu/e_atan2f.S
index 67618f0437..03a4fed82f 100644
--- a/sysdeps/ia64/fpu/e_atan2f.S
+++ b/sysdeps/ia64/fpu/e_atan2f.S
@@ -1,10 +1,10 @@
.file "atan2f.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 6/1/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,21 +35,18 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
//==============================================================
-// 06/01/00 Initial version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 6/01/00 Initial version
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 08/17/00 Changed predicate register macro-usage to direct predicate
+// 8/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
-// 01/05/01 Fixed flag settings for denormal input.
-// 01/19/01 Added documentation
-// 01/30/01 Improved speed
-// 02/06/02 Corrected .section statement
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
+// 1/05/01 Fixed flag settings for denormal input.
+// 1/19/01 Added documentation
+// 1/30/01 Improved speed
// Description
//=========================================
@@ -229,6 +226,7 @@
// atan2f(+-0/+-0) sets single error tag to 38
// These are domain errors.
+#include "libm_support.h"
//
// Assembly macros
@@ -326,20 +324,22 @@ atan2f_poly_atan_U = f88
//atan2f_Pred_Xneg = p9 // x < 0
-RODATA
+.data
.align 16
-LOCAL_OBJECT_START(atan2f_coef_table1)
+atan2f_coef_table1:
+ASM_TYPE_DIRECTIVE(atan2f_coef_table1,@object)
data8 0xBFD5555512191621 // p1
data8 0x3F522E5D33BC9BAA // p10
data8 0xBFA6E10BA401393F // p7
data8 0x3FB142A73D7C54E3 // p6
data8 0xBFC2473C5145EE38 // p3
data8 0x3FC9997E7AFBFF4E // p2
-LOCAL_OBJECT_END(atan2f_coef_table1)
+ASM_SIZE_DIRECTIVE(atan2f_coef_table1)
-LOCAL_OBJECT_START(atan2f_coef_table2)
+atan2f_coef_table2:
+ASM_TYPE_DIRECTIVE(atan2f_coef_table2,@object)
data8 0xBF7DEAADAA336451 // p9
data8 0x3F97105B4160F86B // p8
data8 0xBFB68EED6A8CFA32 // p5
@@ -348,12 +348,29 @@ data8 0x3ff921fb54442d18 // pi/2
data8 0x400921fb54442d18 // pi
data8 0x3fe921fb54442d18 // pi/4
data8 0x4002d97c7f3321d2 // 3pi/4
-LOCAL_OBJECT_END(atan2f_coef_table2)
+ASM_SIZE_DIRECTIVE(atan2f_coef_table2)
+
+.global atan2f
+#ifdef _LIBC
+.global __atan2f
+.global __ieee754_atan2f
+#endif
-.section .text
-GLOBAL_IEEE754_ENTRY(atan2f)
+.text
+.align 32
+
+atan2f:
+.proc atan2f
+#ifdef _LIBC
+.proc __atan2f
+__atan2f:
+.proc __ieee754_atan2f
+__ieee754_atan2f:
+#endif
+
+
{ .mfi
alloc r32 = ar.pfs,1,5,4,0
@@ -707,7 +724,7 @@ ATAN2F_XY_INF_NAN_ZERO:
}
{ .mfb
nop.m 999
-(p10) fma.s.s0 f8 = f9,f8,f0 // Result quietized y if y is nan
+(p10) fma.s f8 = f9,f8,f0 // Result quietized y if y is nan
(p10) br.ret.spnt b0 // Exit if y is nan
}
;;
@@ -720,7 +737,7 @@ ATAN2F_XY_INF_NAN_ZERO:
}
{ .mfb
nop.m 999
-(p12) fnorm.s.s0 f8 = f9 // Result quietized x if x is nan, y not nan
+(p12) fnorm.s f8 = f9 // Result quietized x if x is nan, y not nan
(p12) br.ret.spnt b0 // Exit if x is nan, y not nan
}
;;
@@ -740,7 +757,7 @@ ATAN2F_XY_INF_NAN_ZERO:
}
{ .mfb
nop.m 999
-(p7) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_piby4,f0 // Result +-pi/4
+(p7) fma.s f8 = atan2f_sgn_Y, atan2f_const_piby4,f0 // Result +-pi/4
(p7) br.ret.spnt b0 // Exit if x +inf and y inf
}
;;
@@ -773,19 +790,19 @@ ATAN2F_XY_INF_NAN_ZERO:
}
{ .mfb
nop.m 999
-(p13) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // Result +-pi/2
+(p13) fma.s f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // Result +-pi/2
(p13) br.ret.spnt b0 // Exit if x not -inf and y inf
}
;;
{ .mfi
nop.m 999
-(p14) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_3piby4,f0 // Result +-3pi/4
+(p14) fma.s f8 = atan2f_sgn_Y, atan2f_const_3piby4,f0 // Result +-3pi/4
nop.i 999
}
{ .mfb
nop.m 999
-(p15) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // Result +-pi
+(p15) fma.s f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // Result +-pi
(p11) br.ret.spnt b0 // Exit if x -inf
}
;;
@@ -812,29 +829,31 @@ ATAN2F_XY_INF_NAN_ZERO:
}
{ .mfb
nop.m 999
-(p9) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // x < 0, y 0, result +-pi
+(p9) fma.s f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // x < 0, y 0, result +-pi
(p10) br.cond.spnt __libm_error_region // Branch if x zero and y zero
}
;;
{ .mfb
nop.m 999
-(p11) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // x zero, y not zero
+(p11) fma.s f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // x zero, y not zero
br.ret.sptk b0 // Final special case exit
}
;;
-GLOBAL_IEEE754_END(atan2f)
+.endp atan2f
+ASM_SIZE_DIRECTIVE(atan2f)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
mov GR_Parameter_TAG = 38
fclass.m p10,p11 = f9,0x5 // @zero | @pos
;;
(p10) fmerge.s f10 = f8, f0
-(p11) fma.s.s0 f10 = atan2f_sgn_Y, atan2f_const_pi,f0
+(p11) fma.s f10 = atan2f_sgn_Y, atan2f_const_pi,f0
;;
{ .mfi
@@ -894,7 +913,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
}
;;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_atanh.S b/sysdeps/ia64/fpu/e_atanh.S
deleted file mode 100644
index 4ae5ee6926..0000000000
--- a/sysdeps/ia64/fpu/e_atanh.S
+++ /dev/null
@@ -1,1071 +0,0 @@
-.file "atanh.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// ==============================================================
-// History
-// ==============================================================
-// 05/03/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/26/03 Improved performance, fixed to handle unorms
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-// ==============================================================
-// double atanh(double)
-//
-// Overview of operation
-// ==============================================================
-//
-// There are 7 paths:
-// 1. x = +/-0.0
-// Return atanh(x) = +/-0.0
-//
-// 2. 0.0 < |x| < 1/4
-// Return atanh(x) = Po2l(x),
-// where Po2l(x) = (((((((((C9*x^2 + C8)*x^2 + C7)*x^2 + C6)*x^2 +
-// C5)*x^2 + C4)*x^2 + C3)*x^2 + C2)*x^2 + C1)* x^2 + C0)*x^3 + x
-// 3. 1/4 <= |x| < 1
-// Return atanh(x) = sign(x) * log((1 + |x|)/(1 - |x|))
-// To compute (1 + |x|)/(1 - |x|) modified Newton Raphson method is used
-// (3 iterations)
-// Algorithm description for log function see below.
-//
-// 4. |x| = 1
-// Return atanh(x) = sign(x) * +INF
-//
-// 5. 1 < |x| <= +INF
-// Return atanh(x) = QNaN
-//
-// 6. x = [S,Q]NaN
-// Return atanh(x) = QNaN
-//
-// 7. x = denormal
-// Return atanh(x) = x
-//
-//==============================================================
-// Algorithm Description for log(x) function
-// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always true
-// for this atanh implementation
-//
-// Consider x = 2^N 1.f1 f2 f3 f4...f63
-// Log(x) = log(x * frcpa(x) / frcpa(x))
-// = log(x * frcpa(x)) + log(1/frcpa(x))
-// = log(x * frcpa(x)) - log(frcpa(x))
-//
-// frcpa(x) = 2^-N * frcpa(1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = N*log2 - log(frcpa(1.f1 f2 ... f63))
-//
-//
-// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// Log(x) = N*log2 + log(1./frcpa(1.f1 f2 ... f63)) + log(x * frcpa(x))
-// Log(x) = N*log2 + T + log(frcpa(x) x)
-//
-// Log(x) = N*log2 + T + log(C * x)
-//
-// C * x = 1 + r
-//
-// Log(x) = N*log2 + T + log(1 + r)
-// Log(x) = N*log2 + T + Series(r - r^2/2 + r^3/3 - r^4/4 + ...)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
-//
-// x = f * 2*N where f is 1.f_1f_2f_3...f_63
-// Nfloat = float(n) where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 16
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-// y_k = frcpa(x_k)
-// log(1/y_k) in quad and round to double-extended
-//
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f77
-
-// General registers used:
-// r14 -> r27, r33 -> r39
-
-// Predicate registers used:
-// p6 -> p14
-
-// p10, p11 to indicate is argument positive or negative
-// p12 to filter out case when x = [Q,S]NaN or +/-0
-// p13 to filter out case when x = denormal
-// p6, p7 to filter out case when |x| >= 1
-// p8 to filter out case when |x| < 1/4
-
-// Assembly macros
-//==============================================================
-Data2Ptr = r14
-Data3Ptr = r15
-RcpTablePtr = r16
-rExpbMask = r17
-rBias = r18
-rNearZeroBound = r19
-rArgSExpb = r20
-rArgExpb = r21
-rSExpb = r22
-rExpb = r23
-rSig = r24
-rN = r25
-rInd = r26
-DataPtr = r27
-
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-atanh_GR_tag = r39
-
-//==============================================================
-fAbsX = f32
-fOneMx = f33
-fOnePx = f34
-fY = f35
-fR = f36
-fR2 = f37
-fR3 = f38
-fRcp = f39
-fY4Rcp = f40
-fRcp0 = f41
-fRcp0n = f42
-fRcp1 = f43
-fRcp2 = f44
-fRcp3 = f45
-fN4Cvt = f46
-fN = f47
-fY2 = f48
-fLog2 = f49
-fLogT = f50
-fLogT_N = f51
-fX2 = f52
-fX3 = f53
-fX4 = f54
-fX8 = f55
-fP0 = f56
-fP5 = f57
-fP4 = f58
-fP3 = f59
-fP2 = f60
-fP1 = f61
-fNormX = f62
-fC9 = f63
-fC8 = f64
-fC7 = f65
-fC6 = f66
-fC5 = f67
-fC4 = f68
-fC3 = f69
-fC2 = f70
-fC1 = f71
-fC0 = f72
-fP98 = f73
-fP76 = f74
-fP54 = f75
-fP32 = f76
-fP10 = f77
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(atanh_data)
-data8 0xBFC5555DA7212371 // P5
-data8 0x3FC999A19EEF5826 // P4
-data8 0xBFCFFFFFFFFEF009 // P3
-data8 0x3FD555555554ECB2 // P2
-data8 0xBFE0000000000000 // P1 = -0.5
-data8 0x0000000000000000 // pad
-data8 0xb17217f7d1cf79ac , 0x00003ffd // 0.5*log(2)
-data8 0x0000000000000000 , 0x00000000 // pad to eliminate bank conflicts
-LOCAL_OBJECT_END(atanh_data)
-
-LOCAL_OBJECT_START(atanh_data_2)
-data8 0x8649FB89D3AD51FB , 0x00003FFB // C9
-data8 0xCC10AABEF160077A , 0x00003FFA // C8
-data8 0xF1EDB99AC0819CE2 , 0x00003FFA // C7
-data8 0x8881E53A809AD24D , 0x00003FFB // C6
-data8 0x9D8A116EF212F271 , 0x00003FFB // C5
-data8 0xBA2E8A6D1D756453 , 0x00003FFB // C4
-data8 0xE38E38E7A0945692 , 0x00003FFB // C3
-data8 0x924924924536891A , 0x00003FFC // C2
-data8 0xCCCCCCCCCCD08D51 , 0x00003FFC // C1
-data8 0xAAAAAAAAAAAAAA0C , 0x00003FFD // C0
-LOCAL_OBJECT_END(atanh_data_2)
-
-
-LOCAL_OBJECT_START(atanh_data_3)
-data8 0x80200aaeac44ef38 , 0x00003ff5 // log(1/frcpa(1+0/2^-8))/2
-//
-data8 0xc09090a2c35aa070 , 0x00003ff6 // log(1/frcpa(1+1/2^-8))/2
-data8 0xa0c94fcb41977c75 , 0x00003ff7 // log(1/frcpa(1+2/2^-8))/2
-data8 0xe18b9c263af83301 , 0x00003ff7 // log(1/frcpa(1+3/2^-8))/2
-data8 0x8d35c8d6399c30ea , 0x00003ff8 // log(1/frcpa(1+4/2^-8))/2
-data8 0xadd4d2ecd601cbb8 , 0x00003ff8 // log(1/frcpa(1+5/2^-8))/2
-//
-data8 0xce95403a192f9f01 , 0x00003ff8 // log(1/frcpa(1+6/2^-8))/2
-data8 0xeb59392cbcc01096 , 0x00003ff8 // log(1/frcpa(1+7/2^-8))/2
-data8 0x862c7d0cefd54c5d , 0x00003ff9 // log(1/frcpa(1+8/2^-8))/2
-data8 0x94aa63c65e70d499 , 0x00003ff9 // log(1/frcpa(1+9/2^-8))/2
-data8 0xa54a696d4b62b382 , 0x00003ff9 // log(1/frcpa(1+10/2^-8))/2
-//
-data8 0xb3e4a796a5dac208 , 0x00003ff9 // log(1/frcpa(1+11/2^-8))/2
-data8 0xc28c45b1878340a9 , 0x00003ff9 // log(1/frcpa(1+12/2^-8))/2
-data8 0xd35c55f39d7a6235 , 0x00003ff9 // log(1/frcpa(1+13/2^-8))/2
-data8 0xe220f037b954f1f5 , 0x00003ff9 // log(1/frcpa(1+14/2^-8))/2
-data8 0xf0f3389b036834f3 , 0x00003ff9 // log(1/frcpa(1+15/2^-8))/2
-//
-data8 0xffd3488d5c980465 , 0x00003ff9 // log(1/frcpa(1+16/2^-8))/2
-data8 0x87609ce2ed300490 , 0x00003ffa // log(1/frcpa(1+17/2^-8))/2
-data8 0x8ede9321e8c85927 , 0x00003ffa // log(1/frcpa(1+18/2^-8))/2
-data8 0x96639427f2f8e2f4 , 0x00003ffa // log(1/frcpa(1+19/2^-8))/2
-data8 0x9defad3e8f73217b , 0x00003ffa // log(1/frcpa(1+20/2^-8))/2
-//
-data8 0xa582ebd50097029c , 0x00003ffa // log(1/frcpa(1+21/2^-8))/2
-data8 0xac06dbe75ab80fee , 0x00003ffa // log(1/frcpa(1+22/2^-8))/2
-data8 0xb3a78449b2d3ccca , 0x00003ffa // log(1/frcpa(1+23/2^-8))/2
-data8 0xbb4f79635ab46bb2 , 0x00003ffa // log(1/frcpa(1+24/2^-8))/2
-data8 0xc2fec93a83523f3f , 0x00003ffa // log(1/frcpa(1+25/2^-8))/2
-//
-data8 0xc99af2eaca4c4571 , 0x00003ffa // log(1/frcpa(1+26/2^-8))/2
-data8 0xd1581106472fa653 , 0x00003ffa // log(1/frcpa(1+27/2^-8))/2
-data8 0xd8002560d4355f2e , 0x00003ffa // log(1/frcpa(1+28/2^-8))/2
-data8 0xdfcb43b4fe508632 , 0x00003ffa // log(1/frcpa(1+29/2^-8))/2
-data8 0xe67f6dff709d4119 , 0x00003ffa // log(1/frcpa(1+30/2^-8))/2
-//
-data8 0xed393b1c22351280 , 0x00003ffa // log(1/frcpa(1+31/2^-8))/2
-data8 0xf5192bff087bcc35 , 0x00003ffa // log(1/frcpa(1+32/2^-8))/2
-data8 0xfbdf4ff6dfef2fa3 , 0x00003ffa // log(1/frcpa(1+33/2^-8))/2
-data8 0x81559a97f92f9cc7 , 0x00003ffb // log(1/frcpa(1+34/2^-8))/2
-data8 0x84be72bce90266e8 , 0x00003ffb // log(1/frcpa(1+35/2^-8))/2
-//
-data8 0x88bc74113f23def2 , 0x00003ffb // log(1/frcpa(1+36/2^-8))/2
-data8 0x8c2ba3edf6799d11 , 0x00003ffb // log(1/frcpa(1+37/2^-8))/2
-data8 0x8f9dc92f92ea08b1 , 0x00003ffb // log(1/frcpa(1+38/2^-8))/2
-data8 0x9312e8f36efab5a7 , 0x00003ffb // log(1/frcpa(1+39/2^-8))/2
-data8 0x968b08643409ceb6 , 0x00003ffb // log(1/frcpa(1+40/2^-8))/2
-//
-data8 0x9a062cba08a1708c , 0x00003ffb // log(1/frcpa(1+41/2^-8))/2
-data8 0x9d845b3abf95485c , 0x00003ffb // log(1/frcpa(1+42/2^-8))/2
-data8 0xa06fd841bc001bb4 , 0x00003ffb // log(1/frcpa(1+43/2^-8))/2
-data8 0xa3f3a74652fbe0db , 0x00003ffb // log(1/frcpa(1+44/2^-8))/2
-data8 0xa77a8fb2336f20f5 , 0x00003ffb // log(1/frcpa(1+45/2^-8))/2
-//
-data8 0xab0497015d28b0a0 , 0x00003ffb // log(1/frcpa(1+46/2^-8))/2
-data8 0xae91c2be6ba6a615 , 0x00003ffb // log(1/frcpa(1+47/2^-8))/2
-data8 0xb189d1b99aebb20b , 0x00003ffb // log(1/frcpa(1+48/2^-8))/2
-data8 0xb51cced5de9c1b2c , 0x00003ffb // log(1/frcpa(1+49/2^-8))/2
-data8 0xb819bee9e720d42f , 0x00003ffb // log(1/frcpa(1+50/2^-8))/2
-//
-data8 0xbbb2a0947b093a5d , 0x00003ffb // log(1/frcpa(1+51/2^-8))/2
-data8 0xbf4ec1505811684a , 0x00003ffb // log(1/frcpa(1+52/2^-8))/2
-data8 0xc2535bacfa8975ff , 0x00003ffb // log(1/frcpa(1+53/2^-8))/2
-data8 0xc55a3eafad187eb8 , 0x00003ffb // log(1/frcpa(1+54/2^-8))/2
-data8 0xc8ff2484b2c0da74 , 0x00003ffb // log(1/frcpa(1+55/2^-8))/2
-//
-data8 0xcc0b1a008d53ab76 , 0x00003ffb // log(1/frcpa(1+56/2^-8))/2
-data8 0xcfb6203844b3209b , 0x00003ffb // log(1/frcpa(1+57/2^-8))/2
-data8 0xd2c73949a47a19f5 , 0x00003ffb // log(1/frcpa(1+58/2^-8))/2
-data8 0xd5daae18b49d6695 , 0x00003ffb // log(1/frcpa(1+59/2^-8))/2
-data8 0xd8f08248cf7e8019 , 0x00003ffb // log(1/frcpa(1+60/2^-8))/2
-//
-data8 0xdca7749f1b3e540e , 0x00003ffb // log(1/frcpa(1+61/2^-8))/2
-data8 0xdfc28e033aaaf7c7 , 0x00003ffb // log(1/frcpa(1+62/2^-8))/2
-data8 0xe2e012a5f91d2f55 , 0x00003ffb // log(1/frcpa(1+63/2^-8))/2
-data8 0xe600064ed9e292a8 , 0x00003ffb // log(1/frcpa(1+64/2^-8))/2
-data8 0xe9226cce42b39f60 , 0x00003ffb // log(1/frcpa(1+65/2^-8))/2
-//
-data8 0xec4749fd97a28360 , 0x00003ffb // log(1/frcpa(1+66/2^-8))/2
-data8 0xef6ea1bf57780495 , 0x00003ffb // log(1/frcpa(1+67/2^-8))/2
-data8 0xf29877ff38809091 , 0x00003ffb // log(1/frcpa(1+68/2^-8))/2
-data8 0xf5c4d0b245cb89be , 0x00003ffb // log(1/frcpa(1+69/2^-8))/2
-data8 0xf8f3afd6fcdef3aa , 0x00003ffb // log(1/frcpa(1+70/2^-8))/2
-//
-data8 0xfc2519756be1abc7 , 0x00003ffb // log(1/frcpa(1+71/2^-8))/2
-data8 0xff59119f503e6832 , 0x00003ffb // log(1/frcpa(1+72/2^-8))/2
-data8 0x8147ce381ae0e146 , 0x00003ffc // log(1/frcpa(1+73/2^-8))/2
-data8 0x82e45f06cb1ad0f2 , 0x00003ffc // log(1/frcpa(1+74/2^-8))/2
-data8 0x842f5c7c573cbaa2 , 0x00003ffc // log(1/frcpa(1+75/2^-8))/2
-//
-data8 0x85ce471968c8893a , 0x00003ffc // log(1/frcpa(1+76/2^-8))/2
-data8 0x876e8305bc04066d , 0x00003ffc // log(1/frcpa(1+77/2^-8))/2
-data8 0x891012678031fbb3 , 0x00003ffc // log(1/frcpa(1+78/2^-8))/2
-data8 0x8a5f1493d766a05f , 0x00003ffc // log(1/frcpa(1+79/2^-8))/2
-data8 0x8c030c778c56fa00 , 0x00003ffc // log(1/frcpa(1+80/2^-8))/2
-//
-data8 0x8da85df17e31d9ae , 0x00003ffc // log(1/frcpa(1+81/2^-8))/2
-data8 0x8efa663e7921687e , 0x00003ffc // log(1/frcpa(1+82/2^-8))/2
-data8 0x90a22b6875c6a1f8 , 0x00003ffc // log(1/frcpa(1+83/2^-8))/2
-data8 0x91f62cc8f5d24837 , 0x00003ffc // log(1/frcpa(1+84/2^-8))/2
-data8 0x93a06cfc3857d980 , 0x00003ffc // log(1/frcpa(1+85/2^-8))/2
-//
-data8 0x94f66d5e6fd01ced , 0x00003ffc // log(1/frcpa(1+86/2^-8))/2
-data8 0x96a330156e6772f2 , 0x00003ffc // log(1/frcpa(1+87/2^-8))/2
-data8 0x97fb3582754ea25b , 0x00003ffc // log(1/frcpa(1+88/2^-8))/2
-data8 0x99aa8259aad1bbf2 , 0x00003ffc // log(1/frcpa(1+89/2^-8))/2
-data8 0x9b0492f6227ae4a8 , 0x00003ffc // log(1/frcpa(1+90/2^-8))/2
-//
-data8 0x9c5f8e199bf3a7a5 , 0x00003ffc // log(1/frcpa(1+91/2^-8))/2
-data8 0x9e1293b9998c1daa , 0x00003ffc // log(1/frcpa(1+92/2^-8))/2
-data8 0x9f6fa31e0b41f308 , 0x00003ffc // log(1/frcpa(1+93/2^-8))/2
-data8 0xa0cda11eaf46390e , 0x00003ffc // log(1/frcpa(1+94/2^-8))/2
-data8 0xa22c8f029cfa45aa , 0x00003ffc // log(1/frcpa(1+95/2^-8))/2
-//
-data8 0xa3e48badb7856b34 , 0x00003ffc // log(1/frcpa(1+96/2^-8))/2
-data8 0xa5459a0aa95849f9 , 0x00003ffc // log(1/frcpa(1+97/2^-8))/2
-data8 0xa6a79c84480cfebd , 0x00003ffc // log(1/frcpa(1+98/2^-8))/2
-data8 0xa80a946d0fcb3eb2 , 0x00003ffc // log(1/frcpa(1+99/2^-8))/2
-data8 0xa96e831a3ea7b314 , 0x00003ffc // log(1/frcpa(1+100/2^-8))/2
-//
-data8 0xaad369e3dc544e3b , 0x00003ffc // log(1/frcpa(1+101/2^-8))/2
-data8 0xac92e9588952c815 , 0x00003ffc // log(1/frcpa(1+102/2^-8))/2
-data8 0xadfa035aa1ed8fdc , 0x00003ffc // log(1/frcpa(1+103/2^-8))/2
-data8 0xaf6219eae1ad6e34 , 0x00003ffc // log(1/frcpa(1+104/2^-8))/2
-data8 0xb0cb2e6d8160f753 , 0x00003ffc // log(1/frcpa(1+105/2^-8))/2
-//
-data8 0xb2354249ad950f72 , 0x00003ffc // log(1/frcpa(1+106/2^-8))/2
-data8 0xb3a056e98ef4a3b4 , 0x00003ffc // log(1/frcpa(1+107/2^-8))/2
-data8 0xb50c6dba52c6292a , 0x00003ffc // log(1/frcpa(1+108/2^-8))/2
-data8 0xb679882c33876165 , 0x00003ffc // log(1/frcpa(1+109/2^-8))/2
-data8 0xb78c07429785cedc , 0x00003ffc // log(1/frcpa(1+110/2^-8))/2
-//
-data8 0xb8faeb8dc4a77d24 , 0x00003ffc // log(1/frcpa(1+111/2^-8))/2
-data8 0xba6ad77eb36ae0d6 , 0x00003ffc // log(1/frcpa(1+112/2^-8))/2
-data8 0xbbdbcc915e9bee50 , 0x00003ffc // log(1/frcpa(1+113/2^-8))/2
-data8 0xbd4dcc44f8cf12ef , 0x00003ffc // log(1/frcpa(1+114/2^-8))/2
-data8 0xbec0d81bf5b531fa , 0x00003ffc // log(1/frcpa(1+115/2^-8))/2
-//
-data8 0xc034f19c139186f4 , 0x00003ffc // log(1/frcpa(1+116/2^-8))/2
-data8 0xc14cb69f7c5e55ab , 0x00003ffc // log(1/frcpa(1+117/2^-8))/2
-data8 0xc2c2abbb6e5fd56f , 0x00003ffc // log(1/frcpa(1+118/2^-8))/2
-data8 0xc439b2c193e6771e , 0x00003ffc // log(1/frcpa(1+119/2^-8))/2
-data8 0xc553acb9d5c67733 , 0x00003ffc // log(1/frcpa(1+120/2^-8))/2
-//
-data8 0xc6cc96e441272441 , 0x00003ffc // log(1/frcpa(1+121/2^-8))/2
-data8 0xc8469753eca88c30 , 0x00003ffc // log(1/frcpa(1+122/2^-8))/2
-data8 0xc962cf3ce072b05c , 0x00003ffc // log(1/frcpa(1+123/2^-8))/2
-data8 0xcadeba8771f694aa , 0x00003ffc // log(1/frcpa(1+124/2^-8))/2
-data8 0xcc5bc08d1f72da94 , 0x00003ffc // log(1/frcpa(1+125/2^-8))/2
-//
-data8 0xcd7a3f99ea035c29 , 0x00003ffc // log(1/frcpa(1+126/2^-8))/2
-data8 0xcef93860c8a53c35 , 0x00003ffc // log(1/frcpa(1+127/2^-8))/2
-data8 0xd0192f68a7ed23df , 0x00003ffc // log(1/frcpa(1+128/2^-8))/2
-data8 0xd19a201127d3c645 , 0x00003ffc // log(1/frcpa(1+129/2^-8))/2
-data8 0xd2bb92f4061c172c , 0x00003ffc // log(1/frcpa(1+130/2^-8))/2
-//
-data8 0xd43e80b2ee8cc8fc , 0x00003ffc // log(1/frcpa(1+131/2^-8))/2
-data8 0xd56173601fc4ade4 , 0x00003ffc // log(1/frcpa(1+132/2^-8))/2
-data8 0xd6e6637efb54086f , 0x00003ffc // log(1/frcpa(1+133/2^-8))/2
-data8 0xd80ad9f58f3c8193 , 0x00003ffc // log(1/frcpa(1+134/2^-8))/2
-data8 0xd991d1d31aca41f8 , 0x00003ffc // log(1/frcpa(1+135/2^-8))/2
-//
-data8 0xdab7d02231484a93 , 0x00003ffc // log(1/frcpa(1+136/2^-8))/2
-data8 0xdc40d532cde49a54 , 0x00003ffc // log(1/frcpa(1+137/2^-8))/2
-data8 0xdd685f79ed8b265e , 0x00003ffc // log(1/frcpa(1+138/2^-8))/2
-data8 0xde9094bbc0e17b1d , 0x00003ffc // log(1/frcpa(1+139/2^-8))/2
-data8 0xe01c91b78440c425 , 0x00003ffc // log(1/frcpa(1+140/2^-8))/2
-//
-data8 0xe14658f26997e729 , 0x00003ffc // log(1/frcpa(1+141/2^-8))/2
-data8 0xe270cdc2391e0d23 , 0x00003ffc // log(1/frcpa(1+142/2^-8))/2
-data8 0xe3ffce3a2aa64922 , 0x00003ffc // log(1/frcpa(1+143/2^-8))/2
-data8 0xe52bdb274ed82887 , 0x00003ffc // log(1/frcpa(1+144/2^-8))/2
-data8 0xe6589852e75d7df6 , 0x00003ffc // log(1/frcpa(1+145/2^-8))/2
-//
-data8 0xe786068c79937a7d , 0x00003ffc // log(1/frcpa(1+146/2^-8))/2
-data8 0xe91903adad100911 , 0x00003ffc // log(1/frcpa(1+147/2^-8))/2
-data8 0xea481236f7d35bb0 , 0x00003ffc // log(1/frcpa(1+148/2^-8))/2
-data8 0xeb77d48c692e6b14 , 0x00003ffc // log(1/frcpa(1+149/2^-8))/2
-data8 0xeca84b83d7297b87 , 0x00003ffc // log(1/frcpa(1+150/2^-8))/2
-//
-data8 0xedd977f4962aa158 , 0x00003ffc // log(1/frcpa(1+151/2^-8))/2
-data8 0xef7179a22f257754 , 0x00003ffc // log(1/frcpa(1+152/2^-8))/2
-data8 0xf0a450d139366ca7 , 0x00003ffc // log(1/frcpa(1+153/2^-8))/2
-data8 0xf1d7e0524ff9ffdb , 0x00003ffc // log(1/frcpa(1+154/2^-8))/2
-data8 0xf30c29036a8b6cae , 0x00003ffc // log(1/frcpa(1+155/2^-8))/2
-//
-data8 0xf4412bc411ea8d92 , 0x00003ffc // log(1/frcpa(1+156/2^-8))/2
-data8 0xf576e97564c8619d , 0x00003ffc // log(1/frcpa(1+157/2^-8))/2
-data8 0xf6ad62fa1b5f172f , 0x00003ffc // log(1/frcpa(1+158/2^-8))/2
-data8 0xf7e499368b55c542 , 0x00003ffc // log(1/frcpa(1+159/2^-8))/2
-data8 0xf91c8d10abaffe22 , 0x00003ffc // log(1/frcpa(1+160/2^-8))/2
-//
-data8 0xfa553f7018c966f3 , 0x00003ffc // log(1/frcpa(1+161/2^-8))/2
-data8 0xfb8eb13e185d802c , 0x00003ffc // log(1/frcpa(1+162/2^-8))/2
-data8 0xfcc8e3659d9bcbed , 0x00003ffc // log(1/frcpa(1+163/2^-8))/2
-data8 0xfe03d6d34d487fd2 , 0x00003ffc // log(1/frcpa(1+164/2^-8))/2
-data8 0xff3f8c7581e9f0ae , 0x00003ffc // log(1/frcpa(1+165/2^-8))/2
-//
-data8 0x803e029e280173ae , 0x00003ffd // log(1/frcpa(1+166/2^-8))/2
-data8 0x80dca10cc52d0757 , 0x00003ffd // log(1/frcpa(1+167/2^-8))/2
-data8 0x817ba200632755a1 , 0x00003ffd // log(1/frcpa(1+168/2^-8))/2
-data8 0x821b05f3b01d6774 , 0x00003ffd // log(1/frcpa(1+169/2^-8))/2
-data8 0x82bacd623ff19d06 , 0x00003ffd // log(1/frcpa(1+170/2^-8))/2
-//
-data8 0x835af8c88e7a8f47 , 0x00003ffd // log(1/frcpa(1+171/2^-8))/2
-data8 0x83c5f8299e2b4091 , 0x00003ffd // log(1/frcpa(1+172/2^-8))/2
-data8 0x8466cb43f3d87300 , 0x00003ffd // log(1/frcpa(1+173/2^-8))/2
-data8 0x850803a67c80ca4b , 0x00003ffd // log(1/frcpa(1+174/2^-8))/2
-data8 0x85a9a1d11a23b461 , 0x00003ffd // log(1/frcpa(1+175/2^-8))/2
-//
-data8 0x864ba644a18e6e05 , 0x00003ffd // log(1/frcpa(1+176/2^-8))/2
-data8 0x86ee1182dcc432f7 , 0x00003ffd // log(1/frcpa(1+177/2^-8))/2
-data8 0x875a925d7e48c316 , 0x00003ffd // log(1/frcpa(1+178/2^-8))/2
-data8 0x87fdaa109d23aef7 , 0x00003ffd // log(1/frcpa(1+179/2^-8))/2
-data8 0x88a129ed4becfaf2 , 0x00003ffd // log(1/frcpa(1+180/2^-8))/2
-//
-data8 0x89451278ecd7f9cf , 0x00003ffd // log(1/frcpa(1+181/2^-8))/2
-data8 0x89b29295f8432617 , 0x00003ffd // log(1/frcpa(1+182/2^-8))/2
-data8 0x8a572ac5a5496882 , 0x00003ffd // log(1/frcpa(1+183/2^-8))/2
-data8 0x8afc2d0ce3b2dadf , 0x00003ffd // log(1/frcpa(1+184/2^-8))/2
-data8 0x8b6a69c608cfd3af , 0x00003ffd // log(1/frcpa(1+185/2^-8))/2
-//
-data8 0x8c101e106e899a83 , 0x00003ffd // log(1/frcpa(1+186/2^-8))/2
-data8 0x8cb63de258f9d626 , 0x00003ffd // log(1/frcpa(1+187/2^-8))/2
-data8 0x8d2539c5bd19e2b1 , 0x00003ffd // log(1/frcpa(1+188/2^-8))/2
-data8 0x8dcc0e064b29e6f1 , 0x00003ffd // log(1/frcpa(1+189/2^-8))/2
-data8 0x8e734f45d88357ae , 0x00003ffd // log(1/frcpa(1+190/2^-8))/2
-//
-data8 0x8ee30cef034a20db , 0x00003ffd // log(1/frcpa(1+191/2^-8))/2
-data8 0x8f8b0515686d1d06 , 0x00003ffd // log(1/frcpa(1+192/2^-8))/2
-data8 0x90336bba039bf32f , 0x00003ffd // log(1/frcpa(1+193/2^-8))/2
-data8 0x90a3edd23d1c9d58 , 0x00003ffd // log(1/frcpa(1+194/2^-8))/2
-data8 0x914d0de2f5d61b32 , 0x00003ffd // log(1/frcpa(1+195/2^-8))/2
-//
-data8 0x91be0c20d28173b5 , 0x00003ffd // log(1/frcpa(1+196/2^-8))/2
-data8 0x9267e737c06cd34a , 0x00003ffd // log(1/frcpa(1+197/2^-8))/2
-data8 0x92d962ae6abb1237 , 0x00003ffd // log(1/frcpa(1+198/2^-8))/2
-data8 0x9383fa6afbe2074c , 0x00003ffd // log(1/frcpa(1+199/2^-8))/2
-data8 0x942f0421651c1c4e , 0x00003ffd // log(1/frcpa(1+200/2^-8))/2
-//
-data8 0x94a14a3845bb985e , 0x00003ffd // log(1/frcpa(1+201/2^-8))/2
-data8 0x954d133857f861e7 , 0x00003ffd // log(1/frcpa(1+202/2^-8))/2
-data8 0x95bfd96468e604c4 , 0x00003ffd // log(1/frcpa(1+203/2^-8))/2
-data8 0x9632d31cafafa858 , 0x00003ffd // log(1/frcpa(1+204/2^-8))/2
-data8 0x96dfaabd86fa1647 , 0x00003ffd // log(1/frcpa(1+205/2^-8))/2
-//
-data8 0x9753261fcbb2a594 , 0x00003ffd // log(1/frcpa(1+206/2^-8))/2
-data8 0x9800c11b426b996d , 0x00003ffd // log(1/frcpa(1+207/2^-8))/2
-data8 0x9874bf4d45ae663c , 0x00003ffd // log(1/frcpa(1+208/2^-8))/2
-data8 0x99231f5ee9a74f79 , 0x00003ffd // log(1/frcpa(1+209/2^-8))/2
-data8 0x9997a18a56bcad28 , 0x00003ffd // log(1/frcpa(1+210/2^-8))/2
-//
-data8 0x9a46c873a3267e79 , 0x00003ffd // log(1/frcpa(1+211/2^-8))/2
-data8 0x9abbcfc621eb6cb6 , 0x00003ffd // log(1/frcpa(1+212/2^-8))/2
-data8 0x9b310cb0d354c990 , 0x00003ffd // log(1/frcpa(1+213/2^-8))/2
-data8 0x9be14cf9e1b3515c , 0x00003ffd // log(1/frcpa(1+214/2^-8))/2
-data8 0x9c5710b8cbb73a43 , 0x00003ffd // log(1/frcpa(1+215/2^-8))/2
-//
-data8 0x9ccd0abd301f399c , 0x00003ffd // log(1/frcpa(1+216/2^-8))/2
-data8 0x9d7e67f3bdce8888 , 0x00003ffd // log(1/frcpa(1+217/2^-8))/2
-data8 0x9df4ea81a99daa01 , 0x00003ffd // log(1/frcpa(1+218/2^-8))/2
-data8 0x9e6ba405a54514ba , 0x00003ffd // log(1/frcpa(1+219/2^-8))/2
-data8 0x9f1e21c8c7bb62b3 , 0x00003ffd // log(1/frcpa(1+220/2^-8))/2
-//
-data8 0x9f956593f6b6355c , 0x00003ffd // log(1/frcpa(1+221/2^-8))/2
-data8 0xa00ce1092e5498c3 , 0x00003ffd // log(1/frcpa(1+222/2^-8))/2
-data8 0xa0c08309c4b912c1 , 0x00003ffd // log(1/frcpa(1+223/2^-8))/2
-data8 0xa1388a8c6faa2afa , 0x00003ffd // log(1/frcpa(1+224/2^-8))/2
-data8 0xa1b0ca7095b5f985 , 0x00003ffd // log(1/frcpa(1+225/2^-8))/2
-//
-data8 0xa22942eb47534a00 , 0x00003ffd // log(1/frcpa(1+226/2^-8))/2
-data8 0xa2de62326449d0a3 , 0x00003ffd // log(1/frcpa(1+227/2^-8))/2
-data8 0xa357690f88bfe345 , 0x00003ffd // log(1/frcpa(1+228/2^-8))/2
-data8 0xa3d0a93f45169a4b , 0x00003ffd // log(1/frcpa(1+229/2^-8))/2
-data8 0xa44a22f7ffe65f30 , 0x00003ffd // log(1/frcpa(1+230/2^-8))/2
-//
-data8 0xa500c5e5b4c1aa36 , 0x00003ffd // log(1/frcpa(1+231/2^-8))/2
-data8 0xa57ad064eb2ebbc2 , 0x00003ffd // log(1/frcpa(1+232/2^-8))/2
-data8 0xa5f5152dedf4384e , 0x00003ffd // log(1/frcpa(1+233/2^-8))/2
-data8 0xa66f9478856233ec , 0x00003ffd // log(1/frcpa(1+234/2^-8))/2
-data8 0xa6ea4e7cca02c32e , 0x00003ffd // log(1/frcpa(1+235/2^-8))/2
-//
-data8 0xa765437325341ccf , 0x00003ffd // log(1/frcpa(1+236/2^-8))/2
-data8 0xa81e21e6c75b4020 , 0x00003ffd // log(1/frcpa(1+237/2^-8))/2
-data8 0xa899ab333fe2b9ca , 0x00003ffd // log(1/frcpa(1+238/2^-8))/2
-data8 0xa9157039c51ebe71 , 0x00003ffd // log(1/frcpa(1+239/2^-8))/2
-data8 0xa991713433c2b999 , 0x00003ffd // log(1/frcpa(1+240/2^-8))/2
-//
-data8 0xaa0dae5cbcc048b3 , 0x00003ffd // log(1/frcpa(1+241/2^-8))/2
-data8 0xaa8a27ede5eb13ad , 0x00003ffd // log(1/frcpa(1+242/2^-8))/2
-data8 0xab06de228a9e3499 , 0x00003ffd // log(1/frcpa(1+243/2^-8))/2
-data8 0xab83d135dc633301 , 0x00003ffd // log(1/frcpa(1+244/2^-8))/2
-data8 0xac3fb076adc7fe7a , 0x00003ffd // log(1/frcpa(1+245/2^-8))/2
-//
-data8 0xacbd3cbbe47988f1 , 0x00003ffd // log(1/frcpa(1+246/2^-8))/2
-data8 0xad3b06b1a5dc57c3 , 0x00003ffd // log(1/frcpa(1+247/2^-8))/2
-data8 0xadb90e94af887717 , 0x00003ffd // log(1/frcpa(1+248/2^-8))/2
-data8 0xae3754a218f7c816 , 0x00003ffd // log(1/frcpa(1+249/2^-8))/2
-data8 0xaeb5d9175437afa2 , 0x00003ffd // log(1/frcpa(1+250/2^-8))/2
-//
-data8 0xaf349c322e9c7cee , 0x00003ffd // log(1/frcpa(1+251/2^-8))/2
-data8 0xafb39e30d1768d1c , 0x00003ffd // log(1/frcpa(1+252/2^-8))/2
-data8 0xb032df51c2c93116 , 0x00003ffd // log(1/frcpa(1+253/2^-8))/2
-data8 0xb0b25fd3e6035ad9 , 0x00003ffd // log(1/frcpa(1+254/2^-8))/2
-data8 0xb1321ff67cba178c , 0x00003ffd // log(1/frcpa(1+255/2^-8))/2
-LOCAL_OBJECT_END(atanh_data_3)
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(atanh)
-
-{ .mfi
- getf.exp rArgSExpb = f8 // Must recompute if x unorm
- fclass.m p13,p0 = f8, 0x0b // is arg denormal ?
- mov rExpbMask = 0x1ffff
-}
-{ .mfi
- addl DataPtr = @ltoff(atanh_data), gp
- fnma.s1 fOneMx = f8, f1, f1 // fOneMx = 1 - x
- mov rBias = 0xffff
-}
-;;
-
-{ .mfi
- mov rNearZeroBound = 0xfffd // biased exp of 1/4
- fclass.m p12,p0 = f8, 0xc7 // is arg NaN or +/-0 ?
- nop.i 0
-}
-{ .mfi
- ld8 DataPtr = [DataPtr]
- fma.s1 fOnePx = f8, f1, f1 // fOnePx = 1 + x
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p10,p11 = f8,f0 // is x < 0 ?
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize x
-(p13) br.cond.spnt ATANH_UNORM // Branch if x=unorm
-}
-;;
-
-ATANH_COMMON:
-// Return here if x=unorm and not denorm
-{ .mfi
- adds Data2Ptr = 0x50, DataPtr
- fma.s1 fX2 = f8, f8, f0 // x^2
- nop.i 0
-}
-{ .mfb
- adds Data3Ptr = 0xC0, DataPtr
-(p12) fma.d.s0 f8 = f8,f1,f8 // NaN or +/-0
-(p12) br.ret.spnt b0 // Exit for x Nan or zero
-}
-;;
-
-{ .mfi
- ldfe fC9 = [Data2Ptr], 16
-(p11) frcpa.s1 fRcp0, p0 = f1, fOneMx
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fC8 = [Data2Ptr], 16
-(p10) frcpa.s1 fRcp0n, p0 = f1, fOnePx
- and rArgExpb = rArgSExpb, rExpbMask // biased exponent
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 fOneMx = fOnePx, f1, f0 // fOnePx = 1 - |x|
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fC7 = [Data2Ptr], 16
-(p10) fnma.s1 fOnePx = fNormX, f1, f1 // fOnePx = 1 + |x|
- cmp.ge p6,p0 = rArgExpb, rBias // is Expb(Arg) >= Expb(1) ?
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt atanh_ge_one // Branch if |x| >=1.0
-}
-;;
-
-{ .mfi
- ldfe fC6 = [Data2Ptr], 16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fC5 = [Data2Ptr], 16
- fma.s1 fX4 = fX2, fX2, f0 // x^4
- cmp.gt p8,p0 = rNearZeroBound, rArgExpb
-}
-{ .mfb
- ldfe fC2 = [Data3Ptr], 16
- fma.s1 fX3 = fX2, fNormX, f0 // x^3
-(p8) br.cond.spnt atanh_near_zero // Exit if 0 < |x| < 0.25
-}
-;;
-
-// Main path: 0.25 <= |x| < 1.0
-// NR method: iteration #1
-.pred.rel "mutex",p11,p10
-{ .mfi
- ldfpd fP5, fP4 = [DataPtr], 16
-(p11) fnma.s1 fRcp1 = fRcp0, fOneMx, f1 // t = 1 - r0*x
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fnma.s1 fRcp1 = fRcp0n, fOneMx, f1 // t = 1 - r0*x
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd fP3, fP2 = [DataPtr], 16
- // r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
-(p11) fma.s1 fRcp1 = fRcp0, fRcp1, fRcp0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // r1 = r0 + r0*t = r0 + r0*(1 - r0*x)
-(p10) fma.s1 fRcp1 = fRcp0n, fRcp1, fRcp0n
- nop.i 0
-}
-;;
-
-// NR method: iteration #2
-{ .mfi
- ldfd fP1 = [DataPtr], 16
- fnma.s1 fRcp2 = fRcp1, fOneMx, f1 // t = 1 - r1*x
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fLog2 = [DataPtr], 16
- // r2 = r1 + r1*t = r1 + r1*(1 - r1*x)
- fma.s1 fRcp2 = fRcp1, fRcp2, fRcp1
- nop.i 0
-}
-;;
-
-// NR method: iteration #3
-{ .mfi
- adds RcpTablePtr = 0xB0, DataPtr
- fnma.s1 fRcp3 = fRcp2, fOneMx, f1 // t = 1 - r2*x
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fY4Rcp = fRcp2, fOnePx, f0 // fY4Rcp = r2*(1 + x)
- nop.i 0
-}
-;;
-
-// polynomial approximation & final reconstruction
-{ .mfi
- nop.m 0
- frcpa.s1 fRcp, p0 = f1, fY4Rcp
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // y = r2 * (1 + x) + r2 * (1 + x) * t = (1 + x) * (r2 + r2*(1 - r2*x))
- fma.s1 fY = fY4Rcp, fRcp3, fY4Rcp
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.exp rSExpb = fY4Rcp // biased exponent and sign
-;;
- getf.sig rSig = fY4Rcp // significand
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fms.s1 fR = fY, fRcp, f1 // fR = fY * fRcp - 1
- nop.i 0
-}
-;;
-
-{ .mmi
- and rExpb = rSExpb, rExpbMask
-;;
- sub rN = rExpb, rBias // exponent
- extr.u rInd = rSig,55,8 // Extract 8 bits
-}
-;;
-
-{ .mmi
- setf.sig fN4Cvt = rN
- shladd RcpTablePtr = rInd, 4, RcpTablePtr
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fLogT = [RcpTablePtr]
- fma.s1 fR2 = fR, fR, f0 // r^2
- nop.i 0
-}
-{
- nop.m 0
- fma.s1 fP54 = fP5, fR, fP4 // P5*r + P4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP32 = fP3, fR, fP2 // P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fR3 = fR2, fR, f0 // r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP10 = fP1, fR2, fR // P1*r^2 + r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcvt.xf fN = fN4Cvt
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP54 = fP54, fR2, fP32 // (P5*r + P4)*r^2 + P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fLogT_N = fN, fLog2, fLogT // N*Log2 + LogT
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
- fma.s1 fP54 = fP54, fR3, fP10
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p11,p10
-{ .mfi
- nop.m 0
- // 0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) + 0.5*(N*Log2 + T)
-(p11) fnma.d.s0 f8 = fP54, fP1, fLogT_N
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // -0.5*(((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r) - 0.5*(N*Log2 + T)
-(p10) fms.d.s0 f8 = fP54, fP1, fLogT_N
- br.ret.sptk b0 // Exit for 0.25 <= |x| < 1.0
-}
-;;
-
-// Here if 0 < |x| < 0.25
-atanh_near_zero:
-{ .mfi
- ldfe fC4 = [Data2Ptr], 16
- fma.s1 fP98 = fC9, fX2, fC8 // C9*x^2 + C8
- nop.i 0
-}
-{ .mfi
- ldfe fC1 = [Data3Ptr], 16
- fma.s1 fP76 = fC7, fX2, fC6 // C7*x^2 + C6
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fC3 = [Data2Ptr], 16
- fma.s1 fX8 = fX4, fX4, f0 // x^8
- nop.i 0
-}
-{ .mfi
- ldfe fC0 = [Data3Ptr], 16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP98 = fP98, fX4, fP76 // C9*x^6 + C8*x^4 + C7*x^2 + C6
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP54 = fC5, fX2, fC4 // C5*x^2 + C4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP32 = fC3, fX2, fC2 // C3*x^2 + C2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP10 = fC1, fX2, fC0 // C1*x^2 + C0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP54 = fP54, fX4, fP32 // C5*x^6 + C4*x^4 + C3*x^2 + C2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // C9*x^14 + C8*x^12 + C7*x^10 + C6*x^8 + C5*x^6 + C4*x^4 + C3*x^2 + C2
- fma.s1 fP98 = fP98, fX8, fP54
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // C9*x^18 + C8*x^16 + C7*x^14 + C6*x^12 + C5*x^10 + C4*x^8 + C3*x^6 +
- // C2*x^4 + C1*x^2 + C0
- fma.s1 fP98 = fP98, fX4, fP10
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- // C9*x^21 + C8*x^19 + C7*x^17 + C6*x^15 + C5*x^13 + C4*x^11 + C3*x^9 +
- // C2*x^7 + C1*x^5 + C0*x^3 + x
- fma.d.s0 f8 = fP98, fX3, fNormX
- br.ret.sptk b0 // Exit for 0 < |x| < 0.25
-}
-;;
-
-ATANH_UNORM:
-// Here if x=unorm
-{ .mfi
- getf.exp rArgSExpb = fNormX // Recompute if x unorm
- fclass.m p0,p13 = fNormX, 0x0b // Test x denorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy to set denormal flag
-(p13) br.cond.sptk ATANH_COMMON // Continue if x unorm and not denorm
-}
-;;
-
-.pred.rel "mutex",p10,p11
-{ .mfi
- nop.m 0
-(p10) fnma.d.s0 f8 = f8,f8,f8 // Result x-x^2 if x=-denorm
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p11) fma.d.s0 f8 = f8,f8,f8 // Result x+x^2 if x=+denorm
- br.ret.spnt b0 // Exit if denorm
-}
-;;
-
-// Here if |x| >= 1.0
-atanh_ge_one:
-{ .mfi
- alloc r32 = ar.pfs,1,3,4,0
- fmerge.s fAbsX = f0, f8 // Form |x|
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmerge.s f10 = f8, f8 // Save input for error call
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.eq.s1 p6,p7 = fAbsX, f1 // Test for |x| = 1.0
- nop.i 0
-}
-;;
-
-// Set error tag and result, and raise invalid flag if |x| > 1.0
-{ .mfi
-(p7) mov atanh_GR_tag = 131
-(p7) frcpa.s0 f8, p0 = f0, f0 // Get QNaN, and raise invalid
- nop.i 0
-}
-;;
-
-// Set error tag and result, and raise Z flag if |x| = 1.0
-{ .mfi
- nop.m 0
-(p6) frcpa.s0 fRcp, p0 = f1, f0 // Get inf, and raise Z flag
- nop.i 0
-}
-;;
-
-{ .mfb
-(p6) mov atanh_GR_tag = 132
-(p6) fmerge.s f8 = f8, fRcp // result is +-inf
- br.cond.sptk __libm_error_region // Exit if |x| >= 1.0
-}
-;;
-
-GLOBAL_LIBM_END(atanh)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfd [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfd [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_atanhf.S b/sysdeps/ia64/fpu/e_atanhf.S
deleted file mode 100644
index 1ec1408e35..0000000000
--- a/sysdeps/ia64/fpu/e_atanhf.S
+++ /dev/null
@@ -1,845 +0,0 @@
-.file "atanhf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 05/22/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/06/02 Improved Itanium 2 performance
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/26/03 Improved performance, fixed to handle unorms
-//
-// API
-//==============================================================
-// float atanhf(float)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-//
-// There are 7 paths:
-// 1. x = +/-0.0
-// Return atanhf(x) = +/-0.0
-//
-// 2. 0.0 < |x| <= MAX_DENORMAL_ABS
-// Return atanhf(x) = x + sign(x)*x^2
-//
-// 3. MAX_DENORMAL_ABS < |x| < 2^(-20)
-// Return atanhf(x) = Pol3(x), where Pol3(x) = x + x^3
-//
-// 4. 2^(-20) <= |x| < 1
-// Return atanhf(x) = 0.5 * (log(1 + x) - log(1 - x))
-// Algorithm description for log function see below.
-//
-// 5. |x| = 1
-// Return atanhf(x) = sign(x) * +INF
-//
-// 6. 1 < |x| <= +INF
-// Return atanhf(x) = QNaN
-//
-// 7. x = [S,Q]NaN
-// Return atanhf(x) = QNaN
-//
-//==============================================================
-// Algorithm Description for log(x) function
-//
-// Consider x = 2^N * 1.f1 f2 f3 f4...f63
-// log(x) = log(x * frcpa(x) / frcpa(x))
-// = log(x * frcpa(x)) + log(1/frcpa(x))
-// = log(x * frcpa(x)) - log(frcpa(x))
-//
-// frcpa(x) = 2^(-N) * frcpa(1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-// = -log(2^(-N)) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = N*log2 - log(frcpa(1.f1 f2 ... f63))
-//
-//
-// log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// log(x) = N*log2 + log(1./frcpa(1.f1 f2 ... f63)) + log(x * frcpa(x))
-// log(x) = N*log2 + T + log(frcpa(x) x)
-//
-// Log(x) = N*log2 + T + log(C * x)
-//
-// C * x = 1 + r
-//
-// log(x) = N*log2 + T + log(1 + r)
-// log(x) = N*log2 + T + Series(r)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4
-//
-// x = f * 2*N where f is 1.f_1f_2f_3...f_63
-// Nfloat = float(n) where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 16
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-// y_k = frcpa(x_k)
-// log(1/y_k) in quad and round to double-extended
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f59
-
-// General registers used:
-// r14 -> r29, r32 -> r39
-
-// Predicate registers used:
-// p6 -> p9
-
-// p6 to filter out case when |x| >= 1
-// p7 to filter out case when x = [Q,S]NaN or +/-0
-// p8 to filter out case when |x| < 2^(-20)
-// p9 to filter out case when x = denormal
-
-
-// Assembly macros
-//==============================================================
-DataPtr = r14
-RcpTablePtrM = r15
-RcpTablePtrP = r16
-rExpbMask = r17
-rBias = r18
-rNearZeroBound = r19
-rArgSExpb = r20
-rArgExpb = r21
-rExpbm = r22
-rExpbp = r23
-rSigm = r24
-rSigp = r25
-rNm = r26
-rNp = r27
-rIndm = r28
-rIndp = r29
-
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-atanh_GR_tag = r39
-
-//==============================================================
-fOneMx = f33
-fOnePx = f34
-fRm2 = f35
-fRm3 = f36
-fRp2 = f37
-fRp3 = f38
-fRcpM = f39
-fRcpP = f40
-fRp = f41
-fRm = f42
-fN4CvtM = f43
-fN4CvtP = f44
-fNm = f45
-fNp = f46
-fLogTm = f47
-fLogTp = f48
-fLog2 = f49
-fArgAbs = f50
-fNormX = f50
-fP32m = f51
-fP32p = f52
-fP10m = f53
-fP10p = f54
-fX2 = f55
-fP3 = f56
-fP2 = f57
-fP1 = f58
-fHalf = f59
-
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(atanhf_data)
-data8 0xbfc0001008f39d59 // P3*0.5
-data8 0x3fc5556073e0c45a // P2*0.5
-data8 0xbfcffffffffaea15 // P1*0.5
-data8 0x3fe0000000000000 // 0.5
-data8 0x3fd62e42fefa39ef // 0.5*ln(2)
-data8 0x0000000000000000 // pad
-LOCAL_OBJECT_END(atanhf_data)
-
-LOCAL_OBJECT_START(atanhf_data2)
-data8 0x3f50040155d5889e //log(1/frcpa(1+0/256))/2
-data8 0x3f68121214586b54 //log(1/frcpa(1+1/256))/2
-data8 0x3f741929f96832f0 //log(1/frcpa(1+2/256))/2
-data8 0x3f7c317384c75f06 //log(1/frcpa(1+3/256))/2
-data8 0x3f81a6b91ac73386 //log(1/frcpa(1+4/256))/2
-data8 0x3f85ba9a5d9ac039 //log(1/frcpa(1+5/256))/2
-data8 0x3f89d2a8074325f4 //log(1/frcpa(1+6/256))/2
-data8 0x3f8d6b2725979802 //log(1/frcpa(1+7/256))/2
-data8 0x3f90c58fa19dfaaa //log(1/frcpa(1+8/256))/2
-data8 0x3f92954c78cbce1b //log(1/frcpa(1+9/256))/2
-data8 0x3f94a94d2da96c56 //log(1/frcpa(1+10/256))/2
-data8 0x3f967c94f2d4bb58 //log(1/frcpa(1+11/256))/2
-data8 0x3f985188b630f068 //log(1/frcpa(1+12/256))/2
-data8 0x3f9a6b8abe73af4c //log(1/frcpa(1+13/256))/2
-data8 0x3f9c441e06f72a9e //log(1/frcpa(1+14/256))/2
-data8 0x3f9e1e6713606d07 //log(1/frcpa(1+15/256))/2
-data8 0x3f9ffa6911ab9301 //log(1/frcpa(1+16/256))/2
-data8 0x3fa0ec139c5da601 //log(1/frcpa(1+17/256))/2
-data8 0x3fa1dbd2643d190b //log(1/frcpa(1+18/256))/2
-data8 0x3fa2cc7284fe5f1c //log(1/frcpa(1+19/256))/2
-data8 0x3fa3bdf5a7d1ee64 //log(1/frcpa(1+20/256))/2
-data8 0x3fa4b05d7aa012e0 //log(1/frcpa(1+21/256))/2
-data8 0x3fa580db7ceb5702 //log(1/frcpa(1+22/256))/2
-data8 0x3fa674f089365a7a //log(1/frcpa(1+23/256))/2
-data8 0x3fa769ef2c6b568d //log(1/frcpa(1+24/256))/2
-data8 0x3fa85fd927506a48 //log(1/frcpa(1+25/256))/2
-data8 0x3fa9335e5d594989 //log(1/frcpa(1+26/256))/2
-data8 0x3faa2b0220c8e5f5 //log(1/frcpa(1+27/256))/2
-data8 0x3fab0004ac1a86ac //log(1/frcpa(1+28/256))/2
-data8 0x3fabf968769fca11 //log(1/frcpa(1+29/256))/2
-data8 0x3faccfedbfee13a8 //log(1/frcpa(1+30/256))/2
-data8 0x3fada727638446a2 //log(1/frcpa(1+31/256))/2
-data8 0x3faea3257fe10f7a //log(1/frcpa(1+32/256))/2
-data8 0x3faf7be9fedbfde6 //log(1/frcpa(1+33/256))/2
-data8 0x3fb02ab352ff25f4 //log(1/frcpa(1+34/256))/2
-data8 0x3fb097ce579d204d //log(1/frcpa(1+35/256))/2
-data8 0x3fb1178e8227e47c //log(1/frcpa(1+36/256))/2
-data8 0x3fb185747dbecf34 //log(1/frcpa(1+37/256))/2
-data8 0x3fb1f3b925f25d41 //log(1/frcpa(1+38/256))/2
-data8 0x3fb2625d1e6ddf57 //log(1/frcpa(1+39/256))/2
-data8 0x3fb2d1610c86813a //log(1/frcpa(1+40/256))/2
-data8 0x3fb340c59741142e //log(1/frcpa(1+41/256))/2
-data8 0x3fb3b08b6757f2a9 //log(1/frcpa(1+42/256))/2
-data8 0x3fb40dfb08378003 //log(1/frcpa(1+43/256))/2
-data8 0x3fb47e74e8ca5f7c //log(1/frcpa(1+44/256))/2
-data8 0x3fb4ef51f6466de4 //log(1/frcpa(1+45/256))/2
-data8 0x3fb56092e02ba516 //log(1/frcpa(1+46/256))/2
-data8 0x3fb5d23857cd74d5 //log(1/frcpa(1+47/256))/2
-data8 0x3fb6313a37335d76 //log(1/frcpa(1+48/256))/2
-data8 0x3fb6a399dabbd383 //log(1/frcpa(1+49/256))/2
-data8 0x3fb70337dd3ce41b //log(1/frcpa(1+50/256))/2
-data8 0x3fb77654128f6127 //log(1/frcpa(1+51/256))/2
-data8 0x3fb7e9d82a0b022d //log(1/frcpa(1+52/256))/2
-data8 0x3fb84a6b759f512f //log(1/frcpa(1+53/256))/2
-data8 0x3fb8ab47d5f5a310 //log(1/frcpa(1+54/256))/2
-data8 0x3fb91fe49096581b //log(1/frcpa(1+55/256))/2
-data8 0x3fb981634011aa75 //log(1/frcpa(1+56/256))/2
-data8 0x3fb9f6c407089664 //log(1/frcpa(1+57/256))/2
-data8 0x3fba58e729348f43 //log(1/frcpa(1+58/256))/2
-data8 0x3fbabb55c31693ad //log(1/frcpa(1+59/256))/2
-data8 0x3fbb1e104919efd0 //log(1/frcpa(1+60/256))/2
-data8 0x3fbb94ee93e367cb //log(1/frcpa(1+61/256))/2
-data8 0x3fbbf851c067555f //log(1/frcpa(1+62/256))/2
-data8 0x3fbc5c0254bf23a6 //log(1/frcpa(1+63/256))/2
-data8 0x3fbcc000c9db3c52 //log(1/frcpa(1+64/256))/2
-data8 0x3fbd244d99c85674 //log(1/frcpa(1+65/256))/2
-data8 0x3fbd88e93fb2f450 //log(1/frcpa(1+66/256))/2
-data8 0x3fbdedd437eaef01 //log(1/frcpa(1+67/256))/2
-data8 0x3fbe530effe71012 //log(1/frcpa(1+68/256))/2
-data8 0x3fbeb89a1648b971 //log(1/frcpa(1+69/256))/2
-data8 0x3fbf1e75fadf9bde //log(1/frcpa(1+70/256))/2
-data8 0x3fbf84a32ead7c35 //log(1/frcpa(1+71/256))/2
-data8 0x3fbfeb2233ea07cd //log(1/frcpa(1+72/256))/2
-data8 0x3fc028f9c7035c1c //log(1/frcpa(1+73/256))/2
-data8 0x3fc05c8be0d9635a //log(1/frcpa(1+74/256))/2
-data8 0x3fc085eb8f8ae797 //log(1/frcpa(1+75/256))/2
-data8 0x3fc0b9c8e32d1911 //log(1/frcpa(1+76/256))/2
-data8 0x3fc0edd060b78081 //log(1/frcpa(1+77/256))/2
-data8 0x3fc122024cf0063f //log(1/frcpa(1+78/256))/2
-data8 0x3fc14be2927aecd4 //log(1/frcpa(1+79/256))/2
-data8 0x3fc180618ef18adf //log(1/frcpa(1+80/256))/2
-data8 0x3fc1b50bbe2fc63b //log(1/frcpa(1+81/256))/2
-data8 0x3fc1df4cc7cf242d //log(1/frcpa(1+82/256))/2
-data8 0x3fc214456d0eb8d4 //log(1/frcpa(1+83/256))/2
-data8 0x3fc23ec5991eba49 //log(1/frcpa(1+84/256))/2
-data8 0x3fc2740d9f870afb //log(1/frcpa(1+85/256))/2
-data8 0x3fc29ecdabcdfa04 //log(1/frcpa(1+86/256))/2
-data8 0x3fc2d46602adccee //log(1/frcpa(1+87/256))/2
-data8 0x3fc2ff66b04ea9d4 //log(1/frcpa(1+88/256))/2
-data8 0x3fc335504b355a37 //log(1/frcpa(1+89/256))/2
-data8 0x3fc360925ec44f5d //log(1/frcpa(1+90/256))/2
-data8 0x3fc38bf1c3337e75 //log(1/frcpa(1+91/256))/2
-data8 0x3fc3c25277333184 //log(1/frcpa(1+92/256))/2
-data8 0x3fc3edf463c1683e //log(1/frcpa(1+93/256))/2
-data8 0x3fc419b423d5e8c7 //log(1/frcpa(1+94/256))/2
-data8 0x3fc44591e0539f49 //log(1/frcpa(1+95/256))/2
-data8 0x3fc47c9175b6f0ad //log(1/frcpa(1+96/256))/2
-data8 0x3fc4a8b341552b09 //log(1/frcpa(1+97/256))/2
-data8 0x3fc4d4f3908901a0 //log(1/frcpa(1+98/256))/2
-data8 0x3fc501528da1f968 //log(1/frcpa(1+99/256))/2
-data8 0x3fc52dd06347d4f6 //log(1/frcpa(1+100/256))/2
-data8 0x3fc55a6d3c7b8a8a //log(1/frcpa(1+101/256))/2
-data8 0x3fc5925d2b112a59 //log(1/frcpa(1+102/256))/2
-data8 0x3fc5bf406b543db2 //log(1/frcpa(1+103/256))/2
-data8 0x3fc5ec433d5c35ae //log(1/frcpa(1+104/256))/2
-data8 0x3fc61965cdb02c1f //log(1/frcpa(1+105/256))/2
-data8 0x3fc646a84935b2a2 //log(1/frcpa(1+106/256))/2
-data8 0x3fc6740add31de94 //log(1/frcpa(1+107/256))/2
-data8 0x3fc6a18db74a58c5 //log(1/frcpa(1+108/256))/2
-data8 0x3fc6cf31058670ec //log(1/frcpa(1+109/256))/2
-data8 0x3fc6f180e852f0ba //log(1/frcpa(1+110/256))/2
-data8 0x3fc71f5d71b894f0 //log(1/frcpa(1+111/256))/2
-data8 0x3fc74d5aefd66d5c //log(1/frcpa(1+112/256))/2
-data8 0x3fc77b79922bd37e //log(1/frcpa(1+113/256))/2
-data8 0x3fc7a9b9889f19e2 //log(1/frcpa(1+114/256))/2
-data8 0x3fc7d81b037eb6a6 //log(1/frcpa(1+115/256))/2
-data8 0x3fc8069e33827231 //log(1/frcpa(1+116/256))/2
-data8 0x3fc82996d3ef8bcb //log(1/frcpa(1+117/256))/2
-data8 0x3fc85855776dcbfb //log(1/frcpa(1+118/256))/2
-data8 0x3fc8873658327ccf //log(1/frcpa(1+119/256))/2
-data8 0x3fc8aa75973ab8cf //log(1/frcpa(1+120/256))/2
-data8 0x3fc8d992dc8824e5 //log(1/frcpa(1+121/256))/2
-data8 0x3fc908d2ea7d9512 //log(1/frcpa(1+122/256))/2
-data8 0x3fc92c59e79c0e56 //log(1/frcpa(1+123/256))/2
-data8 0x3fc95bd750ee3ed3 //log(1/frcpa(1+124/256))/2
-data8 0x3fc98b7811a3ee5b //log(1/frcpa(1+125/256))/2
-data8 0x3fc9af47f33d406c //log(1/frcpa(1+126/256))/2
-data8 0x3fc9df270c1914a8 //log(1/frcpa(1+127/256))/2
-data8 0x3fca0325ed14fda4 //log(1/frcpa(1+128/256))/2
-data8 0x3fca33440224fa79 //log(1/frcpa(1+129/256))/2
-data8 0x3fca57725e80c383 //log(1/frcpa(1+130/256))/2
-data8 0x3fca87d0165dd199 //log(1/frcpa(1+131/256))/2
-data8 0x3fcaac2e6c03f896 //log(1/frcpa(1+132/256))/2
-data8 0x3fcadccc6fdf6a81 //log(1/frcpa(1+133/256))/2
-data8 0x3fcb015b3eb1e790 //log(1/frcpa(1+134/256))/2
-data8 0x3fcb323a3a635948 //log(1/frcpa(1+135/256))/2
-data8 0x3fcb56fa04462909 //log(1/frcpa(1+136/256))/2
-data8 0x3fcb881aa659bc93 //log(1/frcpa(1+137/256))/2
-data8 0x3fcbad0bef3db165 //log(1/frcpa(1+138/256))/2
-data8 0x3fcbd21297781c2f //log(1/frcpa(1+139/256))/2
-data8 0x3fcc039236f08819 //log(1/frcpa(1+140/256))/2
-data8 0x3fcc28cb1e4d32fd //log(1/frcpa(1+141/256))/2
-data8 0x3fcc4e19b84723c2 //log(1/frcpa(1+142/256))/2
-data8 0x3fcc7ff9c74554c9 //log(1/frcpa(1+143/256))/2
-data8 0x3fcca57b64e9db05 //log(1/frcpa(1+144/256))/2
-data8 0x3fcccb130a5cebb0 //log(1/frcpa(1+145/256))/2
-data8 0x3fccf0c0d18f326f //log(1/frcpa(1+146/256))/2
-data8 0x3fcd232075b5a201 //log(1/frcpa(1+147/256))/2
-data8 0x3fcd490246defa6b //log(1/frcpa(1+148/256))/2
-data8 0x3fcd6efa918d25cd //log(1/frcpa(1+149/256))/2
-data8 0x3fcd9509707ae52f //log(1/frcpa(1+150/256))/2
-data8 0x3fcdbb2efe92c554 //log(1/frcpa(1+151/256))/2
-data8 0x3fcdee2f3445e4af //log(1/frcpa(1+152/256))/2
-data8 0x3fce148a1a2726ce //log(1/frcpa(1+153/256))/2
-data8 0x3fce3afc0a49ff40 //log(1/frcpa(1+154/256))/2
-data8 0x3fce6185206d516e //log(1/frcpa(1+155/256))/2
-data8 0x3fce882578823d52 //log(1/frcpa(1+156/256))/2
-data8 0x3fceaedd2eac990c //log(1/frcpa(1+157/256))/2
-data8 0x3fced5ac5f436be3 //log(1/frcpa(1+158/256))/2
-data8 0x3fcefc9326d16ab9 //log(1/frcpa(1+159/256))/2
-data8 0x3fcf2391a2157600 //log(1/frcpa(1+160/256))/2
-data8 0x3fcf4aa7ee03192d //log(1/frcpa(1+161/256))/2
-data8 0x3fcf71d627c30bb0 //log(1/frcpa(1+162/256))/2
-data8 0x3fcf991c6cb3b379 //log(1/frcpa(1+163/256))/2
-data8 0x3fcfc07ada69a910 //log(1/frcpa(1+164/256))/2
-data8 0x3fcfe7f18eb03d3e //log(1/frcpa(1+165/256))/2
-data8 0x3fd007c053c5002e //log(1/frcpa(1+166/256))/2
-data8 0x3fd01b942198a5a1 //log(1/frcpa(1+167/256))/2
-data8 0x3fd02f74400c64eb //log(1/frcpa(1+168/256))/2
-data8 0x3fd04360be7603ad //log(1/frcpa(1+169/256))/2
-data8 0x3fd05759ac47fe34 //log(1/frcpa(1+170/256))/2
-data8 0x3fd06b5f1911cf52 //log(1/frcpa(1+171/256))/2
-data8 0x3fd078bf0533c568 //log(1/frcpa(1+172/256))/2
-data8 0x3fd08cd9687e7b0e //log(1/frcpa(1+173/256))/2
-data8 0x3fd0a10074cf9019 //log(1/frcpa(1+174/256))/2
-data8 0x3fd0b5343a234477 //log(1/frcpa(1+175/256))/2
-data8 0x3fd0c974c89431ce //log(1/frcpa(1+176/256))/2
-data8 0x3fd0ddc2305b9886 //log(1/frcpa(1+177/256))/2
-data8 0x3fd0eb524bafc918 //log(1/frcpa(1+178/256))/2
-data8 0x3fd0ffb54213a476 //log(1/frcpa(1+179/256))/2
-data8 0x3fd114253da97d9f //log(1/frcpa(1+180/256))/2
-data8 0x3fd128a24f1d9aff //log(1/frcpa(1+181/256))/2
-data8 0x3fd1365252bf0865 //log(1/frcpa(1+182/256))/2
-data8 0x3fd14ae558b4a92d //log(1/frcpa(1+183/256))/2
-data8 0x3fd15f85a19c765b //log(1/frcpa(1+184/256))/2
-data8 0x3fd16d4d38c119fa //log(1/frcpa(1+185/256))/2
-data8 0x3fd18203c20dd133 //log(1/frcpa(1+186/256))/2
-data8 0x3fd196c7bc4b1f3b //log(1/frcpa(1+187/256))/2
-data8 0x3fd1a4a738b7a33c //log(1/frcpa(1+188/256))/2
-data8 0x3fd1b981c0c9653d //log(1/frcpa(1+189/256))/2
-data8 0x3fd1ce69e8bb106b //log(1/frcpa(1+190/256))/2
-data8 0x3fd1dc619de06944 //log(1/frcpa(1+191/256))/2
-data8 0x3fd1f160a2ad0da4 //log(1/frcpa(1+192/256))/2
-data8 0x3fd2066d7740737e //log(1/frcpa(1+193/256))/2
-data8 0x3fd2147dba47a394 //log(1/frcpa(1+194/256))/2
-data8 0x3fd229a1bc5ebac3 //log(1/frcpa(1+195/256))/2
-data8 0x3fd237c1841a502e //log(1/frcpa(1+196/256))/2
-data8 0x3fd24cfce6f80d9a //log(1/frcpa(1+197/256))/2
-data8 0x3fd25b2c55cd5762 //log(1/frcpa(1+198/256))/2
-data8 0x3fd2707f4d5f7c41 //log(1/frcpa(1+199/256))/2
-data8 0x3fd285e0842ca384 //log(1/frcpa(1+200/256))/2
-data8 0x3fd294294708b773 //log(1/frcpa(1+201/256))/2
-data8 0x3fd2a9a2670aff0c //log(1/frcpa(1+202/256))/2
-data8 0x3fd2b7fb2c8d1cc1 //log(1/frcpa(1+203/256))/2
-data8 0x3fd2c65a6395f5f5 //log(1/frcpa(1+204/256))/2
-data8 0x3fd2dbf557b0df43 //log(1/frcpa(1+205/256))/2
-data8 0x3fd2ea64c3f97655 //log(1/frcpa(1+206/256))/2
-data8 0x3fd3001823684d73 //log(1/frcpa(1+207/256))/2
-data8 0x3fd30e97e9a8b5cd //log(1/frcpa(1+208/256))/2
-data8 0x3fd32463ebdd34ea //log(1/frcpa(1+209/256))/2
-data8 0x3fd332f4314ad796 //log(1/frcpa(1+210/256))/2
-data8 0x3fd348d90e7464d0 //log(1/frcpa(1+211/256))/2
-data8 0x3fd35779f8c43d6e //log(1/frcpa(1+212/256))/2
-data8 0x3fd36621961a6a99 //log(1/frcpa(1+213/256))/2
-data8 0x3fd37c299f3c366a //log(1/frcpa(1+214/256))/2
-data8 0x3fd38ae2171976e7 //log(1/frcpa(1+215/256))/2
-data8 0x3fd399a157a603e7 //log(1/frcpa(1+216/256))/2
-data8 0x3fd3afccfe77b9d1 //log(1/frcpa(1+217/256))/2
-data8 0x3fd3be9d503533b5 //log(1/frcpa(1+218/256))/2
-data8 0x3fd3cd7480b4a8a3 //log(1/frcpa(1+219/256))/2
-data8 0x3fd3e3c43918f76c //log(1/frcpa(1+220/256))/2
-data8 0x3fd3f2acb27ed6c7 //log(1/frcpa(1+221/256))/2
-data8 0x3fd4019c2125ca93 //log(1/frcpa(1+222/256))/2
-data8 0x3fd4181061389722 //log(1/frcpa(1+223/256))/2
-data8 0x3fd42711518df545 //log(1/frcpa(1+224/256))/2
-data8 0x3fd436194e12b6bf //log(1/frcpa(1+225/256))/2
-data8 0x3fd445285d68ea69 //log(1/frcpa(1+226/256))/2
-data8 0x3fd45bcc464c893a //log(1/frcpa(1+227/256))/2
-data8 0x3fd46aed21f117fc //log(1/frcpa(1+228/256))/2
-data8 0x3fd47a1527e8a2d3 //log(1/frcpa(1+229/256))/2
-data8 0x3fd489445efffccc //log(1/frcpa(1+230/256))/2
-data8 0x3fd4a018bcb69835 //log(1/frcpa(1+231/256))/2
-data8 0x3fd4af5a0c9d65d7 //log(1/frcpa(1+232/256))/2
-data8 0x3fd4bea2a5bdbe87 //log(1/frcpa(1+233/256))/2
-data8 0x3fd4cdf28f10ac46 //log(1/frcpa(1+234/256))/2
-data8 0x3fd4dd49cf994058 //log(1/frcpa(1+235/256))/2
-data8 0x3fd4eca86e64a684 //log(1/frcpa(1+236/256))/2
-data8 0x3fd503c43cd8eb68 //log(1/frcpa(1+237/256))/2
-data8 0x3fd513356667fc57 //log(1/frcpa(1+238/256))/2
-data8 0x3fd522ae0738a3d8 //log(1/frcpa(1+239/256))/2
-data8 0x3fd5322e26867857 //log(1/frcpa(1+240/256))/2
-data8 0x3fd541b5cb979809 //log(1/frcpa(1+241/256))/2
-data8 0x3fd55144fdbcbd62 //log(1/frcpa(1+242/256))/2
-data8 0x3fd560dbc45153c7 //log(1/frcpa(1+243/256))/2
-data8 0x3fd5707a26bb8c66 //log(1/frcpa(1+244/256))/2
-data8 0x3fd587f60ed5b900 //log(1/frcpa(1+245/256))/2
-data8 0x3fd597a7977c8f31 //log(1/frcpa(1+246/256))/2
-data8 0x3fd5a760d634bb8b //log(1/frcpa(1+247/256))/2
-data8 0x3fd5b721d295f10f //log(1/frcpa(1+248/256))/2
-data8 0x3fd5c6ea94431ef9 //log(1/frcpa(1+249/256))/2
-data8 0x3fd5d6bb22ea86f6 //log(1/frcpa(1+250/256))/2
-data8 0x3fd5e6938645d390 //log(1/frcpa(1+251/256))/2
-data8 0x3fd5f673c61a2ed2 //log(1/frcpa(1+252/256))/2
-data8 0x3fd6065bea385926 //log(1/frcpa(1+253/256))/2
-data8 0x3fd6164bfa7cc06b //log(1/frcpa(1+254/256))/2
-data8 0x3fd62643fecf9743 //log(1/frcpa(1+255/256))/2
-LOCAL_OBJECT_END(atanhf_data2)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(atanhf)
-
-{ .mfi
- getf.exp rArgSExpb = f8
- fclass.m p9,p0 = f8, 0x0b // is arg denormal ?
- mov rExpbMask = 0x1ffff
-}
-{ .mfi
- addl DataPtr = @ltoff(atanhf_data), gp
- fnma.s1 fOneMx = f8, f1, f1 // 1 - x
- mov rBias = 0xffff
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p7,p0 = f8, 0xc7 // is arg NaN or +/-0 ?
- mov rNearZeroBound = 0xffeb // 2^(-20)
-}
-{ .mfi
- ld8 DataPtr = [DataPtr]
- fma.s1 fOnePx = f8, f1, f1 // 1 + x
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize x
-(p9) br.cond.spnt ATANH_UNORM // Branch if x=unorm
-}
-;;
-
-ATANH_COMMON:
-// Return here if x=unorm and not denorm
-{ .mfi
- ldfpd fP3, fP2 = [DataPtr], 16
- fma.s1 fX2 = f8, f8, f0 // x^2
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0
-(p7) br.ret.spnt b0
-}
-;;
-
-{ .mfi
- ldfpd fP1, fHalf = [DataPtr], 16
- frcpa.s1 fRcpM, p9 = f1, fOneMx // rcpm = frcpa(1 - x)
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp rExpbm = fOneMx
- frcpa.s1 fRcpP, p0 = f1, fOnePx // rcpp = frcpa(1 + x)
- // biased exponent
- and rArgExpb = rArgSExpb, rExpbMask
-}
-;;
-
-{ .mmi
- getf.exp rExpbp = fOnePx
- // is |x| < 2^(-20) ?
- cmp.gt p8,p0 = rNearZeroBound, rArgExpb
- cmp.ge p6,p0 = rArgExpb, rBias // is |x| >= 1 ?
-}
-;;
-
-{ .mmb
- getf.sig rSigm = fOneMx
- nop.m 0
-(p6) br.cond.spnt atanhf_ge_one
-}
-;;
-
-{ .mfb
- getf.sig rSigp = fOnePx
-(p8) fma.s.s0 f8 = fX2, f8, f8 // x + x^3
-(p8) br.ret.spnt b0 // Exit for MAX_DENORM_ABS < |x| < 2^-20
-}
-;;
-
-{ .mfi
- ldfd fLog2 = [DataPtr], 16
- fms.s1 fRm = fRcpM, fOneMx, f1 // rm = rcpm * (1 - x) - 1
- nop.i 0
-}
-;;
-
-{ .mmf
- // (1 - x) is always positive here and we need not mask sign bit
- sub rNm = rExpbm, rBias
- // (1 + x) is always positive here and we need not mask sign bit
- sub rNp = rExpbp, rBias
- fms.s1 fRp = fRcpP, fOnePx, f1 // rp = rcpp * (1 + x) - 1
-}
-;;
-
-{ .mmi
- setf.sig fN4CvtM = rNm
- setf.sig fN4CvtP = rNp
- extr.u rIndm = rSigm,55,8 // Extract 8 bits
-}
-;;
-
-{ .mmi
- shladd RcpTablePtrM = rIndm, 3, DataPtr
- nop.m 0
- extr.u rIndp = rSigp,55,8 // Extract 8 bits
-}
-;;
-
-{ .mmi
- ldfd fLogTm = [RcpTablePtrM]
- shladd RcpTablePtrP = rIndp, 3, DataPtr
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfd fLogTp = [RcpTablePtrP]
- fma.s1 fRm2 = fRm, fRm, f0 // rm^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP32m = fP3, fRm, fP2 // P3*rm + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fRp2 = fRp, fRp, f0 // rp^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP10m = fP1, fRm, fHalf // P1*rm + 1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP32p = fP3, fRp, fP2 // P3*rp + P2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP10p = fP1, fRp, fHalf // P1*rp + 1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcvt.xf fNm = fN4CvtM
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcvt.xf fNp = fN4CvtP
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // (P3*rm + P2)*rm^2 + (P1*rm + 1)
- fma.s1 fP32m = fP32m, fRm2, fP10m
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (P3*rp + P2)*rp^2 + (P1*rp + 1)
- fma.s1 fP32p = fP32p, fRp2, fP10p
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // Nm*ln(2)/2 + Tm/2
- fma.s1 fLogTm = fNm, fLog2, fLogTm
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // Np*ln(2)/2 + Tp/2
- fma.s1 fLogTp = fNp, fLog2, fLogTp
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // ((P3*rm + P2)*rm^2 + (P3*rm + 1))*0.5*rm + (Nm*ln(2)/2 + Tm/2)
- fma.d.s1 fP32m = fP32m, fRm, fLogTm
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((P3*rp + P2)*rp^2 + (P3*rp + 1))*0.5*rp + (Np*ln(2)/2 + Tp/2)
- fma.d.s1 fP32p = fP32p, fRp, fLogTp
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- // atanhf(x) = 0.5 * (log(1 + x) - log(1 - x))
- fnma.s.s0 f8 = fP32m, f1, fP32p
- br.ret.sptk b0 // Exit for 2^(-20) <= |x| < 1.0
-}
-;;
-
-
-ATANH_UNORM:
-// Here if x=unorm
-{ .mfi
- getf.exp rArgSExpb = fNormX // Recompute if x unorm
- fclass.m p0,p9 = fNormX, 0x0b // Test x denorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fcmp.lt.s0 p10,p11 = f8, f0 // Set denormal flag
-(p9) br.cond.sptk ATANH_COMMON // Continue if x unorm and not denorm
-}
-;;
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fnma.s.s0 f8 = f8,f8,f8 // Result x-x^2 if x=-denorm
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fma.s.s0 f8 = f8,f8,f8 // Result x+x^2 if x=+denorm
- br.ret.spnt b0 // Exit if denorm
-}
-;;
-
-// Here if |x| >= 1.0
-atanhf_ge_one:
-{ .mfi
- alloc r32 = ar.pfs,1,3,4,0
- fmerge.s fArgAbs = f0, f8 // Form |x|
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmerge.s f10 = f8, f8 // Save input for error call
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.eq.s1 p6,p7 = fArgAbs, f1 // Test for |x| = 1.0
- nop.i 0
-}
-;;
-
-// Set error tag and result, and raise invalid flag if |x| > 1.0
-{ .mfi
-(p7) mov atanh_GR_tag = 133
-(p7) frcpa.s0 f8, p0 = f0, f0 // Get QNaN, and raise invalid
- nop.i 0
-}
-;;
-
-// Set error tag and result, and raise Z flag if |x| = 1.0
-{ .mfi
- nop.m 0
-(p6) frcpa.s0 fRm, p0 = f1, f0 // Get inf, and raise Z flag
- nop.i 0
-}
-;;
-
-{ .mfb
-(p6) mov atanh_GR_tag = 134
-(p6) fmerge.s f8 = f8, fRm // result is +-inf
- br.cond.sptk __libm_error_region // Exit if |x| >= 1.0
-}
-;;
-
-GLOBAL_LIBM_END(atanhf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
- // Parameter 3 address
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_atanhl.S b/sysdeps/ia64/fpu/e_atanhl.S
deleted file mode 100644
index cee1ba17b1..0000000000
--- a/sysdeps/ia64/fpu/e_atanhl.S
+++ /dev/null
@@ -1,1156 +0,0 @@
-.file "atanhl.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
-// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
-// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code,and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 09/10/01 Initial version
-// 12/11/01 Corrected .restore syntax
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: atanhl(x) computes the principle value of the inverse
-// hyperbolic tangent of x.
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 (Input and Return Value)
-// f33-f73
-//
-// General Purpose Registers:
-// r32-r52
-// r49-r52 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// atanhl(inf) = QNaN
-// atanhl(-inf) = QNaN
-// atanhl(+/-0) = +/-0
-// atanhl(1) = +inf
-// atanhl(-1) = -inf
-// atanhl(|x|>1) = QNaN
-// atanhl(SNaN) = QNaN
-// atanhl(QNaN) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of two cases.
-//
-// If |x| < 1/32 use case atanhl_near_zero;
-// else use case atanhl_regular;
-//
-// Case atanhl_near_zero:
-//
-// atanhl(x) can be approximated by the Taylor series expansion
-// up to order 17.
-//
-// Case atanhl_regular:
-//
-// Here we use formula atanhl(x) = sign(x)*log1pl(2*|x|/(1-|x|))/2 and
-// calculation is subdivided into two stages. The first stage is
-// calculating of X = 2*|x|/(1-|x|). The second one is calculating of
-// sign(x)*log1pl(X)/2. To obtain required accuracy we use precise division
-// algorythm output of which is a pair of two extended precision values those
-// approximate result of division with accuracy higher than working
-// precision. This pair is passed to modified log1pl function.
-//
-//
-// 1. calculating of X = 2*|x|/(1-|x|)
-// ( based on Peter Markstein's "IA-64 and Elementary Functions" book )
-// ********************************************************************
-//
-// a = 2*|x|
-// b = 1 - |x|
-// b_lo = |x| - (1 - b)
-//
-// y = frcpa(b) initial approximation of 1/b
-// q = a*y initial approximation of a/b
-//
-// e = 1 - b*y
-// e2 = e + e^2
-// e1 = e^2
-// y1 = y + y*e2 = y + y*(e+e^2)
-//
-// e3 = e + e1^2
-// y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
-//
-// r = a - b*q
-// e = 1 - b*y2
-// X = q + r*y2 high part of a/b
-//
-// y3 = y2 + y2*e4
-// r1 = a - b*X
-// r1 = r1 - b_lo*X
-// X_lo = r1*y3 low part of a/b
-//
-// 2. special log1p algorithm overview
-// ***********************************
-//
-// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) = log1pl (Arg-1) for an argument Arg in [1,2),
-// we construct a value G such that G*Arg is close to 1 and that
-// logl(1/G) is obtainable easily from a table of values calculated
-// beforehand. Thus
-//
-// logl(Arg) = logl(1/G) + logl(G*Arg)
-// = logl(1/G) + logl(1 + (G*Arg - 1))
-//
-// Because |G*Arg - 1| is small, the second term on the right hand
-// side can be approximated by a short polynomial. We elaborate
-// this method in several steps.
-//
-// Step 0: Initialization
-// ------
-// We need to calculate logl(X + X_lo + 1). Obtain N, S_hi such that
-//
-// X + X_lo + 1 = 2^N * ( S_hi + S_lo ) exactly
-//
-// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
-// that |S_lo| <= ulp(S_hi).
-//
-// For the special version of log1p we add X_lo to S_lo (S_lo = S_lo + X_lo)
-// !-----------------------------------------------------------------------!
-//
-// Step 1: Argument Reduction
-// ------
-// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1) + G * S_lo
-//
-// These G_j's have the property that the product is exactly
-// representable and that |r| < 2^(-12) as a result.
-//
-// Step 2: Approximation
-// ------
-// logl(1 + r) is approximated by a short polynomial poly(r).
-//
-// Step 3: Reconstruction
-// ------
-// Finally, log1pl(X + X_lo) = logl(X + X_lo + 1) is given by
-//
-// logl(X + X_lo + 1) = logl(2^N * (S_hi + S_lo))
-// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
-// ~=~ N*logl(2) + logl(1/G) + poly(r).
-//
-// For detailed description see log1p1 function, regular path.
-//
-//*********************************************************************
-
-RODATA
-.align 64
-
-// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
-
-LOCAL_OBJECT_START(Constants_TaylorSeries)
-data8 0xF0F0F0F0F0F0F0F1,0x00003FFA // C17
-data8 0x8888888888888889,0x00003FFB // C15
-data8 0x9D89D89D89D89D8A,0x00003FFB // C13
-data8 0xBA2E8BA2E8BA2E8C,0x00003FFB // C11
-data8 0xE38E38E38E38E38E,0x00003FFB // C9
-data8 0x9249249249249249,0x00003FFC // C7
-data8 0xCCCCCCCCCCCCCCCD,0x00003FFC // C5
-data8 0xAAAAAAAAAAAAAAAA,0x00003FFD // C3
-data4 0x3f000000 // 1/2
-data4 0x00000000 // pad
-data4 0x00000000
-data4 0x00000000
-LOCAL_OBJECT_END(Constants_TaylorSeries)
-
-LOCAL_OBJECT_START(Constants_Q)
-data4 0x00000000,0xB1721800,0x00003FFE,0x00000000 // log2_hi
-data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000 // log2_lo
-data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000 // Q4
-data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000 // Q3
-data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000 // Q2
-data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000 // Q1
-LOCAL_OBJECT_END(Constants_Q)
-
-
-// Z1 - 16 bit fixed
-LOCAL_OBJECT_START(Constants_Z_1)
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F70F0F0,0x3D785196
-data8 0x3DA163A6617D741C
-data4 0x3F638E38,0x3DF13843
-data8 0x3E2C55E6CBD3D5BB
-data4 0x3F579430,0x3E2FF9A0
-data8 0xBE3EB0BFD86EA5E7
-data4 0x3F4CCCC8,0x3E647FD6
-data8 0x3E2E6A8C86B12760
-data4 0x3F430C30,0x3E8B3AE7
-data8 0x3E47574C5C0739BA
-data4 0x3F3A2E88,0x3EA30C68
-data8 0x3E20E30F13E8AF2F
-data4 0x3F321640,0x3EB9CEC8
-data8 0xBE42885BF2C630BD
-data4 0x3F2AAAA8,0x3ECF9927
-data8 0x3E497F3497E577C6
-data4 0x3F23D708,0x3EE47FC5
-data8 0x3E3E6A6EA6B0A5AB
-data4 0x3F1D89D8,0x3EF8947D
-data8 0xBDF43E3CD328D9BE
-data4 0x3F17B420,0x3F05F3A1
-data8 0x3E4094C30ADB090A
-data4 0x3F124920,0x3F0F4303
-data8 0xBE28FBB2FC1FE510
-data4 0x3F0D3DC8,0x3F183EBF
-data8 0x3E3A789510FDE3FA
-data4 0x3F088888,0x3F20EC80
-data8 0x3E508CE57CC8C98F
-data4 0x3F042108,0x3F29516A
-data8 0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-LOCAL_OBJECT_START(Constants_Z_2)
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F7F00F8,0x3B7F875D
-data8 0x3DB5A11622C42273
-data4 0x3F7E03F8,0x3BFF015B
-data8 0x3DE620CF21F86ED3
-data4 0x3F7D08E0,0x3C3EE393
-data8 0xBDAFA07E484F34ED
-data4 0x3F7C0FC0,0x3C7E0586
-data8 0xBDFE07F03860BCF6
-data4 0x3F7B1880,0x3C9E75D2
-data8 0x3DEA370FA78093D6
-data4 0x3F7A2328,0x3CBDC97A
-data8 0x3DFF579172A753D0
-data4 0x3F792FB0,0x3CDCFE47
-data8 0x3DFEBE6CA7EF896B
-data4 0x3F783E08,0x3CFC15D0
-data8 0x3E0CF156409ECB43
-data4 0x3F774E38,0x3D0D874D
-data8 0xBE0B6F97FFEF71DF
-data4 0x3F766038,0x3D1CF49B
-data8 0xBE0804835D59EEE8
-data4 0x3F757400,0x3D2C531D
-data8 0x3E1F91E9A9192A74
-data4 0x3F748988,0x3D3BA322
-data8 0xBE139A06BF72A8CD
-data4 0x3F73A0D0,0x3D4AE46F
-data8 0x3E1D9202F8FBA6CF
-data4 0x3F72B9D0,0x3D5A1756
-data8 0xBE1DCCC4BA796223
-data4 0x3F71D488,0x3D693B9D
-data8 0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4 0x3F7FFC00,0x38800100
-data8 0x3D355595562224CD
-data4 0x3F7FF400,0x39400480
-data8 0x3D8200A206136FF6
-data4 0x3F7FEC00,0x39A00640
-data8 0x3DA4D68DE8DE9AF0
-data4 0x3F7FE400,0x39E00C41
-data8 0xBD8B4291B10238DC
-data4 0x3F7FDC00,0x3A100A21
-data8 0xBD89CCB83B1952CA
-data4 0x3F7FD400,0x3A300F22
-data8 0xBDB107071DC46826
-data4 0x3F7FCC08,0x3A4FF51C
-data8 0x3DB6FCB9F43307DB
-data4 0x3F7FC408,0x3A6FFC1D
-data8 0xBD9B7C4762DC7872
-data4 0x3F7FBC10,0x3A87F20B
-data8 0xBDC3725E3F89154A
-data4 0x3F7FB410,0x3A97F68B
-data8 0xBD93519D62B9D392
-data4 0x3F7FAC18,0x3AA7EB86
-data8 0x3DC184410F21BD9D
-data4 0x3F7FA420,0x3AB7E101
-data8 0xBDA64B952245E0A6
-data4 0x3F7F9C20,0x3AC7E701
-data8 0x3DB4B0ECAABB34B8
-data4 0x3F7F9428,0x3AD7DD7B
-data8 0x3D9923376DC40A7E
-data4 0x3F7F8C30,0x3AE7D474
-data8 0x3DC6E17B4F2083D3
-data4 0x3F7F8438,0x3AF7CBED
-data8 0x3DAE314B811D4394
-data4 0x3F7F7C40,0x3B03E1F3
-data8 0xBDD46F21B08F2DB1
-data4 0x3F7F7448,0x3B0BDE2F
-data8 0xBDDC30A46D34522B
-data4 0x3F7F6C50,0x3B13DAAA
-data8 0x3DCB0070B1F473DB
-data4 0x3F7F6458,0x3B1BD766
-data8 0xBDD65DDC6AD282FD
-data4 0x3F7F5C68,0x3B23CC5C
-data8 0xBDCDAB83F153761A
-data4 0x3F7F5470,0x3B2BC997
-data8 0xBDDADA40341D0F8F
-data4 0x3F7F4C78,0x3B33C711
-data8 0x3DCD1BD7EBC394E8
-data4 0x3F7F4488,0x3B3BBCC6
-data8 0xBDC3532B52E3E695
-data4 0x3F7F3C90,0x3B43BAC0
-data8 0xBDA3961EE846B3DE
-data4 0x3F7F34A0,0x3B4BB0F4
-data8 0xBDDADF06785778D4
-data4 0x3F7F2CA8,0x3B53AF6D
-data8 0x3DCC3ED1E55CE212
-data4 0x3F7F24B8,0x3B5BA620
-data8 0xBDBA31039E382C15
-data4 0x3F7F1CC8,0x3B639D12
-data8 0x3D635A0B5C5AF197
-data4 0x3F7F14D8,0x3B6B9444
-data8 0xBDDCCB1971D34EFC
-data4 0x3F7F0CE0,0x3B7393BC
-data8 0x3DC7450252CD7ADA
-data4 0x3F7F04F0,0x3B7B8B6D
-data8 0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-
-
-// Floating Point Registers
-
-FR_C17 = f50
-FR_C15 = f51
-FR_C13 = f52
-FR_C11 = f53
-FR_C9 = f54
-FR_C7 = f55
-FR_C5 = f56
-FR_C3 = f57
-FR_x2 = f58
-FR_x3 = f59
-FR_x4 = f60
-FR_x8 = f61
-
-FR_Rcp = f61
-
-FR_A = f33
-FR_R1 = f33
-
-FR_E1 = f34
-FR_E3 = f34
-FR_Y2 = f34
-FR_Y3 = f34
-
-FR_E2 = f35
-FR_Y1 = f35
-
-FR_B = f36
-FR_Y0 = f37
-FR_E0 = f38
-FR_E4 = f39
-FR_Q0 = f40
-FR_R0 = f41
-FR_B_lo = f42
-
-FR_abs_x = f43
-FR_Bp = f44
-FR_Bn = f45
-FR_Yp = f46
-FR_Yn = f47
-
-FR_X = f48
-FR_BB = f48
-FR_X_lo = f49
-
-FR_G = f50
-FR_Y_hi = f51
-FR_H = f51
-FR_h = f52
-FR_G2 = f53
-FR_H2 = f54
-FR_h2 = f55
-FR_G3 = f56
-FR_H3 = f57
-FR_h3 = f58
-
-FR_Q4 = f59
-FR_poly_lo = f59
-FR_Y_lo = f59
-
-FR_Q3 = f60
-FR_Q2 = f61
-
-FR_Q1 = f62
-FR_poly_hi = f62
-
-FR_float_N = f63
-
-FR_AA = f64
-FR_S_lo = f64
-
-FR_S_hi = f65
-FR_r = f65
-
-FR_log2_hi = f66
-FR_log2_lo = f67
-FR_Z = f68
-FR_2_to_minus_N = f69
-FR_rcub = f70
-FR_rsq = f71
-FR_05r = f72
-FR_Half = f73
-
-FR_Arg_X = f50
-FR_Arg_Y = f0
-FR_RESULT = f8
-
-
-
-// General Purpose Registers
-
-GR_ad_05 = r33
-GR_Index1 = r34
-GR_ArgExp = r34
-GR_Index2 = r35
-GR_ExpMask = r35
-GR_NearZeroBound = r36
-GR_signif = r36
-GR_X_0 = r37
-GR_X_1 = r37
-GR_X_2 = r38
-GR_Index3 = r38
-GR_minus_N = r39
-GR_Z_1 = r40
-GR_Z_2 = r40
-GR_N = r41
-GR_Bias = r42
-GR_M = r43
-GR_ad_taylor = r44
-GR_ad_taylor_2 = r45
-GR_ad2_tbl_3 = r45
-GR_ad_tbl_1 = r46
-GR_ad_tbl_2 = r47
-GR_ad_tbl_3 = r48
-GR_ad_q = r49
-GR_ad_z_1 = r50
-GR_ad_z_2 = r51
-GR_ad_z_3 = r52
-
-//
-// Added for unwind support
-//
-GR_SAVE_PFS = r46
-GR_SAVE_B0 = r47
-GR_SAVE_GP = r48
-GR_Parameter_X = r49
-GR_Parameter_Y = r50
-GR_Parameter_RESULT = r51
-GR_Parameter_TAG = r52
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(atanhl)
-
-{ .mfi
- alloc r32 = ar.pfs,0,17,4,0
- fnma.s1 FR_Bp = f8,f1,f1 // b = 1 - |arg| (for x>0)
- mov GR_ExpMask = 0x1ffff
-}
-{ .mfi
- addl GR_ad_taylor = @ltoff(Constants_TaylorSeries),gp
- fma.s1 FR_Bn = f8,f1,f1 // b = 1 - |arg| (for x<0)
- mov GR_NearZeroBound = 0xfffa // biased exp of 1/32
-};;
-{ .mfi
- getf.exp GR_ArgExp = f8
- fcmp.lt.s1 p6,p7 = f8,f0 // is negative?
- nop.i 0
-}
-{ .mfi
- ld8 GR_ad_taylor = [GR_ad_taylor]
- fmerge.s FR_abs_x = f1,f8
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.m p8,p0 = f8,0x1C7 // is arg NaT,Q/SNaN or +/-0 ?
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x2 = f8,f8,f0
- nop.i 0
-};;
-{ .mfi
- add GR_ad_z_1 = 0x0F0,GR_ad_taylor
- fclass.m p9,p0 = f8,0x0a // is arg -denormal ?
- add GR_ad_taylor_2 = 0x010,GR_ad_taylor
-}
-{ .mfi
- add GR_ad_05 = 0x080,GR_ad_taylor
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfe FR_C17 = [GR_ad_taylor],32
- fclass.m p10,p0 = f8,0x09 // is arg +denormal ?
- add GR_ad_tbl_1 = 0x040,GR_ad_z_1 // point to Constants_G_H_h1
-}
-{ .mfb
- add GR_ad_z_2 = 0x140,GR_ad_z_1 // point to Constants_Z_2
- (p8) fma.s0 f8 = f8,f1,f0 // NaN or +/-0
- (p8) br.ret.spnt b0 // exit for Nan or +/-0
-};;
-{ .mfi
- ldfe FR_C15 = [GR_ad_taylor_2],32
- fclass.m p15,p0 = f8,0x23 // is +/-INF ?
- add GR_ad_tbl_2 = 0x180,GR_ad_z_1 // point to Constants_G_H_h2
-}
-{ .mfb
- ldfe FR_C13 = [GR_ad_taylor],32
- (p9) fnma.s0 f8 = f8,f8,f8 // -denormal
- (p9) br.ret.spnt b0 // exit for -denormal
-};;
-{ .mfi
- ldfe FR_C11 = [GR_ad_taylor_2],32
- fcmp.eq.s0 p13,p0 = FR_abs_x,f1 // is |arg| = 1?
- nop.i 0
-}
-{ .mfb
- ldfe FR_C9 = [GR_ad_taylor],32
-(p10) fma.s0 f8 = f8,f8,f8 // +denormal
-(p10) br.ret.spnt b0 // exit for +denormal
-};;
-{ .mfi
- ldfe FR_C7 = [GR_ad_taylor_2],32
- (p6) frcpa.s1 FR_Yn,p11 = f1,FR_Bn // y = frcpa(b)
- and GR_ArgExp = GR_ArgExp,GR_ExpMask // biased exponent
-}
-{ .mfb
- ldfe FR_C5 = [GR_ad_taylor],32
- fnma.s1 FR_B = FR_abs_x,f1,f1 // b = 1 - |arg|
-(p15) br.cond.spnt atanhl_gt_one // |arg| > 1
-};;
-{ .mfb
- cmp.gt p14,p0 = GR_NearZeroBound,GR_ArgExp
- (p7) frcpa.s1 FR_Yp,p12 = f1,FR_Bp // y = frcpa(b)
-(p13) br.cond.spnt atanhl_eq_one // |arg| = 1/32
-}
-{ .mfb
- ldfe FR_C3 = [GR_ad_taylor_2],32
- fma.s1 FR_A = FR_abs_x,f1,FR_abs_x // a = 2 * |arg|
-(p14) br.cond.spnt atanhl_near_zero // |arg| < 1/32
-};;
-{ .mfi
- nop.m 0
- fcmp.gt.s0 p8,p0 = FR_abs_x,f1 // is |arg| > 1 ?
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
- (p6) fnma.s1 FR_B_lo = FR_Bn,f1,f1 // argt = 1 - (1 - |arg|)
- nop.i 0
-}
-{ .mfi
- ldfs FR_Half = [GR_ad_05]
- (p7) fnma.s1 FR_B_lo = FR_Bp,f1,f1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- (p6) fnma.s1 FR_E0 = FR_Yn,FR_Bn,f1 // e = 1-b*y
- nop.i 0
-}
-{ .mfb
- nop.m 0
- (p6) fma.s1 FR_Y0 = FR_Yn,f1,f0
- (p8) br.cond.spnt atanhl_gt_one // |arg| > 1
-};;
-{ .mfi
- nop.m 0
- (p7) fnma.s1 FR_E0 = FR_Yp,FR_Bp,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- (p6) fma.s1 FR_Q0 = FR_A,FR_Yn,f0 // q = a*y
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- (p7) fma.s1 FR_Q0 = FR_A,FR_Yp,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- (p7) fma.s1 FR_Y0 = FR_Yp,f1,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.nm p10,p0 = f8,0x1FF // test for unsupported
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-// Return generated NaN or other value for unsupported values.
-(p10) fma.s0 f8 = f8, f0, f0
-(p10) br.ret.spnt b0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_B_lo = FR_abs_x,f1,FR_B_lo // b_lo = argt-|arg|
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_R0 = FR_B,FR_Q0,FR_A // r = a-b*q
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_E4 = FR_B,FR_Y2,f1 // e4 = 1-b*y2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_X = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Z = FR_X,f1,f1 // x+1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- (p6) fnma.s1 FR_Half = FR_Half,f1,f0 // sign(arg)/2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_R1 = FR_B,FR_X,FR_A // r1 = a-b*x
- nop.i 0
-};;
-{ .mfi
- getf.sig GR_signif = FR_Z // get significand of x+1
- nop.f 0
- nop.i 0
-};;
-
-
-{ .mfi
- add GR_ad_q = -0x060,GR_ad_z_1
- nop.f 0
- extr.u GR_Index1 = GR_signif,59,4 // get high 4 bits of signif
-}
-{ .mfi
- add GR_ad_tbl_3 = 0x280,GR_ad_z_1 // point to Constants_G_H_h3
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- shladd GR_ad_z_1 = GR_Index1,2,GR_ad_z_1 // point to Z_1
- nop.f 0
- extr.u GR_X_0 = GR_signif,49,15 // get high 15 bits of significand
-};;
-{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // load Z_1
- fmax.s1 FR_AA = FR_X,f1 // for S_lo,form AA = max(X,1.0)
- nop.i 0
-}
-{ .mfi
- shladd GR_ad_tbl_1 = GR_Index1,4,GR_ad_tbl_1 // point to G_1
- nop.f 0
- mov GR_Bias = 0x0FFFF // exponent bias
-};;
-{ .mfi
- ldfps FR_G,FR_H = [GR_ad_tbl_1],8 // load G_1,H_1
- fmerge.se FR_S_hi = f1,FR_Z // form |x+1|
- nop.i 0
-};;
-{ .mfi
- getf.exp GR_N = FR_Z // get N = exponent of x+1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfd FR_h = [GR_ad_tbl_1] // load h_1
- fnma.s1 FR_R1 = FR_B_lo,FR_X,FR_R1 // r1 = r1-b_lo*x
- nop.i 0
-};;
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // load log2_hi
- nop.f 0
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // get bits 30-15 of X_0 * Z_1
-};;
-//
-// For performance,don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe FR_log2_lo = [GR_ad_q],16 // load log2_lo
- nop.f 0
- sub GR_N = GR_N,GR_Bias
-};;
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q],16 // load Q4
- fms.s1 FR_S_lo = FR_AA,f1,FR_Z // form S_lo = AA - Z
- sub GR_minus_N = GR_Bias,GR_N // form exponent of 2^(-N)
-};;
-{ .mmf
- ldfe FR_Q3 = [GR_ad_q],16 // load Q3
- // put integer N into rightmost significand
- setf.sig FR_float_N = GR_N
- fmin.s1 FR_BB = FR_X,f1 // for S_lo,form BB = min(X,1.0)
-};;
-{ .mfi
- ldfe FR_Q2 = [GR_ad_q],16 // load Q2
- nop.f 0
- extr.u GR_Index2 = GR_X_1,6,4 // extract bits 6-9 of X_1
-};;
-{ .mmi
- ldfe FR_Q1 = [GR_ad_q] // load Q1
- shladd GR_ad_z_2 = GR_Index2,2,GR_ad_z_2 // point to Z_2
- nop.i 0
-};;
-{ .mmi
- ld4 GR_Z_2 = [GR_ad_z_2] // load Z_2
- shladd GR_ad_tbl_2 = GR_Index2,4,GR_ad_tbl_2 // point to G_2
- nop.i 0
-};;
-{ .mfi
- ldfps FR_G2,FR_H2 = [GR_ad_tbl_2],8 // load G_2,H_2
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfd FR_h2 = [GR_ad_tbl_2] // load h_2
- fma.s1 FR_S_lo = FR_S_lo,f1,FR_BB // S_lo = S_lo + BB
- nop.i 0
-}
-{ .mfi
- setf.exp FR_2_to_minus_N = GR_minus_N // form 2^(-N)
- fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // get bits 30-15 of X_1 * Z_2
-};;
-//
-// For performance,don't use result of pmpyshr2.u for 4 cycles
-//
-{ .mfi
- add GR_ad2_tbl_3 = 8,GR_ad_tbl_3
- nop.f 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-//
-// Now GR_X_2 can be used
-//
-{ .mfi
- nop.m 0
- nop.f 0
- extr.u GR_Index3 = GR_X_2,1,5 // extract bits 1-5 of X_2
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S_lo = FR_S_lo,f1,FR_X_lo // S_lo = S_lo + Arg_lo
- nop.i 0
-};;
-
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3,4,GR_ad_tbl_3 // point to G_3
- fcvt.xf FR_float_N = FR_float_N
- nop.i 0
-}
-{ .mfi
- shladd GR_ad2_tbl_3 = GR_Index3,4,GR_ad2_tbl_3 // point to h_3
- fma.s1 FR_Q1 = FR_Q1,FR_Half,f0 // sign(arg)*Q1/2
- nop.i 0
-};;
-{ .mmi
- ldfps FR_G3,FR_H3 = [GR_ad_tbl_3],8 // load G_3,H_3
- ldfd FR_h3 = [GR_ad2_tbl_3] // load h_3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G,FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H,FR_H2 // H = H_1 + H_2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h,FR_h2 // h = h_1 + h_2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // S_lo = S_lo * 2^(-N)
- fma.s1 FR_S_lo = FR_S_lo,FR_2_to_minus_N,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G,FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H,FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h,FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G,FR_S_hi,f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // Y_hi = N * log2_hi + H
- fma.s1 FR_Y_hi = FR_float_N,FR_log2_hi,FR_H
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_h = FR_float_N,FR_log2_lo,FR_h // h = N * log2_lo + h
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_r = FR_G,FR_S_lo,FR_r // r = G * S_lo + (G * S_hi - 1)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_r,FR_Q4,FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r,FR_r // rsq = r * r
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_05r = FR_r,FR_Half,f0 // sign(arg)*r/2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo,FR_r,FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq,FR_r,f0 // rcub = r^3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // poly_hi = sing(arg)*(Q1*r^2 + r)/2
- fma.s1 FR_poly_hi = FR_Q1,FR_rsq,FR_05r
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo,FR_rcub,FR_h
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // Y_lo = poly_hi + poly_lo/2
- fma.s0 FR_Y_lo = FR_poly_lo,FR_Half,FR_poly_hi
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- // Result = arctanh(x) = Y_hi/2 + Y_lo
- fma.s0 f8 = FR_Y_hi,FR_Half,FR_Y_lo
- br.ret.sptk b0
-};;
-
-// Taylor's series
-atanhl_near_zero:
-{ .mfi
- nop.m 0
- fma.s1 FR_x3 = FR_x2,f8,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C17 = FR_C17,FR_x2,FR_C15
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C13 = FR_C13,FR_x2,FR_C11
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C9 = FR_C9,FR_x2,FR_C7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C5 = FR_C5,FR_x2,FR_C3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_x8 = FR_x4,FR_x4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C17 = FR_C17,FR_x4,FR_C13
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C9 = FR_C9,FR_x4,FR_C5
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C17 = FR_C17,FR_x8,FR_C9
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fma.s0 f8 = FR_C17,FR_x3,f8
- br.ret.sptk b0
-};;
-
-atanhl_eq_one:
-{ .mfi
- nop.m 0
- frcpa.s0 FR_Rcp,p0 = f1,f0 // get inf,and raise Z flag
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmerge.s FR_Arg_X = f8, f8
- nop.i 0
-};;
-{ .mfb
- mov GR_Parameter_TAG = 130
- fmerge.s FR_RESULT = f8,FR_Rcp // result is +-inf
- br.cond.sptk __libm_error_region // exit if |x| = 1.0
-};;
-
-atanhl_gt_one:
-{ .mfi
- nop.m 0
- fmerge.s FR_Arg_X = f8, f8
- nop.i 0
-};;
-{ .mfb
- mov GR_Parameter_TAG = 129
- frcpa.s0 FR_RESULT,p0 = f0,f0 // get QNaN,and raise invalid
- br.cond.sptk __libm_error_region // exit if |x| > 1.0
-};;
-
-GLOBAL_LIBM_END(atanhl)
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Save Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0,GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_Arg_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_cosh.S b/sysdeps/ia64/fpu/e_cosh.S
index 885456b389..205653d4bf 100644
--- a/sysdeps/ia64/fpu/e_cosh.S
+++ b/sysdeps/ia64/fpu/e_cosh.S
@@ -1,10 +1,10 @@
.file "cosh.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,801 +20,1081 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/07/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/15/02 Improved speed with new algorithm
-// 03/31/05 Reformatted delimiters between data tables
-
+//
// API
//==============================================================
-// double cosh(double)
+// double = cosh(double)
+// input floating point f8
+// output floating point f8
+
// Overview of operation
//==============================================================
-// Case 1: 0 < |x| < 0.25
-// Evaluate cosh(x) by a 12th order polynomial
-// Care is take for the order of multiplication; and A2 is not exactly 1/4!,
-// A3 is not exactly 1/6!, etc.
-// cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8 + A5*x^10 + A6*x^12)
-//
-// Case 2: 0.25 < |x| < 710.47586
-// Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.
-// The algorithm for exp is described as below. There are a number of
-// economies from evaluating both exp(x) and exp(-x). Although we
-// are evaluating both quantities, only where the quantities diverge do we
-// duplicate the computations. The basic algorithm for exp(x) is described
-// below.
-//
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 128/log2
-// n = int(w)
-// x = n log2/128 + r + delta
+// There are four paths
-// n = 128M + index_1 + 2^4 index_2
-// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
+// 1. |x| < 0.25 COSH_BY_POLY
+// 2. |x| < 32 COSH_BY_TBL
+// 3. |x| < 2^14 COSH_BY_EXP
+// 4. |x_ >= 2^14 COSH_HUGE
-// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
-// Construct 2^M
-// Get 2^(index_1/128) from table_1;
-// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by 5th order polynomial
-// r = x - n (log2/128)_high
-// delta = - n (log2/128)_low
-// Calculate exp(delta) as 1 + delta
+// For paths 1, and 2 SAFE is always 1.
+// For path 4, Safe is always 0.
+// SAFE = 1 means we cannot overflow.
+#include "libm_support.h"
-// Special values
+// Assembly macros
//==============================================================
-// cosh(+0) = 1.0
-// cosh(-0) = 1.0
+cosh_FR_X = f44
+cosh_FR_SGNX = f40
-// cosh(+qnan) = +qnan
-// cosh(-qnan) = -qnan
-// cosh(+snan) = +qnan
-// cosh(-snan) = -qnan
+cosh_FR_Inv_log2by64 = f9
+cosh_FR_log2by64_lo = f11
+cosh_FR_log2by64_hi = f10
-// cosh(-inf) = +inf
-// cosh(+inf) = +inf
+cosh_FR_A1 = f9
+cosh_FR_A2 = f10
+cosh_FR_A3 = f11
-// Overflow and Underflow
-//=======================
-// cosh(x) = largest double normal when
-// x = 710.47586 = 0x408633ce8fb9f87d
-//
-// There is no underflow.
+cosh_FR_Rcub = f12
+cosh_FR_M_temp = f13
+cosh_FR_R_temp = f13
+cosh_FR_Rsq = f13
+cosh_FR_R = f14
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6 -> f15, f32 -> f61
+cosh_FR_M = f38
-// General registers used:
-// r14 -> r40
+cosh_FR_B1 = f15
+cosh_FR_B2 = f32
+cosh_FR_B3 = f33
-// Predicate registers used:
-// p6 -> p15
+cosh_FR_peven_temp1 = f34
+cosh_FR_peven_temp2 = f35
+cosh_FR_peven = f36
-// Assembly macros
-//==============================================================
+cosh_FR_podd_temp1 = f34
+cosh_FR_podd_temp2 = f35
+cosh_FR_podd = f37
+
+cosh_FR_J_temp = f9
+cosh_FR_J = f10
+
+cosh_FR_Mmj = f39
+
+cosh_FR_N_temp1 = f11
+cosh_FR_N_temp2 = f12
+cosh_FR_N = f13
+
+cosh_FR_spos = f14
+cosh_FR_sneg = f15
+
+cosh_FR_Tjhi = f32
+cosh_FR_Tjlo = f33
+cosh_FR_Tmjhi = f34
+cosh_FR_Tmjlo = f35
+
+GR_mJ = r35
+GR_J = r36
+
+AD_mJ = r38
+AD_J = r39
+
+cosh_FR_C_hi = f9
+cosh_FR_C_hi_temp = f10
+cosh_FR_C_lo_temp1 = f11
+cosh_FR_C_lo_temp2 = f12
+cosh_FR_C_lo_temp3 = f13
+
+cosh_FR_C_lo = f38
+cosh_FR_S_hi = f39
+
+cosh_FR_S_hi_temp1 = f10
+cosh_FR_Y_hi = f11
+cosh_FR_Y_lo_temp = f12
+cosh_FR_Y_lo = f13
+cosh_FR_COSH = f9
+
+cosh_FR_X2 = f9
+cosh_FR_X4 = f10
+
+cosh_FR_P1 = f14
+cosh_FR_P2 = f15
+cosh_FR_P3 = f32
+cosh_FR_P4 = f33
+cosh_FR_P5 = f34
+cosh_FR_P6 = f35
+
+cosh_FR_TINY_THRESH = f9
+
+cosh_FR_COSH_temp = f10
+cosh_FR_SCALE = f11
+
+cosh_FR_hi_lo = f10
+
+cosh_FR_poly_podd_temp1 = f11
+cosh_FR_poly_podd_temp2 = f13
+cosh_FR_poly_peven_temp1 = f11
+cosh_FR_poly_peven_temp2 = f13
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
-rRshf = r14
-rN_neg = r14
-rAD_TB1 = r15
-rAD_TB2 = r16
-rAD_P = r17
-rN = r18
-rIndex_1 = r19
-rIndex_2_16 = r20
-rM = r21
-rBiased_M = r21
-rSig_inv_ln2 = r22
-rIndex_1_neg = r22
-rExp_bias = r23
-rExp_bias_minus_1 = r23
-rExp_mask = r24
-rTmp = r24
-rGt_ln = r24
-rIndex_2_16_neg = r24
-rM_neg = r25
-rBiased_M_neg = r25
-rRshf_2to56 = r26
-rAD_T1_neg = r26
-rExp_2tom56 = r28
-rAD_T2_neg = r28
-rAD_T1 = r29
-rAD_T2 = r30
-rSignexp_x = r31
-rExp_x = r31
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-fRSHF_2TO56 = f6
-fINV_LN2_2TO63 = f7
-fW_2TO56_RSH = f9
-f2TOM56 = f11
-fP5 = f12
-fP4 = f13
-fP3 = f14
-fP2 = f15
-
-fLn2_by_128_hi = f33
-fLn2_by_128_lo = f34
-
-fRSHF = f35
-fNfloat = f36
-fNormX = f37
-fR = f38
-fF = f39
-
-fRsq = f40
-f2M = f41
-fS1 = f42
-fT1 = f42
-fS2 = f43
-fT2 = f43
-fS = f43
-fWre_urm_f8 = f44
-fAbsX = f44
-
-fMIN_DBL_OFLOW_ARG = f45
-fMAX_DBL_NORM_ARG = f46
-fXsq = f47
-fX4 = f48
-fGt_pln = f49
-fTmp = f49
-
-fP54 = f50
-fP5432 = f50
-fP32 = f51
-fP = f52
-fP54_neg = f53
-fP5432_neg = f53
-fP32_neg = f54
-fP_neg = f55
-fF_neg = f56
-
-f2M_neg = f57
-fS1_neg = f58
-fT1_neg = f58
-fS2_neg = f59
-fT2_neg = f59
-fS_neg = f59
-fExp = f60
-fExp_neg = f61
-
-fA6 = f50
-fA65 = f50
-fA6543 = f50
-fA654321 = f50
-fA5 = f51
-fA4 = f52
-fA43 = f52
-fA3 = f53
-fA2 = f54
-fA21 = f54
-fA1 = f55
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
+double_cosh_arg_reduction:
+ASM_TYPE_DIRECTIVE(double_cosh_arg_reduction,@object)
+ data8 0xB8AA3B295C17F0BC, 0x00004005
+ data8 0xB17217F7D1000000, 0x00003FF8
+ data8 0xCF79ABC9E3B39804, 0x00003FD0
+ASM_SIZE_DIRECTIVE(double_cosh_arg_reduction)
+
+double_cosh_p_table:
+ASM_TYPE_DIRECTIVE(double_cosh_p_table,@object)
+ data8 0x8000000000000000, 0x00003FFE
+ data8 0xAAAAAAAAAAAAAB80, 0x00003FFA
+ data8 0xB60B60B60B4FE884, 0x00003FF5
+ data8 0xD00D00D1021D7370, 0x00003FEF
+ data8 0x93F27740C0C2F1CC, 0x00003FE9
+ data8 0x8FA02AC65BCBD5BC, 0x00003FE2
+ASM_SIZE_DIRECTIVE(double_cosh_p_table)
+
+double_cosh_ab_table:
+ASM_TYPE_DIRECTIVE(double_cosh_ab_table,@object)
+ data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
+ data8 0x88888888884ECDD5, 0x00003FF8
+ data8 0xD00D0C6DCC26A86B, 0x00003FF2
+ data8 0x8000000000000002, 0x00003FFE
+ data8 0xAAAAAAAAAA402C77, 0x00003FFA
+ data8 0xB60B6CC96BDB144D, 0x00003FF5
+ASM_SIZE_DIRECTIVE(double_cosh_ab_table)
+
+double_cosh_j_table:
+ASM_TYPE_DIRECTIVE(double_cosh_j_table,@object)
+ data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
+ data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
+ data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
+ data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
+ data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
+ data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
+ data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
+ data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
+ data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
+ data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
+ data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
+ data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
+ data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
+ data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
+ data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
+ data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
+ data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
+ data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
+ data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
+ data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
+ data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
+ data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
+ data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
+ data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
+ data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
+ data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
+ data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
+ data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
+ data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
+ data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
+ data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
+ data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
+ data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
+ data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
+ data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
+ data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
+ data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
+ data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
+ data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
+ data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
+ data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
+ data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
+ data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
+ data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
+ data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
+ data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
+ data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
+ data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
+ data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
+ data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
+ data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
+ data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
+ data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
+ data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
+ data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
+ data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
+ data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
+ data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
+ data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
+ data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
+ data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
+ data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
+ data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
+ data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
+ data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
+ASM_SIZE_DIRECTIVE(double_cosh_j_table)
+
+.align 32
+.global cosh#
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
+.section .text
+.proc cosh#
+.align 32
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*128/ln2 into the rightmost bits of the significand.
-// The result of this fma is fW_2TO56_RSH.
-// 2. fRSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
-// the integer part of w, n, as a floating-point number.
-// The result of this fms is fNfloat.
-
-
-LOCAL_OBJECT_START(exp_table_1)
-data8 0x408633ce8fb9f87e // smallest dbl overflow arg
-data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_table_2)
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
-
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P5
-data8 0x3fa55555d787761c //P4
-data8 0x3fc5555555555414 //P3
-data8 0x3fdffffffffffd6a //P2
-LOCAL_OBJECT_END(exp_p_table)
-
-LOCAL_OBJECT_START(cosh_p_table)
-data8 0x8FA02AC65BCBD5BC, 0x00003FE2 // A6
-data8 0xD00D00D1021D7370, 0x00003FEF // A4
-data8 0xAAAAAAAAAAAAAB80, 0x00003FFA // A2
-data8 0x93F27740C0C2F1CC, 0x00003FE9 // A5
-data8 0xB60B60B60B4FE884, 0x00003FF5 // A3
-data8 0x8000000000000000, 0x00003FFE // A1
-LOCAL_OBJECT_END(cosh_p_table)
+cosh:
+#ifdef _LIBC
+.global __ieee754_cosh#
+.proc __ieee754_cosh#
+__ieee754_cosh:
+#endif
-.section .text
-GLOBAL_IEEE754_ENTRY(cosh)
+// X NAN?
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
-}
-{ .mlx
- addl rAD_TB1 = @ltoff(exp_table_1), gp
- movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
+{ .mfi
+ alloc r32 = ar.pfs,0,12,4,0
+(p0) fclass.m.unc p6,p7 = f8, 0xc3 //@snan | @qnan
+ nop.i 999
}
;;
-{ .mfi
- ld8 rAD_TB1 = [rAD_TB1]
- fclass.m p6,p0 = f8,0x0b // Test for x=unorm
- mov rExp_mask = 0x1ffff
-}
-{ .mfi
- mov rExp_bias = 0xffff
- fnorm.s1 fNormX = f8
- mov rExp_2tom56 = 0xffff-56
+
+{ .mfb
+ nop.m 999
+(p6) fma.d.s0 f8 = f8,f1,f8
+(p6) br.ret.spnt b0 ;;
}
-;;
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
+// X infinity
{ .mfi
- setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
- fclass.m p8,p0 = f8,0x07 // Test for x=0
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p6,p0 = f8, 0x23 //@inf
+ nop.i 999 ;;
}
+
+{ .mfb
+ nop.m 999
+(p6) fmerge.s f8 = f0,f8
+(p6) br.ret.spnt b0 ;;
+}
+
+
+
+// Put 0.25 in f9; p6 true if x < 0.25
{ .mlx
- setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
- movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
+ nop.m 999
+(p0) movl r32 = 0x000000000000fffd ;;
}
-;;
{ .mfi
- ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
- fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
-{ .mfb
- setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
- nop.f 0
-(p6) br.cond.spnt COSH_UNORM // Branch if x=unorm
-}
-;;
-COSH_COMMON:
{ .mfi
- ldfe fLn2_by_128_hi = [rAD_TB1],16
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fmerge.s cosh_FR_X = f0,f8
+ nop.i 999
}
-{ .mfb
- setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
-(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0
-(p8) br.ret.spnt b0
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.s cosh_FR_SGNX = f8,f1
+ nop.i 999 ;;
}
-;;
{ .mfi
- ldfe fLn2_by_128_lo = [rAD_TB1],16
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fcmp.lt.unc p0,p7 = cosh_FR_X,f9
+ nop.i 999 ;;
}
-{ .mfb
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
-(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=inf, nan, NaT
-(p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.sptk L(COSH_BY_TBL)
}
;;
-// After that last load rAD_TB1 points to the beginning of table 1
-{ .mfi
- nop.m 0
- fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
+
+// COSH_BY_POLY:
+// POLY cannot overflow so there is no need to call __libm_error_support
+// Get the values of P_x from the table
+
+{ .mmi
+ nop.m 999
+(p0) addl r34 = @ltoff(double_cosh_p_table), gp
+ nop.i 999
}
;;
-{ .mfi
- nop.m 0
- fmerge.s fAbsX = f0, fNormX // Form |x|
- nop.i 0
-}
-{ .mfb
- cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
- fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
-(p7) br.cond.spnt COSH_SMALL // Branch if 0 < |x| < 2^-2
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
-// W = X * Inv_log2_by_128
-// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
-// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
-{ .mfi
- add rAD_P = 0x180, rAD_TB1
- fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
- add rAD_TB2 = 0x100, rAD_TB1
+// Calculate cosh_FR_X2 = ax*ax and cosh_FR_X4 = ax*ax*ax*ax
+{ .mmf
+ nop.m 999
+(p0) ldfe cosh_FR_P1 = [r34],16
+(p0) fma.s1 cosh_FR_X2 = cosh_FR_X, cosh_FR_X, f0 ;;
}
-;;
-// Divide arguments into the following categories:
-// Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG
-// Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
-// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
-//
-// If the input is really a double arg, then there will never be
-// "Possible Overflow" arguments.
-//
+{ .mmi
+(p0) ldfe cosh_FR_P2 = [r34],16 ;;
+(p0) ldfe cosh_FR_P3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe cosh_FR_P4 = [r34],16 ;;
+(p0) ldfe cosh_FR_P5 = [r34],16
+ nop.i 999 ;;
+}
{ .mfi
- ldfpd fP5, fP4 = [rAD_P] ,16
- fcmp.ge.s1 p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
- nop.i 0
+(p0) ldfe cosh_FR_P6 = [r34],16
+(p0) fma.s1 cosh_FR_X4 = cosh_FR_X2, cosh_FR_X2, f0
+ nop.i 999 ;;
}
-;;
-// Nfloat = round_int(W)
-// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into rN.
+// Calculate cosh_FR_podd = x4 *(x4 * P_5 + P_3) + P_1
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_poly_podd_temp1 = cosh_FR_X4, cosh_FR_P5, cosh_FR_P3
+ nop.i 999 ;;
+}
-// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
-// Thus, fNfloat contains the floating point version of N
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd = cosh_FR_X4, cosh_FR_poly_podd_temp1, cosh_FR_P1
+ nop.i 999
+}
+// Calculate cosh_FR_peven = p_even = x4 *(x4 * (x4 * P_6 + P_4) + P_2)
{ .mfi
- ldfpd fP3, fP2 = [rAD_P]
-(p14) fcmp.gt.unc.s1 p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_poly_peven_temp1 = cosh_FR_X4, cosh_FR_P6, cosh_FR_P4
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
-(p15) br.cond.spnt COSH_CERTAIN_OVERFLOW
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_poly_peven_temp2 = cosh_FR_X4, cosh_FR_poly_peven_temp1, cosh_FR_P2
+ nop.i 999 ;;
}
-;;
{ .mfi
- getf.sig rN = fW_2TO56_RSH
- nop.f 0
- mov rExp_bias_minus_1 = 0xfffe
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven = cosh_FR_X4, cosh_FR_poly_peven_temp2, f0
+ nop.i 999 ;;
}
-;;
-// rIndex_1 has index_1
-// rIndex_2_16 has index_2 * 16
-// rBiased_M has M
+// Y_lo = x2*p_odd + p_even
+// Calculate f8 = Y_hi + Y_lo
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo = cosh_FR_X2, cosh_FR_podd, cosh_FR_peven
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fma.d.s0 f8 = f1, f1, cosh_FR_Y_lo
+(p0) br.ret.sptk b0 ;;
+}
+
+
+L(COSH_BY_TBL):
+
+// Now that we are at TBL; so far all we know is that |x| >= 0.25.
+// The first two steps are the same for TBL and EXP, but if we are HUGE
+// Double
+// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
+// Single
+// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
+// we want to leave now. Go to HUGE if |x| >= 2^14
+// 1000d (register-biased) is e = 14 (true)
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010009 ;;
+}
-// rM has true M
-// r = x - Nfloat * ln2_by_128_hi
-// f = 1 - Nfloat * ln2_by_128_lo
{ .mfi
- and rIndex_1 = 0x0f, rN
- fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
- shr rM = rN, 0x7
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- and rIndex_2_16 = 0x70, rN
- fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
- sub rN_neg = r0, rN
+ nop.m 999
+(p0) fcmp.ge.unc p6,p7 = cosh_FR_X,f9
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rIndex_1_neg = 0x0f, rN_neg
- add rBiased_M = rExp_bias_minus_1, rM
- shr rM_neg = rN_neg, 0x7
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(COSH_HUGE) ;;
}
+
+// r32 = 1
+// r34 = N-1
+// r35 = N
+// r36 = j
+// r37 = N+1
+
+// TBL can never overflow
+// cosh(x) = cosh(B+R)
+// = cosh(B) cosh(R) + sinh(B) sinh(R)
+// cosh(R) can be approximated by 1 + p_even
+// sinh(R) can be approximated by p_odd
+
+// ******************************************************
+// STEP 1 (TBL and EXP)
+// ******************************************************
+// Get the following constants.
+// f9 = Inv_log2by64
+// f10 = log2by64_hi
+// f11 = log2by64_lo
+
{ .mmi
- and rIndex_2_16_neg = 0x70, rN_neg
- add rAD_T2 = rAD_TB2, rIndex_2_16
- shladd rAD_T1 = rIndex_1, 4, rAD_TB1
+(p0) adds r32 = 0x1,r0
+(p0) addl r34 = @ltoff(double_cosh_arg_reduction), gp
+ nop.i 999
}
;;
-// rAD_T1 has address of T1
-// rAD_T2 has address if T2
+// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
+// put them in an exponent.
+// cosh_FR_spos = 2^(N-1) and cosh_FR_sneg = 2^(-N-1)
+// r39 = 0xffff + (N-1) = 0xffff +N -1
+// r40 = 0xffff - (N +1) = 0xffff -N -1
+
+{ .mlx
+ ld8 r34 = [r34]
+(p0) movl r38 = 0x000000000000fffe ;;
+}
{ .mmi
- setf.exp f2M = rBiased_M
- ldfe fT2 = [rAD_T2]
- nop.i 0
+(p0) ldfe cosh_FR_Inv_log2by64 = [r34],16 ;;
+(p0) ldfe cosh_FR_log2by64_hi = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mbb
+(p0) ldfe cosh_FR_log2by64_lo = [r34],16
+ nop.b 999
+ nop.b 999 ;;
}
+
+// Get the A coefficients
+// f9 = A_1
+// f10 = A_2
+// f11 = A_3
+
{ .mmi
- add rBiased_M_neg = rExp_bias_minus_1, rM_neg
- add rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
- shladd rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
+ nop.m 999
+(p0) addl r34 = @ltoff(double_cosh_ab_table), gp
+ nop.i 999
}
;;
-// Create Scale = 2^M
-// Load T1 and T2
{ .mmi
- ldfe fT1 = [rAD_T1]
- nop.m 0
- nop.i 0
-}
-{ .mmf
- setf.exp f2M_neg = rBiased_M_neg
- ldfe fT2_neg = [rAD_T2_neg]
- fma.s1 fF_neg = fNfloat, fLn2_by_128_lo, f1
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
+
+// Calculate M and keep it as integer and floating point.
+// M = round-to-integer(x*Inv_log2by64)
+// cosh_FR_M = M = truncate(ax/(log2/64))
+// Put the significand of M in r35
+// and the floating point representation of M in cosh_FR_M
+
{ .mfi
- nop.m 0
- fma.s1 fRsq = fR, fR, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_M = cosh_FR_X, cosh_FR_Inv_log2by64, f0
+ nop.i 999
}
+
{ .mfi
- ldfe fT1_neg = [rAD_T1_neg]
- fma.s1 fP54 = fR, fP5, fP4
- nop.i 0
+(p0) ldfe cosh_FR_A1 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP32 = fR, fP3, fP2
- nop.i 0
+ nop.m 999
+(p0) fcvt.fx.s1 cosh_FR_M_temp = cosh_FR_M
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fnma.s1 fP54_neg = fR, fP5, fP4
- nop.i 0
+ nop.m 999
+(p0) fnorm.s1 cosh_FR_M = cosh_FR_M_temp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fnma.s1 fP32_neg = fR, fP3, fP2
- nop.i 0
+(p0) getf.sig r35 = cosh_FR_M_temp
+ nop.f 999
+ nop.i 999 ;;
+}
+
+// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
+// has a range of -32 thru 31.
+// r35 = M
+// r36 = j
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) and r36 = 0x3f, r35 ;;
}
-;;
+
+// Calculate R
+// f13 = f44 - f12*f10 = x - M*log2by64_hi
+// f14 = f13 - f8*f11 = R = (x - M*log2by64_hi) - M*log2by64_lo
{ .mfi
- nop.m 0
- fma.s1 fP5432 = fRsq, fP54, fP32
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 cosh_FR_R_temp = cosh_FR_M, cosh_FR_log2by64_hi, cosh_FR_X
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- fma.s1 fS2 = fF,fT2,f0
- nop.i 0
+(p0) ldfe cosh_FR_A2 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fS1 = f2M,fT1,f0
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 cosh_FR_R = cosh_FR_M, cosh_FR_log2by64_lo, cosh_FR_R_temp
+ nop.i 999
+}
+
+// Get the B coefficients
+// f15 = B_1
+// f32 = B_2
+// f33 = B_3
+
+{ .mmi
+(p0) ldfe cosh_FR_A3 = [r34],16 ;;
+(p0) ldfe cosh_FR_B1 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe cosh_FR_B2 = [r34],16 ;;
+(p0) ldfe cosh_FR_B3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl r34 = r36, 0x2 ;;
+(p0) sxt1 r37 = r34 ;;
}
+
+// ******************************************************
+// STEP 2 (TBL and EXP)
+// ******************************************************
+// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// f12 = R*R*R
+// f13 = R*R
+// f14 = R <== from above
+
{ .mfi
- nop.m 0
- fma.s1 fP5432_neg = fRsq, fP54_neg, fP32_neg
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_Rsq = cosh_FR_R, cosh_FR_R, f0
+(p0) shr r36 = r37, 0x2 ;;
+}
+
+// r34 = M-j = r35 - r36
+// r35 = N = (M-j)/64
+
+{ .mii
+(p0) sub r34 = r35, r36
+ nop.i 999 ;;
+(p0) shr r35 = r34, 0x6 ;;
+}
+
+{ .mii
+(p0) sub r40 = r38, r35
+(p0) adds r37 = 0x1, r35
+(p0) add r39 = r38, r35 ;;
+}
+
+// Get the address of the J table, add the offset,
+// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
+// f32 = T(j)_hi
+// f33 = T(j)_lo
+// f34 = T(-j)_hi
+// f35 = T(-j)_lo
+
+{ .mmi
+(p0) sub r34 = r35, r32
+(p0) addl r37 = @ltoff(double_cosh_j_table), gp
+ nop.i 999
}
;;
{ .mfi
- nop.m 0
- fma.s1 fS1_neg = f2M_neg,fT1_neg,f0
- nop.i 0
+ ld8 r37 = [r37]
+(p0) fma.s1 cosh_FR_Rcub = cosh_FR_Rsq, cosh_FR_R, f0
+ nop.i 999
+}
+
+// ******************************************************
+// STEP 3 Now decide if we need to branch to EXP
+// ******************************************************
+// Put 32 in f9; p6 true if x < 32
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010004 ;;
}
+
+// Calculate p_even
+// f34 = B_2 + Rsq *B_3
+// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
+// f36 = peven = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+
{ .mfi
- nop.m 0
- fma.s1 fS2_neg = fF_neg,fT2_neg,f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven_temp1 = cosh_FR_Rsq, cosh_FR_B3, cosh_FR_B2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP = fRsq, fP5432, fR
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven_temp2 = cosh_FR_Rsq, cosh_FR_peven_temp1, cosh_FR_B1
+ nop.i 999
}
+
+// Calculate p_odd
+// f34 = A_2 + Rsq *A_3
+// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
+// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
+
{ .mfi
- nop.m 0
- fma.s1 fS = fS1,fS2,f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd_temp1 = cosh_FR_Rsq, cosh_FR_A3, cosh_FR_A2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fms.s1 fP_neg = fRsq, fP5432_neg, fR
- nop.i 0
+(p0) setf.exp cosh_FR_N_temp1 = r39
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fS_neg = fS1_neg,fS2_neg,f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven = cosh_FR_Rsq, cosh_FR_peven_temp2, f0
+ nop.i 999
}
-;;
-{ .mfb
- nop.m 0
- fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
-(p14) br.cond.spnt COSH_POSSIBLE_OVERFLOW
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd_temp2 = cosh_FR_Rsq, cosh_FR_podd_temp1, cosh_FR_A1
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fExp = fS, fP, fS
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fExp_neg = fS_neg, fP_neg, fS_neg
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd = cosh_FR_podd_temp2, cosh_FR_Rcub, cosh_FR_R
+ nop.i 999
}
-;;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fExp, f1, fExp_neg
- br.ret.sptk b0 // Normal path exit
+// sinh_GR_mj contains the table offset for -j
+// sinh_GR_j contains the table offset for +j
+// p6 is true when j <= 0
+
+{ .mlx
+(p0) setf.exp cosh_FR_N_temp2 = r40
+(p0) movl r40 = 0x0000000000000020 ;;
}
-;;
-// Here if 0 < |x| < 0.25
-COSH_SMALL:
-{ .mmf
- add rAD_T1 = 0x1a0, rAD_TB1
- add rAD_T2 = 0x1d0, rAD_TB1
+{ .mfi
+(p0) sub GR_mJ = r40, r36
+(p0) fmerge.se cosh_FR_spos = cosh_FR_N_temp1, f1
+(p0) adds GR_J = 0x20, r36 ;;
}
-;;
-{ .mmf
- ldfe fA6 = [rAD_T1],16
- ldfe fA5 = [rAD_T2],16
- nop.f 0
+{ .mii
+ nop.m 999
+(p0) shl GR_mJ = GR_mJ, 5 ;;
+(p0) add AD_mJ = r37, GR_mJ ;;
}
-;;
{ .mmi
- ldfe fA4 = [rAD_T1],16
- ldfe fA3 = [rAD_T2],16
- nop.i 0
+ nop.m 999
+(p0) ldfe cosh_FR_Tmjhi = [AD_mJ],16
+(p0) shl GR_J = GR_J, 5 ;;
+}
+
+{ .mfi
+(p0) ldfs cosh_FR_Tmjlo = [AD_mJ],16
+(p0) fcmp.lt.unc.s1 p6,p7 = cosh_FR_X,f9
+(p0) add AD_J = r37, GR_J ;;
}
-;;
{ .mmi
- ldfe fA2 = [rAD_T1],16
- ldfe fA1 = [rAD_T2],16
- nop.i 0
+(p0) ldfe cosh_FR_Tjhi = [AD_J],16 ;;
+(p0) ldfs cosh_FR_Tjlo = [AD_J],16
+ nop.i 999 ;;
}
-;;
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.se cosh_FR_sneg = cosh_FR_N_temp2, f1
+(p7) br.cond.spnt L(COSH_BY_EXP) ;;
+}
+
+// ******************************************************
+// If NOT branch to EXP
+// ******************************************************
+// Calculate C_hi
+// ******************************************************
+// cosh_FR_C_hi_temp = cosh_FR_sneg * cosh_FR_Tmjhi
+// cosh_FR_C_hi = cosh_FR_spos * cosh_FR_Tjhi + (cosh_FR_sneg * cosh_FR_Tmjhi)
{ .mfi
- nop.m 0
- fma.s1 fX4 = fXsq, fXsq, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_hi_temp = cosh_FR_sneg, cosh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA65 = fXsq, fA6, fA5
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_hi = cosh_FR_spos, cosh_FR_Tjhi, cosh_FR_C_hi_temp
+ nop.i 999
}
+
+// ******************************************************
+// Calculate S_hi
+// ******************************************************
+// cosh_FR_S_hi_temp1 = cosh_FR_sneg * cosh_FR_Tmjhi
+// cosh_FR_S_hi = cosh_FR_spos * cosh_FR_Tjhi - cosh_FR_C_hi_temp1
+
{ .mfi
- nop.m 0
- fma.s1 fA43 = fXsq, fA4, fA3
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_S_hi_temp1 = cosh_FR_sneg, cosh_FR_Tmjhi, f0
+ nop.i 999 ;;
+}
+
+// ******************************************************
+// Calculate C_lo
+// ******************************************************
+// cosh_FR_C_lo_temp1 = cosh_FR_spos * cosh_FR_Tjhi - cosh_FR_C_hi
+// cosh_FR_C_lo_temp2 = cosh_FR_sneg * cosh_FR_Tmjlo + (cosh_FR_spos * cosh_FR_Tjhi - cosh_FR_C_hi)
+// cosh_FR_C_lo_temp1 = cosh_FR_sneg * cosh_FR_Tmjlo
+// cosh_FR_C_lo_temp3 = cosh_FR_spos * cosh_FR_Tjlo + (cosh_FR_sneg * cosh_FR_Tmjlo)
+// cosh_FR_C_lo = cosh_FR_C_lo_temp3 + cosh_FR_C_lo_temp2
+
+{ .mfi
+ nop.m 999
+(p0) fms.s1 cosh_FR_C_lo_temp1 = cosh_FR_spos, cosh_FR_Tjhi, cosh_FR_C_hi
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA21 = fXsq, fA2, fA1
- nop.i 0
+ nop.m 999
+(p0) fms.s1 cosh_FR_S_hi = cosh_FR_spos, cosh_FR_Tjhi, cosh_FR_S_hi_temp1
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA6543 = fX4, fA65, fA43
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo_temp2 = cosh_FR_sneg, cosh_FR_Tmjhi, cosh_FR_C_lo_temp1
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA654321 = fX4, fA6543, fA21
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo_temp1 = cosh_FR_sneg, cosh_FR_Tmjlo, f0
+ nop.i 999 ;;
}
-;;
-// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fA6, fA6
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo_temp3 = cosh_FR_spos, cosh_FR_Tjlo, cosh_FR_C_lo_temp1
+ nop.i 999 ;;
}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo = cosh_FR_C_lo_temp3, f1, cosh_FR_C_lo_temp2
+ nop.i 999 ;;
+}
+
+// ******************************************************
+// cosh_FR_Y_lo_temp = cosh_FR_C_hi * cosh_FR_peven + cosh_FR_C_lo
+// cosh_FR_Y_lo = cosh_FR_S_hi * cosh_FR_podd + cosh_FR_Y_lo_temp
+// cosh_FR_COSH = Y_hi + Y_lo
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo_temp = cosh_FR_C_hi, cosh_FR_peven, cosh_FR_C_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo = cosh_FR_S_hi, cosh_FR_podd, cosh_FR_Y_lo_temp
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 0
- fma.d.s0 f8 = fA654321, fXsq, f1
- br.ret.sptk b0 // Exit if 0 < |x| < 0.25
+ nop.m 999
+(p0) fma.d.s0 f8 = cosh_FR_C_hi, f1, cosh_FR_Y_lo
+(p0) br.ret.sptk b0 ;;
}
-;;
+L(COSH_BY_EXP):
-COSH_POSSIBLE_OVERFLOW:
+// When p7 is true, we know that an overflow is not going to happen
+// When p7 is false, we must check for possible overflow
+// p7 is the over_SAFE flag
+// f44 = Scale * (Y_hi + Y_lo)
+// = cosh_FR_spos * (cosh_FR_Tjhi + cosh_FR_Y_lo)
-// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
-// This cannot happen if input is a double, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo_temp = cosh_FR_peven, f1, cosh_FR_podd
+ nop.i 999
+}
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest double, then we have
-// overflow
+// Now we are in EXP. This is the only path where an overflow is possible
+// but not for certain. So this is the only path where over_SAFE has any use.
+// r34 still has N-1
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// There is a danger of double overflow if N-1 > 0x3fe = 1022
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x00000000000003fe ;;
+}
{ .mfi
- mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+(p0) cmp.gt.unc p0,p7 = r34, r32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
- fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo = cosh_FR_Tjhi, cosh_FR_Y_lo_temp, cosh_FR_Tjlo
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_COSH_temp = cosh_FR_Y_lo, f1, cosh_FR_Tjhi
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+(p0) fma.d.s0 f44 = cosh_FR_spos, cosh_FR_COSH_temp, f0
+ nop.i 999 ;;
}
-;;
+// If over_SAFE is set, return
{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt COSH_CERTAIN_OVERFLOW // Branch if overflow
+ nop.m 999
+(p7) fmerge.s f8 = f44,f44
+(p7) br.ret.sptk b0 ;;
}
-;;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS
- br.ret.sptk b0 // Exit if really no overflow
+// Else see if we overflowed
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// If WRE is set then an overflow will not occur in EXP.
+// The input value that would cause a register (WRE) value to overflow is about 2^15
+// and this input would go into the HUGE path.
+// Answer with WRE is in f43.
+
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
}
-;;
-COSH_CERTAIN_OVERFLOW:
-{ .mmi
- sub rTmp = rExp_mask, r0, 1
-;;
- setf.exp fTmp = rTmp
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.d.s2 f43 = cosh_FR_spos, cosh_FR_COSH_temp, f0
+ nop.i 999 ;;
+}
+
+// 103FF => 103FF -FFFF = 400(true)
+// 400 + 3FF = 7FF, which is 1 more that the exponent of the largest
+// double (7FE). So 0 103FF 8000000000000000 is one ulp more than
+// largest double in register bias
+// Now set p8 if the answer with WRE is greater than or equal this value
+// Also set p9 if the answer with WRE is less than or equal to negative this value
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x00000000000103ff ;;
+}
+
+{ .mmf
+ nop.m 999
+(p0) setf.exp f41 = r32
+(p0) fsetc.s2 0x7F,0x40 ;;
}
-;;
{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
+ nop.i 999
}
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns f42 = f41, f41
+ nop.i 999 ;;
+}
+
+// The error tag for overflow is 64
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p8) mov r47 = 64 ;;
+}
+
{ .mfb
- mov GR_Parameter_TAG = 64
- fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
+(p8) br.cond.spnt __libm_error_region ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov r47 = 64
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt __libm_error_region ;;
}
-;;
-// Here if x unorm
-COSH_UNORM:
{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk COSH_COMMON
+ nop.m 999
+(p0) fmerge.s f8 = f44,f44
+(p0) br.ret.sptk b0 ;;
+}
+
+
+// for COSH_HUGE, put 24000 in exponent; take sign from input; add 1
+// SAFE: SAFE is always 0 for HUGE
+
+L(COSH_HUGE):
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000015dbf ;;
}
-;;
-GLOBAL_IEEE754_END(cosh)
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_hi_lo = f1, f9, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.d.s0 f44 = f9, cosh_FR_hi_lo, f0
+(p0) mov r47 = 64
+}
+;;
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.endp cosh#
+ASM_SIZE_DIRECTIVE(cosh#)
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
+
+.proc __libm_error_region
+__libm_error_region:
.prologue
+// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
@@ -823,32 +1103,39 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+
+// (2)
{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+// (3)
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
+ stfd [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = f44 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+
+// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
@@ -861,6 +1148,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_coshf.S b/sysdeps/ia64/fpu/e_coshf.S
index 97cb4e1771..969abc4ff6 100644
--- a/sysdeps/ia64/fpu/e_coshf.S
+++ b/sysdeps/ia64/fpu/e_coshf.S
@@ -1,10 +1,10 @@
.file "coshf.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,692 +20,1127 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
// History
-//*********************************************************************
-// 02/02/00 Initial version
-// 02/16/00 The error tag for coshf overflow changed to 65 (from 64).
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+//==============================================================
+// 2/02/00 Initial version
+// 2/16/00 The error tag for coshf overflow changed to 65 (from 64).
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/07/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/15/02 Improved algorithm based on expf
-// 03/31/05 Reformatted delimiters between data tables
//
// API
-//*********************************************************************
-// float coshf(float)
-//
+//==============================================================
+// float = coshf(float)
+// input floating point f8
+// output floating point f8
+
+
// Overview of operation
-//*********************************************************************
-// Case 1: 0 < |x| < 0.25
-// Evaluate cosh(x) by a 8th order polynomial
-// Care is take for the order of multiplication; and A2 is not exactly 1/4!,
-// A3 is not exactly 1/6!, etc.
-// cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8)
-//
-// Case 2: 0.25 < |x| < 89.41598
-// Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.
-// The algorithm for exp is described as below. There are a number of
-// economies from evaluating both exp(x) and exp(-x). Although we
-// are evaluating both quantities, only where the quantities diverge do we
-// duplicate the computations. The basic algorithm for exp(x) is described
-// below.
-//
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 64/log2
-// NJ = int(w)
-// x = NJ*log2/64 + R
+//==============================================================
+// There are four paths
-// NJ = 64*n + j
-// x = n*log2 + (log2/64)*j + R
-//
-// So, exp(x) = 2^n * 2^(j/64)* exp(R)
-//
-// T = 2^n * 2^(j/64)
-// Construct 2^n
-// Get 2^(j/64) table
-// actually all the entries of 2^(j/64) table are stored in DP and
-// with exponent bits set to 0 -> multiplication on 2^n can be
-// performed by doing logical "or" operation with bits presenting 2^n
-
-// exp(R) = 1 + (exp(R) - 1)
-// P = exp(R) - 1 approximated by Taylor series of 3rd degree
-// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
-//
+// 1. |x| < 0.25 COSH_BY_POLY
+// 2. |x| < 32 COSH_BY_TBL
+// 3. |x| < 2^14 COSH_BY_EXP
+// 4. |x_ >= 2^14 COSH_HUGE
-// The final result is reconstructed as follows
-// exp(x) = T + T*P
+// For paths 1, and 2 SAFE is always 1.
+// For path 4, Safe is always 0.
+// SAFE = 1 means we cannot overflow.
-// Special values
-//*********************************************************************
-// coshf(+0) = 1.0
-// coshf(-0) = 1.0
+#include "libm_support.h"
-// coshf(+qnan) = +qnan
-// coshf(-qnan) = -qnan
-// coshf(+snan) = +qnan
-// coshf(-snan) = -qnan
+// Assembly macros
+//==============================================================
+coshf_FR_X = f44
+coshf_FR_SGNX = f40
-// coshf(-inf) = +inf
-// coshf(+inf) = +inf
+coshf_FR_Inv_log2by64 = f9
+coshf_FR_log2by64_lo = f11
+coshf_FR_log2by64_hi = f10
-// Overflow and Underflow
-//*********************************************************************
-// coshf(x) = largest single normal when
-// x = 89.41598 = 0x42b2d4fc
-//
-// There is no underflow.
+coshf_FR_A1 = f9
+coshf_FR_A2 = f10
+coshf_FR_A3 = f11
-// Registers used
-//*********************************************************************
-// Floating Point registers used:
-// f8 input, output
-// f6,f7, f9 -> f15, f32 -> f45
+coshf_FR_Rcub = f12
+coshf_FR_M_temp = f13
+coshf_FR_R_temp = f13
+coshf_FR_Rsq = f13
+coshf_FR_R = f14
-// General registers used:
-// r2, r3, r16 -> r38
+coshf_FR_M = f38
-// Predicate registers used:
-// p6 -> p15
+coshf_FR_B1 = f15
+coshf_FR_B2 = f32
+coshf_FR_B3 = f33
-// Assembly macros
-//*********************************************************************
-// integer registers used
-// scratch
-rNJ = r2
-rNJ_neg = r3
-
-rJ_neg = r16
-rN_neg = r17
-rSignexp_x = r18
-rExp_x = r18
-rExp_mask = r19
-rExp_bias = r20
-rAd1 = r21
-rAd2 = r22
-rJ = r23
-rN = r24
-rTblAddr = r25
-rA3 = r26
-rExpHalf = r27
-rLn2Div64 = r28
-rGt_ln = r29
-r17ones_m1 = r29
-rRightShifter = r30
-rJ_mask = r30
-r64DivLn2 = r31
-rN_mask = r31
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
-
-// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-// scratch
-fRightShifter = f6
-f64DivLn2 = f7
-fNormX = f9
-fNint = f10
-fN = f11
-fR = f12
-fLn2Div64 = f13
-fA2 = f14
-fA3 = f15
-// stacked
-fP = f32
-fT = f33
-fMIN_SGL_OFLOW_ARG = f34
-fMAX_SGL_NORM_ARG = f35
-fRSqr = f36
-fA1 = f37
-fA21 = f37
-fA4 = f38
-fA43 = f38
-fA4321 = f38
-fX4 = f39
-fTmp = f39
-fGt_pln = f39
-fWre_urm_f8 = f40
-fXsq = f40
-fP_neg = f41
-fT_neg = f42
-fExp = f43
-fExp_neg = f44
-fAbsX = f45
-
-
-RODATA
-.align 16
+coshf_FR_peven_temp1 = f34
+coshf_FR_peven_temp2 = f35
+coshf_FR_peven = f36
-LOCAL_OBJECT_START(_coshf_table)
-data4 0x42b2d4fd // Smallest single arg to overflow single result
-data4 0x42b2d4fc // Largest single arg to give normal single result
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-//
-// 2^(j/64) table, j goes from 0 to 63
-data8 0x0000000000000000 // 2^(0/64)
-data8 0x00002C9A3E778061 // 2^(1/64)
-data8 0x000059B0D3158574 // 2^(2/64)
-data8 0x0000874518759BC8 // 2^(3/64)
-data8 0x0000B5586CF9890F // 2^(4/64)
-data8 0x0000E3EC32D3D1A2 // 2^(5/64)
-data8 0x00011301D0125B51 // 2^(6/64)
-data8 0x0001429AAEA92DE0 // 2^(7/64)
-data8 0x000172B83C7D517B // 2^(8/64)
-data8 0x0001A35BEB6FCB75 // 2^(9/64)
-data8 0x0001D4873168B9AA // 2^(10/64)
-data8 0x0002063B88628CD6 // 2^(11/64)
-data8 0x0002387A6E756238 // 2^(12/64)
-data8 0x00026B4565E27CDD // 2^(13/64)
-data8 0x00029E9DF51FDEE1 // 2^(14/64)
-data8 0x0002D285A6E4030B // 2^(15/64)
-data8 0x000306FE0A31B715 // 2^(16/64)
-data8 0x00033C08B26416FF // 2^(17/64)
-data8 0x000371A7373AA9CB // 2^(18/64)
-data8 0x0003A7DB34E59FF7 // 2^(19/64)
-data8 0x0003DEA64C123422 // 2^(20/64)
-data8 0x0004160A21F72E2A // 2^(21/64)
-data8 0x00044E086061892D // 2^(22/64)
-data8 0x000486A2B5C13CD0 // 2^(23/64)
-data8 0x0004BFDAD5362A27 // 2^(24/64)
-data8 0x0004F9B2769D2CA7 // 2^(25/64)
-data8 0x0005342B569D4F82 // 2^(26/64)
-data8 0x00056F4736B527DA // 2^(27/64)
-data8 0x0005AB07DD485429 // 2^(28/64)
-data8 0x0005E76F15AD2148 // 2^(29/64)
-data8 0x0006247EB03A5585 // 2^(30/64)
-data8 0x0006623882552225 // 2^(31/64)
-data8 0x0006A09E667F3BCD // 2^(32/64)
-data8 0x0006DFB23C651A2F // 2^(33/64)
-data8 0x00071F75E8EC5F74 // 2^(34/64)
-data8 0x00075FEB564267C9 // 2^(35/64)
-data8 0x0007A11473EB0187 // 2^(36/64)
-data8 0x0007E2F336CF4E62 // 2^(37/64)
-data8 0x00082589994CCE13 // 2^(38/64)
-data8 0x000868D99B4492ED // 2^(39/64)
-data8 0x0008ACE5422AA0DB // 2^(40/64)
-data8 0x0008F1AE99157736 // 2^(41/64)
-data8 0x00093737B0CDC5E5 // 2^(42/64)
-data8 0x00097D829FDE4E50 // 2^(43/64)
-data8 0x0009C49182A3F090 // 2^(44/64)
-data8 0x000A0C667B5DE565 // 2^(45/64)
-data8 0x000A5503B23E255D // 2^(46/64)
-data8 0x000A9E6B5579FDBF // 2^(47/64)
-data8 0x000AE89F995AD3AD // 2^(48/64)
-data8 0x000B33A2B84F15FB // 2^(49/64)
-data8 0x000B7F76F2FB5E47 // 2^(50/64)
-data8 0x000BCC1E904BC1D2 // 2^(51/64)
-data8 0x000C199BDD85529C // 2^(52/64)
-data8 0x000C67F12E57D14B // 2^(53/64)
-data8 0x000CB720DCEF9069 // 2^(54/64)
-data8 0x000D072D4A07897C // 2^(55/64)
-data8 0x000D5818DCFBA487 // 2^(56/64)
-data8 0x000DA9E603DB3285 // 2^(57/64)
-data8 0x000DFC97337B9B5F // 2^(58/64)
-data8 0x000E502EE78B3FF6 // 2^(59/64)
-data8 0x000EA4AFA2A490DA // 2^(60/64)
-data8 0x000EFA1BEE615A27 // 2^(61/64)
-data8 0x000F50765B6E4540 // 2^(62/64)
-data8 0x000FA7C1819E90D8 // 2^(63/64)
-LOCAL_OBJECT_END(_coshf_table)
-
-LOCAL_OBJECT_START(cosh_p_table)
-data8 0x3efa3001dcf5905b // A4
-data8 0x3f56c1437543543e // A3
-data8 0x3fa5555572601504 // A2
-data8 0x3fdfffffffe2f097 // A1
-LOCAL_OBJECT_END(cosh_p_table)
+coshf_FR_podd_temp1 = f34
+coshf_FR_podd_temp2 = f35
+coshf_FR_podd = f37
+
+coshf_FR_J_temp = f9
+coshf_FR_J = f10
+
+coshf_FR_Mmj = f39
+
+coshf_FR_N_temp1 = f11
+coshf_FR_N_temp2 = f12
+coshf_FR_N = f13
+
+coshf_FR_spos = f14
+coshf_FR_sneg = f15
+
+coshf_FR_Tjhi = f32
+coshf_FR_Tjlo = f33
+coshf_FR_Tmjhi = f34
+coshf_FR_Tmjlo = f35
+
+GR_mJ = r35
+GR_J = r36
+
+AD_mJ = r38
+AD_J = r39
+
+
+GR_SAVE_B0 = r42
+GR_SAVE_PFS = r41
+GR_SAVE_GP = r43
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
+GR_Parameter_TAG = r47
+
+FR_X = f8
+FR_Y = f0
+FR_RESULT = f44
+
+
+coshf_FR_C_hi = f9
+coshf_FR_C_hi_temp = f10
+coshf_FR_C_lo_temp1 = f11
+coshf_FR_C_lo_temp2 = f12
+coshf_FR_C_lo_temp3 = f13
+
+coshf_FR_C_lo = f38
+coshf_FR_S_hi = f39
+
+coshf_FR_S_hi_temp1 = f10
+coshf_FR_Y_hi = f11
+coshf_FR_Y_lo_temp = f12
+coshf_FR_Y_lo = f13
+coshf_FR_COSH = f9
+
+coshf_FR_X2 = f9
+coshf_FR_X4 = f10
+
+coshf_FR_P1 = f14
+coshf_FR_P2 = f15
+coshf_FR_P3 = f32
+coshf_FR_P4 = f33
+coshf_FR_P5 = f34
+coshf_FR_P6 = f35
+coshf_FR_TINY_THRESH = f9
+
+coshf_FR_COSH_temp = f10
+coshf_FR_SCALE = f11
+
+coshf_FR_hi_lo = f10
+
+coshf_FR_poly_podd_temp1 = f11
+coshf_FR_poly_podd_temp2 = f13
+coshf_FR_poly_peven_temp1 = f11
+coshf_FR_poly_peven_temp2 = f13
+
+// Data tables
+//==============================================================
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+.align 16
+single_coshf_arg_reduction:
+ASM_TYPE_DIRECTIVE(single_coshf_arg_reduction,@object)
+ data8 0xB8AA3B295C17F0BC, 0x00004005
+ data8 0xB17217F7D1000000, 0x00003FF8
+ data8 0xCF79ABC9E3B39804, 0x00003FD0
+ASM_SIZE_DIRECTIVE(single_coshf_arg_reduction)
+
+single_coshf_p_table:
+ASM_TYPE_DIRECTIVE(single_coshf_p_table,@object)
+ data8 0x8000000000000000, 0x00003FFE
+ data8 0xAAAAAAAAAAAAAB80, 0x00003FFA
+ data8 0xB60B60B60B4FE884, 0x00003FF5
+ data8 0xD00D00D1021D7370, 0x00003FEF
+ data8 0x93F27740C0C2F1CC, 0x00003FE9
+ data8 0x8FA02AC65BCBD5BC, 0x00003FE2
+ASM_SIZE_DIRECTIVE(single_coshf_p_table)
+
+single_coshf_ab_table:
+ASM_TYPE_DIRECTIVE(single_coshf_ab_table,@object)
+ data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
+ data8 0x88888888884ECDD5, 0x00003FF8
+ data8 0xD00D0C6DCC26A86B, 0x00003FF2
+ data8 0x8000000000000002, 0x00003FFE
+ data8 0xAAAAAAAAAA402C77, 0x00003FFA
+ data8 0xB60B6CC96BDB144D, 0x00003FF5
+ASM_SIZE_DIRECTIVE(single_coshf_ab_table)
+
+single_coshf_j_table:
+ASM_TYPE_DIRECTIVE(single_coshf_j_table,@object)
+ data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
+ data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
+ data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
+ data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
+ data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
+ data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
+ data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
+ data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
+ data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
+ data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
+ data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
+ data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
+ data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
+ data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
+ data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
+ data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
+ data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
+ data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
+ data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
+ data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
+ data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
+ data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
+ data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
+ data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
+ data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
+ data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
+ data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
+ data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
+ data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
+ data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
+ data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
+ data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
+ data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
+ data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
+ data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
+ data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
+ data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
+ data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
+ data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
+ data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
+ data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
+ data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
+ data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
+ data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
+ data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
+ data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
+ data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
+ data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
+ data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
+ data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
+ data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
+ data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
+ data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
+ data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
+ data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
+ data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
+ data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
+ data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
+ data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
+ data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
+ data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
+ data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
+ data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
+ data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
+ data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
+ASM_SIZE_DIRECTIVE(single_coshf_j_table)
+
+.align 32
+.global coshf#
.section .text
-GLOBAL_IEEE754_ENTRY(coshf)
+.proc coshf#
+.align 32
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
+coshf:
+
+#ifdef _LIBC
+.global __ieee754_coshf#
+.proc __ieee754_coshf#
+__ieee754_coshf:
+#endif
+
+// X NAN?
+
+
+{ .mfi
+ alloc r32 = ar.pfs,0,12,4,0
+(p0) fclass.m.unc p6,p7 = f8, 0xc3
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p6) fma.s.s0 f8 = f8,f1,f8
+(p6) br.ret.spnt b0 ;;
}
+
+{ .mfi
+ nop.m 999
+ nop.f 999
+ nop.i 999 ;;
+}
+
+// X infinity
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p6,p0 = f8, 0x23
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p6) fmerge.s f8 = f0,f8
+(p6) br.ret.spnt b0 ;;
+}
+
+// Put 0.25 in f9; p6 true if x < 0.25
{ .mlx
- addl rTblAddr = @ltoff(_coshf_table),gp
- movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
+ nop.m 999
+(p0) movl r32 = 0x000000000000fffd ;;
}
-;;
{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- fclass.m p6, p0 = f8, 0x0b // Test for x=unorm
- addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // normalized x
- addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
+ nop.m 999
+(p0) fmerge.s coshf_FR_X = f0,f8
+ nop.i 999
}
-;;
{ .mfi
- setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
- fclass.m p15, p0 = f8, 0x1e3 // test for NaT,NaN,Inf
- nop.i 0
+ nop.m 999
+(p0) fmerge.s coshf_FR_SGNX = f8,f1
+ nop.i 999 ;;
}
-{ .mlx
- // load Right Shifter to FP reg
- setf.d fRightShifter = rRightShifter
- movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.lt.unc p0,p7 = coshf_FR_X,f9
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.sptk L(COSH_BY_TBL) ;;
+}
+
+
+// COSH_BY_POLY:
+
+// POLY cannot overflow so there is no need to call __libm_error_support
+// Get the values of P_x from the table
+
+{ .mmi
+ nop.m 999
+(p0) addl r34 = @ltoff(single_coshf_p_table), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
+// Calculate coshf_FR_X2 = ax*ax and coshf_FR_X4 = ax*ax*ax*ax
+{ .mmf
+ nop.m 999
+(p0) ldfe coshf_FR_P1 = [r34],16
+(p0) fma.s1 coshf_FR_X2 = coshf_FR_X, coshf_FR_X, f0 ;;
+}
+
+{ .mmi
+(p0) ldfe coshf_FR_P2 = [r34],16 ;;
+(p0) ldfe coshf_FR_P3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe coshf_FR_P4 = [r34],16 ;;
+(p0) ldfe coshf_FR_P5 = [r34],16
+ nop.i 999 ;;
+}
+
{ .mfi
- mov rExp_mask = 0x1ffff
- fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
- shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
+(p0) ldfe coshf_FR_P6 = [r34],16
+(p0) fma.s1 coshf_FR_X4 = coshf_FR_X2, coshf_FR_X2, f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt COSH_UNORM // Branch if x=unorm
+
+// Calculate coshf_FR_podd = x4 *(x4 * P_5 + P_3) + P_1
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_poly_podd_temp1 = coshf_FR_X4, coshf_FR_P5, coshf_FR_P3
+ nop.i 999 ;;
}
-;;
-COSH_COMMON:
{ .mfi
- setf.exp fA2 = rExpHalf // load A2 to FP reg
- nop.f 0
- mov rExp_bias = 0xffff
+ nop.m 999
+(p0) fma.s1 coshf_FR_podd = coshf_FR_X4, coshf_FR_poly_podd_temp1, coshf_FR_P1
+ nop.i 999
}
-{ .mfb
- setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
-(p15) fma.s.s0 f8 = f8, f8, f0 // result if x = NaT,NaN,Inf
-(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,Inf
+
+// Calculate coshf_FR_peven = p_even = x4 *(x4 * (x4 * P_6 + P_4) + P_2)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_poly_peven_temp1 = coshf_FR_X4, coshf_FR_P6, coshf_FR_P4
+ nop.i 999 ;;
}
-;;
{ .mfi
- // min overflow and max normal threshold
- ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
- nop.f 0
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+ nop.m 999
+(p0) fma.s1 coshf_FR_poly_peven_temp2 = coshf_FR_X4, coshf_FR_poly_peven_temp1, coshf_FR_P2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_peven = coshf_FR_X4, coshf_FR_poly_peven_temp2, f0
+ nop.i 999 ;;
+}
+
+// Y_lo = x2*p_odd + p_even
+// Calculate f8 = Y_hi + Y_lo
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_Y_lo = coshf_FR_X2, coshf_FR_podd, coshf_FR_peven
+ nop.i 999 ;;
}
+
{ .mfb
- setf.s fA3 = rA3 // load A3 to FP reg
-(p13) fma.s.s0 f8 = f1, f1, f0 // result if x = 0.0
-(p13) br.ret.spnt b0 // exit here if x =0.0
+ nop.m 999
+(p0) fma.s.s0 f8 = f1, f1, coshf_FR_Y_lo
+(p0) br.ret.sptk b0 ;;
+}
+
+
+L(COSH_BY_TBL):
+
+// Now that we are at TBL; so far all we know is that |x| >= 0.25.
+// The first two steps are the same for TBL and EXP, but if we are HUGE
+// Double
+// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
+// Single
+// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
+// we want to leave now. Go to HUGE if |x| >= 2^14
+// 1000d (register-biased) is e = 14 (true)
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010006 ;;
}
-;;
{ .mfi
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
- fmerge.s fAbsX = f0, fNormX // Form |x|
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // x*(64/ln(2)) + Right Shifter
- fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
- add rTblAddr = 8, rTblAddr
+ nop.m 999
+(p0) fcmp.ge.unc p6,p7 = coshf_FR_X,f9
+ nop.i 999 ;;
}
-{ .mfb
- cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
- fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
-(p7) br.cond.spnt COSH_SMALL // Branch if 0 < |x| < 2^-2
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(COSH_HUGE) ;;
+}
+
+// r32 = 1
+// r34 = N-1
+// r35 = N
+// r36 = j
+// r37 = N+1
+
+// TBL can never overflow
+// coshf(x) = coshf(B+R)
+// = coshf(B) coshf(R) + sinh(B) sinh(R)
+// coshf(R) can be approximated by 1 + p_even
+// sinh(R) can be approximated by p_odd
+
+// ******************************************************
+// STEP 1 (TBL and EXP)
+// ******************************************************
+// Get the following constants.
+// f9 = Inv_log2by64
+// f10 = log2by64_hi
+// f11 = log2by64_lo
+
+{ .mmi
+(p0) adds r32 = 0x1,r0
+(p0) addl r34 = @ltoff(single_coshf_arg_reduction), gp
+ nop.i 999
}
;;
-{ .mfi
- nop.m 0
- // check for overflow
- fcmp.ge.s1 p12, p13 = fAbsX, fMIN_SGL_OFLOW_ARG
- mov rJ_mask = 0x3f // 6-bit mask for J
+
+// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
+// put them in an exponent.
+// coshf_FR_spos = 2^(N-1) and coshf_FR_sneg = 2^(-N-1)
+// r39 = 0xffff + (N-1) = 0xffff +N -1
+// r40 = 0xffff - (N +1) = 0xffff -N -1
+
+{ .mlx
+ ld8 r34 = [r34]
+(p0) movl r38 = 0x000000000000fffe ;;
+}
+
+{ .mmi
+(p0) ldfe coshf_FR_Inv_log2by64 = [r34],16 ;;
+(p0) ldfe coshf_FR_log2by64_hi = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mbb
+(p0) ldfe coshf_FR_log2by64_lo = [r34],16
+ nop.b 999
+ nop.b 999 ;;
+}
+
+// Get the A coefficients
+// f9 = A_1
+// f10 = A_2
+// f11 = A_3
+
+{ .mmi
+ nop.m 999
+(p0) addl r34 = @ltoff(single_coshf_ab_table), gp
+ nop.i 999
}
;;
-{ .mfb
- nop.m 0
- fms.s1 fN = fNint, f1, fRightShifter // n in FP register
- // branch out if overflow
-(p12) br.cond.spnt COSH_CERTAIN_OVERFLOW
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
+
+// Calculate M and keep it as integer and floating point.
+// M = round-to-integer(x*Inv_log2by64)
+// coshf_FR_M = M = truncate(ax/(log2/64))
+// Put the significand of M in r35
+// and the floating point representation of M in coshf_FR_M
+
{ .mfi
- getf.sig rNJ = fNint // bits of n, j
- // check for possible overflow
- fcmp.gt.s1 p13, p0 = fAbsX, fMAX_SGL_NORM_ARG
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_M = coshf_FR_X, coshf_FR_Inv_log2by64, f0
+ nop.i 999
}
-;;
{ .mfi
- addl rN = 0xFFBF - 63, rNJ // biased and shifted n-1,j
- fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
- and rJ = rJ_mask, rNJ // bits of j
+(p0) ldfe coshf_FR_A1 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- sub rNJ_neg = r0, rNJ // bits of n, j for -x
- nop.f 0
- andcm rN_mask = -1, rJ_mask // 0xff...fc0 to mask N
+ nop.m 999
+(p0) fcvt.fx.s1 coshf_FR_M_temp = coshf_FR_M
+ nop.i 999 ;;
}
-;;
{ .mfi
- shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
- nop.f 0
- and rN = rN_mask, rN // biased, shifted n-1
+ nop.m 999
+(p0) fnorm.s1 coshf_FR_M = coshf_FR_M_temp
+ nop.i 999 ;;
}
+
{ .mfi
- addl rN_neg = 0xFFBF - 63, rNJ_neg // -x biased, shifted n-1,j
- nop.f 0
- and rJ_neg = rJ_mask, rNJ_neg // bits of j for -x
+(p0) getf.sig r35 = coshf_FR_M_temp
+ nop.f 999
+ nop.i 999 ;;
}
-;;
+
+// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
+// has a range of -32 thru 31.
+// r35 = M
+// r36 = j
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) and r36 = 0x3f, r35 ;;
+}
+
+// Calculate R
+// f13 = f44 - f12*f10 = x - M*log2by64_hi
+// f14 = f13 - f8*f11 = R = (x - M*log2by64_hi) - M*log2by64_lo
{ .mfi
- ld8 rJ = [rJ] // Table value
- nop.f 0
- shl rN = rN, 46 // 2^(n-1) bits in DP format
+ nop.m 999
+(p0) fnma.s1 coshf_FR_R_temp = coshf_FR_M, coshf_FR_log2by64_hi, coshf_FR_X
+ nop.i 999
}
+
{ .mfi
- shladd rJ_neg = rJ_neg, 3, rTblAddr // addr in 2^(j/64) table -x
- nop.f 0
- and rN_neg = rN_mask, rN_neg // biased, shifted n-1 for -x
+(p0) ldfe coshf_FR_A2 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- ld8 rJ_neg = [rJ_neg] // Table value for -x
- nop.f 0
- shl rN_neg = rN_neg, 46 // 2^(n-1) bits in DP format for -x
+ nop.m 999
+(p0) fnma.s1 coshf_FR_R = coshf_FR_M, coshf_FR_log2by64_lo, coshf_FR_R_temp
+ nop.i 999
+}
+
+// Get the B coefficients
+// f15 = B_1
+// f32 = B_2
+// f33 = B_3
+
+{ .mmi
+(p0) ldfe coshf_FR_A3 = [r34],16 ;;
+(p0) ldfe coshf_FR_B1 = [r34],16
+ nop.i 999 ;;
}
-;;
+
+{ .mmi
+(p0) ldfe coshf_FR_B2 = [r34],16 ;;
+(p0) ldfe coshf_FR_B3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl r34 = r36, 0x2 ;;
+(p0) sxt1 r37 = r34 ;;
+}
+
+// ******************************************************
+// STEP 2 (TBL and EXP)
+// ******************************************************
+// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// f12 = R*R*R
+// f13 = R*R
+// f14 = R <== from above
{ .mfi
- or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_Rsq = coshf_FR_R, coshf_FR_R, f0
+(p0) shr r36 = r37, 0x2 ;;
}
-;;
-{ .mmf
- setf.d fT = rN // 2^(n-1) * 2^(j/64)
- or rN_neg = rN_neg, rJ_neg // -x bits of 2^n * 2^(j/64) in DP
- fma.s1 fRSqr = fR, fR, f0 // R^2
+// r34 = M-j = r35 - r36
+// r35 = N = (M-j)/64
+
+{ .mii
+(p0) sub r34 = r35, r36
+ nop.i 999 ;;
+(p0) shr r35 = r34, 0x6 ;;
+}
+
+{ .mii
+(p0) sub r40 = r38, r35
+(p0) adds r37 = 0x1, r35
+(p0) add r39 = r38, r35 ;;
+}
+
+// Get the address of the J table, add the offset,
+// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
+// f32 = T(j)_hi
+// f33 = T(j)_lo
+// f34 = T(-j)_hi
+// f35 = T(-j)_lo
+
+{ .mmi
+(p0) sub r34 = r35, r32
+(p0) addl r37 = @ltoff(single_coshf_j_table), gp
+ nop.i 999
}
;;
{ .mfi
- setf.d fT_neg = rN_neg // 2^(n-1) * 2^(j/64) for -x
- fma.s1 fP = fA3, fR, fA2 // A3*R + A2
- nop.i 0
+ ld8 r37 = [r37]
+(p0) fma.s1 coshf_FR_Rcub = coshf_FR_Rsq, coshf_FR_R, f0
+ nop.i 999
}
+
+// ******************************************************
+// STEP 3 Now decide if we need to branch to EXP
+// ******************************************************
+// Put 32 in f9; p6 true if x < 32
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010004 ;;
+}
+
+// Calculate p_even
+// f34 = B_2 + Rsq *B_3
+// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
+// f36 = peven = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+
{ .mfi
- nop.m 0
- fnma.s1 fP_neg = fA3, fR, fA2 // A3*R + A2 for -x
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_peven_temp1 = coshf_FR_Rsq, coshf_FR_B3, coshf_FR_B2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_peven_temp2 = coshf_FR_Rsq, coshf_FR_peven_temp1, coshf_FR_B1
+ nop.i 999
}
+
+// Calculate p_odd
+// f34 = A_2 + Rsq *A_3
+// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
+// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
+
{ .mfi
- nop.m 0
- fms.s1 fP_neg = fP_neg, fRSqr, fR // P = (A3*R + A2)*R^2 + R, -x
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_podd_temp1 = coshf_FR_Rsq, coshf_FR_A3, coshf_FR_A2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fLn2Div64, fLn2Div64 // Force inexact
- nop.i 0
+(p0) setf.exp coshf_FR_N_temp1 = r39
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fExp = fP, fT, fT // exp(x)/2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_peven = coshf_FR_Rsq, coshf_FR_peven_temp2, f0
+ nop.i 999
}
-{ .mfb
- nop.m 0
- fma.s1 fExp_neg = fP_neg, fT_neg, fT_neg // exp(-x)/2
- // branch out if possible overflow result
-(p13) br.cond.spnt COSH_POSSIBLE_OVERFLOW
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_podd_temp2 = coshf_FR_Rsq, coshf_FR_podd_temp1, coshf_FR_A1
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- // final result in the absence of overflow
- fma.s.s0 f8 = fExp, f1, fExp_neg // result = (exp(x)+exp(-x))/2
- // exit here in the absence of overflow
- br.ret.sptk b0 // Exit main path, 0.25 <= |x| < 89.41598
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_podd = coshf_FR_podd_temp2, coshf_FR_Rcub, coshf_FR_R
+ nop.i 999
+}
+
+// sinh_GR_mj contains the table offset for -j
+// sinh_GR_j contains the table offset for +j
+// p6 is true when j <= 0
+
+{ .mlx
+(p0) setf.exp coshf_FR_N_temp2 = r40
+(p0) movl r40 = 0x0000000000000020 ;;
+}
+
+{ .mfi
+(p0) sub GR_mJ = r40, r36
+(p0) fmerge.se coshf_FR_spos = coshf_FR_N_temp1, f1
+(p0) adds GR_J = 0x20, r36 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl GR_mJ = GR_mJ, 5 ;;
+(p0) add AD_mJ = r37, GR_mJ ;;
}
-;;
-// Here if 0 < |x| < 0.25. Evaluate 8th order polynomial.
-COSH_SMALL:
{ .mmi
- add rAd1 = 0x200, rTblAddr
- add rAd2 = 0x210, rTblAddr
- nop.i 0
+ nop.m 999
+(p0) ldfe coshf_FR_Tmjhi = [AD_mJ],16
+(p0) shl GR_J = GR_J, 5 ;;
+}
+
+{ .mfi
+(p0) ldfs coshf_FR_Tmjlo = [AD_mJ],16
+(p0) fcmp.lt.unc.s1 p6,p7 = coshf_FR_X,f9
+(p0) add AD_J = r37, GR_J ;;
}
-;;
{ .mmi
- ldfpd fA4, fA3 = [rAd1]
- ldfpd fA2, fA1 = [rAd2]
- nop.i 0
+(p0) ldfe coshf_FR_Tjhi = [AD_J],16 ;;
+(p0) ldfs coshf_FR_Tjlo = [AD_J],16
+ nop.i 999 ;;
}
-;;
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.se coshf_FR_sneg = coshf_FR_N_temp2, f1
+(p7) br.cond.spnt L(COSH_BY_EXP) ;;
+}
+
+// ******************************************************
+// If NOT branch to EXP
+// ******************************************************
+// Calculate C_hi
+// ******************************************************
+// coshf_FR_C_hi_temp = coshf_FR_sneg * coshf_FR_Tmjhi
+// coshf_FR_C_hi = coshf_FR_spos * coshf_FR_Tjhi + (coshf_FR_sneg * coshf_FR_Tmjhi)
{ .mfi
- nop.m 0
- fma.s1 fX4 = fXsq, fXsq, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_C_hi_temp = coshf_FR_sneg, coshf_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA43 = fXsq, fA4, fA3
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_C_hi = coshf_FR_spos, coshf_FR_Tjhi, coshf_FR_C_hi_temp
+ nop.i 999
}
+
+// ******************************************************
+// Calculate S_hi
+// ******************************************************
+// coshf_FR_S_hi_temp1 = coshf_FR_sneg * coshf_FR_Tmjhi
+// coshf_FR_S_hi = coshf_FR_spos * coshf_FR_Tjhi - coshf_FR_C_hi_temp1
+
{ .mfi
- nop.m 0
- fma.s1 fA21 = fXsq, fA2, fA1
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_S_hi_temp1 = coshf_FR_sneg, coshf_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
+
+// ******************************************************
+// Calculate C_lo
+// ******************************************************
+// coshf_FR_C_lo_temp1 = coshf_FR_spos * coshf_FR_Tjhi - coshf_FR_C_hi
+// coshf_FR_C_lo_temp2 = coshf_FR_sneg * coshf_FR_Tmjlo + (coshf_FR_spos * coshf_FR_Tjhi - coshf_FR_C_hi)
+// coshf_FR_C_lo_temp1 = coshf_FR_sneg * coshf_FR_Tmjlo
+// coshf_FR_C_lo_temp3 = coshf_FR_spos * coshf_FR_Tjlo + (coshf_FR_sneg * coshf_FR_Tmjlo)
+// coshf_FR_C_lo = coshf_FR_C_lo_temp3 + coshf_FR_C_lo_temp2
{ .mfi
- nop.m 0
- fma.s1 fA4321 = fX4, fA43, fA21
- nop.i 0
+ nop.m 999
+(p0) fms.s1 coshf_FR_C_lo_temp1 = coshf_FR_spos, coshf_FR_Tjhi, coshf_FR_C_hi
+ nop.i 999
}
-;;
-// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fA4, fA4
- nop.i 0
+ nop.m 999
+(p0) fms.s1 coshf_FR_S_hi = coshf_FR_spos, coshf_FR_Tjhi, coshf_FR_S_hi_temp1
+ nop.i 999 ;;
}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_C_lo_temp2 = coshf_FR_sneg, coshf_FR_Tmjhi, coshf_FR_C_lo_temp1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_C_lo_temp1 = coshf_FR_sneg, coshf_FR_Tmjlo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_C_lo_temp3 = coshf_FR_spos, coshf_FR_Tjlo, coshf_FR_C_lo_temp1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_C_lo = coshf_FR_C_lo_temp3, f1, coshf_FR_C_lo_temp2
+ nop.i 999 ;;
+}
+
+// ******************************************************
+// coshf_FR_Y_lo_temp = coshf_FR_C_hi * coshf_FR_peven + coshf_FR_C_lo
+// coshf_FR_Y_lo = coshf_FR_S_hi * coshf_FR_podd + coshf_FR_Y_lo_temp
+// coshf_FR_COSH = Y_hi + Y_lo
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_Y_lo_temp = coshf_FR_C_hi, coshf_FR_peven, coshf_FR_C_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_Y_lo = coshf_FR_S_hi, coshf_FR_podd, coshf_FR_Y_lo_temp
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fA4321, fXsq, f1
- br.ret.sptk b0 // Exit if 0 < |x| < 0.25
+ nop.m 999
+(p0) fma.s.s0 f8 = coshf_FR_C_hi, f1, coshf_FR_Y_lo
+(p0) br.ret.sptk b0 ;;
}
-;;
-COSH_POSSIBLE_OVERFLOW:
-// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
-// This cannot happen if input is a single, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+L(COSH_BY_EXP):
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest single, then we have
-// overflow
+// When p7 is true, we know that an overflow is not going to happen
+// When p7 is false, we must check for possible overflow
+// p7 is the over_SAFE flag
+// f44 = Scale * (Y_hi + Y_lo)
+// = coshf_FR_spos * (coshf_FR_Tjhi + coshf_FR_Y_lo)
{ .mfi
- mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_Y_lo_temp = coshf_FR_peven, f1, coshf_FR_podd
+ nop.i 999
+}
+
+// Now we are in EXP. This is the only path where an overflow is possible
+// but not for certain. So this is the only path where over_SAFE has any use.
+// r34 still has N-1
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// There is a danger of double overflow if N-1 > 0x3fe = 1022
+// There is a danger of single overflow if N-1 > 0x7e = 126
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x000000000000007e ;;
}
-;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
- fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
- nop.i 0
+(p0) cmp.gt.unc p0,p7 = r34, r32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_Y_lo = coshf_FR_Tjhi, coshf_FR_Y_lo_temp, coshf_FR_Tjlo
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+(p0) fma.s1 coshf_FR_COSH_temp = coshf_FR_Y_lo, f1, coshf_FR_Tjhi
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt COSH_CERTAIN_OVERFLOW // Branch if overflow
+{ .mfi
+ nop.m 999
+(p0) fma.s.s0 f44 = coshf_FR_spos, coshf_FR_COSH_temp, f0
+ nop.i 999 ;;
}
-;;
+// If over_SAFE is set, return
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fP, fT, fT
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 999
+(p7) fmerge.s f8 = f44,f44
+(p7) br.ret.sptk b0 ;;
}
-;;
-// here if overflow
-COSH_CERTAIN_OVERFLOW:
-{ .mmi
- addl r17ones_m1 = 0x1FFFE, r0
-;;
- setf.exp fTmp = r17ones_m1
- nop.i 0
+// Else see if we overflowed
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// If WRE is set then an overflow will not occur in EXP.
+// The input value that would cause a register (WRE) value to overflow is about 2^15
+// and this input would go into the HUGE path.
+// Answer with WRE is in f43.
+
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
}
-;;
{ .mfi
- alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+(p0) fma.s.s2 f43 = coshf_FR_spos, coshf_FR_COSH_temp, f0
+ nop.i 999 ;;
+}
+
+// 1 more that the exponent of the largest double (7FE) = 7FF
+// 7FF - 3FF = 400 (true); 400 + FFFF = 103FF (register-biased)
+// So 0 103FF 8000000000000000 is one ulp more than
+// largest double in register bias
+// 1 more that the exponent of the largest single (FE) = FF
+// FF - 7F = 80 (true); 80 + FFFF = 1007F (register-biased)
+// Now set p8 if the answer with WRE is greater than or equal this value
+// Also set p9 if the answer with WRE is less than or equal to negative this value
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x000000000001007f ;;
+}
+
+{ .mmf
+ nop.m 999
+(p0) setf.exp f41 = r32
+(p0) fsetc.s2 0x7F,0x40 ;;
}
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns f42 = f41, f41
+ nop.i 999 ;;
+}
+
+// The error tag for overflow is 65
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p8) mov GR_Parameter_TAG = 65 ;;
+}
+
{ .mfb
- mov GR_Parameter_TAG = 65
- fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
+(p8) br.cond.spnt __libm_error_region ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov GR_Parameter_TAG = 64
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt __libm_error_region ;;
}
-;;
-// Here if x unorm
-COSH_UNORM:
{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk COSH_COMMON // Return to main path
+ nop.m 999
+(p0) fmerge.s f8 = f44,f44
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_IEEE754_END(coshf)
+
+L(COSH_HUGE):
+
+// for COSH_HUGE, put 24000 in exponent; take sign from input; add 1
+// SAFE: SAFE is always 0 for HUGE
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000015dbf ;;
+}
+
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 coshf_FR_hi_lo = f1, f9, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s.s0 f44 = f9, coshf_FR_hi_lo, f0
+(p0) mov GR_Parameter_TAG = 65
+}
+.endp coshf
+ASM_SIZE_DIRECTIVE(coshf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ stfs [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
-{ .mfi
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- nop.f 0
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+{ .mib
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk.many b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_coshl.S b/sysdeps/ia64/fpu/e_coshl.S
index b5872d0b24..daac20d9a3 100644
--- a/sysdeps/ia64/fpu/e_coshl.S
+++ b/sysdeps/ia64/fpu/e_coshl.S
@@ -1,10 +1,10 @@
.file "coshl.s"
-
-// Copyright (c) 2000 - 2002, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,1061 +35,1129 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 01/23/01 Set inexact flag for large args.
-// 05/07/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 12/06/02 Improved performance
+// 1/23/01 Set inexact flag for large args.
//
// API
//==============================================================
+// float = cosh(float)
+// double = cosh(double)
// long double = coshl(long double)
// input floating point f8
// output floating point f8
-//
-// Registers used
-//==============================================================
-// general registers:
-// r14 -> r40
-// predicate registers used:
-// p6 -> p11
-// floating-point registers used:
-// f9 -> f15; f32 -> f90;
-// f8 has input, then output
-//
+
+
// Overview of operation
//==============================================================
-// There are seven paths
-// 1. 0 < |x| < 0.25 COSH_BY_POLY
-// 2. 0.25 <=|x| < 32 COSH_BY_TBL
-// 3. 32 <= |x| < 11357.21655 COSH_BY_EXP (merged path with COSH_BY_TBL)
-// 4. |x| >= 11357.21655 COSH_HUGE
-// 5. x=0 Done with early exit
-// 6. x=inf,nan Done with early exit
-// 7. x=denormal COSH_DENORM
-//
-// For double extended we get overflow for x >= 400c b174 ddc0 31ae c0ea
-// >= 11357.21655
-//
-//
-// 1. COSH_BY_POLY 0 < |x| < 0.25
-// ===============
-// Evaluate cosh(x) by a 12th order polynomial
-// Care is take for the order of multiplication; and P2 is not exactly 1/4!,
-// P3 is not exactly 1/6!, etc.
-// cosh(x) = 1 + (P1*x^2 + P2*x^4 + P3*x^6 + P4*x^8 + P5*x^10 + P6*x^12)
-//
-// 2. COSH_BY_TBL 0.25 <= |x| < 32.0
-// =============
-// cosh(x) = cosh(B+R)
-// = cosh(B)cosh(R) + sinh(B)sinh(R)
-//
-// ax = |x| = M*log2/64 + R
-// B = M*log2/64
-// M = 64*N + j
-// We will calculate M and get N as (M-j)/64
-// The division is a shift.
-// exp(B) = exp(N*log2 + j*log2/64)
-// = 2^N * 2^(j*log2/64)
-// cosh(B) = 1/2(e^B + e^-B)
-// = 1/2(2^N * 2^(j*log2/64) + 2^-N * 2^(-j*log2/64))
-// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
-// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
-// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
-// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
-//
-// R = ax - M*log2/64
-// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
-// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
-// = 1 + p_odd + p_even
-// where the p_even uses the A coefficients and the p_even uses
-// the B coefficients
-//
-// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
-// cosh(R) = 1 + p_even
-// cosh(B) = C_hi + C_lo
-// sinh(B) = S_hi
-// cosh(x) = cosh(B)cosh(R) + sinh(B)sinh(R)
-//
-// 3. COSH_BY_EXP 32.0 <= |x| < 11357.21655 ( 400c b174 ddc0 31ae c0ea )
-// ==============
-// Can approximate result by exp(x)/2 in this region.
-// Y_hi = Tjhi
-// Y_lo = Tjhi * (p_odd + p_even) + Tjlo
-// cosh(x) = Y_hi + Y_lo
-//
-// 4. COSH_HUGE |x| >= 11357.21655 ( 400c b174 ddc0 31ae c0ea )
-// ============
-// Set error tag and call error support
-//
-//
+// There are four paths
+
+// 1. |x| < 0.25 COSH_BY_POLY
+// 2. |x| < 32 COSH_BY_TBL
+// 3. |x| < 2^14 COSH_BY_EXP
+// 4. |x| >= 2^14 COSH_HUGE
+
+// For paths 1, and 2 SAFE is always 1.
+// For path 4, Safe is always 0.
+// SAFE = 1 means we cannot overflow.
+
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
-r_ad5 = r14
-r_rshf_2to57 = r15
-r_exp_denorm = r15
-r_ad_mJ_lo = r15
-r_ad_J_lo = r16
-r_2Nm1 = r17
-r_2mNm1 = r18
-r_exp_x = r18
-r_ad_J_hi = r19
-r_ad2o = r19
-r_ad_mJ_hi = r20
-r_mj = r21
-r_ad2e = r22
-r_ad3 = r23
-r_ad1 = r24
-r_Mmj = r24
-r_rshf = r25
-r_M = r25
-r_N = r25
-r_jshf = r26
-r_exp_2tom57 = r26
-r_j = r26
-r_exp_mask = r27
-r_signexp_x = r28
-r_signexp_0_5 = r28
-r_exp_0_25 = r29
-r_sig_inv_ln2 = r30
-r_exp_32 = r30
-r_exp_huge = r30
-r_ad4 = r31
-
-GR_SAVE_PFS = r34
-GR_SAVE_B0 = r35
-GR_SAVE_GP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-f_ABS_X = f9
-f_X2 = f10
-f_X4 = f11
-f_tmp = f14
-f_RSHF = f15
-
-f_Inv_log2by64 = f32
-f_log2by64_lo = f33
-f_log2by64_hi = f34
-f_A1 = f35
-
-f_A2 = f36
-f_A3 = f37
-f_Rcub = f38
-f_M_temp = f39
-f_R_temp = f40
-
-f_Rsq = f41
-f_R = f42
-f_M = f43
-f_B1 = f44
-f_B2 = f45
-
-f_B3 = f46
-f_peven_temp1 = f47
-f_peven_temp2 = f48
-f_peven = f49
-f_podd_temp1 = f50
-
-f_podd_temp2 = f51
-f_podd = f52
-f_poly65 = f53
-f_poly6543 = f53
-f_poly6to1 = f53
-f_poly43 = f54
-f_poly21 = f55
-
-f_X3 = f56
-f_INV_LN2_2TO63 = f57
-f_RSHF_2TO57 = f58
-f_2TOM57 = f59
-f_smlst_oflow_input = f60
-
-f_pre_result = f61
-f_huge = f62
-f_spos = f63
-f_sneg = f64
-f_Tjhi = f65
-
-f_Tjlo = f66
-f_Tmjhi = f67
-f_Tmjlo = f68
-f_S_hi = f69
-f_SC_hi_temp = f70
-
-f_C_lo_temp1 = f71
-f_C_lo_temp2 = f72
-f_C_lo_temp3 = f73
-f_C_lo_temp4 = f73
-f_C_lo = f74
-f_C_hi = f75
-
-f_Y_hi = f77
-f_Y_lo_temp = f78
-f_Y_lo = f79
-f_NORM_X = f80
-
-f_P1 = f81
-f_P2 = f82
-f_P3 = f83
-f_P4 = f84
-f_P5 = f85
-
-f_P6 = f86
-f_Tjhi_spos = f87
-f_Tjlo_spos = f88
-f_huge = f89
-f_signed_hi_lo = f90
+cosh_FR_X = f44
+FR_RESULT = f44
+cosh_FR_SGNX = f40
+cosh_FR_all_ones = f45
+
+FR_X = f8
+FR_Y = f0
+cosh_FR_Inv_log2by64 = f9
+cosh_FR_log2by64_lo = f11
+cosh_FR_log2by64_hi = f10
+
+cosh_FR_A1 = f9
+cosh_FR_A2 = f10
+cosh_FR_A3 = f11
+
+cosh_FR_Rcub = f12
+cosh_FR_M_temp = f13
+cosh_FR_R_temp = f13
+cosh_FR_Rsq = f13
+cosh_FR_R = f14
+
+cosh_FR_M = f38
+
+cosh_FR_tmp = f15
+cosh_FR_B1 = f15
+cosh_FR_B2 = f32
+cosh_FR_B3 = f33
+
+cosh_FR_peven_temp1 = f34
+cosh_FR_peven_temp2 = f35
+cosh_FR_peven = f36
+
+cosh_FR_podd_temp1 = f34
+cosh_FR_podd_temp2 = f35
+cosh_FR_podd = f37
+
+cosh_FR_J_temp = f9
+cosh_FR_J = f10
+
+cosh_FR_Mmj = f39
+
+cosh_FR_N_temp1 = f11
+cosh_FR_N_temp2 = f12
+cosh_FR_N = f13
+
+cosh_FR_spos = f14
+cosh_FR_sneg = f15
+
+cosh_FR_Tjhi = f32
+cosh_FR_Tjlo = f33
+cosh_FR_Tmjhi = f34
+cosh_FR_Tmjlo = f35
+
+GR_mJ = r35
+GR_J = r36
+
+AD_mJ = r38
+AD_J = r39
+
+cosh_GR_all_ones = r40
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
+GR_Parameter_TAG = r47
+cosh_FR_C_hi = f9
+cosh_FR_C_hi_temp = f10
+cosh_FR_C_lo_temp1 = f11
+cosh_FR_C_lo_temp2 = f12
+cosh_FR_C_lo_temp3 = f13
+
+cosh_FR_C_lo = f38
+cosh_FR_S_hi = f39
+
+cosh_FR_S_hi_temp1 = f10
+cosh_FR_Y_hi = f11
+cosh_FR_Y_lo_temp = f12
+cosh_FR_Y_lo = f13
+cosh_FR_COSH = f9
+
+cosh_FR_X2 = f9
+cosh_FR_X4 = f10
+
+cosh_FR_P1 = f14
+cosh_FR_P2 = f15
+cosh_FR_P3 = f32
+cosh_FR_P4 = f33
+cosh_FR_P5 = f34
+cosh_FR_P6 = f35
+
+cosh_FR_TINY_THRESH = f9
+
+cosh_FR_COSH_temp = f10
+cosh_FR_SCALE = f11
+
+cosh_FR_hi_lo = f10
+
+cosh_FR_poly_podd_temp1 = f11
+cosh_FR_poly_podd_temp2 = f13
+cosh_FR_poly_peven_temp1 = f11
+cosh_FR_poly_peven_temp2 = f13
// Data tables
//==============================================================
-// DO NOT CHANGE ORDER OF THESE TABLES
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(cosh_arg_reduction)
-// data8 0xB8AA3B295C17F0BC, 0x00004005 // 64/log2 -- signif loaded with setf
- data8 0xB17217F7D1000000, 0x00003FF8 // log2/64 high part
- data8 0xCF79ABC9E3B39804, 0x00003FD0 // log2/64 low part
- data8 0xb174ddc031aec0ea, 0x0000400c // Smallest x to overflow (11357.21655)
-LOCAL_OBJECT_END(cosh_arg_reduction)
-
-LOCAL_OBJECT_START(cosh_p_table)
- data8 0x8FA02AC65BCBD5BC, 0x00003FE2 // P6
- data8 0xD00D00D1021D7370, 0x00003FEF // P4
- data8 0xAAAAAAAAAAAAAB80, 0x00003FFA // P2
- data8 0x93F27740C0C2F1CC, 0x00003FE9 // P5
- data8 0xB60B60B60B4FE884, 0x00003FF5 // P3
- data8 0x8000000000000000, 0x00003FFE // P1
-LOCAL_OBJECT_END(cosh_p_table)
-
-LOCAL_OBJECT_START(cosh_ab_table)
- data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC // A1
- data8 0x88888888884ECDD5, 0x00003FF8 // A2
- data8 0xD00D0C6DCC26A86B, 0x00003FF2 // A3
- data8 0x8000000000000002, 0x00003FFE // B1
- data8 0xAAAAAAAAAA402C77, 0x00003FFA // B2
- data8 0xB60B6CC96BDB144D, 0x00003FF5 // B3
-LOCAL_OBJECT_END(cosh_ab_table)
-
-LOCAL_OBJECT_START(cosh_j_hi_table)
- data8 0xB504F333F9DE6484, 0x00003FFE
- data8 0xB6FD91E328D17791, 0x00003FFE
- data8 0xB8FBAF4762FB9EE9, 0x00003FFE
- data8 0xBAFF5AB2133E45FB, 0x00003FFE
- data8 0xBD08A39F580C36BF, 0x00003FFE
- data8 0xBF1799B67A731083, 0x00003FFE
- data8 0xC12C4CCA66709456, 0x00003FFE
- data8 0xC346CCDA24976407, 0x00003FFE
- data8 0xC5672A115506DADD, 0x00003FFE
- data8 0xC78D74C8ABB9B15D, 0x00003FFE
- data8 0xC9B9BD866E2F27A3, 0x00003FFE
- data8 0xCBEC14FEF2727C5D, 0x00003FFE
- data8 0xCE248C151F8480E4, 0x00003FFE
- data8 0xD06333DAEF2B2595, 0x00003FFE
- data8 0xD2A81D91F12AE45A, 0x00003FFE
- data8 0xD4F35AABCFEDFA1F, 0x00003FFE
- data8 0xD744FCCAD69D6AF4, 0x00003FFE
- data8 0xD99D15C278AFD7B6, 0x00003FFE
- data8 0xDBFBB797DAF23755, 0x00003FFE
- data8 0xDE60F4825E0E9124, 0x00003FFE
- data8 0xE0CCDEEC2A94E111, 0x00003FFE
- data8 0xE33F8972BE8A5A51, 0x00003FFE
- data8 0xE5B906E77C8348A8, 0x00003FFE
- data8 0xE8396A503C4BDC68, 0x00003FFE
- data8 0xEAC0C6E7DD24392F, 0x00003FFE
- data8 0xED4F301ED9942B84, 0x00003FFE
- data8 0xEFE4B99BDCDAF5CB, 0x00003FFE
- data8 0xF281773C59FFB13A, 0x00003FFE
- data8 0xF5257D152486CC2C, 0x00003FFE
- data8 0xF7D0DF730AD13BB9, 0x00003FFE
- data8 0xFA83B2DB722A033A, 0x00003FFE
- data8 0xFD3E0C0CF486C175, 0x00003FFE
- data8 0x8000000000000000, 0x00003FFF // Center of table
- data8 0x8164D1F3BC030773, 0x00003FFF
- data8 0x82CD8698AC2BA1D7, 0x00003FFF
- data8 0x843A28C3ACDE4046, 0x00003FFF
- data8 0x85AAC367CC487B15, 0x00003FFF
- data8 0x871F61969E8D1010, 0x00003FFF
- data8 0x88980E8092DA8527, 0x00003FFF
- data8 0x8A14D575496EFD9A, 0x00003FFF
- data8 0x8B95C1E3EA8BD6E7, 0x00003FFF
- data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF
- data8 0x8EA4398B45CD53C0, 0x00003FFF
- data8 0x9031DC431466B1DC, 0x00003FFF
- data8 0x91C3D373AB11C336, 0x00003FFF
- data8 0x935A2B2F13E6E92C, 0x00003FFF
- data8 0x94F4EFA8FEF70961, 0x00003FFF
- data8 0x96942D3720185A00, 0x00003FFF
- data8 0x9837F0518DB8A96F, 0x00003FFF
- data8 0x99E0459320B7FA65, 0x00003FFF
- data8 0x9B8D39B9D54E5539, 0x00003FFF
- data8 0x9D3ED9A72CFFB751, 0x00003FFF
- data8 0x9EF5326091A111AE, 0x00003FFF
- data8 0xA0B0510FB9714FC2, 0x00003FFF
- data8 0xA27043030C496819, 0x00003FFF
- data8 0xA43515AE09E6809E, 0x00003FFF
- data8 0xA5FED6A9B15138EA, 0x00003FFF
- data8 0xA7CD93B4E965356A, 0x00003FFF
- data8 0xA9A15AB4EA7C0EF8, 0x00003FFF
- data8 0xAB7A39B5A93ED337, 0x00003FFF
- data8 0xAD583EEA42A14AC6, 0x00003FFF
- data8 0xAF3B78AD690A4375, 0x00003FFF
- data8 0xB123F581D2AC2590, 0x00003FFF
- data8 0xB311C412A9112489, 0x00003FFF
- data8 0xB504F333F9DE6484, 0x00003FFF
-LOCAL_OBJECT_END(cosh_j_hi_table)
-
-LOCAL_OBJECT_START(cosh_j_lo_table)
- data4 0x1EB2FB13
- data4 0x1CE2CBE2
- data4 0x1DDC3CBC
- data4 0x1EE9AA34
- data4 0x9EAEFDC1
- data4 0x9DBF517B
- data4 0x1EF88AFB
- data4 0x1E03B216
- data4 0x1E78AB43
- data4 0x9E7B1747
- data4 0x9EFE3C0E
- data4 0x9D36F837
- data4 0x9DEE53E4
- data4 0x9E24AE8E
- data4 0x1D912473
- data4 0x1EB243BE
- data4 0x1E669A2F
- data4 0x9BBC610A
- data4 0x1E761035
- data4 0x9E0BE175
- data4 0x1CCB12A1
- data4 0x1D1BFE90
- data4 0x1DF2F47A
- data4 0x1EF22F22
- data4 0x9E3F4A29
- data4 0x1EC01A5B
- data4 0x1E8CAC3A
- data4 0x9DBB3FAB
- data4 0x1EF73A19
- data4 0x9BB795B5
- data4 0x1EF84B76
- data4 0x9EF5818B
- data4 0x00000000 // Center of table
- data4 0x1F77CACA
- data4 0x1EF8A91D
- data4 0x1E57C976
- data4 0x9EE8DA92
- data4 0x1EE85C9F
- data4 0x1F3BF1AF
- data4 0x1D80CA1E
- data4 0x9D0373AF
- data4 0x9F167097
- data4 0x1EB70051
- data4 0x1F6EB029
- data4 0x1DFD6D8E
- data4 0x9EB319B0
- data4 0x1EBA2BEB
- data4 0x1F11D537
- data4 0x1F0D5A46
- data4 0x9E5E7BCA
- data4 0x9F3AAFD1
- data4 0x9E86DACC
- data4 0x9F3EDDC2
- data4 0x1E496E3D
- data4 0x9F490BF6
- data4 0x1DD1DB48
- data4 0x1E65EBFB
- data4 0x9F427496
- data4 0x1F283C4A
- data4 0x1F4B0047
- data4 0x1F130152
- data4 0x9E8367C0
- data4 0x9F705F90
- data4 0x1EFB3C53
- data4 0x1F32FB13
-LOCAL_OBJECT_END(cosh_j_lo_table)
-
+double_cosh_arg_reduction:
+ASM_TYPE_DIRECTIVE(double_cosh_arg_reduction,@object)
+ data8 0xB8AA3B295C17F0BC, 0x00004005
+ data8 0xB17217F7D1000000, 0x00003FF8
+ data8 0xCF79ABC9E3B39804, 0x00003FD0
+ASM_SIZE_DIRECTIVE(double_cosh_arg_reduction)
+
+double_cosh_p_table:
+ASM_TYPE_DIRECTIVE(double_cosh_p_table,@object)
+ data8 0x8000000000000000, 0x00003FFE
+ data8 0xAAAAAAAAAAAAAB80, 0x00003FFA
+ data8 0xB60B60B60B4FE884, 0x00003FF5
+ data8 0xD00D00D1021D7370, 0x00003FEF
+ data8 0x93F27740C0C2F1CC, 0x00003FE9
+ data8 0x8FA02AC65BCBD5BC, 0x00003FE2
+ASM_SIZE_DIRECTIVE(double_cosh_p_table)
+
+double_cosh_ab_table:
+ASM_TYPE_DIRECTIVE(double_cosh_ab_table,@object)
+ data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
+ data8 0x88888888884ECDD5, 0x00003FF8
+ data8 0xD00D0C6DCC26A86B, 0x00003FF2
+ data8 0x8000000000000002, 0x00003FFE
+ data8 0xAAAAAAAAAA402C77, 0x00003FFA
+ data8 0xB60B6CC96BDB144D, 0x00003FF5
+ASM_SIZE_DIRECTIVE(double_cosh_ab_table)
+
+double_cosh_j_table:
+ASM_TYPE_DIRECTIVE(double_cosh_j_table,@object)
+ data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
+ data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
+ data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
+ data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
+ data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
+ data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
+ data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
+ data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
+ data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
+ data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
+ data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
+ data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
+ data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
+ data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
+ data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
+ data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
+ data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
+ data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
+ data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
+ data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
+ data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
+ data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
+ data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
+ data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
+ data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
+ data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
+ data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
+ data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
+ data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
+ data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
+ data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
+ data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
+ data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
+ data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
+ data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
+ data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
+ data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
+ data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
+ data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
+ data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
+ data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
+ data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
+ data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
+ data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
+ data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
+ data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
+ data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
+ data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
+ data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
+ data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
+ data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
+ data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
+ data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
+ data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
+ data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
+ data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
+ data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
+ data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
+ data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
+ data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
+ data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
+ data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
+ data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
+ data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
+ data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
+ASM_SIZE_DIRECTIVE(double_cosh_j_table)
+
+.align 32
+.global coshl#
.section .text
-GLOBAL_IEEE754_ENTRY(coshl)
+.proc coshl#
+.align 32
-{ .mlx
- getf.exp r_signexp_x = f8 // Get signexp of x, must redo if unorm
- movl r_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
+coshl:
+
+#ifdef _LIBC
+.global __ieee754_coshl#
+.proc __ieee754_coshl#
+__ieee754_coshl:
+#endif
+
+// X NAN?
+
+{ .mfi
+ alloc r32 = ar.pfs,0,12,4,0
+(p0) fclass.m.unc p6,p7 = f8, 0xc3
+ mov cosh_GR_all_ones = -1
+};;
+
+// This is more than we need but it is in preparation
+// for the values we add for error support. We push three
+// addresses on the stack (3*8) = 24 bytes and one tag
+
+{ .mfb
+ nop.m 999
+(p6) fma.s0 f8 = f8,f1,f8
+(p6) br.ret.spnt b0 ;;
}
+
+
+// Make constant that will generate inexact when squared
+// X infinity
+{ .mfi
+ setf.sig cosh_FR_all_ones = cosh_GR_all_ones
+(p0) fclass.m.unc p6,p0 = f8, 0x23
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p6) fmerge.s f8 = f0,f8
+(p6) br.ret.spnt b0 ;;
+}
+
+
+
+// Put 0.25 in f9; p6 true if x < 0.25
{ .mlx
- addl r_ad1 = @ltoff(cosh_arg_reduction), gp
- movl r_rshf_2to57 = 0x4778000000000000 // 1.10000 2^(63+57)
+ nop.m 999
+(p0) movl r32 = 0x000000000000fffd ;;
}
-;;
{ .mfi
- ld8 r_ad1 = [r_ad1]
- fmerge.s f_ABS_X = f0,f8
- mov r_exp_0_25 = 0x0fffd // Form exponent for 0.25
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fnorm.s1 f_NORM_X = f8
- mov r_exp_2tom57 = 0xffff-57
+ nop.m 999
+(p0) fmerge.s cosh_FR_X = f0,f8
+ nop.i 999
}
-;;
{ .mfi
- setf.d f_RSHF_2TO57 = r_rshf_2to57 // Form const 1.100 * 2^120
- fclass.m p10,p0 = f8, 0x0b // Test for denorm
- mov r_exp_mask = 0x1ffff
+ nop.m 999
+(p0) fmerge.s cosh_FR_SGNX = f8,f1
+ nop.i 999 ;;
}
-{ .mlx
- setf.sig f_INV_LN2_2TO63 = r_sig_inv_ln2 // Form 1/ln2 * 2^63
- movl r_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.lt.unc p0,p7 = cosh_FR_X,f9
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.sptk L(COSH_BY_TBL)
}
;;
+
+// COSH_BY_POLY:
+// POLY cannot overflow so there is no need to call __libm_error_support
+// Get the values of P_x from the table
+
+{ .mmi
+ nop.m 999
+(p0) addl r34 = @ltoff(double_cosh_p_table), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+// Calculate cosh_FR_X2 = ax*ax and cosh_FR_X4 = ax*ax*ax*ax
+{ .mmf
+ nop.m 999
+(p0) ldfe cosh_FR_P1 = [r34],16
+(p0) fma.s1 cosh_FR_X2 = cosh_FR_X, cosh_FR_X, f0 ;;
+}
+
+{ .mmi
+(p0) ldfe cosh_FR_P2 = [r34],16 ;;
+(p0) ldfe cosh_FR_P3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe cosh_FR_P4 = [r34],16 ;;
+(p0) ldfe cosh_FR_P5 = [r34],16
+ nop.i 999 ;;
+}
+
{ .mfi
- nop.m 0
- fclass.m p7,p0 = f8, 0x07 // Test if x=0
- nop.i 0
+(p0) ldfe cosh_FR_P6 = [r34],16
+(p0) fma.s1 cosh_FR_X4 = cosh_FR_X2, cosh_FR_X2, f0
+ nop.i 999 ;;
}
+
+// Calculate cosh_FR_podd = x4 *(x4 * P_5 + P_3) + P_1
{ .mfi
- setf.exp f_2TOM57 = r_exp_2tom57 // Form 2^-57 for scaling
- nop.f 0
- add r_ad3 = 0x90, r_ad1 // Point to ab_table
+ nop.m 999
+(p0) fma.s1 cosh_FR_poly_podd_temp1 = cosh_FR_X4, cosh_FR_P5, cosh_FR_P3
+ nop.i 999 ;;
}
-;;
{ .mfi
- setf.d f_RSHF = r_rshf // Form right shift const 1.100 * 2^63
- fclass.m p6,p0 = f8, 0xe3 // Test if x nan, inf
- add r_ad4 = 0x2f0, r_ad1 // Point to j_hi_table midpoint
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd = cosh_FR_X4, cosh_FR_poly_podd_temp1, cosh_FR_P1
+ nop.i 999
}
-{ .mib
- add r_ad2e = 0x20, r_ad1 // Point to p_table
- nop.i 0
-(p10) br.cond.spnt COSH_DENORM // Branch if x denorm
+
+// Calculate cosh_FR_peven = p_even = x4 *(x4 * (x4 * P_6 + P_4) + P_2)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_poly_peven_temp1 = cosh_FR_X4, cosh_FR_P6, cosh_FR_P4
+ nop.i 999 ;;
}
-;;
-// Common path -- return here from COSH_DENORM if x is unnorm
-COSH_COMMON:
{ .mfi
- ldfe f_smlst_oflow_input = [r_ad2e],16
-(p7) fma.s0 f8 = f1, f1, f0 // Result = 1.0 if x=0
- add r_ad5 = 0x580, r_ad1 // Point to j_lo_table midpoint
+ nop.m 999
+(p0) fma.s1 cosh_FR_poly_peven_temp2 = cosh_FR_X4, cosh_FR_poly_peven_temp1, cosh_FR_P2
+ nop.i 999 ;;
}
-{ .mib
- ldfe f_log2by64_hi = [r_ad1],16
- and r_exp_x = r_exp_mask, r_signexp_x
-(p7) br.ret.spnt b0 // Exit if x=0
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven = cosh_FR_X4, cosh_FR_poly_peven_temp2, f0
+ nop.i 999 ;;
}
-;;
-// Get the A coefficients for COSH_BY_TBL
+// Y_lo = x2*p_odd + p_even
+// Calculate f8 = Y_hi + Y_lo
{ .mfi
- ldfe f_A1 = [r_ad3],16
- fcmp.lt.s1 p8,p9 = f8,f0 // Test for x<0
- cmp.lt p7,p0 = r_exp_x, r_exp_0_25 // Test x < 0.25
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo = cosh_FR_X2, cosh_FR_podd, cosh_FR_peven
+ nop.i 999 ;;
}
+
{ .mfb
- add r_ad2o = 0x30, r_ad2e // Point to p_table odd coeffs
-(p6) fma.s0 f8 = f8,f8,f0 // Result for x nan, inf
-(p6) br.ret.spnt b0 // Exit for x nan, inf
+ nop.m 999
+(p0) fma.s0 f8 = f1, f1, cosh_FR_Y_lo
+(p0) br.ret.sptk b0 ;;
+}
+
+
+L(COSH_BY_TBL):
+
+// Now that we are at TBL; so far all we know is that |x| >= 0.25.
+// The first two steps are the same for TBL and EXP, but if we are HUGE
+// Double Extended
+// Go to HUGE if |x| >= 2^14, 1000d (register-biased) is e = 14 (true)
+// Double
+// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
+// Single
+// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
+// we want to leave now. Go to HUGE if |x| >= 2^14
+// 1000d (register-biased) is e = 14 (true)
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x000000000001000d ;;
}
-;;
-// Calculate X2 = ax*ax for COSH_BY_POLY
{ .mfi
- ldfe f_log2by64_lo = [r_ad1],16
- nop.f 0
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
-{ .mfb
- ldfe f_A2 = [r_ad3],16
- fma.s1 f_X2 = f_NORM_X, f_NORM_X, f0
-(p7) br.cond.spnt COSH_BY_POLY
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.ge.unc p6,p7 = cosh_FR_X,f9
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(COSH_HUGE) ;;
}
-;;
-// Here if |x| >= 0.25
-COSH_BY_TBL:
+// r32 = 1
+// r34 = N-1
+// r35 = N
+// r36 = j
+// r37 = N+1
+
+// TBL can never overflow
+// cosh(x) = cosh(B+R)
+// = cosh(B) cosh(R) + sinh(B) sinh(R)
+// cosh(R) can be approximated by 1 + p_even
+// sinh(R) can be approximated by p_odd
+
// ******************************************************
-// STEP 1 (TBL and EXP) - Argument reduction
+// STEP 1 (TBL and EXP)
// ******************************************************
-// Get the following constants.
-// Inv_log2by64
-// log2by64_hi
-// log2by64_lo
+// Get the following constants.
+// f9 = Inv_log2by64
+// f10 = log2by64_hi
+// f11 = log2by64_lo
+{ .mmi
+(p0) adds r32 = 0x1,r0
+(p0) addl r34 = @ltoff(double_cosh_arg_reduction), gp
+ nop.i 999
+}
+;;
// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
// put them in an exponent.
-// f_spos = 2^(N-1) and f_sneg = 2^(-N-1)
-// 0xffff + (N-1) = 0xffff +N -1
-// 0xffff - (N +1) = 0xffff -N -1
+// cosh_FR_spos = 2^(N-1) and cosh_FR_sneg = 2^(-N-1)
+// r39 = 0xffff + (N-1) = 0xffff +N -1
+// r40 = 0xffff - (N +1) = 0xffff -N -1
+{ .mlx
+ ld8 r34 = [r34]
+(p0) movl r38 = 0x000000000000fffe ;;
+}
-// Calculate M and keep it as integer and floating point.
-// M = round-to-integer(x*Inv_log2by64)
-// f_M = M = truncate(ax/(log2/64))
-// Put the integer representation of M in r_M
-// and the floating point representation of M in f_M
+{ .mmi
+(p0) ldfe cosh_FR_Inv_log2by64 = [r34],16 ;;
+(p0) ldfe cosh_FR_log2by64_hi = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mbb
+(p0) ldfe cosh_FR_log2by64_lo = [r34],16
+ nop.b 999
+ nop.b 999 ;;
+}
+
+// Get the A coefficients
+// f9 = A_1
+// f10 = A_2
+// f11 = A_3
-// Get the remaining A,B coefficients
{ .mmi
- ldfe f_A3 = [r_ad3],16
- nop.m 0
- nop.i 0
+ nop.m 999
+(p0) addl r34 = @ltoff(double_cosh_ab_table), gp
+ nop.i 999
}
;;
-// Use constant (1.100*2^(63-6)) to get rounded M into rightmost significand
-// |x| * 64 * 1/ln2 * 2^(63-6) + 1.1000 * 2^(63+(63-6))
-{ .mfi
- nop.m 0
- fma.s1 f_M_temp = f_ABS_X, f_INV_LN2_2TO63, f_RSHF_2TO57
- mov r_signexp_0_5 = 0x0fffe // signexp of +0.5
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
-// Test for |x| >= overflow limit
+
+// Calculate M and keep it as integer and floating point.
+// M = round-to-integer(x*Inv_log2by64)
+// cosh_FR_M = M = truncate(ax/(log2/64))
+// Put the significand of M in r35
+// and the floating point representation of M in cosh_FR_M
+
{ .mfi
- ldfe f_B1 = [r_ad3],16
- fcmp.ge.s1 p6,p0 = f_ABS_X, f_smlst_oflow_input
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_M = cosh_FR_X, cosh_FR_Inv_log2by64, f0
+ nop.i 999
}
-;;
{ .mfi
- ldfe f_B2 = [r_ad3],16
- nop.f 0
- mov r_exp_32 = 0x10004
+(p0) ldfe cosh_FR_A1 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-// Subtract RSHF constant to get rounded M as a floating point value
-// M_temp * 2^(63-6) - 2^63
-{ .mfb
- ldfe f_B3 = [r_ad3],16
- fms.s1 f_M = f_M_temp, f_2TOM57, f_RSHF
-(p6) br.cond.spnt COSH_HUGE // Branch if result will overflow
+{ .mfi
+ nop.m 999
+(p0) fcvt.fx.s1 cosh_FR_M_temp = cosh_FR_M
+ nop.i 999 ;;
}
-;;
{ .mfi
- getf.sig r_M = f_M_temp
- nop.f 0
- cmp.ge p7,p6 = r_exp_x, r_exp_32 // Test if x >= 32
+ nop.m 999
+(p0) fnorm.s1 cosh_FR_M = cosh_FR_M_temp
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p0) getf.sig r35 = cosh_FR_M_temp
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-// Calculate j. j is the signed extension of the six lsb of M. It
+// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
// has a range of -32 thru 31.
+// r35 = M
+// r36 = j
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) and r36 = 0x3f, r35 ;;
+}
// Calculate R
-// ax - M*log2by64_hi
-// R = (ax - M*log2by64_hi) - M*log2by64_lo
+// f13 = f44 - f12*f10 = x - M*log2by64_hi
+// f14 = f13 - f8*f11 = R = (x - M*log2by64_hi) - M*log2by64_lo
{ .mfi
- nop.m 0
- fnma.s1 f_R_temp = f_M, f_log2by64_hi, f_ABS_X
- and r_j = 0x3f, r_M
+ nop.m 999
+(p0) fnma.s1 cosh_FR_R_temp = cosh_FR_M, cosh_FR_log2by64_hi, cosh_FR_X
+ nop.i 999
}
-;;
-{ .mii
- nop.m 0
- shl r_jshf = r_j, 0x2 // Shift j so can sign extend it
-;;
- sxt1 r_jshf = r_jshf
+{ .mfi
+(p0) ldfe cosh_FR_A2 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-{ .mii
- nop.m 0
- shr r_j = r_jshf, 0x2 // Now j has range -32 to 31
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 cosh_FR_R = cosh_FR_M, cosh_FR_log2by64_lo, cosh_FR_R_temp
+ nop.i 999
}
-;;
+
+// Get the B coefficients
+// f15 = B_1
+// f32 = B_2
+// f33 = B_3
{ .mmi
- shladd r_ad_J_hi = r_j, 4, r_ad4 // pointer to Tjhi
- sub r_Mmj = r_M, r_j // M-j
- sub r_mj = r0, r_j // Form -j
+(p0) ldfe cosh_FR_A3 = [r34],16 ;;
+(p0) ldfe cosh_FR_B1 = [r34],16
+ nop.i 999 ;;
}
-;;
-// The TBL and EXP branches are merged and predicated
-// If TBL, p6 true, 0.25 <= |x| < 32
-// If EXP, p7 true, 32 <= |x| < overflow_limit
-//
-// N = (M-j)/64
-{ .mfi
- ldfe f_Tjhi = [r_ad_J_hi]
- fnma.s1 f_R = f_M, f_log2by64_lo, f_R_temp
- shr r_N = r_Mmj, 0x6 // N = (M-j)/64
+{ .mmi
+(p0) ldfe cosh_FR_B2 = [r34],16 ;;
+(p0) ldfe cosh_FR_B3 = [r34],16
+ nop.i 999 ;;
}
-{ .mfi
- shladd r_ad_mJ_hi = r_mj, 4, r_ad4 // pointer to Tmjhi
- nop.f 0
- shladd r_ad_mJ_lo = r_mj, 2, r_ad5 // pointer to Tmjlo
+
+{ .mii
+ nop.m 999
+(p0) shl r34 = r36, 0x2 ;;
+(p0) sxt1 r37 = r34 ;;
}
-;;
+
+// ******************************************************
+// STEP 2 (TBL and EXP)
+// ******************************************************
+// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// f12 = R*R*R
+// f13 = R*R
+// f14 = R <== from above
{ .mfi
- sub r_2mNm1 = r_signexp_0_5, r_N // signexp 2^(-N-1)
- nop.f 0
- shladd r_ad_J_lo = r_j, 2, r_ad5 // pointer to Tjlo
+ nop.m 999
+(p0) fma.s1 cosh_FR_Rsq = cosh_FR_R, cosh_FR_R, f0
+(p0) shr r36 = r37, 0x2 ;;
}
-{ .mfi
- ldfe f_Tmjhi = [r_ad_mJ_hi]
- nop.f 0
- add r_2Nm1 = r_signexp_0_5, r_N // signexp 2^(N-1)
+
+// r34 = M-j = r35 - r36
+// r35 = N = (M-j)/64
+
+{ .mii
+(p0) sub r34 = r35, r36
+ nop.i 999 ;;
+(p0) shr r35 = r34, 0x6 ;;
}
-;;
-{ .mmf
- ldfs f_Tmjlo = [r_ad_mJ_lo]
- setf.exp f_sneg = r_2mNm1 // Form 2^(-N-1)
- nop.f 0
+{ .mii
+(p0) sub r40 = r38, r35
+(p0) adds r37 = 0x1, r35
+(p0) add r39 = r38, r35 ;;
}
-;;
-{ .mmf
- ldfs f_Tjlo = [r_ad_J_lo]
- setf.exp f_spos = r_2Nm1 // Form 2^(N-1)
- nop.f 0
+// Get the address of the J table, add the offset,
+// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
+// f32 = T(j)_hi
+// f33 = T(j)_lo
+// f34 = T(-j)_hi
+// f35 = T(-j)_lo
+
+{ .mmi
+(p0) sub r34 = r35, r32
+(p0) addl r37 = @ltoff(double_cosh_j_table), gp
+ nop.i 999
}
;;
+{ .mfi
+ ld8 r37 = [r37]
+(p0) fma.s1 cosh_FR_Rcub = cosh_FR_Rsq, cosh_FR_R, f0
+ nop.i 999
+}
+
// ******************************************************
-// STEP 2 (TBL and EXP)
+// STEP 3 Now decide if we need to branch to EXP
// ******************************************************
-// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// Put 32 in f9; p6 true if x < 32
-{ .mmf
- nop.m 0
- nop.m 0
- fma.s1 f_Rsq = f_R, f_R, f0
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010004 ;;
}
-;;
-
// Calculate p_even
-// B_2 + Rsq *B_3
-// B_1 + Rsq * (B_2 + Rsq *B_3)
-// p_even = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
-{ .mfi
- nop.m 0
- fma.s1 f_peven_temp1 = f_Rsq, f_B3, f_B2
- nop.i 0
-}
-// Calculate p_odd
-// A_2 + Rsq *A_3
-// A_1 + Rsq * (A_2 + Rsq *A_3)
-// podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
+// f34 = B_2 + Rsq *B_3
+// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
+// f36 = peven = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+
{ .mfi
- nop.m 0
- fma.s1 f_podd_temp1 = f_Rsq, f_A3, f_A2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven_temp1 = cosh_FR_Rsq, cosh_FR_B3, cosh_FR_B2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 f_Rcub = f_Rsq, f_R, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven_temp2 = cosh_FR_Rsq, cosh_FR_peven_temp1, cosh_FR_B1
+ nop.i 999
}
-;;
-//
-// If TBL,
-// Calculate S_hi and S_lo, and C_hi
-// SC_hi_temp = sneg * Tmjhi
-// S_hi = spos * Tjhi - SC_hi_temp
-// S_hi = spos * Tjhi - (sneg * Tmjhi)
-// C_hi = spos * Tjhi + SC_hi_temp
-// C_hi = spos * Tjhi + (sneg * Tmjhi)
+// Calculate p_odd
+// f34 = A_2 + Rsq *A_3
+// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
+// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
{ .mfi
- nop.m 0
-(p6) fma.s1 f_SC_hi_temp = f_sneg, f_Tmjhi, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd_temp1 = cosh_FR_Rsq, cosh_FR_A3, cosh_FR_A2
+ nop.i 999 ;;
}
-;;
-// If TBL,
-// C_lo_temp3 = sneg * Tmjlo
-// C_lo_temp4 = spos * Tjlo + C_lo_temp3
-// C_lo_temp4 = spos * Tjlo + (sneg * Tmjlo)
{ .mfi
- nop.m 0
-(p6) fma.s1 f_C_lo_temp3 = f_sneg, f_Tmjlo, f0
- nop.i 0
+(p0) setf.exp cosh_FR_N_temp1 = r39
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 f_peven_temp2 = f_Rsq, f_peven_temp1, f_B1
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_peven = cosh_FR_Rsq, cosh_FR_peven_temp2, f0
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- fma.s1 f_podd_temp2 = f_Rsq, f_podd_temp1, f_A1
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd_temp2 = cosh_FR_Rsq, cosh_FR_podd_temp1, cosh_FR_A1
+ nop.i 999 ;;
}
-;;
-// If EXP,
-// Compute 2^(N-1) * Tjhi and 2^(N-1) * Tjlo
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Tjhi_spos = f_Tjhi, f_spos, f0
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Tjlo_spos = f_Tjlo, f_spos, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_podd = cosh_FR_podd_temp2, cosh_FR_Rcub, cosh_FR_R
+ nop.i 999
}
-;;
-{ .mfi
- nop.m 0
-(p6) fma.s1 f_C_hi = f_spos, f_Tjhi, f_SC_hi_temp
- nop.i 0
+// sinh_GR_mj contains the table offset for -j
+// sinh_GR_j contains the table offset for +j
+// p6 is true when j <= 0
+
+{ .mlx
+(p0) setf.exp cosh_FR_N_temp2 = r40
+(p0) movl r40 = 0x0000000000000020 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fms.s1 f_S_hi = f_spos, f_Tjhi, f_SC_hi_temp
- nop.i 0
+(p0) sub GR_mJ = r40, r36
+(p0) fmerge.se cosh_FR_spos = cosh_FR_N_temp1, f1
+(p0) adds GR_J = 0x20, r36 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl GR_mJ = GR_mJ, 5 ;;
+(p0) add AD_mJ = r37, GR_mJ ;;
+}
+
+{ .mmi
+ nop.m 999
+(p0) ldfe cosh_FR_Tmjhi = [AD_mJ],16
+(p0) shl GR_J = GR_J, 5 ;;
}
+
{ .mfi
- nop.m 0
-(p6) fma.s1 f_C_lo_temp4 = f_spos, f_Tjlo, f_C_lo_temp3
- nop.i 0
+(p0) ldfs cosh_FR_Tmjlo = [AD_mJ],16
+(p0) fcmp.lt.unc.s1 p6,p7 = cosh_FR_X,f9
+(p0) add AD_J = r37, GR_J ;;
+}
+
+{ .mmi
+(p0) ldfe cosh_FR_Tjhi = [AD_J],16 ;;
+(p0) ldfs cosh_FR_Tjlo = [AD_J],16
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.se cosh_FR_sneg = cosh_FR_N_temp2, f1
+(p7) br.cond.spnt L(COSH_BY_EXP) ;;
}
-;;
+
+// ******************************************************
+// If NOT branch to EXP
+// ******************************************************
+// Calculate C_hi
+// ******************************************************
+// cosh_FR_C_hi_temp = cosh_FR_sneg * cosh_FR_Tmjhi
+// cosh_FR_C_hi = cosh_FR_spos * cosh_FR_Tjhi + (cosh_FR_sneg * cosh_FR_Tmjhi)
{ .mfi
- nop.m 0
- fma.s1 f_peven = f_Rsq, f_peven_temp2, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_hi_temp = cosh_FR_sneg, cosh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 f_podd = f_podd_temp2, f_Rcub, f_R
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_hi = cosh_FR_spos, cosh_FR_Tjhi, cosh_FR_C_hi_temp
+ nop.i 999
}
-;;
-// If TBL,
-// C_lo_temp1 = spos * Tjhi - C_hi
-// C_lo_temp2 = sneg * Tmjlo + C_lo_temp1
-// C_lo_temp2 = sneg * Tmjlo + (spos * Tjhi - C_hi)
+// ******************************************************
+// Calculate S_hi
+// ******************************************************
+// cosh_FR_S_hi_temp1 = cosh_FR_sneg * cosh_FR_Tmjhi
+// cosh_FR_S_hi = cosh_FR_spos * cosh_FR_Tjhi - cosh_FR_C_hi_temp1
{ .mfi
- nop.m 0
-(p6) fms.s1 f_C_lo_temp1 = f_spos, f_Tjhi, f_C_hi
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_S_hi_temp1 = cosh_FR_sneg, cosh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
+
+// ******************************************************
+// Calculate C_lo
+// ******************************************************
+// cosh_FR_C_lo_temp1 = cosh_FR_spos * cosh_FR_Tjhi - cosh_FR_C_hi
+// cosh_FR_C_lo_temp2 = cosh_FR_sneg * cosh_FR_Tmjlo + (cosh_FR_spos * cosh_FR_Tjhi - cosh_FR_C_hi)
+// cosh_FR_C_lo_temp1 = cosh_FR_sneg * cosh_FR_Tmjlo
+// cosh_FR_C_lo_temp3 = cosh_FR_spos * cosh_FR_Tjlo + (cosh_FR_sneg * cosh_FR_Tmjlo)
+// cosh_FR_C_lo = cosh_FR_C_lo_temp3 + cosh_FR_C_lo_temp2
{ .mfi
- nop.m 0
-(p6) fma.s1 f_C_lo_temp2 = f_sneg, f_Tmjhi, f_C_lo_temp1
- nop.i 0
+ nop.m 999
+(p0) fms.s1 cosh_FR_C_lo_temp1 = cosh_FR_spos, cosh_FR_Tjhi, cosh_FR_C_hi
+ nop.i 999
}
-;;
-// If EXP,
-// Y_hi = 2^(N-1) * Tjhi
-// Y_lo = 2^(N-1) * Tjhi * (p_odd + p_even) + 2^(N-1) * Tjlo
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Y_lo_temp = f_peven, f1, f_podd
- nop.i 0
+ nop.m 999
+(p0) fms.s1 cosh_FR_S_hi = cosh_FR_spos, cosh_FR_Tjhi, cosh_FR_S_hi_temp1
+ nop.i 999 ;;
}
-;;
-// If TBL,
-// C_lo = C_lo_temp4 + C_lo_temp2
{ .mfi
- nop.m 0
-(p6) fma.s1 f_C_lo = f_C_lo_temp4, f1, f_C_lo_temp2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo_temp2 = cosh_FR_sneg, cosh_FR_Tmjhi, cosh_FR_C_lo_temp1
+ nop.i 999
}
-;;
-// If TBL,
-// Y_hi = C_hi
-// Y_lo = S_hi*p_odd + (C_hi*p_even + C_lo)
{ .mfi
- nop.m 0
-(p6) fma.s1 f_Y_lo_temp = f_C_hi, f_peven, f_C_lo
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo_temp1 = cosh_FR_sneg, cosh_FR_Tmjlo, f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Y_lo = f_Tjhi_spos, f_Y_lo_temp, f_Tjlo_spos
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo_temp3 = cosh_FR_spos, cosh_FR_Tjlo, cosh_FR_C_lo_temp1
+ nop.i 999 ;;
}
-;;
-// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fmpy.s0 f_tmp = f_B2, f_B2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_C_lo = cosh_FR_C_lo_temp3, f1, cosh_FR_C_lo_temp2
+ nop.i 999 ;;
}
+
+// ******************************************************
+// cosh_FR_Y_lo_temp = cosh_FR_C_hi * cosh_FR_peven + cosh_FR_C_lo
+// cosh_FR_Y_lo = cosh_FR_S_hi * cosh_FR_podd + cosh_FR_Y_lo_temp
+// cosh_FR_COSH = Y_hi + Y_lo
+
{ .mfi
- nop.m 0
-(p6) fma.s1 f_Y_lo = f_S_hi, f_podd, f_Y_lo_temp
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo_temp = cosh_FR_C_hi, cosh_FR_peven, cosh_FR_C_lo
+ nop.i 999 ;;
}
-;;
-// f8 = answer = Y_hi + Y_lo
{ .mfi
- nop.m 0
-(p7) fma.s0 f8 = f_Y_lo, f1, f_Tjhi_spos
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo = cosh_FR_S_hi, cosh_FR_podd, cosh_FR_Y_lo_temp
+ nop.i 999 ;;
}
-;;
-// f8 = answer = Y_hi + Y_lo
{ .mfb
- nop.m 0
-(p6) fma.s0 f8 = f_Y_lo, f1, f_C_hi
- br.ret.sptk b0 // Exit for COSH_BY_TBL and COSH_BY_EXP
+ nop.m 999
+(p0) fma.s0 f8 = cosh_FR_C_hi, f1, cosh_FR_Y_lo
+(p0) br.ret.sptk b0 ;;
}
-;;
+L(COSH_BY_EXP):
-// Here if 0 < |x| < 0.25
-COSH_BY_POLY:
-{ .mmf
- ldfe f_P6 = [r_ad2e],16
- ldfe f_P5 = [r_ad2o],16
- nop.f 0
-}
-;;
+// When p7 is true, we know that an overflow is not going to happen
+// When p7 is false, we must check for possible overflow
+// p7 is the over_SAFE flag
+// f44 = Scale * (Y_hi + Y_lo)
+// = cosh_FR_spos * (cosh_FR_Tjhi + cosh_FR_Y_lo)
-{ .mmi
- ldfe f_P4 = [r_ad2e],16
- ldfe f_P3 = [r_ad2o],16
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo_temp = cosh_FR_peven, f1, cosh_FR_podd
+ nop.i 999
}
-;;
-{ .mmi
- ldfe f_P2 = [r_ad2e],16
- ldfe f_P1 = [r_ad2o],16
- nop.i 0
+// Now we are in EXP. This is the only path where an overflow is possible
+// but not for certain. So this is the only path where over_SAFE has any use.
+// r34 still has N-1
+// There is a danger of double-extended overflow if N-1 > 0x3ffe = 16382
+// There is a danger of double overflow if N-1 > 0x3fe = 1022
+// There is a danger of single overflow if N-1 > 0x7e = 126
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000003ffe ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 f_X3 = f_NORM_X, f_X2, f0
- nop.i 0
+(p0) cmp.gt.unc p0,p7 = r34, r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 f_X4 = f_X2, f_X2, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_Y_lo = cosh_FR_Tjhi, cosh_FR_Y_lo_temp, cosh_FR_Tjlo
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 f_poly65 = f_X2, f_P6, f_P5
- nop.i 0
+ nop.m 999
+(p0) fma.s1 cosh_FR_COSH_temp = cosh_FR_Y_lo, f1, cosh_FR_Tjhi
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 f_poly43 = f_X2, f_P4, f_P3
- nop.i 0
+ nop.m 999
+(p0) fma.s0 f44 = cosh_FR_spos, cosh_FR_COSH_temp, f0
+ nop.i 999 ;;
}
-;;
+// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fma.s1 f_poly21 = f_X2, f_P2, f_P1
- nop.i 0
+ nop.m 999
+(p7) fmpy.s0 cosh_FR_tmp = cosh_FR_all_ones, cosh_FR_all_ones
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 f_poly6543 = f_X4, f_poly65, f_poly43
- nop.i 0
+// If over_SAFE is set, return
+{ .mfb
+ nop.m 999
+(p7) fmerge.s f8 = f44,f44
+(p7) br.ret.sptk b0 ;;
}
-;;
+
+// Else see if we overflowed
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// If WRE is set then an overflow will not occur in EXP.
+// The input value that would cause a register (WRE) value to overflow is about 2^15
+// and this input would go into the HUGE path.
+// Answer with WRE is in f43.
{ .mfi
- nop.m 0
- fma.s1 f_poly6to1 = f_X4, f_poly6543, f_poly21
- nop.i 0
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
}
-;;
-// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fmpy.s0 f_tmp = f_P6, f_P6
- nop.i 0
+ nop.m 999
+(p0) fma.s2 f43 = cosh_FR_spos, cosh_FR_COSH_temp, f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fma.s0 f8 = f_poly6to1, f_X2, f1
- br.ret.sptk b0 // Exit COSH_BY_POLY
-}
-;;
+// 103FF => 103FF -FFFF = 400(true)
+// 400 + 3FF = 7FF, which is 1 more than the exponent of the largest
+// double (7FE). So 0 103FF 8000000000000000 is one ulp more than
+// largest double in register bias
+
+// 13FFF => 13FFF -FFFF = 4000(true)
+
+// Now set p8 if the answer with WRE is greater than or equal this value
+// Also set p9 if the answer with WRE is less than or equal to negative this value
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000013fff ;;
+}
-// Here if x denorm or unorm
-COSH_DENORM:
-// Determine if x really a denorm and not a unorm
{ .mmf
- getf.exp r_signexp_x = f_NORM_X
- mov r_exp_denorm = 0x0c001 // Real denorms have exp < this
- fmerge.s f_ABS_X = f0, f_NORM_X
+ nop.m 999
+(p0) setf.exp f41 = r32
+(p0) fsetc.s2 0x7F,0x40 ;;
}
-;;
{ .mfi
- nop.m 0
- fcmp.eq.s0 p10,p0 = f8, f0 // Set denorm flag
- nop.i 0
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
+ nop.i 999
}
-;;
-// Set p8 if really a denorm
-{ .mmi
- and r_exp_x = r_exp_mask, r_signexp_x
-;;
- cmp.lt p8,p9 = r_exp_x, r_exp_denorm
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns f42 = f41, f41
+ nop.i 999 ;;
}
-;;
-// Identify denormal operands.
-{ .mfb
- nop.m 0
-(p8) fma.s0 f8 = f8,f8,f1 // If x denorm, result=1+x^2
-(p9) br.cond.sptk COSH_COMMON // Return to main path if x unorm
+// The error tag for overflow is 63
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p8) mov GR_Parameter_TAG = 63 ;;
}
-;;
{ .mfb
- nop.m 0
- nop.f 0
- br.ret.sptk b0 // Exit if x denorm
+ nop.m 999
+(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
+(p8) br.cond.spnt __libm_error_region ;;
}
-;;
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov GR_Parameter_TAG = 63
+}
-// Here if |x| >= overflow limit
-COSH_HUGE:
-// for COSH_HUGE, put 24000 in exponent; take sign from input
-{ .mmi
- mov r_exp_huge = 0x15dbf
-;;
- setf.exp f_huge = r_exp_huge
- nop.i 0
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt __libm_error_region ;;
}
-;;
+// Dummy multiply to generate inexact
{ .mfi
- alloc r32 = ar.pfs,0,5,4,0
- fma.s1 f_signed_hi_lo = f_huge, f1, f1
- nop.i 0
+ nop.m 999
+(p0) fmpy.s0 cosh_FR_tmp = cosh_FR_all_ones, cosh_FR_all_ones
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.s f8 = f44,f44
+(p0) br.ret.sptk b0 ;;
+}
+
+
+// for COSH_HUGE, put 24000 in exponent; take sign from input; add 1
+// SAFE: SAFE is always 0 for HUGE
+
+L(COSH_HUGE):
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000015dbf ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s0 f_pre_result = f_signed_hi_lo, f_huge, f0
- mov GR_Parameter_TAG = 63
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-GLOBAL_IEEE754_END(coshl)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 cosh_FR_hi_lo = f1, f9, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fma.s0 f44 = f9, cosh_FR_hi_lo, f0
+(p0) mov GR_Parameter_TAG = 63
+}
+.endp coshl
+ASM_SIZE_DIRECTIVE(coshl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
-
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
{ .mib
- stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [GR_Parameter_Y] = f_pre_result // STORE Parameter 3 on stack
+ stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_exp.S b/sysdeps/ia64/fpu/e_exp.S
index fcc247fb1a..db02336ecf 100644
--- a/sysdeps/ia64/fpu/e_exp.S
+++ b/sysdeps/ia64/fpu/e_exp.S
@@ -1,10 +1,10 @@
.file "exp.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,26 +20,26 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 2/02/00 Initial version
+// 2/02/00 Initial version
// 3/07/00 exp(inf) = inf but now does NOT call error support
// exp(-inf) = 0 but now does NOT call error support
// 4/04/00 Unwind support added
@@ -48,12 +48,6 @@
// 11/30/00 Reworked to shorten main path, widen main path to include all
// args in normal range, and add quick exit for 0, nan, inf.
// 12/05/00 Loaded constants earlier with setf to save 2 cycles.
-// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/07/02 Force inexact flag
-// 11/15/02 Split underflow path into zero/nonzero; eliminated fma in main path
-// 05/30/03 Set inexact flag on unmasked overflow/underflow
-// 03/31/05 Reformatted delimiters between data tables
// API
//==============================================================
@@ -73,167 +67,187 @@
// Construct 2^M
// Get 2^(index_1/128) from table_1;
// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by 5th order polynomial
+// Calculate exp(r) by series
// r = x - n (log2/128)_high
// delta = - n (log2/128)_low
// Calculate exp(delta) as 1 + delta
-// Special values
+// Special values
//==============================================================
// exp(+0) = 1.0
// exp(-0) = 1.0
-// exp(+qnan) = +qnan
-// exp(-qnan) = -qnan
-// exp(+snan) = +qnan
-// exp(-snan) = -qnan
+// exp(+qnan) = +qnan
+// exp(-qnan) = -qnan
+// exp(+snan) = +qnan
+// exp(-snan) = -qnan
-// exp(-inf) = +0
+// exp(-inf) = +0
// exp(+inf) = +inf
-// Overflow and Underflow
+// Overfow and Underfow
//=======================
-// exp(x) = largest double normal when
-// x = 709.7827 = 0x40862e42fefa39ef
+// exp(-x) = smallest double normal when
+// x = -708.396 = c086232bdd7abcd2
-// exp(x) = smallest double normal when
-// x = -708.396 = 0xc086232bdd7abcd2
+// exp(x) = largest double normal when
+// x = 709.7827 = 40862e42fefa39ef
-// exp(x) = largest round-to-nearest single zero when
-// x = -745.1332 = 0xc0874910d52d3052
// Registers used
//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6 -> f15, f32 -> f49
+// Floating Point registers used:
+// f8, input
+// f9 -> f15, f32 -> f60
-// General registers used:
-// r14 -> r40
+// General registers used:
+// r32 -> r60
// Predicate registers used:
// p6 -> p15
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
-rRshf = r14
-rAD_TB1 = r15
-rAD_T1 = r15
-rAD_TB2 = r16
-rAD_T2 = r16
-rAD_P = r17
-rN = r18
-rIndex_1 = r19
-rIndex_2_16 = r20
-rM = r21
-rBiased_M = r21
-rIndex_1_16 = r21
-rSig_inv_ln2 = r22
-rExp_bias = r23
-rExp_mask = r24
-rTmp = r25
-rRshf_2to56 = r26
-rGt_ln = r27
-rExp_2tom56 = r28
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-fRSHF_2TO56 = f6
-fINV_LN2_2TO63 = f7
-fW_2TO56_RSH = f9
-f2TOM56 = f11
-fP5 = f12
-fP54 = f12
-fP5432 = f12
-fP4 = f13
-fP3 = f14
-fP32 = f14
-fP2 = f15
-fP = f15
-
-fLn2_by_128_hi = f33
-fLn2_by_128_lo = f34
-
-fRSHF = f35
-fNfloat = f36
-fNormX = f37
-fR = f38
-fF = f39
-
-fRsq = f40
-f2M = f41
-fS1 = f42
-fT1 = f42
-fS2 = f43
-fT2 = f43
-fS = f43
-fWre_urm_f8 = f44
-fFtz_urm_f8 = f44
-
-fMIN_DBL_OFLOW_ARG = f45
-fMAX_DBL_ZERO_ARG = f46
-fMAX_DBL_NORM_ARG = f47
-fMIN_DBL_NORM_ARG = f48
-fGt_pln = f49
-fTmp = f49
+exp_GR_rshf = r33
+EXP_AD_TB1 = r34
+EXP_AD_TB2 = r35
+EXP_AD_P = r36
+
+exp_GR_N = r37
+exp_GR_index_1 = r38
+exp_GR_index_2_16 = r39
+
+exp_GR_biased_M = r40
+exp_GR_index_1_16 = r41
+EXP_AD_T1 = r42
+EXP_AD_T2 = r43
+exp_GR_sig_inv_ln2 = r44
+
+exp_GR_17ones = r45
+exp_GR_one = r46
+exp_TB1_size = r47
+exp_TB2_size = r48
+exp_GR_rshf_2to56 = r49
+
+exp_GR_gt_ln = r50
+exp_GR_exp_2tom56 = r51
+
+exp_GR_17ones_m1 = r52
+
+GR_SAVE_B0 = r53
+GR_SAVE_PFS = r54
+GR_SAVE_GP = r55
+GR_SAVE_SP = r56
+
+GR_Parameter_X = r57
+GR_Parameter_Y = r58
+GR_Parameter_RESULT = r59
+GR_Parameter_TAG = r60
+
+
+FR_X = f10
+FR_Y = f1
+FR_RESULT = f8
+
+EXP_RSHF_2TO56 = f6
+EXP_INV_LN2_2TO63 = f7
+EXP_W_2TO56_RSH = f9
+EXP_2TOM56 = f11
+exp_P4 = f12
+exp_P3 = f13
+exp_P2 = f14
+exp_P1 = f15
+
+exp_ln2_by_128_hi = f33
+exp_ln2_by_128_lo = f34
+
+EXP_RSHF = f35
+EXP_Nfloat = f36
+exp_W = f37
+exp_r = f38
+exp_f = f39
+
+exp_rsq = f40
+exp_rcube = f41
+
+EXP_2M = f42
+exp_S1 = f43
+exp_T1 = f44
+
+EXP_MIN_DBL_OFLOW_ARG = f45
+EXP_MAX_DBL_ZERO_ARG = f46
+EXP_MAX_DBL_NORM_ARG = f47
+EXP_MAX_DBL_UFLOW_ARG = f48
+EXP_MIN_DBL_NORM_ARG = f49
+exp_rP4pP3 = f50
+exp_P_lo = f51
+exp_P_hi = f52
+exp_P = f53
+exp_S = f54
+
+EXP_NORM_f8 = f56
+
+exp_wre_urm_f8 = f57
+exp_ftz_urm_f8 = f57
+
+exp_gt_pln = f58
+
+exp_S2 = f59
+exp_T2 = f60
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
+// 3fff b8aa 3b29 5c17 f0bc
// For speed the significand will be loaded directly with a movl and setf.sig
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
// computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w. This is also
+// The constant 128/ln(2) is needed for the computation of w. This is also
// obtained by scaling the computations.
//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
+// Two shifting constants are loaded directly with movl and setf.d.
+// 1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7)
// This constant is added to x*1/ln2 to shift the integer part of
// x*128/ln2 into the rightmost bits of the significand.
-// The result of this fma is fW_2TO56_RSH.
-// 2. fRSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
+// The result of this fma is EXP_W_2TO56_RSH.
+// 2. EXP_RSHF = 1.1000..00 * 2^(63)
+// This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
// the integer part of w, n, as a floating-point number.
-// The result of this fms is fNfloat.
+// The result of this fms is EXP_Nfloat.
-LOCAL_OBJECT_START(exp_table_1)
-data8 0x40862e42fefa39f0 // smallest dbl overflow arg, +709.7827
-data8 0xc0874910d52d3052 // largest arg for rnd-to-nearest 0 result, -745.133
-data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result, +709.7827
-data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result, -708.396
+exp_table_1:
+ASM_TYPE_DIRECTIVE(exp_table_1,@object)
+data8 0x40862e42fefa39f0 // smallest dbl overflow arg
+data8 0xc0874c0000000000 // approx largest arg for zero result
+data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
+data8 0xc086232bdd7abcd3 // largest dbl underflow arg
+data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result
+data8 0x0 // pad
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
+
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
-//
+
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
@@ -250,11 +264,12 @@ data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
+ASM_SIZE_DIRECTIVE(exp_table_1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_table_2)
+exp_table_2:
+ASM_TYPE_DIRECTIVE(exp_table_2,@object)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
@@ -263,356 +278,413 @@ data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
+ASM_SIZE_DIRECTIVE (exp_table_2)
+
+exp_p_table:
+ASM_TYPE_DIRECTIVE(exp_p_table,@object)
+data8 0x3f8111116da21757 //P_4
+data8 0x3fa55555d787761c //P_3
+data8 0x3fc5555555555414 //P_2
+data8 0x3fdffffffffffd6a //P_1
+ASM_SIZE_DIRECTIVE(exp_p_table)
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P5
-data8 0x3fa55555d787761c //P4
-data8 0x3fc5555555555414 //P3
-data8 0x3fdffffffffffd6a //P2
-LOCAL_OBJECT_END(exp_p_table)
+.align 32
+.global exp#
.section .text
-GLOBAL_IEEE754_ENTRY(exp)
+.proc exp#
+.align 32
+exp:
+#ifdef _LIBC
+.global __ieee754_exp#
+__ieee754_exp:
+#endif
{ .mlx
- nop.m 0
- movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
+ alloc r32=ar.pfs,1,24,4,0
+ movl exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
}
{ .mlx
- addl rAD_TB1 = @ltoff(exp_table_1), gp
- movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
+ addl EXP_AD_TB1 = @ltoff(exp_table_1), gp
+ movl exp_GR_rshf_2to56 = 0x4768000000000000 ;; // 1.10000 2^(63+56)
}
;;
+// We do this fnorm right at the beginning to take any enabled
+// faults and to normalize any input unnormals so that SWA is not taken.
{ .mfi
- ld8 rAD_TB1 = [rAD_TB1]
- fclass.m p8,p0 = f8,0x07 // Test for x=0
- mov rExp_mask = 0x1ffff
+ ld8 EXP_AD_TB1 = [EXP_AD_TB1]
+ fclass.m p8,p0 = f8,0x07 // Test for x=0
+ mov exp_GR_17ones = 0x1FFFF
}
{ .mfi
- mov rExp_bias = 0xffff
- fnorm.s1 fNormX = f8
- mov rExp_2tom56 = 0xffff-56
+ mov exp_TB1_size = 0x100
+ fnorm EXP_NORM_f8 = f8
+ mov exp_GR_exp_2tom56 = 0xffff-56
}
;;
// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
+// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
-{ .mfi
- setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
- fclass.m p9,p0 = f8,0x22 // Test for x=-inf
- nop.i 0
-}
-{ .mlx
- setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
- movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
+{ .mmf
+ setf.sig EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // form 1/ln2 * 2^63
+ setf.d EXP_RSHF_2TO56 = exp_GR_rshf_2to56 // Form const 1.100 * 2^(63+56)
+ fclass.m p9,p0 = f8,0x22 // Test for x=-inf
}
;;
-{ .mfi
- ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_ZERO_ARG = [rAD_TB1],16
- fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, nan, NaT
- nop.i 0
+{ .mlx
+ setf.exp EXP_2TOM56 = exp_GR_exp_2tom56 // form 2^-56 for scaling Nfloat
+ movl exp_GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
}
{ .mfb
- setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
-(p9) fma.d.s0 f8 = f0,f0,f0 // quick exit for x=-inf
-(p9) br.ret.spnt b0
-}
+ mov exp_TB2_size = 0x80
+(p8) fma.d f8 = f1,f1,f0 // quick exit for x=0
+(p8) br.ret.spnt b0
;;
+}
{ .mfi
- ldfpd fMAX_DBL_NORM_ARG, fMIN_DBL_NORM_ARG = [rAD_TB1],16
- nop.f 0
- nop.i 0
+ ldfpd EXP_MIN_DBL_OFLOW_ARG, EXP_MAX_DBL_ZERO_ARG = [EXP_AD_TB1],16
+ fclass.m p10,p0 = f8,0x21 // Test for x=+inf
+ nop.i 999
}
{ .mfb
- setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
-(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0
-(p8) br.ret.spnt b0
+ nop.m 999
+(p9) fma.d f8 = f0,f0,f0 // quick exit for x=-inf
+(p9) br.ret.spnt b0
+;;
}
+
+{ .mmf
+ ldfpd EXP_MAX_DBL_NORM_ARG, EXP_MAX_DBL_UFLOW_ARG = [EXP_AD_TB1],16
+ setf.d EXP_RSHF = exp_GR_rshf // Form right shift const 1.100 * 2^63
+ fclass.m p11,p0 = f8,0xc3 // Test for x=nan
;;
+}
{ .mfb
- ldfe fLn2_by_128_hi = [rAD_TB1],16
-(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=+inf, nan, NaT
-(p10) br.ret.spnt b0 // quick exit for x=+inf, nan, NaT
-}
+ ldfd EXP_MIN_DBL_NORM_ARG = [EXP_AD_TB1],16
+ nop.f 999
+(p10) br.ret.spnt b0 // quick exit for x=+inf
;;
+}
{ .mfi
- ldfe fLn2_by_128_lo = [rAD_TB1],16
- fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
- nop.i 0
+ ldfe exp_ln2_by_128_hi = [EXP_AD_TB1],16
+ nop.f 999
+ nop.i 999
+;;
}
+
+
+{ .mfb
+ ldfe exp_ln2_by_128_lo = [EXP_AD_TB1],16
+(p11) fmerge.s f8 = EXP_NORM_f8, EXP_NORM_f8
+(p11) br.ret.spnt b0 // quick exit for x=nan
;;
+}
-// After that last load, rAD_TB1 points to the beginning of table 1
+// After that last load, EXP_AD_TB1 points to the beginning of table 1
// W = X * Inv_log2_by_128
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
{ .mfi
- nop.m 0
- fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
- nop.i 0
-}
+ nop.m 999
+ fma.s1 EXP_W_2TO56_RSH = EXP_NORM_f8, EXP_INV_LN2_2TO63, EXP_RSHF_2TO56
+ nop.i 999
;;
+}
+
// Divide arguments into the following categories:
-// Certain Underflow p11 - -inf < x <= MAX_DBL_ZERO_ARG
-// Possible Underflow p13 - MAX_DBL_ZERO_ARG < x < MIN_DBL_NORM_ARG
+// Certain Underflow/zero p11 - -inf < x <= MAX_DBL_ZERO_ARG
+// Certain Underflow p12 - MAX_DBL_ZERO_ARG < x <= MAX_DBL_UFLOW_ARG
+// Possible Underflow p13 - MAX_DBL_UFLOW_ARG < x < MIN_DBL_NORM_ARG
// Certain Safe - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG
// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
//
-// If the input is really a double arg, then there will never be
-// "Possible Overflow" arguments.
+// If the input is really a double arg, then there will never be "Possible
+// Underflow" or "Possible Overflow" arguments.
//
{ .mfi
- add rAD_TB2 = 0x100, rAD_TB1
- fcmp.ge.s1 p15,p0 = fNormX,fMIN_DBL_OFLOW_ARG
- nop.i 0
+ add EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
+ fcmp.ge.s1 p15,p14 = EXP_NORM_f8,EXP_MIN_DBL_OFLOW_ARG
+ nop.i 999
+;;
}
-;;
{ .mfi
- add rAD_P = 0x80, rAD_TB2
- fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_ZERO_ARG
- nop.i 0
-}
+ add EXP_AD_P = exp_TB2_size, EXP_AD_TB2
+ fcmp.le.s1 p11,p12 = EXP_NORM_f8,EXP_MAX_DBL_ZERO_ARG
+ nop.i 999
;;
+}
{ .mfb
- ldfpd fP5, fP4 = [rAD_P] ,16
- fcmp.gt.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG
-(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW
-}
+ ldfpd exp_P4, exp_P3 = [EXP_AD_P] ,16
+(p14) fcmp.gt.unc.s1 p14,p0 = EXP_NORM_f8,EXP_MAX_DBL_NORM_ARG
+(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW)
;;
+}
+
-// Nfloat = round_int(W)
-// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
+// Nfloat = round_int(W)
+// The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into rN.
+// That twos complement number (called N) is put into exp_GR_N.
-// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
-// Thus, fNfloat contains the floating point version of N
+// Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
+// before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
+// Thus, EXP_Nfloat contains the floating point version of N
-{ .mfb
- ldfpd fP3, fP2 = [rAD_P]
- fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
-(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW
+
+{ .mfi
+ nop.m 999
+(p12) fcmp.le.unc p12,p0 = EXP_NORM_f8,EXP_MAX_DBL_UFLOW_ARG
+ nop.i 999
}
+{ .mfb
+ ldfpd exp_P2, exp_P1 = [EXP_AD_P]
+ fms.s1 EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
+(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
;;
+}
{ .mfi
- getf.sig rN = fW_2TO56_RSH
- nop.f 0
- nop.i 0
-}
+ getf.sig exp_GR_N = EXP_W_2TO56_RSH
+(p13) fcmp.lt.unc p13,p0 = EXP_NORM_f8,EXP_MIN_DBL_NORM_ARG
+ nop.i 999
;;
+}
-// rIndex_1 has index_1
-// rIndex_2_16 has index_2 * 16
-// rBiased_M has M
-// rIndex_1_16 has index_1 * 16
-// rM has true M
-// r = x - Nfloat * ln2_by_128_hi
-// f = 1 - Nfloat * ln2_by_128_lo
+// exp_GR_index_1 has index_1
+// exp_GR_index_2_16 has index_2 * 16
+// exp_GR_biased_M has M
+// exp_GR_index_1_16 has index_1 * 16
+
+// r2 has true M
{ .mfi
- and rIndex_1 = 0x0f, rN
- fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
- shr rM = rN, 0x7
+ and exp_GR_index_1 = 0x0f, exp_GR_N
+ fnma.s1 exp_r = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
+ shr r2 = exp_GR_N, 0x7
}
{ .mfi
- and rIndex_2_16 = 0x70, rN
- fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
- nop.i 0
+ and exp_GR_index_2_16 = 0x70, exp_GR_N
+ fnma.s1 exp_f = EXP_Nfloat, exp_ln2_by_128_lo, f1
+ nop.i 999
+;;
}
-;;
-// rAD_T1 has address of T1
-// rAD_T2 has address if T2
+
+// EXP_AD_T1 has address of T1
+// EXP_AD_T2 has address if T2
{ .mmi
- add rBiased_M = rExp_bias, rM
- add rAD_T2 = rAD_TB2, rIndex_2_16
- shladd rAD_T1 = rIndex_1, 4, rAD_TB1
+ addl exp_GR_biased_M = 0xffff, r2
+ add EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
+ shladd EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
+;;
}
-;;
+
// Create Scale = 2^M
+// r = x - Nfloat * ln2_by_128_hi
+// f = 1 - Nfloat * ln2_by_128_lo
+
{ .mmi
- setf.exp f2M = rBiased_M
- ldfe fT2 = [rAD_T2]
- nop.i 0
-}
+ setf.exp EXP_2M = exp_GR_biased_M
+ ldfe exp_T2 = [EXP_AD_T2]
+ nop.i 999
;;
+}
// Load T1 and T2
{ .mfi
- ldfe fT1 = [rAD_T1]
- fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
- nop.i 0
-}
+ ldfe exp_T1 = [EXP_AD_T1]
+ nop.f 999
+ nop.i 999
;;
+}
+
{ .mfi
- nop.m 0
- fma.s1 fRsq = fR, fR, f0
- nop.i 0
+ nop.m 999
+ fma.s1 exp_rsq = exp_r, exp_r, f0
+ nop.i 999
}
{ .mfi
- nop.m 0
- fma.s1 fP54 = fR, fP5, fP4
- nop.i 0
-}
+ nop.m 999
+ fma.s1 exp_rP4pP3 = exp_r, exp_P4, exp_P3
+ nop.i 999
;;
+}
+
+
{ .mfi
- nop.m 0
- fcmp.lt.s1 p13,p0 = fNormX,fMIN_DBL_NORM_ARG
- nop.i 0
+ nop.m 999
+ fma.s1 exp_rcube = exp_r, exp_rsq, f0
+ nop.i 999
}
{ .mfi
- nop.m 0
- fma.s1 fP32 = fR, fP3, fP2
- nop.i 0
-}
+ nop.m 999
+ fma.s1 exp_P_lo = exp_r, exp_rP4pP3, exp_P2
+ nop.i 999
;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP5432 = fRsq, fP54, fP32
- nop.i 0
}
-;;
+
{ .mfi
- nop.m 0
- fma.s1 fS1 = f2M,fT1,f0
- nop.i 0
+ nop.m 999
+ fma.s1 exp_P_hi = exp_rsq, exp_P1, exp_r
+ nop.i 999
}
{ .mfi
- nop.m 0
- fma.s1 fS2 = fF,fT2,f0
- nop.i 0
-}
+ nop.m 999
+ fma.s1 exp_S2 = exp_f,exp_T2,f0
+ nop.i 999
;;
+}
{ .mfi
- nop.m 0
- fma.s1 fP = fRsq, fP5432, fR
- nop.i 0
+ nop.m 999
+ fma.s1 exp_S1 = EXP_2M,exp_T1,f0
+ nop.i 999
+;;
}
+
+
{ .mfi
- nop.m 0
- fma.s1 fS = fS1,fS2,f0
- nop.i 0
-}
+ nop.m 999
+ fma.s1 exp_P = exp_rcube, exp_P_lo, exp_P_hi
+ nop.i 999
;;
+}
-{ .mbb
- nop.m 0
-(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW
-(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW
+{ .mfi
+ nop.m 999
+ fma.s1 exp_S = exp_S1,exp_S2,f0
+ nop.i 999
+;;
}
+
+{ .bbb
+(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
+(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
+(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
;;
+}
+
{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS
- br.ret.sptk b0 // Normal path exit
+ nop.m 999
+ fma.d f8 = exp_S, exp_P, exp_S
+ br.ret.sptk b0 ;; // Normal path exit
}
-;;
-EXP_POSSIBLE_OVERFLOW:
+L(EXP_POSSIBLE_OVERFLOW):
-// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
-// This cannot happen if input is a double, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+// We got an answer. EXP_MAX_DBL_NORM_ARG < x < EXP_MIN_DBL_OFLOW_ARG
+// overflow is a possibility, not a certainty
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest double, then we have
-// overflow
+{ .mfi
+ nop.m 999
+ fsetc.s2 0x7F,0x42
+ nop.i 999 ;;
+}
{ .mfi
- mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+ nop.m 999
+ fma.d.s2 exp_wre_urm_f8 = exp_S, exp_P, exp_S
+ nop.i 999 ;;
}
-;;
+
+// We define an overflow when the answer with
+// WRE set
+// user-defined rounding mode
+// is ldn +1
+
+// Is the exponent 1 more than the largest double?
+// If so, go to ERROR RETURN, else get the answer and
+// leave.
+
+// Largest double is 7FE (biased double)
+// 7FE - 3FF + FFFF = 103FE
+// Create + largest_double_plus_ulp
+// Create - largest_double_plus_ulp
+// Calculate answer with WRE set.
+
+// Cases when answer is ldn+1 are as follows:
+// ldn ldn+1
+// --+----------|----------+------------
+// |
+// +inf +inf -inf
+// RN RN
+// RZ
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
- fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
- nop.i 0
+ nop.m 999
+ fsetc.s2 0x7F,0x40
+ mov exp_GR_gt_ln = 0x103ff ;;
}
-;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ setf.exp exp_gt_pln = exp_GR_gt_ln
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+ fcmp.ge.unc.s1 p6, p0 = exp_wre_urm_f8, exp_gt_pln
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow
+ nop.m 999
+ nop.f 999
+(p6) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;; // Branch if really overflow
}
-;;
{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 999
+ fma.d f8 = exp_S, exp_P, exp_S
+ br.ret.sptk b0 ;; // Exit if really no overflow
}
-;;
-EXP_CERTAIN_OVERFLOW:
+L(EXP_CERTAIN_OVERFLOW):
{ .mmi
- sub rTmp = rExp_mask, r0, 1
-;;
- setf.exp fTmp = rTmp
- nop.i 0
+ sub exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
+ setf.exp f9 = exp_GR_17ones_m1
+ nop.i 999 ;;
}
-;;
{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+ fmerge.s FR_X = f8,f8
+ nop.i 999
}
{ .mfb
- mov GR_Parameter_TAG = 14
- fma.d.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ mov GR_Parameter_TAG = 14
+ fma.d FR_RESULT = f9, f9, f0 // Set I,O and +INF result
+ br.cond.sptk __libm_error_region ;;
}
-;;
-EXP_POSSIBLE_UNDERFLOW:
+L(EXP_POSSIBLE_UNDERFLOW):
-// Here if fMAX_DBL_ZERO_ARG < x < fMIN_DBL_NORM_ARG
-// Underflow is a possibility, not a certainty
+// We got an answer. EXP_MAX_DBL_UFLOW_ARG < x < EXP_MIN_DBL_NORM_ARG
+// underflow is a possibility, not a certainty
// We define an underflow when the answer with
// ftz set
@@ -637,119 +709,81 @@ EXP_POSSIBLE_UNDERFLOW:
// largest dn smallest normal
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.d.s2 fFtz_urm_f8 = fS, fP, fS // Result with ftz set
- nop.i 0
+ nop.m 999
+ fsetc.s2 0x7F,0x41
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off ftz in sf2
- nop.i 0
+ nop.m 999
+ fma.d.s2 exp_ftz_urm_f8 = exp_S, exp_P, exp_S
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 0
- fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow
- nop.i 0
+ nop.m 999
+ fsetc.s2 0x7F,0x40
+ nop.i 999 ;;
}
{ .mfi
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS // Compute result, set I, maybe U
- nop.i 0
+ nop.m 999
+ fcmp.eq.unc.s1 p6, p0 = exp_ftz_urm_f8, f0
+ nop.i 999 ;;
}
-;;
-
-{ .mbb
- nop.m 0
-(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow
-(p7) br.ret.sptk b0 // Exit if really no underflow
-}
-;;
-
-EXP_CERTAIN_UNDERFLOW:
-// Here if x < fMAX_DBL_ZERO_ARG
-// Result will be zero (or smallest denorm if round to +inf) with I, U set
-{ .mmi
- mov rTmp = 1
-;;
- setf.exp fTmp = rTmp // Form small normal
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmerge.se fTmp = fTmp, fLn2_by_128_lo // Small with signif lsb 1
- nop.i 0
+{ .mfb
+ nop.m 999
+ nop.f 999
+(p6) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW) ;; // Branch if really underflow
}
-;;
-
{ .mfb
- nop.m 0
- fma.d.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
- br.cond.sptk EXP_UNDERFLOW_COMMON
+ nop.m 999
+ fma.d f8 = exp_S, exp_P, exp_S
+ br.ret.sptk b0 ;; // Exit if really no underflow
}
-;;
-EXP_UNDERFLOW_COMMON:
-// Determine if underflow result is zero or nonzero
+L(EXP_CERTAIN_UNDERFLOW):
{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- fcmp.eq.s1 p6, p0 = f8, f0
- nop.i 0
+ nop.m 999
+ fmerge.s FR_X = f8,f8
+ nop.i 999
}
-;;
-
{ .mfb
- nop.m 0
- fmerge.s FR_X = fNormX,fNormX
-(p6) br.cond.spnt EXP_UNDERFLOW_ZERO
+ mov GR_Parameter_TAG = 15
+ fma.d FR_RESULT = exp_S, exp_P, exp_S // Set I,U and tiny result
+ br.cond.sptk __libm_error_region ;;
}
-;;
-EXP_UNDERFLOW_NONZERO:
-// Here if x < fMIN_DBL_NORM_ARG and result nonzero;
-// I, U are set
-{ .mfb
- mov GR_Parameter_TAG = 15
- nop.f 0 // FR_RESULT already set
- br.cond.sptk __libm_error_region
+L(EXP_CERTAIN_UNDERFLOW_ZERO):
+{ .mmi
+ mov exp_GR_one = 1 ;;
+ setf.exp f9 = exp_GR_one
+ nop.i 999 ;;
}
-;;
-EXP_UNDERFLOW_ZERO:
-// Here if x < fMIN_DBL_NORM_ARG and result zero;
-// I, U are set
+{ .mfi
+ nop.m 999
+ fmerge.s FR_X = f8,f8
+ nop.i 999
+}
{ .mfb
- mov GR_Parameter_TAG = 15
- nop.f 0 // FR_RESULT already set
- br.cond.sptk __libm_error_region
+ mov GR_Parameter_TAG = 15
+ fma.d FR_RESULT = f9, f9, f0 // Set I,U and tiny (+0.0) result
+ br.cond.sptk __libm_error_region ;;
}
-;;
-GLOBAL_IEEE754_END(exp)
+.endp exp
+ASM_SIZE_DIRECTIVE(exp)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
-.fframe 64
+.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
@@ -757,24 +791,24 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
@@ -783,11 +817,12 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
+ mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
-};;
+};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_exp10.S b/sysdeps/ia64/fpu/e_exp10.S
deleted file mode 100644
index eafa59dd7c..0000000000
--- a/sysdeps/ia64/fpu/e_exp10.S
+++ /dev/null
@@ -1,605 +0,0 @@
-.file "exp10.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/25/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/06/02 Improved performance; no inexact flags on exact cases
-// 01/29/03 Added missing } to bundle templates
-// 12/16/04 Call error handling on underflow.
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// double exp10(double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x= (K + fh + fl + r)/log2(10), where
-// K is an integer, fh= 0.b1 b2 b3 b4 b5,
-// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
-// and |r|<2^{-11}
-// Th is a table that stores 2^fh (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-// Tl is a table that stores 2^fl (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-//
-// 10^x is approximated as
-// 2^K * Th [ f ] * Tl [ f ] * (1+c1*e+c1*r+c2*r^2+c3*r^3+c4*r^4),
-// where e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
-
-// Note there are only 22 non-zero values that produce an exact result:
-// 1.0, 2.0, ... 22.0.
-// We test for these cases and use s1 to avoid setting the inexact flag.
-
-// Special values
-//==============================================================
-// exp10(0)= 1
-// exp10(+inf)= inf
-// exp10(-inf)= 0
-//
-
-// Registers used
-//==============================================================
-// r2-r3, r14-r40
-// f6-f15, f32-f52
-// p6-p12
-//
-
-
-GR_TBL_START = r2
-GR_LOG_TBL = r3
-
-GR_OF_LIMIT = r14
-GR_UF_LIMIT = r15
-GR_EXP_CORR = r16
-GR_F_low = r17
-GR_F_high = r18
-GR_K = r19
-GR_Flow_ADDR = r20
-
-GR_BIAS = r21
-GR_Fh = r22
-GR_Fh_ADDR = r23
-GR_EXPMAX = r24
-GR_BIAS53 = r25
-
-GR_ROUNDVAL = r26
-GR_SNORM_LIMIT = r26
-GR_MASK = r27
-GR_KF0 = r28
-GR_MASK_low = r29
-GR_COEFF_START = r30
-GR_exact_limit = r31
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-FR_COEFF1 = f6
-FR_COEFF2 = f7
-FR_R = f9
-FR_LOG2_10 = f10
-
-FR_2P53 = f11
-FR_KF0 = f12
-FR_COEFF3 = f13
-FR_COEFF4 = f14
-FR_UF_LIMIT = f15
-
-FR_OF_LIMIT = f32
-FR_DX_L210 = f33
-FR_ROUNDVAL = f34
-FR_KF = f35
-
-FR_2_TO_K = f36
-FR_T_low = f37
-FR_T_high = f38
-FR_P34 = f39
-FR_R2 = f40
-
-FR_P12 = f41
-FR_T_low_K = f42
-FR_P14 = f43
-FR_T = f44
-FR_P = f45
-
-FR_L2_10_low = f46
-FR_L2_10_high = f47
-FR_E0 = f48
-FR_E = f49
-FR_exact_limit = f50
-
-FR_int_x = f51
-FR_SNORM_LIMIT = f52
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63)
-data8 0x9257edfe9b5fb698, 0x3fbf // log2(10)_low (bits 64...127)
-data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
-data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
-data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
-// 2^{0.00000 b6 b7 b8 b9 b10}
-data8 0x8000000000000000, 0x8016302f17467628
-data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
-data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
-data8 0x80855ad965e88b83, 0x809ba2264dada76a
-data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
-data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
-data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
-data8 0x813801881d886f7b, 0x814e67cceb90502c
-data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
-data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
-data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
-data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
-data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
-data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
-data8 0x8272fb97b2a5894c, 0x828998760d01faf3
-data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
-//
-// 2^{0.b1 b2 b3 b4 b5}
-data8 0x8000000000000000, 0x82cd8698ac2ba1d7
-data8 0x85aac367cc487b14, 0x88980e8092da8527
-data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
-data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
-data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
-data8 0x9ef5326091a111ad, 0xa27043030c496818
-data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
-data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
-data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
-data8 0xbd08a39f580c36be, 0xc12c4cca66709456
-data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
-data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
-data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
-data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
-data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
-data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
-LOCAL_OBJECT_END(T_table)
-
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(exp10)
-
-
-{.mfi
- alloc r32= ar.pfs, 1, 4, 4, 0
- // will continue only for non-zero normal/denormal numbers
- fclass.nm.unc p12, p7= f8, 0x1b
- mov GR_BIAS53= 0xffff+63-10
-}
-{.mlx
- // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table
- addl GR_TBL_START= @ltoff(poly_coeffs), gp
- movl GR_ROUNDVAL= 0x3fc00000 // 1.5 (SP)
-}
-;;
-
-{.mfi
- ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
- fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
- nop.i 0
-}
-;;
-
-{.mlx
- setf.exp FR_2P53= GR_BIAS53 // 2^{63-10}
- movl GR_UF_LIMIT= 0xc07439b746e36b52 // (-2^10-51) / log2(10)
-}
-{.mlx
- setf.s FR_ROUNDVAL= GR_ROUNDVAL
- movl GR_OF_LIMIT= 0x40734413509f79fe // Overflow threshold
-}
-;;
-
-{.mlx
- ldfe FR_LOG2_10= [ GR_COEFF_START ], 16 // load log2(10)*2^(10-63)
- movl GR_SNORM_LIMIT= 0xc0733a7146f72a41 // Smallest normal threshold
-}
-{.mib
- nop.m 0
- nop.i 0
- (p12) br.cond.spnt SPECIAL_exp10 // Branch if nan, inf, zero
-}
-;;
-
-{.mmf
- ldfe FR_L2_10_low= [ GR_COEFF_START ], 16 // load log2(10)_low
- setf.d FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
- fma.s0 f8= f8, f1, f0 // normalize x
-}
-;;
-
-{.mfi
- ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
- (p8) fcvt.fx.s1 FR_int_x = f8 // Convert x to integer
- nop.i 0
-}
-{.mfi
- setf.d FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
- fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 +
- // 1.5*2^63) * 2^(-63)
- mov GR_EXP_CORR= 0xffff-126
-}
-;;
-
-{.mfi
- setf.d FR_SNORM_LIMIT= GR_SNORM_LIMIT // Set smallest normal limit
- fma.s1 FR_L2_10_high= FR_LOG2_10, FR_2P53, f0 // FR_LOG2_10= log2(10)_hi
- nop.i 0
-}
-;;
-
-{.mfi
- ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
- fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)*2^(10-63)
- mov GR_MASK= 1023
-}
-;;
-
-{.mfi
- ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
- fma.s1 FR_LOG2_10= f8, FR_L2_10_high, f0 // y0= x*log2(10)_hi
- mov GR_MASK_low= 31
-}
-;;
-
-{.mlx
- getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
- (p8) movl GR_exact_limit= 0x41b00000 // Largest x for exact result,
- // +22.0
-}
-;;
-
-{.mfi
- add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
- fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT // x>overflow threshold ?
- nop.i 0
-}
-;;
-
-{.mfi
- (p8) setf.s FR_exact_limit = GR_exact_limit // Largest x for exact result
- (p8) fcvt.xf FR_int_x = FR_int_x // Integral part of x
- shr GR_K= GR_KF0, 10 // K
-}
-{.mfi
- and GR_F_high= GR_MASK, GR_KF0 // f_high*32
- fnma.s1 FR_R= FR_KF, FR_2P53, FR_LOG2_10 // r= x*log2(10)-2^{63-10}*
- // [ (K+f)*2^{10-63} ]
- and GR_F_low= GR_KF0, GR_MASK_low // f_low
-}
-;;
-
-{.mmi
- shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
- add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
- shr GR_Fh= GR_F_high, 5 // f_high
-}
-;;
-
-{.mfi
- setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
- (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
- shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
-}
-{.mfi
- ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
- fms.s1 FR_DX_L210= f8, FR_L2_10_high, FR_LOG2_10 // x*log2(10)_hi-
- // RN(x*log2(10)_hi)
- nop.i 0
-}
-;;
-
-{.mfi
- ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
- fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
- nop.i 0
-}
-{.mfb
- nop.m 0
- fma.s1 FR_R2= FR_R, FR_R, f0 // r*r
- (p12) br.cond.spnt OUT_RANGE_exp10
-}
-;;
-
-{.mfi
- nop.m 0
- // e= (x*log2(10)_hi-RN(x*log2(10)_hi))+log2(10)_lo*x
- fma.s1 FR_E0= f8, FR_L2_10_low, FR_DX_L210
- cmp.eq p7,p9= r0,r0 // Assume inexact result
-}
-{.mfi
- nop.m 0
- fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- (p8) fcmp.eq.s1 p9,p7= FR_int_x, f8 // Test x positive integer
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fcmp.ge.s1 p11,p0= f8, FR_SNORM_LIMIT // Test x for normal range
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_E= FR_E0, FR_COEFF1, f0 // E= C_1*e
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 FR_P14= FR_R2, FR_P34, FR_P12 // P14= P12+r2*P34
- nop.i 0
-}
-;;
-
-// If x a positive integer, will it produce an exact result?
-// p7 result will be inexact
-// p9 result will be exact
-{.mfi
- nop.m 0
- (p9) fcmp.le.s1 p9,p7= f8, FR_exact_limit // Test x gives exact result
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P= FR_P14, FR_R, FR_E // P= P14*r+E
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p9
-{.mfi
- nop.m 0
- (p7) fma.d.s0 f8= FR_P, FR_T, FR_T // result= T+T*P, inexact set
- nop.i 0
-}
-{.mfb
- nop.m 0
- (p9) fma.d.s1 f8= FR_P, FR_T, FR_T // result= T+T*P, exact use s1
- (p11) br.ret.sptk b0 // return, if result normal
-}
-;;
-
-// Here if result in denormal range (and not zero)
-{.mib
- nop.m 0
- mov GR_Parameter_TAG= 265
- br.cond.sptk __libm_error_region // Branch to error handling
-}
-;;
-
-SPECIAL_exp10:
-{.mfi
- nop.m 0
- fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
- nop.i 0
-}
-{.mfb
- nop.m 0
- (p6) mov f8= f0 // exp10(-Infinity)= 0
- (p6) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- nop.f 0
- (p7) br.ret.spnt b0 // exp10(+Infinity)= +Infinity
-}
-;;
-
-{.mfb
- nop.m 0
- (p8) mov f8= f1 // exp10(+/-0)= 1
- (p8) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- fma.d.s0 f8= f8, f1, f0 // Remaining cases: NaNs
- br.ret.sptk b0
-}
-;;
-
-
-OUT_RANGE_exp10:
-
-// underflow: p6= 1
-// overflow: p8= 1
-
-.pred.rel "mutex",p6,p8
-{.mmi
- (p8) mov GR_EXPMAX= 0x1fffe
- (p6) mov GR_EXPMAX= 1
- nop.i 0
-}
-;;
-
-{.mii
- setf.exp FR_R= GR_EXPMAX
- (p8) mov GR_Parameter_TAG= 166
- (p6) mov GR_Parameter_TAG= 265
-}
-;;
-
-{.mfb
- nop.m 0
- fma.d.s0 f8= FR_R, FR_R, f0 // Create overflow/underflow
- br.cond.sptk __libm_error_region // Branch to error handling
-}
-;;
-
-GLOBAL_IEEE754_END(exp10)
-weak_alias (exp10, pow10)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-.prologue
-{.mfi
- add GR_Parameter_Y= -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
-}
-
-{.mfi
-.fframe 64
- add sp= -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP= gp // Save gp
-}
-;;
-
-{.mmi
- stfd [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
- add GR_Parameter_X= 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0= b0 // Save b0
-}
-;;
-
-.body
-{.mib
- stfd [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{.mib
- stfd [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y= -16, GR_Parameter_Y
- br.call.sptk b0= __libm_error_support# // Call error handling function
-}
-;;
-
-{.mmi
- add GR_Parameter_RESULT= 48, sp
- nop.m 0
- nop.i 0
-}
-;;
-
-{.mmi
- ldfd f8= [ GR_Parameter_RESULT ] // Get return result off stack
-.restore sp
- add sp= 64, sp // Restore stack pointer
- mov b0= GR_SAVE_B0 // Restore return address
-}
-;;
-
-{.mib
- mov gp= GR_SAVE_GP // Restore gp
- mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-}
-;;
-
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#, @function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_exp10f.S b/sysdeps/ia64/fpu/e_exp10f.S
deleted file mode 100644
index fa54e9039f..0000000000
--- a/sysdeps/ia64/fpu/e_exp10f.S
+++ /dev/null
@@ -1,557 +0,0 @@
-.file "exp10f.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/25/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/06/02 Improved performance and accuracy; no inexact flags on exact cases
-// 01/29/03 Added missing } to bundle templates
-// 12/16/04 Call error handling on underflow.
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// float exp10f(float)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x= (K + fh + fl + r)/log2(10), where
-// K is an integer, fh= 0.b1 b2 b3 b4 b5,
-// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
-// and |r|<2^{-11}
-// Th is a table that stores 2^fh (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-// Tl is a table that stores 2^fl (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-//
-// 10^x is approximated as
-// 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2)
-
-// Note there are only 10 non-zero values that produce an exact result:
-// 1.0, 2.0, ... 10.0.
-// We test for these cases and use s1 to avoid setting the inexact flag.
-
-// Special values
-//==============================================================
-// exp10(0)= 1
-// exp10(+inf)= inf
-// exp10(-inf)= 0
-//
-
-// Registers used
-//==============================================================
-// r2-r3, r14-r40
-// f6-f15, f32-f52
-// p6-p12
-//
-
-
-GR_TBL_START = r2
-GR_LOG_TBL = r3
-
-GR_OF_LIMIT = r14
-GR_UF_LIMIT = r15
-GR_EXP_CORR = r16
-GR_F_low = r17
-GR_F_high = r18
-GR_K = r19
-GR_Flow_ADDR = r20
-
-GR_BIAS = r21
-GR_Fh = r22
-GR_Fh_ADDR = r23
-GR_EXPMAX = r24
-
-GR_ROUNDVAL = r26
-GR_SNORM_LIMIT = r26
-GR_MASK = r27
-GR_KF0 = r28
-GR_MASK_low = r29
-GR_COEFF_START = r30
-GR_exact_limit = r31
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-FR_COEFF1 = f6
-FR_COEFF2 = f7
-FR_R = f9
-FR_LOG2_10 = f10
-
-FR_2P53 = f11
-FR_KF0 = f12
-FR_COEFF3 = f13
-FR_COEFF4 = f14
-FR_UF_LIMIT = f15
-
-FR_OF_LIMIT = f32
-FR_DX_L210 = f33
-FR_ROUNDVAL = f34
-FR_KF = f35
-
-FR_2_TO_K = f36
-FR_T_low = f37
-FR_T_high = f38
-
-FR_P12 = f41
-FR_T_low_K = f42
-FR_T = f44
-FR_P = f45
-
-FR_E = f49
-FR_exact_limit = f50
-
-FR_int_x = f51
-FR_SNORM_LIMIT = f52
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63)
-data8 0xb17217f7d1cf79ab, 0x00004033 // C_1 * 2^53
-data8 0xf5fdeffc162c7541, 0x00004066 // C_2 * 2^106
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
-// 2^{0.00000 b6 b7 b8 b9 b10}
-data8 0x8000000000000000, 0x8016302f17467628
-data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
-data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
-data8 0x80855ad965e88b83, 0x809ba2264dada76a
-data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
-data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
-data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
-data8 0x813801881d886f7b, 0x814e67cceb90502c
-data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
-data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
-data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
-data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
-data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
-data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
-data8 0x8272fb97b2a5894c, 0x828998760d01faf3
-data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
-//
-// 2^{0.b1 b2 b3 b4 b5}
-data8 0x8000000000000000, 0x82cd8698ac2ba1d7
-data8 0x85aac367cc487b14, 0x88980e8092da8527
-data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
-data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
-data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
-data8 0x9ef5326091a111ad, 0xa27043030c496818
-data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
-data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
-data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
-data8 0xbd08a39f580c36be, 0xc12c4cca66709456
-data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
-data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
-data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
-data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
-data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
-data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
-LOCAL_OBJECT_END(T_table)
-
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(exp10f)
-
-
-{.mfi
- alloc r32= ar.pfs, 1, 4, 4, 0
- // will continue only for non-zero normal/denormal numbers
- fclass.nm.unc p12, p7= f8, 0x1b
- nop.i 0
-}
-{.mlx
- // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table
- addl GR_TBL_START= @ltoff(poly_coeffs), gp
- movl GR_ROUNDVAL= 0x3fc00000 // 1.5 (SP)
-}
-;;
-
-{.mfi
- ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
- fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
- nop.i 0
-}
-;;
-
-{.mlx
- nop.m 0
- movl GR_UF_LIMIT= 0xc2349e35 // (-2^7-22) / log2(10)
-}
-{.mlx
- setf.s FR_ROUNDVAL= GR_ROUNDVAL
- movl GR_OF_LIMIT= 0x421a209a // Overflow threshold
-}
-;;
-
-{.mlx
- ldfe FR_LOG2_10= [ GR_COEFF_START ], 16 // load log2(10)*2^(10-63)
- movl GR_SNORM_LIMIT= 0xc217b818 // Smallest normal threshold
-}
-{.mib
- nop.m 0
- nop.i 0
- (p12) br.cond.spnt SPECIAL_exp10 // Branch if nan, inf, zero
-}
-;;
-
-{.mfi
- setf.s FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
- fma.s0 f8= f8, f1, f0 // normalize x
- nop.i 0
-}
-;;
-
-{.mfi
- setf.s FR_SNORM_LIMIT= GR_SNORM_LIMIT // Set smallest normal limit
- (p8) fcvt.fx.s1 FR_int_x = f8 // Convert x to integer
- nop.i 0
-}
-{.mfi
- setf.s FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
- fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 +
- // 1.5*2^63) * 2^(-63)
- mov GR_EXP_CORR= 0xffff-126
-}
-;;
-
-{.mfi
- ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
- fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)*2^(10-63)
- mov GR_MASK= 1023
-}
-;;
-
-{.mfi
- ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
- nop.f 0
- mov GR_MASK_low= 31
-}
-;;
-
-{.mlx
- getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
- (p8) movl GR_exact_limit= 0x41200000 // Largest x for exact result,
- // +10.0
-}
-;;
-
-{.mfi
- add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
- fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT // x>overflow threshold ?
- nop.i 0
-}
-;;
-
-{.mfi
- (p8) setf.s FR_exact_limit = GR_exact_limit // Largest x for exact result
- (p8) fcvt.xf FR_int_x = FR_int_x // Integral part of x
- shr GR_K= GR_KF0, 10 // K
-}
-{.mfi
- and GR_F_high= GR_MASK, GR_KF0 // f_high*32
- fms.s1 FR_R= f8, FR_LOG2_10, FR_KF // r*2^(-53)= [ x*log2(10)-
- // (K+f) ] *2^{10-63}
- and GR_F_low= GR_KF0, GR_MASK_low // f_low
-}
-;;
-
-{.mmi
- shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
- add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
- shr GR_Fh= GR_F_high, 5 // f_high
-}
-;;
-
-{.mfi
- setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
- (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
- shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
-}
-{.mfi
- ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
- nop.f 0
- nop.i 0
-}
-;;
-
-{.mfb
- ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
- fcmp.ge.s1 p11, p0= f8, FR_SNORM_LIMIT // Test x for normal range
- (p12) br.cond.spnt OUT_RANGE_exp10
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
- cmp.eq p7,p9= r0,r0 // Assume inexact result
-}
-;;
-
-{.mfi
- nop.m 0
- (p8) fcmp.eq.s1 p9,p7= FR_int_x, f8 // Test x positive integer
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P= FR_P12, FR_R, f0 // P= P12*r
- nop.i 0
-}
-;;
-
-// If x a positive integer, will it produce an exact result?
-// p7 result will be inexact
-// p9 result will be exact
-{.mfi
- nop.m 0
- (p9) fcmp.le.s1 p9,p7= f8, FR_exact_limit // Test x gives exact result
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p9
-{.mfi
- nop.m 0
- (p7) fma.s.s0 f8= FR_P, FR_T, FR_T // result= T+T*P, inexact set
- nop.i 0
-}
-{.mfb
- nop.m 0
- (p9) fma.s.s1 f8= FR_P, FR_T, FR_T // result= T+T*P, exact use s1
- (p11) br.ret.sptk b0 // return, if result normal
-}
-;;
-
-// Here if result in denormal range (and not zero)
-{.mib
- nop.m 0
- mov GR_Parameter_TAG= 266
- br.cond.sptk __libm_error_region // Branch to error handling
-}
-;;
-
-SPECIAL_exp10:
-{.mfi
- nop.m 0
- fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
- nop.i 0
-}
-{.mfb
- nop.m 0
- (p6) mov f8= f0 // exp10(-Infinity)= 0
- (p6) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- nop.f 0
- (p7) br.ret.spnt b0 // exp10(+Infinity)= +Infinity
-}
-;;
-
-{.mfb
- nop.m 0
- (p8) mov f8= f1 // exp10(+/-0)= 1
- (p8) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- fma.s.s0 f8= f8, f1, f0 // Remaining cases: NaNs
- br.ret.sptk b0
-}
-;;
-
-
-OUT_RANGE_exp10:
-
-// underflow: p6= 1
-// overflow: p8= 1
-
-.pred.rel "mutex",p6,p8
-{.mmi
- (p8) mov GR_EXPMAX= 0x1fffe
- (p6) mov GR_EXPMAX= 1
- nop.i 0
-}
-;;
-
-{.mii
- setf.exp FR_R= GR_EXPMAX
- (p8) mov GR_Parameter_TAG= 167
- (p6) mov GR_Parameter_TAG= 266
-}
-;;
-
-{.mfb
- nop.m 0
- fma.s.s0 f8= FR_R, FR_R, f0 // Create overflow/underflow
- br.cond.sptk __libm_error_region // Branch to error handling
-}
-;;
-
-GLOBAL_IEEE754_END(exp10f)
-weak_alias (exp10f, pow10f)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-.prologue
-{.mfi
- add GR_Parameter_Y= -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
-}
-
-{.mfi
-.fframe 64
- add sp= -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP= gp // Save gp
-}
-;;
-
-{.mmi
- stfs [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
- add GR_Parameter_X= 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0= b0 // Save b0
-}
-;;
-
-.body
-{.mib
- stfs [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{.mib
- stfs [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y= -16, GR_Parameter_Y
- br.call.sptk b0= __libm_error_support# // Call error handling function
-}
-;;
-
-{.mmi
- add GR_Parameter_RESULT= 48, sp
- nop.m 0
- nop.i 0
-}
-;;
-
-{.mmi
- ldfs f8= [ GR_Parameter_RESULT ] // Get return result off stack
-.restore sp
- add sp= 64, sp // Restore stack pointer
- mov b0= GR_SAVE_B0 // Restore return address
-}
-;;
-
-{.mib
- mov gp= GR_SAVE_GP // Restore gp
- mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-}
-;;
-
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#, @function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_exp10l.S b/sysdeps/ia64/fpu/e_exp10l.S
deleted file mode 100644
index a2e84b377c..0000000000
--- a/sysdeps/ia64/fpu/e_exp10l.S
+++ /dev/null
@@ -1,811 +0,0 @@
-.file "exp10l.s"
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/25/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/08/03 Reformatted assembly source; corrected overflow result for round to
-// -inf and round to zero; exact results now don't set inexact flag
-// 12/16/04 Call error handling on underflow.
-//
-// API
-//==============================================================
-// long double exp10l(long double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x= (K + f + r)/log2(10), where
-// K is an integer, f= 0.b1 b2... b8 (f>= 0),
-// and |r|<2^{-9}
-// T is a table that stores 2^f (256 entries) rounded to
-// double extended precision (only mantissa is stored)
-// D stores (2^f/T [ f ] - 1), rounded to single precision
-//
-// 10^x is approximated as
-// 2^K * T [ f ] * ((1+c1*r+c2*r^2+...+c6*r^6)*(1+c1*e)+D [ f ] ),
-// where e= log2(10)_lo*x+(log2(10)_hi*x-RN(log2(10)_hi*x))
-//
-
-
-
-// Special values
-//==============================================================
-// exp10(0)= 1
-// exp10(+inf)= inf
-// exp10(-inf)= 0
-//
-
-
-// Registers used
-//==============================================================
-// f6-f15, f32-f63
-// r14-r30, r32-r40
-// p6-p8, p11-p14
-//
-
-
- FR_X = f10
- FR_Y = f1
- FR_RESULT = f8
-
- FR_COEFF1 = f6
- FR_COEFF2 = f7
- FR_KF0 = f9
- FR_LOG10 = f10
- FR_CONST1 = f11
- FR_XL10 = f12
- FR_COEFF3 = f13
- FR_COEFF4 = f14
- FR_UF_TEST = f15
- FR_OF_TEST = f32
- FR_L10_LOW = f33
- FR_COEFF5 = f34
- FR_COEFF6 = f35
- FR_L10 = f36
- FR_C_L10 = f37
- FR_XL10_H = f38
- FR_XL10_L = f39
- FR_KF = f40
- FR_E = f41
- FR_T = f42
- FR_D = f43
- FR_EXP_M_63 = f44
- FR_R = f45
- FR_E1 = f46
- FR_COEFF2 = f47
- FR_P34 = f48
- FR_P56 = f49
- FR_R2 = f50
- FR_RE = f51
- FR_D1 = f52
- FR_P36 = f53
- FR_R3E = f54
- FR_P1 = f55
- FR_P = f56
- FR_T1 = f57
- FR_XINT = f58
- FR_XINTF = f59
- FR_4 = f60
- FR_28 = f61
- FR_32 = f62
- FR_SNORM_LIMIT = f63
-
-
- GR_ADDR0 = r14
- GR_D_ADDR = r15
- GR_ADDR = r16
- GR_B63 = r17
- GR_KBITS = r18
- GR_F = r19
- GR_K = r20
- GR_D = r21
- GR_BM63 = r22
- GR_T = r23
- GR_CONST1 = r24
- GR_EMIN = r25
- GR_CONST2 = r26
- GR_BM8 = r27
- GR_SREG = r28
- GR_4_BIAS = r29
- GR_32_BIAS = r30
-
- GR_SAVE_B0 = r33
- GR_SAVE_PFS = r34
- GR_SAVE_GP = r35
- GR_SAVE_SP = r36
-
- GR_Parameter_X = r37
- GR_Parameter_Y = r38
- GR_Parameter_RESULT= r39
- GR_Parameter_TAG = r40
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
- data8 0xd49a784bcd1b8afe, 0x00004008 // log2(10)*2^8
- data8 0x9a209a84fbcff798, 0x0000400b // overflow threshold
- data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
- data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
- data8 0x3fac6b08d704a0c0 // C_3
- data8 0x3f83b2ab6fba4e77 // C_4
- data8 0x3f55d87fe78a6731 // C_5
- data8 0x3f2430912f86c787 // C_6
- data8 0x9257edfe9b5fb698, 0x00003fbf // log2(10)_low (bits 64...127)
- data8 0x9a1bc98027a81918, 0x0000c00b // Smallest normal threshold
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
- // 2^{0.b1 b2 b3 b4 b5 b6 b7 b8}
- data8 0x8000000000000000, 0x8058d7d2d5e5f6b1
- data8 0x80b1ed4fd999ab6c, 0x810b40a1d81406d4
- data8 0x8164d1f3bc030773, 0x81bea1708dde6056
- data8 0x8218af4373fc25ec, 0x8272fb97b2a5894c
- data8 0x82cd8698ac2ba1d7, 0x83285071e0fc4547
- data8 0x8383594eefb6ee37, 0x83dea15b9541b132
- data8 0x843a28c3acde4046, 0x8495efb3303efd30
- data8 0x84f1f656379c1a29, 0x854e3cd8f9c8c95d
- data8 0x85aac367cc487b15, 0x86078a2f23642a9f
- data8 0x8664915b923fba04, 0x86c1d919caef5c88
- data8 0x871f61969e8d1010, 0x877d2afefd4e256c
- data8 0x87db357ff698d792, 0x88398146b919f1d4
- data8 0x88980e8092da8527, 0x88f6dd5af155ac6b
- data8 0x8955ee03618e5fdd, 0x89b540a7902557a4
- data8 0x8a14d575496efd9a, 0x8a74ac9a79896e47
- data8 0x8ad4c6452c728924, 0x8b3522a38e1e1032
- data8 0x8b95c1e3ea8bd6e7, 0x8bf6a434adde0085
- data8 0x8c57c9c4646f4dde, 0x8cb932c1bae97a95
- data8 0x8d1adf5b7e5ba9e6, 0x8d7ccfc09c50e2f8
- data8 0x8ddf042022e69cd6, 0x8e417ca940e35a01
- data8 0x8ea4398b45cd53c0, 0x8f073af5a2013520
- data8 0x8f6a8117e6c8e5c4, 0x8fce0c21c6726481
- data8 0x9031dc431466b1dc, 0x9095f1abc540ca6b
- data8 0x90fa4c8beee4b12b, 0x915eed13c89689d3
- data8 0x91c3d373ab11c336, 0x9228ffdc10a051ad
- data8 0x928e727d9531f9ac, 0x92f42b88f673aa7c
- data8 0x935a2b2f13e6e92c, 0x93c071a0eef94bc1
- data8 0x9426ff0fab1c04b6, 0x948dd3ac8ddb7ed3
- data8 0x94f4efa8fef70961, 0x955c5336887894d5
- data8 0x95c3fe86d6cc7fef, 0x962bf1cbb8d97560
- data8 0x96942d3720185a00, 0x96fcb0fb20ac4ba3
- data8 0x97657d49f17ab08e, 0x97ce9255ec4357ab
- data8 0x9837f0518db8a96f, 0x98a1976f7597e996
- data8 0x990b87e266c189aa, 0x9975c1dd47518c77
- data8 0x99e0459320b7fa65, 0x9a4b13371fd166ca
- data8 0x9ab62afc94ff864a, 0x9b218d16f441d63d
- data8 0x9b8d39b9d54e5539, 0x9bf93118f3aa4cc1
- data8 0x9c6573682ec32c2d, 0x9cd200db8a0774cb
- data8 0x9d3ed9a72cffb751, 0x9dabfdff6367a2aa
- data8 0x9e196e189d472420, 0x9e872a276f0b98ff
- data8 0x9ef5326091a111ae, 0x9f6386f8e28ba651
- data8 0x9fd228256400dd06, 0xa041161b3d0121be
- data8 0xa0b0510fb9714fc2, 0xa11fd9384a344cf7
- data8 0xa18faeca8544b6e4, 0xa1ffd1fc25cea188
- data8 0xa27043030c496819, 0xa2e102153e918f9e
- data8 0xa3520f68e802bb93, 0xa3c36b345991b47c
- data8 0xa43515ae09e6809e, 0xa4a70f0c95768ec5
- data8 0xa5195786be9ef339, 0xa58bef536dbeb6ee
- data8 0xa5fed6a9b15138ea, 0xa6720dc0be08a20c
- data8 0xa6e594cfeee86b1e, 0xa7596c0ec55ff55b
- data8 0xa7cd93b4e965356a, 0xa8420bfa298f70d1
- data8 0xa8b6d5167b320e09, 0xa92bef41fa77771b
- data8 0xa9a15ab4ea7c0ef8, 0xaa1717a7b5693979
- data8 0xaa8d2652ec907629, 0xab0386ef48868de1
- data8 0xab7a39b5a93ed337, 0xabf13edf162675e9
- data8 0xac6896a4be3fe929, 0xace0413ff83e5d04
- data8 0xad583eea42a14ac6, 0xadd08fdd43d01491
- data8 0xae493452ca35b80e, 0xaec22c84cc5c9465
- data8 0xaf3b78ad690a4375, 0xafb51906e75b8661
- data8 0xb02f0dcbb6e04584, 0xb0a957366fb7a3c9
- data8 0xb123f581d2ac2590, 0xb19ee8e8c94feb09
- data8 0xb21a31a66618fe3b, 0xb295cff5e47db4a4
- data8 0xb311c412a9112489, 0xb38e0e38419fae18
- data8 0xb40aaea2654b9841, 0xb487a58cf4a9c180
- data8 0xb504f333f9de6484, 0xb58297d3a8b9f0d2
- data8 0xb60093a85ed5f76c, 0xb67ee6eea3b22b8f
- data8 0xb6fd91e328d17791, 0xb77c94c2c9d725e9
- data8 0xb7fbefca8ca41e7c, 0xb87ba337a1743834
- data8 0xb8fbaf4762fb9ee9, 0xb97c143756844dbf
- data8 0xb9fcd2452c0b9deb, 0xba7de9aebe5fea09
- data8 0xbaff5ab2133e45fb, 0xbb81258d5b704b6f
- data8 0xbc034a7ef2e9fb0d, 0xbc85c9c560e7b269
- data8 0xbd08a39f580c36bf, 0xbd8bd84bb67ed483
- data8 0xbe0f6809860993e2, 0xbe935317fc378238
- data8 0xbf1799b67a731083, 0xbf9c3c248e2486f8
- data8 0xc0213aa1f0d08db0, 0xc0a6956e8836ca8d
- data8 0xc12c4cca66709456, 0xc1b260f5ca0fbb33
- data8 0xc238d2311e3d6673, 0xc2bfa0bcfad907c9
- data8 0xc346ccda24976407, 0xc3ce56c98d21b15d
- data8 0xc4563ecc5334cb33, 0xc4de8523c2c07baa
- data8 0xc5672a115506dadd, 0xc5f02dd6b0bbc3d9
- data8 0xc67990b5aa245f79, 0xc70352f04336c51e
- data8 0xc78d74c8abb9b15d, 0xc817f681416452b2
- data8 0xc8a2d85c8ffe2c45, 0xc92e1a9d517f0ecc
- data8 0xc9b9bd866e2f27a3, 0xca45c15afcc72624
- data8 0xcad2265e4290774e, 0xcb5eecd3b38597c9
- data8 0xcbec14fef2727c5d, 0xcc799f23d11510e5
- data8 0xcd078b86503dcdd2, 0xcd95da6a9ff06445
- data8 0xce248c151f8480e4, 0xceb3a0ca5dc6a55d
- data8 0xcf4318cf191918c1, 0xcfd2f4683f94eeb5
- data8 0xd06333daef2b2595, 0xd0f3d76c75c5db8d
- data8 0xd184df6251699ac6, 0xd2164c023056bcab
- data8 0xd2a81d91f12ae45a, 0xd33a5457a3029054
- data8 0xd3ccf099859ac379, 0xd45ff29e0972c561
- data8 0xd4f35aabcfedfa1f, 0xd5872909ab75d18a
- data8 0xd61b5dfe9f9bce07, 0xd6aff9d1e13ba2fe
- data8 0xd744fccad69d6af4, 0xd7da67311797f56a
- data8 0xd870394c6db32c84, 0xd9067364d44a929c
- data8 0xd99d15c278afd7b6, 0xda3420adba4d8704
- data8 0xdacb946f2ac9cc72, 0xdb63714f8e295255
- data8 0xdbfbb797daf23755, 0xdc9467913a4f1c92
- data8 0xdd2d818508324c20, 0xddc705bcd378f7f0
- data8 0xde60f4825e0e9124, 0xdefb4e1f9d1037f2
- data8 0xdf9612deb8f04420, 0xe031430a0d99e627
- data8 0xe0ccdeec2a94e111, 0xe168e6cfd3295d23
- data8 0xe2055afffe83d369, 0xe2a23bc7d7d91226
- data8 0xe33f8972be8a5a51, 0xe3dd444c46499619
- data8 0xe47b6ca0373da88d, 0xe51a02ba8e26d681
- data8 0xe5b906e77c8348a8, 0xe658797368b3a717
- data8 0xe6f85aaaee1fce22, 0xe798aadadd5b9cbf
- data8 0xe8396a503c4bdc68, 0xe8da9958464b42ab
- data8 0xe97c38406c4f8c57, 0xea1e4756550eb27b
- data8 0xeac0c6e7dd24392f, 0xeb63b74317369840
- data8 0xec0718b64c1cbddc, 0xecaaeb8ffb03ab41
- data8 0xed4f301ed9942b84, 0xedf3e6b1d418a491
- data8 0xee990f980da3025b, 0xef3eab20e032bc6b
- data8 0xefe4b99bdcdaf5cb, 0xf08b3b58cbe8b76a
- data8 0xf13230a7ad094509, 0xf1d999d8b7708cc1
- data8 0xf281773c59ffb13a, 0xf329c9233b6bae9c
- data8 0xf3d28fde3a641a5b, 0xf47bcbbe6db9fddf
- data8 0xf5257d152486cc2c, 0xf5cfa433e6537290
- data8 0xf67a416c733f846e, 0xf7255510c4288239
- data8 0xf7d0df730ad13bb9, 0xf87ce0e5b2094d9c
- data8 0xf92959bb5dd4ba74, 0xf9d64a46eb939f35
- data8 0xfa83b2db722a033a, 0xfb3193cc4227c3f4
- data8 0xfbdfed6ce5f09c49, 0xfc8ec01121e447bb
- data8 0xfd3e0c0cf486c175, 0xfdedd1b496a89f35
- data8 0xfe9e115c7b8f884c, 0xff4ecb59511ec8a5
-LOCAL_OBJECT_END(T_table)
-
-
-LOCAL_OBJECT_START(D_table)
- data4 0x00000000, 0x9f55c08f, 0x1e93ffa3, 0x1dcd43a8
- data4 0x1f751f79, 0x9f3cdd88, 0x9f43d155, 0x1eda222c
- data4 0x1ef35513, 0x9f597895, 0x9e698881, 0x1ec71073
- data4 0x1e50e371, 0x9dc01e19, 0x1de74133, 0x1e2f028c
- data4 0x9edefb47, 0x1ebbac48, 0x9e8b0330, 0x9e9e9314
- data4 0x1edc1d11, 0x1f098529, 0x9f52827c, 0x1f50050d
- data4 0x1f301e8e, 0x1f5b64d1, 0x9f45e3ee, 0x9ef64d6d
- data4 0x1d6ec5e8, 0x9e61ad9a, 0x1d44ccbb, 0x9e4a8bbb
- data4 0x9cf11576, 0x9dcce7e7, 0x9d02ac90, 0x1f26ccf0
- data4 0x9f0877c6, 0x9ddd62ae, 0x9f4b7fc3, 0x1ea8ef6b
- data4 0x1ea4378d, 0x1ef6fc38, 0x1db99fd9, 0x1f22bf6f
- data4 0x1f53e172, 0x1e85504a, 0x9f37cc75, 0x1f0c5e17
- data4 0x1dde8aac, 0x9cb42bb2, 0x1e153cd7, 0x1eb62bba
- data4 0x9e9b941b, 0x9ea80e3c, 0x1f508823, 0x1ec3fd36
- data4 0x1e9ffaa1, 0x1e21e2eb, 0x9d948b1d, 0x9e8ac93a
- data4 0x1ef7ee6f, 0x9e80dda3, 0x1f0814be, 0x1dc5ddfe
- data4 0x1eedb9d1, 0x9f2aaa26, 0x9ea5b0fc, 0x1edf702e
- data4 0x9e391201, 0x1f1316bb, 0x1ea27fb7, 0x9e05ed18
- data4 0x9f199ed2, 0x1ee7fd7c, 0x1f003db6, 0x9eac3793
- data4 0x9e5b8c10, 0x9f3af17c, 0x1bc9a8be, 0x1ee3c004
- data4 0x9f19b1b2, 0x9f242ce9, 0x9ce67dd1, 0x9e4f6275
- data4 0x1e20742c, 0x1eb9328a, 0x9f477153, 0x1d969718
- data4 0x9f1e6c43, 0x1f2f67f4, 0x9f39c7e4, 0x9e3c4feb
- data4 0x1da3956b, 0x9e7c685d, 0x1f280911, 0x9f0d8afb
- data4 0x1e314b40, 0x9eb4f250, 0x9f1a34ad, 0x1ef5d5e7
- data4 0x9f145496, 0x1e604827, 0x9f1e5195, 0x1e9c1fc0
- data4 0x1efde521, 0x1e69b385, 0x1f316830, 0x9f244eae
- data4 0x1f1787ec, 0x9e939971, 0x1f0bb393, 0x9f0511d6
- data4 0x1ed919de, 0x1d8b7b28, 0x1e5ca4a9, 0x1e7c357b
- data4 0x9e3ff8e8, 0x1eef53b5, 0x9ed22ed7, 0x1f16659b
- data4 0x9f2db102, 0x9e2c6a78, 0x1f328d7d, 0x9f2fec3c
- data4 0x1eb395bd, 0x9f242b84, 0x9e2683e6, 0x1ed71e68
- data4 0x1efd1df5, 0x9e9eeafd, 0x9ed2249c, 0x1eef129a
- data4 0x1d1ea44c, 0x9e81f7ff, 0x1eaf77c9, 0x9ee7a285
- data4 0x1e1864ed, 0x9ee7edbb, 0x9e15a27d, 0x9ae61655
- data4 0x1f1ff1a2, 0x1da29755, 0x9e5f46fb, 0x1e901236
- data4 0x9eecfb9b, 0x9f204d2f, 0x1ec64685, 0x9eb809bd
- data4 0x9e0026c5, 0x1d9f1da1, 0x1f142b49, 0x9f20f22e
- data4 0x1f24b067, 0x1f185a4c, 0x9f09765c, 0x9ece902f
- data4 0x1e2ca5db, 0x1e6de464, 0x9f071f67, 0x1f1518c3
- data4 0x1ea13ded, 0x1f0b8414, 0x1edb6ad4, 0x9e548740
- data4 0x9ea10efb, 0x1ee48a60, 0x1e7954c5, 0x9edad013
- data4 0x9f21517d, 0x9e9b6e0c, 0x9ee7f9a6, 0x9ebd4298
- data4 0x9d65b24e, 0x1eed751f, 0x9f1573ea, 0x9d430377
- data4 0x9e13fc0c, 0x1e47008a, 0x1e3d5c1d, 0x1ef41a91
- data4 0x9e4a4ef7, 0x9e952f18, 0x1d620566, 0x1d9b8d33
- data4 0x1db06247, 0x1e94b31e, 0x1f0730ad, 0x9d79ffb4
- data4 0x1ed64d51, 0x9e91fd11, 0x9e28d35a, 0x9dea0ed9
- data4 0x1e891def, 0x9ee28ac0, 0x1e1db99b, 0x9ee1ce38
- data4 0x9bdd9bca, 0x1eb72cb9, 0x9e8c53c6, 0x1e0df6ca
- data4 0x1e8f2ccd, 0x9e9b0886, 0x1eeb3bc7, 0x1ec7e772
- data4 0x9e210776, 0x9daf246c, 0x1ea1f151, 0x1ece4dc6
- data4 0x1ce741c8, 0x1ed3c88f, 0x9ec9a4fd, 0x9e0c8d30
- data4 0x1d2fbb26, 0x9ef212a7, 0x1ee44f1c, 0x9e445550
- data4 0x1e075f77, 0x9d9291a3, 0x1f09c2ee, 0x9e012c88
- data4 0x1f057d62, 0x9e7bb0dc, 0x9d8758ee, 0x1ee8d6c1
- data4 0x9e509a57, 0x9e4ca7b7, 0x1e2cb341, 0x9ec35106
- data4 0x1ecf3baf, 0x1e11781c, 0x1ea0cc78, 0x1eb75ca6
- data4 0x1e961e1a, 0x1eb88853, 0x1e7abf50, 0x1ee38704
- data4 0x9dc5ab0f, 0x1afe197b, 0x9ec07523, 0x9d9b7f78
- data4 0x1f011618, 0x1ed43b0b, 0x9f035945, 0x9e3fd014
- data4 0x9bbda5cd, 0x9e83f8ab, 0x1e58a928, 0x1e392d61
- data4 0x1efdbb52, 0x1ee310a8, 0x9ec7ecc1, 0x1e8c9ed6
- data4 0x9ef82dee, 0x9e70545b, 0x9ea53fc4, 0x1e40f419
-LOCAL_OBJECT_END(D_table)
-
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(exp10l)
-
-{.mfi
- alloc GR_SREG = ar.pfs, 1, 4, 4, 0
- // will continue only for normal/denormal numbers
- fclass.nm.unc p12, p7 = f8, 0x1b
- // GR_ADDR0 = pointer to log2(10), C_1...C_6 followed by T_table
- addl GR_ADDR0 = @ltoff(poly_coeffs), gp ;;
-}
-
-{.mfi
- // load start address for C_1...C_6 followed by T_table
- ld8 GR_ADDR0 = [ GR_ADDR0 ]
- // X<0 ?
- fcmp.lt.s1 p6, p8 = f8, f0
- // GR_BM8 = bias-8
- mov GR_BM8 = 0xffff-8
-}
-{.mlx
- nop.m 0
- // GR_EMIN = (-2^14-62)*2^{8}
- movl GR_EMIN = 0xca807c00 ;;
-}
-
-{.mmb
- // FR_CONST1 = 2^{-8}
- setf.exp FR_CONST1 = GR_BM8
- // load log2(10)*2^8
- ldfe FR_LOG10 = [ GR_ADDR0 ], 16
- (p12) br.cond.spnt SPECIAL_EXP10 ;;
-}
-
-{.mmf
- setf.s FR_UF_TEST = GR_EMIN
- // load overflow threshold
- ldfe FR_OF_TEST = [ GR_ADDR0 ], 16
- // normalize x
- fma.s0 f8 = f8, f1, f0 ;;
-}
-
-{.mmi
- // load C_1
- ldfe FR_COEFF1 = [ GR_ADDR0 ], 16 ;;
- // load C_2
- ldfe FR_COEFF2 = [ GR_ADDR0 ], 16
- nop.i 0 ;;
-}
-
-{.mmf
- // GR_D_ADDR = pointer to D table
- add GR_D_ADDR = 2048-64+96+32, GR_ADDR0
- // load C_3, C_4
- ldfpd FR_COEFF3, FR_COEFF4 = [ GR_ADDR0 ], 16
- // y = x*log2(10)*2^8
- fma.s1 FR_XL10 = f8, FR_LOG10, f0 ;;
-}
-
-{.mfi
- // load C_5, C_6
- ldfpd FR_COEFF5, FR_COEFF6 = [ GR_ADDR0 ], 16
- // get int(x)
- fcvt.fx.trunc.s1 FR_XINT = f8
- nop.i 0
-}
-{.mfi
- nop.m 0
- // FR_LOG10 = log2(10)
- fma.s1 FR_L10 = FR_LOG10, FR_CONST1, f0
- nop.i 0 ;;
-}
-
-{.mfi
- // load log2(10)_low
- ldfe FR_L10_LOW = [ GR_ADDR0 ], 16
- // y0 = x*log2(10) = x*log2(10)_hi
- fma.s1 FR_LOG10 = f8, FR_L10, f0
- mov GR_EMIN = 0xffff-63
-}
-{.mfi
- mov GR_32_BIAS = 0xffff + 5
- // (K+f)*2^8 = round_to_int(y)
- fcvt.fx.s1 FR_KF0 = FR_XL10
- mov GR_4_BIAS = 0xffff + 2;;
-}
-
-{.mfi
- // load smallest normal limit
- ldfe FR_SNORM_LIMIT = [ GR_ADDR0 ], 16
- // x>overflow threshold ?
- fcmp.gt.s1 p12, p7 = f8, FR_OF_TEST
- nop.i 0 ;;
-}
-
-{.mfi
- setf.exp FR_32 = GR_32_BIAS
- // x<underflow threshold ?
- (p7) fcmp.lt.s1 p12, p7 = FR_XL10, FR_UF_TEST
- nop.i 0 ;;
-}
-
-{.mfi
- setf.exp FR_4 = GR_4_BIAS
- fcvt.xf FR_XINTF = FR_XINT
- nop.i 0
-}
-{.mfi
- nop.m 0
- // FR_L10 = log2(10)_h*x-RN(log2(10)_h*x)
- fms.s1 FR_L10 = f8, FR_L10, FR_LOG10
- nop.i 0 ;;
-}
-
-{.mfi
- getf.sig GR_BM8 = FR_KF0
- fcvt.xf FR_KF0 = FR_KF0
- mov GR_CONST2 = 255 ;;
-}
-
-{.mfi
- // GR_CONST2 = f
- and GR_CONST2 = GR_CONST2, GR_BM8
- // FR_L10_LOW = e = log2(10)_l*x+(log2(10)_h*x-RN(log2(10)_h*x))
- fma.s1 FR_L10_LOW = FR_L10_LOW, f8, FR_L10
- // GR_BM8 = K
- shr GR_BM8 = GR_BM8, 8 ;;
-}
-
-{.mmi
- // address of D
- shladd GR_D_ADDR = GR_CONST2, 2, GR_D_ADDR
- // K+ = bias-63
- add GR_BM8 = GR_BM8, GR_EMIN
- // address of T
- shladd GR_ADDR0 = GR_CONST2, 3, GR_ADDR0 ;;
-}
-
-{.mfb
- // load D
- ldfs FR_OF_TEST = [ GR_D_ADDR ]
- // is input an integer ?
- fcmp.eq.s1 p13, p14 = f8, FR_XINTF
- (p12) br.cond.spnt OUT_RANGE_EXP10 ;;
-}
-
-{.mmf
- // load T
- ldf8 FR_UF_TEST = [ GR_ADDR0 ]
- // FR_XL10 = 2^{K-63}
- setf.exp FR_XL10 = GR_BM8
- // r = x*log2(10)_hi-2^{-10}* [ (K+f)*2^{10} ]
- fnma.s1 FR_KF0 = FR_KF0, FR_CONST1, FR_LOG10 ;;
-}
-
-{.mfi
- nop.m 0
- // get 28.0
- fms.s1 FR_28 = FR_32, f1, FR_4
- nop.i 0
-}
-{.mfi
- nop.m 0
- // E = 1+C_1*e
- fma.s1 FR_L10 = FR_L10_LOW, FR_COEFF1, f1
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // P12 = C_1+C_2*r
- fma.s1 FR_COEFF2 = FR_COEFF2, FR_KF0, FR_COEFF1
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P34 = C_3+C_4*r
- fma.s1 FR_COEFF4 = FR_COEFF4, FR_KF0, FR_COEFF3
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // P56 = C_5+C_6*r
- fma.s1 FR_COEFF5 = FR_COEFF6, FR_KF0, FR_COEFF5
- nop.i 0
-}
-{.mfi
- nop.m 0
- // GR_ADDR0 = r*r
- fma.s1 FR_COEFF3 = FR_KF0, FR_KF0, f0
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // if input is integer, is it positive ?
- (p13) fcmp.ge.s1 p13, p14 = f8, f0
- nop.i 0
-}
-{.mfi
- nop.m 0
- // r' = r*E
- fma.s1 FR_KF0 = FR_KF0, FR_L10, f0
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // D' = D+C_1*e
- fma.s1 FR_OF_TEST = FR_L10_LOW, FR_COEFF1, FR_OF_TEST
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // test if x >= smallest normal limit
- fcmp.ge.s1 p11, p0 = f8, FR_SNORM_LIMIT
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // P36 = P34+r2*P56
- fma.s1 FR_COEFF4 = FR_COEFF5, FR_COEFF3, FR_COEFF4
- nop.i 0
-}
-{.mfi
- nop.m 0
- // GR_D_ADDR = r'*r2
- fma.s1 FR_COEFF3 = FR_COEFF3, FR_KF0, f0
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // is input below 28.0 ?
- (p13) fcmp.lt.s1 p13, p14 = f8, FR_28
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P' = P12*r'+D'
- fma.s1 FR_COEFF2 = FR_COEFF2, FR_KF0, FR_OF_TEST
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // P = P'+r3*P36
- fma.s1 FR_COEFF3 = FR_COEFF3, FR_COEFF4, FR_COEFF2
- nop.i 0
-}
-{.mfi
- nop.m 0
- // T = 2^{K-63}*T
- fma.s1 FR_UF_TEST = FR_UF_TEST, FR_XL10, f0
- nop.i 0 ;;
-}
-
-.pred.rel "mutex",p13,p14
-{.mfi
- nop.m 0
- (p13) fma.s1 f8 = FR_COEFF3, FR_UF_TEST, FR_UF_TEST
- nop.i 0
-}
-{.mfb
- nop.m 0
- // result = T+T*P
- (p14) fma.s0 f8 = FR_COEFF3, FR_UF_TEST, FR_UF_TEST
- // return
- (p11) br.ret.sptk b0 ;; // return, if result normal
-}
-
-// Here if result in denormal range (and not zero)
-{.mib
- nop.m 0
- mov GR_Parameter_TAG= 264
- br.cond.sptk __libm_error_region // Branch to error handling
-}
-;;
-
-SPECIAL_EXP10:
-
-{.mfi
- nop.m 0
- // x = -Infinity ?
- fclass.m p6, p0 = f8, 0x22
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // x = +Infinity ?
- fclass.m p7, p0 = f8, 0x21
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // x = +/-Zero ?
- fclass.m p8, p0 = f8, 0x7
- nop.i 0
-}
-{.mfb
- nop.m 0
- // exp10(-Infinity) = 0
- (p6) mov f8 = f0
- (p6) br.ret.spnt b0 ;;
-}
-
-{.mfb
- nop.m 0
- // exp10(+Infinity) = +Infinity
- nop.f 0
- (p7) br.ret.spnt b0 ;;
-}
-
-{.mfb
- nop.m 0
- // exp10(+/-0) = 1
- (p8) mov f8 = f1
- (p8) br.ret.spnt b0 ;;
-}
-
-{.mfb
- nop.m 0
- // Remaining cases: NaNs
- fma.s0 f8 = f8, f1, f0
- br.ret.sptk b0 ;;
-}
-
-
-OUT_RANGE_EXP10:
-
-// underflow: p6 = 1
-// overflow: p8 = 1
-
-.pred.rel "mutex",p6,p8
-{.mmi
- (p8) mov GR_CONST1 = 0x1fffe
- (p6) mov GR_CONST1 = 1
- nop.i 0
-}
-;;
-
-{.mii
- setf.exp FR_KF0 = GR_CONST1
- (p8) mov GR_Parameter_TAG = 165
- (p6) mov GR_Parameter_TAG = 264
-}
-;;
-
-{.mfb
- nop.m 999
- fma.s0 f8 = FR_KF0, FR_KF0, f0 // Create overflow/underflow
- br.cond.sptk __libm_error_region // Branch to error handling
-}
-;;
-
-GLOBAL_IEEE754_END(exp10l)
-weak_alias (exp10l, pow10l)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{.mfi
- add GR_Parameter_Y = -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
-}
-
-{.mfi
-.fframe 64
- add sp = -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP = gp ;; // Save gp
-}
-
-{.mmi
- stfe [ GR_Parameter_Y ] = FR_Y, 16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0 ;; // Save b0
-}
-
-.body
-{.mib
- stfe [ GR_Parameter_X ] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0, GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{.mib
- stfe [ GR_Parameter_Y ] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16, GR_Parameter_Y
- br.call.sptk b0 = __libm_error_support# ;; // Call error handling function
-}
-
-{.mmi
- add GR_Parameter_RESULT = 48, sp
- nop.m 0
- nop.i 0 ;;
-}
-
-{.mmi
- ldfe f8 = [ GR_Parameter_RESULT ] // Get return result off stack
-.restore sp
- add sp = 64, sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 ;; // Restore return address
-}
-
-{.mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 ;; // Return
-}
-
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#, @function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/e_exp2.S b/sysdeps/ia64/fpu/e_exp2.S
deleted file mode 100644
index 54f652e384..0000000000
--- a/sysdeps/ia64/fpu/e_exp2.S
+++ /dev/null
@@ -1,564 +0,0 @@
-.file "exp2.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/25/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/05/02 Improved performance
-// 01/17/03 Fixed to call error support when x=1024.0
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// double exp2(double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x= (K + fh + fl + r), where
-// K is an integer, fh= 0.b1 b2 b3 b4 b5,
-// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
-// and |r|<2^{-11}
-// Th is a table that stores 2^fh (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-// Tl is a table that stores 2^fl (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-//
-// 2^x is approximated as
-// 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2+c3*r^3+c4*r^4)
-
-// Note: We use the following trick to speed up conversion from FP to integer:
-//
-// Let x = K + r, where K is an integer, and |r| <= 0.5
-// Let N be the number of significand bits for the FP format used
-// ( N=64 for double-extended, N=53 for double)
-//
-// Then let y = 1.5 * 2^(N-1) + x for RN mode
-// K = y - 1.5 * 2^(N-1)
-// r = x - K
-//
-// If we want to obtain the integer part and the first m fractional bits of x,
-// we can use the same trick, but with a constant of 1.5 * 2^(N-1-m):
-//
-// Let x = K + f + r
-// f = 0.b_1 b_2 ... b_m
-// |r| <= 2^(-m-1)
-//
-// Then let y = 1.5 * 2^(N-1-m) + x for RN mode
-// (K+f) = y - 1.5 * 2^(N-1-m)
-// r = x - K
-
-
-// Special values
-//==============================================================
-// exp2(0)= 1
-// exp2(+inf)= inf
-// exp2(-inf)= 0
-//
-
-// Registers used
-//==============================================================
-// r2-r3, r14-r40
-// f6-f15, f32-f45
-// p6-p8, p12
-//
-
-
-GR_TBL_START = r2
-GR_LOG_TBL = r3
-
-GR_OF_LIMIT = r14
-GR_UF_LIMIT = r15
-GR_EXP_CORR = r16
-GR_F_low = r17
-GR_F_high = r18
-GR_K = r19
-GR_Flow_ADDR = r20
-
-GR_BIAS = r21
-GR_Fh = r22
-GR_Fh_ADDR = r23
-GR_EXPMAX = r24
-GR_EMIN = r25
-
-GR_ROUNDVAL = r26
-GR_MASK = r27
-GR_KF0 = r28
-GR_MASK_low = r29
-GR_COEFF_START = r30
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-FR_COEFF1 = f6
-FR_COEFF2 = f7
-FR_R = f9
-
-FR_KF0 = f12
-FR_COEFF3 = f13
-FR_COEFF4 = f14
-FR_UF_LIMIT = f15
-
-FR_OF_LIMIT = f32
-FR_EXPMIN = f33
-FR_ROUNDVAL = f34
-FR_KF = f35
-
-FR_2_TO_K = f36
-FR_T_low = f37
-FR_T_high = f38
-FR_P34 = f39
-FR_R2 = f40
-
-FR_P12 = f41
-FR_T_low_K = f42
-FR_P14 = f43
-FR_T = f44
-FR_P = f45
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
-data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
-data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
-// 2^{0.00000 b6 b7 b8 b9 b10}
-data8 0x8000000000000000, 0x8016302f17467628
-data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
-data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
-data8 0x80855ad965e88b83, 0x809ba2264dada76a
-data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
-data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
-data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
-data8 0x813801881d886f7b, 0x814e67cceb90502c
-data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
-data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
-data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
-data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
-data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
-data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
-data8 0x8272fb97b2a5894c, 0x828998760d01faf3
-data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
-//
-// 2^{0.b1 b2 b3 b4 b5}
-data8 0x8000000000000000, 0x82cd8698ac2ba1d7
-data8 0x85aac367cc487b14, 0x88980e8092da8527
-data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
-data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
-data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
-data8 0x9ef5326091a111ad, 0xa27043030c496818
-data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
-data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
-data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
-data8 0xbd08a39f580c36be, 0xc12c4cca66709456
-data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
-data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
-data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
-data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
-data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
-data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
-LOCAL_OBJECT_END(T_table)
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(exp2)
-
-
-{.mfi
- alloc r32= ar.pfs, 1, 4, 4, 0
- // will continue only for non-zero normal/denormal numbers
- fclass.nm p12, p0= f8, 0x1b
- // GR_TBL_START= pointer to C_1...C_4 followed by T_table
- addl GR_TBL_START= @ltoff(poly_coeffs), gp
-}
-{.mlx
- mov GR_OF_LIMIT= 0xffff + 10 // Exponent of overflow limit
- movl GR_ROUNDVAL= 0x5a400000 // 1.5*2^(63-10) (SP)
-}
-;;
-
-// Form special constant 1.5*2^(63-10) to give integer part and first 10
-// fractional bits of x
-{.mfi
- setf.s FR_ROUNDVAL= GR_ROUNDVAL // Form special constant
- fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
- nop.i 0
-}
-{.mfb
- ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
- nop.f 0
- (p12) br.cond.spnt SPECIAL_exp2 // Branch if nan, inf, zero
-}
-;;
-
-{.mlx
- setf.exp FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
- movl GR_UF_LIMIT= 0xc4866000 // (-2^10-51) = -1075
-}
-;;
-
-{.mfi
- ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
- fma.s0 f8= f8, f1, f0 // normalize x
- nop.i 0
-}
-;;
-
-{.mmi
- setf.s FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
- ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
- mov GR_EXP_CORR= 0xffff-126
-}
-;;
-
-{.mfi
- ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
- fma.s1 FR_KF0= f8, f1, FR_ROUNDVAL // y= x + 1.5*2^(63-10)
- nop.i 0
-}
-;;
-
-{.mfi
- mov GR_MASK= 1023
- fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)
- mov GR_MASK_low= 31
-}
-;;
-
-{.mfi
- getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
- fcmp.ge.s1 p12, p7= f8, FR_OF_LIMIT // x >= overflow threshold ?
- add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
-}
-;;
-
-{.mmi
- and GR_F_low= GR_KF0, GR_MASK_low // f_low
- and GR_F_high= GR_MASK, GR_KF0 // f_high*32
- shr GR_K= GR_KF0, 10 // K
-}
-;;
-
-{.mmi
- shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
- add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
- shr GR_Fh= GR_F_high, 5 // f_high
-}
-;;
-
-{.mfi
- setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
- fnma.s1 FR_R= FR_KF, f1, f8 // r= x - (K+f)
- shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
-}
-{.mlx
- ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
- movl GR_EMIN= 0xc47f8000 // EMIN= -1022
-}
-;;
-
-{.mfi
- ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
- (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
- nop.i 0
-}
-;;
-
-{.mfi
- setf.s FR_EXPMIN= GR_EMIN // FR_EXPMIN= EMIN
- fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
- nop.i 0
-}
-{.mfb
- nop.m 0
- fma.s1 FR_R2= FR_R, FR_R, f0 // r*r
- (p12) br.cond.spnt OUT_RANGE_exp2
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P14= FR_R2, FR_P34, FR_P12 // P14= P12+r2*P34
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fcmp.lt.s0 p6, p8= f8, FR_EXPMIN // underflow (x<EMIN) ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P= FR_P14, FR_R, f0 // P= P14*r
- nop.i 0
-}
-;;
-
-{.mfb
- nop.m 0
- fma.d.s0 f8= FR_P, FR_T, FR_T // result= T+T*P
- (p8) br.ret.sptk b0 // return
-}
-;;
-
-{.mfb
- (p6) mov GR_Parameter_TAG= 162
- nop.f 0
- (p6) br.cond.sptk __libm_error_region
-}
-;;
-
-
-SPECIAL_exp2:
-{.mfi
- nop.m 0
- fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
- nop.i 0
-}
-{.mfb
- nop.m 0
- (p6) mov f8= f0 // exp2(-Infinity)= 0
- (p6) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- nop.f 0
- (p7) br.ret.spnt b0 // exp2(+Infinity)= +Infinity
-}
-;;
-
-{.mfb
- nop.m 0
- (p8) mov f8= f1 // exp2(+/-0)= 1
- (p8) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- fma.d.s0 f8= f8, f1, f0 // Remaining cases: NaNs
- br.ret.sptk b0
-}
-;;
-
-
-OUT_RANGE_exp2:
-
-// overflow: p8= 1
-
-{.mii
- (p8) mov GR_EXPMAX= 0x1fffe
- nop.i 0
- nop.i 0
-}
-;;
-
-{.mmb
- (p8) mov GR_Parameter_TAG= 161
- (p8) setf.exp FR_R= GR_EXPMAX
- nop.b 999
-}
-;;
-
-{.mfi
- nop.m 999
- (p8) fma.d.s0 f8= FR_R, FR_R, f0 // Create overflow
- nop.i 999
-}
-// underflow: p6= 1
-{.mii
- (p6) mov GR_Parameter_TAG= 162
- (p6) mov GR_EXPMAX= 1
- nop.i 0
-}
-;;
-
-{.mmb
- nop.m 0
- (p6) setf.exp FR_R= GR_EXPMAX
- nop.b 999
-}
-;;
-
-{.mfb
- nop.m 999
- (p6) fma.d.s0 f8= FR_R, FR_R, f0 // Create underflow
- nop.b 0
-}
-;;
-
-GLOBAL_LIBM_END(exp2)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-.prologue
-{.mfi
- add GR_Parameter_Y= -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
-}
-
-{.mfi
-.fframe 64
- add sp= -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP= gp // Save gp
-}
-;;
-
-{.mmi
- stfd [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
- add GR_Parameter_X= 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0= b0 // Save b0
-}
-;;
-
-.body
-{.mib
- stfd [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{.mib
- stfd [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y= -16, GR_Parameter_Y
- br.call.sptk b0= __libm_error_support# // Call error handling function
-}
-;;
-
-{.mmi
- add GR_Parameter_RESULT= 48, sp
- nop.m 0
- nop.i 0
-}
-;;
-
-{.mmi
- ldfd f8= [ GR_Parameter_RESULT ] // Get return result off stack
-.restore sp
- add sp= 64, sp // Restore stack pointer
- mov b0= GR_SAVE_B0 // Restore return address
-}
-;;
-
-{.mib
- mov gp= GR_SAVE_GP // Restore gp
- mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-}
-;;
-
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#, @function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_exp2f.S b/sysdeps/ia64/fpu/e_exp2f.S
deleted file mode 100644
index 36354ae3bd..0000000000
--- a/sysdeps/ia64/fpu/e_exp2f.S
+++ /dev/null
@@ -1,539 +0,0 @@
-.file "exp2f.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/25/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/05/02 Improved performance and accuracy
-// 01/17/03 Fixed to call error support when x=128.0
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// float exp2f(float)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x= (K + fh + fl + r), where
-// K is an integer, fh= 0.b1 b2 b3 b4 b5,
-// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
-// and |r|<2^{-11}
-// Th is a table that stores 2^fh (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-// Tl is a table that stores 2^fl (32 entries) rounded to
-// double extended precision (only mantissa is stored)
-//
-// 2^x is approximated as
-// 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2)
-
-// Note: We use the following trick to speed up conversion from FP to integer:
-//
-// Let x = K + r, where K is an integer, and |r| <= 0.5
-// Let N be the number of significand bits for the FP format used
-// ( N=64 for double-extended, N=53 for double)
-//
-// Then let y = 1.5 * 2^(N-1) + x for RN mode
-// K = y - 1.5 * 2^(N-1)
-// r = x - K
-//
-// If we want to obtain the integer part and the first m fractional bits of x,
-// we can use the same trick, but with a constant of 1.5 * 2^(N-1-m):
-//
-// Let x = K + f + r
-// f = 0.b_1 b_2 ... b_m
-// |r| <= 2^(-m-1)
-//
-// Then let y = 1.5 * 2^(N-1-m) + x for RN mode
-// (K+f) = y - 1.5 * 2^(N-1-m)
-// r = x - K
-
-
-// Special values
-//==============================================================
-// exp2(0)= 1
-// exp2(+inf)= inf
-// exp2(-inf)= 0
-//
-
-// Registers used
-//==============================================================
-// r2-r3, r14-r40
-// f6-f15, f32-f45
-// p6-p8, p12
-//
-
-
-GR_TBL_START = r2
-GR_LOG_TBL = r3
-
-GR_OF_LIMIT = r14
-GR_UF_LIMIT = r15
-GR_EXP_CORR = r16
-GR_F_low = r17
-GR_F_high = r18
-GR_K = r19
-GR_Flow_ADDR = r20
-
-GR_BIAS = r21
-GR_Fh = r22
-GR_Fh_ADDR = r23
-GR_EXPMAX = r24
-GR_EMIN = r25
-
-GR_ROUNDVAL = r26
-GR_MASK = r27
-GR_KF0 = r28
-GR_MASK_low = r29
-GR_COEFF_START = r30
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-FR_COEFF1 = f6
-FR_COEFF2 = f7
-FR_R = f9
-
-FR_KF0 = f12
-FR_UF_LIMIT = f15
-
-FR_OF_LIMIT = f32
-FR_EXPMIN = f33
-FR_ROUNDVAL = f34
-FR_KF = f35
-
-FR_2_TO_K = f36
-FR_T_low = f37
-FR_T_high = f38
-
-FR_P12 = f41
-FR_T_low_K = f42
-FR_T = f44
-FR_P = f45
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
-data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
-// 2^{0.00000 b6 b7 b8 b9 b10}
-data8 0x8000000000000000, 0x8016302f17467628
-data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
-data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
-data8 0x80855ad965e88b83, 0x809ba2264dada76a
-data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
-data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
-data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
-data8 0x813801881d886f7b, 0x814e67cceb90502c
-data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
-data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
-data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
-data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
-data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
-data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
-data8 0x8272fb97b2a5894c, 0x828998760d01faf3
-data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
-//
-// 2^{0.b1 b2 b3 b4 b5}
-data8 0x8000000000000000, 0x82cd8698ac2ba1d7
-data8 0x85aac367cc487b14, 0x88980e8092da8527
-data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
-data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
-data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
-data8 0x9ef5326091a111ad, 0xa27043030c496818
-data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
-data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
-data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
-data8 0xbd08a39f580c36be, 0xc12c4cca66709456
-data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
-data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
-data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
-data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
-data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
-data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
-LOCAL_OBJECT_END(T_table)
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(exp2f)
-
-
-{.mfi
- alloc r32= ar.pfs, 1, 4, 4, 0
- // will continue only for non-zero normal/denormal numbers
- fclass.nm p12, p0= f8, 0x1b
- // GR_TBL_START= pointer to C_1...C_2 followed by T_table
- addl GR_TBL_START= @ltoff(poly_coeffs), gp
-}
-{.mlx
- mov GR_OF_LIMIT= 0xffff + 7 // Exponent of overflow limit
- movl GR_ROUNDVAL= 0x5a400000 // 1.5*2^(63-10) (SP)
-}
-;;
-
-// Form special constant 1.5*2^(63-10) to give integer part and first 10
-// fractional bits of x
-{.mfi
- setf.s FR_ROUNDVAL= GR_ROUNDVAL // Form special constant
- fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
- nop.i 0
-}
-{.mfb
- ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
- nop.f 0
- (p12) br.cond.spnt SPECIAL_exp2 // Branch if nan, inf, zero
-}
-;;
-
-{.mlx
- setf.exp FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
- movl GR_UF_LIMIT= 0xc3160000 // (-2^7-22) = -150
-}
-;;
-
-{.mfi
- ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
- fma.s0 f8= f8, f1, f0 // normalize x
- nop.i 0
-}
-;;
-
-{.mmi
- ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
- setf.s FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
- mov GR_EXP_CORR= 0xffff-126
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_KF0= f8, f1, FR_ROUNDVAL // y= x + 1.5*2^(63-10)
- nop.i 0
-}
-;;
-
-{.mfi
- mov GR_MASK= 1023
- fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)
- mov GR_MASK_low= 31
-}
-;;
-
-{.mfi
- getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
- fcmp.ge.s1 p12, p7= f8, FR_OF_LIMIT // x >= overflow threshold ?
- add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
-}
-;;
-
-{.mmi
- and GR_F_low= GR_KF0, GR_MASK_low // f_low
- and GR_F_high= GR_MASK, GR_KF0 // f_high*32
- shr GR_K= GR_KF0, 10 // K
-}
-;;
-
-{.mmi
- shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
- add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
- shr GR_Fh= GR_F_high, 5 // f_high
-}
-;;
-
-{.mfi
- setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
- fnma.s1 FR_R= FR_KF, f1, f8 // r= x - (K+f)
- shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
-}
-{.mlx
- ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
- movl GR_EMIN= 0xc2fc0000 // EMIN= -126
-}
-;;
-
-{.mfi
- ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
- (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
- nop.i 0
-}
-;;
-
-{.mfb
- setf.s FR_EXPMIN= GR_EMIN // FR_EXPMIN= EMIN
- fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
- (p12) br.cond.spnt OUT_RANGE_exp2
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_P= FR_R, FR_P12, f0 // P= P12+r
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fcmp.lt.s0 p6, p8= f8, FR_EXPMIN // underflow (x<EMIN) ?
- nop.i 0
-}
-;;
-
-{.mfb
- nop.m 0
- fma.s.s0 f8= FR_P, FR_T, FR_T // result= T+T*P
- (p8) br.ret.sptk b0 // return
-}
-;;
-
-{.mfb
- (p6) mov GR_Parameter_TAG= 164
- nop.f 0
- (p6) br.cond.sptk __libm_error_region
-}
-;;
-
-
-SPECIAL_exp2:
-{.mfi
- nop.m 0
- fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
- nop.i 0
-}
-;;
-
-{.mfi
- nop.m 0
- fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
- nop.i 0
-}
-{.mfb
- nop.m 0
- (p6) mov f8= f0 // exp2(-Infinity)= 0
- (p6) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- nop.f 0
- (p7) br.ret.spnt b0 // exp2(+Infinity)= +Infinity
-}
-;;
-
-{.mfb
- nop.m 0
- (p8) mov f8= f1 // exp2(+/-0)= 1
- (p8) br.ret.spnt b0
-}
-;;
-
-{.mfb
- nop.m 0
- fma.s.s0 f8= f8, f1, f0 // Remaining cases: NaNs
- br.ret.sptk b0
-}
-;;
-
-
-OUT_RANGE_exp2:
-
-// overflow: p8= 1
-
-{.mii
- (p8) mov GR_EXPMAX= 0x1fffe
- nop.i 0
- nop.i 0
-}
-;;
-
-{.mmb
- (p8) mov GR_Parameter_TAG= 163
- (p8) setf.exp FR_R= GR_EXPMAX
- nop.b 999
-}
-;;
-
-{.mfi
- nop.m 999
- (p8) fma.s.s0 f8= FR_R, FR_R, f0 // Create overflow
- nop.i 999
-}
-// underflow: p6= 1
-{.mii
- (p6) mov GR_Parameter_TAG= 164
- (p6) mov GR_EXPMAX= 1
- nop.i 0
-}
-;;
-
-{.mmb
- nop.m 0
- (p6) setf.exp FR_R= GR_EXPMAX
- nop.b 999
-}
-;;
-
-{.mfb
- nop.m 999
- (p6) fma.s.s0 f8= FR_R, FR_R, f0 // Create underflow
- nop.b 0
-}
-;;
-
-GLOBAL_LIBM_END(exp2f)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-.prologue
-{.mfi
- add GR_Parameter_Y= -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
-}
-
-{.mfi
-.fframe 64
- add sp= -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP= gp // Save gp
-}
-;;
-
-{.mmi
- stfs [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
- add GR_Parameter_X= 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0= b0 // Save b0
-}
-;;
-
-.body
-{.mib
- stfs [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{.mib
- stfs [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y= -16, GR_Parameter_Y
- br.call.sptk b0= __libm_error_support# // Call error handling function
-}
-;;
-
-{.mmi
- add GR_Parameter_RESULT= 48, sp
- nop.m 0
- nop.i 0
-}
-;;
-
-{.mmi
- ldfs f8= [ GR_Parameter_RESULT ] // Get return result off stack
-.restore sp
- add sp= 64, sp // Restore stack pointer
- mov b0= GR_SAVE_B0 // Restore return address
-}
-;;
-
-{.mib
- mov gp= GR_SAVE_GP // Restore gp
- mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-}
-;;
-
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#, @function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_exp2l.S b/sysdeps/ia64/fpu/e_exp2l.S
deleted file mode 100644
index 743ed3558b..0000000000
--- a/sysdeps/ia64/fpu/e_exp2l.S
+++ /dev/null
@@ -1,807 +0,0 @@
-.file "exp2l.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 07/27/00 Initial version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [ the previously overwritten ] GR_Parameter_RESULT.
-// 02/02/01 Added libm_error_support calls for underflow
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/07/03 Reformatted assembly source
-//
-// API
-//==============================================================
-// long double exp2l(long double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x= K + f + r, where
-// K is an integer, f= 0.b1 b2... b8 (f>= 0),
-// and |r|<2^{-8}
-// T is a table that stores 2^f (256 entries) rounded to
-// double extended precision (only mantissa is stored)
-// D stores (2^f/T [ f ] - 1), rounded to single precision
-//
-// 2^x is approximated as
-// 2^K * T [ f ] * (1+D [ f ] +c1*r+c2*r^2+...+c6*r^6)
-//
-
-
-
-// Special values
-//==============================================================
-// exp2(0)= 1
-// exp2(+inf)= inf
-// exp2(-inf)= 0
-//
-
-
-// Registers used
-//==============================================================
-// f6-f15, f32-f46
-// r2-r3, r8-r11, r14-r40
-// p6, p7, p8, p12
-
- FR_X = f10
- FR_Y = f1
- FR_RESULT = f8
-
- FR_KF0 = f6
- FR_EXP63 = f7
- FR_T = f9
- FR_COEFF3 = f10
- FR_COEFF4 = f11
- FR_COEFF5 = f12
- FR_COEFF6 = f13
- FR_COEFF1 = f14
- FR_COEFF2 = f15
- FR_2P14 = f32
- FR_UF_TEST = f33
- FR_D = f34
- FR_R = f35
- FR_2EXP = f36
- FR_EMIN = f37
- FR_P34 = f38
- FR_P56 = f39
- FR_R2 = f40
- FR_P12 = f41
- FR_TS = f42
- FR_P36 = f43
- FR_P02 = f44
- FR_R3 = f45
- FR_P06 = f46
-
-
- GR_ADDR0 = r2
- GR_ADDR = r2
- GR_D_ADDR0 = r3
- GR_D_ADDR = r3
- GR_LEADBITS = r8
- GR_256 = r9
- GR_EM63 = r10
- GR_255 = r11
- GR_EXPON = r14
- GR_BM63 = r15
- GR_UF_TEST = r16
- GR_INDEX = r17
- GR_K = r18
- GR_KF = r19
- GR_2P14 = r19
- GR_EMIN = r20
- GR_IT = r21
- GR_ID = r22
- GR_63 = r23
- GR_CONST1 = r24
- GR_EBIAS = r25
- GR_CONST2 = r26
- GR_CONST3 = r27
- GR_SIGNIF = r28
- GR_ARGEXP = r29
- GR_SGN = r30
- GR_EMIN1 = r31
- GR_SREG = r32
-
- GR_SAVE_B0 = r33
- GR_SAVE_PFS = r34
- GR_SAVE_GP = r35
- GR_SAVE_SP = r36
-
- GR_Parameter_X = r37
- GR_Parameter_Y = r38
- GR_Parameter_RESULT= r39
- GR_Parameter_TAG = r40
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
- data8 0x3fac6b08d704a0c0 // C_3
- data8 0x3f83b2ab6fba4e77 // C_4
- data8 0x3f55d87fe78a6731 // C_5
- data8 0x3f2430912f86c787 // C_6
- data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
- data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
- data8 0x8000000000000000, 0x8058d7d2d5e5f6b1
- data8 0x80b1ed4fd999ab6c, 0x810b40a1d81406d4
- data8 0x8164d1f3bc030773, 0x81bea1708dde6056
- data8 0x8218af4373fc25ec, 0x8272fb97b2a5894c
- data8 0x82cd8698ac2ba1d7, 0x83285071e0fc4547
- data8 0x8383594eefb6ee37, 0x83dea15b9541b132
- data8 0x843a28c3acde4046, 0x8495efb3303efd30
- data8 0x84f1f656379c1a29, 0x854e3cd8f9c8c95d
- data8 0x85aac367cc487b15, 0x86078a2f23642a9f
- data8 0x8664915b923fba04, 0x86c1d919caef5c88
- data8 0x871f61969e8d1010, 0x877d2afefd4e256c
- data8 0x87db357ff698d792, 0x88398146b919f1d4
- data8 0x88980e8092da8527, 0x88f6dd5af155ac6b
- data8 0x8955ee03618e5fdd, 0x89b540a7902557a4
- data8 0x8a14d575496efd9a, 0x8a74ac9a79896e47
- data8 0x8ad4c6452c728924, 0x8b3522a38e1e1032
- data8 0x8b95c1e3ea8bd6e7, 0x8bf6a434adde0085
- data8 0x8c57c9c4646f4dde, 0x8cb932c1bae97a95
- data8 0x8d1adf5b7e5ba9e6, 0x8d7ccfc09c50e2f8
- data8 0x8ddf042022e69cd6, 0x8e417ca940e35a01
- data8 0x8ea4398b45cd53c0, 0x8f073af5a2013520
- data8 0x8f6a8117e6c8e5c4, 0x8fce0c21c6726481
- data8 0x9031dc431466b1dc, 0x9095f1abc540ca6b
- data8 0x90fa4c8beee4b12b, 0x915eed13c89689d3
- data8 0x91c3d373ab11c336, 0x9228ffdc10a051ad
- data8 0x928e727d9531f9ac, 0x92f42b88f673aa7c
- data8 0x935a2b2f13e6e92c, 0x93c071a0eef94bc1
- data8 0x9426ff0fab1c04b6, 0x948dd3ac8ddb7ed3
- data8 0x94f4efa8fef70961, 0x955c5336887894d5
- data8 0x95c3fe86d6cc7fef, 0x962bf1cbb8d97560
- data8 0x96942d3720185a00, 0x96fcb0fb20ac4ba3
- data8 0x97657d49f17ab08e, 0x97ce9255ec4357ab
- data8 0x9837f0518db8a96f, 0x98a1976f7597e996
- data8 0x990b87e266c189aa, 0x9975c1dd47518c77
- data8 0x99e0459320b7fa65, 0x9a4b13371fd166ca
- data8 0x9ab62afc94ff864a, 0x9b218d16f441d63d
- data8 0x9b8d39b9d54e5539, 0x9bf93118f3aa4cc1
- data8 0x9c6573682ec32c2d, 0x9cd200db8a0774cb
- data8 0x9d3ed9a72cffb751, 0x9dabfdff6367a2aa
- data8 0x9e196e189d472420, 0x9e872a276f0b98ff
- data8 0x9ef5326091a111ae, 0x9f6386f8e28ba651
- data8 0x9fd228256400dd06, 0xa041161b3d0121be
- data8 0xa0b0510fb9714fc2, 0xa11fd9384a344cf7
- data8 0xa18faeca8544b6e4, 0xa1ffd1fc25cea188
- data8 0xa27043030c496819, 0xa2e102153e918f9e
- data8 0xa3520f68e802bb93, 0xa3c36b345991b47c
- data8 0xa43515ae09e6809e, 0xa4a70f0c95768ec5
- data8 0xa5195786be9ef339, 0xa58bef536dbeb6ee
- data8 0xa5fed6a9b15138ea, 0xa6720dc0be08a20c
- data8 0xa6e594cfeee86b1e, 0xa7596c0ec55ff55b
- data8 0xa7cd93b4e965356a, 0xa8420bfa298f70d1
- data8 0xa8b6d5167b320e09, 0xa92bef41fa77771b
- data8 0xa9a15ab4ea7c0ef8, 0xaa1717a7b5693979
- data8 0xaa8d2652ec907629, 0xab0386ef48868de1
- data8 0xab7a39b5a93ed337, 0xabf13edf162675e9
- data8 0xac6896a4be3fe929, 0xace0413ff83e5d04
- data8 0xad583eea42a14ac6, 0xadd08fdd43d01491
- data8 0xae493452ca35b80e, 0xaec22c84cc5c9465
- data8 0xaf3b78ad690a4375, 0xafb51906e75b8661
- data8 0xb02f0dcbb6e04584, 0xb0a957366fb7a3c9
- data8 0xb123f581d2ac2590, 0xb19ee8e8c94feb09
- data8 0xb21a31a66618fe3b, 0xb295cff5e47db4a4
- data8 0xb311c412a9112489, 0xb38e0e38419fae18
- data8 0xb40aaea2654b9841, 0xb487a58cf4a9c180
- data8 0xb504f333f9de6484, 0xb58297d3a8b9f0d2
- data8 0xb60093a85ed5f76c, 0xb67ee6eea3b22b8f
- data8 0xb6fd91e328d17791, 0xb77c94c2c9d725e9
- data8 0xb7fbefca8ca41e7c, 0xb87ba337a1743834
- data8 0xb8fbaf4762fb9ee9, 0xb97c143756844dbf
- data8 0xb9fcd2452c0b9deb, 0xba7de9aebe5fea09
- data8 0xbaff5ab2133e45fb, 0xbb81258d5b704b6f
- data8 0xbc034a7ef2e9fb0d, 0xbc85c9c560e7b269
- data8 0xbd08a39f580c36bf, 0xbd8bd84bb67ed483
- data8 0xbe0f6809860993e2, 0xbe935317fc378238
- data8 0xbf1799b67a731083, 0xbf9c3c248e2486f8
- data8 0xc0213aa1f0d08db0, 0xc0a6956e8836ca8d
- data8 0xc12c4cca66709456, 0xc1b260f5ca0fbb33
- data8 0xc238d2311e3d6673, 0xc2bfa0bcfad907c9
- data8 0xc346ccda24976407, 0xc3ce56c98d21b15d
- data8 0xc4563ecc5334cb33, 0xc4de8523c2c07baa
- data8 0xc5672a115506dadd, 0xc5f02dd6b0bbc3d9
- data8 0xc67990b5aa245f79, 0xc70352f04336c51e
- data8 0xc78d74c8abb9b15d, 0xc817f681416452b2
- data8 0xc8a2d85c8ffe2c45, 0xc92e1a9d517f0ecc
- data8 0xc9b9bd866e2f27a3, 0xca45c15afcc72624
- data8 0xcad2265e4290774e, 0xcb5eecd3b38597c9
- data8 0xcbec14fef2727c5d, 0xcc799f23d11510e5
- data8 0xcd078b86503dcdd2, 0xcd95da6a9ff06445
- data8 0xce248c151f8480e4, 0xceb3a0ca5dc6a55d
- data8 0xcf4318cf191918c1, 0xcfd2f4683f94eeb5
- data8 0xd06333daef2b2595, 0xd0f3d76c75c5db8d
- data8 0xd184df6251699ac6, 0xd2164c023056bcab
- data8 0xd2a81d91f12ae45a, 0xd33a5457a3029054
- data8 0xd3ccf099859ac379, 0xd45ff29e0972c561
- data8 0xd4f35aabcfedfa1f, 0xd5872909ab75d18a
- data8 0xd61b5dfe9f9bce07, 0xd6aff9d1e13ba2fe
- data8 0xd744fccad69d6af4, 0xd7da67311797f56a
- data8 0xd870394c6db32c84, 0xd9067364d44a929c
- data8 0xd99d15c278afd7b6, 0xda3420adba4d8704
- data8 0xdacb946f2ac9cc72, 0xdb63714f8e295255
- data8 0xdbfbb797daf23755, 0xdc9467913a4f1c92
- data8 0xdd2d818508324c20, 0xddc705bcd378f7f0
- data8 0xde60f4825e0e9124, 0xdefb4e1f9d1037f2
- data8 0xdf9612deb8f04420, 0xe031430a0d99e627
- data8 0xe0ccdeec2a94e111, 0xe168e6cfd3295d23
- data8 0xe2055afffe83d369, 0xe2a23bc7d7d91226
- data8 0xe33f8972be8a5a51, 0xe3dd444c46499619
- data8 0xe47b6ca0373da88d, 0xe51a02ba8e26d681
- data8 0xe5b906e77c8348a8, 0xe658797368b3a717
- data8 0xe6f85aaaee1fce22, 0xe798aadadd5b9cbf
- data8 0xe8396a503c4bdc68, 0xe8da9958464b42ab
- data8 0xe97c38406c4f8c57, 0xea1e4756550eb27b
- data8 0xeac0c6e7dd24392f, 0xeb63b74317369840
- data8 0xec0718b64c1cbddc, 0xecaaeb8ffb03ab41
- data8 0xed4f301ed9942b84, 0xedf3e6b1d418a491
- data8 0xee990f980da3025b, 0xef3eab20e032bc6b
- data8 0xefe4b99bdcdaf5cb, 0xf08b3b58cbe8b76a
- data8 0xf13230a7ad094509, 0xf1d999d8b7708cc1
- data8 0xf281773c59ffb13a, 0xf329c9233b6bae9c
- data8 0xf3d28fde3a641a5b, 0xf47bcbbe6db9fddf
- data8 0xf5257d152486cc2c, 0xf5cfa433e6537290
- data8 0xf67a416c733f846e, 0xf7255510c4288239
- data8 0xf7d0df730ad13bb9, 0xf87ce0e5b2094d9c
- data8 0xf92959bb5dd4ba74, 0xf9d64a46eb939f35
- data8 0xfa83b2db722a033a, 0xfb3193cc4227c3f4
- data8 0xfbdfed6ce5f09c49, 0xfc8ec01121e447bb
- data8 0xfd3e0c0cf486c175, 0xfdedd1b496a89f35
- data8 0xfe9e115c7b8f884c, 0xff4ecb59511ec8a5
-LOCAL_OBJECT_END(T_table)
-
-
-LOCAL_OBJECT_START(D_table)
-
- data4 0x00000000, 0x9f55c08f, 0x1e93ffa3, 0x1dcd43a8
- data4 0x1f751f79, 0x9f3cdd88, 0x9f43d155, 0x1eda222c
- data4 0x1ef35513, 0x9f597895, 0x9e698881, 0x1ec71073
- data4 0x1e50e371, 0x9dc01e19, 0x1de74133, 0x1e2f028c
- data4 0x9edefb47, 0x1ebbac48, 0x9e8b0330, 0x9e9e9314
- data4 0x1edc1d11, 0x1f098529, 0x9f52827c, 0x1f50050d
- data4 0x1f301e8e, 0x1f5b64d1, 0x9f45e3ee, 0x9ef64d6d
- data4 0x1d6ec5e8, 0x9e61ad9a, 0x1d44ccbb, 0x9e4a8bbb
- data4 0x9cf11576, 0x9dcce7e7, 0x9d02ac90, 0x1f26ccf0
- data4 0x9f0877c6, 0x9ddd62ae, 0x9f4b7fc3, 0x1ea8ef6b
- data4 0x1ea4378d, 0x1ef6fc38, 0x1db99fd9, 0x1f22bf6f
- data4 0x1f53e172, 0x1e85504a, 0x9f37cc75, 0x1f0c5e17
- data4 0x1dde8aac, 0x9cb42bb2, 0x1e153cd7, 0x1eb62bba
- data4 0x9e9b941b, 0x9ea80e3c, 0x1f508823, 0x1ec3fd36
- data4 0x1e9ffaa1, 0x1e21e2eb, 0x9d948b1d, 0x9e8ac93a
- data4 0x1ef7ee6f, 0x9e80dda3, 0x1f0814be, 0x1dc5ddfe
- data4 0x1eedb9d1, 0x9f2aaa26, 0x9ea5b0fc, 0x1edf702e
- data4 0x9e391201, 0x1f1316bb, 0x1ea27fb7, 0x9e05ed18
- data4 0x9f199ed2, 0x1ee7fd7c, 0x1f003db6, 0x9eac3793
- data4 0x9e5b8c10, 0x9f3af17c, 0x1bc9a8be, 0x1ee3c004
- data4 0x9f19b1b2, 0x9f242ce9, 0x9ce67dd1, 0x9e4f6275
- data4 0x1e20742c, 0x1eb9328a, 0x9f477153, 0x1d969718
- data4 0x9f1e6c43, 0x1f2f67f4, 0x9f39c7e4, 0x9e3c4feb
- data4 0x1da3956b, 0x9e7c685d, 0x1f280911, 0x9f0d8afb
- data4 0x1e314b40, 0x9eb4f250, 0x9f1a34ad, 0x1ef5d5e7
- data4 0x9f145496, 0x1e604827, 0x9f1e5195, 0x1e9c1fc0
- data4 0x1efde521, 0x1e69b385, 0x1f316830, 0x9f244eae
- data4 0x1f1787ec, 0x9e939971, 0x1f0bb393, 0x9f0511d6
- data4 0x1ed919de, 0x1d8b7b28, 0x1e5ca4a9, 0x1e7c357b
- data4 0x9e3ff8e8, 0x1eef53b5, 0x9ed22ed7, 0x1f16659b
- data4 0x9f2db102, 0x9e2c6a78, 0x1f328d7d, 0x9f2fec3c
- data4 0x1eb395bd, 0x9f242b84, 0x9e2683e6, 0x1ed71e68
- data4 0x1efd1df5, 0x9e9eeafd, 0x9ed2249c, 0x1eef129a
- data4 0x1d1ea44c, 0x9e81f7ff, 0x1eaf77c9, 0x9ee7a285
- data4 0x1e1864ed, 0x9ee7edbb, 0x9e15a27d, 0x9ae61655
- data4 0x1f1ff1a2, 0x1da29755, 0x9e5f46fb, 0x1e901236
- data4 0x9eecfb9b, 0x9f204d2f, 0x1ec64685, 0x9eb809bd
- data4 0x9e0026c5, 0x1d9f1da1, 0x1f142b49, 0x9f20f22e
- data4 0x1f24b067, 0x1f185a4c, 0x9f09765c, 0x9ece902f
- data4 0x1e2ca5db, 0x1e6de464, 0x9f071f67, 0x1f1518c3
- data4 0x1ea13ded, 0x1f0b8414, 0x1edb6ad4, 0x9e548740
- data4 0x9ea10efb, 0x1ee48a60, 0x1e7954c5, 0x9edad013
- data4 0x9f21517d, 0x9e9b6e0c, 0x9ee7f9a6, 0x9ebd4298
- data4 0x9d65b24e, 0x1eed751f, 0x9f1573ea, 0x9d430377
- data4 0x9e13fc0c, 0x1e47008a, 0x1e3d5c1d, 0x1ef41a91
- data4 0x9e4a4ef7, 0x9e952f18, 0x1d620566, 0x1d9b8d33
- data4 0x1db06247, 0x1e94b31e, 0x1f0730ad, 0x9d79ffb4
- data4 0x1ed64d51, 0x9e91fd11, 0x9e28d35a, 0x9dea0ed9
- data4 0x1e891def, 0x9ee28ac0, 0x1e1db99b, 0x9ee1ce38
- data4 0x9bdd9bca, 0x1eb72cb9, 0x9e8c53c6, 0x1e0df6ca
- data4 0x1e8f2ccd, 0x9e9b0886, 0x1eeb3bc7, 0x1ec7e772
- data4 0x9e210776, 0x9daf246c, 0x1ea1f151, 0x1ece4dc6
- data4 0x1ce741c8, 0x1ed3c88f, 0x9ec9a4fd, 0x9e0c8d30
- data4 0x1d2fbb26, 0x9ef212a7, 0x1ee44f1c, 0x9e445550
- data4 0x1e075f77, 0x9d9291a3, 0x1f09c2ee, 0x9e012c88
- data4 0x1f057d62, 0x9e7bb0dc, 0x9d8758ee, 0x1ee8d6c1
- data4 0x9e509a57, 0x9e4ca7b7, 0x1e2cb341, 0x9ec35106
- data4 0x1ecf3baf, 0x1e11781c, 0x1ea0cc78, 0x1eb75ca6
- data4 0x1e961e1a, 0x1eb88853, 0x1e7abf50, 0x1ee38704
- data4 0x9dc5ab0f, 0x1afe197b, 0x9ec07523, 0x9d9b7f78
- data4 0x1f011618, 0x1ed43b0b, 0x9f035945, 0x9e3fd014
- data4 0x9bbda5cd, 0x9e83f8ab, 0x1e58a928, 0x1e392d61
- data4 0x1efdbb52, 0x1ee310a8, 0x9ec7ecc1, 0x1e8c9ed6
- data4 0x9ef82dee, 0x9e70545b, 0x9ea53fc4, 0x1e40f419
-LOCAL_OBJECT_END(D_table)
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(exp2l)
-
-{.mii
- // get exponent
- getf.exp GR_EBIAS = f8
- // GR_D_ADDR0 = pointer to D_table
- addl GR_D_ADDR0 = @ltoff(D_table), gp
- // GR_ADDR0 = pointer to C_1...C_6 followed by T_table
- addl GR_ADDR0 = @ltoff(poly_coeffs), gp ;;
-}
-
-{.mfi
- // get significand
- getf.sig GR_SIGNIF = f8
- // will continue only for normal/denormal numbers
- fclass.nm.unc p12, p7 = f8, 0x1b
- mov GR_63 = 63 ;;
-}
-
-{.mfi
- nop.m 0
- nop.f 0
- // GR_CONST2 = bias+63-8
- mov GR_CONST2 = 0xffff+55
-}
-{.mfi
- // GR_CONST1 = bias+15
- mov GR_CONST1 = 0xffff+15
- nop.f 0
- mov GR_CONST3 = 0x1ffff ;;
-}
-
-{.mfi
- // load start address for C_1...C_6 followed by T_table
- ld8 GR_ADDR = [ GR_ADDR0 ]
- nop.f 0
- // get sign of argument
- andcm GR_SGN = GR_EBIAS, GR_CONST3
-}
-{.mfi
- // GR_D_ADDR = pointer to D_table
- ld8 GR_D_ADDR = [ GR_D_ADDR0 ]
- nop.f 0
- // get argument exponent
- and GR_ARGEXP = GR_CONST3, GR_EBIAS ;;
-}
-
-{.mfi
- alloc GR_SREG = ar.pfs, 1, 4, 4, 0
- nop.f 0
- // p6 = 1 if sign = 1
- cmp.ne p6, p8 = GR_SGN, r0
-}
-{.mfi
- // p7 = 1 if exponent> = 15 (argument out of range)
- cmp.ge p7, p0 = GR_ARGEXP, GR_CONST1
- nop.f 0
- sub GR_EXPON = GR_CONST2, GR_ARGEXP ;;
-}
-
-{.mib
- // load C_3, C_4
- ldfpd FR_COEFF3, FR_COEFF4 = [ GR_ADDR ], 16
- // get first exponent+8 bits
- shr.u GR_LEADBITS = GR_SIGNIF, GR_EXPON
- (p12) br.cond.spnt SPECIAL_exp2l
-}
-{.mib
- mov GR_256 = 256
- // exponent- = 63
- sub GR_EM63 = GR_EBIAS, GR_63
- (p7) br.cond.spnt OUT_RANGE_exp2l ;;
-}
-
-{.mlx
- // load C_5, C_6
- ldfpd FR_COEFF5, FR_COEFF6 = [ GR_ADDR ], 16
- // GR_2P14 = 2^14
- movl GR_2P14 = 0x46800000 ;;
-}
-
-{.mfi
- // load C_1
- ldfe FR_COEFF1 = [ GR_ADDR ], 16
- fma.s0 f8 = f8, f1, f0
- // GR_BM63 = bias-63
- mov GR_BM63 = 0xffff-63 ;;
-}
-
-{.mlx
- setf.s FR_2P14 = GR_2P14
- // GR_UF_TEST = -2^14-62
- movl GR_UF_TEST = 0xc6807c00
-}
-{.mfi
- // load C_2
- ldfe FR_COEFF2 = [ GR_ADDR ], 16
- nop.f 0
- mov GR_255 = 255 ;;
-}
-
-{.mib
- // get 8-bit index
- and GR_INDEX = GR_255, GR_LEADBITS
- // get K = integer part
- shr.u GR_K = GR_LEADBITS, 8
- nop.b 0 ;;
-}
-
-{.mmi
- // if sign = 1 && f>0, set p7 = 1
- (p6) cmp.gt.unc p7, p0 = GR_INDEX, r0
- setf.s FR_UF_TEST = GR_UF_TEST
- shl GR_KF = GR_LEADBITS, GR_EXPON ;;
-}
-
-{.mfi
- // if sign = 1 && f>0, set f = 1-f
- (p7) sub GR_INDEX = GR_256, GR_INDEX
- nop.f 0
- // if sign = 1 && f>0, set K = K+1
- (p7) add GR_K = GR_K, r0, 1 ;;
-}
-
-{.mfi
- // FR_EXP63 = 2^{expon-63}
- setf.exp FR_EXP63 = GR_EM63
- nop.f 0
- nop.i 0 ;;
-}
-
-.pred.rel "mutex", p6, p8
-{.mfi
- // if sign = 0, set scale factor exponent S = K+bias-63
- (p8) add GR_K = GR_K, GR_BM63
- nop.f 0
- // if sign = 1, set scale factor exponent S = -K+bias-63
- (p6) sub GR_K = GR_BM63, GR_K ;;
-}
-
-{.mmi
- // FR_KF0 = 2^{63-expon}*(K+f)
- setf.sig FR_KF0 = GR_KF
- nop.m 0
- // GR_EMIN = EMIN = 2-2^14
- mov GR_EMIN = 0x18cfff ;;
-}
-
-{.mfi
- // get T_table index
- shladd GR_IT = GR_INDEX, 3, GR_ADDR
- // p7 = 1 if x> = 2^10
- fcmp.ge.s1 p7, p12 = f8, FR_2P14
- // get D_table index
- shladd GR_ID = GR_INDEX, 2, GR_D_ADDR ;;
-}
-
-{.mfi
- // load T_table value
- ldf8 FR_T = [ GR_IT ]
- // p7 = 1 if x<-2^10-50
- (p12) fcmp.lt.s1 p7, p0 = f8, FR_UF_TEST
- // GR_EMIN1 = EMIN = 2-2^14
- shl GR_EMIN1 = GR_EMIN, 11 ;;
-}
-
-{.mmb
- // f50 = scale factor = 2^{K-63}
- setf.exp FR_2EXP = GR_K
- // load D_table value
- ldfs FR_D = [ GR_ID ]
- (p7) br.cond.spnt OUT_RANGE_exp2l ;;
-}
-
-{.mfi
- nop.m 0
- // get r = x-(K+f)
- fnma.s1 FR_R = FR_KF0, FR_EXP63, f8
- nop.i 0 ;;
-}
-
-{.mfi
- // FR_EMIN = EMIN
- setf.s FR_EMIN = GR_EMIN1
- // P34 = C_4*r+C_3
- fma.s1 FR_P34 = FR_COEFF4, FR_R, FR_COEFF3
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P56 = C_6*r+C_5
- fma.s1 FR_P56 = FR_COEFF6, FR_R, FR_COEFF5
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // r*r
- fma.s1 FR_R2 = FR_R, FR_R, f0
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P12 = C_2*r+C_1
- fma.s1 FR_P12 = FR_COEFF2, FR_R, FR_COEFF1
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // T* = scaling factor
- fma.s1 FR_TS = FR_T, FR_2EXP, f0
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P36 = P34+r2*P56
- fma.s1 FR_P36 = FR_P56, FR_R2, FR_P34
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // P02 = D+r*P12
- fma.s1 FR_P02 = FR_P12, FR_R, FR_D
- nop.i 0
-}
-{.mfi
- nop.m 0
- // GR_ID = r*r2
- fma.s1 FR_R3 = FR_R2, FR_R, f0
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // P06 = P02+r3*P36
- fma.s1 FR_P06 = FR_P36, FR_R3, FR_P02
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // underflow (x<EMIN) ?
- fcmp.lt.s0 p6, p8 = f8, FR_EMIN
- nop.i 0 ;;
-}
-
-{.mfb
- nop.m 0
- // result = T+T*P06
- fma.s0 f8 = FR_TS, FR_P06, FR_TS
- // return
- (p8) br.ret.sptk b0
-}
-{.mfb
- (p6) mov GR_Parameter_TAG = 160
- nop.f 0
- (p6) br.cond.sptk __libm_error_region ;;
-}
-
-
-SPECIAL_exp2l:
-
-{.mfi
- nop.m 0
- // x = -Infinity ?
- fclass.m p6, p0 = f8, 0x22
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // x = +Infinity ?
- fclass.m p7, p0 = f8, 0x21
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // x = +/-Zero ?
- fclass.m p8, p0 = f8, 0x7
- nop.i 0
-}
-{.mfb
- nop.m 0
- // exp2l(-Infinity) = 0
- (p6) mov f8 = f0
- (p6) br.ret.spnt b0 ;;
-}
-
-{.mfb
- nop.m 0
- // exp2l(+Infinity) = +Infinity
- nop.f 0
- (p7) br.ret.spnt b0 ;;
-}
-
-{.mfb
- nop.m 0
- // exp2l(+/-0) = 1
- (p8) mov f8 = f1
- (p8) br.ret.spnt b0 ;;
-}
-
-{.mfb
- nop.m 0
- // Remaining cases: NaNs
- fma.s0 f8 = f8, f1, f0
- br.ret.sptk b0 ;;
-}
-
-
-OUT_RANGE_exp2l:
-
-
-{.mfi
- // overflow: p8 = 1
- (p8) mov GR_EM63 = 0x1fffe
- // normalize input, to detect pseudo-zeroes
- fma.s0 f8 = f8, f1, f0
- nop.i 0 ;;
-}
-
-{.mfi
- nop.m 0
- // f8 = 0?
- fcmp.eq.s1 p7, p0 = f8, f0
- nop.i 0 ;;
-}
-
-{.mmb
- (p8) mov GR_Parameter_TAG = 159
- (p8) setf.exp FR_TS = GR_EM63
- nop.b 999 ;;
-}
-
-{.mfb
- nop.m 0
- // pseudo-zero
- (p7) mov f8 = f1
- (p7) br.ret.sptk b0 ;;
-}
-
-{.mfi
- nop.m 999
- (p8) fma.s0 f8 = FR_TS, FR_TS, f0
- nop.i 999
-}
-{.mii
- nop.m 0
- // underflow: p6 = 1
- (p6) mov GR_EM63 = 1
- nop.i 0 ;;
-}
-
-{.mmb
- (p6) mov GR_Parameter_TAG = 160
- (p6) setf.exp FR_TS = GR_EM63
- nop.b 999 ;;
-}
-
-{.mfb
- nop.m 999
- (p6) fma.s0 f8 = FR_TS, FR_TS, f0
- nop.b 0 ;;
-}
-
-
-GLOBAL_LIBM_END(exp2l)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{.mfi
- add GR_Parameter_Y = -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
-}
-{.mfi
-.fframe 64
- add sp = -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP = gp ;; // Save gp
-}
-
-{.mmi
- stfe [ GR_Parameter_Y ] = FR_Y, 16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0 ;; // Save b0
-}
-
-.body
-{.mib
- stfe [ GR_Parameter_X ] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0, GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{.mib
- stfe [ GR_Parameter_Y ] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16, GR_Parameter_Y
- br.call.sptk b0 = __libm_error_support# ;; // Call error handling function
-}
-
-{.mmi
- add GR_Parameter_RESULT = 48, sp
- nop.m 0
- nop.i 0 ;;
-}
-
-{.mmi
- ldfe f8 = [ GR_Parameter_RESULT ] // Get return result off stack
-.restore sp
- add sp = 64, sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 ;; // Restore return address
-}
-
-{.mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 ;; // Return
-}
-
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#, @function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_expf.S b/sysdeps/ia64/fpu/e_expf.S
index 6fe0a833e2..2aad021335 100644
--- a/sysdeps/ia64/fpu/e_expf.S
+++ b/sysdeps/ia64/fpu/e_expf.S
@@ -1,10 +1,10 @@
.file "expf.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,503 +35,589 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
-//*********************************************************************
-// 02/02/00 Original version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+//==============================================================
+// 4/04/00 Unwind update
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 08/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
+// 8/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
// 12/07/00 Widen main path, shorten x=inf, nan paths
-// 03/15/01 Fix monotonicity problem around x=0 for round to +inf
-// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 07/26/02 Algorithm changed, accuracy improved
-// 09/26/02 support of higher precision inputs added, underflow threshold
-// corrected
-// 11/15/02 Improved performance on Itanium 2, added possible over/under paths
-// 05/30/03 Set inexact flag on unmasked overflow/underflow
-// 03/31/05 Reformatted delimiters between data tables
-//
-//
-// API
-//*********************************************************************
-// float expf(float)
-//
-// Overview of operation
-//*********************************************************************
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 64/log2
-// NJ = int(w)
-// x = NJ*log2/64 + R
-
-// NJ = 64*n + j
-// x = n*log2 + (log2/64)*j + R
-//
-// So, exp(x) = 2^n * 2^(j/64)* exp(R)
-//
-// T = 2^n * 2^(j/64)
-// Construct 2^n
-// Get 2^(j/64) table
-// actually all the entries of 2^(j/64) table are stored in DP and
-// with exponent bits set to 0 -> multiplication on 2^n can be
-// performed by doing logical "or" operation with bits presenting 2^n
-
-// exp(R) = 1 + (exp(R) - 1)
-// P = exp(R) - 1 approximated by Taylor series of 3rd degree
-// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
//
-// The final result is reconstructed as follows
-// exp(x) = T + T*P
+#include "libm_support.h"
-// Special values
-//*********************************************************************
-// expf(+0) = 1.0
-// expf(-0) = 1.0
+// Assembly macros
+//==============================================================
+// integer registers used
-// expf(+qnan) = +qnan
-// expf(-qnan) = -qnan
-// expf(+snan) = +qnan
-// expf(-snan) = -qnan
+ exp_GR_0x0f = r33
+ exp_GR_0xf0 = r34
-// expf(-inf) = +0
-// expf(+inf) = +inf
+ EXP_AD_P_1 = r36
+ EXP_AD_P_2 = r37
+ EXP_AD_T1 = r38
+ EXP_AD_T2 = r39
+ exp_GR_Mint = r40
-// Overflow and Underflow
-//*********************************************************************
-// expf(x) = largest single normal when
-// x = 88.72283 = 0x42b17217
+ exp_GR_Mint_p_128 = r41
+ exp_GR_Ind1 = r42
+ EXP_AD_M1 = r43
+ exp_GR_Ind2 = r44
+ EXP_AD_M2 = r45
-// expf(x) = smallest single normal when
-// x = -87.33654 = 0xc2aeac4f
+ exp_GR_min_oflow = r46
+ exp_GR_max_zero = r47
+ exp_GR_max_norm = r48
+ exp_GR_max_uflow = r49
+ exp_GR_min_norm = r50
-// expf(x) = largest round-to-nearest single zero when
-// x = -103.97208 = 0xc2cff1b5
+ exp_GR_17ones = r51
+ exp_GR_gt_ln = r52
+ exp_GR_T2_size = r53
+ exp_GR_17ones_m1 = r56
+ exp_GR_one = r57
-// Registers used
-//*********************************************************************
-// Floating Point registers used:
-// f8, input
-// f6,f7, f9 -> f15, f32 -> f40
-// General registers used:
-// r3, r23 -> r38
-// Predicate registers used:
-// p10 -> p15
+GR_SAVE_B0 = r53
+GR_SAVE_PFS = r55
+GR_SAVE_GP = r54
+
+GR_Parameter_X = r59
+GR_Parameter_Y = r60
+GR_Parameter_RESULT = r61
+GR_Parameter_TAG = r62
+
+FR_X = f10
+FR_Y = f1
+FR_RESULT = f8
-// Assembly macros
-//*********************************************************************
-// integer registers used
-// scratch
-rNJ = r3
-
-rTmp = r23
-rJ = r23
-rN = r24
-rTblAddr = r25
-rA3 = r26
-rExpHalf = r27
-rLn2Div64 = r28
-r17ones_m1 = r29
-rGt_ln = r29
-rRightShifter = r30
-r64DivLn2 = r31
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-// scratch
-fRightShifter = f6
-f64DivLn2 = f7
-fNormX = f9
-fNint = f10
-fN = f11
-fR = f12
-fLn2Div64 = f13
-fA2 = f14
-fA3 = f15
-// stacked
-fP = f32
-fT = f33
-fMIN_SGL_OFLOW_ARG = f34
-fMAX_SGL_ZERO_ARG = f35
-fMAX_SGL_NORM_ARG = f36
-fMIN_SGL_NORM_ARG = f37
-fRSqr = f38
-fTmp = f39
-fGt_pln = f39
-fWre_urm_f8 = f40
-fFtz_urm_f8 = f40
-
-
-RODATA
+
+ EXP_MIN_SGL_OFLOW_ARG = f11
+ EXP_MAX_SGL_ZERO_ARG = f12
+ EXP_MAX_SGL_NORM_ARG = f13
+ EXP_MAX_SGL_UFLOW_ARG = f14
+ EXP_MIN_SGL_NORM_ARG = f15
+
+ exp_coeff_P5 = f32
+ exp_coeff_P6 = f33
+ exp_coeff_P3 = f34
+ exp_coeff_P4 = f35
+
+ exp_coeff_P1 = f36
+ exp_coeff_P2 = f37
+ exp_Mx = f38
+ exp_Mfloat = f39
+ exp_R = f40
+
+ exp_P1 = f41
+ exp_P2 = f42
+ exp_P3 = f43
+ exp_Rsq = f44
+ exp_R4 = f45
+
+ exp_P4 = f46
+ exp_P5 = f47
+ exp_P6 = f48
+ exp_P7 = f49
+ exp_T1 = f50
+
+ exp_T2 = f51
+ exp_T = f52
+ exp_A = f53
+ exp_norm_f8 = f54
+ exp_wre_urm_f8 = f55
+
+ exp_ftz_urm_f8 = f56
+ exp_gt_pln = f57
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
-LOCAL_OBJECT_START(_expf_table)
-data4 0x42b17218 // Smallest sgl arg to overflow sgl result, +88.7228
-data4 0xc2cff1b5 // Largest sgl for rnd-to-nearest 0 result, -103.9720
-data4 0x42b17217 // Largest sgl arg to give normal sgl result, +88.7228
-data4 0xc2aeac4f // Smallest sgl arg to give normal sgl result, -87.3365
+exp_coeff_1_table:
+ASM_TYPE_DIRECTIVE(exp_coeff_1_table,@object)
+data8 0x3F56F35FDE4F8563 // p5
+data8 0x3F2A378BEFECCFDD // p6
+data8 0x3FE00000258C581D // p1
+data8 0x3FC555557AE7B3D4 // p2
+ASM_SIZE_DIRECTIVE(exp_coeff_1_table)
+
+
+exp_coeff_2_table:
+ASM_TYPE_DIRECTIVE(exp_coeff_2_table,@object)
+data8 0x3FA5551BB6592FAE // p3
+data8 0x3F8110E8EBFFD485 // p4
+ASM_SIZE_DIRECTIVE(exp_coeff_2_table)
+
+
+exp_T2_table:
+ASM_TYPE_DIRECTIVE(exp_T2_table,@object)
+data8 0xa175cf9cd7d85844 , 0x00003f46 // exp(-128)
+data8 0xdb7279415a1f9eed , 0x00003f47 // exp(-127)
+data8 0x95213b242bd8ca5f , 0x00003f49 // exp(-126)
+data8 0xcab03c968c989f83 , 0x00003f4a // exp(-125)
+data8 0x89bdb674702961ad , 0x00003f4c // exp(-124)
+data8 0xbb35a2eec278be35 , 0x00003f4d // exp(-123)
+data8 0xfe71b17f373e7e7a , 0x00003f4e // exp(-122)
+data8 0xace9a6ec52a39b63 , 0x00003f50 // exp(-121)
+data8 0xeb03423fe393cf1c , 0x00003f51 // exp(-120)
+data8 0x9fb52c5bcaef1693 , 0x00003f53 // exp(-119)
+data8 0xd910b6377ed60bf1 , 0x00003f54 // exp(-118)
+data8 0x9382dad8a9fdbfe4 , 0x00003f56 // exp(-117)
+data8 0xc87d0a84dea869a3 , 0x00003f57 // exp(-116)
+data8 0x883efb4c6d1087b0 , 0x00003f59 // exp(-115)
+data8 0xb92d7373dce9a502 , 0x00003f5a // exp(-114)
+data8 0xfbaeb020577fb0cb , 0x00003f5b // exp(-113)
+ASM_SIZE_DIRECTIVE(exp_T2_table)
+
+
+exp_T1_table:
+ASM_TYPE_DIRECTIVE(exp_T1_table,@object)
+data8 0x8000000000000000 , 0x00003fff // exp(16 * 0)
+data8 0x87975e8540010249 , 0x00004016 // exp(16 * 1)
+data8 0x8fa1fe625b3163ec , 0x0000402d // exp(16 * 2)
+data8 0x9826b576512a59d7 , 0x00004044 // exp(16 * 3)
+data8 0xa12cc167acbe6902 , 0x0000405b // exp(16 * 4)
+data8 0xaabbcdcc279f59e4 , 0x00004072 // exp(16 * 5)
+data8 0xb4dbfaadc045d16f , 0x00004089 // exp(16 * 6)
+data8 0xbf95e372ccdbf146 , 0x000040a0 // exp(16 * 7)
+data8 0xcaf2a62eea10bbfb , 0x000040b7 // exp(16 * 8)
+data8 0xd6fbeb62fddbd340 , 0x000040ce // exp(16 * 9)
+data8 0xe3bbee32e4a440ea , 0x000040e5 // exp(16 * 10)
+data8 0xf13d8517c34199a8 , 0x000040fc // exp(16 * 11)
+data8 0xff8c2b166241eedd , 0x00004113 // exp(16 * 12)
+data8 0x875a04c0b38d6129 , 0x0000412b // exp(16 * 13)
+data8 0x8f610127db6774d7 , 0x00004142 // exp(16 * 14)
+data8 0x97e1dd87e5c20bb6 , 0x00004159 // exp(16 * 15)
+ASM_SIZE_DIRECTIVE(exp_T1_table)
+
+// Argument Reduction
+// exp_Mx = (int)f8 ==> The value of f8 rounded to int is placed into the
+// significand of exp_Mx as a two's
+// complement number.
+
+// Later we want to have exp_Mx in a general register. Do this with a getf.sig
+// and call the general register exp_GR_Mint
+
+// exp_Mfloat = (float)(int)f8 ==> the two's complement number in
+// significand of exp_Mx is turned
+// into a floating point number.
+// R = 1 - exp_Mfloat ==> reduced argument
+
+// Core Approximation
+// Calculate a series in R
+// R * p6 + p5
+// R * p4 + p3
+// R * p2 + p1
+// R^2
+// R^4
+// R^2(R * p6 + p5) + (R * p4 + p3)
+// R^2(R * p2 + p1)
+// R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
+// R + 1
+// exp(R) = (1 + R) + R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
+// exp(R) = 1 + R + R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6
+
+// Reconstruction
+// signficand of exp_Mx is two's complement,
+// -103 < x < 89
+// The smallest single denormal is 2^-149 = ssdn
+// For e^x = ssdn
+// x = log(ssdn) = -103.279
+// But with rounding result goes to ssdn until -103.972079
+// The largest single normal is 1.<23 1's> 2^126 ~ 2^127 = lsn
+// For e^x = lsn
+// x = log(lsn) = 88.7228
//
-// 2^(j/64) table, j goes from 0 to 63
-data8 0x0000000000000000 // 2^(0/64)
-data8 0x00002C9A3E778061 // 2^(1/64)
-data8 0x000059B0D3158574 // 2^(2/64)
-data8 0x0000874518759BC8 // 2^(3/64)
-data8 0x0000B5586CF9890F // 2^(4/64)
-data8 0x0000E3EC32D3D1A2 // 2^(5/64)
-data8 0x00011301D0125B51 // 2^(6/64)
-data8 0x0001429AAEA92DE0 // 2^(7/64)
-data8 0x000172B83C7D517B // 2^(8/64)
-data8 0x0001A35BEB6FCB75 // 2^(9/64)
-data8 0x0001D4873168B9AA // 2^(10/64)
-data8 0x0002063B88628CD6 // 2^(11/64)
-data8 0x0002387A6E756238 // 2^(12/64)
-data8 0x00026B4565E27CDD // 2^(13/64)
-data8 0x00029E9DF51FDEE1 // 2^(14/64)
-data8 0x0002D285A6E4030B // 2^(15/64)
-data8 0x000306FE0A31B715 // 2^(16/64)
-data8 0x00033C08B26416FF // 2^(17/64)
-data8 0x000371A7373AA9CB // 2^(18/64)
-data8 0x0003A7DB34E59FF7 // 2^(19/64)
-data8 0x0003DEA64C123422 // 2^(20/64)
-data8 0x0004160A21F72E2A // 2^(21/64)
-data8 0x00044E086061892D // 2^(22/64)
-data8 0x000486A2B5C13CD0 // 2^(23/64)
-data8 0x0004BFDAD5362A27 // 2^(24/64)
-data8 0x0004F9B2769D2CA7 // 2^(25/64)
-data8 0x0005342B569D4F82 // 2^(26/64)
-data8 0x00056F4736B527DA // 2^(27/64)
-data8 0x0005AB07DD485429 // 2^(28/64)
-data8 0x0005E76F15AD2148 // 2^(29/64)
-data8 0x0006247EB03A5585 // 2^(30/64)
-data8 0x0006623882552225 // 2^(31/64)
-data8 0x0006A09E667F3BCD // 2^(32/64)
-data8 0x0006DFB23C651A2F // 2^(33/64)
-data8 0x00071F75E8EC5F74 // 2^(34/64)
-data8 0x00075FEB564267C9 // 2^(35/64)
-data8 0x0007A11473EB0187 // 2^(36/64)
-data8 0x0007E2F336CF4E62 // 2^(37/64)
-data8 0x00082589994CCE13 // 2^(38/64)
-data8 0x000868D99B4492ED // 2^(39/64)
-data8 0x0008ACE5422AA0DB // 2^(40/64)
-data8 0x0008F1AE99157736 // 2^(41/64)
-data8 0x00093737B0CDC5E5 // 2^(42/64)
-data8 0x00097D829FDE4E50 // 2^(43/64)
-data8 0x0009C49182A3F090 // 2^(44/64)
-data8 0x000A0C667B5DE565 // 2^(45/64)
-data8 0x000A5503B23E255D // 2^(46/64)
-data8 0x000A9E6B5579FDBF // 2^(47/64)
-data8 0x000AE89F995AD3AD // 2^(48/64)
-data8 0x000B33A2B84F15FB // 2^(49/64)
-data8 0x000B7F76F2FB5E47 // 2^(50/64)
-data8 0x000BCC1E904BC1D2 // 2^(51/64)
-data8 0x000C199BDD85529C // 2^(52/64)
-data8 0x000C67F12E57D14B // 2^(53/64)
-data8 0x000CB720DCEF9069 // 2^(54/64)
-data8 0x000D072D4A07897C // 2^(55/64)
-data8 0x000D5818DCFBA487 // 2^(56/64)
-data8 0x000DA9E603DB3285 // 2^(57/64)
-data8 0x000DFC97337B9B5F // 2^(58/64)
-data8 0x000E502EE78B3FF6 // 2^(59/64)
-data8 0x000EA4AFA2A490DA // 2^(60/64)
-data8 0x000EFA1BEE615A27 // 2^(61/64)
-data8 0x000F50765B6E4540 // 2^(62/64)
-data8 0x000FA7C1819E90D8 // 2^(63/64)
-LOCAL_OBJECT_END(_expf_table)
+// expf overflows when x > 42b17218 = 88.7228
+// expf returns largest single denormal when x = c2aeac50
+// expf goes to zero when x < c2cff1b5
+
+// Consider range of 8-bit two's complement, -128 ---> 127
+// Add 128; range becomes 0 ---> 255
+
+// The number (=i) in 0 ---> 255 is used as offset into two tables.
+// i = abcd efgh = abcd * 16 + efgh = i1 * 16 + i2
+
+// i1 = (exp_GR_Mint + 128) & 0xf0 (show 0xf0 as -0x10 to avoid assembler error)
+// (The immediate in the AND is an 8-bit two's complement)
+// i1 = i1 + start of T1 table (EXP_AD_T1)
+// Note that the entries in T1 are double-extended numbers on 16-byte boundaries
+// and that i1 is already shifted left by 16 after the AND.
+
+// i2 must be shifted left by 4 before adding to the start of the table.
+// i2 = ((exp_GR_Mint + 128) & 0x0f) << 4
+// i2 = i2 + start of T2 table (EXP_AD_T2)
+
+// T = T1 * T2
+// A = T * (1 + R)
+// answer = T * (R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6) +
+// T * (1 + R)
+// = T * exp(R)
+
+
+.global expf#
.section .text
-GLOBAL_IEEE754_ENTRY(expf)
-
-{ .mlx
- addl rTblAddr = @ltoff(_expf_table),gp
- movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
+.proc expf#
+.align 32
+expf:
+#ifdef _LIBC
+.global __ieee754_expf#
+__ieee754_expf:
+#endif
+
+{ .mfi
+ alloc r32 = ar.pfs,1,26,4,0
+ fcvt.fx.s1 exp_Mx = f8
+ mov exp_GR_17ones = 0x1FFFF
}
{ .mlx
- addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
- movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
+ addl EXP_AD_P_1 = @ltoff(exp_coeff_1_table),gp
+ movl exp_GR_min_oflow = 0x42b17218
}
;;
+// Fnorm done to take any enabled faults
{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- fclass.m p14, p0 = f8, 0x22 // test for -INF
- shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
+ ld8 EXP_AD_P_1 = [EXP_AD_P_1]
+ fclass.m p6,p0 = f8, 0x07 //@zero
+ nop.i 999
}
{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // normalized x
- addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
+ add exp_GR_max_norm = -1, exp_GR_min_oflow // 0x42b17217
+ fnorm exp_norm_f8 = f8
+ nop.i 999
}
;;
{ .mfi
- setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
- fclass.m p15, p0 = f8, 0x1e1 // test for NaT,NaN,+Inf
- nop.i 0
+ setf.s EXP_MIN_SGL_OFLOW_ARG = exp_GR_min_oflow // 0x42b17218
+ fclass.m p7,p0 = f8, 0x22 // Test for x=-inf
+ mov exp_GR_0xf0 = 0x0f0
}
{ .mlx
- // load Right Shifter to FP reg
- setf.d fRightShifter = rRightShifter
- movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+ setf.s EXP_MAX_SGL_NORM_ARG = exp_GR_max_norm
+ movl exp_GR_max_zero = 0xc2cff1b5
}
;;
-{ .mfi
- nop.m 0
- fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
- nop.i 0
+
+{ .mlx
+ mov exp_GR_0x0f = 0x00f
+ movl exp_GR_max_uflow = 0xc2aeac50
}
{ .mfb
- setf.s fA3 = rA3 // load A3 to FP reg
-(p14) fma.s.s0 f8 = f0, f1, f0 // result if x = -inf
-(p14) br.ret.spnt b0 // exit here if x = -inf
+ nop.m 999
+(p6) fma.s f8 = f1,f1,f0
+(p6) br.ret.spnt b0 // quick exit for x=0
}
;;
{ .mfi
- setf.exp fA2 = rExpHalf // load A2 to FP reg
- fcmp.eq.s0 p6, p0 = f8, f0 // Dummy to flag denorm
- nop.i 0
+ setf.s EXP_MAX_SGL_ZERO_ARG = exp_GR_max_zero
+ fclass.m p8,p0 = f8, 0x21 // Test for x=+inf
+ adds exp_GR_min_norm = 1, exp_GR_max_uflow // 0xc2aeac51
}
{ .mfb
- setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
-(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf
-(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf
+ ldfpd exp_coeff_P5,exp_coeff_P6 = [EXP_AD_P_1],16
+(p7) fma.s f8 = f0,f0,f0
+(p7) br.ret.spnt b0 // quick exit for x=-inf
}
;;
-{ .mfb
- // overflow and underflow_zero threshold
- ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_ZERO_ARG = [rTblAddr], 8
-(p13) fma.s.s0 f8 = f1, f1, f0 // result if x = 0.0
-(p13) br.ret.spnt b0 // exit here if x =0.0
+{ .mmf
+ ldfpd exp_coeff_P1,exp_coeff_P2 = [EXP_AD_P_1],16
+ setf.s EXP_MAX_SGL_UFLOW_ARG = exp_GR_max_uflow
+ fclass.m p9,p0 = f8, 0xc3 // Test for x=nan
}
;;
- // max normal and underflow_denorm threshold
-{ .mfi
- ldfps fMAX_SGL_NORM_ARG, fMIN_SGL_NORM_ARG = [rTblAddr], 8
- nop.f 0
- nop.i 0
+{ .mmb
+ ldfpd exp_coeff_P3,exp_coeff_P4 = [EXP_AD_P_1],16
+ setf.s EXP_MIN_SGL_NORM_ARG = exp_GR_min_norm
+(p8) br.ret.spnt b0 // quick exit for x=+inf
}
;;
+// EXP_AD_P_1 now points to exp_T2_table
{ .mfi
- nop.m 0
- // x*(64/ln(2)) + Right Shifter
- fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
- nop.i 0
+ mov exp_GR_T2_size = 0x100
+ fcvt.xf exp_Mfloat = exp_Mx
+ nop.i 999
+}
+;;
+
+{ .mfb
+ getf.sig exp_GR_Mint = exp_Mx
+(p9) fmerge.s f8 = exp_norm_f8, exp_norm_f8
+(p9) br.ret.spnt b0 // quick exit for x=nan
}
;;
+{ .mmi
+ nop.m 999
+ mov EXP_AD_T2 = EXP_AD_P_1
+ add EXP_AD_T1 = exp_GR_T2_size,EXP_AD_P_1 ;;
+}
+
+
+{ .mmi
+ adds exp_GR_Mint_p_128 = 0x80,exp_GR_Mint ;;
+ and exp_GR_Ind1 = exp_GR_Mint_p_128, exp_GR_0xf0
+ and exp_GR_Ind2 = exp_GR_Mint_p_128, exp_GR_0x0f ;;
+}
+
// Divide arguments into the following categories:
-// Certain Underflow p11 - -inf < x <= MAX_SGL_ZERO_ARG
-// Possible Underflow p13 - MAX_SGL_ZERO_ARG < x < MIN_SGL_NORM_ARG
+// Certain Underflow/zero p11 - -inf < x <= MAX_SGL_ZERO_ARG
+// Certain Underflow p12 - MAX_SGL_ZERO_ARG < x <= MAX_SGL_UFLOW_ARG
+// Possible Underflow p13 - MAX_SGL_UFLOW_ARG < x < MIN_SGL_NORM_ARG
// Certain Safe - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
// Possible Overflow p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
// Certain Overflow p15 - MIN_SGL_OFLOW_ARG <= x < +inf
//
-// If the input is really a single arg, then there will never be
-// "Possible Overflow" arguments.
+// If the input is really a single arg, then there will never be "Possible
+// Underflow" or "Possible Overflow" arguments.
//
{ .mfi
- nop.m 0
- // check for overflow
- fcmp.ge.s1 p15, p0 = fNormX, fMIN_SGL_OFLOW_ARG
- nop.i 0
+ add EXP_AD_M1 = exp_GR_Ind1,EXP_AD_T1
+ fcmp.ge.s1 p15,p14 = exp_norm_f8,EXP_MIN_SGL_OFLOW_ARG
+ nop.i 999
+}
+{ .mfi
+ shladd EXP_AD_M2 = exp_GR_Ind2,4,EXP_AD_T2
+ fms.s1 exp_R = f1,f8,exp_Mfloat
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // check for underflow and tiny (+0) result
- fcmp.le.s1 p11, p0 = fNormX, fMAX_SGL_ZERO_ARG
- nop.i 0
+ ldfe exp_T1 = [EXP_AD_M1]
+ fcmp.le.s1 p11,p12 = exp_norm_f8,EXP_MAX_SGL_ZERO_ARG
+ nop.i 999 ;;
}
+
{ .mfb
- nop.m 0
- fms.s1 fN = fNint, f1, fRightShifter // n in FP register
- // branch out if overflow
-(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW
+ ldfe exp_T2 = [EXP_AD_M2]
+(p14) fcmp.gt.s1 p14,p0 = exp_norm_f8,EXP_MAX_SGL_NORM_ARG
+(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;;
}
-;;
{ .mfb
- getf.sig rNJ = fNint // bits of n, j
- // check for underflow and deno result
- fcmp.lt.s1 p13, p0 = fNormX, fMIN_SGL_NORM_ARG
- // branch out if underflow and tiny (+0) result
-(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW
+ nop.m 999
+(p12) fcmp.le.s1 p12,p0 = exp_norm_f8,EXP_MAX_SGL_UFLOW_ARG
+(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
}
;;
{ .mfi
- nop.m 0
- // check for possible overflow
- fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG
- extr.u rJ = rNJ, 0, 6 // bits of j
+ nop.m 999
+(p13) fcmp.lt.s1 p13,p0 = exp_norm_f8,EXP_MIN_SGL_NORM_ARG
+ nop.i 999
}
+;;
+
+
{ .mfi
- addl rN = 0xFFFF - 63, rNJ // biased and shifted n
- fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
- nop.i 0
+ nop.m 999
+ fma.s1 exp_Rsq = exp_R,exp_R,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 exp_P3 = exp_R,exp_coeff_P2,exp_coeff_P1
+ nop.i 999
}
;;
{ .mfi
- shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
- nop.f 0
- shr rN = rN, 6 // biased n
+ nop.m 999
+ fma.s1 exp_P1 = exp_R,exp_coeff_P6,exp_coeff_P5
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 exp_P2 = exp_R,exp_coeff_P4,exp_coeff_P3
+ nop.i 999
}
;;
+
{ .mfi
- ld8 rJ = [rJ]
- nop.f 0
- shl rN = rN, 52 // 2^n bits in DP format
+ nop.m 999
+ fma.s1 exp_P7 = f1,exp_R,f1
+ nop.i 999
}
;;
+
{ .mfi
- or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
- nop.f 0
- nop.i 0
+ nop.m 999
+ fma.s1 exp_P5 = exp_Rsq,exp_P3,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 exp_R4 = exp_Rsq,exp_Rsq,f0
+ nop.i 999
}
;;
{ .mfi
- setf.d fT = rN // 2^n * 2^(j/64)
- fma.s1 fP = fA3, fR, fA2 // A3*R + A2
- nop.i 0
+ nop.m 999
+ fma.s1 exp_T = exp_T1,exp_T2,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
- fma.s1 fRSqr = fR, fR, f0 // R^2
- nop.i 0
+ nop.m 999
+ fma.s1 exp_P4 = exp_Rsq,exp_P1,exp_P2
+ nop.i 999
}
;;
{ .mfi
- nop.m 0
- fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
- nop.i 0
+ nop.m 999
+ fma.s1 exp_A = exp_T,exp_P7,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 exp_P6 = exp_R4,exp_P4,exp_P5
+ nop.i 999
}
;;
-{ .mbb
- nop.m 0
- // branch out if possible underflow
-(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW
- // branch out if possible overflow result
-(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW
+{ .bbb
+(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
+(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
+(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
}
;;
{ .mfb
- nop.m 0
- // final result in the absence of over- and underflow
- fma.s.s0 f8 = fP, fT, fT
- // exit here in the absence of over- and underflow
- br.ret.sptk b0
+ nop.m 999
+ fma.s f8 = exp_T,exp_P6,exp_A
+ br.ret.sptk b0
}
;;
-EXP_POSSIBLE_OVERFLOW:
+L(EXP_POSSIBLE_OVERFLOW):
+
+// We got an answer. EXP_MAX_SGL_NORM_ARG < x < EXP_MIN_SGL_OFLOW_ARG
+// overflow is a possibility, not a certainty
+// Set wre in s2 and perform the last operation with s2
+
+// We define an overflow when the answer with
+// WRE set
+// user-defined rounding mode
+// is lsn +1
+
+// Is the exponent 1 more than the largest single?
+// If so, go to ERROR RETURN, else (no overflow) get the answer and
+// leave.
+
+// Largest single is FE (biased single)
+// FE - 7F + FFFF = 1007E
+
+// Create + largest_single_plus_ulp
+// Create - largest_single_plus_ulp
-// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
-// This cannot happen if input is a single, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+// Calculate answer with WRE set.
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest single, then we have
-// overflow
+// Cases when answer is lsn+1 are as follows:
+
+// midpoint
+// |
+// lsn | lsn+1
+// --+----------|----------+------------
+// |
+// +inf +inf -inf
+// RN RN
+// RZ
+// exp_gt_pln contains the floating point number lsn+1.
+// The setf.exp puts 0x1007f in the exponent and 0x800... in the significand.
+
+// If the answer is >= lsn+1, we have overflowed.
+// Then p6 is TRUE. Set the overflow tag, save input in FR_X,
+// do the final calculation for IEEE result, and branch to error return.
{ .mfi
- mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+ mov exp_GR_gt_ln = 0x1007F
+ fsetc.s2 0x7F,0x42
+ nop.i 999
}
;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
- fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
- nop.i 0
+ setf.exp exp_gt_pln = exp_GR_gt_ln
+ fma.s.s2 exp_wre_urm_f8 = exp_T, exp_P6, exp_A
+ nop.i 999
}
;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ nop.m 999
+ fsetc.s2 0x7F,0x40
+ nop.i 999
}
;;
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+ fcmp.ge.unc.s1 p6, p0 = exp_wre_urm_f8, exp_gt_pln
+ nop.i 999
}
;;
{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow
+ nop.m 999
+ nop.f 999
+(p6) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) // Branch if really overflow
}
;;
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fP, fT, fT
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 999
+ fma.s f8 = exp_T, exp_P6, exp_A
+ br.ret.sptk b0 // Exit if really no overflow
}
;;
-// here if overflow
-EXP_CERTAIN_OVERFLOW:
+L(EXP_CERTAIN_OVERFLOW):
{ .mmi
- addl r17ones_m1 = 0x1FFFE, r0
-;;
- setf.exp fTmp = r17ones_m1
- nop.i 0
+ sub exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
+ setf.exp f9 = exp_GR_17ones_m1
+ nop.i 999 ;;
}
-;;
{ .mfi
- alloc r32=ar.pfs,0,3,4,0
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+ fmerge.s FR_X = f8,f8
+ nop.i 999
}
{ .mfb
- mov GR_Parameter_TAG = 16
- fma.s.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ mov GR_Parameter_TAG = 16
+ fma.s FR_RESULT = f9, f9, f0 // Set I,O and +INF result
+ br.cond.sptk __libm_error_region ;;
}
-;;
-EXP_POSSIBLE_UNDERFLOW:
+L(EXP_POSSIBLE_UNDERFLOW):
-// Here if fMAX_SGL_ZERO_ARG < x < fMIN_SGL_NORM_ARG
-// Underflow is a possibility, not a certainty
+// We got an answer. EXP_MAX_SGL_UFLOW_ARG < x < EXP_MIN_SGL_NORM_ARG
+// underflow is a possibility, not a certainty
// We define an underflow when the answer with
// ftz set
@@ -551,165 +637,144 @@ EXP_POSSIBLE_UNDERFLOW:
// E
// -----+--------------------+--------------------+-----
// | | |
-// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
-// 0.1...11 2^-3ffe (biased, 1)
+// 1.1...10 2^-7f 1.1...11 2^-7f 1.0...00 2^-7e
+// 0.1...11 2^-7e (biased, 1)
// largest dn smallest normal
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz
- nop.i 0
-}
-;;
+// If the answer is = 0, we have underflowed.
+// Then p6 is TRUE. Set the underflow tag, save input in FR_X,
+// do the final calculation for IEEE result, and branch to error return.
{ .mfi
- nop.m 0
- fma.s.s2 fFtz_urm_f8 = fP, fT, fT // Result with ftz set
- nop.i 0
+ nop.m 999
+ fsetc.s2 0x7F,0x41
+ nop.i 999
}
;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off ftz in sf2
- nop.i 0
+ nop.m 999
+ fma.s.s2 exp_ftz_urm_f8 = exp_T, exp_P6, exp_A
+ nop.i 999
}
;;
+
{ .mfi
- nop.m 0
- fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s.s0 f8 = fP, fT, fT // Compute result, set I, maybe U
- nop.i 0
+ nop.m 999
+ fsetc.s2 0x7F,0x40
+ nop.i 999
}
;;
-{ .mbb
- nop.m 0
-(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow
-(p7) br.ret.sptk b0 // Exit if really no underflow
+{ .mfi
+ nop.m 999
+ fcmp.eq.unc.s1 p6, p0 = exp_ftz_urm_f8, f0
+ nop.i 999
}
;;
-EXP_CERTAIN_UNDERFLOW:
-// Here if x < fMAX_SGL_ZERO_ARG
-// Result will be zero (or smallest denorm if round to +inf) with I, U set
-{ .mmi
- mov rTmp = 1
-;;
- setf.exp fTmp = rTmp // Form small normal
- nop.i 0
+{ .mfb
+ nop.m 999
+ nop.f 999
+(p6) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW) // Branch if really underflow
}
;;
-{ .mfi
- nop.m 0
- fmerge.se fTmp = fTmp, f64DivLn2 // Small with non-trial signif
- nop.i 0
-}
-;;
-
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
- br.cond.sptk EXP_UNDERFLOW_COMMON
+ nop.m 999
+ fma.s f8 = exp_T, exp_P6, exp_A
+ br.ret.sptk b0 // Exit if really no underflow
}
;;
-EXP_UNDERFLOW_COMMON:
-// Determine if underflow result is zero or nonzero
+L(EXP_CERTAIN_UNDERFLOW):
{ .mfi
- alloc r32=ar.pfs,0,3,4,0
- fcmp.eq.s1 p6, p0 = f8, f0
- nop.i 0
+ nop.m 999
+ fmerge.s FR_X = f8,f8
+ nop.i 999
}
-;;
-
{ .mfb
- nop.m 0
- fmerge.s FR_X = fNormX,fNormX
-(p6) br.cond.spnt EXP_UNDERFLOW_ZERO
+ mov GR_Parameter_TAG = 17
+ fma.s FR_RESULT = exp_T, exp_P6, exp_A // Set I,U and tiny result
+ br.cond.sptk __libm_error_region ;;
}
-;;
-EXP_UNDERFLOW_NONZERO:
-// Here if x < fMIN_SGL_NORM_ARG and result nonzero;
-// I, U are set
-{ .mfb
- mov GR_Parameter_TAG = 17
- nop.f 0 // FR_RESULT already set
- br.cond.sptk __libm_error_region
+L(EXP_CERTAIN_UNDERFLOW_ZERO):
+{ .mmi
+ mov exp_GR_one = 1 ;;
+ setf.exp f9 = exp_GR_one
+ nop.i 999 ;;
}
-;;
-EXP_UNDERFLOW_ZERO:
-// Here if x < fMIN_SGL_NORM_ARG and result zero;
-// I, U are set
+{ .mfi
+ nop.m 999
+ fmerge.s FR_X = f8,f8
+ nop.i 999
+}
{ .mfb
- mov GR_Parameter_TAG = 17
- nop.f 0 // FR_RESULT already set
- br.cond.sptk __libm_error_region
+ mov GR_Parameter_TAG = 17
+ fma.s FR_RESULT = f9, f9, f0 // Set I,U and tiny (+0.0) result
+ br.cond.sptk __libm_error_region ;;
}
-;;
-GLOBAL_IEEE754_END(expf)
+.endp expf
+ASM_SIZE_DIRECTIVE(expf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 999
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mfi
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- nop.f 0
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ nop.f 0
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
diff --git a/sysdeps/ia64/fpu/e_fmod.S b/sysdeps/ia64/fpu/e_fmod.S
index dbd0a29698..2b3ee9610f 100644
--- a/sysdeps/ia64/fpu/e_fmod.S
+++ b/sysdeps/ia64/fpu/e_fmod.S
@@ -1,10 +1,11 @@
.file "fmod.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the Computational
+// Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +21,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,42 +36,38 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//====================================================================
-// 02/02/00 Initial version
-// 03/02/00 New Algorithm
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 3/02/00 New Algorithm
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 11/28/00 Set FR_Y to f9
-// 03/11/02 Fixed flags for fmod(qnan,zero)
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/28/03 Fix: fmod(sNaN,0) no longer sets errno
+//11/28/00 Set FR_Y to f9
//
// API
//====================================================================
-// double fmod(double,double);
+// double fmod(double,double);
//
// Overview of operation
//====================================================================
// fmod(a,b)=a-i*b,
-// where i is an integer such that, if b!=0,
+// where i is an integer such that, if b!=0,
// |i|<|a/b| and |a/b-i|<1
//
// Algorithm
//====================================================================
// a). if |a|<|b|, return a
-// b). get quotient and reciprocal overestimates accurate to
+// b). get quotient and reciprocal overestimates accurate to
// 33 bits (q2,y2)
// c). if the exponent difference (exponent(a)-exponent(b))
// is less than 32, truncate quotient to integer and
// finish in one iteration
// d). if exponent(a)-exponent(b)>=32 (q2>=2^32)
// round quotient estimate to single precision (k=RN(q2)),
-// calculate partial remainder (a'=a-k*b),
+// calculate partial remainder (a'=a-k*b),
// get quotient estimate (a'*y2), and repeat from c).
//
// Special cases
@@ -84,9 +81,14 @@
// General registers: r2,r29,r32 (ar.pfs), r33-r39
// Floating point registers: f6-f15
+#include "libm_support.h"
+
+.section .text
+
+
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
+GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
@@ -99,9 +101,17 @@ FR_Y = f9
FR_RESULT = f8
-.section .text
-GLOBAL_IEEE754_ENTRY(fmod)
+.proc fmod#
+.align 32
+.global fmod#
+.align 32
+fmod:
+#ifdef _LIBC
+.global __ieee754_fmod
+.type __ieee754_fmod,@function
+__ieee754_fmod:
+#endif
// inputs in f8, f9
// result in f8
@@ -123,12 +133,12 @@ GLOBAL_IEEE754_ENTRY(fmod)
// (1) y0
frcpa.s1 f10,p6=f6,f7
nop.i 0
-}
+}
// Y +-NAN, +-inf, +-0? p7
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0xe7
+(p0) fclass.m.unc p7,p0 = f9, 0xe7
nop.i 999;;
}
@@ -139,14 +149,14 @@ GLOBAL_IEEE754_ENTRY(fmod)
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f8, 0xe3
- nop.i 999
+(p0) fclass.m.unc p9,p0 = f8, 0xe3
+ nop.i 999
}
// |x| < |y|? Return x p8
{ .mfi
nop.m 999
- fcmp.lt.unc.s1 p8,p0 = f6,f7
+(p0) fcmp.lt.unc.s1 p8,p0 = f6,f7
nop.i 999 ;;
}
@@ -162,33 +172,33 @@ GLOBAL_IEEE754_ENTRY(fmod)
// (2) q0=a*y0
(p6) fma.s1 f13=f6,f10,f0
nop.i 0
-}
+}
{ .mfi
nop.m 0
// (3) e0 = 1 - b * y0
(p6) fnma.s1 f12=f7,f10,f1
nop.i 0;;
-}
+}
{.mfi
nop.m 0
// normalize x (if |x|<|y|)
(p8) fma.d.s0 f8=f8,f1,f0
nop.i 0
-}
+}
{.bbb
- (p9) br.cond.spnt FMOD_X_NAN_INF
- (p7) br.cond.spnt FMOD_Y_NAN_INF_ZERO
+ (p9) br.cond.spnt L(FMOD_X_NAN_INF)
+ (p7) br.cond.spnt L(FMOD_Y_NAN_INF_ZERO)
// if |x|<|y|, return
(p8) br.ret.spnt b0;;
}
- {.mfi
+ {.mfi
nop.m 0
// normalize x
fma.s0 f6=f6,f1,f0
nop.i 0
-}
+}
{.mfi
nop.m 0
// normalize y
@@ -202,45 +212,45 @@ GLOBAL_IEEE754_ENTRY(fmod)
// (4) q1=q0+e0*q0
(p6) fma.s1 f13=f12,f13,f13
nop.i 0
-}
+}
{ .mfi
nop.m 0
// (5) e1 = e0 * e0 + 2^-34
(p6) fma.s1 f14=f12,f12,f11
nop.i 0;;
-}
+}
{.mlx
nop.m 0
movl r2=0x33a00000;;
-}
+}
{ .mfi
nop.m 0
// (6) y1 = y0 + e0 * y0
(p6) fma.s1 f10=f12,f10,f10
nop.i 0;;
-}
+}
{.mfi
// set f12=1.25*2^{-24}
setf.s f12=r2
// (7) q2=q1+e1*q1
(p6) fma.s1 f13=f13,f14,f13
nop.i 0;;
-}
+}
{.mfi
nop.m 0
fmerge.s f9=f8,f9
nop.i 0
-}
+}
{ .mfi
nop.m 0
// (8) y2 = y1 + e1 * y1
(p6) fma.s1 f10=f14,f10,f10
// set p6=0, p10=0
cmp.ne.and p6,p10=r0,r0;;
-}
+}
.align 32
-loop53:
+L(loop53):
{.mfi
nop.m 0
// compare q2, 2^32
@@ -270,7 +280,7 @@ loop53:
// normalize truncated quotient
(p8) fcvt.xf f13=f11
nop.i 0;;
-}
+}
{ .mfi
nop.m 0
// calculate remainder (assuming f13=RZ(Q))
@@ -279,7 +289,7 @@ loop53:
}
{.mfi
nop.m 0
- // also if exponent>32, round quotient to single precision
+ // also if exponent>32, round quotient to single precision
// and subtract 1 ulp: q=q-q*(1.25*2^{-24})
(p7) fnma.s.s1 f11=f13,f12,f13
nop.i 0;;
@@ -322,7 +332,7 @@ loop53:
.pred.rel "mutex",p6,p10
{.mfb
nop.m 0
- // add b to estimated remainder (to cover the case when the quotient was overestimated)
+ // add b to estimated remainder (to cover the case when the quotient was overestimated)
// also set correct sign by using f9=|b|*sgn(a), f12=sgn(a)
(p6) fma.d.s0 f8=f11,f12,f9
nop.b 0
@@ -344,114 +354,97 @@ loop53:
nop.m 0
// if f14 was RZ(Q), set remainder to f14
(p9) mov f6=f14
- br.cond.sptk loop53;;
+ br.cond.sptk L(loop53);;
}
-FMOD_X_NAN_INF:
+L(FMOD_X_NAN_INF):
// Y zero ?
-{.mfi
- nop.m 0
- fclass.m p10,p0=f8,0xc3 // Test x=nan
- nop.i 0
-}
-{.mfi
+{.mfi
nop.m 0
fma.s1 f10=f9,f1,f0
nop.i 0;;
}
-
-{.mfi
- nop.m 0
- fma.s0 f8=f8,f1,f0
- nop.i 0
-}
{.mfi
- nop.m 0
-(p10) fclass.m p10,p0=f9,0x07 // Test x=nan, and y=zero
- nop.i 0;;
-}
-
-{.mfb
nop.m 0
fcmp.eq.unc.s1 p11,p0=f10,f0
-(p10) br.ret.spnt b0;; // Exit with result=x if x=nan and y=zero
+ nop.i 0;;
}
{.mib
nop.m 0
nop.i 0
// if Y zero
- (p11) br.cond.spnt FMOD_Y_ZERO;;
+ (p11) br.cond.spnt L(FMOD_Y_ZERO);;
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p8,p9 = f8, 0x23
- nop.i 999;;
+(p0) fclass.m.unc p8,p9 = f8, 0x23
+ nop.i 999;;
}
// Y NaN ?
{.mfi
- nop.m 999
+ nop.m 999
(p8) fclass.m p9,p8=f9,0xc3
- nop.i 0;;
+ nop.i 0;;
}
{.mfi
- nop.m 999
-(p8) frcpa.s0 f8,p0 = f8,f8
+ nop.m 999
+(p8) frcpa.s0 f8,p0 = f8,f8
nop.i 0
-}
+}
{ .mfi
nop.m 999
- // also set Denormal flag if necessary
+ // also set Denormal flag if necessary
(p8) fma.s0 f9=f9,f1,f0
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p8) fma.d.s0 f8=f8,f1,f0
- nop.b 999 ;;
+(p8) fma.d f8=f8,f1,f0
+ nop.b 999 ;;
}
{ .mfb
nop.m 999
-(p9) frcpa.s0 f8,p7=f8,f9
- br.ret.sptk b0 ;;
+(p9) frcpa.s0 f8,p7=f8,f9
+ br.ret.sptk b0 ;;
}
-FMOD_Y_NAN_INF_ZERO:
+L(FMOD_Y_NAN_INF_ZERO):
// Y INF
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x23
+(p0) fclass.m.unc p7,p0 = f9, 0x23
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p7) fma.d.s0 f8=f8,f1,f0
-(p7) br.ret.spnt b0 ;;
+(p7) fma.d f8=f8,f1,f0
+(p7) br.ret.spnt b0 ;;
}
// Y NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f9, 0xc3
+(p0) fclass.m.unc p9,p0 = f9, 0xc3
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p9) fma.d.s0 f8=f9,f1,f0
-(p9) br.ret.spnt b0 ;;
+(p9) fma.d f8=f9,f1,f0
+(p9) br.ret.spnt b0 ;;
}
-FMOD_Y_ZERO:
+L(FMOD_Y_ZERO):
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
@@ -459,57 +452,60 @@ FMOD_Y_ZERO:
{.mfi
nop.m 0
// set Invalid
- frcpa.s0 f12,p0=f0,f0
+ frcpa f12,p0=f0,f0
nop.i 0
}
// X NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p10 = f8, 0xc3
+(p0) fclass.m.unc p9,p10 = f8, 0xc3
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p10) fclass.nm p9,p10 = f8, 0xff
+(p10) fclass.nm p9,p10 = f8, 0xff
nop.i 999 ;;
}
{.mfi
nop.m 999
- (p9) frcpa.s0 f11,p7=f8,f0
+ (p9) frcpa f11,p7=f8,f0
nop.i 0;;
}
{ .mfi
nop.m 999
-(p10) frcpa.s0 f11,p7 = f9,f9
- mov GR_Parameter_TAG = 121 ;;
+(p10) frcpa f11,p7 = f9,f9
+(p0) mov GR_Parameter_TAG = 121 ;;
}
{ .mfi
nop.m 999
- fmerge.s f10 = f8, f8
+(p0) fmerge.s f10 = f8, f8
nop.i 999
}
{ .mfb
nop.m 999
- fma.d.s0 f8=f11,f1,f0
- br.sptk __libm_error_region;;
+(p0) fma.d f8=f11,f1,f0
+(p0) br.sptk __libm_error_region;;
}
-GLOBAL_IEEE754_END(fmod)
+.endp fmod
+ASM_SIZE_DIRECTIVE(fmod)
+ASM_SIZE_DIRECTIVE(__ieee754_fmod)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
-.fframe 64
+.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
@@ -517,18 +513,18 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
- stfd [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
+ stfd [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
+ add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
@@ -543,17 +539,13 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
+ mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
+};;
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
-
-
diff --git a/sysdeps/ia64/fpu/e_fmodf.S b/sysdeps/ia64/fpu/e_fmodf.S
index 36e5807291..5b6390eeec 100644
--- a/sysdeps/ia64/fpu/e_fmodf.S
+++ b/sysdeps/ia64/fpu/e_fmodf.S
@@ -1,10 +1,10 @@
.file "fmodf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (c) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the Computational
+// Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,9 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
+// WARRANTY DISCLAIMER
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,42 +37,38 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//====================================================================
-// 02/02/00 Initial version
-// 03/02/00 New Algorithm
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 3/02/00 New Algorithm
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 11/28/00 Set FR_Y to f9
-// 03/11/02 Fixed flags for fmodf(qnan,zero)
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/28/03 Fix: fmod(sNaN,0) no longer sets errno
+//11/28/00 Set FR_Y to f9
//
// API
//====================================================================
-// float fmodf(float,float);
+// float fmodf(float,float);
//
// Overview of operation
//====================================================================
// fmod(a,b)=a-i*b,
-// where i is an integer such that, if b!=0,
+// where i is an integer such that, if b!=0,
// |i|<|a/b| and |a/b-i|<1
// Algorithm
//====================================================================
// a). if |a|<|b|, return a
-// b). get quotient and reciprocal overestimates accurate to
+// b). get quotient and reciprocal overestimates accurate to
// 33 bits (q2,y2)
// c). if the exponent difference (exponent(a)-exponent(b))
// is less than 32, truncate quotient to integer and
// finish in one iteration
// d). if exponent(a)-exponent(b)>=32 (q2>=2^32)
// round quotient estimate to single precision (k=RN(q2)),
-// calculate partial remainder (a'=a-k*b),
+// calculate partial remainder (a'=a-k*b),
// get quotient estimate (a'*y2), and repeat from c).
// Special cases
@@ -84,9 +82,13 @@
// General registers: r2,r29,r32 (ar.pfs), r33-r39
// Floating point registers: f6-f15
+#include "libm_support.h"
+
+.section .text
+
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
+GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
@@ -99,9 +101,18 @@ FR_Y = f9
FR_RESULT = f8
-.section .text
-GLOBAL_IEEE754_ENTRY(fmodf)
+.proc fmodf#
+.align 32
+.global fmodf#
+.align 32
+
+fmodf:
+#ifdef _LIBC
+.global __ieee754_fmodf
+.type __ieee754_fmodf,@function
+__ieee754_fmodf:
+#endif
// inputs in f8, f9
// result in f8
@@ -123,13 +134,13 @@ GLOBAL_IEEE754_ENTRY(fmodf)
// (1) y0
frcpa.s1 f10,p6=f6,f7
nop.i 0
-}
+}
// eliminate special cases
// Y +-NAN, +-inf, +-0? p7
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0xe7
+(p0) fclass.m.unc p7,p0 = f9, 0xe7
nop.i 999;;
}
@@ -140,14 +151,14 @@ GLOBAL_IEEE754_ENTRY(fmodf)
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f8, 0xe3
- nop.i 999
+(p0) fclass.m.unc p9,p0 = f8, 0xe3
+ nop.i 999
}
// |x| < |y|? Return x p8
{ .mfi
nop.m 999
- fcmp.lt.unc.s1 p8,p0 = f6,f7
+(p0) fcmp.lt.unc.s1 p8,p0 = f6,f7
nop.i 999 ;;
}
@@ -163,33 +174,33 @@ GLOBAL_IEEE754_ENTRY(fmodf)
// (2) q0=a*y0
(p6) fma.s1 f13=f6,f10,f0
nop.i 0
-}
+}
{ .mfi
nop.m 0
// (3) e0 = 1 - b * y0
(p6) fnma.s1 f12=f7,f10,f1
nop.i 0;;
-}
+}
{.mfi
nop.m 0
// normalize x (if |x|<|y|)
(p8) fma.s.s0 f8=f8,f1,f0
nop.i 0
-}
+}
{.bbb
- (p9) br.cond.spnt FMOD_X_NAN_INF
- (p7) br.cond.spnt FMOD_Y_NAN_INF_ZERO
+ (p9) br.cond.spnt L(FMOD_X_NAN_INF)
+ (p7) br.cond.spnt L(FMOD_Y_NAN_INF_ZERO)
// if |x|<|y|, return
(p8) br.ret.spnt b0;;
}
- {.mfi
+ {.mfi
nop.m 0
// normalize x
fma.s0 f6=f6,f1,f0
nop.i 0
-}
+}
{.mfi
nop.m 0
// normalize y
@@ -204,45 +215,45 @@ GLOBAL_IEEE754_ENTRY(fmodf)
// (4) q1=q0+e0*q0
(p6) fma.s1 f13=f12,f13,f13
nop.i 0
-}
+}
{ .mfi
nop.m 0
// (5) e1 = e0 * e0 + 2^-34
(p6) fma.s1 f14=f12,f12,f11
nop.i 0;;
-}
+}
{.mlx
nop.m 0
movl r2=0x33a00000;;
-}
+}
{ .mfi
nop.m 0
// (6) y1 = y0 + e0 * y0
(p6) fma.s1 f10=f12,f10,f10
nop.i 0;;
-}
+}
{.mfi
// set f12=1.25*2^{-24}
setf.s f12=r2
// (7) q2=q1+e1*q1
(p6) fma.s1 f13=f13,f14,f13
nop.i 0;;
-}
+}
{.mfi
nop.m 0
fmerge.s f9=f8,f9
nop.i 0
-}
+}
{ .mfi
nop.m 0
// (8) y2 = y1 + e1 * y1
(p6) fma.s1 f10=f14,f10,f10
// set p6=0, p10=0
cmp.ne.and p6,p10=r0,r0;;
-}
+}
.align 32
-loop24:
+L(loop24):
{.mfi
nop.m 0
// compare q2, 2^32
@@ -272,7 +283,7 @@ loop24:
// normalize truncated quotient
(p8) fcvt.xf f13=f11
nop.i 0;;
-}
+}
{ .mfi
nop.m 0
// calculate remainder (assuming f13=RZ(Q))
@@ -281,7 +292,7 @@ loop24:
}
{.mfi
nop.m 0
- // also if exponent>32, round quotient to single precision
+ // also if exponent>32, round quotient to single precision
// and subtract 1 ulp: q=q-q*(1.25*2^{-24})
(p7) fnma.s.s1 f11=f13,f12,f13
nop.i 0;;
@@ -324,7 +335,7 @@ loop24:
.pred.rel "mutex",p6,p10
{.mfb
nop.m 0
- // add b to estimated remainder (to cover the case when the quotient was overestimated)
+ // add b to estimated remainder (to cover the case when the quotient was overestimated)
// also set correct sign by using f9=|b|*sgn(a), f12=sgn(a)
(p6) fma.s.s0 f8=f11,f12,f9
nop.b 0
@@ -346,118 +357,102 @@ loop24:
nop.m 0
// if f14 was RZ(Q), set remainder to f14
(p9) mov f6=f14
- br.cond.sptk loop24;;
+ br.cond.sptk L(loop24);;
}
{ .mmb
- nop.m 0
- nop.m 0
- br.ret.sptk b0;;
+ nop.m 0
+ nop.m 0
+ br.ret.sptk b0;;
}
-FMOD_X_NAN_INF:
+L(FMOD_X_NAN_INF):
// Y zero ?
-{.mfi
- nop.m 0
- fclass.m p10,p0=f8,0xc3 // Test x=nan
- nop.i 0
-}
-{.mfi
+{.mfi
nop.m 0
fma.s1 f10=f9,f1,f0
nop.i 0;;
}
-
{.mfi
- nop.m 0
- fma.s0 f8=f8,f1,f0
- nop.i 0
-}
-{.mfi
- nop.m 0
-(p10) fclass.m p10,p0=f9,0x07 // Test x=nan, and y=zero
- nop.i 0;;
-}
-{.mfb
nop.m 0
fcmp.eq.unc.s1 p11,p0=f10,f0
-(p10) br.ret.spnt b0;; // Exit with result=x if x=nan and y=zero
+ nop.i 0;;
}
{.mib
nop.m 0
nop.i 0
// if Y zero
- (p11) br.cond.spnt FMOD_Y_ZERO;;
+ (p11) br.cond.spnt L(FMOD_Y_ZERO);;
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p8,p9 = f8, 0x23
- nop.i 999;;
+(p0) fclass.m.unc p8,p9 = f8, 0x23
+ nop.i 999;;
}
// Y NaN ?
{.mfi
- nop.m 999
+ nop.m 999
(p8) fclass.m p9,p8=f9,0xc3
- nop.i 0;;
+ nop.i 0;;
}
{.mfi
- nop.m 999
-(p8) frcpa.s0 f8,p0 = f8,f8
+ nop.m 999
+(p8) frcpa.s0 f8,p0 = f8,f8
nop.i 0
-}
+}
{ .mfi
nop.m 999
- // also set Denormal flag if necessary
+ // also set Denormal flag if necessary
(p8) fma.s0 f9=f9,f1,f0
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p8) fma.s.s0 f8=f8,f1,f0
- nop.b 999 ;;
+(p8) fma.s f8=f8,f1,f0
+ nop.b 999 ;;
}
{ .mfb
nop.m 999
-(p9) frcpa.s0 f8,p7=f8,f9
- br.ret.sptk b0 ;;
+(p9) frcpa.s0 f8,p7=f8,f9
+ br.ret.sptk b0 ;;
}
-FMOD_Y_NAN_INF_ZERO:
+L(FMOD_Y_NAN_INF_ZERO):
// Y INF
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x23
+(p0) fclass.m.unc p7,p0 = f9, 0x23
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p7) fma.s.s0 f8=f8,f1,f0
-(p7) br.ret.spnt b0 ;;
+(p7) fma.s f8=f8,f1,f0
+(p7) br.ret.spnt b0 ;;
}
// Y NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f9, 0xc3
+(p0) fclass.m.unc p9,p0 = f9, 0xc3
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p9) fma.s.s0 f8=f9,f1,f0
-(p9) br.ret.spnt b0 ;;
+(p9) fma.s f8=f9,f1,f0
+(p9) br.ret.spnt b0 ;;
}
-FMOD_Y_ZERO:
+L(FMOD_Y_ZERO):
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
@@ -465,66 +460,69 @@ FMOD_Y_ZERO:
{.mfi
nop.m 0
// set Invalid
- frcpa.s0 f12,p0=f0,f0
+ frcpa f12,p0=f0,f0
nop.i 999
}
// X NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p10 = f8, 0xc3
+(p0) fclass.m.unc p9,p10 = f8, 0xc3
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p10) fclass.nm p9,p10 = f8, 0xff
+(p10) fclass.nm p9,p10 = f8, 0xff
nop.i 999 ;;
}
{.mfi
nop.m 999
- (p9) frcpa.s0 f11,p7=f8,f0
+ (p9) frcpa f11,p7=f8,f0
nop.i 0;;
}
{ .mfi
nop.m 999
-(p10) frcpa.s0 f11,p7 = f0,f0
+(p10) frcpa f11,p7 = f0,f0
nop.i 999;;
}
{ .mfi
nop.m 999
- fmerge.s f10 = f8, f8
+(p0) fmerge.s f10 = f8, f8
nop.i 999
}
{ .mfi
nop.m 999
- fma.s.s0 f8=f11,f1,f0
+(p0) fma.s f8=f11,f1,f0
nop.i 999;;
}
-EXP_ERROR_RETURN:
+L(EXP_ERROR_RETURN):
{ .mib
nop.m 0
- mov GR_Parameter_TAG=122
- br.sptk __libm_error_region;;
+(p0) mov GR_Parameter_TAG=122
+(p0) br.sptk __libm_error_region;;
}
-GLOBAL_IEEE754_END(fmodf)
+.endp fmodf
+ASM_SIZE_DIRECTIVE(fmodf)
+ASM_SIZE_DIRECTIVE(__ieee754_fmodf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
-.fframe 64
+.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
@@ -532,18 +530,18 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
{ .mmi
stfs [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
+ add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support#;; // Call error handling function
}
{ .mmi
@@ -558,14 +556,13 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
+ mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
-};;
+};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
diff --git a/sysdeps/ia64/fpu/e_fmodl.S b/sysdeps/ia64/fpu/e_fmodl.S
index 3e87eb090f..85c9f6ef82 100644
--- a/sysdeps/ia64/fpu/e_fmodl.S
+++ b/sysdeps/ia64/fpu/e_fmodl.S
@@ -1,10 +1,11 @@
.file "fmodl.s"
-
-// Copyright (c) 2000 - 2004, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the Computational
+// Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +21,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,638 +36,555 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//====================================================================
-// 02/02/00 Initial version
-// 03/02/00 New Algorithm
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [ the previously overwritten ] GR_Parameter_RESULT.
-// 11/28/00 Set FR_Y to f9
-// 03/11/02 Fixed flags for fmodl(qnan, zero)
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header:.section,.global,.proc,.align
-// 04/28/03 Fix: fmod(sNaN, 0) no longer sets errno
-// 11/23/04 Reformatted routine and improved speed
+// 2/02/00 Initial version
+// 3/02/00 New Algorithm
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
+//11/28/00 Set FR_Y to f9
//
// API
//====================================================================
-// long double fmodl(long double, long double);
+// long double fmodl(long double,long double);
//
// Overview of operation
//====================================================================
-// fmod(a, b)= a-i*b,
-// where i is an integer such that, if b!= 0,
-// |i|<|a/b| and |a/b-i|<1
+// fmod(a,b)=a-i*b,
+// where i is an integer such that, if b!=0,
+// |i|<|a/b| and |a/b-i|<1
//
// Algorithm
//====================================================================
// a). if |a|<|b|, return a
-// b). get quotient and reciprocal overestimates accurate to
-// 33 bits (q2, y2)
+// b). get quotient and reciprocal overestimates accurate to
+// 33 bits (q2,y2)
// c). if the exponent difference (exponent(a)-exponent(b))
-// is less than 32, truncate quotient to integer and
-// finish in one iteration
-// d). if exponent(a)-exponent(b)>= 32 (q2>= 2^32)
-// round quotient estimate to single precision (k= RN(q2)),
-// calculate partial remainder (a'= a-k*b),
-// get quotient estimate (a'*y2), and repeat from c).
+// is less than 32, truncate quotient to integer and
+// finish in one iteration
+// d). if exponent(a)-exponent(b)>=32 (q2>=2^32)
+// round quotient estimate to single precision (k=RN(q2)),
+// calculate partial remainder (a'=a-k*b),
+// get quotient estimate (a'*y2), and repeat from c).
//
// Registers used
//====================================================================
+// Predicate registers: p6-p11
+// General registers: r2,r29,r32 (ar.pfs), r33-r39
+// Floating point registers: f6-f15
-GR_SMALLBIASEXP = r2
-GR_2P32 = r3
-GR_SMALLBIASEXP = r20
-GR_ROUNDCONST = r21
-GR_SIG_B = r22
-GR_ARPFS = r23
-GR_TMP1 = r24
-GR_TMP2 = r25
-GR_TMP3 = r26
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-FR_X = f10
-FR_Y = f9
-FR_RESULT = f8
-
-FR_ABS_A = f6
-FR_ABS_B = f7
-FR_Y_INV = f10
-FR_SMALLBIAS = f11
-FR_E0 = f12
-FR_Q = f13
-FR_E1 = f14
-FR_2P32 = f15
-FR_TMPX = f32
-FR_TMPY = f33
-FR_ROUNDCONST = f34
-FR_QINT = f35
-FR_QRND24 = f36
-FR_NORM_B = f37
-FR_TMP = f38
-FR_TMP2 = f39
-FR_DFLAG = f40
-FR_Y_INV0 = f41
-FR_Y_INV1 = f42
-FR_Q0 = f43
-FR_Q1 = f44
-FR_QINT_Z = f45
-FR_QREM = f46
-FR_B_SGN_A = f47
+#include "libm_support.h"
.section .text
-GLOBAL_IEEE754_ENTRY(fmodl)
-// inputs in f8, f9
-// result in f8
+GR_SAVE_B0 = r33
+GR_SAVE_PFS = r34
+GR_SAVE_GP = r35
+GR_SAVE_SP = r36
-{ .mfi
- getf.sig GR_SIG_B = f9
- // FR_ABS_A = |a|
- fmerge.s FR_ABS_A = f0, f8
- mov GR_SMALLBIASEXP = 0x0ffdd
-}
-{ .mfi
- nop.m 0
- // FR_ABS_B = |b|
- fmerge.s FR_ABS_B = f0, f9
- nop.i 0
-}
-;;
+GR_Parameter_X = r37
+GR_Parameter_Y = r38
+GR_Parameter_RESULT = r39
+GR_Parameter_TAG = r40
-{ .mfi
- setf.exp FR_SMALLBIAS = GR_SMALLBIASEXP
- // (1) y0
- frcpa.s1 FR_Y_INV0, p6 = FR_ABS_A, FR_ABS_B
- nop.i 0
-}
-;;
+FR_X = f10
+FR_Y = f9
+FR_RESULT = f8
-{ .mlx
- nop.m 0
- movl GR_ROUNDCONST = 0x33a00000
-}
-;;
-// eliminate special cases
-{ .mmi
- nop.m 0
- nop.m 0
- // y pseudo-zero ?
- cmp.eq p7, p10 = GR_SIG_B, r0
-}
-;;
-// set p7 if b +/-NAN, +/-inf, +/-0
-{ .mfi
- nop.m 0
- (p10) fclass.m p7, p10 = f9, 0xe7
- nop.i 0
-}
-;;
+.proc fmodl#
+.align 32
+.global fmodl#
+.align 32
-{ .mfi
- mov GR_2P32 = 0x1001f
- // (2) q0 = a*y0
- (p6) fma.s1 FR_Q0 = FR_ABS_A, FR_Y_INV0, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (3) e0 = 1 - b * y0
- (p6) fnma.s1 FR_E0 = FR_ABS_B, FR_Y_INV0, f1
- nop.i 0
-}
-;;
+fmodl:
+#ifdef _LIBC
+.global __ieee754_fmodl
+.type __ieee754_fmodl,@function
+__ieee754_fmodl:
+#endif
+// inputs in f8, f9
+// result in f8
-// set p9 if a +/-NAN, +/-inf
-{ .mfi
- nop.m 0
- fclass.m.unc p9, p11 = f8, 0xe3
- nop.i 0
-}
- // |a| < |b|? Return a, p8=1
{ .mfi
- nop.m 0
- (p10) fcmp.lt.unc.s1 p8, p0 = FR_ABS_A, FR_ABS_B
- nop.i 0
+ alloc r32=ar.pfs,1,4,4,0
+ // f6=|a|
+ fmerge.s f6=f0,f8
+ mov r2 = 0x0ffdd
}
-;;
-
-// set p7 if b +/-NAN, +/-inf, +/-0
-{ .mfi
- nop.m 0
- // pseudo-NaN ?
- (p10) fclass.nm p7, p0 = f9, 0xff
- nop.i 0
+ {.mfi
+ getf.sig r29=f9
+ // f7=|b|
+ fmerge.s f7=f0,f9
+ nop.i 0;;
}
-;;
-// set p9 if a is +/-NaN, +/-Inf
-{ .mfi
- nop.m 0
- (p11) fclass.nm p9, p0 = f8, 0xff
- nop.i 0
-}
{ .mfi
- nop.m 0
- // b denormal ? set D flag (if |a|<|b|)
- (p8) fnma.s0 FR_DFLAG = f9, f1, f9
- nop.i 0
-}
-;;
+ setf.exp f11 = r2
+ // (1) y0
+ frcpa.s1 f10,p6=f6,f7
+ nop.i 0;;
+}
-{ .mfi
- // FR_2P32 = 2^32
- setf.exp FR_2P32 = GR_2P32
- // (4) q1 = q0+e0*q0
- (p6) fma.s1 FR_Q1 = FR_E0, FR_Q0, FR_Q0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (5) e1 = e0 * e0 + 2^-34
- (p6) fma.s1 FR_E1 = FR_E0, FR_E0, FR_SMALLBIAS
- nop.i 0
+// eliminate special cases
+{.mmi
+nop.m 0
+nop.m 0
+// y pseudo-zero ?
+cmp.eq p7,p10=r29,r0;;
}
-;;
+// Y +-NAN, +-inf, +-0? p7
{ .mfi
- nop.m 0
- // normalize a (if |a|<|b|)
- (p8) fma.s0 f8 = f8, f1, f0
- nop.i 0
+ nop.m 999
+(p10) fclass.m p7,p10 = f9, 0xe7
+ nop.i 999;;
}
-{ .bbb
- (p9) br.cond.spnt FMOD_A_NAN_INF
- (p7) br.cond.spnt FMOD_B_NAN_INF_ZERO
- // if |a|<|b|, return
- (p8) br.ret.spnt b0
-}
-;;
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+// X +-NAN, +-inf, ? p9
{ .mfi
- nop.m 0
- // (6) y1 = y0 + e0 * y0
- (p6) fma.s1 FR_Y_INV1 = FR_E0, FR_Y_INV0, FR_Y_INV0
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p9,p11 = f8, 0xe3
+ nop.i 999
}
-;;
+// |x| < |y|? Return x p8
{ .mfi
- nop.m 0
- // a denormal ? set D flag
- // b denormal ? set D flag
- fcmp.eq.s0 p12,p0 = FR_ABS_A, FR_ABS_B
- nop.i 0
-}
+ nop.m 999
+(p10) fcmp.lt.unc.s1 p8,p0 = f6,f7
+ nop.i 999 ;;
+}
+
+ { .mfi
+ mov r2=0x1001f
+ // (2) q0=a*y0
+ (p6) fma.s1 f13=f6,f10,f0
+ nop.i 0
+} { .mfi
+ nop.m 0
+ // (3) e0 = 1 - b * y0
+ (p6) fnma.s1 f12=f7,f10,f1
+ nop.i 0;;
+}
+
+// Y +-NAN, +-inf, +-0? p7
+{ .mfi
+ nop.m 999
+ // pseudo-NaN ?
+(p10) fclass.nm p7,p0 = f9, 0xff
+ nop.i 999
+}
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+// X +-NAN, +-inf, ? p9
+
+{ .mfi
+ nop.m 999
+(p11) fclass.nm p9,p0 = f8, 0xff
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 0
+ // y denormal ? set D flag (if |x|<|y|)
+ (p8) fnma.s0 f10=f9,f1,f9
+ nop.i 0;;
+}
+
+
+{.mfi
+ nop.m 0
+ // normalize x (if |x|<|y|)
+ (p8) fma.s0 f8=f8,f1,f0
+ nop.i 0
+}
+{.bbb
+ (p9) br.cond.spnt L(FMOD_X_NAN_INF)
+ (p7) br.cond.spnt L(FMOD_Y_NAN_INF_ZERO)
+ // if |x|<|y|, return
+ (p8) br.ret.spnt b0;;
+}
+
+ {.mfi
+ nop.m 0
+ // x denormal ? set D flag
+ fnma.s0 f32=f6,f1,f6
+ nop.i 0
+}
+{.mfi
+ nop.m 0
+ // y denormal ? set D flag
+ fnma.s0 f33=f7,f1,f7
+ nop.i 0;;
+}
+
+ {.mfi
+ // f15=2^32
+ setf.exp f15=r2
+ // (4) q1=q0+e0*q0
+ (p6) fma.s1 f13=f12,f13,f13
+ nop.i 0
+}
{ .mfi
- // set FR_ROUNDCONST = 1.25*2^{-24}
- setf.s FR_ROUNDCONST = GR_ROUNDCONST
- // (7) q2 = q1+e1*q1
- (p6) fma.s1 FR_Q = FR_Q1, FR_E1, FR_Q1
- nop.i 0
-}
-;;
+ nop.m 0
+ // (5) e1 = e0 * e0 + 2^-34
+ (p6) fma.s1 f14=f12,f12,f11
+ nop.i 0;;
+}
+{.mlx
+ nop.m 0
+ movl r2=0x33a00000;;
+}
+{ .mfi
+ nop.m 0
+ // (6) y1 = y0 + e0 * y0
+ (p6) fma.s1 f10=f12,f10,f10
+ nop.i 0;;
+}
+{.mfi
+ // set f12=1.25*2^{-24}
+ setf.s f12=r2
+ // (7) q2=q1+e1*q1
+ (p6) fma.s1 f13=f13,f14,f13
+ nop.i 0;;
+}
+{.mfi
+ nop.m 0
+ fmerge.s f9=f8,f9
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ // (8) y2 = y1 + e1 * y1
+ (p6) fma.s1 f10=f14,f10,f10
+ // set p6=0, p10=0
+ cmp.ne.and p6,p10=r0,r0;;
+}
-{ .mfi
- nop.m 0
- fmerge.s FR_B_SGN_A = f8, f9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (8) y2 = y1 + e1 * y1
- (p6) fma.s1 FR_Y_INV = FR_E1, FR_Y_INV1, FR_Y_INV1
- // set p6 = 0, p10 = 0
- cmp.ne.and p6, p10 = r0, r0
-}
-;;
-// will compute integer quotient bits (24 bits per iteration)
.align 32
-loop64:
-{ .mfi
- nop.m 0
- // compare q2, 2^32
- fcmp.lt.unc.s1 p8, p7 = FR_Q, FR_2P32
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // will truncate quotient to integer, if exponent<32 (in advance)
- fcvt.fx.trunc.s1 FR_QINT = FR_Q
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // if exponent>32 round quotient to single precision (perform in advance)
- fma.s.s1 FR_QRND24 = FR_Q, f1, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // set FR_ROUNDCONST = sgn(a)
- (p8) fmerge.s FR_ROUNDCONST = f8, f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // normalize truncated quotient
- (p8) fcvt.xf FR_QRND24 = FR_QINT
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // calculate remainder (assuming FR_QRND24 = RZ(Q))
- (p7) fnma.s1 FR_E1 = FR_QRND24, FR_ABS_B, FR_ABS_A
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // also if exponent>32, round quotient to single precision
- // and subtract 1 ulp: q = q-q*(1.25*2^{-24})
- (p7) fnma.s.s1 FR_QINT_Z = FR_QRND24, FR_ROUNDCONST, FR_QRND24
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // (p8) calculate remainder (82-bit format)
- (p8) fnma.s1 FR_QREM = FR_QRND24, FR_ABS_B, FR_ABS_A
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (p7) calculate remainder (assuming FR_QINT_Z = RZ(Q))
- (p7) fnma.s1 FR_ABS_A = FR_QINT_Z, FR_ABS_B, FR_ABS_A
- nop.i 0
+L(loop64):
+ {.mfi
+ nop.m 0
+ // compare q2, 2^32
+ fcmp.lt.unc.s1 p8,p7=f13,f15
+ nop.i 0
+}
+ {.mfi
+ nop.m 0
+ // will truncate quotient to integer, if exponent<32 (in advance)
+ fcvt.fx.trunc.s1 f11=f13
+ nop.i 0;;
+}
+ {.mfi
+ nop.m 0
+ // if exponent>32, round quotient to single precision (perform in advance)
+ fma.s.s1 f13=f13,f1,f0
+ nop.i 0;;
+}
+
+
+ {.mfi
+ nop.m 0
+ // set f12=sgn(a)
+ (p8) fmerge.s f12=f8,f1
+ nop.i 0
+}
+ {.mfi
+ nop.m 0
+ // normalize truncated quotient
+ (p8) fcvt.xf f13=f11
+ nop.i 0;;
+}
+ { .mfi
+ nop.m 0
+ // calculate remainder (assuming f13=RZ(Q))
+ (p7) fnma.s1 f14=f13,f7,f6
+ nop.i 0
+}
+ {.mfi
+ nop.m 0
+ // also if exponent>32, round quotient to single precision
+ // and subtract 1 ulp: q=q-q*(1.25*2^{-24})
+ (p7) fnma.s.s1 f11=f13,f12,f13
+ nop.i 0;;
+}
+
+ {.mfi
+ nop.m 0
+ // (p8) calculate remainder (82-bit format)
+ (p8) fnma.s1 f11=f13,f7,f6
+ nop.i 0
+}
+ {.mfi
+ nop.m 0
+ // (p7) calculate remainder (assuming f11=RZ(Q))
+ (p7) fnma.s1 f6=f11,f7,f6
+ nop.i 0;;
+}
+
+
+ {.mfi
+ nop.m 0
+ // Final iteration (p8): is f6 the correct remainder (quotient was not overestimated) ?
+ (p8) fcmp.lt.unc.s1 p6,p10=f11,f0
+ nop.i 0;;
+}
+ {.mfi
+ nop.m 0
+ // get new quotient estimation: a'*y2
+ (p7) fma.s1 f13=f14,f10,f0
+ nop.i 0
+}
+ {.mfb
+ nop.m 0
+ // was f13=RZ(Q) ? (then new remainder f14>=0)
+ (p7) fcmp.lt.unc.s1 p7,p9=f14,f0
+ nop.b 0;;
+}
+
+
+.pred.rel "mutex",p6,p10
+ {.mfb
+ nop.m 0
+ // add b to estimated remainder (to cover the case when the quotient was overestimated)
+ // also set correct sign by using f9=|b|*sgn(a), f12=sgn(a)
+ (p6) fma.s0 f8=f11,f12,f9
+ nop.b 0
+}
+ {.mfb
+ nop.m 0
+ // set correct sign of result before returning: f12=sgn(a)
+ (p10) fma.s0 f8=f11,f12,f0
+ (p8) br.ret.sptk b0;;
+}
+ {.mfi
+ nop.m 0
+ // if f13!=RZ(Q), get alternative quotient estimation: a''*y2
+ (p7) fma.s1 f13=f6,f10,f0
+ nop.i 0
+}
+ {.mfb
+ nop.m 0
+ // if f14 was RZ(Q), set remainder to f14
+ (p9) mov f6=f14
+ br.cond.sptk L(loop64);;
+}
+
+
+
+L(FMOD_X_NAN_INF):
+
+// Y zero ?
+{.mfi
+ nop.m 0
+ fma.s1 f10=f9,f1,f0
+ nop.i 0;;
+}
+{.mfi
+ nop.m 0
+ fcmp.eq.unc.s1 p11,p0=f10,f0
+ nop.i 0;;
+}
+{.mib
+ nop.m 0
+ nop.i 0
+ // if Y zero
+ (p11) br.cond.spnt L(FMOD_Y_ZERO);;
+}
+
+// X infinity? Return QNAN indefinite
+{ .mfi
+ // set p7 t0 0
+ cmp.ne p7,p0=r0,r0
+(p0) fclass.m.unc p8,p9 = f8, 0x23
+ nop.i 999;;
}
-;;
-
-{ .mfi
- nop.m 0
- // Final iteration (p8): is FR_ABS_A the correct remainder
- // (quotient was not overestimated) ?
- (p8) fcmp.lt.unc.s1 p6, p10 = FR_QREM, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // get new quotient estimation: a'*y2
- (p7) fma.s1 FR_Q = FR_E1, FR_Y_INV, f0
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // was FR_Q = RZ(Q) ? (then new remainder FR_E1> = 0)
- (p7) fcmp.lt.unc.s1 p7, p9 = FR_E1, f0
- nop.b 0
-}
-;;
-
-.pred.rel "mutex", p6, p10
-{ .mfb
- nop.m 0
- // add b to estimated remainder (to cover the case when the quotient was
- // overestimated)
- // also set correct sign by using
- // FR_B_SGN_A = |b|*sgn(a), FR_ROUNDCONST = sgn(a)
- (p6) fma.s0 f8 = FR_QREM, FR_ROUNDCONST, FR_B_SGN_A
- nop.b 0
-}
-{ .mfb
- nop.m 0
- // set correct sign of result before returning: FR_ROUNDCONST = sgn(a)
- (p10) fma.s0 f8 = FR_QREM, FR_ROUNDCONST, f0
- (p8) br.ret.sptk b0
-}
-;;
-
-{ .mfi
- nop.m 0
- // if f13! = RZ(Q), get alternative quotient estimation: a''*y2
- (p7) fma.s1 FR_Q = FR_ABS_A, FR_Y_INV, f0
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // if FR_E1 was RZ(Q), set remainder to FR_E1
- (p9) fma.s1 FR_ABS_A = FR_E1, f1, f0
- br.cond.sptk loop64
-}
-;;
-
-FMOD_A_NAN_INF:
-
-// b zero ?
-{ .mfi
- nop.m 0
- fclass.m p10, p0 = f8, 0xc3 // Test a = nan
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_NORM_B = f9, f1, f0
- nop.i 0
+// Y NaN ?
+{.mfi
+ nop.m 999
+(p8) fclass.m p9,p8=f9,0xc3
+ nop.i 0;;
}
-;;
-
-{ .mfi
- nop.m 0
- fma.s0 f8 = f8, f1, f0
- nop.i 0
+// Y not pseudo-zero ? (r29 holds significand)
+{.mii
+ nop.m 999
+(p8) cmp.ne p7,p0=r29,r0
+ nop.i 0;;
}
+{.mfi
+ nop.m 999
+(p8) frcpa.s0 f8,p0 = f8,f8
+ nop.i 0
+}
{ .mfi
- nop.m 0
- (p10) fclass.m p10, p0 = f9, 0x07 // Test x = nan, and y = zero
- nop.i 0
+ nop.m 999
+ // also set Denormal flag if necessary
+(p7) fnma.s0 f9=f9,f1,f9
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- fcmp.eq.unc.s1 p11, p0 = FR_NORM_B, f0
- (p10) br.ret.spnt b0 // Exit with result = a if a = nan and b = zero
-}
-;;
-
-{ .mib
- nop.m 0
- nop.i 0
- // if Y zero
- (p11) br.cond.spnt FMOD_B_ZERO
-}
-;;
-
-// a= infinity? Return QNAN indefinite
-{ .mfi
- // set p7 t0 0
- cmp.ne p7, p0 = r0, r0
- fclass.m.unc p8, p9 = f8, 0x23
- nop.i 0
-}
-;;
-
-// b NaN ?
-{ .mfi
- nop.m 0
- (p8) fclass.m p9, p8 = f9, 0xc3
- nop.i 0
-}
-;;
-
-// b not pseudo-zero ? (GR_SIG_B holds significand)
-{ .mii
- nop.m 0
- (p8) cmp.ne p7, p0 = GR_SIG_B, r0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- (p8) frcpa.s0 f8, p0 = f8, f8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // also set Denormal flag if necessary
- (p7) fnma.s0 f9 = f9, f1, f9
- nop.i 0
+ nop.m 999
+(p8) fma.s0 f8=f8,f1,f0
+ nop.b 999 ;;
}
-;;
{ .mfb
- nop.m 0
- (p8) fma.s0 f8 = f8, f1, f0
- nop.b 0
+ nop.m 999
+(p9) frcpa.s0 f8,p7=f8,f9
+ br.ret.sptk b0 ;;
}
-;;
-{ .mfb
- nop.m 0
- (p9) frcpa.s0 f8, p7 = f8, f9
- br.ret.sptk b0
-}
-;;
-FMOD_B_NAN_INF_ZERO:
-// b INF
+L(FMOD_Y_NAN_INF_ZERO):
+// Y INF
{ .mfi
- nop.m 0
- fclass.m.unc p7, p0 = f9, 0x23
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p7,p0 = f9, 0x23
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- (p7) fma.s0 f8 = f8, f1, f0
- (p7) br.ret.spnt b0
+ nop.m 999
+(p7) fma f8=f8,f1,f0
+(p7) br.ret.spnt b0 ;;
}
-;;
-// b NAN?
+// Y NAN?
{ .mfi
- nop.m 0
- fclass.m.unc p9, p10 = f9, 0xc3
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p9,p10 = f9, 0xc3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 0
- (p10) fclass.nm p9, p0 = f9, 0xff
- nop.i 0
+ nop.m 999
+(p10) fclass.nm p9,p0 = f9, 0xff
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- (p9) fma.s0 f8 = f9, f1, f0
- (p9) br.ret.spnt b0
+ nop.m 999
+(p9) fma f8=f9,f1,f0
+(p9) br.ret.spnt b0 ;;
}
-;;
-FMOD_B_ZERO:
+L(FMOD_Y_ZERO):
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
-{ .mfi
- nop.m 0
- // set Invalid
- frcpa.s0 FR_TMP, p0 = f0, f0
- nop.i 0
+{.mfi
+ nop.m 0
+ // set Invalid
+ frcpa f12,p0=f0,f0
+ nop.i 0
}
-;;
-
-// a NAN?
+// X NAN?
{ .mfi
- nop.m 0
- fclass.m.unc p9, p10 = f8, 0xc3
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p9,p10 = f8, 0xc3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- alloc GR_ARPFS = ar.pfs, 1, 4, 4, 0
- (p10) fclass.nm p9, p10 = f8, 0xff
- nop.i 0
+ nop.m 999
+(p10) fclass.nm p9,p10 = f8, 0xff
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- (p9) frcpa.s0 FR_TMP2, p7 = f8, f0
- nop.i 0
+{.mfi
+ nop.m 999
+ (p9) frcpa f11,p7=f8,f0
+ nop.i 0;;
}
-;;
+
{ .mfi
- nop.m 0
- (p10) frcpa.s0 FR_TMP2, p7 = f9, f9
- mov GR_Parameter_TAG = 120
+ nop.m 999
+(p10) frcpa f11,p7 = f9,f9
+(p0) mov GR_Parameter_TAG = 120 ;;
}
-;;
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8, f8
- nop.i 0
+ nop.m 999
+(p0) fmerge.s f10 = f8, f8
+ nop.i 999
}
+
{ .mfb
- nop.m 0
- fma.s0 f8 = FR_TMP2, f1, f0
- br.sptk __libm_error_region
+ nop.m 999
+(p0) fma f8=f11,f1,f0
+(p0) br.sptk __libm_error_region;;
}
-;;
-GLOBAL_IEEE754_END(fmodl)
+.endp fmodl
+ASM_SIZE_DIRECTIVE(fmodl)
+ASM_SIZE_DIRECTIVE(__ieee754_fmodl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
- add GR_Parameter_Y = -32, sp // Parameter 2 value
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
-.fframe 64
- add sp = -64, sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP = gp // Save gp
-}
-;;
-
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
{ .mmi
- stfe [ GR_Parameter_Y ] = FR_Y, 16 // Save Parameter 2 on stack
- add GR_Parameter_X = 16, sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0 // Save b0
-}
-;;
-
+ stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
.body
{ .mib
- stfe [ GR_Parameter_X ] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0, GR_Parameter_Y
- nop.b 0 // Parameter 3 address
+ stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [ GR_Parameter_Y ] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16, GR_Parameter_Y
- br.call.sptk b0 = __libm_error_support# // Call error handling function
-}
-;;
-
+ stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
+};;
{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48, sp
-}
-;;
-
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
{ .mmi
- ldfe f8 = [ GR_Parameter_RESULT ] // Get return result off stack
+ ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64, sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-}
-;;
-
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-}
-;;
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#, @function
+.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_gammaf_r.c b/sysdeps/ia64/fpu/e_gammaf_r.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/e_gammaf_r.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/e_gammal_r.c b/sysdeps/ia64/fpu/e_gammal_r.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/e_gammal_r.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/e_hypot.S b/sysdeps/ia64/fpu/e_hypot.S
index 36cfd1e667..113aac3461 100644
--- a/sysdeps/ia64/fpu/e_hypot.S
+++ b/sysdeps/ia64/fpu/e_hypot.S
@@ -1,10 +1,11 @@
-.file "hypot.s"
+.file "hypot.asm"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +21,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,27 +36,24 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
// History:
-// 02/02/00 hand-optimized
-// 04/04/00 Unwind support added
-// 06/20/00 new version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 hand-optimized
+// 4/04/00 Unwind support added
+// 6/20/00 new version
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/17/03 Added missing mutex directive
//
-//*********************************************************************
+// *********************************************************************
// ___________
// Function: hypot(x,y) = |(x^2 + y^2) = for double precision values
// x and y
// Also provides cabs functionality.
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
@@ -70,7 +68,7 @@
//
// Predicate Registers: p6 - p10
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
@@ -80,7 +78,7 @@
// hypot(QNaN and anything) = QNaN
// hypot(SNaN and anything ) = QNaN
//
-//*********************************************************************
+// *********************************************************************
//
// Implementation:
// x2 = x * x in double-extended
@@ -88,7 +86,9 @@
// temp = x2 + y2 in double-extended
// sqrt(temp) rounded to double
//
-//*********************************************************************
+// *********************************************************************
+
+#include "libm_support.h"
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
@@ -103,12 +103,23 @@ FR_Y = f33
FR_RESULT = f8
.section .text
-
-LOCAL_LIBM_ENTRY(cabs)
-LOCAL_LIBM_END(cabs)
-
-GLOBAL_IEEE754_ENTRY(hypot)
-
+#ifndef _LIBC
+.proc cabs#
+.global cabs#
+cabs:
+.endp cabs
+#endif
+.proc hypot#
+.global hypot#
+.align 64
+
+hypot:
+#ifdef _LIBC
+.global __hypot
+__hypot:
+.global __ieee754_hypot
+__ieee754_hypot:
+#endif
{.mfi
alloc r32= ar.pfs,0,4,4,0
// Compute x*x
@@ -210,7 +221,6 @@ GLOBAL_IEEE754_ENTRY(hypot)
mov r2=0x107fb;;
}
-.pred.rel "mutex",p7,p8
{.mfb
nop.m 0
// if f8=Infinity or f9=Zero, return |f8|
@@ -384,9 +394,11 @@ GLOBAL_IEEE754_ENTRY(hypot)
// No overflow
(p9) br.ret.sptk b0;;
}
-GLOBAL_IEEE754_END(hypot)
+.endp hypot
+ASM_SIZE_DIRECTIVE(hypot)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -433,8 +445,7 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
diff --git a/sysdeps/ia64/fpu/e_hypotf.S b/sysdeps/ia64/fpu/e_hypotf.S
index d6fcbd1a01..0a11ec5b41 100644
--- a/sysdeps/ia64/fpu/e_hypotf.S
+++ b/sysdeps/ia64/fpu/e_hypotf.S
@@ -1,10 +1,11 @@
-.file "hypotf.s"
+.file "hypotf.asm"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +21,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,27 +36,24 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
// History:
-// 02/02/00 hand-optimized
-// 04/04/00 Unwind support added
-// 06/26/00 new version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 hand-optimized
+// 4/04/00 Unwind support added
+// 6/26/00 new version
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/17/03 Added missing mutex directive
//
-//*********************************************************************
+// *********************************************************************
// ___________
// Function: hypotf(x,y) = |(x^2 + y^2) = for single precision values
// x and y
// Also provides cabsf functionality.
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
@@ -70,7 +68,7 @@
//
// Predicate Registers: p6 - p10
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
@@ -80,7 +78,7 @@
// hypotf(QNaN and anything) = QNaN
// hypotf(SNaN and anything ) = QNaN
//
-//*********************************************************************
+// *********************************************************************
//
// Implementation:
// x2 = x * x in double-extended
@@ -88,7 +86,9 @@
// temp = x2 + y2 in double-extended
// sqrt(temp) rounded to single precision
//
-//*********************************************************************
+// *********************************************************************
+
+#include "libm_support.h"
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
@@ -103,11 +103,23 @@ FR_Y = f15
FR_RESULT = f8
.section .text
-
-LOCAL_LIBM_ENTRY(cabsf)
-LOCAL_LIBM_END(cabsf)
-
-GLOBAL_IEEE754_ENTRY(hypotf)
+#ifndef _LIBC
+.proc cabsf#
+.global cabsf#
+cabsf:
+.endp cabsf
+#endif
+.proc hypotf#
+.global hypotf#
+.align 64
+
+hypotf:
+#ifdef _LIBC
+.global __hypotf
+__hypotf:
+.global __ieee754_hypotf
+__ieee754_hypotf:
+#endif
{.mfi
alloc r32= ar.pfs,0,4,4,0
// Compute x*x
@@ -195,7 +207,6 @@ GLOBAL_IEEE754_ENTRY(hypotf)
nop.i 0;;
}
-.pred.rel "mutex",p7,p8
{.mfb
nop.m 0
// if f8=Infinity or f9=Zero, return |f8|
@@ -337,13 +348,15 @@ GLOBAL_IEEE754_ENTRY(hypotf)
// No overflow
(p9) br.ret.sptk b0;;
}
-GLOBAL_IEEE754_END(hypotf)
+.endp hypotf
+ASM_SIZE_DIRECTIVE(hypotf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mii
add GR_Parameter_Y=-32,sp // Parameter 2 value
- mov GR_Parameter_TAG = 47
+(p0) mov GR_Parameter_TAG = 47
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
@@ -387,9 +400,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/e_hypotl.S b/sysdeps/ia64/fpu/e_hypotl.S
index 988b86e761..986faf6fcc 100644
--- a/sysdeps/ia64/fpu/e_hypotl.S
+++ b/sysdeps/ia64/fpu/e_hypotl.S
@@ -1,10 +1,11 @@
-.file "hypotl.s"
+.file "hypotl.asm"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +21,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,26 +36,24 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
// History:
-// 02/02/00 hand-optimized
-// 04/04/00 Unwind support added
-// 06/20/00 new version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 hand-optimized
+// 4/04/00 Unwind support added
+// 6/20/00 new version
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
-//*********************************************************************
+// *********************************************************************
// ___________
// Function: hypotl(x,y) = |(x^2 + y^2) = for double extended values
// x and y
// Also provides cabsl functionality.
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
@@ -69,7 +68,7 @@
//
// Predicate Registers: p6 - p10
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
@@ -79,7 +78,7 @@
// hypotl(QNaN and anything) = QNaN
// hypotl(SNaN and anything ) = QNaN
//
-//*********************************************************************
+// *********************************************************************
//
// Implementation:
// x2 = x * x in double-extended
@@ -87,7 +86,9 @@
// temp = x2 + y2 in double-extended
// sqrt(temp) rounded to double extended
//
-//*********************************************************************
+// *********************************************************************
+
+#include "libm_support.h"
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
@@ -102,11 +103,23 @@ FR_Y = f33
FR_RESULT = f8
.section .text
-
-LOCAL_LIBM_ENTRY(cabsl)
-LOCAL_LIBM_END(cabsl)
-
-GLOBAL_IEEE754_ENTRY(hypotl)
+#ifndef _LIBC
+.proc cabsl#
+.global cabsl#
+cabsl:
+.endp cabsl
+#endif
+.proc hypotl#
+.global hypotl#
+.align 64
+
+hypotl:
+#ifdef _LIBC
+.global __hypotl
+__hypotl:
+.global __ieee754_hypotl
+__ieee754_hypotl:
+#endif
{.mfi
alloc r32= ar.pfs,0,4,4,0
// Compute x*x
@@ -421,9 +434,11 @@ GLOBAL_IEEE754_ENTRY(hypotl)
// No overflow
(p9) br.ret.sptk b0;;
}
-GLOBAL_IEEE754_END(hypotl)
+.endp hypotl
+ASM_SIZE_DIRECTIVE(hypotl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -470,9 +485,7 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
-
diff --git a/sysdeps/ia64/fpu/e_lgamma_r.c b/sysdeps/ia64/fpu/e_lgamma_r.c
deleted file mode 100644
index cb9efbfe02..0000000000
--- a/sysdeps/ia64/fpu/e_lgamma_r.c
+++ /dev/null
@@ -1,71 +0,0 @@
-/* file: lgamma_r.c */
-
-
-// Copyright (c) 2002 Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-// History
-//==============================================================
-// 02/04/02: Initial version
-// 02/22/02: Removed lgammaf_r, gammaf_r
-/*
-// FUNCTIONS: double lgamma_r(double x, int* signgam)
-// double gamma_r(double x, int* signgam)
-// Natural logarithm of GAMMA function
-*/
-
-#include "libm_support.h"
-
-
-extern double __libm_lgamma(double /*x*/, int* /*signgam*/, int /*signgamsz*/);
-
-
-double __ieee754_lgamma_r(double x, int* signgam)
-{
- return __libm_lgamma(x, signgam, sizeof(*signgam));
-}
-weak_alias (__ieee754_lgamma_r, lgamma_r)
-
-#ifndef _LIBC
-double __ieee754_gamma_r(double x, int* signgam)
-{
- return __libm_lgamma(x, signgam, sizeof(*signgam));
-}
-weak_alias (__ieee754_gamma_r, gamma_r)
-#endif
diff --git a/sysdeps/ia64/fpu/e_lgammaf_r.c b/sysdeps/ia64/fpu/e_lgammaf_r.c
deleted file mode 100644
index 44911aeabd..0000000000
--- a/sysdeps/ia64/fpu/e_lgammaf_r.c
+++ /dev/null
@@ -1,71 +0,0 @@
-/* file: lgammaf_r.c */
-
-
-// Copyright (c) 2002 Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-// History
-//==============================================================
-// 02/04/02: Initial version
-// 02/22/02: Removed lgamma_r, gamma_r
-/*
-// FUNCTIONS: float lgammaf_r(float x, int* signgam)
-// float gammaf_r(float x, int* signgam)
-// Natural logarithm of GAMMA function
-*/
-
-#include "libm_support.h"
-
-
-extern float __libm_lgammaf(float /*x*/, int* /*signgam*/, int /*signgamsz*/);
-
-
-float __ieee754_lgammaf_r(float x, int* signgam)
-{
- return __libm_lgammaf(x, signgam, sizeof(*signgam));
-}
-weak_alias (__ieee754_lgammaf_r, lgammaf_r)
-
-#ifndef _LIBC
-float __ieee754_gammaf_r(float x, int* signgam)
-{
- return __libm_lgammaf(x, signgam, sizeof(*signgam));
-}
-weak_alias (__ieee754_gammaf_r, gammaf_r)
-#endif
diff --git a/sysdeps/ia64/fpu/e_lgammal_r.c b/sysdeps/ia64/fpu/e_lgammal_r.c
deleted file mode 100644
index 4451201b77..0000000000
--- a/sysdeps/ia64/fpu/e_lgammal_r.c
+++ /dev/null
@@ -1,70 +0,0 @@
-/* file: lgammal_r.c */
-
-
-// Copyright (c) 2002 Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-// History
-//==============================================================
-// 08/15/02: Initial version
-/*
-// FUNCTIONS: long double lgammal_r(long double x, int* signgam)
-// long double gammal_r(long double x, int* signgam)
-// Natural logarithm of GAMMA function
-*/
-
-#include "libm_support.h"
-
-
-extern double __libm_lgammal(long double /*x*/, int* /*signgam*/, int /*signgamsz*/);
-
-
-long double __ieee754_lgammal_r(long double x, int* signgam)
-{
- return __libm_lgammal(x, signgam, sizeof(*signgam));
-}
-weak_alias (__ieee754_lgammal_r, lgammal_r)
-
-#ifndef _LIBC
-long double __ieee754_gammal_r(long double x, int* signgam)
-{
- return __libm_lgammal(x, signgam, sizeof(*signgam));
-}
-weak_alias (__ieee754_gammal_r, gammal_r)
-#endif
diff --git a/sysdeps/ia64/fpu/e_log.S b/sysdeps/ia64/fpu/e_log.S
index c644c6f8f7..9ad1e5fe56 100644
--- a/sysdeps/ia64/fpu/e_log.S
+++ b/sysdeps/ia64/fpu/e_log.S
@@ -1,10 +1,10 @@
.file "log.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,1710 +20,1085 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 06/16/00 Updated table to be rounded correctly
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 6/16/00 Updated table to be rounded correctly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 08/17/00 Improved speed of main path by 5 cycles
+// 8/17/00 Improved speed of main path by 5 cycles
// Shortened path for x=1.0
-// 01/09/01 Improved speed, fixed flags for neg denormals
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 05/23/02 Modified algorithm. Now only one polynomial is used
-// for |x-1| >= 1/256 and for |x-1| < 1/256
-// 12/11/02 Improved performance for Itanium 2
-// 03/31/05 Reformatted delimiters between data tables
+// 1/09/01 Improved speed, fixed flags for neg denormals
+//
//
// API
//==============================================================
// double log(double)
// double log10(double)
//
-//
// Overview of operation
//==============================================================
// Background
-// ----------
-//
-// This algorithm is based on fact that
-// log(a b) = log(a) + log(b).
-// In our case we have x = 2^N f, where 1 <= f < 2.
-// So
-// log(x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
-//
-// To calculate log(f) we do following
-// log(f) = log(f * frcpa(f) / frcpa(f)) =
-// = log(f * frcpa(f)) + log(1/frcpa(f))
//
-// According to definition of IA-64's frcpa instruction it's a
-// floating point that approximates 1/f using a lookup on the
-// top of 8 bits of the input number's significand with relative
-// error < 2^(-8.886). So we have following
+// Consider x = 2^N 1.f1 f2 f3 f4...f63
+// Log(x) = log(frcpa(x) x/frcpa(x))
+// = log(1/frcpa(x)) + log(frcpa(x) x)
+// = -log(frcpa(x)) + log(frcpa(x) x)
//
-// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
+// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)
//
-// and
+// -log(frcpa(x)) = -log(C)
+// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
//
-// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
-// = log(1 + r) + T
+// -log(frcpa(x)) = -log(C)
+// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
//
-// The first value can be computed by polynomial P(r) approximating
-// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
-// value defined by top 8 bit of f.
+// -log(frcpa(x)) = -log(C)
+// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
//
-// Finally we have that log(x) ~ (N*log(2) + T) + P(r)
-//
-// Note that if input argument is close to 1.0 (in our case it means
-// that |1 - x| < 1/256) we can use just polynomial approximation
-// because x = 2^0 * f = f = 1 + r and
-// log(x) = log(1 + r) ~ P(r)
-//
-//
-// To compute log10(x) we use the simple identity
+// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
+
+// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
+// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
+// Log(x) = +Nlog2 + T + log(frcpa(x) x)
//
-// log10(x) = log(x)/log(10)
+// Log(x) = +Nlog2 + T + log(C x)
//
-// so we have that
+// Cx = 1 + r
//
-// log10(x) = (N*log(2) + T + log(1+r)) / log(10) =
-// = N*(log(2)/log(10)) + (T/log(10)) + log(1 + r)/log(10)
+// Log(x) = +Nlog2 + T + log(1+r)
+// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
//
+// 1.f1 f2 ... f8 has 256 entries.
+// They are 1 + k/2^8, k = 0 ... 255
+// These 256 values are the table entries.
//
// Implementation
-// --------------
-// It can be seen that formulas for log and log10 differ from one another
-// only by coefficients and tabular values. Namely as log as log10 are
-// calculated as (N*L1 + T) + L2*Series(r) where in case of log
-// L1 = log(2)
-// T = log(1/frcpa(x))
-// L2 = 1.0
-// and in case of log10
-// L1 = log(2)/log(10)
-// T = log(1/frcpa(x))/log(10)
-// L2 = 1.0/log(10)
-//
-// So common code with two different entry points those set pointers
-// to the base address of coresponding data sets containing values
-// of L2,T and prepare integer representation of L1 needed for following
-// setf instruction.
-//
-// Note that both log and log10 use common approximation polynomial
-// it means we need only one set of coefficients of approximation.
-//
-//
-// 1. |x-1| >= 1/256
-// InvX = frcpa(x)
-// r = InvX*x - 1
-// P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
-// all coefficients are calcutated in quad and rounded to double
-// precision. A7,A6,A5,A4 are stored in memory whereas A3 and A2
-// created with setf.
-//
-// N = float(n) where n is true unbiased exponent of x
+//===============
+// CASE 1: |x-1| >= 2^-6
+// C = frcpa(x)
+// r = C * x - 1
//
-// T is tabular value of log(1/frcpa(x)) calculated in quad precision
-// and represented by two floating-point numbers 64-bit Thi and 32-bit Tlo.
-// To load Thi,Tlo we get bits from 55 to 62 of register format significand
-// as index and calculate two addresses
-// ad_Thi = Thi_table_base_addr + 8 * index
-// ad_Tlo = Tlo_table_base_addr + 4 * index
+// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
//
-// L2 (1.0 or 1.0/log(10) depending on function) is calculated in quad
-// precision and rounded to double extended; it's loaded from memory.
+// x = f * 2*n where f is 1.f_1f_2f_3....f_63
+// Nfloat = float(n) where n is the true unbiased exponent
+// pre-index = f_1f_2....f_8
+// index = pre_index * 16
+// get the dxt table entry at index + offset = T
//
-// L1 (log(2) or log10(2) depending on function) is calculated in quad
-// precision and represented by two floating-point 64-bit numbers L1hi,L1lo
-// stored in memory.
+// result = (T + Nfloat * log(2)) + rseries
//
-// And final result = ((L1hi*N + Thi) + (N*L1lo + Tlo)) + L2*P(r)
-//
-//
-// 2. |x-1| < 1/256
-// r = x - 1
-// P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
-// A7,A6,A5A4,A3,A2 are the same as in case |x-1| >= 1/256
-//
-// And final results
-// log(x) = P(r)
-// log10(x) = L2*P(r)
-//
-// 3. How we define is input argument such that |x-1| < 1/256 or not.
-//
-// To do it we analyze biased exponent and integer representation of
-// input argument
-//
-// a) First we test is biased exponent equal to 0xFFFE or 0xFFFF (i.e.
-// we test is 0.5 <= x < 2). This comparison can be performed using
-// unsigned version of cmp instruction in such a way
-// biased_exponent_of_x - 0xFFFE < 2
-//
-//
-// b) Second (in case when result of a) is true) we need to compare x
-// with 1-1/256 and 1+1/256 or in double precision memory representation
-// with 0x3FEFE00000000000 and 0x3FF0100000000000 correspondingly.
-// This comparison can be made like in a), using unsigned
-// version of cmp i.e. ix - 0x3FEFE00000000000 < 0x0000300000000000.
-// 0x0000300000000000 is difference between 0x3FF0100000000000 and
-// 0x3FEFE00000000000
+// The T table is calculated as follows
+// Form x_k = 1 + k/2^8 where k goes from 0... 255
+// y_k = frcpa(x_k)
+// log(1/y_k) in quad and round to double-extended
+
+// CASE 2: |x-1| < 2^-6
+// w = x - 1
//
-// Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
-// filtered and processed on special branches.
+// Form wseries = w + Q1*w^2 + Q2*w^3 + ... + Q7*w^8 + Q8*w^9
//
+// result = wseries
-//
-// Special values
+// Special values
//==============================================================
-//
+
+
// log(+0) = -inf
// log(-0) = -inf
-//
-// log(+qnan) = +qnan
-// log(-qnan) = -qnan
-// log(+snan) = +qnan
-// log(-snan) = -qnan
-//
+
+// log(+qnan) = +qnan
+// log(-qnan) = -qnan
+// log(+snan) = +qnan
+// log(-snan) = -qnan
+
// log(-n) = QNAN Indefinite
-// log(-inf) = QNAN Indefinite
-//
+// log(-inf) = QNAN Indefinite
+
// log(+inf) = +inf
-//
-//
+
// Registers used
//==============================================================
-// Floating Point registers used:
+// Floating Point registers used:
// f8, input
-// f7 -> f15, f32 -> f42
-//
-// General registers used:
-// r8 -> r11
-// r14 -> r23
-//
+// f9 -> f15, f32 -> f68
+
+// General registers used:
+// r32 -> r51
+
// Predicate registers used:
// p6 -> p15
+// p8 log base e
+// p6 log base e special
+// p9 used in the frcpa
+// p13 log base e large W
+// p14 log base e small w
+
+// p7 log base 10
+// p10 log base 10 large W
+// p11 log base 10 small w
+// p12 log base 10 special
+
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
-GR_TAG = r8
-GR_ad_1 = r8
-GR_ad_2 = r9
-GR_Exp = r10
-GR_N = r11
-
-GR_x = r14
-GR_dx = r15
-GR_NearOne = r15
-GR_xorg = r16
-GR_mask = r16
-GR_05 = r17
-GR_A3 = r18
-GR_Sig = r19
-GR_Ind = r19
-GR_Nm1 = r20
-GR_bias = r21
-GR_ad_3 = r22
-GR_rexp = r23
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-
-FR_NormX = f7
-FR_RcpX = f9
-FR_tmp = f9
-FR_r = f10
-FR_r2 = f11
-FR_r4 = f12
-FR_N = f13
-FR_Ln2hi = f14
-FR_Ln2lo = f15
-
-FR_A7 = f32
-FR_A6 = f33
-FR_A5 = f34
-FR_A4 = f35
-FR_A3 = f36
-FR_A2 = f37
-
-FR_Thi = f38
-FR_NxLn2hipThi = f38
-FR_NxLn2pT = f38
-FR_Tlo = f39
-FR_NxLn2lopTlo = f39
-
-FR_InvLn10 = f40
-FR_A32 = f41
-FR_A321 = f42
-
-
-FR_Y = f1
-FR_X = f10
-FR_RESULT = f8
-
-
-// Data
+
+log_int_Nfloat = f9
+log_Nfloat = f10
+
+log_P5 = f11
+log_P4 = f12
+log_P3 = f13
+log_P2 = f14
+log_half = f15
+
+log_log2 = f32
+log_T = f33
+
+log_rp_p4 = f34
+log_rp_p32 = f35
+log_rp_p2 = f36
+log_w6 = f37
+log_rp_p10 = f38
+log_rcube = f39
+log_rsq = f40
+
+log_T_plus_Nlog2 = f41
+log_w3 = f42
+
+log_r = f43
+log_C = f44
+
+log_w = f45
+log_Q8 = f46
+log_Q7 = f47
+log_Q4 = f48
+log_Q3 = f49
+log_Q6 = f50
+log_Q5 = f51
+log_Q2 = f52
+log_Q1 = f53
+log_P1 = f53
+
+log_rp_q7 = f54
+log_rp_q65 = f55
+log_Qlo = f56
+
+log_rp_q3 = f57
+log_rp_q21 = f58
+log_Qhi = f59
+
+log_wsq = f60
+log_w4 = f61
+log_Q = f62
+
+log_inv_ln10 = f63
+log_log10_hi = f64
+log_log10_lo = f65
+log_rp_q10 = f66
+log_NORM_f8 = f67
+log_r2P_r = f68
+
+// ===================================
+
+log_GR_exp_17_ones = r33
+log_GR_exp_16_ones = r34
+log_GR_exp_f8 = r35
+log_GR_signexp_f8 = r36
+log_GR_true_exp_f8 = r37
+log_GR_significand_f8 = r38
+log_GR_half_exp = r39
+log_GR_index = r39
+log_AD_1 = r40
+log_GR_signexp_w = r41
+log_GR_fff9 = r42
+log_AD_2 = r43
+log_GR_exp_w = r44
+
+GR_SAVE_B0 = r45
+GR_SAVE_GP = r46
+GR_SAVE_PFS = r47
+
+GR_Parameter_X = r48
+GR_Parameter_Y = r49
+GR_Parameter_RESULT = r50
+log_GR_tag = r51
+
+
+// Data tables
//==============================================================
-RODATA
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
-LOCAL_OBJECT_START(log_data)
-// coefficients of polynomial approximation
-data8 0x3FC2494104381A8E // A7
-data8 0xBFC5556D556BBB69 // A6
-//
-// two parts of ln(2)
-data8 0x3FE62E42FEF00000,0x3DD473DE6AF278ED
-//
-data8 0x8000000000000000,0x3FFF // 1.0
-//
-data8 0x3FC999999988B5E9 // A5
-data8 0xBFCFFFFFFFF6FFF5 // A4
-//
-// hi parts of ln(1/frcpa(1+i/256)), i=0...255
-data8 0x3F60040155D5889D // 0
-data8 0x3F78121214586B54 // 1
-data8 0x3F841929F96832EF // 2
-data8 0x3F8C317384C75F06 // 3
-data8 0x3F91A6B91AC73386 // 4
-data8 0x3F95BA9A5D9AC039 // 5
-data8 0x3F99D2A8074325F3 // 6
-data8 0x3F9D6B2725979802 // 7
-data8 0x3FA0C58FA19DFAA9 // 8
-data8 0x3FA2954C78CBCE1A // 9
-data8 0x3FA4A94D2DA96C56 // 10
-data8 0x3FA67C94F2D4BB58 // 11
-data8 0x3FA85188B630F068 // 12
-data8 0x3FAA6B8ABE73AF4C // 13
-data8 0x3FAC441E06F72A9E // 14
-data8 0x3FAE1E6713606D06 // 15
-data8 0x3FAFFA6911AB9300 // 16
-data8 0x3FB0EC139C5DA600 // 17
-data8 0x3FB1DBD2643D190B // 18
-data8 0x3FB2CC7284FE5F1C // 19
-data8 0x3FB3BDF5A7D1EE64 // 20
-data8 0x3FB4B05D7AA012E0 // 21
-data8 0x3FB580DB7CEB5701 // 22
-data8 0x3FB674F089365A79 // 23
-data8 0x3FB769EF2C6B568D // 24
-data8 0x3FB85FD927506A47 // 25
-data8 0x3FB9335E5D594988 // 26
-data8 0x3FBA2B0220C8E5F4 // 27
-data8 0x3FBB0004AC1A86AB // 28
-data8 0x3FBBF968769FCA10 // 29
-data8 0x3FBCCFEDBFEE13A8 // 30
-data8 0x3FBDA727638446A2 // 31
-data8 0x3FBEA3257FE10F79 // 32
-data8 0x3FBF7BE9FEDBFDE5 // 33
-data8 0x3FC02AB352FF25F3 // 34
-data8 0x3FC097CE579D204C // 35
-data8 0x3FC1178E8227E47B // 36
-data8 0x3FC185747DBECF33 // 37
-data8 0x3FC1F3B925F25D41 // 38
-data8 0x3FC2625D1E6DDF56 // 39
-data8 0x3FC2D1610C868139 // 40
-data8 0x3FC340C59741142E // 41
-data8 0x3FC3B08B6757F2A9 // 42
-data8 0x3FC40DFB08378003 // 43
-data8 0x3FC47E74E8CA5F7C // 44
-data8 0x3FC4EF51F6466DE4 // 45
-data8 0x3FC56092E02BA516 // 46
-data8 0x3FC5D23857CD74D4 // 47
-data8 0x3FC6313A37335D76 // 48
-data8 0x3FC6A399DABBD383 // 49
-data8 0x3FC70337DD3CE41A // 50
-data8 0x3FC77654128F6127 // 51
-data8 0x3FC7E9D82A0B022D // 52
-data8 0x3FC84A6B759F512E // 53
-data8 0x3FC8AB47D5F5A30F // 54
-data8 0x3FC91FE49096581B // 55
-data8 0x3FC981634011AA75 // 56
-data8 0x3FC9F6C407089664 // 57
-data8 0x3FCA58E729348F43 // 58
-data8 0x3FCABB55C31693AC // 59
-data8 0x3FCB1E104919EFD0 // 60
-data8 0x3FCB94EE93E367CA // 61
-data8 0x3FCBF851C067555E // 62
-data8 0x3FCC5C0254BF23A5 // 63
-data8 0x3FCCC000C9DB3C52 // 64
-data8 0x3FCD244D99C85673 // 65
-data8 0x3FCD88E93FB2F450 // 66
-data8 0x3FCDEDD437EAEF00 // 67
-data8 0x3FCE530EFFE71012 // 68
-data8 0x3FCEB89A1648B971 // 69
-data8 0x3FCF1E75FADF9BDE // 70
-data8 0x3FCF84A32EAD7C35 // 71
-data8 0x3FCFEB2233EA07CD // 72
-data8 0x3FD028F9C7035C1C // 73
-data8 0x3FD05C8BE0D9635A // 74
-data8 0x3FD085EB8F8AE797 // 75
-data8 0x3FD0B9C8E32D1911 // 76
-data8 0x3FD0EDD060B78080 // 77
-data8 0x3FD122024CF0063F // 78
-data8 0x3FD14BE2927AECD4 // 79
-data8 0x3FD180618EF18ADF // 80
-data8 0x3FD1B50BBE2FC63B // 81
-data8 0x3FD1DF4CC7CF242D // 82
-data8 0x3FD214456D0EB8D4 // 83
-data8 0x3FD23EC5991EBA49 // 84
-data8 0x3FD2740D9F870AFB // 85
-data8 0x3FD29ECDABCDFA03 // 86
-data8 0x3FD2D46602ADCCEE // 87
-data8 0x3FD2FF66B04EA9D4 // 88
-data8 0x3FD335504B355A37 // 89
-data8 0x3FD360925EC44F5C // 90
-data8 0x3FD38BF1C3337E74 // 91
-data8 0x3FD3C25277333183 // 92
-data8 0x3FD3EDF463C1683E // 93
-data8 0x3FD419B423D5E8C7 // 94
-data8 0x3FD44591E0539F48 // 95
-data8 0x3FD47C9175B6F0AD // 96
-data8 0x3FD4A8B341552B09 // 97
-data8 0x3FD4D4F39089019F // 98
-data8 0x3FD501528DA1F967 // 99
-data8 0x3FD52DD06347D4F6 // 100
-data8 0x3FD55A6D3C7B8A89 // 101
-data8 0x3FD5925D2B112A59 // 102
-data8 0x3FD5BF406B543DB1 // 103
-data8 0x3FD5EC433D5C35AD // 104
-data8 0x3FD61965CDB02C1E // 105
-data8 0x3FD646A84935B2A1 // 106
-data8 0x3FD6740ADD31DE94 // 107
-data8 0x3FD6A18DB74A58C5 // 108
-data8 0x3FD6CF31058670EC // 109
-data8 0x3FD6F180E852F0B9 // 110
-data8 0x3FD71F5D71B894EF // 111
-data8 0x3FD74D5AEFD66D5C // 112
-data8 0x3FD77B79922BD37D // 113
-data8 0x3FD7A9B9889F19E2 // 114
-data8 0x3FD7D81B037EB6A6 // 115
-data8 0x3FD8069E33827230 // 116
-data8 0x3FD82996D3EF8BCA // 117
-data8 0x3FD85855776DCBFA // 118
-data8 0x3FD8873658327CCE // 119
-data8 0x3FD8AA75973AB8CE // 120
-data8 0x3FD8D992DC8824E4 // 121
-data8 0x3FD908D2EA7D9511 // 122
-data8 0x3FD92C59E79C0E56 // 123
-data8 0x3FD95BD750EE3ED2 // 124
-data8 0x3FD98B7811A3EE5B // 125
-data8 0x3FD9AF47F33D406B // 126
-data8 0x3FD9DF270C1914A7 // 127
-data8 0x3FDA0325ED14FDA4 // 128
-data8 0x3FDA33440224FA78 // 129
-data8 0x3FDA57725E80C382 // 130
-data8 0x3FDA87D0165DD199 // 131
-data8 0x3FDAAC2E6C03F895 // 132
-data8 0x3FDADCCC6FDF6A81 // 133
-data8 0x3FDB015B3EB1E790 // 134
-data8 0x3FDB323A3A635948 // 135
-data8 0x3FDB56FA04462909 // 136
-data8 0x3FDB881AA659BC93 // 137
-data8 0x3FDBAD0BEF3DB164 // 138
-data8 0x3FDBD21297781C2F // 139
-data8 0x3FDC039236F08818 // 140
-data8 0x3FDC28CB1E4D32FC // 141
-data8 0x3FDC4E19B84723C1 // 142
-data8 0x3FDC7FF9C74554C9 // 143
-data8 0x3FDCA57B64E9DB05 // 144
-data8 0x3FDCCB130A5CEBAF // 145
-data8 0x3FDCF0C0D18F326F // 146
-data8 0x3FDD232075B5A201 // 147
-data8 0x3FDD490246DEFA6B // 148
-data8 0x3FDD6EFA918D25CD // 149
-data8 0x3FDD9509707AE52F // 150
-data8 0x3FDDBB2EFE92C554 // 151
-data8 0x3FDDEE2F3445E4AE // 152
-data8 0x3FDE148A1A2726CD // 153
-data8 0x3FDE3AFC0A49FF3F // 154
-data8 0x3FDE6185206D516D // 155
-data8 0x3FDE882578823D51 // 156
-data8 0x3FDEAEDD2EAC990C // 157
-data8 0x3FDED5AC5F436BE2 // 158
-data8 0x3FDEFC9326D16AB8 // 159
-data8 0x3FDF2391A21575FF // 160
-data8 0x3FDF4AA7EE03192C // 161
-data8 0x3FDF71D627C30BB0 // 162
-data8 0x3FDF991C6CB3B379 // 163
-data8 0x3FDFC07ADA69A90F // 164
-data8 0x3FDFE7F18EB03D3E // 165
-data8 0x3FE007C053C5002E // 166
-data8 0x3FE01B942198A5A0 // 167
-data8 0x3FE02F74400C64EA // 168
-data8 0x3FE04360BE7603AC // 169
-data8 0x3FE05759AC47FE33 // 170
-data8 0x3FE06B5F1911CF51 // 171
-data8 0x3FE078BF0533C568 // 172
-data8 0x3FE08CD9687E7B0E // 173
-data8 0x3FE0A10074CF9019 // 174
-data8 0x3FE0B5343A234476 // 175
-data8 0x3FE0C974C89431CD // 176
-data8 0x3FE0DDC2305B9886 // 177
-data8 0x3FE0EB524BAFC918 // 178
-data8 0x3FE0FFB54213A475 // 179
-data8 0x3FE114253DA97D9F // 180
-data8 0x3FE128A24F1D9AFF // 181
-data8 0x3FE1365252BF0864 // 182
-data8 0x3FE14AE558B4A92D // 183
-data8 0x3FE15F85A19C765B // 184
-data8 0x3FE16D4D38C119FA // 185
-data8 0x3FE18203C20DD133 // 186
-data8 0x3FE196C7BC4B1F3A // 187
-data8 0x3FE1A4A738B7A33C // 188
-data8 0x3FE1B981C0C9653C // 189
-data8 0x3FE1CE69E8BB106A // 190
-data8 0x3FE1DC619DE06944 // 191
-data8 0x3FE1F160A2AD0DA3 // 192
-data8 0x3FE2066D7740737E // 193
-data8 0x3FE2147DBA47A393 // 194
-data8 0x3FE229A1BC5EBAC3 // 195
-data8 0x3FE237C1841A502E // 196
-data8 0x3FE24CFCE6F80D9A // 197
-data8 0x3FE25B2C55CD5762 // 198
-data8 0x3FE2707F4D5F7C40 // 199
-data8 0x3FE285E0842CA383 // 200
-data8 0x3FE294294708B773 // 201
-data8 0x3FE2A9A2670AFF0C // 202
-data8 0x3FE2B7FB2C8D1CC0 // 203
-data8 0x3FE2C65A6395F5F5 // 204
-data8 0x3FE2DBF557B0DF42 // 205
-data8 0x3FE2EA64C3F97654 // 206
-data8 0x3FE3001823684D73 // 207
-data8 0x3FE30E97E9A8B5CC // 208
-data8 0x3FE32463EBDD34E9 // 209
-data8 0x3FE332F4314AD795 // 210
-data8 0x3FE348D90E7464CF // 211
-data8 0x3FE35779F8C43D6D // 212
-data8 0x3FE36621961A6A99 // 213
-data8 0x3FE37C299F3C366A // 214
-data8 0x3FE38AE2171976E7 // 215
-data8 0x3FE399A157A603E7 // 216
-data8 0x3FE3AFCCFE77B9D1 // 217
-data8 0x3FE3BE9D503533B5 // 218
-data8 0x3FE3CD7480B4A8A2 // 219
-data8 0x3FE3E3C43918F76C // 220
-data8 0x3FE3F2ACB27ED6C6 // 221
-data8 0x3FE4019C2125CA93 // 222
-data8 0x3FE4181061389722 // 223
-data8 0x3FE42711518DF545 // 224
-data8 0x3FE436194E12B6BF // 225
-data8 0x3FE445285D68EA69 // 226
-data8 0x3FE45BCC464C893A // 227
-data8 0x3FE46AED21F117FC // 228
-data8 0x3FE47A1527E8A2D3 // 229
-data8 0x3FE489445EFFFCCB // 230
-data8 0x3FE4A018BCB69835 // 231
-data8 0x3FE4AF5A0C9D65D7 // 232
-data8 0x3FE4BEA2A5BDBE87 // 233
-data8 0x3FE4CDF28F10AC46 // 234
-data8 0x3FE4DD49CF994058 // 235
-data8 0x3FE4ECA86E64A683 // 236
-data8 0x3FE503C43CD8EB68 // 237
-data8 0x3FE513356667FC57 // 238
-data8 0x3FE522AE0738A3D7 // 239
-data8 0x3FE5322E26867857 // 240
-data8 0x3FE541B5CB979809 // 241
-data8 0x3FE55144FDBCBD62 // 242
-data8 0x3FE560DBC45153C6 // 243
-data8 0x3FE5707A26BB8C66 // 244
-data8 0x3FE587F60ED5B8FF // 245
-data8 0x3FE597A7977C8F31 // 246
-data8 0x3FE5A760D634BB8A // 247
-data8 0x3FE5B721D295F10E // 248
-data8 0x3FE5C6EA94431EF9 // 249
-data8 0x3FE5D6BB22EA86F5 // 250
-data8 0x3FE5E6938645D38F // 251
-data8 0x3FE5F673C61A2ED1 // 252
-data8 0x3FE6065BEA385926 // 253
-data8 0x3FE6164BFA7CC06B // 254
-data8 0x3FE62643FECF9742 // 255
-//
-// lo parts of ln(1/frcpa(1+i/256)), i=0...255
-data4 0x20E70672 // 0
-data4 0x1F60A5D0 // 1
-data4 0x218EABA0 // 2
-data4 0x21403104 // 3
-data4 0x20E9B54E // 4
-data4 0x21EE1382 // 5
-data4 0x226014E3 // 6
-data4 0x2095E5C9 // 7
-data4 0x228BA9D4 // 8
-data4 0x22932B86 // 9
-data4 0x22608A57 // 10
-data4 0x220209F3 // 11
-data4 0x212882CC // 12
-data4 0x220D46E2 // 13
-data4 0x21FA4C28 // 14
-data4 0x229E5BD9 // 15
-data4 0x228C9838 // 16
-data4 0x2311F954 // 17
-data4 0x221365DF // 18
-data4 0x22BD0CB3 // 19
-data4 0x223D4BB7 // 20
-data4 0x22A71BBE // 21
-data4 0x237DB2FA // 22
-data4 0x23194C9D // 23
-data4 0x22EC639E // 24
-data4 0x2367E669 // 25
-data4 0x232E1D5F // 26
-data4 0x234A639B // 27
-data4 0x2365C0E0 // 28
-data4 0x234646C1 // 29
-data4 0x220CBF9C // 30
-data4 0x22A00FD4 // 31
-data4 0x2306A3F2 // 32
-data4 0x23745A9B // 33
-data4 0x2398D756 // 34
-data4 0x23DD0B6A // 35
-data4 0x23DE338B // 36
-data4 0x23A222DF // 37
-data4 0x223164F8 // 38
-data4 0x23B4E87B // 39
-data4 0x23D6CCB8 // 40
-data4 0x220C2099 // 41
-data4 0x21B86B67 // 42
-data4 0x236D14F1 // 43
-data4 0x225A923F // 44
-data4 0x22748723 // 45
-data4 0x22200D13 // 46
-data4 0x23C296EA // 47
-data4 0x2302AC38 // 48
-data4 0x234B1996 // 49
-data4 0x2385E298 // 50
-data4 0x23175BE5 // 51
-data4 0x2193F482 // 52
-data4 0x23BFEA90 // 53
-data4 0x23D70A0C // 54
-data4 0x231CF30A // 55
-data4 0x235D9E90 // 56
-data4 0x221AD0CB // 57
-data4 0x22FAA08B // 58
-data4 0x23D29A87 // 59
-data4 0x20C4B2FE // 60
-data4 0x2381B8B7 // 61
-data4 0x23F8D9FC // 62
-data4 0x23EAAE7B // 63
-data4 0x2329E8AA // 64
-data4 0x23EC0322 // 65
-data4 0x2357FDCB // 66
-data4 0x2392A9AD // 67
-data4 0x22113B02 // 68
-data4 0x22DEE901 // 69
-data4 0x236A6D14 // 70
-data4 0x2371D33E // 71
-data4 0x2146F005 // 72
-data4 0x23230B06 // 73
-data4 0x22F1C77D // 74
-data4 0x23A89FA3 // 75
-data4 0x231D1241 // 76
-data4 0x244DA96C // 77
-data4 0x23ECBB7D // 78
-data4 0x223E42B4 // 79
-data4 0x23801BC9 // 80
-data4 0x23573263 // 81
-data4 0x227C1158 // 82
-data4 0x237BD749 // 83
-data4 0x21DDBAE9 // 84
-data4 0x23401735 // 85
-data4 0x241D9DEE // 86
-data4 0x23BC88CB // 87
-data4 0x2396D5F1 // 88
-data4 0x23FC89CF // 89
-data4 0x2414F9A2 // 90
-data4 0x2474A0F5 // 91
-data4 0x24354B60 // 92
-data4 0x23C1EB40 // 93
-data4 0x2306DD92 // 94
-data4 0x24353B6B // 95
-data4 0x23CD1701 // 96
-data4 0x237C7A1C // 97
-data4 0x245793AA // 98
-data4 0x24563695 // 99
-data4 0x23C51467 // 100
-data4 0x24476B68 // 101
-data4 0x212585A9 // 102
-data4 0x247B8293 // 103
-data4 0x2446848A // 104
-data4 0x246A53F8 // 105
-data4 0x246E496D // 106
-data4 0x23ED1D36 // 107
-data4 0x2314C258 // 108
-data4 0x233244A7 // 109
-data4 0x245B7AF0 // 110
-data4 0x24247130 // 111
-data4 0x22D67B38 // 112
-data4 0x2449F620 // 113
-data4 0x23BBC8B8 // 114
-data4 0x237D3BA0 // 115
-data4 0x245E8F13 // 116
-data4 0x2435573F // 117
-data4 0x242DE666 // 118
-data4 0x2463BC10 // 119
-data4 0x2466587D // 120
-data4 0x2408144B // 121
-data4 0x2405F0E5 // 122
-data4 0x22381CFF // 123
-data4 0x24154F9B // 124
-data4 0x23A4E96E // 125
-data4 0x24052967 // 126
-data4 0x2406963F // 127
-data4 0x23F7D3CB // 128
-data4 0x2448AFF4 // 129
-data4 0x24657A21 // 130
-data4 0x22FBC230 // 131
-data4 0x243C8DEA // 132
-data4 0x225DC4B7 // 133
-data4 0x23496EBF // 134
-data4 0x237C2B2B // 135
-data4 0x23A4A5B1 // 136
-data4 0x2394E9D1 // 137
-data4 0x244BC950 // 138
-data4 0x23C7448F // 139
-data4 0x2404A1AD // 140
-data4 0x246511D5 // 141
-data4 0x24246526 // 142
-data4 0x23111F57 // 143
-data4 0x22868951 // 144
-data4 0x243EB77F // 145
-data4 0x239F3DFF // 146
-data4 0x23089666 // 147
-data4 0x23EBFA6A // 148
-data4 0x23C51312 // 149
-data4 0x23E1DD5E // 150
-data4 0x232C0944 // 151
-data4 0x246A741F // 152
-data4 0x2414DF8D // 153
-data4 0x247B5546 // 154
-data4 0x2415C980 // 155
-data4 0x24324ABD // 156
-data4 0x234EB5E5 // 157
-data4 0x2465E43E // 158
-data4 0x242840D1 // 159
-data4 0x24444057 // 160
-data4 0x245E56F0 // 161
-data4 0x21AE30F8 // 162
-data4 0x23FB3283 // 163
-data4 0x247A4D07 // 164
-data4 0x22AE314D // 165
-data4 0x246B7727 // 166
-data4 0x24EAD526 // 167
-data4 0x24B41DC9 // 168
-data4 0x24EE8062 // 169
-data4 0x24A0C7C4 // 170
-data4 0x24E8DA67 // 171
-data4 0x231120F7 // 172
-data4 0x24401FFB // 173
-data4 0x2412DD09 // 174
-data4 0x248C131A // 175
-data4 0x24C0A7CE // 176
-data4 0x243DD4C8 // 177
-data4 0x24457FEB // 178
-data4 0x24DEEFBB // 179
-data4 0x243C70AE // 180
-data4 0x23E7A6FA // 181
-data4 0x24C2D311 // 182
-data4 0x23026255 // 183
-data4 0x2437C9B9 // 184
-data4 0x246BA847 // 185
-data4 0x2420B448 // 186
-data4 0x24C4CF5A // 187
-data4 0x242C4981 // 188
-data4 0x24DE1525 // 189
-data4 0x24F5CC33 // 190
-data4 0x235A85DA // 191
-data4 0x24A0B64F // 192
-data4 0x244BA0A4 // 193
-data4 0x24AAF30A // 194
-data4 0x244C86F9 // 195
-data4 0x246D5B82 // 196
-data4 0x24529347 // 197
-data4 0x240DD008 // 198
-data4 0x24E98790 // 199
-data4 0x2489B0CE // 200
-data4 0x22BC29AC // 201
-data4 0x23F37C7A // 202
-data4 0x24987FE8 // 203
-data4 0x22AFE20B // 204
-data4 0x24C8D7C2 // 205
-data4 0x24B28B7D // 206
-data4 0x23B6B271 // 207
-data4 0x24C77CB6 // 208
-data4 0x24EF1DCA // 209
-data4 0x24A4F0AC // 210
-data4 0x24CF113E // 211
-data4 0x2496BBAB // 212
-data4 0x23C7CC8A // 213
-data4 0x23AE3961 // 214
-data4 0x2410A895 // 215
-data4 0x23CE3114 // 216
-data4 0x2308247D // 217
-data4 0x240045E9 // 218
-data4 0x24974F60 // 219
-data4 0x242CB39F // 220
-data4 0x24AB8D69 // 221
-data4 0x23436788 // 222
-data4 0x24305E9E // 223
-data4 0x243E71A9 // 224
-data4 0x23C2A6B3 // 225
-data4 0x23FFE6CF // 226
-data4 0x2322D801 // 227
-data4 0x24515F21 // 228
-data4 0x2412A0D6 // 229
-data4 0x24E60D44 // 230
-data4 0x240D9251 // 231
-data4 0x247076E2 // 232
-data4 0x229B101B // 233
-data4 0x247B12DE // 234
-data4 0x244B9127 // 235
-data4 0x2499EC42 // 236
-data4 0x21FC3963 // 237
-data4 0x23E53266 // 238
-data4 0x24CE102D // 239
-data4 0x23CC45D2 // 240
-data4 0x2333171D // 241
-data4 0x246B3533 // 242
-data4 0x24931129 // 243
-data4 0x24405FFA // 244
-data4 0x24CF464D // 245
-data4 0x237095CD // 246
-data4 0x24F86CBD // 247
-data4 0x24E2D84B // 248
-data4 0x21ACBB44 // 249
-data4 0x24F43A8C // 250
-data4 0x249DB931 // 251
-data4 0x24A385EF // 252
-data4 0x238B1279 // 253
-data4 0x2436213E // 254
-data4 0x24F18A3B // 255
-LOCAL_OBJECT_END(log_data)
-
-
-LOCAL_OBJECT_START(log10_data)
-// coefficients of polynoimal approximation
-data8 0x3FC2494104381A8E // A7
-data8 0xBFC5556D556BBB69 // A6
-//
-// two parts of ln(2)/ln(10)
-data8 0x3FD3441350900000, 0x3DCEF3FDE623E256
-//
-data8 0xDE5BD8A937287195,0x3FFD // 1/ln(10)
-//
-data8 0x3FC999999988B5E9 // A5
-data8 0xBFCFFFFFFFF6FFF5 // A4
-//
-// Hi parts of ln(1/frcpa(1+i/256))/ln(10), i=0...255
-data8 0x3F4BD27045BFD024 // 0
-data8 0x3F64E84E793A474A // 1
-data8 0x3F7175085AB85FF0 // 2
-data8 0x3F787CFF9D9147A5 // 3
-data8 0x3F7EA9D372B89FC8 // 4
-data8 0x3F82DF9D95DA961C // 5
-data8 0x3F866DF172D6372B // 6
-data8 0x3F898D79EF5EEDEF // 7
-data8 0x3F8D22ADF3F9579C // 8
-data8 0x3F9024231D30C398 // 9
-data8 0x3F91F23A98897D49 // 10
-data8 0x3F93881A7B818F9E // 11
-data8 0x3F951F6E1E759E35 // 12
-data8 0x3F96F2BCE7ADC5B4 // 13
-data8 0x3F988D362CDF359E // 14
-data8 0x3F9A292BAF010981 // 15
-data8 0x3F9BC6A03117EB97 // 16
-data8 0x3F9D65967DE3AB08 // 17
-data8 0x3F9F061167FC31E7 // 18
-data8 0x3FA05409E4F7819B // 19
-data8 0x3FA125D0432EA20D // 20
-data8 0x3FA1F85D440D299B // 21
-data8 0x3FA2AD755749617C // 22
-data8 0x3FA381772A00E603 // 23
-data8 0x3FA45643E165A70A // 24
-data8 0x3FA52BDD034475B8 // 25
-data8 0x3FA5E3966B7E9295 // 26
-data8 0x3FA6BAAF47C5B244 // 27
-data8 0x3FA773B3E8C4F3C7 // 28
-data8 0x3FA84C51EBEE8D15 // 29
-data8 0x3FA906A6786FC1CA // 30
-data8 0x3FA9C197ABF00DD6 // 31
-data8 0x3FAA9C78712191F7 // 32
-data8 0x3FAB58C09C8D637C // 33
-data8 0x3FAC15A8BCDD7B7E // 34
-data8 0x3FACD331E2C2967B // 35
-data8 0x3FADB11ED766ABF4 // 36
-data8 0x3FAE70089346A9E6 // 37
-data8 0x3FAF2F96C6754AED // 38
-data8 0x3FAFEFCA8D451FD5 // 39
-data8 0x3FB0585283764177 // 40
-data8 0x3FB0B913AAC7D3A6 // 41
-data8 0x3FB11A294F2569F5 // 42
-data8 0x3FB16B51A2696890 // 43
-data8 0x3FB1CD03ADACC8BD // 44
-data8 0x3FB22F0BDD7745F5 // 45
-data8 0x3FB2916ACA38D1E7 // 46
-data8 0x3FB2F4210DF7663C // 47
-data8 0x3FB346A6C3C49065 // 48
-data8 0x3FB3A9FEBC605409 // 49
-data8 0x3FB3FD0C10A3AA54 // 50
-data8 0x3FB46107D3540A81 // 51
-data8 0x3FB4C55DD16967FE // 52
-data8 0x3FB51940330C000A // 53
-data8 0x3FB56D620EE7115E // 54
-data8 0x3FB5D2ABCF26178D // 55
-data8 0x3FB6275AA5DEBF81 // 56
-data8 0x3FB68D4EAF26D7EE // 57
-data8 0x3FB6E28C5C54A28D // 58
-data8 0x3FB7380B9665B7C7 // 59
-data8 0x3FB78DCCC278E85B // 60
-data8 0x3FB7F50C2CF25579 // 61
-data8 0x3FB84B5FD5EAEFD7 // 62
-data8 0x3FB8A1F6BAB2B226 // 63
-data8 0x3FB8F8D144557BDF // 64
-data8 0x3FB94FEFDCD61D92 // 65
-data8 0x3FB9A752EF316149 // 66
-data8 0x3FB9FEFAE7611EDF // 67
-data8 0x3FBA56E8325F5C86 // 68
-data8 0x3FBAAF1B3E297BB3 // 69
-data8 0x3FBB079479C372AC // 70
-data8 0x3FBB6054553B12F7 // 71
-data8 0x3FBBB95B41AB5CE5 // 72
-data8 0x3FBC12A9B13FE079 // 73
-data8 0x3FBC6C4017382BEA // 74
-data8 0x3FBCB41FBA42686C // 75
-data8 0x3FBD0E38CE73393E // 76
-data8 0x3FBD689B2193F132 // 77
-data8 0x3FBDC3472B1D285F // 78
-data8 0x3FBE0C06300D528B // 79
-data8 0x3FBE6738190E394B // 80
-data8 0x3FBEC2B50D208D9A // 81
-data8 0x3FBF0C1C2B936827 // 82
-data8 0x3FBF68216C9CC726 // 83
-data8 0x3FBFB1F6381856F3 // 84
-data8 0x3FC00742AF4CE5F8 // 85
-data8 0x3FC02C64906512D2 // 86
-data8 0x3FC05AF1E63E03B4 // 87
-data8 0x3FC0804BEA723AA8 // 88
-data8 0x3FC0AF1FD6711526 // 89
-data8 0x3FC0D4B2A88059FF // 90
-data8 0x3FC0FA5EF136A06C // 91
-data8 0x3FC1299A4FB3E305 // 92
-data8 0x3FC14F806253C3EC // 93
-data8 0x3FC175805D1587C1 // 94
-data8 0x3FC19B9A637CA294 // 95
-data8 0x3FC1CB5FC26EDE16 // 96
-data8 0x3FC1F1B4E65F2590 // 97
-data8 0x3FC218248B5DC3E5 // 98
-data8 0x3FC23EAED62ADC76 // 99
-data8 0x3FC26553EBD337BC // 100
-data8 0x3FC28C13F1B118FF // 101
-data8 0x3FC2BCAA14381385 // 102
-data8 0x3FC2E3A740B7800E // 103
-data8 0x3FC30ABFD8F333B6 // 104
-data8 0x3FC331F403985096 // 105
-data8 0x3FC35943E7A6068F // 106
-data8 0x3FC380AFAC6E7C07 // 107
-data8 0x3FC3A8377997B9E5 // 108
-data8 0x3FC3CFDB771C9ADB // 109
-data8 0x3FC3EDA90D39A5DE // 110
-data8 0x3FC4157EC09505CC // 111
-data8 0x3FC43D7113FB04C0 // 112
-data8 0x3FC4658030AD1CCE // 113
-data8 0x3FC48DAC404638F5 // 114
-data8 0x3FC4B5F56CBBB869 // 115
-data8 0x3FC4DE5BE05E7582 // 116
-data8 0x3FC4FCBC0776FD85 // 117
-data8 0x3FC525561E9256EE // 118
-data8 0x3FC54E0DF3198865 // 119
-data8 0x3FC56CAB7112BDE2 // 120
-data8 0x3FC59597BA735B15 // 121
-data8 0x3FC5BEA23A506FD9 // 122
-data8 0x3FC5DD7E08DE382E // 123
-data8 0x3FC606BDD3F92355 // 124
-data8 0x3FC6301C518A501E // 125
-data8 0x3FC64F3770618915 // 126
-data8 0x3FC678CC14C1E2D7 // 127
-data8 0x3FC6981005ED2947 // 128
-data8 0x3FC6C1DB5F9BB335 // 129
-data8 0x3FC6E1488ECD2880 // 130
-data8 0x3FC70B4B2E7E41B8 // 131
-data8 0x3FC72AE209146BF8 // 132
-data8 0x3FC7551C81BD8DCF // 133
-data8 0x3FC774DD76CC43BD // 134
-data8 0x3FC79F505DB00E88 // 135
-data8 0x3FC7BF3BDE099F30 // 136
-data8 0x3FC7E9E7CAC437F8 // 137
-data8 0x3FC809FE4902D00D // 138
-data8 0x3FC82A2757995CBD // 139
-data8 0x3FC85525C625E098 // 140
-data8 0x3FC8757A79831887 // 141
-data8 0x3FC895E2058D8E02 // 142
-data8 0x3FC8C13437695531 // 143
-data8 0x3FC8E1C812EF32BE // 144
-data8 0x3FC9026F112197E8 // 145
-data8 0x3FC923294888880A // 146
-data8 0x3FC94EEA4B8334F2 // 147
-data8 0x3FC96FD1B639FC09 // 148
-data8 0x3FC990CCA66229AB // 149
-data8 0x3FC9B1DB33334842 // 150
-data8 0x3FC9D2FD740E6606 // 151
-data8 0x3FC9FF49EEDCB553 // 152
-data8 0x3FCA209A84FBCFF7 // 153
-data8 0x3FCA41FF1E43F02B // 154
-data8 0x3FCA6377D2CE9377 // 155
-data8 0x3FCA8504BAE0D9F5 // 156
-data8 0x3FCAA6A5EEEBEFE2 // 157
-data8 0x3FCAC85B878D7878 // 158
-data8 0x3FCAEA259D8FFA0B // 159
-data8 0x3FCB0C0449EB4B6A // 160
-data8 0x3FCB2DF7A5C50299 // 161
-data8 0x3FCB4FFFCA70E4D1 // 162
-data8 0x3FCB721CD17157E2 // 163
-data8 0x3FCB944ED477D4EC // 164
-data8 0x3FCBB695ED655C7C // 165
-data8 0x3FCBD8F2364AEC0F // 166
-data8 0x3FCBFB63C969F4FF // 167
-data8 0x3FCC1DEAC134D4E9 // 168
-data8 0x3FCC4087384F4F80 // 169
-data8 0x3FCC6339498F09E1 // 170
-data8 0x3FCC86010FFC076B // 171
-data8 0x3FCC9D3D065C5B41 // 172
-data8 0x3FCCC029375BA079 // 173
-data8 0x3FCCE32B66978BA4 // 174
-data8 0x3FCD0643AFD51404 // 175
-data8 0x3FCD29722F0DEA45 // 176
-data8 0x3FCD4CB70070FE43 // 177
-data8 0x3FCD6446AB3F8C95 // 178
-data8 0x3FCD87B0EF71DB44 // 179
-data8 0x3FCDAB31D1FE99A6 // 180
-data8 0x3FCDCEC96FDC888E // 181
-data8 0x3FCDE69088763579 // 182
-data8 0x3FCE0A4E4A25C1FF // 183
-data8 0x3FCE2E2315755E32 // 184
-data8 0x3FCE461322D1648A // 185
-data8 0x3FCE6A0E95C7787B // 186
-data8 0x3FCE8E216243DD60 // 187
-data8 0x3FCEA63AF26E007C // 188
-data8 0x3FCECA74ED15E0B7 // 189
-data8 0x3FCEEEC692CCD259 // 190
-data8 0x3FCF070A36B8D9C0 // 191
-data8 0x3FCF2B8393E34A2D // 192
-data8 0x3FCF5014EF538A5A // 193
-data8 0x3FCF68833AF1B17F // 194
-data8 0x3FCF8D3CD9F3F04E // 195
-data8 0x3FCFA5C61ADD93E9 // 196
-data8 0x3FCFCAA8567EBA79 // 197
-data8 0x3FCFE34CC8743DD8 // 198
-data8 0x3FD0042BFD74F519 // 199
-data8 0x3FD016BDF6A18017 // 200
-data8 0x3FD023262F907322 // 201
-data8 0x3FD035CCED8D32A1 // 202
-data8 0x3FD042430E869FFB // 203
-data8 0x3FD04EBEC842B2DF // 204
-data8 0x3FD06182E84FD4AB // 205
-data8 0x3FD06E0CB609D383 // 206
-data8 0x3FD080E60BEC8F12 // 207
-data8 0x3FD08D7E0D894735 // 208
-data8 0x3FD0A06CC96A2055 // 209
-data8 0x3FD0AD131F3B3C55 // 210
-data8 0x3FD0C01771E775FB // 211
-data8 0x3FD0CCCC3CAD6F4B // 212
-data8 0x3FD0D986D91A34A8 // 213
-data8 0x3FD0ECA9B8861A2D // 214
-data8 0x3FD0F972F87FF3D5 // 215
-data8 0x3FD106421CF0E5F7 // 216
-data8 0x3FD11983EBE28A9C // 217
-data8 0x3FD12661E35B7859 // 218
-data8 0x3FD13345D2779D3B // 219
-data8 0x3FD146A6F597283A // 220
-data8 0x3FD15399E81EA83D // 221
-data8 0x3FD16092E5D3A9A6 // 222
-data8 0x3FD17413C3B7AB5D // 223
-data8 0x3FD1811BF629D6FA // 224
-data8 0x3FD18E2A47B46685 // 225
-data8 0x3FD19B3EBE1A4418 // 226
-data8 0x3FD1AEE9017CB450 // 227
-data8 0x3FD1BC0CED7134E1 // 228
-data8 0x3FD1C93712ABC7FF // 229
-data8 0x3FD1D66777147D3E // 230
-data8 0x3FD1EA3BD1286E1C // 231
-data8 0x3FD1F77BED932C4C // 232
-data8 0x3FD204C25E1B031F // 233
-data8 0x3FD2120F28CE69B1 // 234
-data8 0x3FD21F6253C48D00 // 235
-data8 0x3FD22CBBE51D60A9 // 236
-data8 0x3FD240CE4C975444 // 237
-data8 0x3FD24E37F8ECDAE7 // 238
-data8 0x3FD25BA8215AF7FC // 239
-data8 0x3FD2691ECC29F042 // 240
-data8 0x3FD2769BFFAB2DFF // 241
-data8 0x3FD2841FC23952C9 // 242
-data8 0x3FD291AA1A384978 // 243
-data8 0x3FD29F3B0E15584A // 244
-data8 0x3FD2B3A0EE479DF7 // 245
-data8 0x3FD2C142842C09E5 // 246
-data8 0x3FD2CEEACCB7BD6C // 247
-data8 0x3FD2DC99CE82FF20 // 248
-data8 0x3FD2EA4F902FD7D9 // 249
-data8 0x3FD2F80C186A25FC // 250
-data8 0x3FD305CF6DE7B0F6 // 251
-data8 0x3FD3139997683CE7 // 252
-data8 0x3FD3216A9BB59E7C // 253
-data8 0x3FD32F4281A3CEFE // 254
-data8 0x3FD33D2150110091 // 255
-//
-// Lo parts of ln(1/frcpa(1+i/256))/ln(10), i=0...255
-data4 0x1FB0EB5A // 0
-data4 0x206E5EE3 // 1
-data4 0x208F3609 // 2
-data4 0x2070EB03 // 3
-data4 0x1F314BAE // 4
-data4 0x217A889D // 5
-data4 0x21E63650 // 6
-data4 0x21C2F4A3 // 7
-data4 0x2192A10C // 8
-data4 0x1F84B73E // 9
-data4 0x2243FBCA // 10
-data4 0x21BD9C51 // 11
-data4 0x213C542B // 12
-data4 0x21047386 // 13
-data4 0x21217D8F // 14
-data4 0x226791B7 // 15
-data4 0x204CCE66 // 16
-data4 0x2234CE9F // 17
-data4 0x220675E2 // 18
-data4 0x22B8E5BA // 19
-data4 0x22C12D14 // 20
-data4 0x211D41F0 // 21
-data4 0x228507F3 // 22
-data4 0x22F7274B // 23
-data4 0x22A7FDD1 // 24
-data4 0x2244A06E // 25
-data4 0x215DCE69 // 26
-data4 0x22F5C961 // 27
-data4 0x22EBEF29 // 28
-data4 0x222A2CB6 // 29
-data4 0x22B9FE00 // 30
-data4 0x22E79EB7 // 31
-data4 0x222F9607 // 32
-data4 0x2189D87F // 33
-data4 0x2236DB45 // 34
-data4 0x22ED77FB // 35
-data4 0x21CB70F0 // 36
-data4 0x21B8ACE8 // 37
-data4 0x22EC58C1 // 38
-data4 0x22CFCC1C // 39
-data4 0x2343E77A // 40
-data4 0x237FBC7F // 41
-data4 0x230D472E // 42
-data4 0x234686FB // 43
-data4 0x23770425 // 44
-data4 0x223977EC // 45
-data4 0x2345800A // 46
-data4 0x237BC351 // 47
-data4 0x23191502 // 48
-data4 0x232BAC12 // 49
-data4 0x22692421 // 50
-data4 0x234D409D // 51
-data4 0x22EC3214 // 52
-data4 0x2376C916 // 53
-data4 0x22B00DD1 // 54
-data4 0x2309D910 // 55
-data4 0x22F925FD // 56
-data4 0x22A63A7B // 57
-data4 0x2106264A // 58
-data4 0x234227F9 // 59
-data4 0x1ECB1978 // 60
-data4 0x23460A62 // 61
-data4 0x232ED4B1 // 62
-data4 0x226DDC38 // 63
-data4 0x1F101A73 // 64
-data4 0x21B1F82B // 65
-data4 0x22752F19 // 66
-data4 0x2320BC15 // 67
-data4 0x236EEC5E // 68
-data4 0x23404D3E // 69
-data4 0x2304C517 // 70
-data4 0x22F7441A // 71
-data4 0x230D3D7A // 72
-data4 0x2264A9DF // 73
-data4 0x22410CC8 // 74
-data4 0x2342CCCB // 75
-data4 0x23560BD4 // 76
-data4 0x237BBFFE // 77
-data4 0x2373A206 // 78
-data4 0x22C871B9 // 79
-data4 0x2354B70C // 80
-data4 0x232EDB33 // 81
-data4 0x235DB680 // 82
-data4 0x230EF422 // 83
-data4 0x235316CA // 84
-data4 0x22EEEE8B // 85
-data4 0x2375C88C // 86
-data4 0x235ABD21 // 87
-data4 0x23A0D232 // 88
-data4 0x23F5FFB5 // 89
-data4 0x23D3CEC8 // 90
-data4 0x22A92204 // 91
-data4 0x238C64DF // 92
-data4 0x23B82896 // 93
-data4 0x22D633B8 // 94
-data4 0x23861E93 // 95
-data4 0x23CB594B // 96
-data4 0x2330387E // 97
-data4 0x21CD4702 // 98
-data4 0x2284C505 // 99
-data4 0x23D6995C // 100
-data4 0x23F6C807 // 101
-data4 0x239CEF5C // 102
-data4 0x239442B0 // 103
-data4 0x22B35EE5 // 104
-data4 0x2391E9A4 // 105
-data4 0x23A390F5 // 106
-data4 0x2349AC9C // 107
-data4 0x23FA5535 // 108
-data4 0x21E3A46A // 109
-data4 0x23B44ABA // 110
-data4 0x23CEA8E0 // 111
-data4 0x23F647DC // 112
-data4 0x2390D1A8 // 113
-data4 0x23D0CFA2 // 114
-data4 0x236E0872 // 115
-data4 0x23B88B91 // 116
-data4 0x2283C359 // 117
-data4 0x232F647F // 118
-data4 0x23122CD7 // 119
-data4 0x232CF564 // 120
-data4 0x232630FD // 121
-data4 0x23BEE1C8 // 122
-data4 0x23B2BD30 // 123
-data4 0x2301F1C0 // 124
-data4 0x23CE4D67 // 125
-data4 0x23A353C9 // 126
-data4 0x238086E8 // 127
-data4 0x22D0D29E // 128
-data4 0x23A3B3C8 // 129
-data4 0x23F69F4B // 130
-data4 0x23EA3C21 // 131
-data4 0x23951C88 // 132
-data4 0x2372AFFC // 133
-data4 0x23A6D1A8 // 134
-data4 0x22BBBAF4 // 135
-data4 0x227FA3DD // 136
-data4 0x23804D9B // 137
-data4 0x232D771F // 138
-data4 0x239CB57B // 139
-data4 0x2303CF34 // 140
-data4 0x22218C2A // 141
-data4 0x23991BEE // 142
-data4 0x23EB3596 // 143
-data4 0x230487FA // 144
-data4 0x2135DF4C // 145
-data4 0x2380FD2D // 146
-data4 0x23EB75E9 // 147
-data4 0x211C62C8 // 148
-data4 0x23F518F1 // 149
-data4 0x23FEF882 // 150
-data4 0x239097C7 // 151
-data4 0x223E2BDA // 152
-data4 0x23988F89 // 153
-data4 0x22E4A4AD // 154
-data4 0x23F03D9C // 155
-data4 0x23F5018F // 156
-data4 0x23E1E250 // 157
-data4 0x23FD3D90 // 158
-data4 0x22DEE2FF // 159
-data4 0x238342AB // 160
-data4 0x22E6736F // 161
-data4 0x233AFC28 // 162
-data4 0x2395F661 // 163
-data4 0x23D8B991 // 164
-data4 0x23CD58D5 // 165
-data4 0x21941FD6 // 166
-data4 0x23352915 // 167
-data4 0x235D09EE // 168
-data4 0x22DC7EF9 // 169
-data4 0x238BC9F3 // 170
-data4 0x2397DF8F // 171
-data4 0x2380A7BB // 172
-data4 0x23EFF48C // 173
-data4 0x21E67408 // 174
-data4 0x236420F7 // 175
-data4 0x22C8DFB5 // 176
-data4 0x239B5D35 // 177
-data4 0x23BDC09D // 178
-data4 0x239E822C // 179
-data4 0x23984F0A // 180
-data4 0x23EF2119 // 181
-data4 0x23F738B8 // 182
-data4 0x23B66187 // 183
-data4 0x23B06AD7 // 184
-data4 0x2369140F // 185
-data4 0x218DACE6 // 186
-data4 0x21DF23F1 // 187
-data4 0x235D8B34 // 188
-data4 0x23460333 // 189
-data4 0x23F11D62 // 190
-data4 0x23C37147 // 191
-data4 0x22B2AE2A // 192
-data4 0x23949211 // 193
-data4 0x23B69799 // 194
-data4 0x23DBEC75 // 195
-data4 0x229A6FB3 // 196
-data4 0x23FC6C60 // 197
-data4 0x22D01FFC // 198
-data4 0x235985F0 // 199
-data4 0x23F7ECA5 // 200
-data4 0x23F924D3 // 201
-data4 0x2381B92F // 202
-data4 0x243A0FBE // 203
-data4 0x24712D72 // 204
-data4 0x24594E2F // 205
-data4 0x220CD12A // 206
-data4 0x23D87FB0 // 207
-data4 0x2338288A // 208
-data4 0x242BB2CC // 209
-data4 0x220F6265 // 210
-data4 0x23BB7FE3 // 211
-data4 0x2301C0A2 // 212
-data4 0x246709AB // 213
-data4 0x23A619E2 // 214
-data4 0x24030E3B // 215
-data4 0x233C36CC // 216
-data4 0x241AAB77 // 217
-data4 0x243D41A3 // 218
-data4 0x23834A60 // 219
-data4 0x236AC7BF // 220
-data4 0x23B6D597 // 221
-data4 0x210E9474 // 222
-data4 0x242156E6 // 223
-data4 0x243A1D68 // 224
-data4 0x2472187C // 225
-data4 0x23834E86 // 226
-data4 0x23CA0807 // 227
-data4 0x24745887 // 228
-data4 0x23E2B0E1 // 229
-data4 0x2421EB67 // 230
-data4 0x23DCC64E // 231
-data4 0x22DF71D1 // 232
-data4 0x238D5ECA // 233
-data4 0x23CDE86F // 234
-data4 0x24131F45 // 235
-data4 0x240FE4E2 // 236
-data4 0x2317731A // 237
-data4 0x24015C76 // 238
-data4 0x2301A4E8 // 239
-data4 0x23E52A6D // 240
-data4 0x247D8A0D // 241
-data4 0x23DFEEBA // 242
-data4 0x22139FEC // 243
-data4 0x2454A112 // 244
-data4 0x23C21E28 // 245
-data4 0x2460D813 // 246
-data4 0x24258924 // 247
-data4 0x2425680F // 248
-data4 0x24194D1E // 249
-data4 0x24242C2F // 250
-data4 0x243DDE5E // 251
-data4 0x23DEB388 // 252
-data4 0x23E0E6EB // 253
-data4 0x24393E74 // 254
-data4 0x241B1863 // 255
-LOCAL_OBJECT_END(log10_data)
-
-
-
-// Code
-//==============================================================
+log_table_1:
+ASM_TYPE_DIRECTIVE(log_table_1,@object)
+data8 0xBFC5555DA7212371 // P5
+data8 0x3FC999A19EEF5826 // P4
+data8 0x3FBC756AC654273B // Q8
+data8 0xBFC001A42489AB4D // Q7
+data8 0x3FC99999999A169B // Q4
+data8 0xBFD00000000019AC // Q3
+ASM_SIZE_DIRECTIVE(log_table_1)
+log_table_2:
+ASM_TYPE_DIRECTIVE(log_table_2,@object)
+data8 0xBFCFFFFFFFFEF009 // P3
+data8 0x3FD555555554ECB2 // P2
+data8 0x3FC2492479AA0DF8 // Q6
+data8 0xBFC5555544986F52 // Q5
+data8 0x3FD5555555555555 // Q2
+data8 0xBFE0000000000000 // Q1, P1 = -0.5
+
+
+data8 0xde5bd8a937287195, 0x00003ffd // double-extended 1/ln(10)
+data8 0xb17217f7d1cf79ac, 0x00003ffe // log2
+// b17217f7d1cf79ab c9e3b39803f2f6a
+
+
+data8 0x80200aaeac44ef38 , 0x00003ff6 // log(1/frcpa(1+ 0/2^-8))
+
+data8 0xc09090a2c35aa070 , 0x00003ff7 // log(1/frcpa(1+ 1/2^-8))
+data8 0xa0c94fcb41977c75 , 0x00003ff8 // log(1/frcpa(1+ 2/2^-8))
+data8 0xe18b9c263af83301 , 0x00003ff8 // log(1/frcpa(1+ 3/2^-8))
+data8 0x8d35c8d6399c30ea , 0x00003ff9 // log(1/frcpa(1+ 4/2^-8))
+data8 0xadd4d2ecd601cbb8 , 0x00003ff9 // log(1/frcpa(1+ 5/2^-8))
+
+data8 0xce95403a192f9f01 , 0x00003ff9 // log(1/frcpa(1+ 6/2^-8))
+data8 0xeb59392cbcc01096 , 0x00003ff9 // log(1/frcpa(1+ 7/2^-8))
+data8 0x862c7d0cefd54c5d , 0x00003ffa // log(1/frcpa(1+ 8/2^-8))
+data8 0x94aa63c65e70d499 , 0x00003ffa // log(1/frcpa(1+ 9/2^-8))
+data8 0xa54a696d4b62b382 , 0x00003ffa // log(1/frcpa(1+ 10/2^-8))
+
+data8 0xb3e4a796a5dac208 , 0x00003ffa // log(1/frcpa(1+ 11/2^-8))
+data8 0xc28c45b1878340a9 , 0x00003ffa // log(1/frcpa(1+ 12/2^-8))
+data8 0xd35c55f39d7a6235 , 0x00003ffa // log(1/frcpa(1+ 13/2^-8))
+data8 0xe220f037b954f1f5 , 0x00003ffa // log(1/frcpa(1+ 14/2^-8))
+data8 0xf0f3389b036834f3 , 0x00003ffa // log(1/frcpa(1+ 15/2^-8))
+
+data8 0xffd3488d5c980465 , 0x00003ffa // log(1/frcpa(1+ 16/2^-8))
+data8 0x87609ce2ed300490 , 0x00003ffb // log(1/frcpa(1+ 17/2^-8))
+data8 0x8ede9321e8c85927 , 0x00003ffb // log(1/frcpa(1+ 18/2^-8))
+data8 0x96639427f2f8e2f4 , 0x00003ffb // log(1/frcpa(1+ 19/2^-8))
+data8 0x9defad3e8f73217b , 0x00003ffb // log(1/frcpa(1+ 20/2^-8))
+
+data8 0xa582ebd50097029c , 0x00003ffb // log(1/frcpa(1+ 21/2^-8))
+data8 0xac06dbe75ab80fee , 0x00003ffb // log(1/frcpa(1+ 22/2^-8))
+data8 0xb3a78449b2d3ccca , 0x00003ffb // log(1/frcpa(1+ 23/2^-8))
+data8 0xbb4f79635ab46bb2 , 0x00003ffb // log(1/frcpa(1+ 24/2^-8))
+data8 0xc2fec93a83523f3f , 0x00003ffb // log(1/frcpa(1+ 25/2^-8))
+
+data8 0xc99af2eaca4c4571 , 0x00003ffb // log(1/frcpa(1+ 26/2^-8))
+data8 0xd1581106472fa653 , 0x00003ffb // log(1/frcpa(1+ 27/2^-8))
+data8 0xd8002560d4355f2e , 0x00003ffb // log(1/frcpa(1+ 28/2^-8))
+data8 0xdfcb43b4fe508632 , 0x00003ffb // log(1/frcpa(1+ 29/2^-8))
+data8 0xe67f6dff709d4119 , 0x00003ffb // log(1/frcpa(1+ 30/2^-8))
+
+data8 0xed393b1c22351280 , 0x00003ffb // log(1/frcpa(1+ 31/2^-8))
+data8 0xf5192bff087bcc35 , 0x00003ffb // log(1/frcpa(1+ 32/2^-8))
+data8 0xfbdf4ff6dfef2fa3 , 0x00003ffb // log(1/frcpa(1+ 33/2^-8))
+data8 0x81559a97f92f9cc7 , 0x00003ffc // log(1/frcpa(1+ 34/2^-8))
+data8 0x84be72bce90266e8 , 0x00003ffc // log(1/frcpa(1+ 35/2^-8))
+
+data8 0x88bc74113f23def2 , 0x00003ffc // log(1/frcpa(1+ 36/2^-8))
+data8 0x8c2ba3edf6799d11 , 0x00003ffc // log(1/frcpa(1+ 37/2^-8))
+data8 0x8f9dc92f92ea08b1 , 0x00003ffc // log(1/frcpa(1+ 38/2^-8))
+data8 0x9312e8f36efab5a7 , 0x00003ffc // log(1/frcpa(1+ 39/2^-8))
+data8 0x968b08643409ceb6 , 0x00003ffc // log(1/frcpa(1+ 40/2^-8))
+
+data8 0x9a062cba08a1708c , 0x00003ffc // log(1/frcpa(1+ 41/2^-8))
+data8 0x9d845b3abf95485c , 0x00003ffc // log(1/frcpa(1+ 42/2^-8))
+data8 0xa06fd841bc001bb4 , 0x00003ffc // log(1/frcpa(1+ 43/2^-8))
+data8 0xa3f3a74652fbe0db , 0x00003ffc // log(1/frcpa(1+ 44/2^-8))
+data8 0xa77a8fb2336f20f5 , 0x00003ffc // log(1/frcpa(1+ 45/2^-8))
+
+data8 0xab0497015d28b0a0 , 0x00003ffc // log(1/frcpa(1+ 46/2^-8))
+data8 0xae91c2be6ba6a615 , 0x00003ffc // log(1/frcpa(1+ 47/2^-8))
+data8 0xb189d1b99aebb20b , 0x00003ffc // log(1/frcpa(1+ 48/2^-8))
+data8 0xb51cced5de9c1b2c , 0x00003ffc // log(1/frcpa(1+ 49/2^-8))
+data8 0xb819bee9e720d42f , 0x00003ffc // log(1/frcpa(1+ 50/2^-8))
+
+data8 0xbbb2a0947b093a5d , 0x00003ffc // log(1/frcpa(1+ 51/2^-8))
+data8 0xbf4ec1505811684a , 0x00003ffc // log(1/frcpa(1+ 52/2^-8))
+data8 0xc2535bacfa8975ff , 0x00003ffc // log(1/frcpa(1+ 53/2^-8))
+data8 0xc55a3eafad187eb8 , 0x00003ffc // log(1/frcpa(1+ 54/2^-8))
+data8 0xc8ff2484b2c0da74 , 0x00003ffc // log(1/frcpa(1+ 55/2^-8))
+
+data8 0xcc0b1a008d53ab76 , 0x00003ffc // log(1/frcpa(1+ 56/2^-8))
+data8 0xcfb6203844b3209b , 0x00003ffc // log(1/frcpa(1+ 57/2^-8))
+data8 0xd2c73949a47a19f5 , 0x00003ffc // log(1/frcpa(1+ 58/2^-8))
+data8 0xd5daae18b49d6695 , 0x00003ffc // log(1/frcpa(1+ 59/2^-8))
+data8 0xd8f08248cf7e8019 , 0x00003ffc // log(1/frcpa(1+ 60/2^-8))
+
+data8 0xdca7749f1b3e540e , 0x00003ffc // log(1/frcpa(1+ 61/2^-8))
+data8 0xdfc28e033aaaf7c7 , 0x00003ffc // log(1/frcpa(1+ 62/2^-8))
+data8 0xe2e012a5f91d2f55 , 0x00003ffc // log(1/frcpa(1+ 63/2^-8))
+data8 0xe600064ed9e292a8 , 0x00003ffc // log(1/frcpa(1+ 64/2^-8))
+data8 0xe9226cce42b39f60 , 0x00003ffc // log(1/frcpa(1+ 65/2^-8))
+
+data8 0xec4749fd97a28360 , 0x00003ffc // log(1/frcpa(1+ 66/2^-8))
+data8 0xef6ea1bf57780495 , 0x00003ffc // log(1/frcpa(1+ 67/2^-8))
+data8 0xf29877ff38809091 , 0x00003ffc // log(1/frcpa(1+ 68/2^-8))
+data8 0xf5c4d0b245cb89be , 0x00003ffc // log(1/frcpa(1+ 69/2^-8))
+data8 0xf8f3afd6fcdef3aa , 0x00003ffc // log(1/frcpa(1+ 70/2^-8))
+
+data8 0xfc2519756be1abc7 , 0x00003ffc // log(1/frcpa(1+ 71/2^-8))
+data8 0xff59119f503e6832 , 0x00003ffc // log(1/frcpa(1+ 72/2^-8))
+data8 0x8147ce381ae0e146 , 0x00003ffd // log(1/frcpa(1+ 73/2^-8))
+data8 0x82e45f06cb1ad0f2 , 0x00003ffd // log(1/frcpa(1+ 74/2^-8))
+data8 0x842f5c7c573cbaa2 , 0x00003ffd // log(1/frcpa(1+ 75/2^-8))
+
+data8 0x85ce471968c8893a , 0x00003ffd // log(1/frcpa(1+ 76/2^-8))
+data8 0x876e8305bc04066d , 0x00003ffd // log(1/frcpa(1+ 77/2^-8))
+data8 0x891012678031fbb3 , 0x00003ffd // log(1/frcpa(1+ 78/2^-8))
+data8 0x8a5f1493d766a05f , 0x00003ffd // log(1/frcpa(1+ 79/2^-8))
+data8 0x8c030c778c56fa00 , 0x00003ffd // log(1/frcpa(1+ 80/2^-8))
+
+data8 0x8da85df17e31d9ae , 0x00003ffd // log(1/frcpa(1+ 81/2^-8))
+data8 0x8efa663e7921687e , 0x00003ffd // log(1/frcpa(1+ 82/2^-8))
+data8 0x90a22b6875c6a1f8 , 0x00003ffd // log(1/frcpa(1+ 83/2^-8))
+data8 0x91f62cc8f5d24837 , 0x00003ffd // log(1/frcpa(1+ 84/2^-8))
+data8 0x93a06cfc3857d980 , 0x00003ffd // log(1/frcpa(1+ 85/2^-8))
+
+data8 0x94f66d5e6fd01ced , 0x00003ffd // log(1/frcpa(1+ 86/2^-8))
+data8 0x96a330156e6772f2 , 0x00003ffd // log(1/frcpa(1+ 87/2^-8))
+data8 0x97fb3582754ea25b , 0x00003ffd // log(1/frcpa(1+ 88/2^-8))
+data8 0x99aa8259aad1bbf2 , 0x00003ffd // log(1/frcpa(1+ 89/2^-8))
+data8 0x9b0492f6227ae4a8 , 0x00003ffd // log(1/frcpa(1+ 90/2^-8))
+
+data8 0x9c5f8e199bf3a7a5 , 0x00003ffd // log(1/frcpa(1+ 91/2^-8))
+data8 0x9e1293b9998c1daa , 0x00003ffd // log(1/frcpa(1+ 92/2^-8))
+data8 0x9f6fa31e0b41f308 , 0x00003ffd // log(1/frcpa(1+ 93/2^-8))
+data8 0xa0cda11eaf46390e , 0x00003ffd // log(1/frcpa(1+ 94/2^-8))
+data8 0xa22c8f029cfa45aa , 0x00003ffd // log(1/frcpa(1+ 95/2^-8))
+
+data8 0xa3e48badb7856b34 , 0x00003ffd // log(1/frcpa(1+ 96/2^-8))
+data8 0xa5459a0aa95849f9 , 0x00003ffd // log(1/frcpa(1+ 97/2^-8))
+data8 0xa6a79c84480cfebd , 0x00003ffd // log(1/frcpa(1+ 98/2^-8))
+data8 0xa80a946d0fcb3eb2 , 0x00003ffd // log(1/frcpa(1+ 99/2^-8))
+data8 0xa96e831a3ea7b314 , 0x00003ffd // log(1/frcpa(1+100/2^-8))
+
+data8 0xaad369e3dc544e3b , 0x00003ffd // log(1/frcpa(1+101/2^-8))
+data8 0xac92e9588952c815 , 0x00003ffd // log(1/frcpa(1+102/2^-8))
+data8 0xadfa035aa1ed8fdc , 0x00003ffd // log(1/frcpa(1+103/2^-8))
+data8 0xaf6219eae1ad6e34 , 0x00003ffd // log(1/frcpa(1+104/2^-8))
+data8 0xb0cb2e6d8160f753 , 0x00003ffd // log(1/frcpa(1+105/2^-8))
+
+data8 0xb2354249ad950f72 , 0x00003ffd // log(1/frcpa(1+106/2^-8))
+data8 0xb3a056e98ef4a3b4 , 0x00003ffd // log(1/frcpa(1+107/2^-8))
+data8 0xb50c6dba52c6292a , 0x00003ffd // log(1/frcpa(1+108/2^-8))
+data8 0xb679882c33876165 , 0x00003ffd // log(1/frcpa(1+109/2^-8))
+data8 0xb78c07429785cedc , 0x00003ffd // log(1/frcpa(1+110/2^-8))
+
+data8 0xb8faeb8dc4a77d24 , 0x00003ffd // log(1/frcpa(1+111/2^-8))
+data8 0xba6ad77eb36ae0d6 , 0x00003ffd // log(1/frcpa(1+112/2^-8))
+data8 0xbbdbcc915e9bee50 , 0x00003ffd // log(1/frcpa(1+113/2^-8))
+data8 0xbd4dcc44f8cf12ef , 0x00003ffd // log(1/frcpa(1+114/2^-8))
+data8 0xbec0d81bf5b531fa , 0x00003ffd // log(1/frcpa(1+115/2^-8))
+
+data8 0xc034f19c139186f4 , 0x00003ffd // log(1/frcpa(1+116/2^-8))
+data8 0xc14cb69f7c5e55ab , 0x00003ffd // log(1/frcpa(1+117/2^-8))
+data8 0xc2c2abbb6e5fd56f , 0x00003ffd // log(1/frcpa(1+118/2^-8))
+data8 0xc439b2c193e6771e , 0x00003ffd // log(1/frcpa(1+119/2^-8))
+data8 0xc553acb9d5c67733 , 0x00003ffd // log(1/frcpa(1+120/2^-8))
+
+data8 0xc6cc96e441272441 , 0x00003ffd // log(1/frcpa(1+121/2^-8))
+data8 0xc8469753eca88c30 , 0x00003ffd // log(1/frcpa(1+122/2^-8))
+data8 0xc962cf3ce072b05c , 0x00003ffd // log(1/frcpa(1+123/2^-8))
+data8 0xcadeba8771f694aa , 0x00003ffd // log(1/frcpa(1+124/2^-8))
+data8 0xcc5bc08d1f72da94 , 0x00003ffd // log(1/frcpa(1+125/2^-8))
+
+data8 0xcd7a3f99ea035c29 , 0x00003ffd // log(1/frcpa(1+126/2^-8))
+data8 0xcef93860c8a53c35 , 0x00003ffd // log(1/frcpa(1+127/2^-8))
+data8 0xd0192f68a7ed23df , 0x00003ffd // log(1/frcpa(1+128/2^-8))
+data8 0xd19a201127d3c645 , 0x00003ffd // log(1/frcpa(1+129/2^-8))
+data8 0xd2bb92f4061c172c , 0x00003ffd // log(1/frcpa(1+130/2^-8))
+
+data8 0xd43e80b2ee8cc8fc , 0x00003ffd // log(1/frcpa(1+131/2^-8))
+data8 0xd56173601fc4ade4 , 0x00003ffd // log(1/frcpa(1+132/2^-8))
+data8 0xd6e6637efb54086f , 0x00003ffd // log(1/frcpa(1+133/2^-8))
+data8 0xd80ad9f58f3c8193 , 0x00003ffd // log(1/frcpa(1+134/2^-8))
+data8 0xd991d1d31aca41f8 , 0x00003ffd // log(1/frcpa(1+135/2^-8))
-// log has p13 true, p14 false
-// log10 has p14 true, p13 false
+data8 0xdab7d02231484a93 , 0x00003ffd // log(1/frcpa(1+136/2^-8))
+data8 0xdc40d532cde49a54 , 0x00003ffd // log(1/frcpa(1+137/2^-8))
+data8 0xdd685f79ed8b265e , 0x00003ffd // log(1/frcpa(1+138/2^-8))
+data8 0xde9094bbc0e17b1d , 0x00003ffd // log(1/frcpa(1+139/2^-8))
+data8 0xe01c91b78440c425 , 0x00003ffd // log(1/frcpa(1+140/2^-8))
+
+data8 0xe14658f26997e729 , 0x00003ffd // log(1/frcpa(1+141/2^-8))
+data8 0xe270cdc2391e0d23 , 0x00003ffd // log(1/frcpa(1+142/2^-8))
+data8 0xe3ffce3a2aa64922 , 0x00003ffd // log(1/frcpa(1+143/2^-8))
+data8 0xe52bdb274ed82887 , 0x00003ffd // log(1/frcpa(1+144/2^-8))
+data8 0xe6589852e75d7df6 , 0x00003ffd // log(1/frcpa(1+145/2^-8))
+
+data8 0xe786068c79937a7d , 0x00003ffd // log(1/frcpa(1+146/2^-8))
+data8 0xe91903adad100911 , 0x00003ffd // log(1/frcpa(1+147/2^-8))
+data8 0xea481236f7d35bb0 , 0x00003ffd // log(1/frcpa(1+148/2^-8))
+data8 0xeb77d48c692e6b14 , 0x00003ffd // log(1/frcpa(1+149/2^-8))
+data8 0xeca84b83d7297b87 , 0x00003ffd // log(1/frcpa(1+150/2^-8))
+
+data8 0xedd977f4962aa158 , 0x00003ffd // log(1/frcpa(1+151/2^-8))
+data8 0xef7179a22f257754 , 0x00003ffd // log(1/frcpa(1+152/2^-8))
+data8 0xf0a450d139366ca7 , 0x00003ffd // log(1/frcpa(1+153/2^-8))
+data8 0xf1d7e0524ff9ffdb , 0x00003ffd // log(1/frcpa(1+154/2^-8))
+data8 0xf30c29036a8b6cae , 0x00003ffd // log(1/frcpa(1+155/2^-8))
+
+data8 0xf4412bc411ea8d92 , 0x00003ffd // log(1/frcpa(1+156/2^-8))
+data8 0xf576e97564c8619d , 0x00003ffd // log(1/frcpa(1+157/2^-8))
+data8 0xf6ad62fa1b5f172f , 0x00003ffd // log(1/frcpa(1+158/2^-8))
+data8 0xf7e499368b55c542 , 0x00003ffd // log(1/frcpa(1+159/2^-8))
+data8 0xf91c8d10abaffe22 , 0x00003ffd // log(1/frcpa(1+160/2^-8))
+
+data8 0xfa553f7018c966f3 , 0x00003ffd // log(1/frcpa(1+161/2^-8))
+data8 0xfb8eb13e185d802c , 0x00003ffd // log(1/frcpa(1+162/2^-8))
+data8 0xfcc8e3659d9bcbed , 0x00003ffd // log(1/frcpa(1+163/2^-8))
+data8 0xfe03d6d34d487fd2 , 0x00003ffd // log(1/frcpa(1+164/2^-8))
+data8 0xff3f8c7581e9f0ae , 0x00003ffd // log(1/frcpa(1+165/2^-8))
+
+data8 0x803e029e280173ae , 0x00003ffe // log(1/frcpa(1+166/2^-8))
+data8 0x80dca10cc52d0757 , 0x00003ffe // log(1/frcpa(1+167/2^-8))
+data8 0x817ba200632755a1 , 0x00003ffe // log(1/frcpa(1+168/2^-8))
+data8 0x821b05f3b01d6774 , 0x00003ffe // log(1/frcpa(1+169/2^-8))
+data8 0x82bacd623ff19d06 , 0x00003ffe // log(1/frcpa(1+170/2^-8))
+
+data8 0x835af8c88e7a8f47 , 0x00003ffe // log(1/frcpa(1+171/2^-8))
+data8 0x83c5f8299e2b4091 , 0x00003ffe // log(1/frcpa(1+172/2^-8))
+data8 0x8466cb43f3d87300 , 0x00003ffe // log(1/frcpa(1+173/2^-8))
+data8 0x850803a67c80ca4b , 0x00003ffe // log(1/frcpa(1+174/2^-8))
+data8 0x85a9a1d11a23b461 , 0x00003ffe // log(1/frcpa(1+175/2^-8))
+
+data8 0x864ba644a18e6e05 , 0x00003ffe // log(1/frcpa(1+176/2^-8))
+data8 0x86ee1182dcc432f7 , 0x00003ffe // log(1/frcpa(1+177/2^-8))
+data8 0x875a925d7e48c316 , 0x00003ffe // log(1/frcpa(1+178/2^-8))
+data8 0x87fdaa109d23aef7 , 0x00003ffe // log(1/frcpa(1+179/2^-8))
+data8 0x88a129ed4becfaf2 , 0x00003ffe // log(1/frcpa(1+180/2^-8))
+
+data8 0x89451278ecd7f9cf , 0x00003ffe // log(1/frcpa(1+181/2^-8))
+data8 0x89b29295f8432617 , 0x00003ffe // log(1/frcpa(1+182/2^-8))
+data8 0x8a572ac5a5496882 , 0x00003ffe // log(1/frcpa(1+183/2^-8))
+data8 0x8afc2d0ce3b2dadf , 0x00003ffe // log(1/frcpa(1+184/2^-8))
+data8 0x8b6a69c608cfd3af , 0x00003ffe // log(1/frcpa(1+185/2^-8))
+
+data8 0x8c101e106e899a83 , 0x00003ffe // log(1/frcpa(1+186/2^-8))
+data8 0x8cb63de258f9d626 , 0x00003ffe // log(1/frcpa(1+187/2^-8))
+data8 0x8d2539c5bd19e2b1 , 0x00003ffe // log(1/frcpa(1+188/2^-8))
+data8 0x8dcc0e064b29e6f1 , 0x00003ffe // log(1/frcpa(1+189/2^-8))
+data8 0x8e734f45d88357ae , 0x00003ffe // log(1/frcpa(1+190/2^-8))
+
+data8 0x8ee30cef034a20db , 0x00003ffe // log(1/frcpa(1+191/2^-8))
+data8 0x8f8b0515686d1d06 , 0x00003ffe // log(1/frcpa(1+192/2^-8))
+data8 0x90336bba039bf32f , 0x00003ffe // log(1/frcpa(1+193/2^-8))
+data8 0x90a3edd23d1c9d58 , 0x00003ffe // log(1/frcpa(1+194/2^-8))
+data8 0x914d0de2f5d61b32 , 0x00003ffe // log(1/frcpa(1+195/2^-8))
+
+data8 0x91be0c20d28173b5 , 0x00003ffe // log(1/frcpa(1+196/2^-8))
+data8 0x9267e737c06cd34a , 0x00003ffe // log(1/frcpa(1+197/2^-8))
+data8 0x92d962ae6abb1237 , 0x00003ffe // log(1/frcpa(1+198/2^-8))
+data8 0x9383fa6afbe2074c , 0x00003ffe // log(1/frcpa(1+199/2^-8))
+data8 0x942f0421651c1c4e , 0x00003ffe // log(1/frcpa(1+200/2^-8))
+
+data8 0x94a14a3845bb985e , 0x00003ffe // log(1/frcpa(1+201/2^-8))
+data8 0x954d133857f861e7 , 0x00003ffe // log(1/frcpa(1+202/2^-8))
+data8 0x95bfd96468e604c4 , 0x00003ffe // log(1/frcpa(1+203/2^-8))
+data8 0x9632d31cafafa858 , 0x00003ffe // log(1/frcpa(1+204/2^-8))
+data8 0x96dfaabd86fa1647 , 0x00003ffe // log(1/frcpa(1+205/2^-8))
+
+data8 0x9753261fcbb2a594 , 0x00003ffe // log(1/frcpa(1+206/2^-8))
+data8 0x9800c11b426b996d , 0x00003ffe // log(1/frcpa(1+207/2^-8))
+data8 0x9874bf4d45ae663c , 0x00003ffe // log(1/frcpa(1+208/2^-8))
+data8 0x99231f5ee9a74f79 , 0x00003ffe // log(1/frcpa(1+209/2^-8))
+data8 0x9997a18a56bcad28 , 0x00003ffe // log(1/frcpa(1+210/2^-8))
+
+data8 0x9a46c873a3267e79 , 0x00003ffe // log(1/frcpa(1+211/2^-8))
+data8 0x9abbcfc621eb6cb6 , 0x00003ffe // log(1/frcpa(1+212/2^-8))
+data8 0x9b310cb0d354c990 , 0x00003ffe // log(1/frcpa(1+213/2^-8))
+data8 0x9be14cf9e1b3515c , 0x00003ffe // log(1/frcpa(1+214/2^-8))
+data8 0x9c5710b8cbb73a43 , 0x00003ffe // log(1/frcpa(1+215/2^-8))
+
+data8 0x9ccd0abd301f399c , 0x00003ffe // log(1/frcpa(1+216/2^-8))
+data8 0x9d7e67f3bdce8888 , 0x00003ffe // log(1/frcpa(1+217/2^-8))
+data8 0x9df4ea81a99daa01 , 0x00003ffe // log(1/frcpa(1+218/2^-8))
+data8 0x9e6ba405a54514ba , 0x00003ffe // log(1/frcpa(1+219/2^-8))
+data8 0x9f1e21c8c7bb62b3 , 0x00003ffe // log(1/frcpa(1+220/2^-8))
+
+data8 0x9f956593f6b6355c , 0x00003ffe // log(1/frcpa(1+221/2^-8))
+data8 0xa00ce1092e5498c3 , 0x00003ffe // log(1/frcpa(1+222/2^-8))
+data8 0xa0c08309c4b912c1 , 0x00003ffe // log(1/frcpa(1+223/2^-8))
+data8 0xa1388a8c6faa2afa , 0x00003ffe // log(1/frcpa(1+224/2^-8))
+data8 0xa1b0ca7095b5f985 , 0x00003ffe // log(1/frcpa(1+225/2^-8))
+
+data8 0xa22942eb47534a00 , 0x00003ffe // log(1/frcpa(1+226/2^-8))
+data8 0xa2de62326449d0a3 , 0x00003ffe // log(1/frcpa(1+227/2^-8))
+data8 0xa357690f88bfe345 , 0x00003ffe // log(1/frcpa(1+228/2^-8))
+data8 0xa3d0a93f45169a4b , 0x00003ffe // log(1/frcpa(1+229/2^-8))
+data8 0xa44a22f7ffe65f30 , 0x00003ffe // log(1/frcpa(1+230/2^-8))
+
+data8 0xa500c5e5b4c1aa36 , 0x00003ffe // log(1/frcpa(1+231/2^-8))
+data8 0xa57ad064eb2ebbc2 , 0x00003ffe // log(1/frcpa(1+232/2^-8))
+data8 0xa5f5152dedf4384e , 0x00003ffe // log(1/frcpa(1+233/2^-8))
+data8 0xa66f9478856233ec , 0x00003ffe // log(1/frcpa(1+234/2^-8))
+data8 0xa6ea4e7cca02c32e , 0x00003ffe // log(1/frcpa(1+235/2^-8))
+
+data8 0xa765437325341ccf , 0x00003ffe // log(1/frcpa(1+236/2^-8))
+data8 0xa81e21e6c75b4020 , 0x00003ffe // log(1/frcpa(1+237/2^-8))
+data8 0xa899ab333fe2b9ca , 0x00003ffe // log(1/frcpa(1+238/2^-8))
+data8 0xa9157039c51ebe71 , 0x00003ffe // log(1/frcpa(1+239/2^-8))
+data8 0xa991713433c2b999 , 0x00003ffe // log(1/frcpa(1+240/2^-8))
+
+data8 0xaa0dae5cbcc048b3 , 0x00003ffe // log(1/frcpa(1+241/2^-8))
+data8 0xaa8a27ede5eb13ad , 0x00003ffe // log(1/frcpa(1+242/2^-8))
+data8 0xab06de228a9e3499 , 0x00003ffe // log(1/frcpa(1+243/2^-8))
+data8 0xab83d135dc633301 , 0x00003ffe // log(1/frcpa(1+244/2^-8))
+data8 0xac3fb076adc7fe7a , 0x00003ffe // log(1/frcpa(1+245/2^-8))
+
+data8 0xacbd3cbbe47988f1 , 0x00003ffe // log(1/frcpa(1+246/2^-8))
+data8 0xad3b06b1a5dc57c3 , 0x00003ffe // log(1/frcpa(1+247/2^-8))
+data8 0xadb90e94af887717 , 0x00003ffe // log(1/frcpa(1+248/2^-8))
+data8 0xae3754a218f7c816 , 0x00003ffe // log(1/frcpa(1+249/2^-8))
+data8 0xaeb5d9175437afa2 , 0x00003ffe // log(1/frcpa(1+250/2^-8))
+
+data8 0xaf349c322e9c7cee , 0x00003ffe // log(1/frcpa(1+251/2^-8))
+data8 0xafb39e30d1768d1c , 0x00003ffe // log(1/frcpa(1+252/2^-8))
+data8 0xb032df51c2c93116 , 0x00003ffe // log(1/frcpa(1+253/2^-8))
+data8 0xb0b25fd3e6035ad9 , 0x00003ffe // log(1/frcpa(1+254/2^-8))
+data8 0xb1321ff67cba178c , 0x00003ffe // log(1/frcpa(1+255/2^-8))
+ASM_SIZE_DIRECTIVE(log_table_2)
+
+
+.align 32
+.global log#
+.global log10#
+
+// log10 has p7 true, p8 false
+// log has p8 true, p7 false
.section .text
-GLOBAL_IEEE754_ENTRY(log10)
+.proc log10#
+.align 32
+
+log10:
+#ifdef _LIBC
+.global __ieee754_log10
+.type __ieee754_log10,@function
+__ieee754_log10:
+#endif
{ .mfi
- getf.exp GR_Exp = f8 // if x is unorm then must recompute
- frcpa.s1 FR_RcpX,p0 = f1,f8
- mov GR_05 = 0xFFFE // biased exponent of A2=0.5
+ alloc r32=ar.pfs,1,15,4,0
+ frcpa.s1 log_C,p9 = f1,f8
+ cmp.eq.unc p7,p8 = r0, r0
}
-{ .mlx
- addl GR_ad_1 = @ltoff(log10_data),gp
- movl GR_A3 = 0x3fd5555555555557 // double precision memory
- // representation of A3
-};;
+{ .mfb
+ addl log_AD_1 = @ltoff(log_table_1), gp
+ fnorm.s1 log_NORM_f8 = f8
+ br.sptk L(LOG_LOG10_X)
+}
+;;
+
+.endp log10
+ASM_SIZE_DIRECTIVE(log10)
+ASM_SIZE_DIRECTIVE(__ieee754_log10)
+
+
+.section .text
+.proc log#
+.align 32
+log:
+#ifdef _LIBC
+.global __ieee754_log
+.type __ieee754_log,@function
+__ieee754_log:
+#endif
{ .mfi
- getf.sig GR_Sig = f8 // get significand to calculate index
- fclass.m p8,p0 = f8,9 // is x positive unorm?
- mov GR_xorg = 0x3fefe // double precision memory msb of 255/256
+ alloc r32=ar.pfs,1,15,4,0
+ frcpa.s1 log_C,p9 = f1,f8
+ cmp.eq.unc p8,p7 = r0, r0
}
-{ .mib
- ld8 GR_ad_1 = [GR_ad_1]
- cmp.eq p14,p13 = r0,r0 // set p14 to 1 for log10
- br.cond.sptk log_log10_common
-};;
-GLOBAL_IEEE754_END(log10)
+{ .mfi
+ addl log_AD_1 = @ltoff(log_table_1), gp
+ fnorm.s1 log_NORM_f8 = f8
+ nop.i 999
+}
+;;
+L(LOG_LOG10_X):
-GLOBAL_IEEE754_ENTRY(log)
{ .mfi
- getf.exp GR_Exp = f8 // if x is unorm then must recompute
- frcpa.s1 FR_RcpX,p0 = f1,f8
- mov GR_05 = 0xfffe
+ ld8 log_AD_1 = [log_AD_1]
+ fclass.m.unc p15,p0 = f8, 0x0b // Test for x=unorm
+ mov log_GR_fff9 = 0xfff9
}
-{ .mlx
- addl GR_ad_1 = @ltoff(log_data),gp
- movl GR_A3 = 0x3fd5555555555557 // double precision memory
- // representation of A3
-};;
+{ .mfi
+ mov log_GR_half_exp = 0x0fffe
+ fms.s1 log_w = f8,f1,f1
+ mov log_GR_exp_17_ones = 0x1ffff
+}
+;;
+
+{ .mmi
+ getf.exp log_GR_signexp_f8 = f8 // If x unorm then must recompute
+ setf.exp log_half = log_GR_half_exp // Form 0.5 = -Q1
+ nop.i 999
+}
+;;
+
+{ .mmb
+ adds log_AD_2 = 0x30, log_AD_1
+ mov log_GR_exp_16_ones = 0xffff
+(p15) br.cond.spnt L(LOG_DENORM)
+}
+;;
+
+L(LOG_COMMON):
+{.mfi
+ ldfpd log_P5,log_P4 = [log_AD_1],16
+ fclass.m.unc p6,p0 = f8, 0xc3 // Test for x=nan
+ and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
+}
+{.mfi
+ ldfpd log_P3,log_P2 = [log_AD_2],16
+ nop.f 999
+ nop.i 999
+}
+;;
{ .mfi
- getf.sig GR_Sig = f8 // get significand to calculate index
- fclass.m p8,p0 = f8,9 // is x positive unorm?
- mov GR_xorg = 0x3fefe // double precision memory msb of 255/256
+ ldfpd log_Q8,log_Q7 = [log_AD_1],16
+ fclass.m.unc p11,p0 = f8, 0x21 // Test for x=+inf
+ sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
}
{ .mfi
- ld8 GR_ad_1 = [GR_ad_1]
- nop.f 0
- cmp.eq p13,p14 = r0,r0 // set p13 to 1 for log
-};;
+ ldfpd log_Q6,log_Q5 = [log_AD_2],16
+ nop.f 999
+ nop.i 999
+}
+;;
+
-log_log10_common:
{ .mfi
- getf.d GR_x = f8 // double precision memory representation of x
- fclass.m p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
- dep.z GR_dx = 3, 44, 2 // Create 0x0000300000000000
- // Difference between double precision
- // memory representations of 257/256 and
- // 255/256
+ ldfpd log_Q4,log_Q3 = [log_AD_1],16
+ fma.s1 log_wsq = log_w, log_w, f0
+ nop.i 999
+}
+{ .mfb
+ ldfpd log_Q2,log_Q1 = [log_AD_2],16
+(p6) fma.d.s0 f8 = f8,f1,f0 // quietize nan result if x=nan
+(p6) br.ret.spnt b0 // Exit for x=nan
}
+;;
+
+
{ .mfi
- setf.exp FR_A2 = GR_05 // create A2
- fnorm.s1 FR_NormX = f8
- mov GR_bias = 0xffff
-};;
-
+ setf.sig log_int_Nfloat = log_GR_true_exp_f8
+ fcmp.eq.s1 p10,p0 = log_NORM_f8, f1 // Test for x=+1.0
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+ fms.s1 log_r = log_C,f8,f1
+(p11) br.ret.spnt b0 // Exit for x=+inf
+}
+;;
+
+
+{ .mmf
+ getf.sig log_GR_significand_f8 = log_NORM_f8
+ ldfe log_inv_ln10 = [log_AD_2],16
+ fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0
+}
+;;
+
+
+{ .mfb
+ nop.m 999
+(p10) fmerge.s f8 = f0, f0
+(p10) br.ret.spnt b0 // Exit for x=1.0
+;;
+}
+
{ .mfi
- setf.d FR_A3 = GR_A3 // create A3
- fcmp.eq.s1 p12,p0 = f1,f8 // is x equal to 1.0?
- dep.z GR_xorg = GR_xorg, 44, 19 // 0x3fefe00000000000
- // double precision memory
- // representation of 255/256
+ getf.exp log_GR_signexp_w = log_w
+ fclass.m.unc p12,p0 = f8, 0x3a // Test for x neg norm, unorm, inf
+ shl log_GR_index = log_GR_significand_f8,1
}
-{ .mib
- add GR_ad_2 = 0x30,GR_ad_1 // address of A5,A4
- add GR_ad_3 = 0x840,GR_ad_1 // address of ln(1/frcpa) lo parts
-(p8) br.cond.spnt log_positive_unorms
-};;
+;;
-log_core:
{ .mfi
- ldfpd FR_A7,FR_A6 = [GR_ad_1],16
- fclass.m p10,p0 = f8,0x3A // is x < 0?
- sub GR_Nm1 = GR_Exp,GR_05 // unbiased_exponent_of_x - 1
+ ldfe log_log2 = [log_AD_2],16
+ fnma.s1 log_rp_q10 = log_half, log_wsq, log_w
+ shr.u log_GR_index = log_GR_index,56
}
+{ .mfb
+ nop.m 999
+ fma.s1 log_w3 = log_wsq, log_w, f0
+(p6) br.cond.spnt L(LOG_ZERO_NEG) // Branch if x=0
+;;
+}
+
+
{ .mfi
- ldfpd FR_A5,FR_A4 = [GR_ad_2],16
-(p9) fma.d.s0 f8 = f8,f1,f0 // set V-flag
- sub GR_N = GR_Exp,GR_bias // unbiased_exponent_of_x
-};;
+ and log_GR_exp_w = log_GR_exp_17_ones, log_GR_signexp_w
+ fma.s1 log_w4 = log_wsq, log_wsq, f0
+ nop.i 999
+}
+{ .mfb
+ shladd log_AD_2 = log_GR_index,4,log_AD_2
+ fma.s1 log_rsq = log_r, log_r, f0
+(p12) br.cond.spnt L(LOG_ZERO_NEG) // Branch if x<0
+;;
+}
{ .mfi
- setf.sig FR_N = GR_N // copy unbiased exponent of x to significand
- fms.s1 FR_r = FR_RcpX,f8,f1 // range reduction for |x-1|>=1/256
- extr.u GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
+ ldfe log_T = [log_AD_2]
+ fma.s1 log_rp_p4 = log_P5, log_r, log_P4
+ nop.i 999
}
-{ .mib
- sub GR_x = GR_x, GR_xorg // get diff between x and 255/256
- cmp.gtu p6, p7 = 2, GR_Nm1 // p6 true if 0.5 <= x < 2
-(p9) br.ret.spnt b0 // exit for NaN, NaT and +Inf
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 log_rp_p32 = log_P3, log_r, log_P2
+ nop.i 999
+;;
+}
+
{ .mfi
- ldfpd FR_Ln2hi,FR_Ln2lo = [GR_ad_1],16
- fclass.m p11,p0 = f8,0x07 // is x = 0?
- shladd GR_ad_3 = GR_Ind,2,GR_ad_3 // address of Tlo
+ nop.m 999
+ fma.s1 log_rp_q7 = log_Q8, log_w, log_Q7
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 log_rp_q65 = log_Q6, log_w, log_Q5
+ nop.i 999
+;;
}
-{ .mib
- shladd GR_ad_2 = GR_Ind,3,GR_ad_2 // address of Thi
-(p6) cmp.leu p6, p7 = GR_x, GR_dx // 255/256 <= x <= 257/256
-(p10) br.cond.spnt log_negatives // jump if x is negative
-};;
-// p6 is true if |x-1| < 1/256
-// p7 is true if |x-1| >= 1/256
+// p13 <== large w log
+// p14 <== small w log
{ .mfi
- ldfd FR_Thi = [GR_ad_2]
-(p6) fms.s1 FR_r = f8,f1,f1 // range reduction for |x-1|<1/256
- nop.i 0
-};;
+(p8) cmp.ge.unc p13,p14 = log_GR_exp_w, log_GR_fff9
+ fma.s1 log_rp_q3 = log_Q4, log_w, log_Q3
+ nop.i 999
+;;
+}
-{ .mmi
-(p7) ldfs FR_Tlo = [GR_ad_3]
- nop.m 0
- nop.i 0
+// p10 <== large w log10
+// p11 <== small w log10
+{ .mfi
+(p7) cmp.ge.unc p10,p11 = log_GR_exp_w, log_GR_fff9
+ fcvt.xf log_Nfloat = log_int_Nfloat
+ nop.i 999
}
-{ .mfb
- nop.m 0
-(p12) fma.d.s0 f8 = f0,f0,f0
-(p12) br.ret.spnt b0 // exit for +1.0
-};;
-.pred.rel "mutex",p6,p7
{ .mfi
-(p6) mov GR_NearOne = 1
- fms.s1 FR_A32 = FR_A3,FR_r,FR_A2 // A3*r-A2
-(p7) mov GR_NearOne = 0
+ nop.m 999
+ fma.s1 log_rp_q21 = log_Q2, log_w3, log_rp_q10
+ nop.i 999 ;;
}
-{ .mfb
- ldfe FR_InvLn10 = [GR_ad_1],16
- fma.s1 FR_r2 = FR_r,FR_r,f0 // r^2
-(p11) br.cond.spnt log_zeroes // jump if x is zero
-};;
{ .mfi
- nop.m 0
- fma.s1 FR_A6 = FR_A7,FR_r,FR_A6 // A7*r+A6
- nop.i 0
+ nop.m 999
+ fma.s1 log_rcube = log_rsq, log_r, f0
+ nop.i 999
}
{ .mfi
-(p7) cmp.eq.unc p9,p0 = r0,r0 // set p9 if |x-1| > 1/256
- fma.s1 FR_A4 = FR_A5,FR_r,FR_A4 // A5*r+A4
-(p14) cmp.eq.unc p8,p0 = 1,GR_NearOne // set p8 to 1 if it's log10
- // and argument near 1.0
-};;
+ nop.m 999
+ fma.s1 log_rp_p10 = log_rsq, log_P1, log_r
+ nop.i 999
+;;
+}
{ .mfi
-(p6) getf.exp GR_rexp = FR_r // Get signexp of x-1
-(p7) fcvt.xf FR_N = FR_N
-(p8) cmp.eq p9,p6 = r0,r0 // Also set p9 and clear p6 if log10
- // and arg near 1
-};;
+ nop.m 999
+ fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag on +denormal input
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
+ nop.i 999
+;;
+}
+
{ .mfi
- nop.m 0
- fma.s1 FR_r4 = FR_r2,FR_r2,f0 // r^4
- nop.i 0
+ nop.m 999
+ fma.s1 log_w6 = log_w3, log_w3, f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p8) fma.s1 FR_NxLn2pT = f0,f0,f0 // Clear NxLn2pT if log10 near 1
- nop.i 0
-};;
+ nop.m 999
+ fma.s1 log_Qlo = log_rp_q7, log_wsq, log_rp_q65
+ nop.i 999
+}
+;;
{ .mfi
- nop.m 0
- // (A3*r+A2)*r^2+r
- fma.s1 FR_A321 = FR_A32,FR_r2,FR_r
- mov GR_mask = 0x1ffff
+ nop.m 999
+ fma.s1 log_Qhi = log_rp_q3, log_w4, log_rp_q21
+ nop.i 999 ;;
}
-{ .mfi
- nop.m 0
- // (A7*r+A6)*r^2+(A5*r+A4)
- fma.s1 FR_A4 = FR_A6,FR_r2,FR_A4
- nop.i 0
-};;
+
{ .mfi
-(p6) and GR_rexp = GR_rexp, GR_mask
- // N*Ln2hi+Thi
-(p7) fma.s1 FR_NxLn2hipThi = FR_N,FR_Ln2hi,FR_Thi
- nop.i 0
+ nop.m 999
+ fma.s1 log_T_plus_Nlog2 = log_Nfloat,log_log2, log_T
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- // N*Ln2lo+Tlo
-(p7) fma.s1 FR_NxLn2lopTlo = FR_N,FR_Ln2lo,FR_Tlo
- nop.i 0
-};;
+ nop.m 999
+ fma.s1 log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
+ nop.i 999 ;;
+}
+
+// small w, log <== p14
{ .mfi
-(p6) sub GR_rexp = GR_rexp, GR_bias // unbiased exponent of x-1
-(p9) fma.s1 f8 = FR_A4,FR_r4,FR_A321 // P(r) if |x-1| >= 1/256 or
- // log10 and |x-1| < 1/256
- nop.i 0
+ nop.m 999
+(p14) fma.d f8 = log_Qlo, log_w6, log_Qhi
+ nop.i 999
}
{ .mfi
- nop.m 0
- // (N*Ln2hi+Thi) + (N*Ln2lo+Tlo)
-(p7) fma.s1 FR_NxLn2pT = FR_NxLn2hipThi,f1,FR_NxLn2lopTlo
- nop.i 0
-};;
+ nop.m 999
+ fma.s1 log_Q = log_Qlo, log_w6, log_Qhi
+ nop.i 999 ;;
+}
+
{ .mfi
-(p6) cmp.gt.unc p10, p6 = -40, GR_rexp // Test |x-1| < 2^-40
- nop.f 0
- nop.i 0
-};;
+ nop.m 999
+(p10) fma.s1 log_log10_hi = log_T_plus_Nlog2, log_inv_ln10,f0
+ nop.i 999 ;;
+}
+// large w, log <== p13
+.pred.rel "mutex",p13,p10
{ .mfi
- nop.m 0
-(p10) fma.d.s0 f8 = FR_A32,FR_r2,FR_r // log(x) if |x-1| < 2^-40
- nop.i 0
-};;
+ nop.m 999
+(p13) fadd.d f8 = log_T_plus_Nlog2, log_r2P_r
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p10) fma.s1 log_log10_lo = log_inv_ln10, log_r2P_r,f0
+ nop.i 999 ;;
+}
+
-.pred.rel "mutex",p6,p9
+// small w, log10 <== p11
{ .mfi
- nop.m 0
-(p6) fma.d.s0 f8 = FR_A4,FR_r4,FR_A321 // log(x) if 2^-40 <= |x-1| < 1/256
- nop.i 0
+ nop.m 999
+(p11) fma.d f8 = log_inv_ln10,log_Q,f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p9) fma.d.s0 f8 = f8,FR_InvLn10,FR_NxLn2pT // result if |x-1| >= 1/256
- // or log10 and |x-1| < 1/256
- br.ret.sptk b0
-};;
-.align 32
-log_positive_unorms:
-{ .mmf
- getf.exp GR_Exp = FR_NormX // recompute biased exponent
- getf.d GR_x = FR_NormX // recompute double precision x
- fcmp.eq.s1 p12,p0 = f1,FR_NormX // is x equal to 1.0?
-};;
+// large w, log10 <== p10
+{ .mfb
+ nop.m 999
+(p10) fma.d f8 = log_log10_hi, f1, log_log10_lo
+ br.ret.sptk b0
+;;
+}
+L(LOG_DENORM):
{ .mfb
- getf.sig GR_Sig = FR_NormX // recompute significand
- fcmp.eq.s0 p15, p0 = f8, f0 // set denormal flag
- br.cond.sptk log_core
-};;
+ getf.exp log_GR_signexp_f8 = log_NORM_f8
+ nop.f 999
+ br.cond.sptk L(LOG_COMMON)
+}
+;;
-.align 32
-log_zeroes:
+L(LOG_ZERO_NEG):
+
+// qnan snan inf norm unorm 0 -+
+// 0 0 0 0 0 1 11 0x7
+// 0 0 1 1 1 0 10 0x3a
+
+// Save x (f8) in f10
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8 // keep input argument for subsequent
- // call of __libm_error_support#
- nop.i 0
+ nop.m 999
+ fmerge.s f10 = f8,f8
+ nop.i 999 ;;
}
+
+// p8 p9 means ln(+-0) = -inf
+// p7 p10 means log(+-0) = -inf
+
+// p13 means ln(-)
+// p14 means log(-)
+
+
{ .mfi
- nop.m 0
- fms.s1 FR_tmp = f0,f0,f1 // -1.0
- nop.i 0
-};;
+ nop.m 999
+ fmerge.ns f6 = f1,f1 // Form -1.0
+ nop.i 999 ;;
+}
+
+// p9 means ln(+-0) = -inf
+// p10 means log(+-0) = -inf
+// Log(+-0) = -inf
-.pred.rel "mutex",p13,p14
{ .mfi
-(p13) mov GR_TAG = 2 // set libm error in case of log
- frcpa.s0 f8,p0 = FR_tmp,f0 // log(+/-0) should be equal to -INF.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of FR_tmp/f0.
- // As far as FR_tmp is -1 it'll be -INF
- nop.i 0
+ nop.m 999
+(p8) fclass.m.unc p9,p0 = f10, 0x07
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p10,p0 = f10, 0x07
+ nop.i 999 ;;
}
-{ .mib
-(p14) mov GR_TAG = 8 // set libm error in case of log10
- nop.i 0
- br.cond.sptk log_libm_err
-};;
-.align 32
-log_negatives:
+
+// p13 ln(-)
+// p14 log(-)
+
+// Log(-inf, -normal, -unnormal) = QNAN indefinite
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- nop.i 0
-};;
+ nop.m 999
+(p8) fclass.m.unc p13,p0 = f10, 0x3a
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p14,p0 = f10, 0x3a
+ nop.i 999 ;;
+}
+
+
+.pred.rel "mutex",p9,p10
+{ .mfi
+(p9) mov log_GR_tag = 2
+(p9) frcpa f8,p11 = f6,f0
+ nop.i 999
+}
+{ .mfi
+(p10) mov log_GR_tag = 8
+(p10) frcpa f8,p12 = f6,f0
+ nop.i 999 ;;
+}
.pred.rel "mutex",p13,p14
{ .mfi
-(p13) mov GR_TAG = 3 // set libm error in case of log
- frcpa.s0 f8,p0 = f0,f0 // log(negatives) should be equal to NaN.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of f0/f0 i.e. NaN.
-(p14) mov GR_TAG = 9 // set libm error in case of log10
-};;
+(p13) mov log_GR_tag = 3
+(p13) frcpa f8,p11 = f0,f0
+ nop.i 999
+}
+{ .mfb
+(p14) mov log_GR_tag = 9
+(p14) frcpa f8,p12 = f0,f0
+ br.cond.sptk __libm_error_region ;;
+}
+.endp log
+ASM_SIZE_DIRECTIVE(log)
+ASM_SIZE_DIRECTIVE(__ieee754_log)
-.align 32
-log_libm_err:
-{ .mmi
- alloc r32 = ar.pfs,1,4,4,0
- mov GR_Parameter_TAG = GR_TAG
- nop.i 0
-};;
-GLOBAL_IEEE754_END(log)
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+
+.proc __libm_error_region
+__libm_error_region:
.prologue
+
+// (1)
{ .mfi
- add GR_Parameter_Y = -32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp = -64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP = gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+// (2)
{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ stfd [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
+// (3)
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+// (4)
{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/e_log2.S b/sysdeps/ia64/fpu/e_log2.S
deleted file mode 100644
index 660a9526b6..0000000000
--- a/sysdeps/ia64/fpu/e_log2.S
+++ /dev/null
@@ -1,711 +0,0 @@
-.file "log2.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//=================================================================
-// 09/11/00 Initial version
-// 03/19/01 Added one polynomial coefficient, to improve accuracy
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/18/03 Reformatted T[255]
-//
-// API
-//=================================================================
-// double log2(double)
-//
-// Overview of operation
-//=================================================================
-// Background
-//
-// Implementation
-//
-// Let x = 2^l * m, where m=1.b1 b2 ... b8 b9 ... b52
-// y=frcpa(m), r=m*y-1, f=b1 b2 .. b8 (table index)
-// j=0 if f<128; j=1 if f>=128
-// T is a table that stores log2(1/y) (in entries 1..255) rounded to
-// double extended precision; f is used as an index; T[255]=0
-//
-// If f=0 and b9=0, r is set to 2^{-8}* 0.b9 b10 ... b52 = m-1 (fractional part of m),
-// and 0 is used instead of T[0]
-// (polynomial evaluation only, for m=1+r, 0<=r<2^{-9})
-// If f=255, r is set to (m-2)/2 (T[255]=0, and only polynomial evaluation is used
-// for m=2(1-r'), 0<=r'<2^{-9})
-//
-// log2(x) is approximated as
-// (l-j) + T[f] + (c1*r+c2*r^2+...+c7*r^7), if f>0
-//
-
-
-// Special values
-//=================================================================
-// log2(0)=-inf, raises Divide by Zero
-// log2(+inf)=inf
-// log2(x)=NaN, raises Invalid if x<0
-//
-
-
-// Registers used
-//==============================================================
-// f6-f15, f32-f33
-// r2-r3, r23-r30
-// p6,p7,p8,p12
-//
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35 // This reg. can safely be used
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0xbfd0000000000000, 0x3fc999999999999a //C_4, C_5
-data8 0xbfc5555555555555, 0x3fc2492492492492 //C_6, C_7
-data8 0xb8aa3b295c17f0bc, 0x00003fff // C_1
-data8 0xaaaaaaaaaaaaaaab, 0x00003ffd // C_3=1/3
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
-data8 0xb8d8752172fed131, 0x00003ff6
-data8 0x8ae7f475764180a3, 0x00003ff8
-data8 0xe7f73862e72ee35d, 0x00003ff8
-data8 0xa2b25310c941a2f2, 0x00003ff9
-data8 0xcbb91d671abb2e85, 0x00003ff9
-data8 0xfac91e34daa50483, 0x00003ff9
-data8 0x9504a5042eb495c5, 0x00003ffa
-data8 0xa9c4a0bbb580ee02, 0x00003ffa
-data8 0xc19264dc8a5e3bf9, 0x00003ffa
-data8 0xd67aa6703ebf4a77, 0x00003ffa
-data8 0xee76cac6d6e08ce7, 0x00003ffa
-data8 0x81c3f7de5434ed04, 0x00003ffb
-data8 0x8c563033a3ce01e4, 0x00003ffb
-data8 0x9876e9f09a98661c, 0x00003ffb
-data8 0xa31e0ac9b2326ce2, 0x00003ffb
-data8 0xadcf09e1fd10e4a5, 0x00003ffb
-data8 0xb889f992cf03cdb6, 0x00003ffb
-data8 0xc34eec68d901a714, 0x00003ffb
-data8 0xce1df524e9909ed9, 0x00003ffb
-data8 0xd8f726bcb0b80ad0, 0x00003ffb
-data8 0xe3da945b878e27d1, 0x00003ffb
-data8 0xeec851633b76a320, 0x00003ffb
-data8 0xf82ea4bb6101421a, 0x00003ffb
-data8 0x8197ddd7736b2864, 0x00003ffc
-data8 0x871dad4f994253f0, 0x00003ffc
-data8 0x8ca8cae3e892d549, 0x00003ffc
-data8 0x916d6e1559a4b697, 0x00003ffc
-data8 0x97028118efabeb7d, 0x00003ffc
-data8 0x9bcfbce1592ad5d5, 0x00003ffc
-data8 0xa16ee95d0da54a91, 0x00003ffc
-data8 0xa644dcf3403fa5d0, 0x00003ffc
-data8 0xab1ee14ffd659064, 0x00003ffc
-data8 0xb0cd12faebcc6757, 0x00003ffc
-data8 0xb5affdf9b3b221e0, 0x00003ffc
-data8 0xba970fb307c6ade1, 0x00003ffc
-data8 0xbf824f3a9f3e7561, 0x00003ffc
-data8 0xc544c055fde99333, 0x00003ffc
-data8 0xca39266532bdf26c, 0x00003ffc
-data8 0xcf31d124b8fa2f56, 0x00003ffc
-data8 0xd42ec7f59017b6ab, 0x00003ffc
-data8 0xd930124bea9a2c67, 0x00003ffc
-data8 0xde35b7af70e4dab3, 0x00003ffc
-data8 0xe33fbfbb8533ef03, 0x00003ffc
-data8 0xe77625911a7dcef3, 0x00003ffc
-data8 0xec884bd689cc12e3, 0x00003ffc
-data8 0xf19eeabf9e99a40a, 0x00003ffc
-data8 0xf6ba0a35e3d88051, 0x00003ffc
-data8 0xfbd9b237f7b4192b, 0x00003ffc
-data8 0x80111d4a1ee0c79e, 0x00003ffd
-data8 0x82a523a5f875bbfc, 0x00003ffd
-data8 0x84ccecdc92cd0815, 0x00003ffd
-data8 0x87653369d92c057a, 0x00003ffd
-data8 0x89ffd1742da3aa21, 0x00003ffd
-data8 0x8c2d2227d053d9b6, 0x00003ffd
-data8 0x8e5c189793f7f798, 0x00003ffd
-data8 0x90fd0a20e72f3c96, 0x00003ffd
-data8 0x932fa937301e59ae, 0x00003ffd
-data8 0x95d5061a5f0f5f7f, 0x00003ffd
-data8 0x980b5a2ef10e7023, 0x00003ffd
-data8 0x9a4361c5514d3c27, 0x00003ffd
-data8 0x9c7d1f7d541313fd, 0x00003ffd
-data8 0x9f2b16040b500d04, 0x00003ffd
-data8 0xa168a0fa9db22c98, 0x00003ffd
-data8 0xa3a7eaa1f9116293, 0x00003ffd
-data8 0xa5e8f5b4072a3d44, 0x00003ffd
-data8 0xa82bc4f11a5e88aa, 0x00003ffd
-data8 0xaa705b2001db8317, 0x00003ffd
-data8 0xacb6bb0e1e0f8005, 0x00003ffd
-data8 0xaefee78f75707221, 0x00003ffd
-data8 0xb148e37ec994dd99, 0x00003ffd
-data8 0xb394b1bdaca0bc17, 0x00003ffd
-data8 0xb5e255349707e496, 0x00003ffd
-data8 0xb831d0d2fda791cc, 0x00003ffd
-data8 0xba83278f6838ab20, 0x00003ffd
-data8 0xbcd65c67881c7d47, 0x00003ffd
-data8 0xbeb3e0f21d72dc92, 0x00003ffd
-data8 0xc10a7a03457d35dc, 0x00003ffd
-data8 0xc362f9b6f51eddd3, 0x00003ffd
-data8 0xc5bd6326ebfce656, 0x00003ffd
-data8 0xc7a0b3d0637c8f97, 0x00003ffd
-data8 0xc9fe96af0df8e4b5, 0x00003ffd
-data8 0xcc5e6c214b4a2cd7, 0x00003ffd
-data8 0xce46199f374d29cf, 0x00003ffd
-data8 0xd0a978a14c0d9ebe, 0x00003ffd
-data8 0xd293fecafec7f9b5, 0x00003ffd
-data8 0xd4faf1f6f5cf32e6, 0x00003ffd
-data8 0xd6e8595abaad34d1, 0x00003ffd
-data8 0xd952eb7a8ffc1593, 0x00003ffd
-data8 0xdb433ccd805f171e, 0x00003ffd
-data8 0xddb178dc43e6bd84, 0x00003ffd
-data8 0xdfa4bcfb333342a4, 0x00003ffd
-data8 0xe19953741ccea015, 0x00003ffd
-data8 0xe40cee16a2ff21c5, 0x00003ffd
-data8 0xe6048470cdbde8ea, 0x00003ffd
-data8 0xe7fd7308d6895b14, 0x00003ffd
-data8 0xe9f7bbb6a1ff9f87, 0x00003ffd
-data8 0xec7280138809433d, 0x00003ffd
-data8 0xee6fda4365cd051f, 0x00003ffd
-data8 0xf06e94a122ff1f12, 0x00003ffd
-data8 0xf26eb1151441fce5, 0x00003ffd
-data8 0xf470318b88a77e2f, 0x00003ffd
-data8 0xf67317f4d4c8aa58, 0x00003ffd
-data8 0xf8f8b250a9c4cde6, 0x00003ffd
-data8 0xfafec54831f1a484, 0x00003ffd
-data8 0xfd06449bf3eaea1e, 0x00003ffd
-data8 0xff0f324ddb19ab67, 0x00003ffd
-data8 0x808cc8320a9acf15, 0x00003ffe
-data8 0x8192b0748f2cef06, 0x00003ffe
-data8 0x829952f5e6a24ee5, 0x00003ffe
-data8 0x83a0b0bfafe1424e, 0x00003ffe
-data8 0x8466b29f9c41caea, 0x00003ffe
-data8 0x856f5aae0881d857, 0x00003ffe
-data8 0x8678c0eae8ee8190, 0x00003ffe
-data8 0x8782e6685676b9d7, 0x00003ffe
-data8 0x888dcc3abc4554ec, 0x00003ffe
-data8 0x89997378de7b98b8, 0x00003ffe
-data8 0x8aa5dd3be1044279, 0x00003ffe
-data8 0x8b6facdfd0360ab8, 0x00003ffe
-data8 0x8c7d6db7169e0cdb, 0x00003ffe
-data8 0x8d8bf424d6e130b2, 0x00003ffe
-data8 0x8e575b506f409fa6, 0x00003ffe
-data8 0x8f673e418776492c, 0x00003ffe
-data8 0x9077e9ed700ef9ba, 0x00003ffe
-data8 0x9144ef1baec80b20, 0x00003ffe
-data8 0x9256fcdb537f035f, 0x00003ffe
-data8 0x9369d68d75e7e1d6, 0x00003ffe
-data8 0x943880613b8f9f1e, 0x00003ffe
-data8 0x954cc1d9e0d94206, 0x00003ffe
-data8 0xd3c70a37bdf7a294, 0x0000bffd
-data8 0xd19bb053fb0284ec, 0x0000bffd
-data8 0xcffa1a3b7dafb8bf, 0x0000bffd
-data8 0xcdcbe1e2776479ee, 0x0000bffd
-data8 0xcc282218b8bfdda2, 0x0000bffd
-data8 0xc9f703a9afcb38ac, 0x0000bffd
-data8 0xc851146ab89593c6, 0x0000bffd
-data8 0xc61d08265927a860, 0x0000bffd
-data8 0xc474e39705912d26, 0x0000bffd
-data8 0xc23de19ec30c6e3e, 0x0000bffd
-data8 0xc09381cc45db45b4, 0x0000bffd
-data8 0xbee82b4e025ff90c, 0x0000bffd
-data8 0xbcace101149788ec, 0x0000bffd
-data8 0xbaff46962ea47964, 0x0000bffd
-data8 0xb950b1be5e0c14a2, 0x0000bffd
-data8 0xb7110e6ce866f2bc, 0x0000bffd
-data8 0xb5602ccc2a81db52, 0x0000bffd
-data8 0xb3ae4ce740fc8ef1, 0x0000bffd
-data8 0xb1fb6d92c8240ccc, 0x0000bffd
-data8 0xafb609c09b244abc, 0x0000bffd
-data8 0xae00d1cfdeb43cfd, 0x0000bffd
-data8 0xac4a967a8c8c9bd0, 0x0000bffd
-data8 0xaa93568c249e6c52, 0x0000bffd
-data8 0xa8db10cdff375343, 0x0000bffd
-data8 0xa68e6fc5a42376e3, 0x0000bffd
-data8 0xa4d3c25e68dc57f2, 0x0000bffd
-data8 0xa3180b0c192a3816, 0x0000bffd
-data8 0xa15b488e7aa329a0, 0x0000bffd
-data8 0x9f9d79a30f0e1d5f, 0x0000bffd
-data8 0x9dde9d050ee7d4ac, 0x0000bffd
-data8 0x9c1eb16d63d7356c, 0x0000bffd
-data8 0x9a5db592a310c36a, 0x0000bffd
-data8 0x989ba82907a9016f, 0x0000bffd
-data8 0x96d887e26cd57b79, 0x0000bffd
-data8 0x9514536e481c3a4f, 0x0000bffd
-data8 0x934f0979a3715fc9, 0x0000bffd
-data8 0x9188a8af1742a9d5, 0x0000bffd
-data8 0x8fc12fb6c470995f, 0x0000bffd
-data8 0x8df89d364e34f8f1, 0x0000bffd
-data8 0x8c2eefd0d3f67dd6, 0x0000bffd
-data8 0x8a642626eb093d54, 0x0000bffd
-data8 0x88983ed6985bae58, 0x0000bffd
-data8 0x86cb387b4a0feec6, 0x0000bffd
-data8 0x84fd11add101024b, 0x0000bffd
-data8 0x83c856dd81804b78, 0x0000bffd
-data8 0x81f84c2c62afd6f1, 0x0000bffd
-data8 0x80271d3e4be5ea5a, 0x0000bffd
-data8 0xfca991447e7b485d, 0x0000bffc
-data8 0xf90299c904793a3c, 0x0000bffc
-data8 0xf559511d2dc1ed69, 0x0000bffc
-data8 0xf2e72afee9bd2aee, 0x0000bffc
-data8 0xef39ff1d8a40770e, 0x0000bffc
-data8 0xeb8a7a2311c935dc, 0x0000bffc
-data8 0xe7d8990dc620012f, 0x0000bffc
-data8 0xe560b1e3b86e44b6, 0x0000bffc
-data8 0xe1aadb38caee80c4, 0x0000bffc
-data8 0xddf2a051f81b76a4, 0x0000bffc
-data8 0xdb7678bafcaf4b5f, 0x0000bffc
-data8 0xd7ba3a8f0df19bfc, 0x0000bffc
-data8 0xd3fb8fdbdd5cebdb, 0x0000bffc
-data8 0xd17b191905c35652, 0x0000bffc
-data8 0xcdb85d29cefd7121, 0x0000bffc
-data8 0xc9f32c3c88221ef6, 0x0000bffc
-data8 0xc76e5741a95b5dae, 0x0000bffc
-data8 0xc3a506d80d38c718, 0x0000bffc
-data8 0xbfd938ccef8b68c1, 0x0000bffc
-data8 0xbd4ff63e82eef78c, 0x0000bffc
-data8 0xb97ffa2b563865bd, 0x0000bffc
-data8 0xb6f3eb3011eddcea, 0x0000bffc
-data8 0xb31fb7d64898b3e6, 0x0000bffc
-data8 0xb090d63a409e7880, 0x0000bffc
-data8 0xacb8623c7ffa4f39, 0x0000bffc
-data8 0xa8dd5c83d2e45246, 0x0000bffc
-data8 0xa649e998a8d91f2e, 0x0000bffc
-data8 0xa26a93fed6faa94f, 0x0000bffc
-data8 0x9fd43df079d0db1f, 0x0000bffc
-data8 0x9d3cbe69aecac4c2, 0x0000bffc
-data8 0x99574f13c570d0fb, 0x0000bffc
-data8 0x96bce349bf7ee6c7, 0x0000bffc
-data8 0x92d30c9b86cee18e, 0x0000bffc
-data8 0x9035adef17c5bd5c, 0x0000bffc
-data8 0x8c4765e8e8b5f251, 0x0000bffc
-data8 0x89a70da448316ffa, 0x0000bffc
-data8 0x85b44a24474af78a, 0x0000bffc
-data8 0x8310f17aab5adf70, 0x0000bffc
-data8 0x806c6388d0965f29, 0x0000bffc
-data8 0xf8e69092bf0c5ead, 0x0000bffb
-data8 0xf397608bfd2d90e6, 0x0000bffb
-data8 0xee45be24d0eedbc4, 0x0000bffb
-data8 0xe646af233db881e9, 0x0000bffb
-data8 0xe0eee4e1ce3d06fb, 0x0000bffb
-data8 0xdb94a049e6e87a4f, 0x0000bffb
-data8 0xd3888ef9a4249f5a, 0x0000bffb
-data8 0xce280e6fbac39194, 0x0000bffb
-data8 0xc8c50b72319ad574, 0x0000bffb
-data8 0xc0abcd39f41e329b, 0x0000bffb
-data8 0xbb4279cfa7f9667b, 0x0000bffb
-data8 0xb5d69bac77ec398a, 0x0000bffb
-data8 0xb068306bf20d6233, 0x0000bffb
-data8 0xa83dc1b019ddb6a8, 0x0000bffb
-data8 0xa2c8eb1886c2d024, 0x0000bffb
-data8 0x9d517ee93f8e16c0, 0x0000bffb
-data8 0x97d77aae659b92fb, 0x0000bffb
-data8 0x8f9b91da5736d415, 0x0000bffb
-data8 0x8a1b06b09b7fd1d1, 0x0000bffb
-data8 0x8497daca0a2e077a, 0x0000bffb
-data8 0xfe241745a453f10c, 0x0000bffa
-data8 0xf3132d6708d723c5, 0x0000bffa
-data8 0xe7fcf2e21a0e7d77, 0x0000bffa
-data8 0xd75198b04afb8da9, 0x0000bffa
-data8 0xcc2dfe1a4a8ca305, 0x0000bffa
-data8 0xc10500d63aa65882, 0x0000bffa
-data8 0xb5d69bac77ec398a, 0x0000bffa
-data8 0xaaa2c95dc66abcde, 0x0000bffa
-data8 0x9f6984a342d13101, 0x0000bffa
-data8 0x942ac82e5387ac51, 0x0000bffa
-data8 0x88e68ea899a0976c, 0x0000bffa
-data8 0xefebc4409ccf872e, 0x0000bff9
-data8 0xd947b0c6642ef69e, 0x0000bff9
-data8 0xc2987d51e043d407, 0x0000bff9
-data8 0xabde1eeee6bfd257, 0x0000bff9
-data8 0x95188a9917cf2e01, 0x0000bff9
-data8 0xfc8f6a777c1b7f1e, 0x0000bff8
-data8 0xced727635c59725c, 0x0000bff8
-data8 0xa108358a4c904615, 0x0000bff8
-data8 0xe644fcbeb3ac9c90, 0x0000bff7
-data8 0x8a4bd667bf08e7de, 0x0000bff7
-data8 0x0000000000000000 // T[255] Low
-data8 0x0000000000000000 // T[255] High
-LOCAL_OBJECT_END(T_table)
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(log2)
-
-{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- // y=frcpa(x)
- frcpa.s1 f6,p0=f1,f8
- // will form significand of 1.5 (to test whether the index is 128 or above)
- mov r24=0xc
-}
-{.mfi
- nop.m 0
- // normalize x
- fma.s1 f7=f8,f1,f0
- // r2 = pointer to C_1...C_6 followed by T_table
- addl r2 = @ltoff(poly_coeffs), gp;;
-}
-{.mfi
- // get significand
- getf.sig r25=f8
- // f8 denormal ?
- fclass.m p8,p10=f8,0x9
- // will form significand of 1.5 (to test whether the index is 128 or above)
- shl r24=r24,60
-}
-{.mfi
- mov r26=0x804
- nop.f 0
- // r23=bias-1
- mov r23=0xfffe;;
-}
-
-{.mmf
- getf.exp r29=f8
- // load start address for C_1...C_6 followed by T_table
- ld8 r2=[r2]
- // will continue only for positive normal/denormal numbers
- fclass.nm.unc p12,p7 = f8, 0x19 ;;
-}
-
-.pred.rel "mutex",p8,p10
-{.mfi
- // denormal input, repeat get significand (after normalization)
- (p8) getf.sig r25=f7
- // x=1 ?
- fcmp.eq.s0 p6,p0=f8,f1
- // get T_index
- (p10) shr.u r28=r25,63-8
-}
-{.mfi
- // f32=0.5
- setf.exp f32=r23
- nop.f 0
- // r27=bias
- mov r27=0xffff;;
-}
-
-{.mmi
- // denormal input, repeat get exponent (after normalization)
- (p8) getf.exp r29=f7
- mov r23=0xff
- // r26=0x80400...0 (threshold for using polynomial approximation)
- shl r26=r26,64-12;;
-}
-
-{.mfb
- add r3=48,r2
- // r=1-x*y
- fms.s1 f6=f6,f8,f1
- (p12) br.cond.spnt SPECIAL_LOG2
-}
-{.mfi
- // load C_4, C_5
- ldfpd f10,f11=[r2],16
- nop.f 0
- cmp.geu p12,p0=r25,r24;;
-}
-
-{.mmi
- // load C_6, C_7
- ldfpd f12,f13=[r2],16
- // r27=bias-1 (if index >=128, will add exponent+1)
- (p12) mov r27=0xfffe
- (p8) shr.u r28=r25,63-8;;
-}
-
-
-{.mfi
- // load C_1
- ldfe f14=[r2],32
- fmerge.se f7=f1,f7
- // if first 9 bits after leading 1 are all zero, then p8=1
- cmp.ltu p8,p12=r25,r26
-}
-{.mfi
- // load C_3
- ldfe f15=[r3]
- nop.f 0
- // get T_index
- and r28=r28,r23;;
-}
-{.mfi
- // r29=exponent-bias
- sub r29=r29,r27
- // x=1, return 0
- (p6) fma.d.s0 f8=f0,f0,f0
- // get T address
- shladd r2=r28,4,r2
-}
-{.mfb
- // first 8 bits after leading 1 are all ones ?
- cmp.eq p10,p0=r23,r28
- // if first 8 bits after leading bit are 0, use polynomial approx. only
- (p8) fms.s1 f6=f7,f1,f1
- // x=1, return
- (p6) br.ret.spnt b0;;
-}
-{.mfi
- // r26=1
- mov r26=1
- // if first 8 bits after leading 1 are all ones, use polynomial approx. only
- (p10) fms.s1 f6=f7,f32,f1
- nop.i 0;;
-}
-
-.pred.rel "mutex",p8,p12
-{.mmf
- // load T (unless first 9 bits after leading 1 are 0)
- (p12) ldfe f33=[r2]
- // f8=expon - bias
- setf.sig f8=r29
- // set T=0 (if first 9 bits after leading 1 are 0)
- (p8) fma.s1 f33=f0,f0,f0;;
-}
-
-{.mfi
- nop.m 0
- // P12=1-0.5*r
- fnma.s1 f32=f32,f6,f1
- // r26=2^{63}
- shl r26=r26,63
-}
-{.mfi
- nop.m 0
- // r2=r*r
- fma.s1 f7=f6,f6,f0
- nop.i 0;;
-}
-{.mfi
- // significand(x)=1 ?
- cmp.eq p0,p6=r26,r25
- // P67=C_6+C_7*r
- fma.s1 f13=f13,f6,f12
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P45=C_4+C_5*r
- fma.s1 f10=f11,f6,f10
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // C_1*r
- (p6) fma.s1 f14=f14,f6,f0
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // normalize additive term (l=exponent of x)
- fcvt.xf f8=f8
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P13=1-0.5*r+C_3*r^2
- (p6) fma.s1 f15=f15,f7,f32
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // P47=P45+r2*P67
- (p6) fma.s1 f13=f13,f7,f10
- // if significand(x)=1, return exponent (l)
- nop.i 0
-}
-{.mfi
- nop.m 0
- // r3=r^3
- (p6) fma.s1 f7=f7,f6,f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // add T+l
- (p6) fma.s1 f8=f8,f1,f33
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P17=P13+r3*P47
- (p6) fma.s1 f13=f13,f7,f15
- nop.i 0;;
-}
-
-{.mfb
- nop.m 0
- // result=T+l+(C_1*r)*P16
- (p6) fma.d.s0 f8=f13,f14,f8
- // return
- br.ret.sptk b0;;
-}
-
-
-SPECIAL_LOG2:
-{.mfi
- nop.m 0
- // x=+Infinity ?
- fclass.m p7,p0=f8,0x21
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // x=+/-Zero ?
- fclass.m p8,p0=f8,0x7
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // x=-Infinity, -normal, -denormal ?
- fclass.m p6,p0=f8,0x3a
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- // log2(+Infinity)=+Infinity
- nop.f 0
- (p7) br.ret.spnt b0;;
-}
-{.mfi
- (p8) mov GR_Parameter_TAG = 170
- // log2(+/-0)=-infinity, raises Divide by Zero
- // set f8=-0
- (p8) fmerge.ns f8=f0,f8
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- (p8) frcpa.s0 f8,p0=f1,f8
- (p8) br.cond.sptk __libm_error_region;;
-}
-{.mfb
- (p6) mov GR_Parameter_TAG = 171
- // x<0: return NaN, raise Invalid
- (p6) frcpa.s0 f8,p0=f0,f0
- (p6) br.cond.sptk __libm_error_region;;
-}
-
-
-{.mfb
- nop.m 0
- // Remaining cases: NaNs
- fma.d.s0 f8=f8,f1,f0
- br.ret.sptk b0;;
-}
-
-GLOBAL_LIBM_END(log2)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
diff --git a/sysdeps/ia64/fpu/e_log2f.S b/sysdeps/ia64/fpu/e_log2f.S
deleted file mode 100644
index 17d710a951..0000000000
--- a/sysdeps/ia64/fpu/e_log2f.S
+++ /dev/null
@@ -1,551 +0,0 @@
-.file "log2f.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 09/11/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// float log2f(float)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x = 2^l * m, where m=1.b1 b2 ... b8 b9 ... b52
-// y=frcpa(m), r=m*y-1, f=b1 b2 .. b8 (table index)
-// j=0 if f<128; j=1 if f>=128
-// T is a table that stores log2(1/y) (in entries 1..255) rounded to
-// double extended precision; f is used as an index; T[255]=0
-//
-// If f=0 and b9=0, r is set to 2^{-8}* 0.b9 b10 ... b52 = m-1 (fractional part of m),
-// and 0 is used instead of T[0]
-// (polynomial evaluation only, for m=1+r, 0<=r<2^{-9})
-// If f=255, r is set to (m-2)/2 (T[255]=0, and only polynomial evaluation is used
-// for m=2(1-r'), 0<=r'<2^{-9})
-//
-// log2f(x) is approximated as
-// (l-j) + T[f] + (c1*r+c2*r^2+...+c6*r^6), if f>0
-//
-
-
-// Special values
-//==============================================================
-// log2f(0)=-inf, raises Divide by Zero
-// log2f(+inf)=inf
-// log2f(x)=NaN, raises Invalid if x<0
-//
-
-
-// Registers used
-//==============================================================
-// f6-f14
-// r2-r3, r23-r30
-// p6,p7,p8,p12
-//
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35 // This reg. can safely be used
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0x3fdec709dc3a03fd, 0xbfd71547652b82fe //C_3 and C_4
-data8 0xb8aa3b295c17f0bc, 0x00003fff // C_1
-data8 0xb8aa3b295c17f0bc, 0x0000bffe // C_2
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-LOCAL_OBJECT_START(T_table)
-
-data8 0x3f671b0ea42e5fda, 0x3f815cfe8eaec830
-data8 0x3f8cfee70c5ce5dc, 0x3f94564a62192834
-data8 0x3f997723ace35766, 0x3f9f5923c69b54a1
-data8 0x3fa2a094a085d693, 0x3fa538941776b01e
-data8 0x3fa8324c9b914bc7, 0x3faacf54ce07d7e9
-data8 0x3fadced958dadc12, 0x3fb0387efbca869e
-data8 0x3fb18ac6067479c0, 0x3fb30edd3e13530d
-data8 0x3fb463c15936464e, 0x3fb5b9e13c3fa21d
-data8 0x3fb7113f3259e07a, 0x3fb869dd8d1b2035
-data8 0x3fb9c3bea49d3214, 0x3fbb1ee4d7961701
-data8 0x3fbc7b528b70f1c5, 0x3fbdd90a2c676ed4
-data8 0x3fbf05d4976c2028, 0x3fc032fbbaee6d65
-data8 0x3fc0e3b5a9f3284a, 0x3fc195195c7d125b
-data8 0x3fc22dadc2ab3497, 0x3fc2e050231df57d
-data8 0x3fc379f79c2b255b, 0x3fc42ddd2ba1b4a9
-data8 0x3fc4c89b9e6807f5, 0x3fc563dc29ffacb2
-data8 0x3fc619a25f5d798d, 0x3fc6b5ffbf367644
-data8 0x3fc752e1f660f8d6, 0x3fc7f049e753e7cf
-data8 0x3fc8a8980abfbd32, 0x3fc94724cca657be
-data8 0x3fc9e63a24971f46, 0x3fca85d8feb202f7
-data8 0x3fcb2602497d5346, 0x3fcbc6b6f5ee1c9b
-data8 0x3fcc67f7f770a67e, 0x3fcceec4b2234fba
-data8 0x3fcd91097ad13982, 0x3fce33dd57f3d335
-data8 0x3fced74146bc7b10, 0x3fcf7b3646fef683
-data8 0x3fd00223a943dc19, 0x3fd054a474bf0eb7
-data8 0x3fd0999d9b9259a1, 0x3fd0eca66d3b2581
-data8 0x3fd13ffa2e85b475, 0x3fd185a444fa0a7b
-data8 0x3fd1cb8312f27eff, 0x3fd21fa1441ce5e8
-data8 0x3fd265f526e603cb, 0x3fd2baa0c34be1ec
-data8 0x3fd3016b45de21ce, 0x3fd3486c38aa29a8
-data8 0x3fd38fa3efaa8262, 0x3fd3e562c0816a02
-data8 0x3fd42d141f53b646, 0x3fd474fd543f222c
-data8 0x3fd4bd1eb680e548, 0x3fd505789e234bd1
-data8 0x3fd54e0b64003b70, 0x3fd596d761c3c1f0
-data8 0x3fd5dfdcf1eeae0e, 0x3fd6291c6fd9329c
-data8 0x3fd6729637b59418, 0x3fd6bc4aa692e0fd
-data8 0x3fd7063a1a5fb4f2, 0x3fd75064f1ed0715
-data8 0x3fd79acb8cf10390, 0x3fd7d67c1e43ae5c
-data8 0x3fd8214f4068afa7, 0x3fd86c5f36dea3dc
-data8 0x3fd8b7ac64dd7f9d, 0x3fd8f4167a0c6f92
-data8 0x3fd93fd2d5e1bf1d, 0x3fd98bcd84296946
-data8 0x3fd9c8c333e6e9a5, 0x3fda152f142981b4
-data8 0x3fda527fd95fd8ff, 0x3fda9f5e3edeb9e6
-data8 0x3fdadd0b2b5755a7, 0x3fdb2a5d6f51ff83
-data8 0x3fdb686799b00be3, 0x3fdbb62f1b887cd8
-data8 0x3fdbf4979f666668, 0x3fdc332a6e8399d4
-data8 0x3fdc819dc2d45fe4, 0x3fdcc0908e19b7bd
-data8 0x3fdcffae611ad12b, 0x3fdd3ef776d43ff4
-data8 0x3fdd8e5002710128, 0x3fddcdfb486cb9a1
-data8 0x3fde0dd294245fe4, 0x3fde4dd622a28840
-data8 0x3fde8e06317114f0, 0x3fdece62fe9a9915
-data8 0x3fdf1f164a15389a, 0x3fdf5fd8a9063e35
-data8 0x3fdfa0c8937e7d5d, 0x3fdfe1e649bb6335
-data8 0x3fe011990641535a, 0x3fe032560e91e59e
-data8 0x3fe0532a5ebcd44a, 0x3fe0741617f5fc28
-data8 0x3fe08cd653f38839, 0x3fe0adeb55c1103b
-data8 0x3fe0cf181d5d1dd0, 0x3fe0f05ccd0aced7
-data8 0x3fe111b9875788ab, 0x3fe1332e6f1bcf73
-data8 0x3fe154bba77c2088, 0x3fe16df59bfa06c1
-data8 0x3fe18fadb6e2d3c2, 0x3fe1b17e849adc26
-data8 0x3fe1caeb6a0de814, 0x3fe1ece7c830eec9
-data8 0x3fe20efd3dae01df, 0x3fe2289de375d901
-data8 0x3fe24adf9b6a6fe0, 0x3fe26d3ad1aebcfc
-data8 0x3fe287100c2771f4, 0x3fe2a9983b3c1b28
-data8 0xbfda78e146f7bef4, 0xbfda33760a7f6051
-data8 0xbfd9ff43476fb5f7, 0xbfd9b97c3c4eec8f
-data8 0xbfd98504431717fc, 0xbfd93ee07535f967
-data8 0xbfd90a228d5712b2, 0xbfd8c3a104cb24f5
-data8 0xbfd88e9c72e0b226, 0xbfd847bc33d8618e
-data8 0xbfd812703988bb69, 0xbfd7dd0569c04bff
-data8 0xbfd7959c202292f1, 0xbfd75fe8d2c5d48f
-data8 0xbfd72a1637cbc183, 0xbfd6e221cd9d0cde
-data8 0xbfd6ac059985503b, 0xbfd675c99ce81f92
-data8 0xbfd63f6db2590482, 0xbfd5f6c138136489
-data8 0xbfd5c01a39fbd688, 0xbfd58952cf519193
-data8 0xbfd5526ad18493ce, 0xbfd51b6219bfe6ea
-data8 0xbfd4d1cdf8b4846f, 0xbfd49a784bcd1b8b
-data8 0xbfd4630161832547, 0xbfd42b6911cf5465
-data8 0xbfd3f3af3461e1c4, 0xbfd3bbd3a0a1dcfb
-data8 0xbfd383d62dac7ae7, 0xbfd34bb6b2546218
-data8 0xbfd313750520f520, 0xbfd2db10fc4d9aaf
-data8 0xbfd2a28a6dc90387, 0xbfd269e12f346e2c
-data8 0xbfd2311515e2e855, 0xbfd1f825f6d88e13
-data8 0xbfd1bf13a6c9c69f, 0xbfd185ddfa1a7ed0
-data8 0xbfd14c84c4dd6128, 0xbfd11307dad30b76
-data8 0xbfd0d9670f6941fe, 0xbfd09fa235ba2020
-data8 0xbfd0790adbb03009, 0xbfd03f09858c55fb
-data8 0xbfd004e3a7c97cbd, 0xbfcf9532288fcf69
-data8 0xbfcf205339208f27, 0xbfceab2a23a5b83e
-data8 0xbfce5ce55fdd37a5, 0xbfcde73fe3b1480f
-data8 0xbfcd714f44623927, 0xbfccfb1321b8c400
-data8 0xbfccac163c770dc9, 0xbfcc355b67195dd0
-data8 0xbfcbbe540a3f036f, 0xbfcb6ecf175f95e9
-data8 0xbfcaf74751e1be33, 0xbfca7f71fb7bab9d
-data8 0xbfca2f632320b86b, 0xbfc9b70ba539dfae
-data8 0xbfc93e6587910444, 0xbfc8edcae8352b6c
-data8 0xbfc874a0db01a719, 0xbfc7fb27199df16d
-data8 0xbfc7a9fec7d05ddf, 0xbfc72fff456ac70d
-data8 0xbfc6de7d66023dbc, 0xbfc663f6fac91316
-data8 0xbfc6121ac74813cf, 0xbfc5970c478fff4a
-data8 0xbfc51bab907a5c8a, 0xbfc4c93d33151b24
-data8 0xbfc44d527fdadf55, 0xbfc3fa87be0f3a1b
-data8 0xbfc3a797cd35d959, 0xbfc32ae9e278ae1a
-data8 0xbfc2d79c6937efdd, 0xbfc25a619370d9dc
-data8 0xbfc206b5bde2f8b8, 0xbfc188ecbd1d16be
-data8 0xbfc134e1b489062e, 0xbfc0b6894488e95f
-data8 0xbfc0621e2f556b5c, 0xbfc00d8c711a12cc
-data8 0xbfbf1cd21257e18c, 0xbfbe72ec117fa5b2
-data8 0xbfbdc8b7c49a1ddb, 0xbfbcc8d5e467b710
-data8 0xbfbc1ddc9c39c7a1, 0xbfbb7294093cdd0f
-data8 0xbfba7111df348494, 0xbfb9c501cdf75872
-data8 0xbfb918a16e46335b, 0xbfb81579a73e83c6
-data8 0xbfb7684f39f4ff2d, 0xbfb6bad3758efd87
-data8 0xbfb60d060d7e41ac, 0xbfb507b836033bb7
-data8 0xbfb4591d6310d85a, 0xbfb3aa2fdd27f1c3
-data8 0xbfb2faef55ccb372, 0xbfb1f3723b4ae6db
-data8 0xbfb14360d6136ffa, 0xbfb092fb594145c1
-data8 0xbfafc482e8b48a7e, 0xbfae6265ace11ae4
-data8 0xbfacff9e5c4341d0, 0xbfaaea3316095f72
-data8 0xbfa985bfc3495194, 0xbfa820a01ac754cb
-data8 0xbfa6bad3758efd87, 0xbfa554592bb8cd58
-data8 0xbfa3ed3094685a26, 0xbfa2855905ca70f6
-data8 0xbfa11cd1d5133413, 0xbf9dfd78881399f1
-data8 0xbf9b28f618cc85df, 0xbf98530faa3c087b
-data8 0xbf957bc3dddcd7fa, 0xbf92a3115322f9e6
-data8 0xbf8f91ed4eef8370, 0xbf89dae4ec6b8b2e
-data8 0xbf842106b1499209, 0xbf7cc89f97d67594
-data8 0xbf71497accf7e11d, 0x0000000000000000
-LOCAL_OBJECT_END(T_table)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(log2f)
-
-{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- // y=frcpa(x)
- frcpa.s1 f6,p0=f1,f8
- // will form significand of 1.5 (to test whether the index is 128 or above)
- mov r24=0xc
-}
-{.mfi
- nop.m 0
- // normalize x
- fma.s1 f7=f8,f1,f0
- // r2 = pointer to C_1...C_6 followed by T_table
- addl r2 = @ltoff(poly_coeffs), gp;;
-}
-{.mfi
- // get significand
- getf.sig r25=f8
- // f8 denormal ?
- fclass.m p8,p10=f8,0x9
- // will form significand of 1.5 (to test whether the index is 128 or above)
- shl r24=r24,60
-}
-{.mfi
- mov r26=0x804
- nop.f 0
- // r23=bias-1
- mov r23=0xfffe;;
-}
-
-{.mmf
- getf.exp r29=f8
- // load start address for C_1...C_6 followed by T_table
- ld8 r2=[r2]
- // will continue only for positive normal/denormal numbers
- fclass.nm.unc p12,p7 = f8, 0x19 ;;
-}
-
-.pred.rel "mutex",p8,p10
-{.mfi
- // denormal input, repeat get significand (after normalization)
- (p8) getf.sig r25=f7
- // x=1 ?
- fcmp.eq.s0 p6,p0=f8,f1
- // get T_index
- (p10) shr.u r28=r25,63-8
-}
-{.mfi
- // f12=0.5
- setf.exp f12=r23
- nop.f 0
- // r27=bias
- mov r27=0xffff;;
-}
-
-{.mfb
- // denormal input, repeat get exponent (after normalization)
- (p8) getf.exp r29=f7
- nop.f 0
- (p12) br.cond.spnt SPECIAL_log2f
-}
-{.mfi
- cmp.geu p12,p0=r25,r24
- nop.f 0
- mov r23=0xff;;
-}
-
-{.mfi
- add r3=32,r2
- // r=1-x*y
- fms.s1 f6=f6,f8,f1
- // r26=0x80400...0 (threshold for using polynomial approximation)
- shl r26=r26,64-12
-}
-{.mfi
- // load C_3, C_4
- ldfpd f10,f11=[r2],16
- nop.f 0
- // r27=bias-1 (if index >=128, will add exponent+1)
- (p12) mov r27=0xfffe;;
-}
-
-{.mfi
- // load C_1
- ldfe f14=[r2],32
- // x=1, return 0
- (p6) fma.s.s0 f8=f0,f0,f0
- (p8) shr.u r28=r25,63-8
-}
-{.mib
- // load C_2
- ldfe f13=[r3]
- // r29=exponent-bias
- sub r29=r29,r27
- // x=1, return
- (p6) br.ret.spnt b0;;
-}
-
-
-{.mfi
- // get T_index
- and r28=r28,r23
- fmerge.se f7=f1,f7
- // if first 9 bits after leading 1 are all zero, then p8=1
- cmp.ltu p8,p12=r25,r26;;
-}
-{.mfi
- // f8=expon - bias
- setf.sig f8=r29
- nop.f 0
- // get T address
- shladd r2=r28,3,r2
-}
-{.mfi
- // first 8 bits after leading 1 are all ones ?
- cmp.eq p10,p0=r23,r28
- // if first 8 bits after leading bit are 0, use polynomial approx. only
- (p8) fms.s1 f6=f7,f1,f1
- nop.i 0;;
-}
-{.mfi
- //r26=1
- mov r26=1
- // if first 8 bits after leading 1 are all ones, use polynomial approx. only
- (p10) fms.s1 f6=f7,f12,f1
- nop.i 0;;
-}
-
-.pred.rel "mutex",p8,p12
-{.mmf
- // load T (unless first 9 bits after leading 1 are 0)
- (p12) ldfd f12=[r2]
- nop.m 0
- // set T=0 (if first 9 bits after leading 1 are 0)
- (p8) fma.s1 f12=f0,f0,f0;;
-}
-
-{.mfi
- nop.m 0
- // P34=C_3+C_4*r
- fma.s1 f10=f11,f6,f10
- // r26=2^{63}
- shl r26=r26,63
-}
-{.mfi
- nop.m 0
- // r2=r*r
- fma.s1 f11=f6,f6,f0
- nop.i 0;;
-}
-{.mfi
- // significand of x is 1 ?
- cmp.eq p0,p6=r25,r26
- // P12=C_1+C_2*r
- fma.s1 f14=f13,f6,f14
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // normalize additive term (l=exponent of x)
- fcvt.xf f8=f8
- // if significand(x)=1, return exponent (l)
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // add T+l
- (p6) fma.s1 f8=f8,f1,f12
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P14=P12+r2*P34
- (p6) fma.s1 f13=f10,f11,f14
- nop.i 0;;
-}
-
-{.mfb
- nop.m 0
- // result=T+l+r*P14
- (p6) fma.s.s0 f8=f13,f6,f8
- // return
- br.ret.sptk b0;;
-}
-
-
-SPECIAL_log2f:
-{.mfi
- nop.m 0
- // x=+Infinity ?
- fclass.m p7,p0=f8,0x21
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // x=+/-Zero ?
- fclass.m p8,p0=f8,0x7
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // x=-Infinity, -normal, -denormal ?
- fclass.m p6,p0=f8,0x3a
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- // log2f(+Infinity)=+Infinity
- nop.f 0
- (p7) br.ret.spnt b0;;
-}
-{.mfi
- (p8) mov GR_Parameter_TAG = 172
- // log2f(+/-0)=-infinity, raises Divide by Zero
- // set f8=-0
- (p8) fmerge.ns f8=f0,f8
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- (p8) frcpa.s0 f8,p0=f1,f8
- (p8) br.cond.sptk __libm_error_region;;
-}
-{.mfb
- (p6) mov GR_Parameter_TAG = 173
- // x<0: return NaN, raise Invalid
- (p6) frcpa.s0 f8,p0=f0,f0
- (p6) br.cond.sptk __libm_error_region;;
-}
-
-
-{.mfb
- nop.m 0
- // Remaining cases: NaNs
- fma.s.s0 f8=f8,f1,f0
- br.ret.sptk b0;;
-}
-
-GLOBAL_LIBM_END(log2f)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
-
-
diff --git a/sysdeps/ia64/fpu/e_log2l.S b/sysdeps/ia64/fpu/e_log2l.S
deleted file mode 100644
index b3fe63f182..0000000000
--- a/sysdeps/ia64/fpu/e_log2l.S
+++ /dev/null
@@ -1,817 +0,0 @@
-.file "log2l.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 09/25/00 Initial version
-// 11/22/00 Fixed accuracy bug (for mantissas near 1, 2)
-// 12/07/00 Fixed C_1l constant, eliminated rounding errors in
-// reduced argument (x*frcpa(x)-1)
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double log2l(long double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-// Implementation
-//
-// Let x = 2^l * m, where m=1.b1 b2 ... b8 b9 ... b52
-// y=frcpa(m), r=m*y-1, f=b1 b2 .. b8
-// T_hi is a table that stores the 24 most significant bits of log2(1/y)
-// (in entries 1..255) in single precision format
-// T_low is a table that stores (log2(1/y)-T_high), rounded to double
-// precision
-//
-// f is used as an index; T_high[255]=T_low[255]=0
-//
-// If f=0 and b9=0, r is set to 2^{-8}* 0.b9 b10 ... b52 = m-1 (fractional part of m),
-// and 0 is used instead of T_high[0], T_low[0]
-// (polynomial evaluation only, for m=1+r, 0<=r<2^{-9})
-// If f=255, r is set to (m-2)/2 (T[255]=0, and only polynomial evaluation is used
-// for m=2(1-r'), 0<=r'<2^{-9})
-//
-// If 2^{-9}<=m<2-2^{-8} or (input not near 1), let C1r=(2^{16}+C1*r)-2^{16}
-// and let E=((RN(m*y)-1)-r)+(m*y-RN(m*y))
-// Else let C1r=C1*r (rounded to 64 significant bits) and let E=0
-//
-// Let D=C1*r-C1r
-//
-//
-// log2l(x) is approximated as
-// (l+T_high[f]+C1r) + (D+r*(c1+c2*r+c3*r^2...+c8*r^7)+(T_low[f]+C_1*E))
-//
-
-
-// Special values
-//==============================================================
-// log2l(0)=-inf, raises Divide by Zero
-// log2l(+inf)=inf
-// log2l(x)=NaN, raises Invalid if x<0
-//
-
-
-// Registers used
-//==============================================================
-// f6-f15, f32-f36
-// r2-r3, r23-r23
-// p6,p7,p8,p12
-//
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35 // This reg. can safely be used
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-
-
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
-
-data8 0xb8aa3b295c17f0bc, 0x00003fff // C_1
-data8 0x3fca61762a7aded9, 0xbfc71547652b82fe // C_7, C_8
-data8 0x3fd2776c50ef9bfe, 0xbfcec709dc3a03fd // C_5, C_6
-data8 0x3fdec709dc3a03fd, 0xbfd71547652b82fe // C_3, C_4
-//data8 0xd871319ff0342580, 0x0000bfbd // C_1l (low part of C1)
-data8 0x82f0025f2dc582ee, 0x0000bfbe // C_1l (low part of C1)
-data8 0xb8aa3b295c17f0bc, 0x0000bffe // C_2
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-
-
-LOCAL_OBJECT_START(T_table)
-
-data4 0x3b38d875, 0x3c0ae7f4, 0x3c67f738, 0x3ca2b253
-data4 0x3ccbb91d, 0x3cfac91e, 0x3d1504a5, 0x3d29c4a0
-data4 0x3d419264, 0x3d567aa6, 0x3d6e76ca, 0x3d81c3f7
-data4 0x3d8c5630, 0x3d9876e9, 0x3da31e0a, 0x3dadcf09
-data4 0x3db889f9, 0x3dc34eec, 0x3dce1df5, 0x3dd8f726
-data4 0x3de3da94, 0x3deec851, 0x3df82ea4, 0x3e0197dd
-data4 0x3e071dad, 0x3e0ca8ca, 0x3e116d6e, 0x3e170281
-data4 0x3e1bcfbc, 0x3e216ee9, 0x3e2644dc, 0x3e2b1ee1
-data4 0x3e30cd12, 0x3e35affd, 0x3e3a970f, 0x3e3f824f
-data4 0x3e4544c0, 0x3e4a3926, 0x3e4f31d1, 0x3e542ec7
-data4 0x3e593012, 0x3e5e35b7, 0x3e633fbf, 0x3e677625
-data4 0x3e6c884b, 0x3e719eea, 0x3e76ba0a, 0x3e7bd9b2
-data4 0x3e80111d, 0x3e82a523, 0x3e84ccec, 0x3e876533
-data4 0x3e89ffd1, 0x3e8c2d22, 0x3e8e5c18, 0x3e90fd0a
-data4 0x3e932fa9, 0x3e95d506, 0x3e980b5a, 0x3e9a4361
-data4 0x3e9c7d1f, 0x3e9f2b16, 0x3ea168a0, 0x3ea3a7ea
-data4 0x3ea5e8f5, 0x3ea82bc4, 0x3eaa705b, 0x3eacb6bb
-data4 0x3eaefee7, 0x3eb148e3, 0x3eb394b1, 0x3eb5e255
-data4 0x3eb831d0, 0x3eba8327, 0x3ebcd65c, 0x3ebeb3e0
-data4 0x3ec10a7a, 0x3ec362f9, 0x3ec5bd63, 0x3ec7a0b3
-data4 0x3ec9fe96, 0x3ecc5e6c, 0x3ece4619, 0x3ed0a978
-data4 0x3ed293fe, 0x3ed4faf1, 0x3ed6e859, 0x3ed952eb
-data4 0x3edb433c, 0x3eddb178, 0x3edfa4bc, 0x3ee19953
-data4 0x3ee40cee, 0x3ee60484, 0x3ee7fd73, 0x3ee9f7bb
-data4 0x3eec7280, 0x3eee6fda, 0x3ef06e94, 0x3ef26eb1
-data4 0x3ef47031, 0x3ef67317, 0x3ef8f8b2, 0x3efafec5
-data4 0x3efd0644, 0x3eff0f32, 0x3f008cc8, 0x3f0192b0
-data4 0x3f029952, 0x3f03a0b0, 0x3f0466b2, 0x3f056f5a
-data4 0x3f0678c0, 0x3f0782e6, 0x3f088dcc, 0x3f099973
-data4 0x3f0aa5dd, 0x3f0b6fac, 0x3f0c7d6d, 0x3f0d8bf4
-data4 0x3f0e575b, 0x3f0f673e, 0x3f1077e9, 0x3f1144ef
-data4 0x3f1256fc, 0x3f1369d6, 0x3f143880, 0x3f154cc1
-data4 0x3f161c7a, 0x3f173227, 0x3f1802f2, 0x3f191a0f
-data4 0x3f19ebee, 0x3f1b047e, 0x3f1bd775, 0x3f1cf17b
-data4 0x3f1dc58e, 0x3f1ee10f, 0x3f1fb63f, 0x3f208bea
-data4 0x3f21a98f, 0x3f22805c, 0x3f2357a7, 0x3f247778
-data4 0x3f254fe9, 0x3f2628d9, 0x3f270249, 0x3f2824fb
-data4 0x3f28ff97, 0x3f29dab4, 0x3f2ab654, 0x3f2b9277
-data4 0x3f2cb8c8, 0x3f2d961e, 0x3f2e73fa, 0x3f2f525b
-data4 0x3f303143, 0x3f3110b1, 0x3f31f0a7, 0x3f32d125
-data4 0x3f33b22b, 0x3f3493bc, 0x3f3575d6, 0x3f36587b
-data4 0x3f373bab, 0x3f381f68, 0x3f3903b1, 0x3f39e888
-data4 0x3f3acdec, 0x3f3bb3e0, 0x3f3c9a63, 0x3f3d8177
-data4 0x3f3e1bd4, 0x3f3f03d9, 0x3f3fec71, 0x3f40d59b
-data4 0x3f41bf59, 0x3f42a9ab, 0x3f434635, 0x3f443180
-data4 0x3f451d61, 0x3f4609d9, 0x3f46a7d3, 0x3f479549
-data4 0x3f488357, 0x3f492261, 0x3f4a1171, 0x3f4b011c
-data4 0x3f4ba139, 0x3f4c91e8, 0x3f4d8334, 0x3f4e246a
-data4 0x3f4f16be, 0x3f5009b1, 0x3f50ac02, 0x3f51a001
-data4 0x3f524305, 0x3f533812, 0x3f53dbca, 0x3f54d1e7
-data4 0x3f55c8a8, 0x3f566d85, 0x3f57655b, 0x3f580af0
-data4 0x3f58b0d0, 0x3f59aa2c, 0x3f5a50c7, 0x3f5b4b3c
-data4 0x3f5bf294, 0x3f5cee26, 0x3f5d963c, 0x3f5e92ed
-data4 0x3f5f3bc3, 0x3f5fe4e7, 0x3f60e32d, 0x3f618d13
-data4 0x3f623748, 0x3f63372a, 0x3f63e223, 0x3f648d6b
-data4 0x3f658eee, 0x3f663afe, 0x3f66e75e, 0x3f67ea86
-data4 0x3f6897b0, 0x3f69452c, 0x3f69f2f9, 0x3f6af847
-data4 0x3f6ba6e2, 0x3f6c55d0, 0x3f6d0510, 0x3f6e0c8d
-data4 0x3f6ebc9f, 0x3f6f6d04, 0x3f701dbe, 0x3f70cecd
-data4 0x3f718030, 0x3f728ae6, 0x3f733d20, 0x3f73efaf
-data4 0x3f74a296, 0x3f7555d3, 0x3f760967, 0x3f76bd53
-data4 0x3f777197, 0x3f7880a1, 0x3f7935c2, 0x3f79eb3c
-data4 0x3f7aa10f, 0x3f7b573b, 0x3f7c0dc2, 0x3f7cc4a3
-data4 0x3f7d7bdf, 0x3f7e3376, 0x3f7eeb68, 0x00000000
-LOCAL_OBJECT_END(T_table)
-
-
-
-LOCAL_OBJECT_START(T_low)
-
-
-data8 0x3dc0b97f689876ef, 0x3dfd5d906028ac01
-data8 0x3df8b9cbb8d7240b, 0x3de0c941a2f220cd
-data8 0x3e09c6aecba15936, 0x3dfa6d528241827c
-data8 0x3dd0bad25714903c, 0x3e2776b01dc036a2
-data8 0x3e2b914bc77f158b, 0x3e1c0fafd29dc74a
-data8 0x3e28dadc119cd3de, 0x3e3bca869da085be
-data8 0x3e19d1e700f2200a, 0x3e3e13530cc37504
-data8 0x3e3936464d9c41ee, 0x3e3c3fa21c9499d0
-data8 0x3e3259e079b6c6e8, 0x3e2a364069c4f7f3
-data8 0x3e1274c84f6c6364, 0x3e3796170159f454
-data8 0x3e26e1e389f4364e, 0x3e28cedda8c7f658
-data8 0x3e376c2028433268, 0x3e4aee6d650c82e1
-data8 0x3e33e65094fbeeb4, 0x3e4c7d125aa92c5d
-data8 0x3e1559a4b69691d8, 0x3e18efabeb7d7221
-data8 0x3e4c2b255abaa8de, 0x3e37436952a4538b
-data8 0x3e4e6807f4ba00b8, 0x3e33ff5964190e42
-data8 0x3e4f5d798cead43c, 0x3e4f3676443bf453
-data8 0x3e4660f8d5bc1bf5, 0x3e2d4f9f3ab04f36
-data8 0x3e357f7a64ccd537, 0x3e394caf7c9b05af
-data8 0x3e225c7d17ab29b0, 0x3e4eb202f6d55a12
-data8 0x3e32faa68b19bcd2, 0x3e45ee1c9b566a8b
-data8 0x3e4770a67de054ff, 0x3e42234fb9de6d6b
-data8 0x3e4ad139825c6e19, 0x3e47f3d334814a93
-data8 0x3e2af1ec402867b6, 0x3e2bfbda0c956e3d
-data8 0x3e4287b831e77ff2, 0x3e54bf0eb77f7b89
-data8 0x3e5b9259a1029607, 0x3e4a764b015e699d
-data8 0x3e4d0b68ea883ab5, 0x3e33e829ecdadf46
-data8 0x3e52f27efef3031b, 0x3e3073979e4af89e
-data8 0x3e3b980f2cd6c253, 0x3e2a5f0f5f7f66a9
-data8 0x3e37788738117b02, 0x3e58aa29a784d52f
-data8 0x3e4f5504c4ff2466, 0x3e002d40340fa647
-data8 0x3e5f53b64592f4c3, 0x3e543f222c526802
-data8 0x3e5680e547a872fa, 0x3e5e234bd1154450
-data8 0x3e3000edc18b6d21, 0x3e1c3c1f000942a8
-data8 0x3e51eeae0e442d6e, 0x3e4fb265376623f2
-data8 0x3e57b5941782d830, 0x3e3a4b83f24ae52c
-data8 0x3e5a5fb4f23978de, 0x3e51ed071563fb02
-data8 0x3e49e2071f51a7a8, 0x3e5e43ae5b924234
-data8 0x3dfa2be9aedf374a, 0x3e56dea3dbba67d5
-data8 0x3e3375fe732b3c3e, 0x3e5a0c6f91f2e77e
-data8 0x3e55e1bf1c969e41, 0x3e30a5a5166b8eee
-data8 0x3e53e6e9a539d46c, 0x3e542981b3d7b0e6
-data8 0x3e595fd8ff36ad64, 0x3e5edeb9e65cbbb4
-data8 0x3e46aeab4d3434c1, 0x3e4ea3ff0564b010
-data8 0x3e59b00be2e3c25a, 0x3e5b887cd7b0821f
-data8 0x3e5f666668547b4d, 0x3e4d0733a805273f
-data8 0x3e26a2ff21c4aec5, 0x3e4c336f7a3a78f3
-data8 0x3e11ad12b628e2d0, 0x3e56d43ff3f0ea64
-data8 0x3e238809433cccd2, 0x3e40d9734147d40f
-data8 0x3e54245fe3e24e06, 0x3e251441fce4d48c
-data8 0x3e517114efc5d1f9, 0x3e5e9a99154b0d82
-data8 0x3e442a71337970f8, 0x3e420c7c69211fdf
-data8 0x3e537e7d5d43c6a7, 0x3e4376c66ad9ad8b
-data8 0x3e49054d678a4f1c, 0x3e5d23cb3bc19f18
-data8 0x3e6ebcd449dcab2b, 0x3e67f5fc2849c88a
-data8 0x3e63f388395d3e84, 0x3e65c1103b0ad7e9
-data8 0x3e6d5d1dd031f353, 0x3e5a159dae75c4d0
-data8 0x3e4d5e22aa75f71d, 0x3e5e379ee62e1e35
-data8 0x3e4df082213cb2dc, 0x3e6bfa06c156f521
-data8 0x3e66e2d3c19b517b, 0x3e426b7098590071
-data8 0x3e541bd027e9854e, 0x3e5061dd924b0ac0
-data8 0x3e6dae01df373a03, 0x3e3baec80b207b0b
-data8 0x3e6b6a6fe06bebac, 0x3e61aebcfc3ab5d1
-data8 0x3e584ee3e7c79d83, 0x3e6b3c1b2840cb40
-data8 0x3e6c842085d6befd, 0x3e6ac04fd7b141e0
-data8 0x3e6c48250474141d, 0x3e2d889b86125f69
-data8 0x3e6e74740225dad0, 0x3e45940d31d50a7c
-data8 0x3e695476a6c39ddc, 0x3e6d9a6d857a060a
-data8 0x3e4a3e9bb4b69337, 0x3e484f3ce4707ed6
-data8 0x3e39dd125d25fc27, 0x3e563fb400de8732
-data8 0x3e5fdd6d0ee28b48, 0x3e669d15b869bb07
-data8 0x3e40687cfad7964d, 0x3e69317990d43957
-data8 0x3e633d57e24ae1bd, 0x3e618bf03710eabb
-data8 0x3e4b4df6fccd1160, 0x3e3fb26ddaa1ec45
-data8 0x3e3810a5e1817fd4, 0x3e6857373642fa5c
-data8 0x3e673db6193add31, 0x3e63200c8acbc9c3
-data8 0x3e3d2dee448ebb62, 0x3e6a19723a80db6a
-data8 0x3e5e7cdab8fd3e6a, 0x3e671855cd660672
-data8 0x3e473c3c78a85ecd, 0x3e5f5e23056a7cf2
-data8 0x3e52538519527367, 0x3e4b573bcf2580e9
-data8 0x3e6d6f856fe90c60, 0x3e2d932a8487642e
-data8 0x3e5236fc78b6174c, 0x3e50cb91d406db50
-data8 0x3e650e8bd562aa57, 0x3e424ee3d9a82f2e
-data8 0x3e59363960e1e3d9, 0x3e379604c1150a3e
-data8 0x3e6d914f6c2ac258, 0x3e62967a451a7b48
-data8 0x3e684b5f01139cb2, 0x3e448bbfbf6d292c
-data8 0x3e6227e7fb487e73, 0x3e6d39d50290f458
-data8 0x3e58368342b4b668, 0x3e65dc0c25bd1763
-data8 0x3e61b7dc362e22b5, 0x3e671691f094bb80
-data8 0x3e5011642d5123f2, 0x3e4c4eb7f11e41be
-data8 0x3e5dcee36ca242cf, 0x3e6791cefff688f1
-data8 0x3e60e23c8dda4ecd, 0x3e48e6a22fe78cfe
-data8 0x3e6d703f244adc86, 0x3e6a281a85a5049d
-data8 0x3e570f20e6403d9e, 0x3e2211518a12956f
-data8 0x3e6737d1e54d71df, 0x3e66b1881476f5e9
-data8 0x3e6e1bbeef085376, 0x3e47cad4944a32be
-data8 0x3e527f2c738e7ee9, 0x3e699883a4b9fb29
-data8 0x3e5c17d1108740d9, 0x3e5d4a9c79a43389
-data8 0x3e49fdc24462ba3b, 0x3e24dbb3a60cceb2
-data8 0x3e5c5bf618780748, 0x3e5c38005b0c778c
-data8 0x3e6be168dd6dd3fe, 0x3e633ab9370693b0
-data8 0x3dd290556b0ae339, 0x3e607c317927096a
-data8 0x3e59651353b3d90e, 0x3e4d8751e5e0ae0d
-data8 0x3e46c81023272a85, 0x3e6b23c988f391b2
-data8 0x3e608741d215209c, 0x3e60b8ba506d758f
-data8 0x3e62ddbe74803297, 0x3e5dbb8b5087587d
-data8 0x3e642aa529048131, 0x3e3dcbda6835dcf4
-data8 0x3e6db503ce854d2a, 0x3e6dd00b49bc6849
-data8 0x3e4db2f11243bc84, 0x3e3b9848efc2ea97
-data8 0x3e58f18e17c82609, 0x3e6ed8645e16c312
-data8 0x3e4065bdb60a5dd4, 0x3e490453c6e6c30a
-data8 0x3e62373994aa31ba, 0x3e56305f0e6b2a95
-data8 0x3e68c1601a6614ee, 0x3e614e204f19d93f
-data8 0x3e6e5037ca773299, 0x3e693f98892561a6
-data8 0x3e639de4f4bf700d, 0x3e416c071e93fd97
-data8 0x3e65466991b415ef, 0x3e6896a324afac9d
-data8 0x3e44f64802e2f11c, 0x3e64d7d747e2191a
-data8 0x3e6174b7581de84c, 0x3e44c7b946e1d43c
-data8 0x3e6a3bcbe30512ec, 0x3e5d3ed411c95ce4
-data8 0x3e3e5b5735cfaf8e, 0x3e6e538ab34efb51
-data8 0x3e514e204f19d93f, 0x3e5a88e6550c89a4
-data8 0x3e66b97a5d9dfd8b, 0x3e5f46b1e14ebaf3
-data8 0x3e357665f6893f5d, 0x3e6bbf633078d1d5
-data8 0x3e5e7337a212c417, 0x3e3570fde15fc8cc
-data8 0x3e21119402da92b4, 0x3e6566e830d1ff3b
-data8 0x3e558883e480e220, 0x3e589ca3a68da411
-data8 0x3e44eb66df73d648, 0x3e1a0a629b1b7e68
-data8 0x3e54cc207b8c1116, 0x0000000000000000
-LOCAL_OBJECT_END(T_low)
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(log2l)
-
-{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- // normalize x
- // y=frcpa(x)
- frcpa.s1 f41,p0=f1,f8
- // r26=bias-1
- mov r26=0xfffe
-}
-{.mfi
- // r23=bias+16
- mov r23=0xffff+16
- fma.s1 f7=f8,f1,f0
- // r2 = pointer to C_1...C_6 followed by T_table
- addl r2 = @ltoff(poly_coeffs), gp;;
-}
-{.mfi
- // get significand
- getf.sig r25=f8
- // f8 denormal ?
- fclass.m p8,p10=f8,0x9
- // r24=bias-8
- mov r24=0xffff-8;;
-}
-{.mfi
- setf.exp f36=r26
- nop.f 0
- // r27=bias
- mov r27=0xffff;;
-}
-
-{.mmf
- getf.exp r29=f8
- // load start address for C_1...C_7 followed by T_table
- ld8 r2=[r2]
- // will continue only for positive normal/unnormal numbers
- fclass.m.unc p0,p12 = f8, 0x19;;
-}
-
-
-.pred.rel "mutex",p8,p10
-{.mfi
- // denormal input, repeat get significand (after normalization)
- (p8) getf.sig r25=f7
- // x=1 ?
- fcmp.eq.s0 p6,p0=f8,f1
- // get T_index
- (p10) shr.u r28=r25,63-8
-}
-{.mfi
- // f32=2^16
- setf.exp f32=r23
- nop.f 0
- mov r26=0x804;;
-}
-
-{.mfi
- // denormal input, repeat get exponent (after normalization)
- (p8) getf.exp r29=f7
- // f33=0
- mov f33=f0
- // r26=0x80400...0 (threshold for using polynomial approximation)
- shl r26=r26,64-12;;
-}
-
-{.mfb
- add r3=16,r2
- // r=x*y-1
- fms.s1 f6=f41,f8,f1
- (p12) br.cond.spnt SPECIAL_log2l
-}
-{.mfi
- // load C_1
- ldfe f14=[r2],48
- // RN(x*y)
- fma.s1 f43=f41,f8,f0
- mov r23=0xff;;
-}
-
-{.mmi
- // load C_7, C_8
- ldfpd f10,f11=[r3],16
- // load C_3,C_4
- ldfpd f15,f42=[r2],16
- (p8) shr.u r28=r25,63-8;;
-}
-
-
-{.mfi
- // load C_5, C_6
- ldfpd f12,f13=[r3]
- // pseudo-zero ?
- fcmp.eq.s0 p7,p0=f7,f0
- // if first 9 bits after leading 1 are all zero, then p8=1
- cmp.ltu p8,p12=r25,r26
-}
-{.mfi
- // load C1l
- ldfe f34=[r2],16
- fmerge.se f7=f1,f7
- // get T_index
- and r28=r28,r23;;
-}
-{.mfi
- // r29=exponent-bias
- sub r29=r29,r27
- // if first 8 bits after leading bit are 0, use polynomial approx. only
- (p8) fms.s1 f6=f7,f1,f1
- // start address of T_low
- add r3=1024+16,r2
-}
-{.mfi
- // load C_2
- ldfe f35=[r2],16
- // x=1, return 0
- (p6) fma.s0 f8=f0,f0,f0
- // first 8 bits after leading 1 are all ones ?
- cmp.eq p10,p0=r23,r28;;
-}
-
-{.mfb
- // if first 8 bits after leading 1 are all ones, use polynomial approx. only
- // add 1 to the exponent additive term, and estimate log2(1-r)
- (p10) add r29=1,r29
- nop.f 0
- (p7) br.cond.spnt LOG2_PSEUDO_ZERO
-}
-{.mfi
- // get T_low adress
- shladd r3=r28,3,r3
- // if first 8 bits after leading 1 are all ones, use polynomial approx. only
- (p10) fms.s1 f6=f7,f36,f1
- // p10 --> p8=1, p12=0
- (p10) cmp.eq p8,p12=r0,r0;;
-}
-
-{.mfi
- // get T_high address
- shladd r2=r28,2,r2
- // L(x*y)=x*y-RN(x*y)
- fms.s1 f41=f41,f8,f43
- nop.i 0
-}
-{.mfi
- // p13=p12
- (p12) cmp.eq.unc p13,p0=r0,r0
- // RtH=RN(x*y)-1 (will eliminate rounding errors in r)
- fms.s1 f43=f43,f1,f1
- nop.i 0;;
-}
-
-.pred.rel "mutex",p8,p12
-{.mfb
- // load T_high (unless first 9 bits after leading 1 are 0)
- (p12) ldfs f7=[r2]
- // set T_high=0 (if first 9 bits after leading 1 are 0)
- (p8) fma.s1 f7=f0,f0,f0
- // x=1, return
- (p6) br.ret.spnt b0
-}
-.pred.rel "mutex",p8,p12
-{.mfi
- // p12: load T_low
- (p12) ldfd f36=[r3]
- // p8: set T_low=0
- (p8) fma.s1 f36=f0,f0,f0
- (p8) cmp.eq p8,p12=r29,r0;; //nop.i 0;;
-}
-
-.pred.rel "mutex",p8,p12
-{.mfi
- // f8=expon - bias
- setf.sig f8=r29
- // general case: 2^{16}+C1*r
- (p12) fma.s1 f33=f6,f14,f32
- nop.i 0
-}
-{.mfi
- // r26=1
- mov r26=1
- // p8 (mantissa is close to 1, or close to 2): 2^{-8}+C1*r
- (p8) fma.s1 f32=f6,f14,f33
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // P78=C_7+C_8*r
- fma.s1 f10=f11,f6,f10
- // r26=2^{63}
- shl r26=r26,63
-}
-{.mfi
- nop.m 0
- // P34=C_3+r*C_4
- fma.s1 f15=f42,f6,f15
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // r2=r*r
- fma.s1 f11=f6,f6,f0
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P56=C_5+C_6*r
- fma.s1 f13=f13,f6,f12
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // Rth-r
- (p13) fms.s1 f43=f43,f1,f6
- nop.i 0
-}
-{.mfi
- // significand(x)=1 ?
- cmp.eq p0,p6=r25,r26
- // P12=C1l+C_2*r
- fma.s1 f34=f35,f6,f34
- nop.i 0;;
-}
-
-.pred.rel "mutex",p8,p12
-{.mfi
- nop.m 0
- // p12: C1r=(2^{16}+C1*r)-2^{16}
- (p12) fms.s1 f32=f33,f1,f32
- nop.i 0
-}
-{.mfi
- nop.m 0
- // p8: C1r=C1*r (double extended)
- (p8) fms.s1 f32=f32,f1,f33
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // L(x*y)*C_1+T_low
- (p13) fma.s1 f36=f41,f14,f36
- nop.i 0
-}
-{.mfi
- nop.m 0
- // P58=P56+r2*P78
- fma.s1 f13=f11,f10,f13
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // P14=P12+r2*P34
- fma.s1 f15=f15,f11,f34
- nop.i 0
-}
-{.mfi
- nop.m 0
- // r4=r2*r2
- fma.s1 f11=f11,f11,f0
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // normalize additive term (l=exponent of x)
- fcvt.xf f8=f8
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // D=C1*r-C1r
- (p6) fms.s1 f12=f14,f6,f32
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // T_low'=(Rth-r)*C1+(L(x*y)*C1+T_low)
- (p13) fma.s1 f36=f43,f14,f36
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // P18=P14+r4*P58
- (p6) fma.s1 f13=f11,f13,f15
- nop.i 0;;
-}
-
-{.mfi
- nop.m 0
- // add T_high+l
- (p6) fma.s1 f8=f8,f1,f7
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // D+T_low
- (p6) fma.s1 f12=f12,f1,f36
- nop.i 0;;
-}
-
-
-{.mfi
- nop.m 0
- // (T_high+l)+C1r
- (p6) fma.s1 f8=f8,f1,f32
- nop.i 0
-}
-{.mfi
- nop.m 0
- // (D+T_low)+r*P18
- (p6) fma.s1 f13=f13,f6,f12
- nop.i 0;;
-}
-
-//{.mfb
-//nop.m 0
-//mov f8=f36
-//fma.s0 f8=f13,f6,f0
-//br.ret.sptk b0;;
-//}
-
-
-{.mfb
- nop.m 0
- // result=((T_high+l)+C1r)+((D+T_low)+r*P18)
- (p6) fma.s0 f8=f13,f1,f8
- // return
- br.ret.sptk b0;;
-}
-
-
-SPECIAL_log2l:
-{.mfi
- nop.m 0
- mov FR_X=f8
- nop.i 0
-}
-{.mfi
- nop.m 0
- // x=+Infinity ?
- fclass.m p7,p0=f8,0x21
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // x=+/-Zero ?
- fclass.m p8,p0=f7,0x7
- nop.i 0;;
-}
-{.mfi
- nop.m 0
- // x=-Infinity, -normal, -denormal ?
- fclass.m p6,p0=f8,0x3a
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- // log2l(+Infinity)=+Infinity
- nop.f 0
- (p7) br.ret.spnt b0;;
-}
-{.mfi
- (p8) mov GR_Parameter_TAG = 168
- // log2l(+/-0)=-infinity, raises Divide by Zero
- // set f8=-0
- (p8) fmerge.ns f8=f0,f8
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- (p8) frcpa.s0 f8,p0=f1,f8
- (p8) br.cond.sptk __libm_error_region;;
-}
-{.mfb
- (p6) mov GR_Parameter_TAG = 169
- // x<0: return NaN, raise Invalid
- (p6) frcpa.s0 f8,p0=f0,f0
- (p6) br.cond.sptk __libm_error_region;;
-}
-
-
-{.mfb
- nop.m 0
- // Remaining cases: NaNs
- fma.s0 f8=f8,f1,f0
- br.ret.sptk b0;;
-}
-
-LOG2_PSEUDO_ZERO:
-
-{.mfi
- nop.m 0
- mov FR_X=f8
- nop.i 0
-}
-{.mfi
- mov GR_Parameter_TAG = 168
- // log2l(+/-0)=-infinity, raises Divide by Zero
- // set f8=-0
- fmerge.ns f8=f0,f8
- nop.i 0;;
-}
-{.mfb
- nop.m 0
- frcpa.s0 f8,p0=f1,f8
- br.cond.sptk __libm_error_region;;
-}
-
-
-GLOBAL_IEEE754_END(log2l)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
diff --git a/sysdeps/ia64/fpu/e_logf.S b/sysdeps/ia64/fpu/e_logf.S
index 3d11a296cc..829d0abed0 100644
--- a/sysdeps/ia64/fpu/e_logf.S
+++ b/sysdeps/ia64/fpu/e_logf.S
@@ -1,10 +1,10 @@
.file "logf.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,1074 +20,860 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 03/01/00 Initial version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 3/01/00 Initial version
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 01/10/01 Improved speed, fixed flags for neg denormals
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 05/23/02 Modified algorithm. Now only one polynomial is used
-// for |x-1| >= 1/256 and for |x-1| < 1/256
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
+// 1/10/01 Improved speed, fixed flags for neg denormals
+//
//
// API
//==============================================================
// float logf(float)
// float log10f(float)
//
-//
// Overview of operation
//==============================================================
// Background
-// ----------
-//
-// This algorithm is based on fact that
-// log(a b) = log(a) + log(b).
-//
-// In our case we have x = 2^N f, where 1 <= f < 2.
-// So
-// log(x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
-//
-// To calculate log(f) we do following
-// log(f) = log(f * frcpa(f) / frcpa(f)) =
-// = log(f * frcpa(f)) + log(1/frcpa(f))
-//
-// According to definition of IA-64's frcpa instruction it's a
-// floating point that approximates 1/f using a lookup on the
-// top of 8 bits of the input number's significand with relative
-// error < 2^(-8.886). So we have following
-//
-// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
-//
-// and
//
-// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
-// = log(1 + r) + T
+// Consider x = 2^N 1.f1 f2 f3 f4...f63
+// Log(x) = log(frcpa(x) x/frcpa(x))
+// = log(1/frcpa(x)) + log(frcpa(x) x)
+// = -log(frcpa(x)) + log(frcpa(x) x)
//
-// The first value can be computed by polynomial P(r) approximating
-// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
-// value defined by top 8 bit of f.
+// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)
//
-// Finally we have that log(x) ~ (N*log(2) + T) + P(r)
+// -log(frcpa(x)) = -log(C)
+// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
//
-// Note that if input argument is close to 1.0 (in our case it means
-// that |1 - x| < 1/256) we can use just polynomial approximation
-// because x = 2^0 * f = f = 1 + r and
-// log(x) = log(1 + r) ~ P(r)
+// -log(frcpa(x)) = -log(C)
+// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
//
+// -log(frcpa(x)) = -log(C)
+// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
//
-// To compute log10(x) we just use identity:
+// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
+
+// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
+// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
+// Log(x) = +Nlog2 + T + log(frcpa(x) x)
//
-// log10(x) = log(x)/log(10)
+// Log(x) = +Nlog2 + T + log(C x)
//
-// so we have that
+// Cx = 1 + r
//
-// log10(x) = (N*log(2) + T + log(1+r)) / log(10) =
-// = N*(log(2)/log(10)) + (T/log(10)) + log(1 + r)/log(10)
+// Log(x) = +Nlog2 + T + log(1+r)
+// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
//
+// 1.f1 f2 ... f8 has 256 entries.
+// They are 1 + k/2^8, k = 0 ... 255
+// These 256 values are the table entries.
//
// Implementation
-// --------------
-// It can be seen that formulas for log and log10 differ from one another
-// only by coefficients and tabular values. Namely as log as log10 are
-// calculated as (N*L1 + T) + L2*Series(r) where in case of log
-// L1 = log(2)
-// T = log(1/frcpa(x))
-// L2 = 1.0
-// and in case of log10
-// L1 = log(2)/log(10)
-// T = log(1/frcpa(x))/log(10)
-// L2 = 1.0/log(10)
-//
-// So common code with two different entry points those set pointers
-// to the base address of coresponding data sets containing values
-// of L2,T and prepare integer representation of L1 needed for following
-// setf instruction can be used.
-//
-// Note that both log and log10 use common approximation polynomial
-// it means we need only one set of coefficients of approximation.
-//
-// 1. Computation of log(x) for |x-1| >= 1/256
-// InvX = frcpa(x)
-// r = InvX*x - 1
-// P(r) = r*((1 - A2*r) + r^2*(A3 - A4*r)) = r*P2(r),
-// A4,A3,A2 are created with setf inctruction.
-// We use Taylor series and so A4 = 1/4, A3 = 1/3,
-// A2 = 1/2 rounded to double.
-//
-// N = float(n) where n is true unbiased exponent of x
-//
-// T is tabular value of log(1/frcpa(x)) calculated in quad precision
-// and rounded to double. To T we get bits from 55 to 62 of register
-// format significand of x and calculate address
-// ad_T = table_base_addr + 8 * index
-//
-// L2 (1.0 or 1.0/log(10) depending on function) is calculated in quad
-// precision and rounded to double; it's loaded from memory
-//
-// L1 (log(2) or log10(2) depending on function) is calculated in quad
-// precision and rounded to double; it's created with setf.
-//
-// And final result = P2(r)*(r*L2) + (T + N*L1)
-//
-//
-// 2. Computation of log(x) for |x-1| < 1/256
-// r = x - 1
-// P(r) = r*((1 - A2*r) + r^2*(A3 - A4*r)) = r*P2(r),
-// A4,A3,A2 are the same as in case |x-1| >= 1/256
-//
-// And final result = P2(r)*(r*L2)
-//
-// 3. How we define is input argument such that |x-1| < 1/256 or not.
+//===============
+// CASE 1: |x-1| >= 2^-8
+// C = frcpa(x)
+// r = C * x - 1
//
-// To do it we analyze biased exponent and significand of input argment.
+// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4
//
-// a) First we test is biased exponent equal to 0xFFFE or 0xFFFF (i.e.
-// we test is 0.5 <= x < 2). This comparison can be performed using
-// unsigned version of cmp instruction in such a way
-// biased_exponent_of_x - 0xFFFE < 2
+// x = f * 2*n where f is 1.f_1f_2f_3....f_63
+// Nfloat = float(n) where n is the true unbiased exponent
+// pre-index = f_1f_2....f_8
+// index = pre_index * 16
+// get the dxt table entry at index + offset = T
//
+// result = (T + Nfloat * log(2)) + rseries
//
-// b) Second (in case when result of a) is true) we need to compare x
-// with 1-1/256 and 1+1/256 or in register format representation with
-// 0xFFFEFF00000000000000 and 0xFFFF8080000000000000 correspondingly.
-// As far as biased exponent of x here can be equal only to 0xFFFE or
-// 0xFFFF we need to test only last bit of it. Also signifigand always
-// has implicit bit set to 1 that can be exluded from comparison.
-// Thus it's quite enough to generate 64-bit integer bits of that are
-// ix[63] = biased_exponent_of_x[0] and ix[62-0] = significand_of_x[62-0]
-// and compare it with 0x7F00000000000000 and 0x80800000000000000 (those
-// obtained like ix from register representatinos of 255/256 and
-// 257/256). This comparison can be made like in a), using unsigned
-// version of cmp i.e. ix - 0x7F00000000000000 < 0x0180000000000000.
-// 0x0180000000000000 is difference between 0x80800000000000000 and
-// 0x7F00000000000000.
-//
-// Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
-// filtered and processed on special branches.
+// The T table is calculated as follows
+// Form x_k = 1 + k/2^8 where k goes from 0... 255
+// y_k = frcpa(x_k)
+// log(1/y_k) in quad and round to double
+
+// CASE 2: |x-1| < 2^-6
+// w = x - 1
//
+// Form wseries = w + Q1*w^2 + Q2*w^3 + Q3*w^4
//
-// Special values
+// result = wseries
+
+// Special values
//==============================================================
-//
-// logf(+0) = -inf
-// logf(-0) = -inf
-//
-// logf(+qnan) = +qnan
-// logf(-qnan) = -qnan
-// logf(+snan) = +qnan
-// logf(-snan) = -qnan
-//
-// logf(-n) = QNAN Indefinite
-// logf(-inf) = QNAN Indefinite
-//
-// logf(+inf) = +inf
-//
+
+
+// log(+0) = -inf
+// log(-0) = -inf
+
+// log(+qnan) = +qnan
+// log(-qnan) = -qnan
+// log(+snan) = +qnan
+// log(-snan) = -qnan
+
+// log(-n) = QNAN Indefinite
+// log(-inf) = QNAN Indefinite
+
+// log(+inf) = +inf
+
// Registers used
//==============================================================
-// Floating Point registers used:
+// Floating Point registers used:
// f8, input
-// f12 -> f14, f33 -> f39
-//
-// General registers used:
-// r8 -> r11
-// r14 -> r19
-//
+// f9 -> f15, f32 -> f47
+
+// General registers used:
+// r32 -> r51
+
// Predicate registers used:
-// p6 -> p12
+// p6 -> p15
+
+// p8 log base e
+// p6 log base e special
+// p9 used in the frcpa
+// p13 log base e large W
+// p14 log base e small w
+// p7 log base 10
+// p10 log base 10 large W
+// p11 log base 10 small w
+// p12 log base 10 special
+
+#include "libm_support.h"
// Assembly macros
//==============================================================
-GR_TAG = r8
-GR_ad_T = r8
-GR_N = r9
-GR_Exp = r10
-GR_Sig = r11
-
-GR_025 = r14
-GR_05 = r15
-GR_A3 = r16
-GR_Ind = r17
-GR_dx = r15
-GR_Ln2 = r19
-GR_de = r20
-GR_x = r21
-GR_xorg = r22
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_A2 = f12
-FR_A3 = f13
-FR_A4 = f14
-
-FR_RcpX = f33
-FR_r = f34
-FR_r2 = f35
-FR_tmp = f35
-FR_Ln2 = f36
-FR_T = f37
-FR_N = f38
-FR_NxLn2pT = f38
-FR_NormX = f39
-FR_InvLn10 = f40
-
-
-FR_Y = f1
-FR_X = f10
-FR_RESULT = f8
+log_int_Nfloat = f9
+log_Nfloat = f10
+
+log_P3 = f11
+log_P2 = f12
+log_P1 = f13
+log_inv_ln10 = f14
+log_log2 = f15
+
+log_w = f32
+log_T = f33
+log_rp_p32 = f34
+log_rp_p2 = f35
+log_rp_p10 = f36
+log_rsq = f37
+log_T_plus_Nlog2 = f38
+log_r = f39
+log_C = f40
+log_rp_q32 = f41
+log_rp_q2 = f42
+log_rp_q10 = f43
+log_wsq = f44
+log_Q = f45
+log_inv_ln10 = f46
+log_NORM_f8 = f47
+
+// ===================================
+
+log_GR_exp_17_ones = r33
+log_GR_exp_16_ones = r34
+log_GR_exp_f8 = r35
+log_GR_signexp_f8 = r36
+log_GR_true_exp_f8 = r37
+log_GR_significand_f8 = r38
+log_GR_index = r39
+log_AD_1 = r40
+log_GR_signexp_w = r41
+log_GR_fff7 = r42
+log_AD_2 = r43
+log_GR_exp_w = r44
+
+GR_SAVE_B0 = r45
+GR_SAVE_GP = r46
+GR_SAVE_PFS = r47
+
+GR_Parameter_X = r48
+GR_Parameter_Y = r49
+GR_Parameter_RESULT = r50
+log_GR_tag = r51
// Data tables
//==============================================================
-RODATA
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
-LOCAL_OBJECT_START(logf_data)
-data8 0x3FF0000000000000 // 1.0
-//
-// ln(1/frcpa(1+i/256)), i=0...255
-data8 0x3F60040155D5889E // 0
-data8 0x3F78121214586B54 // 1
-data8 0x3F841929F96832F0 // 2
-data8 0x3F8C317384C75F06 // 3
-data8 0x3F91A6B91AC73386 // 4
-data8 0x3F95BA9A5D9AC039 // 5
-data8 0x3F99D2A8074325F4 // 6
-data8 0x3F9D6B2725979802 // 7
-data8 0x3FA0C58FA19DFAAA // 8
-data8 0x3FA2954C78CBCE1B // 9
-data8 0x3FA4A94D2DA96C56 // 10
-data8 0x3FA67C94F2D4BB58 // 11
-data8 0x3FA85188B630F068 // 12
-data8 0x3FAA6B8ABE73AF4C // 13
-data8 0x3FAC441E06F72A9E // 14
-data8 0x3FAE1E6713606D07 // 15
-data8 0x3FAFFA6911AB9301 // 16
-data8 0x3FB0EC139C5DA601 // 17
-data8 0x3FB1DBD2643D190B // 18
-data8 0x3FB2CC7284FE5F1C // 19
-data8 0x3FB3BDF5A7D1EE64 // 20
-data8 0x3FB4B05D7AA012E0 // 21
-data8 0x3FB580DB7CEB5702 // 22
-data8 0x3FB674F089365A7A // 23
-data8 0x3FB769EF2C6B568D // 24
-data8 0x3FB85FD927506A48 // 25
-data8 0x3FB9335E5D594989 // 26
-data8 0x3FBA2B0220C8E5F5 // 27
-data8 0x3FBB0004AC1A86AC // 28
-data8 0x3FBBF968769FCA11 // 29
-data8 0x3FBCCFEDBFEE13A8 // 30
-data8 0x3FBDA727638446A2 // 31
-data8 0x3FBEA3257FE10F7A // 32
-data8 0x3FBF7BE9FEDBFDE6 // 33
-data8 0x3FC02AB352FF25F4 // 34
-data8 0x3FC097CE579D204D // 35
-data8 0x3FC1178E8227E47C // 36
-data8 0x3FC185747DBECF34 // 37
-data8 0x3FC1F3B925F25D41 // 38
-data8 0x3FC2625D1E6DDF57 // 39
-data8 0x3FC2D1610C86813A // 40
-data8 0x3FC340C59741142E // 41
-data8 0x3FC3B08B6757F2A9 // 42
-data8 0x3FC40DFB08378003 // 43
-data8 0x3FC47E74E8CA5F7C // 44
-data8 0x3FC4EF51F6466DE4 // 45
-data8 0x3FC56092E02BA516 // 46
-data8 0x3FC5D23857CD74D5 // 47
-data8 0x3FC6313A37335D76 // 48
-data8 0x3FC6A399DABBD383 // 49
-data8 0x3FC70337DD3CE41B // 50
-data8 0x3FC77654128F6127 // 51
-data8 0x3FC7E9D82A0B022D // 52
-data8 0x3FC84A6B759F512F // 53
-data8 0x3FC8AB47D5F5A310 // 54
-data8 0x3FC91FE49096581B // 55
-data8 0x3FC981634011AA75 // 56
-data8 0x3FC9F6C407089664 // 57
-data8 0x3FCA58E729348F43 // 58
-data8 0x3FCABB55C31693AD // 59
-data8 0x3FCB1E104919EFD0 // 60
-data8 0x3FCB94EE93E367CB // 61
-data8 0x3FCBF851C067555F // 62
-data8 0x3FCC5C0254BF23A6 // 63
-data8 0x3FCCC000C9DB3C52 // 64
-data8 0x3FCD244D99C85674 // 65
-data8 0x3FCD88E93FB2F450 // 66
-data8 0x3FCDEDD437EAEF01 // 67
-data8 0x3FCE530EFFE71012 // 68
-data8 0x3FCEB89A1648B971 // 69
-data8 0x3FCF1E75FADF9BDE // 70
-data8 0x3FCF84A32EAD7C35 // 71
-data8 0x3FCFEB2233EA07CD // 72
-data8 0x3FD028F9C7035C1C // 73
-data8 0x3FD05C8BE0D9635A // 74
-data8 0x3FD085EB8F8AE797 // 75
-data8 0x3FD0B9C8E32D1911 // 76
-data8 0x3FD0EDD060B78081 // 77
-data8 0x3FD122024CF0063F // 78
-data8 0x3FD14BE2927AECD4 // 79
-data8 0x3FD180618EF18ADF // 80
-data8 0x3FD1B50BBE2FC63B // 81
-data8 0x3FD1DF4CC7CF242D // 82
-data8 0x3FD214456D0EB8D4 // 83
-data8 0x3FD23EC5991EBA49 // 84
-data8 0x3FD2740D9F870AFB // 85
-data8 0x3FD29ECDABCDFA04 // 86
-data8 0x3FD2D46602ADCCEE // 87
-data8 0x3FD2FF66B04EA9D4 // 88
-data8 0x3FD335504B355A37 // 89
-data8 0x3FD360925EC44F5D // 90
-data8 0x3FD38BF1C3337E75 // 91
-data8 0x3FD3C25277333184 // 92
-data8 0x3FD3EDF463C1683E // 93
-data8 0x3FD419B423D5E8C7 // 94
-data8 0x3FD44591E0539F49 // 95
-data8 0x3FD47C9175B6F0AD // 96
-data8 0x3FD4A8B341552B09 // 97
-data8 0x3FD4D4F3908901A0 // 98
-data8 0x3FD501528DA1F968 // 99
-data8 0x3FD52DD06347D4F6 // 100
-data8 0x3FD55A6D3C7B8A8A // 101
-data8 0x3FD5925D2B112A59 // 102
-data8 0x3FD5BF406B543DB2 // 103
-data8 0x3FD5EC433D5C35AE // 104
-data8 0x3FD61965CDB02C1F // 105
-data8 0x3FD646A84935B2A2 // 106
-data8 0x3FD6740ADD31DE94 // 107
-data8 0x3FD6A18DB74A58C5 // 108
-data8 0x3FD6CF31058670EC // 109
-data8 0x3FD6F180E852F0BA // 110
-data8 0x3FD71F5D71B894F0 // 111
-data8 0x3FD74D5AEFD66D5C // 112
-data8 0x3FD77B79922BD37E // 113
-data8 0x3FD7A9B9889F19E2 // 114
-data8 0x3FD7D81B037EB6A6 // 115
-data8 0x3FD8069E33827231 // 116
-data8 0x3FD82996D3EF8BCB // 117
-data8 0x3FD85855776DCBFB // 118
-data8 0x3FD8873658327CCF // 119
-data8 0x3FD8AA75973AB8CF // 120
-data8 0x3FD8D992DC8824E5 // 121
-data8 0x3FD908D2EA7D9512 // 122
-data8 0x3FD92C59E79C0E56 // 123
-data8 0x3FD95BD750EE3ED3 // 124
-data8 0x3FD98B7811A3EE5B // 125
-data8 0x3FD9AF47F33D406C // 126
-data8 0x3FD9DF270C1914A8 // 127
-data8 0x3FDA0325ED14FDA4 // 128
-data8 0x3FDA33440224FA79 // 129
-data8 0x3FDA57725E80C383 // 130
-data8 0x3FDA87D0165DD199 // 131
-data8 0x3FDAAC2E6C03F896 // 132
-data8 0x3FDADCCC6FDF6A81 // 133
-data8 0x3FDB015B3EB1E790 // 134
-data8 0x3FDB323A3A635948 // 135
-data8 0x3FDB56FA04462909 // 136
-data8 0x3FDB881AA659BC93 // 137
-data8 0x3FDBAD0BEF3DB165 // 138
-data8 0x3FDBD21297781C2F // 139
-data8 0x3FDC039236F08819 // 140
-data8 0x3FDC28CB1E4D32FD // 141
-data8 0x3FDC4E19B84723C2 // 142
-data8 0x3FDC7FF9C74554C9 // 143
-data8 0x3FDCA57B64E9DB05 // 144
-data8 0x3FDCCB130A5CEBB0 // 145
-data8 0x3FDCF0C0D18F326F // 146
-data8 0x3FDD232075B5A201 // 147
-data8 0x3FDD490246DEFA6B // 148
-data8 0x3FDD6EFA918D25CD // 149
-data8 0x3FDD9509707AE52F // 150
-data8 0x3FDDBB2EFE92C554 // 151
-data8 0x3FDDEE2F3445E4AF // 152
-data8 0x3FDE148A1A2726CE // 153
-data8 0x3FDE3AFC0A49FF40 // 154
-data8 0x3FDE6185206D516E // 155
-data8 0x3FDE882578823D52 // 156
-data8 0x3FDEAEDD2EAC990C // 157
-data8 0x3FDED5AC5F436BE3 // 158
-data8 0x3FDEFC9326D16AB9 // 159
-data8 0x3FDF2391A2157600 // 160
-data8 0x3FDF4AA7EE03192D // 161
-data8 0x3FDF71D627C30BB0 // 162
-data8 0x3FDF991C6CB3B379 // 163
-data8 0x3FDFC07ADA69A910 // 164
-data8 0x3FDFE7F18EB03D3E // 165
-data8 0x3FE007C053C5002E // 166
-data8 0x3FE01B942198A5A1 // 167
-data8 0x3FE02F74400C64EB // 168
-data8 0x3FE04360BE7603AD // 169
-data8 0x3FE05759AC47FE34 // 170
-data8 0x3FE06B5F1911CF52 // 171
-data8 0x3FE078BF0533C568 // 172
-data8 0x3FE08CD9687E7B0E // 173
-data8 0x3FE0A10074CF9019 // 174
-data8 0x3FE0B5343A234477 // 175
-data8 0x3FE0C974C89431CE // 176
-data8 0x3FE0DDC2305B9886 // 177
-data8 0x3FE0EB524BAFC918 // 178
-data8 0x3FE0FFB54213A476 // 179
-data8 0x3FE114253DA97D9F // 180
-data8 0x3FE128A24F1D9AFF // 181
-data8 0x3FE1365252BF0865 // 182
-data8 0x3FE14AE558B4A92D // 183
-data8 0x3FE15F85A19C765B // 184
-data8 0x3FE16D4D38C119FA // 185
-data8 0x3FE18203C20DD133 // 186
-data8 0x3FE196C7BC4B1F3B // 187
-data8 0x3FE1A4A738B7A33C // 188
-data8 0x3FE1B981C0C9653D // 189
-data8 0x3FE1CE69E8BB106B // 190
-data8 0x3FE1DC619DE06944 // 191
-data8 0x3FE1F160A2AD0DA4 // 192
-data8 0x3FE2066D7740737E // 193
-data8 0x3FE2147DBA47A394 // 194
-data8 0x3FE229A1BC5EBAC3 // 195
-data8 0x3FE237C1841A502E // 196
-data8 0x3FE24CFCE6F80D9A // 197
-data8 0x3FE25B2C55CD5762 // 198
-data8 0x3FE2707F4D5F7C41 // 199
-data8 0x3FE285E0842CA384 // 200
-data8 0x3FE294294708B773 // 201
-data8 0x3FE2A9A2670AFF0C // 202
-data8 0x3FE2B7FB2C8D1CC1 // 203
-data8 0x3FE2C65A6395F5F5 // 204
-data8 0x3FE2DBF557B0DF43 // 205
-data8 0x3FE2EA64C3F97655 // 206
-data8 0x3FE3001823684D73 // 207
-data8 0x3FE30E97E9A8B5CD // 208
-data8 0x3FE32463EBDD34EA // 209
-data8 0x3FE332F4314AD796 // 210
-data8 0x3FE348D90E7464D0 // 211
-data8 0x3FE35779F8C43D6E // 212
-data8 0x3FE36621961A6A99 // 213
-data8 0x3FE37C299F3C366A // 214
-data8 0x3FE38AE2171976E7 // 215
-data8 0x3FE399A157A603E7 // 216
-data8 0x3FE3AFCCFE77B9D1 // 217
-data8 0x3FE3BE9D503533B5 // 218
-data8 0x3FE3CD7480B4A8A3 // 219
-data8 0x3FE3E3C43918F76C // 220
-data8 0x3FE3F2ACB27ED6C7 // 221
-data8 0x3FE4019C2125CA93 // 222
-data8 0x3FE4181061389722 // 223
-data8 0x3FE42711518DF545 // 224
-data8 0x3FE436194E12B6BF // 225
-data8 0x3FE445285D68EA69 // 226
-data8 0x3FE45BCC464C893A // 227
-data8 0x3FE46AED21F117FC // 228
-data8 0x3FE47A1527E8A2D3 // 229
-data8 0x3FE489445EFFFCCC // 230
-data8 0x3FE4A018BCB69835 // 231
-data8 0x3FE4AF5A0C9D65D7 // 232
-data8 0x3FE4BEA2A5BDBE87 // 233
-data8 0x3FE4CDF28F10AC46 // 234
-data8 0x3FE4DD49CF994058 // 235
-data8 0x3FE4ECA86E64A684 // 236
-data8 0x3FE503C43CD8EB68 // 237
-data8 0x3FE513356667FC57 // 238
-data8 0x3FE522AE0738A3D8 // 239
-data8 0x3FE5322E26867857 // 240
-data8 0x3FE541B5CB979809 // 241
-data8 0x3FE55144FDBCBD62 // 242
-data8 0x3FE560DBC45153C7 // 243
-data8 0x3FE5707A26BB8C66 // 244
-data8 0x3FE587F60ED5B900 // 245
-data8 0x3FE597A7977C8F31 // 246
-data8 0x3FE5A760D634BB8B // 247
-data8 0x3FE5B721D295F10F // 248
-data8 0x3FE5C6EA94431EF9 // 249
-data8 0x3FE5D6BB22EA86F6 // 250
-data8 0x3FE5E6938645D390 // 251
-data8 0x3FE5F673C61A2ED2 // 252
-data8 0x3FE6065BEA385926 // 253
-data8 0x3FE6164BFA7CC06B // 254
-data8 0x3FE62643FECF9743 // 255
-LOCAL_OBJECT_END(logf_data)
-
-LOCAL_OBJECT_START(log10f_data)
-data8 0x3FDBCB7B1526E50E // 1/ln(10)
-//
-// ln(1/frcpa(1+i/256))/ln(10), i=0...255
-data8 0x3F4BD27045BFD025 // 0
-data8 0x3F64E84E793A474A // 1
-data8 0x3F7175085AB85FF0 // 2
-data8 0x3F787CFF9D9147A5 // 3
-data8 0x3F7EA9D372B89FC8 // 4
-data8 0x3F82DF9D95DA961C // 5
-data8 0x3F866DF172D6372C // 6
-data8 0x3F898D79EF5EEDF0 // 7
-data8 0x3F8D22ADF3F9579D // 8
-data8 0x3F9024231D30C398 // 9
-data8 0x3F91F23A98897D4A // 10
-data8 0x3F93881A7B818F9E // 11
-data8 0x3F951F6E1E759E35 // 12
-data8 0x3F96F2BCE7ADC5B4 // 13
-data8 0x3F988D362CDF359E // 14
-data8 0x3F9A292BAF010982 // 15
-data8 0x3F9BC6A03117EB97 // 16
-data8 0x3F9D65967DE3AB09 // 17
-data8 0x3F9F061167FC31E8 // 18
-data8 0x3FA05409E4F7819C // 19
-data8 0x3FA125D0432EA20E // 20
-data8 0x3FA1F85D440D299B // 21
-data8 0x3FA2AD755749617D // 22
-data8 0x3FA381772A00E604 // 23
-data8 0x3FA45643E165A70B // 24
-data8 0x3FA52BDD034475B8 // 25
-data8 0x3FA5E3966B7E9295 // 26
-data8 0x3FA6BAAF47C5B245 // 27
-data8 0x3FA773B3E8C4F3C8 // 28
-data8 0x3FA84C51EBEE8D15 // 29
-data8 0x3FA906A6786FC1CB // 30
-data8 0x3FA9C197ABF00DD7 // 31
-data8 0x3FAA9C78712191F7 // 32
-data8 0x3FAB58C09C8D637C // 33
-data8 0x3FAC15A8BCDD7B7E // 34
-data8 0x3FACD331E2C2967C // 35
-data8 0x3FADB11ED766ABF4 // 36
-data8 0x3FAE70089346A9E6 // 37
-data8 0x3FAF2F96C6754AEE // 38
-data8 0x3FAFEFCA8D451FD6 // 39
-data8 0x3FB0585283764178 // 40
-data8 0x3FB0B913AAC7D3A7 // 41
-data8 0x3FB11A294F2569F6 // 42
-data8 0x3FB16B51A2696891 // 43
-data8 0x3FB1CD03ADACC8BE // 44
-data8 0x3FB22F0BDD7745F5 // 45
-data8 0x3FB2916ACA38D1E8 // 46
-data8 0x3FB2F4210DF7663D // 47
-data8 0x3FB346A6C3C49066 // 48
-data8 0x3FB3A9FEBC60540A // 49
-data8 0x3FB3FD0C10A3AA54 // 50
-data8 0x3FB46107D3540A82 // 51
-data8 0x3FB4C55DD16967FE // 52
-data8 0x3FB51940330C000B // 53
-data8 0x3FB56D620EE7115E // 54
-data8 0x3FB5D2ABCF26178E // 55
-data8 0x3FB6275AA5DEBF81 // 56
-data8 0x3FB68D4EAF26D7EE // 57
-data8 0x3FB6E28C5C54A28D // 58
-data8 0x3FB7380B9665B7C8 // 59
-data8 0x3FB78DCCC278E85B // 60
-data8 0x3FB7F50C2CF2557A // 61
-data8 0x3FB84B5FD5EAEFD8 // 62
-data8 0x3FB8A1F6BAB2B226 // 63
-data8 0x3FB8F8D144557BDF // 64
-data8 0x3FB94FEFDCD61D92 // 65
-data8 0x3FB9A752EF316149 // 66
-data8 0x3FB9FEFAE7611EE0 // 67
-data8 0x3FBA56E8325F5C87 // 68
-data8 0x3FBAAF1B3E297BB4 // 69
-data8 0x3FBB079479C372AD // 70
-data8 0x3FBB6054553B12F7 // 71
-data8 0x3FBBB95B41AB5CE6 // 72
-data8 0x3FBC12A9B13FE079 // 73
-data8 0x3FBC6C4017382BEA // 74
-data8 0x3FBCB41FBA42686D // 75
-data8 0x3FBD0E38CE73393F // 76
-data8 0x3FBD689B2193F133 // 77
-data8 0x3FBDC3472B1D2860 // 78
-data8 0x3FBE0C06300D528B // 79
-data8 0x3FBE6738190E394C // 80
-data8 0x3FBEC2B50D208D9B // 81
-data8 0x3FBF0C1C2B936828 // 82
-data8 0x3FBF68216C9CC727 // 83
-data8 0x3FBFB1F6381856F4 // 84
-data8 0x3FC00742AF4CE5F8 // 85
-data8 0x3FC02C64906512D2 // 86
-data8 0x3FC05AF1E63E03B4 // 87
-data8 0x3FC0804BEA723AA9 // 88
-data8 0x3FC0AF1FD6711527 // 89
-data8 0x3FC0D4B2A8805A00 // 90
-data8 0x3FC0FA5EF136A06C // 91
-data8 0x3FC1299A4FB3E306 // 92
-data8 0x3FC14F806253C3ED // 93
-data8 0x3FC175805D1587C1 // 94
-data8 0x3FC19B9A637CA295 // 95
-data8 0x3FC1CB5FC26EDE17 // 96
-data8 0x3FC1F1B4E65F2590 // 97
-data8 0x3FC218248B5DC3E5 // 98
-data8 0x3FC23EAED62ADC76 // 99
-data8 0x3FC26553EBD337BD // 100
-data8 0x3FC28C13F1B11900 // 101
-data8 0x3FC2BCAA14381386 // 102
-data8 0x3FC2E3A740B7800F // 103
-data8 0x3FC30ABFD8F333B6 // 104
-data8 0x3FC331F403985097 // 105
-data8 0x3FC35943E7A60690 // 106
-data8 0x3FC380AFAC6E7C07 // 107
-data8 0x3FC3A8377997B9E6 // 108
-data8 0x3FC3CFDB771C9ADB // 109
-data8 0x3FC3EDA90D39A5DF // 110
-data8 0x3FC4157EC09505CD // 111
-data8 0x3FC43D7113FB04C1 // 112
-data8 0x3FC4658030AD1CCF // 113
-data8 0x3FC48DAC404638F6 // 114
-data8 0x3FC4B5F56CBBB869 // 115
-data8 0x3FC4DE5BE05E7583 // 116
-data8 0x3FC4FCBC0776FD85 // 117
-data8 0x3FC525561E9256EE // 118
-data8 0x3FC54E0DF3198865 // 119
-data8 0x3FC56CAB7112BDE2 // 120
-data8 0x3FC59597BA735B15 // 121
-data8 0x3FC5BEA23A506FDA // 122
-data8 0x3FC5DD7E08DE382F // 123
-data8 0x3FC606BDD3F92355 // 124
-data8 0x3FC6301C518A501F // 125
-data8 0x3FC64F3770618916 // 126
-data8 0x3FC678CC14C1E2D8 // 127
-data8 0x3FC6981005ED2947 // 128
-data8 0x3FC6C1DB5F9BB336 // 129
-data8 0x3FC6E1488ECD2881 // 130
-data8 0x3FC70B4B2E7E41B9 // 131
-data8 0x3FC72AE209146BF9 // 132
-data8 0x3FC7551C81BD8DCF // 133
-data8 0x3FC774DD76CC43BE // 134
-data8 0x3FC79F505DB00E88 // 135
-data8 0x3FC7BF3BDE099F30 // 136
-data8 0x3FC7E9E7CAC437F9 // 137
-data8 0x3FC809FE4902D00D // 138
-data8 0x3FC82A2757995CBE // 139
-data8 0x3FC85525C625E098 // 140
-data8 0x3FC8757A79831887 // 141
-data8 0x3FC895E2058D8E03 // 142
-data8 0x3FC8C13437695532 // 143
-data8 0x3FC8E1C812EF32BE // 144
-data8 0x3FC9026F112197E8 // 145
-data8 0x3FC923294888880B // 146
-data8 0x3FC94EEA4B8334F3 // 147
-data8 0x3FC96FD1B639FC09 // 148
-data8 0x3FC990CCA66229AC // 149
-data8 0x3FC9B1DB33334843 // 150
-data8 0x3FC9D2FD740E6607 // 151
-data8 0x3FC9FF49EEDCB553 // 152
-data8 0x3FCA209A84FBCFF8 // 153
-data8 0x3FCA41FF1E43F02B // 154
-data8 0x3FCA6377D2CE9378 // 155
-data8 0x3FCA8504BAE0D9F6 // 156
-data8 0x3FCAA6A5EEEBEFE3 // 157
-data8 0x3FCAC85B878D7879 // 158
-data8 0x3FCAEA259D8FFA0B // 159
-data8 0x3FCB0C0449EB4B6B // 160
-data8 0x3FCB2DF7A5C50299 // 161
-data8 0x3FCB4FFFCA70E4D1 // 162
-data8 0x3FCB721CD17157E3 // 163
-data8 0x3FCB944ED477D4ED // 164
-data8 0x3FCBB695ED655C7D // 165
-data8 0x3FCBD8F2364AEC0F // 166
-data8 0x3FCBFB63C969F4FF // 167
-data8 0x3FCC1DEAC134D4E9 // 168
-data8 0x3FCC4087384F4F80 // 169
-data8 0x3FCC6339498F09E2 // 170
-data8 0x3FCC86010FFC076C // 171
-data8 0x3FCC9D3D065C5B42 // 172
-data8 0x3FCCC029375BA07A // 173
-data8 0x3FCCE32B66978BA4 // 174
-data8 0x3FCD0643AFD51404 // 175
-data8 0x3FCD29722F0DEA45 // 176
-data8 0x3FCD4CB70070FE44 // 177
-data8 0x3FCD6446AB3F8C96 // 178
-data8 0x3FCD87B0EF71DB45 // 179
-data8 0x3FCDAB31D1FE99A7 // 180
-data8 0x3FCDCEC96FDC888F // 181
-data8 0x3FCDE6908876357A // 182
-data8 0x3FCE0A4E4A25C200 // 183
-data8 0x3FCE2E2315755E33 // 184
-data8 0x3FCE461322D1648A // 185
-data8 0x3FCE6A0E95C7787B // 186
-data8 0x3FCE8E216243DD60 // 187
-data8 0x3FCEA63AF26E007C // 188
-data8 0x3FCECA74ED15E0B7 // 189
-data8 0x3FCEEEC692CCD25A // 190
-data8 0x3FCF070A36B8D9C1 // 191
-data8 0x3FCF2B8393E34A2D // 192
-data8 0x3FCF5014EF538A5B // 193
-data8 0x3FCF68833AF1B180 // 194
-data8 0x3FCF8D3CD9F3F04F // 195
-data8 0x3FCFA5C61ADD93E9 // 196
-data8 0x3FCFCAA8567EBA7A // 197
-data8 0x3FCFE34CC8743DD8 // 198
-data8 0x3FD0042BFD74F519 // 199
-data8 0x3FD016BDF6A18017 // 200
-data8 0x3FD023262F907322 // 201
-data8 0x3FD035CCED8D32A1 // 202
-data8 0x3FD042430E869FFC // 203
-data8 0x3FD04EBEC842B2E0 // 204
-data8 0x3FD06182E84FD4AC // 205
-data8 0x3FD06E0CB609D383 // 206
-data8 0x3FD080E60BEC8F12 // 207
-data8 0x3FD08D7E0D894735 // 208
-data8 0x3FD0A06CC96A2056 // 209
-data8 0x3FD0AD131F3B3C55 // 210
-data8 0x3FD0C01771E775FB // 211
-data8 0x3FD0CCCC3CAD6F4B // 212
-data8 0x3FD0D986D91A34A9 // 213
-data8 0x3FD0ECA9B8861A2D // 214
-data8 0x3FD0F972F87FF3D6 // 215
-data8 0x3FD106421CF0E5F7 // 216
-data8 0x3FD11983EBE28A9D // 217
-data8 0x3FD12661E35B785A // 218
-data8 0x3FD13345D2779D3B // 219
-data8 0x3FD146A6F597283A // 220
-data8 0x3FD15399E81EA83D // 221
-data8 0x3FD16092E5D3A9A6 // 222
-data8 0x3FD17413C3B7AB5E // 223
-data8 0x3FD1811BF629D6FB // 224
-data8 0x3FD18E2A47B46686 // 225
-data8 0x3FD19B3EBE1A4418 // 226
-data8 0x3FD1AEE9017CB450 // 227
-data8 0x3FD1BC0CED7134E2 // 228
-data8 0x3FD1C93712ABC7FF // 229
-data8 0x3FD1D66777147D3F // 230
-data8 0x3FD1EA3BD1286E1C // 231
-data8 0x3FD1F77BED932C4C // 232
-data8 0x3FD204C25E1B031F // 233
-data8 0x3FD2120F28CE69B1 // 234
-data8 0x3FD21F6253C48D01 // 235
-data8 0x3FD22CBBE51D60AA // 236
-data8 0x3FD240CE4C975444 // 237
-data8 0x3FD24E37F8ECDAE8 // 238
-data8 0x3FD25BA8215AF7FC // 239
-data8 0x3FD2691ECC29F042 // 240
-data8 0x3FD2769BFFAB2E00 // 241
-data8 0x3FD2841FC23952C9 // 242
-data8 0x3FD291AA1A384978 // 243
-data8 0x3FD29F3B0E15584B // 244
-data8 0x3FD2B3A0EE479DF7 // 245
-data8 0x3FD2C142842C09E6 // 246
-data8 0x3FD2CEEACCB7BD6D // 247
-data8 0x3FD2DC99CE82FF21 // 248
-data8 0x3FD2EA4F902FD7DA // 249
-data8 0x3FD2F80C186A25FD // 250
-data8 0x3FD305CF6DE7B0F7 // 251
-data8 0x3FD3139997683CE7 // 252
-data8 0x3FD3216A9BB59E7C // 253
-data8 0x3FD32F4281A3CEFF // 254
-data8 0x3FD33D2150110092 // 255
-LOCAL_OBJECT_END(log10f_data)
-
-
-// Code
-//==============================================================
+
+log_table_1:
+ASM_TYPE_DIRECTIVE(log_table_1,@object)
+data8 0xbfd0001008f39d59 // p3
+data8 0x3fd5556073e0c45a // p2
+ASM_SIZE_DIRECTIVE(log_table_1)
+
+log_table_2:
+ASM_TYPE_DIRECTIVE(log_table_2,@object)
+data8 0xbfdffffffffaea15 // p1
+data8 0x3fdbcb7b1526e50e // 1/ln10
+data8 0x3fe62e42fefa39ef // Log(2)
+data8 0x0 // pad
+
+data8 0x3F60040155D5889E //log(1/frcpa(1+ 0/256)
+data8 0x3F78121214586B54 //log(1/frcpa(1+ 1/256)
+data8 0x3F841929F96832F0 //log(1/frcpa(1+ 2/256)
+data8 0x3F8C317384C75F06 //log(1/frcpa(1+ 3/256)
+data8 0x3F91A6B91AC73386 //log(1/frcpa(1+ 4/256)
+data8 0x3F95BA9A5D9AC039 //log(1/frcpa(1+ 5/256)
+data8 0x3F99D2A8074325F4 //log(1/frcpa(1+ 6/256)
+data8 0x3F9D6B2725979802 //log(1/frcpa(1+ 7/256)
+data8 0x3FA0C58FA19DFAAA //log(1/frcpa(1+ 8/256)
+data8 0x3FA2954C78CBCE1B //log(1/frcpa(1+ 9/256)
+data8 0x3FA4A94D2DA96C56 //log(1/frcpa(1+ 10/256)
+data8 0x3FA67C94F2D4BB58 //log(1/frcpa(1+ 11/256)
+data8 0x3FA85188B630F068 //log(1/frcpa(1+ 12/256)
+data8 0x3FAA6B8ABE73AF4C //log(1/frcpa(1+ 13/256)
+data8 0x3FAC441E06F72A9E //log(1/frcpa(1+ 14/256)
+data8 0x3FAE1E6713606D07 //log(1/frcpa(1+ 15/256)
+data8 0x3FAFFA6911AB9301 //log(1/frcpa(1+ 16/256)
+data8 0x3FB0EC139C5DA601 //log(1/frcpa(1+ 17/256)
+data8 0x3FB1DBD2643D190B //log(1/frcpa(1+ 18/256)
+data8 0x3FB2CC7284FE5F1C //log(1/frcpa(1+ 19/256)
+data8 0x3FB3BDF5A7D1EE64 //log(1/frcpa(1+ 20/256)
+data8 0x3FB4B05D7AA012E0 //log(1/frcpa(1+ 21/256)
+data8 0x3FB580DB7CEB5702 //log(1/frcpa(1+ 22/256)
+data8 0x3FB674F089365A7A //log(1/frcpa(1+ 23/256)
+data8 0x3FB769EF2C6B568D //log(1/frcpa(1+ 24/256)
+data8 0x3FB85FD927506A48 //log(1/frcpa(1+ 25/256)
+data8 0x3FB9335E5D594989 //log(1/frcpa(1+ 26/256)
+data8 0x3FBA2B0220C8E5F5 //log(1/frcpa(1+ 27/256)
+data8 0x3FBB0004AC1A86AC //log(1/frcpa(1+ 28/256)
+data8 0x3FBBF968769FCA11 //log(1/frcpa(1+ 29/256)
+data8 0x3FBCCFEDBFEE13A8 //log(1/frcpa(1+ 30/256)
+data8 0x3FBDA727638446A2 //log(1/frcpa(1+ 31/256)
+data8 0x3FBEA3257FE10F7A //log(1/frcpa(1+ 32/256)
+data8 0x3FBF7BE9FEDBFDE6 //log(1/frcpa(1+ 33/256)
+data8 0x3FC02AB352FF25F4 //log(1/frcpa(1+ 34/256)
+data8 0x3FC097CE579D204D //log(1/frcpa(1+ 35/256)
+data8 0x3FC1178E8227E47C //log(1/frcpa(1+ 36/256)
+data8 0x3FC185747DBECF34 //log(1/frcpa(1+ 37/256)
+data8 0x3FC1F3B925F25D41 //log(1/frcpa(1+ 38/256)
+data8 0x3FC2625D1E6DDF57 //log(1/frcpa(1+ 39/256)
+data8 0x3FC2D1610C86813A //log(1/frcpa(1+ 40/256)
+data8 0x3FC340C59741142E //log(1/frcpa(1+ 41/256)
+data8 0x3FC3B08B6757F2A9 //log(1/frcpa(1+ 42/256)
+data8 0x3FC40DFB08378003 //log(1/frcpa(1+ 43/256)
+data8 0x3FC47E74E8CA5F7C //log(1/frcpa(1+ 44/256)
+data8 0x3FC4EF51F6466DE4 //log(1/frcpa(1+ 45/256)
+data8 0x3FC56092E02BA516 //log(1/frcpa(1+ 46/256)
+data8 0x3FC5D23857CD74D5 //log(1/frcpa(1+ 47/256)
+data8 0x3FC6313A37335D76 //log(1/frcpa(1+ 48/256)
+data8 0x3FC6A399DABBD383 //log(1/frcpa(1+ 49/256)
+data8 0x3FC70337DD3CE41B //log(1/frcpa(1+ 50/256)
+data8 0x3FC77654128F6127 //log(1/frcpa(1+ 51/256)
+data8 0x3FC7E9D82A0B022D //log(1/frcpa(1+ 52/256)
+data8 0x3FC84A6B759F512F //log(1/frcpa(1+ 53/256)
+data8 0x3FC8AB47D5F5A310 //log(1/frcpa(1+ 54/256)
+data8 0x3FC91FE49096581B //log(1/frcpa(1+ 55/256)
+data8 0x3FC981634011AA75 //log(1/frcpa(1+ 56/256)
+data8 0x3FC9F6C407089664 //log(1/frcpa(1+ 57/256)
+data8 0x3FCA58E729348F43 //log(1/frcpa(1+ 58/256)
+data8 0x3FCABB55C31693AD //log(1/frcpa(1+ 59/256)
+data8 0x3FCB1E104919EFD0 //log(1/frcpa(1+ 60/256)
+data8 0x3FCB94EE93E367CB //log(1/frcpa(1+ 61/256)
+data8 0x3FCBF851C067555F //log(1/frcpa(1+ 62/256)
+data8 0x3FCC5C0254BF23A6 //log(1/frcpa(1+ 63/256)
+data8 0x3FCCC000C9DB3C52 //log(1/frcpa(1+ 64/256)
+data8 0x3FCD244D99C85674 //log(1/frcpa(1+ 65/256)
+data8 0x3FCD88E93FB2F450 //log(1/frcpa(1+ 66/256)
+data8 0x3FCDEDD437EAEF01 //log(1/frcpa(1+ 67/256)
+data8 0x3FCE530EFFE71012 //log(1/frcpa(1+ 68/256)
+data8 0x3FCEB89A1648B971 //log(1/frcpa(1+ 69/256)
+data8 0x3FCF1E75FADF9BDE //log(1/frcpa(1+ 70/256)
+data8 0x3FCF84A32EAD7C35 //log(1/frcpa(1+ 71/256)
+data8 0x3FCFEB2233EA07CD //log(1/frcpa(1+ 72/256)
+data8 0x3FD028F9C7035C1C //log(1/frcpa(1+ 73/256)
+data8 0x3FD05C8BE0D9635A //log(1/frcpa(1+ 74/256)
+data8 0x3FD085EB8F8AE797 //log(1/frcpa(1+ 75/256)
+data8 0x3FD0B9C8E32D1911 //log(1/frcpa(1+ 76/256)
+data8 0x3FD0EDD060B78081 //log(1/frcpa(1+ 77/256)
+data8 0x3FD122024CF0063F //log(1/frcpa(1+ 78/256)
+data8 0x3FD14BE2927AECD4 //log(1/frcpa(1+ 79/256)
+data8 0x3FD180618EF18ADF //log(1/frcpa(1+ 80/256)
+data8 0x3FD1B50BBE2FC63B //log(1/frcpa(1+ 81/256)
+data8 0x3FD1DF4CC7CF242D //log(1/frcpa(1+ 82/256)
+data8 0x3FD214456D0EB8D4 //log(1/frcpa(1+ 83/256)
+data8 0x3FD23EC5991EBA49 //log(1/frcpa(1+ 84/256)
+data8 0x3FD2740D9F870AFB //log(1/frcpa(1+ 85/256)
+data8 0x3FD29ECDABCDFA04 //log(1/frcpa(1+ 86/256)
+data8 0x3FD2D46602ADCCEE //log(1/frcpa(1+ 87/256)
+data8 0x3FD2FF66B04EA9D4 //log(1/frcpa(1+ 88/256)
+data8 0x3FD335504B355A37 //log(1/frcpa(1+ 89/256)
+data8 0x3FD360925EC44F5D //log(1/frcpa(1+ 90/256)
+data8 0x3FD38BF1C3337E75 //log(1/frcpa(1+ 91/256)
+data8 0x3FD3C25277333184 //log(1/frcpa(1+ 92/256)
+data8 0x3FD3EDF463C1683E //log(1/frcpa(1+ 93/256)
+data8 0x3FD419B423D5E8C7 //log(1/frcpa(1+ 94/256)
+data8 0x3FD44591E0539F49 //log(1/frcpa(1+ 95/256)
+data8 0x3FD47C9175B6F0AD //log(1/frcpa(1+ 96/256)
+data8 0x3FD4A8B341552B09 //log(1/frcpa(1+ 97/256)
+data8 0x3FD4D4F3908901A0 //log(1/frcpa(1+ 98/256)
+data8 0x3FD501528DA1F968 //log(1/frcpa(1+ 99/256)
+data8 0x3FD52DD06347D4F6 //log(1/frcpa(1+ 100/256)
+data8 0x3FD55A6D3C7B8A8A //log(1/frcpa(1+ 101/256)
+data8 0x3FD5925D2B112A59 //log(1/frcpa(1+ 102/256)
+data8 0x3FD5BF406B543DB2 //log(1/frcpa(1+ 103/256)
+data8 0x3FD5EC433D5C35AE //log(1/frcpa(1+ 104/256)
+data8 0x3FD61965CDB02C1F //log(1/frcpa(1+ 105/256)
+data8 0x3FD646A84935B2A2 //log(1/frcpa(1+ 106/256)
+data8 0x3FD6740ADD31DE94 //log(1/frcpa(1+ 107/256)
+data8 0x3FD6A18DB74A58C5 //log(1/frcpa(1+ 108/256)
+data8 0x3FD6CF31058670EC //log(1/frcpa(1+ 109/256)
+data8 0x3FD6F180E852F0BA //log(1/frcpa(1+ 110/256)
+data8 0x3FD71F5D71B894F0 //log(1/frcpa(1+ 111/256)
+data8 0x3FD74D5AEFD66D5C //log(1/frcpa(1+ 112/256)
+data8 0x3FD77B79922BD37E //log(1/frcpa(1+ 113/256)
+data8 0x3FD7A9B9889F19E2 //log(1/frcpa(1+ 114/256)
+data8 0x3FD7D81B037EB6A6 //log(1/frcpa(1+ 115/256)
+data8 0x3FD8069E33827231 //log(1/frcpa(1+ 116/256)
+data8 0x3FD82996D3EF8BCB //log(1/frcpa(1+ 117/256)
+data8 0x3FD85855776DCBFB //log(1/frcpa(1+ 118/256)
+data8 0x3FD8873658327CCF //log(1/frcpa(1+ 119/256)
+data8 0x3FD8AA75973AB8CF //log(1/frcpa(1+ 120/256)
+data8 0x3FD8D992DC8824E5 //log(1/frcpa(1+ 121/256)
+data8 0x3FD908D2EA7D9512 //log(1/frcpa(1+ 122/256)
+data8 0x3FD92C59E79C0E56 //log(1/frcpa(1+ 123/256)
+data8 0x3FD95BD750EE3ED3 //log(1/frcpa(1+ 124/256)
+data8 0x3FD98B7811A3EE5B //log(1/frcpa(1+ 125/256)
+data8 0x3FD9AF47F33D406C //log(1/frcpa(1+ 126/256)
+data8 0x3FD9DF270C1914A8 //log(1/frcpa(1+ 127/256)
+data8 0x3FDA0325ED14FDA4 //log(1/frcpa(1+ 128/256)
+data8 0x3FDA33440224FA79 //log(1/frcpa(1+ 129/256)
+data8 0x3FDA57725E80C383 //log(1/frcpa(1+ 130/256)
+data8 0x3FDA87D0165DD199 //log(1/frcpa(1+ 131/256)
+data8 0x3FDAAC2E6C03F896 //log(1/frcpa(1+ 132/256)
+data8 0x3FDADCCC6FDF6A81 //log(1/frcpa(1+ 133/256)
+data8 0x3FDB015B3EB1E790 //log(1/frcpa(1+ 134/256)
+data8 0x3FDB323A3A635948 //log(1/frcpa(1+ 135/256)
+data8 0x3FDB56FA04462909 //log(1/frcpa(1+ 136/256)
+data8 0x3FDB881AA659BC93 //log(1/frcpa(1+ 137/256)
+data8 0x3FDBAD0BEF3DB165 //log(1/frcpa(1+ 138/256)
+data8 0x3FDBD21297781C2F //log(1/frcpa(1+ 139/256)
+data8 0x3FDC039236F08819 //log(1/frcpa(1+ 140/256)
+data8 0x3FDC28CB1E4D32FD //log(1/frcpa(1+ 141/256)
+data8 0x3FDC4E19B84723C2 //log(1/frcpa(1+ 142/256)
+data8 0x3FDC7FF9C74554C9 //log(1/frcpa(1+ 143/256)
+data8 0x3FDCA57B64E9DB05 //log(1/frcpa(1+ 144/256)
+data8 0x3FDCCB130A5CEBB0 //log(1/frcpa(1+ 145/256)
+data8 0x3FDCF0C0D18F326F //log(1/frcpa(1+ 146/256)
+data8 0x3FDD232075B5A201 //log(1/frcpa(1+ 147/256)
+data8 0x3FDD490246DEFA6B //log(1/frcpa(1+ 148/256)
+data8 0x3FDD6EFA918D25CD //log(1/frcpa(1+ 149/256)
+data8 0x3FDD9509707AE52F //log(1/frcpa(1+ 150/256)
+data8 0x3FDDBB2EFE92C554 //log(1/frcpa(1+ 151/256)
+data8 0x3FDDEE2F3445E4AF //log(1/frcpa(1+ 152/256)
+data8 0x3FDE148A1A2726CE //log(1/frcpa(1+ 153/256)
+data8 0x3FDE3AFC0A49FF40 //log(1/frcpa(1+ 154/256)
+data8 0x3FDE6185206D516E //log(1/frcpa(1+ 155/256)
+data8 0x3FDE882578823D52 //log(1/frcpa(1+ 156/256)
+data8 0x3FDEAEDD2EAC990C //log(1/frcpa(1+ 157/256)
+data8 0x3FDED5AC5F436BE3 //log(1/frcpa(1+ 158/256)
+data8 0x3FDEFC9326D16AB9 //log(1/frcpa(1+ 159/256)
+data8 0x3FDF2391A2157600 //log(1/frcpa(1+ 160/256)
+data8 0x3FDF4AA7EE03192D //log(1/frcpa(1+ 161/256)
+data8 0x3FDF71D627C30BB0 //log(1/frcpa(1+ 162/256)
+data8 0x3FDF991C6CB3B379 //log(1/frcpa(1+ 163/256)
+data8 0x3FDFC07ADA69A910 //log(1/frcpa(1+ 164/256)
+data8 0x3FDFE7F18EB03D3E //log(1/frcpa(1+ 165/256)
+data8 0x3FE007C053C5002E //log(1/frcpa(1+ 166/256)
+data8 0x3FE01B942198A5A1 //log(1/frcpa(1+ 167/256)
+data8 0x3FE02F74400C64EB //log(1/frcpa(1+ 168/256)
+data8 0x3FE04360BE7603AD //log(1/frcpa(1+ 169/256)
+data8 0x3FE05759AC47FE34 //log(1/frcpa(1+ 170/256)
+data8 0x3FE06B5F1911CF52 //log(1/frcpa(1+ 171/256)
+data8 0x3FE078BF0533C568 //log(1/frcpa(1+ 172/256)
+data8 0x3FE08CD9687E7B0E //log(1/frcpa(1+ 173/256)
+data8 0x3FE0A10074CF9019 //log(1/frcpa(1+ 174/256)
+data8 0x3FE0B5343A234477 //log(1/frcpa(1+ 175/256)
+data8 0x3FE0C974C89431CE //log(1/frcpa(1+ 176/256)
+data8 0x3FE0DDC2305B9886 //log(1/frcpa(1+ 177/256)
+data8 0x3FE0EB524BAFC918 //log(1/frcpa(1+ 178/256)
+data8 0x3FE0FFB54213A476 //log(1/frcpa(1+ 179/256)
+data8 0x3FE114253DA97D9F //log(1/frcpa(1+ 180/256)
+data8 0x3FE128A24F1D9AFF //log(1/frcpa(1+ 181/256)
+data8 0x3FE1365252BF0865 //log(1/frcpa(1+ 182/256)
+data8 0x3FE14AE558B4A92D //log(1/frcpa(1+ 183/256)
+data8 0x3FE15F85A19C765B //log(1/frcpa(1+ 184/256)
+data8 0x3FE16D4D38C119FA //log(1/frcpa(1+ 185/256)
+data8 0x3FE18203C20DD133 //log(1/frcpa(1+ 186/256)
+data8 0x3FE196C7BC4B1F3B //log(1/frcpa(1+ 187/256)
+data8 0x3FE1A4A738B7A33C //log(1/frcpa(1+ 188/256)
+data8 0x3FE1B981C0C9653D //log(1/frcpa(1+ 189/256)
+data8 0x3FE1CE69E8BB106B //log(1/frcpa(1+ 190/256)
+data8 0x3FE1DC619DE06944 //log(1/frcpa(1+ 191/256)
+data8 0x3FE1F160A2AD0DA4 //log(1/frcpa(1+ 192/256)
+data8 0x3FE2066D7740737E //log(1/frcpa(1+ 193/256)
+data8 0x3FE2147DBA47A394 //log(1/frcpa(1+ 194/256)
+data8 0x3FE229A1BC5EBAC3 //log(1/frcpa(1+ 195/256)
+data8 0x3FE237C1841A502E //log(1/frcpa(1+ 196/256)
+data8 0x3FE24CFCE6F80D9A //log(1/frcpa(1+ 197/256)
+data8 0x3FE25B2C55CD5762 //log(1/frcpa(1+ 198/256)
+data8 0x3FE2707F4D5F7C41 //log(1/frcpa(1+ 199/256)
+data8 0x3FE285E0842CA384 //log(1/frcpa(1+ 200/256)
+data8 0x3FE294294708B773 //log(1/frcpa(1+ 201/256)
+data8 0x3FE2A9A2670AFF0C //log(1/frcpa(1+ 202/256)
+data8 0x3FE2B7FB2C8D1CC1 //log(1/frcpa(1+ 203/256)
+data8 0x3FE2C65A6395F5F5 //log(1/frcpa(1+ 204/256)
+data8 0x3FE2DBF557B0DF43 //log(1/frcpa(1+ 205/256)
+data8 0x3FE2EA64C3F97655 //log(1/frcpa(1+ 206/256)
+data8 0x3FE3001823684D73 //log(1/frcpa(1+ 207/256)
+data8 0x3FE30E97E9A8B5CD //log(1/frcpa(1+ 208/256)
+data8 0x3FE32463EBDD34EA //log(1/frcpa(1+ 209/256)
+data8 0x3FE332F4314AD796 //log(1/frcpa(1+ 210/256)
+data8 0x3FE348D90E7464D0 //log(1/frcpa(1+ 211/256)
+data8 0x3FE35779F8C43D6E //log(1/frcpa(1+ 212/256)
+data8 0x3FE36621961A6A99 //log(1/frcpa(1+ 213/256)
+data8 0x3FE37C299F3C366A //log(1/frcpa(1+ 214/256)
+data8 0x3FE38AE2171976E7 //log(1/frcpa(1+ 215/256)
+data8 0x3FE399A157A603E7 //log(1/frcpa(1+ 216/256)
+data8 0x3FE3AFCCFE77B9D1 //log(1/frcpa(1+ 217/256)
+data8 0x3FE3BE9D503533B5 //log(1/frcpa(1+ 218/256)
+data8 0x3FE3CD7480B4A8A3 //log(1/frcpa(1+ 219/256)
+data8 0x3FE3E3C43918F76C //log(1/frcpa(1+ 220/256)
+data8 0x3FE3F2ACB27ED6C7 //log(1/frcpa(1+ 221/256)
+data8 0x3FE4019C2125CA93 //log(1/frcpa(1+ 222/256)
+data8 0x3FE4181061389722 //log(1/frcpa(1+ 223/256)
+data8 0x3FE42711518DF545 //log(1/frcpa(1+ 224/256)
+data8 0x3FE436194E12B6BF //log(1/frcpa(1+ 225/256)
+data8 0x3FE445285D68EA69 //log(1/frcpa(1+ 226/256)
+data8 0x3FE45BCC464C893A //log(1/frcpa(1+ 227/256)
+data8 0x3FE46AED21F117FC //log(1/frcpa(1+ 228/256)
+data8 0x3FE47A1527E8A2D3 //log(1/frcpa(1+ 229/256)
+data8 0x3FE489445EFFFCCC //log(1/frcpa(1+ 230/256)
+data8 0x3FE4A018BCB69835 //log(1/frcpa(1+ 231/256)
+data8 0x3FE4AF5A0C9D65D7 //log(1/frcpa(1+ 232/256)
+data8 0x3FE4BEA2A5BDBE87 //log(1/frcpa(1+ 233/256)
+data8 0x3FE4CDF28F10AC46 //log(1/frcpa(1+ 234/256)
+data8 0x3FE4DD49CF994058 //log(1/frcpa(1+ 235/256)
+data8 0x3FE4ECA86E64A684 //log(1/frcpa(1+ 236/256)
+data8 0x3FE503C43CD8EB68 //log(1/frcpa(1+ 237/256)
+data8 0x3FE513356667FC57 //log(1/frcpa(1+ 238/256)
+data8 0x3FE522AE0738A3D8 //log(1/frcpa(1+ 239/256)
+data8 0x3FE5322E26867857 //log(1/frcpa(1+ 240/256)
+data8 0x3FE541B5CB979809 //log(1/frcpa(1+ 241/256)
+data8 0x3FE55144FDBCBD62 //log(1/frcpa(1+ 242/256)
+data8 0x3FE560DBC45153C7 //log(1/frcpa(1+ 243/256)
+data8 0x3FE5707A26BB8C66 //log(1/frcpa(1+ 244/256)
+data8 0x3FE587F60ED5B900 //log(1/frcpa(1+ 245/256)
+data8 0x3FE597A7977C8F31 //log(1/frcpa(1+ 246/256)
+data8 0x3FE5A760D634BB8B //log(1/frcpa(1+ 247/256)
+data8 0x3FE5B721D295F10F //log(1/frcpa(1+ 248/256)
+data8 0x3FE5C6EA94431EF9 //log(1/frcpa(1+ 249/256)
+data8 0x3FE5D6BB22EA86F6 //log(1/frcpa(1+ 250/256)
+data8 0x3FE5E6938645D390 //log(1/frcpa(1+ 251/256)
+data8 0x3FE5F673C61A2ED2 //log(1/frcpa(1+ 252/256)
+data8 0x3FE6065BEA385926 //log(1/frcpa(1+ 253/256)
+data8 0x3FE6164BFA7CC06B //log(1/frcpa(1+ 254/256)
+data8 0x3FE62643FECF9743 //log(1/frcpa(1+ 255/256)
+ASM_SIZE_DIRECTIVE(log_table_2)
+
+
+.align 32
+.global logf#
+.global log10f#
+
+// log10 has p7 true, p8 false
+// log has p8 true, p7 false
+
.section .text
+.proc log10f#
+.align 32
-// logf has p13 true, p14 false
-// log10f has p14 true, p13 false
+log10f:
+#ifdef _LIBC
+.global __ieee754_log10f
+.type __ieee754_log10f,@function
+__ieee754_log10f:
+#endif
+{ .mfi
+ alloc r32=ar.pfs,1,15,4,0
+ frcpa.s1 log_C,p9 = f1,f8
+ cmp.eq.unc p7,p8 = r0, r0
+}
+{ .mfb
+ addl log_AD_1 = @ltoff(log_table_1), gp
+ fnorm.s1 log_NORM_f8 = f8
+ br.sptk L(LOG_LOG10_X)
+}
+;;
+
+.endp log10f
+ASM_SIZE_DIRECTIVE(log10f)
+ASM_SIZE_DIRECTIVE(__ieee754_log10f)
+
+
+
+.section .text
+.proc logf#
+.align 32
+logf:
+#ifdef _LIBC
+.global __ieee754_logf
+.type __ieee754_logf,@function
+__ieee754_logf:
+#endif
-GLOBAL_IEEE754_ENTRY(log10f)
{ .mfi
- getf.exp GR_Exp = f8 // if x is unorm then must recompute
- frcpa.s1 FR_RcpX,p0 = f1,f8
- mov GR_05 = 0xFFFE // biased exponent of A2=0.5
+ alloc r32=ar.pfs,1,15,4,0
+ frcpa.s1 log_C,p9 = f1,f8
+ cmp.eq.unc p8,p7 = r0, r0
}
-{ .mlx
- addl GR_ad_T = @ltoff(log10f_data),gp
- movl GR_A3 = 0x3FD5555555555555 // double precision memory
- // representation of A3
-};;
{ .mfi
- getf.sig GR_Sig = f8 // if x is unorm then must recompute
- fclass.m p8,p0 = f8,9 // is x positive unorm?
- sub GR_025 = GR_05,r0,1 // biased exponent of A4=0.25
+ addl log_AD_1 = @ltoff(log_table_1), gp
+ fnorm.s1 log_NORM_f8 = f8
+ nop.i 999
}
-{ .mlx
- ld8 GR_ad_T = [GR_ad_T]
- movl GR_Ln2 = 0x3FD34413509F79FF // double precision memory
- // representation of
- // log(2)/ln(10)
-};;
+;;
+
+L(LOG_LOG10_X):
+
{ .mfi
- setf.d FR_A3 = GR_A3 // create A3
- fcmp.eq.s1 p14,p13 = f0,f0 // set p14 to 1 for log10f
- dep.z GR_xorg = GR_05,55,8 // 0x7F00000000000000 integer number
- // bits of that are
- // GR_xorg[63] = last bit of biased
- // exponent of 255/256
- // GR_xorg[62-0] = bits from 62 to 0
- // of significand of 255/256
+ getf.exp log_GR_signexp_f8 = f8 // If x unorm then must recompute
+ fclass.m.unc p15,p0 = f8, 0x0b // Test for x=unorm
+ mov log_GR_fff7 = 0xfff7
}
-{ .mib
- setf.exp FR_A2 = GR_05 // create A2
- sub GR_de = GR_Exp,GR_05 // biased_exponent_of_x - 0xFFFE
- // needed to comparion with 0.5 and 2.0
- br.cond.sptk logf_log10f_common
-};;
-GLOBAL_IEEE754_END(log10f)
+{ .mfi
+ ld8 log_AD_1 = [log_AD_1]
+ fms.s1 log_w = f8,f1,f1
+ mov log_GR_exp_17_ones = 0x1ffff
+}
+;;
+
+{ .mmi
+ getf.sig log_GR_significand_f8 = f8 // If x unorm then must recompute
+ mov log_GR_exp_16_ones = 0xffff
+ nop.i 999
+}
+;;
+
+{ .mmb
+ adds log_AD_2 = 0x10, log_AD_1
+ and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
+(p15) br.cond.spnt L(LOG_DENORM)
+}
+;;
+
+L(LOG_COMMON):
+{.mfi
+ ldfpd log_P3,log_P2 = [log_AD_1],16
+ fclass.m.unc p6,p0 = f8, 0xc3 // Test for x=nan
+ shl log_GR_index = log_GR_significand_f8,1
+}
+{.mfi
+ sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
+ nop.f 999
+ nop.i 999
+}
+;;
-GLOBAL_IEEE754_ENTRY(logf)
{ .mfi
- getf.exp GR_Exp = f8 // if x is unorm then must recompute
- frcpa.s1 FR_RcpX,p0 = f1,f8
- mov GR_05 = 0xFFFE // biased exponent of A2=-0.5
+ ldfpd log_P1,log_inv_ln10 = [log_AD_2],16
+ fclass.m.unc p11,p0 = f8, 0x21 // Test for x=+inf
+ shr.u log_GR_index = log_GR_index,56
}
-{ .mlx
- addl GR_ad_T = @ltoff(logf_data),gp
- movl GR_A3 = 0x3FD5555555555555 // double precision memory
- // representation of A3
-};;
{ .mfi
- getf.sig GR_Sig = f8 // if x is unorm then must recompute
- fclass.m p8,p0 = f8,9 // is x positive unorm?
- dep.z GR_xorg = GR_05,55,8 // 0x7F00000000000000 integer number
- // bits of that are
- // GR_xorg[63] = last bit of biased
- // exponent of 255/256
- // GR_xorg[62-0] = bits from 62 to 0
- // of significand of 255/256
+ setf.sig log_int_Nfloat = log_GR_true_exp_f8
+ nop.f 999
+ nop.i 999
}
+;;
+
+
{ .mfi
- ld8 GR_ad_T = [GR_ad_T]
- nop.f 0
- sub GR_025 = GR_05,r0,1 // biased exponent of A4=0.25
-};;
+ ldfd log_log2 = [log_AD_2],16
+ fma.s1 log_wsq = log_w, log_w, f0
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p6) fma.s.s0 f8 = f8,f1,f0 // quietize nan result if x=nan
+(p6) br.ret.spnt b0 // Exit for x=nan
+}
+;;
+
+
{ .mfi
- setf.d FR_A3 = GR_A3 // create A3
- fcmp.eq.s1 p13,p14 = f0,f0 // p13 - true for logf
- sub GR_de = GR_Exp,GR_05 // biased_exponent_of_x - 0xFFFE
- // needed to comparion with 0.5 and 2.0
+ shladd log_AD_2 = log_GR_index,3,log_AD_2
+ fcmp.eq.s1 p10,p0 = log_NORM_f8, f1 // Test for x=+1.0
+ nop.i 999
}
-{ .mlx
- setf.exp FR_A2 = GR_05 // create A2
- movl GR_Ln2 = 0x3FE62E42FEFA39EF // double precision memory
- // representation of log(2)
-};;
-logf_log10f_common:
+{ .mfb
+ nop.m 999
+ fms.s1 log_r = log_C,f8,f1
+(p11) br.ret.spnt b0 // Exit for x=+inf
+}
+;;
+
+
+{ .mmf
+ nop.m 999
+ nop.m 999
+ fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0
+}
+;;
+
+
+{ .mfb
+ ldfd log_T = [log_AD_2]
+(p10) fmerge.s f8 = f0, f0
+(p10) br.ret.spnt b0 // Exit for x=1.0
+;;
+}
+
{ .mfi
- setf.exp FR_A4 = GR_025 // create A4=0.25
- fclass.m p9,p0 = f8,0x3A // is x < 0 (including negateve unnormals)?
- dep GR_x = GR_Exp,GR_Sig,63,1 // produce integer that bits are
- // GR_x[63] = GR_Exp[0]
- // GR_x[62-0] = GR_Sig[62-0]
+ getf.exp log_GR_signexp_w = log_w
+ fclass.m.unc p12,p0 = f8, 0x3a // Test for x neg norm, unorm, inf
+ nop.i 999
}
-{ .mib
- sub GR_N = GR_Exp,GR_05,1 // unbiased exponent of x
- cmp.gtu p6,p7 = 2,GR_de // is 0.5 <= x < 2.0?
-(p8) br.cond.spnt logf_positive_unorm
-};;
-logf_core:
+;;
+
+{ .mmb
+ nop.m 999
+ nop.m 999
+(p6) br.cond.spnt L(LOG_ZERO_NEG) // Branch if x=0
+;;
+}
+
+
{ .mfi
- setf.sig FR_N = GR_N // copy unbiased exponent of x to the
- // significand field of FR_N
- fclass.m p10,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
- dep.z GR_dx = GR_05,54,3 // 0x0180000000000000 - difference
- // between our integer representations
- // of 257/256 and 255/256
+ and log_GR_exp_w = log_GR_exp_17_ones, log_GR_signexp_w
+ nop.f 999
+ nop.i 999
}
+{ .mfb
+ nop.m 999
+ fma.s1 log_rsq = log_r, log_r, f0
+(p12) br.cond.spnt L(LOG_ZERO_NEG) // Branch if x<0
+;;
+}
+
{ .mfi
- nop.m 0
- nop.f 0
- sub GR_x = GR_x,GR_xorg // difference between representations
- // of x and 255/256
-};;
+ nop.m 999
+ fma.s1 log_rp_p32 = log_P3, log_r, log_P2
+ nop.i 999
+}
{ .mfi
- ldfd FR_InvLn10 = [GR_ad_T],8
- fcmp.eq.s1 p11,p0 = f8,f1 // is x equal to 1.0?
- extr.u GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
+ nop.m 999
+ fma.s1 log_rp_q32 = log_P3, log_w, log_P2
+ nop.i 999
+;;
}
-{ .mib
- setf.d FR_Ln2 = GR_Ln2 // create log(2) or log10(2)
-(p6) cmp.gtu p6,p7 = GR_dx,GR_x // set p6 if 255/256 <= x < 257/256
-(p9) br.cond.spnt logf_negatives // jump if input argument is negative number
-};;
-// p6 is true if |x-1| < 1/256
-// p7 is true if |x-1| >= 1/256
-.pred.rel "mutex",p6,p7
+
{ .mfi
- shladd GR_ad_T = GR_Ind,3,GR_ad_T // calculate address of T
-(p7) fms.s1 FR_r = FR_RcpX,f8,f1 // range reduction for |x-1|>=1/256
- extr.u GR_Exp = GR_Exp,0,17 // exponent without sign
+ nop.m 999
+ fcvt.xf log_Nfloat = log_int_Nfloat
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p6) fms.s1 FR_r = f8,f1,f1 // range reduction for |x-1|<1/256
-(p10) br.cond.spnt logf_nan_nat_pinf // exit for NaN, NaT or +Inf
-};;
-{ .mfb
- ldfd FR_T = [GR_ad_T] // load T
-(p11) fma.s.s0 f8 = f0,f0,f0
-(p11) br.ret.spnt b0 // exit for x = 1.0
-};;
-{ .mib
- nop.m 0
- cmp.eq p12,p0 = r0,GR_Exp // is x +/-0? (here it's quite enough
- // only to compare exponent with 0
- // because all unnormals already
- // have been filtered)
-(p12) br.cond.spnt logf_zeroes // Branch if input argument is +/-0
-};;
+
{ .mfi
- nop.m 0
- fnma.s1 FR_A2 = FR_A2,FR_r,f1 // A2*r+1
- nop.i 0
+ nop.m 999
+ fma.s1 log_rp_p10 = log_P1, log_r, f1
+ nop.i 999
}
{ .mfi
- nop.m 0
- fma.s1 FR_r2 = FR_r,FR_r,f0 // r^2
- nop.i 0
-};;
+ nop.m 999
+ fma.s1 log_rp_q10 = log_P1, log_w, f1
+ nop.i 999
+;;
+}
+
+// p13 <== large w log
+// p14 <== small w log
{ .mfi
- nop.m 0
- fcvt.xf FR_N = FR_N // convert integer N in significand of FR_N
- // to floating-point representation
- nop.i 0
+(p8) cmp.ge.unc p13,p14 = log_GR_exp_w, log_GR_fff7
+ fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag on +denormal input
+ nop.i 999
+;;
}
+
+// p10 <== large w log10
+// p11 <== small w log10
{ .mfi
- nop.m 0
- fnma.s1 FR_A3 = FR_A4,FR_r,FR_A3 // A4*r+A3
- nop.i 0
-};;
+(p7) cmp.ge.unc p10,p11 = log_GR_exp_w, log_GR_fff7
+ nop.f 999
+ nop.i 999 ;;
+}
+
{ .mfi
- nop.m 0
- fma.s1 FR_r = FR_r,FR_InvLn10,f0 // For log10f we have r/log(10)
- nop.i 0
+ nop.m 999
+ fma.s1 log_T_plus_Nlog2 = log_Nfloat,log_log2, log_T
+ nop.i 999 ;;
}
+
+
{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
+ nop.m 999
+ fma.s1 log_rp_p2 = log_rp_p32, log_rsq, log_rp_p10
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fma.s1 FR_A2 = FR_A3,FR_r2,FR_A2 // (A4*r+A3)*r^2+(A2*r+1)
- nop.i 0
+ nop.m 999
+ fma.s1 log_rp_q2 = log_rp_q32, log_wsq, log_rp_q10
+ nop.i 999
+;;
}
+
+
+// small w, log <== p14
{ .mfi
- nop.m 0
- fma.s1 FR_NxLn2pT = FR_N,FR_Ln2,FR_T // N*Ln2+T
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
+ nop.m 999
+(p14) fma.s f8 = log_rp_q2, log_w, f0
+ nop.i 999
+}
{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = FR_A2,FR_r,FR_NxLn2pT // result for |x-1|>=1/256
- nop.i 0
+ nop.m 999
+(p11) fma.s1 log_Q = log_rp_q2, log_w, f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p6) fma.s.s0 f8 = FR_A2,FR_r,f0 // result for |x-1|<1/256
- br.ret.sptk b0
-};;
-.align 32
-logf_positive_unorm:
+
+// large w, log <== p13
+.pred.rel "mutex",p13,p10
{ .mfi
- nop.m 0
-(p8) fma.s0 f8 = f8,f1,f0 // Normalize & set D-flag
- nop.i 0
-};;
+ nop.m 999
+(p13) fma.s f8 = log_rp_p2, log_r, log_T_plus_Nlog2
+ nop.i 999
+}
{ .mfi
- getf.exp GR_Exp = f8 // recompute biased exponent
- nop.f 0
- cmp.ne p6,p7 = r0,r0 // p6 <- 0, p7 <- 1 because
- // in case of unorm we are out
- // interval [255/256; 257/256]
-};;
+ nop.m 999
+(p10) fma.s1 log_Q = log_rp_p2, log_r, log_T_plus_Nlog2
+ nop.i 999 ;;
+}
+
+
+// log10
+{ .mfb
+ nop.m 999
+(p7) fma.s f8 = log_inv_ln10,log_Q,f0
+ br.ret.sptk b0
+;;
+}
+
+
+L(LOG_DENORM):
+{ .mmi
+ getf.exp log_GR_signexp_f8 = log_NORM_f8
+ nop.m 999
+ nop.i 999
+}
+;;
+{ .mmb
+ getf.sig log_GR_significand_f8 = log_NORM_f8
+ and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
+ br.cond.sptk L(LOG_COMMON)
+}
+;;
+
+L(LOG_ZERO_NEG):
+
+// qnan snan inf norm unorm 0 -+
+// 0 0 0 0 0 1 11 0x7
+// 0 0 1 1 1 0 10 0x3a
+
+// Save x (f8) in f10
{ .mfi
- getf.sig GR_Sig = f8 // recompute significand
- nop.f 0
- nop.i 0
-};;
-{ .mib
- sub GR_N = GR_Exp,GR_05,1 // unbiased exponent N
- nop.i 0
- br.cond.sptk logf_core // return into main path
-};;
+ nop.m 999
+ fmerge.s f10 = f8,f8
+ nop.i 999 ;;
+}
+
+// p8 p9 means ln(+-0) = -inf
+// p7 p10 means log(+-0) = -inf
+
+// p13 means ln(-)
+// p14 means log(-)
+
-.align 32
-logf_nan_nat_pinf:
{ .mfi
- nop.m 0
- fma.s.s0 f8 = f8,f1,f0 // set V-flag
- nop.i 0
+ nop.m 999
+ fmerge.ns f6 = f1,f1 // Form -1.0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- nop.f 0
- br.ret.sptk b0 // exit for NaN, NaT or +Inf
-};;
-.align 32
-logf_zeroes:
+// p9 means ln(+-0) = -inf
+// p10 means log(+-0) = -inf
+// Log(+-0) = -inf
+
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8 // keep input argument for subsequent
- // call of __libm_error_support#
- nop.i 0
+ nop.m 999
+(p8) fclass.m.unc p9,p0 = f10, 0x07
+ nop.i 999
}
{ .mfi
-(p13) mov GR_TAG = 4 // set libm error in case of logf
- fms.s1 FR_tmp = f0,f0,f1 // -1.0
- nop.i 0
-};;
+ nop.m 999
+(p7) fclass.m.unc p10,p0 = f10, 0x07
+ nop.i 999 ;;
+}
+
+
+// p13 ln(-)
+// p14 log(-)
+
+// Log(-inf, -normal, -unnormal) = QNAN indefinite
{ .mfi
- nop.m 0
- frcpa.s0 f8,p0 = FR_tmp,f0 // log(+/-0) should be equal to -INF.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of FR_tmp/f0.
- // As far as FR_tmp is -1 it'll be -INF
- nop.i 0
+ nop.m 999
+(p8) fclass.m.unc p13,p0 = f10, 0x3a
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p14,p0 = f10, 0x3a
+ nop.i 999 ;;
}
-{ .mib
-(p14) mov GR_TAG = 10 // set libm error in case of log10f
- nop.i 0
- br.cond.sptk logf_libm_err
-};;
-.align 32
-logf_negatives:
+
+.pred.rel "mutex",p9,p10
{ .mfi
-(p13) mov GR_TAG = 5 // set libm error in case of logf
- fmerge.s FR_X = f8,f8 // keep input argument for subsequent
- // call of __libm_error_support#
- nop.i 0
-};;
+(p9) mov log_GR_tag = 4
+(p9) frcpa f8,p11 = f6,f0
+ nop.i 999
+}
{ .mfi
-(p14) mov GR_TAG = 11 // set libm error in case of log10f
- frcpa.s0 f8,p0 = f0,f0 // log(negatives) should be equal to NaN.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of f0/f0 i.e. NaN.
- nop.i 0
-};;
+(p10) mov log_GR_tag = 10
+(p10) frcpa f8,p12 = f6,f0
+ nop.i 999 ;;
+}
-.align 32
-logf_libm_err:
-{ .mmi
- alloc r32 = ar.pfs,1,4,4,0
- mov GR_Parameter_TAG = GR_TAG
- nop.i 0
-};;
-GLOBAL_IEEE754_END(logf)
+.pred.rel "mutex",p13,p14
+{ .mfi
+(p13) mov log_GR_tag = 5
+(p13) frcpa f8,p11 = f0,f0
+ nop.i 999
+}
+{ .mfb
+(p14) mov log_GR_tag = 11
+(p14) frcpa f8,p12 = f0,f0
+ br.cond.sptk __libm_error_region ;;
+}
+.endp logf
+ASM_SIZE_DIRECTIVE(logf)
+ASM_SIZE_DIRECTIVE(__ieee754_logf)
// Stack operations when calling error support.
@@ -1104,56 +890,70 @@ GLOBAL_IEEE754_END(logf)
// save ar.pfs save b0 restore gp
// save gp restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+
+
+.proc __libm_error_region
+__libm_error_region:
.prologue
+
+// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+
+// (2)
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+// (3)
{ .mib
- stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
+
{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+
+// (4)
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/e_logl.S b/sysdeps/ia64/fpu/e_logl.S
deleted file mode 100644
index 3ebb20a632..0000000000
--- a/sysdeps/ia64/fpu/e_logl.S
+++ /dev/null
@@ -1,1200 +0,0 @@
-.file "logl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 05/21/01 Extracted logl and log10l from log1pl.s file, and optimized
-// all paths.
-// 06/20/01 Fixed error tag for x=-inf.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: Combined logl(x) and log10l(x) where
-// logl(x) = ln(x), for double-extended precision x values
-// log10l(x) = log (x), for double-extended precision x values
-// 10
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 (Input and Return Value)
-// f34-f76
-//
-// General Purpose Registers:
-// r32-r56
-// r53-r56 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p14
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// Denormal fault raised on denormal inputs
-// Overflow exceptions cannot occur
-// Underflow exceptions raised when appropriate for log1p
-// (Error Handling Routine called for underflow)
-// Inexact raised when appropriate by algorithm
-//
-// logl(inf) = inf
-// logl(-inf) = QNaN
-// logl(+/-0) = -inf
-// logl(SNaN) = QNaN
-// logl(QNaN) = QNaN
-// logl(EM_special Values) = QNaN
-// log10l(inf) = inf
-// log10l(-inf) = QNaN
-// log10l(+/-0) = -inf
-// log10l(SNaN) = QNaN
-// log10l(QNaN) = QNaN
-// log10l(EM_special Values) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of two cases.
-//
-// If |X-1| < 2^(-7) use case log_near1;
-// else use case log_regular;
-//
-// Case log_near1:
-//
-// logl( 1 + X ) can be approximated by a simple polynomial
-// in W = X-1. This polynomial resembles the truncated Taylor
-// series W - W^/2 + W^3/3 - ...
-//
-// Case log_regular:
-//
-// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) for an argument Arg in [1,2), we
-// construct a value G such that G*Arg is close to 1 and that
-// logl(1/G) is obtainable easily from a table of values calculated
-// beforehand. Thus
-//
-// logl(Arg) = logl(1/G) + logl(G*Arg)
-// = logl(1/G) + logl(1 + (G*Arg - 1))
-//
-// Because |G*Arg - 1| is small, the second term on the right hand
-// side can be approximated by a short polynomial. We elaborate
-// this method in four steps.
-//
-// Step 0: Initialization
-//
-// We need to calculate logl( X ). Obtain N, S_hi such that
-//
-// X = 2^N * S_hi exactly
-//
-// where S_hi in [1,2)
-//
-// Step 1: Argument Reduction
-//
-// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1)
-//
-// These G_j's have the property that the product is exactly
-// representable and that |r| < 2^(-12) as a result.
-//
-// Step 2: Approximation
-//
-//
-// logl(1 + r) is approximated by a short polynomial poly(r).
-//
-// Step 3: Reconstruction
-//
-//
-// Finally, logl( X ) is given by
-//
-// logl( X ) = logl( 2^N * S_hi )
-// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
-// ~=~ N*logl(2) + logl(1/G) + poly(r).
-//
-// **** Algorithm ****
-//
-// Case log_near1:
-//
-// Here we compute a simple polynomial. To exploit parallelism, we split
-// the polynomial into two portions.
-//
-// W := X - 1
-// Wsq := W * W
-// W4 := Wsq*Wsq
-// W6 := W4*Wsq
-// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
-// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
-//
-// Case log_regular:
-//
-// We present the algorithm in four steps.
-//
-// Step 0. Initialization
-// ----------------------
-//
-// Z := X
-// N := unbaised exponent of Z
-// S_hi := 2^(-N) * Z
-//
-// Step 1. Argument Reduction
-// --------------------------
-//
-// Let
-//
-// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
-//
-// We obtain G_1, G_2, G_3 by the following steps.
-//
-//
-// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
-// from S_hi.
-//
-// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
-// to lsb = 2^(-4).
-//
-// Define index_1 := [ d_1 d_2 d_3 d_4 ].
-//
-// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
-// fixed point lsb = 2^(-15).
-// Z_1 looks like z_0.z_1 z_2 ... z_15
-// Note that the fetching is done using index_1.
-// A_1 is actually not needed in the implementation
-// and is used here only to explain how is the value
-// Z_1 defined.
-//
-// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
-// floating pt. Again, fetching is done using index_1. A_1
-// explains how G_1 is defined.
-//
-// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 d_5 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_1 indeed always begin
-// with 1.0000 in fixed point.
-//
-//
-// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
-// truncated to lsb = 2^(-8). Similar to A_1,
-// A_2 is not needed in actual implementation. It
-// helps explain how some of the values are defined.
-//
-// Define index_2 := [ d_5 d_6 d_7 d_8 ].
-//
-// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
-// fixed point lsb = 2^(-15). Fetch done using index_2.
-// Z_2 looks like z_0.z_1 z_2 ... z_15
-//
-// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
-// floating pt.
-//
-// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_2 indeed always begin
-// with 1.00000000 in fixed point.
-//
-//
-// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
-// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
-//
-// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
-//
-// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
-// floating pt. Fetch is done using index_3.
-//
-// Compute G := G_1 * G_2 * G_3.
-//
-// This is done exactly since each of G_j only has 21 sig. bits.
-//
-// Compute
-//
-// r := (G*S_hi - 1)
-//
-//
-// Step 2. Approximation
-// ---------------------
-//
-// This step computes an approximation to logl( 1 + r ) where r is the
-// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
-// thus logl(1+r) can be approximated by a short polynomial:
-//
-// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
-//
-//
-// Step 3. Reconstruction
-// ----------------------
-//
-// This step computes the desired result of logl(X):
-//
-// logl(X) = logl( 2^N * S_hi )
-// = N*logl(2) + logl( S_hi )
-// = N*logl(2) + logl(1/G) +
-// logl(1 + G*S_hi - 1 )
-//
-// logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
-// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
-// single-precision numbers and the low parts are double precision
-// numbers. These have the property that
-//
-// N*log2_hi + SUM ( log1byGj_hi )
-//
-// is computable exactly in double-extended precision (64 sig. bits).
-// Finally
-//
-// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
-// Y_lo := poly_hi + [ poly_lo +
-// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
-//
-
-RODATA
-.align 64
-
-// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
-
-// P_8, P_7, P_6, P_5, P_4, P_3, P_2, and P_1
-
-LOCAL_OBJECT_START(Constants_P)
-data8 0xE3936754EFD62B15,0x00003FFB
-data8 0x8003B271A5E56381,0x0000BFFC
-data8 0x9249248C73282DB0,0x00003FFC
-data8 0xAAAAAA9F47305052,0x0000BFFC
-data8 0xCCCCCCCCCCD17FC9,0x00003FFC
-data8 0x8000000000067ED5,0x0000BFFD
-data8 0xAAAAAAAAAAAAAAAA,0x00003FFD
-data8 0xFFFFFFFFFFFFFFFE,0x0000BFFD
-LOCAL_OBJECT_END(Constants_P)
-
-// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
-
-LOCAL_OBJECT_START(Constants_Q)
-data8 0xB172180000000000,0x00003FFE
-data8 0x82E308654361C4C6,0x0000BFE2
-data8 0xCCCCCAF2328833CB,0x00003FFC
-data8 0x80000077A9D4BAFB,0x0000BFFD
-data8 0xAAAAAAAAAAABE3D2,0x00003FFD
-data8 0xFFFFFFFFFFFFDAB7,0x0000BFFD
-LOCAL_OBJECT_END(Constants_Q)
-
-// 1/ln10_hi, 1/ln10_lo
-
-LOCAL_OBJECT_START(Constants_1_by_LN10)
-data8 0xDE5BD8A937287195,0x00003FFD
-data8 0xD56EAABEACCF70C8,0x00003FBB
-LOCAL_OBJECT_END(Constants_1_by_LN10)
-
-
-// Z1 - 16 bit fixed
-
-LOCAL_OBJECT_START(Constants_Z_1)
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F70F0F0,0x3D785196
-data8 0x3DA163A6617D741C
-data4 0x3F638E38,0x3DF13843
-data8 0x3E2C55E6CBD3D5BB
-data4 0x3F579430,0x3E2FF9A0
-data8 0xBE3EB0BFD86EA5E7
-data4 0x3F4CCCC8,0x3E647FD6
-data8 0x3E2E6A8C86B12760
-data4 0x3F430C30,0x3E8B3AE7
-data8 0x3E47574C5C0739BA
-data4 0x3F3A2E88,0x3EA30C68
-data8 0x3E20E30F13E8AF2F
-data4 0x3F321640,0x3EB9CEC8
-data8 0xBE42885BF2C630BD
-data4 0x3F2AAAA8,0x3ECF9927
-data8 0x3E497F3497E577C6
-data4 0x3F23D708,0x3EE47FC5
-data8 0x3E3E6A6EA6B0A5AB
-data4 0x3F1D89D8,0x3EF8947D
-data8 0xBDF43E3CD328D9BE
-data4 0x3F17B420,0x3F05F3A1
-data8 0x3E4094C30ADB090A
-data4 0x3F124920,0x3F0F4303
-data8 0xBE28FBB2FC1FE510
-data4 0x3F0D3DC8,0x3F183EBF
-data8 0x3E3A789510FDE3FA
-data4 0x3F088888,0x3F20EC80
-data8 0x3E508CE57CC8C98F
-data4 0x3F042108,0x3F29516A
-data8 0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-
-LOCAL_OBJECT_START(Constants_Z_2)
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F7F00F8,0x3B7F875D
-data8 0x3DB5A11622C42273
-data4 0x3F7E03F8,0x3BFF015B
-data8 0x3DE620CF21F86ED3
-data4 0x3F7D08E0,0x3C3EE393
-data8 0xBDAFA07E484F34ED
-data4 0x3F7C0FC0,0x3C7E0586
-data8 0xBDFE07F03860BCF6
-data4 0x3F7B1880,0x3C9E75D2
-data8 0x3DEA370FA78093D6
-data4 0x3F7A2328,0x3CBDC97A
-data8 0x3DFF579172A753D0
-data4 0x3F792FB0,0x3CDCFE47
-data8 0x3DFEBE6CA7EF896B
-data4 0x3F783E08,0x3CFC15D0
-data8 0x3E0CF156409ECB43
-data4 0x3F774E38,0x3D0D874D
-data8 0xBE0B6F97FFEF71DF
-data4 0x3F766038,0x3D1CF49B
-data8 0xBE0804835D59EEE8
-data4 0x3F757400,0x3D2C531D
-data8 0x3E1F91E9A9192A74
-data4 0x3F748988,0x3D3BA322
-data8 0xBE139A06BF72A8CD
-data4 0x3F73A0D0,0x3D4AE46F
-data8 0x3E1D9202F8FBA6CF
-data4 0x3F72B9D0,0x3D5A1756
-data8 0xBE1DCCC4BA796223
-data4 0x3F71D488,0x3D693B9D
-data8 0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4 0x3F7FFC00,0x38800100
-data8 0x3D355595562224CD
-data4 0x3F7FF400,0x39400480
-data8 0x3D8200A206136FF6
-data4 0x3F7FEC00,0x39A00640
-data8 0x3DA4D68DE8DE9AF0
-data4 0x3F7FE400,0x39E00C41
-data8 0xBD8B4291B10238DC
-data4 0x3F7FDC00,0x3A100A21
-data8 0xBD89CCB83B1952CA
-data4 0x3F7FD400,0x3A300F22
-data8 0xBDB107071DC46826
-data4 0x3F7FCC08,0x3A4FF51C
-data8 0x3DB6FCB9F43307DB
-data4 0x3F7FC408,0x3A6FFC1D
-data8 0xBD9B7C4762DC7872
-data4 0x3F7FBC10,0x3A87F20B
-data8 0xBDC3725E3F89154A
-data4 0x3F7FB410,0x3A97F68B
-data8 0xBD93519D62B9D392
-data4 0x3F7FAC18,0x3AA7EB86
-data8 0x3DC184410F21BD9D
-data4 0x3F7FA420,0x3AB7E101
-data8 0xBDA64B952245E0A6
-data4 0x3F7F9C20,0x3AC7E701
-data8 0x3DB4B0ECAABB34B8
-data4 0x3F7F9428,0x3AD7DD7B
-data8 0x3D9923376DC40A7E
-data4 0x3F7F8C30,0x3AE7D474
-data8 0x3DC6E17B4F2083D3
-data4 0x3F7F8438,0x3AF7CBED
-data8 0x3DAE314B811D4394
-data4 0x3F7F7C40,0x3B03E1F3
-data8 0xBDD46F21B08F2DB1
-data4 0x3F7F7448,0x3B0BDE2F
-data8 0xBDDC30A46D34522B
-data4 0x3F7F6C50,0x3B13DAAA
-data8 0x3DCB0070B1F473DB
-data4 0x3F7F6458,0x3B1BD766
-data8 0xBDD65DDC6AD282FD
-data4 0x3F7F5C68,0x3B23CC5C
-data8 0xBDCDAB83F153761A
-data4 0x3F7F5470,0x3B2BC997
-data8 0xBDDADA40341D0F8F
-data4 0x3F7F4C78,0x3B33C711
-data8 0x3DCD1BD7EBC394E8
-data4 0x3F7F4488,0x3B3BBCC6
-data8 0xBDC3532B52E3E695
-data4 0x3F7F3C90,0x3B43BAC0
-data8 0xBDA3961EE846B3DE
-data4 0x3F7F34A0,0x3B4BB0F4
-data8 0xBDDADF06785778D4
-data4 0x3F7F2CA8,0x3B53AF6D
-data8 0x3DCC3ED1E55CE212
-data4 0x3F7F24B8,0x3B5BA620
-data8 0xBDBA31039E382C15
-data4 0x3F7F1CC8,0x3B639D12
-data8 0x3D635A0B5C5AF197
-data4 0x3F7F14D8,0x3B6B9444
-data8 0xBDDCCB1971D34EFC
-data4 0x3F7F0CE0,0x3B7393BC
-data8 0x3DC7450252CD7ADA
-data4 0x3F7F04F0,0x3B7B8B6D
-data8 0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-
-// Floating Point Registers
-
-FR_Input_X = f8
-
-FR_Y_hi = f34
-FR_Y_lo = f35
-
-FR_Scale = f36
-FR_X_Prime = f37
-FR_S_hi = f38
-FR_W = f39
-FR_G = f40
-
-FR_H = f41
-FR_wsq = f42
-FR_w4 = f43
-FR_h = f44
-FR_w6 = f45
-
-FR_G2 = f46
-FR_H2 = f47
-FR_poly_lo = f48
-FR_P8 = f49
-FR_poly_hi = f50
-
-FR_P7 = f51
-FR_h2 = f52
-FR_rsq = f53
-FR_P6 = f54
-FR_r = f55
-
-FR_log2_hi = f56
-FR_log2_lo = f57
-FR_p87 = f58
-FR_p876 = f58
-FR_p8765 = f58
-FR_float_N = f59
-FR_Q4 = f60
-
-FR_p43 = f61
-FR_p432 = f61
-FR_p4321 = f61
-FR_P4 = f62
-FR_G3 = f63
-FR_H3 = f64
-FR_h3 = f65
-
-FR_Q3 = f66
-FR_P3 = f67
-FR_Q2 = f68
-FR_P2 = f69
-FR_1LN10_hi = f70
-
-FR_Q1 = f71
-FR_P1 = f72
-FR_1LN10_lo = f73
-FR_P5 = f74
-FR_rcub = f75
-
-FR_Output_X_tmp = f76
-
-FR_X = f8
-FR_Y = f0
-FR_RESULT = f76
-
-
-// General Purpose Registers
-
-GR_ad_p = r33
-GR_Index1 = r34
-GR_Index2 = r35
-GR_signif = r36
-GR_X_0 = r37
-GR_X_1 = r38
-GR_X_2 = r39
-GR_Z_1 = r40
-GR_Z_2 = r41
-GR_N = r42
-GR_Bias = r43
-GR_M = r44
-GR_Index3 = r45
-GR_ad_p2 = r46
-GR_exp_mask = r47
-GR_exp_2tom7 = r48
-GR_ad_ln10 = r49
-GR_ad_tbl_1 = r50
-GR_ad_tbl_2 = r51
-GR_ad_tbl_3 = r52
-GR_ad_q = r53
-GR_ad_z_1 = r54
-GR_ad_z_2 = r55
-GR_ad_z_3 = r56
-
-//
-// Added for unwind support
-//
-
-GR_SAVE_PFS = r50
-GR_SAVE_B0 = r51
-GR_SAVE_GP = r52
-GR_Parameter_X = r53
-GR_Parameter_Y = r54
-GR_Parameter_RESULT = r55
-GR_Parameter_TAG = r56
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(logl)
-{ .mfi
- alloc r32 = ar.pfs,0,21,4,0
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
- cmp.eq p7, p14 = r0, r0 // Set p7 if logl
-}
-{ .mfb
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
- br.cond.sptk LOGL_BEGIN
-}
-;;
-
-GLOBAL_IEEE754_END(logl)
-
-
-GLOBAL_IEEE754_ENTRY(log10l)
-{ .mfi
- alloc r32 = ar.pfs,0,21,4,0
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
- cmp.ne p7, p14 = r0, r0 // Set p14 if log10l
-}
-{ .mfb
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
- nop.b 999
-}
-;;
-
-
-// Common code for logl and log10
-LOGL_BEGIN:
-{ .mfi
- ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
- fclass.m p10, p0 = FR_Input_X, 0x0b // Test for denormal
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
-}
-;;
-
-{ .mfb
- getf.sig GR_signif = FR_Input_X // Get significand of x
- fcmp.eq.s1 p9, p0 = FR_Input_X, f1 // Test for x=1.0
-(p6) br.cond.spnt LOGL_64_special // Branch for nan, inf, natval
-}
-;;
-
-{ .mfi
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
- fcmp.lt.s1 p13, p0 = FR_Input_X, f0 // Test for x<0
- add GR_ad_p = -0x100, GR_ad_z_1 // Point to Constants_P
-}
-{ .mib
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
-(p10) br.cond.spnt LOGL_64_denormal // Branch for denormal
-}
-;;
-
-LOGL_64_COMMON:
-{ .mfi
- add GR_ad_q = 0x080, GR_ad_p // Point to Constants_Q
- fcmp.eq.s1 p8, p0 = FR_Input_X, f0 // Test for x=0
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
-}
-{ .mfb
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
-(p9) fma.s0 f8 = FR_Input_X, f0, f0 // If x=1, return +0.0
-(p9) br.ret.spnt b0 // Exit if x=1
-}
-;;
-
-{ .mfi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- fclass.nm p10, p0 = FR_Input_X, 0x1FF // Test for unsupported
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of significand
-}
-{ .mfi
- ldfe FR_P8 = [GR_ad_p],16 // Load P_8 for near1 path
- fsub.s1 FR_W = FR_X_Prime, f1 // W = x - 1
- add GR_ad_ln10 = 0x060, GR_ad_q // Point to Constants_1_by_LN10
-}
-;;
-
-{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.f 999
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
-}
-{ .mib
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- mov GR_Bias = 0x0FFFF // Create exponent bias
-(p13) br.cond.spnt LOGL_64_negative // Branch if x<0
-}
-;;
-
-{ .mfb
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- fmerge.se FR_S_hi = f1,FR_X_Prime // Form |x|
-(p8) br.cond.spnt LOGL_64_zero // Branch if x=0
-}
-;;
-
-{ .mmb
- getf.exp GR_N = FR_X_Prime // Get N = exponent of x
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
-(p10) br.cond.spnt LOGL_64_unsupported // Branch for unsupported type
-}
-;;
-
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- fcmp.eq.s0 p8, p0 = FR_Input_X, f0 // Dummy op to flag denormals
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
-}
-;;
-
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mmi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
-(p14) ldfe FR_1LN10_hi = [GR_ad_ln10],16 // If log10l, load 1/ln10_hi
- sub GR_N = GR_N, GR_Bias
-}
-;;
-
-{ .mmi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
-(p14) ldfe FR_1LN10_lo = [GR_ad_ln10] // If log10l, load 1/ln10_lo
- nop.i 999
-}
-;;
-
-{ .mmi
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- setf.sig FR_float_N = GR_N // Put integer N into rightmost significand
- nop.i 999
-}
-;;
-
-{ .mmi
- getf.exp GR_M = FR_W // Get signexp of w = x - 1
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-;;
-
-{ .mmi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- add GR_ad_p2 = 0x30,GR_ad_p // Point to P_4
-}
-;;
-
-{ .mmi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- and GR_M = GR_exp_mask, GR_M // Get exponent of w = x - 1
-}
-;;
-
-{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- cmp.lt p8, p9 = GR_M, GR_exp_2tom7 // Test |x-1| < 2^-7
- nop.i 999
-}
-;;
-
-// Paths are merged.
-// p8 is for the near1 path: |x-1| < 2^-7
-// p9 is for regular path: |x-1| >= 2^-7
-
-{ .mmi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mmi
-(p8) ldfe FR_P7 = [GR_ad_p],16 // Load P_7 for near1 path
-(p8) ldfe FR_P4 = [GR_ad_p2],16 // Load P_4 for near1 path
-(p9) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
-}
-;;
-
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mmi
-(p8) ldfe FR_P6 = [GR_ad_p],16 // Load P_6 for near1 path
-(p8) ldfe FR_P3 = [GR_ad_p2],16 // Load P_3 for near1 path
- nop.i 999
-}
-;;
-
-{ .mmf
-(p8) ldfe FR_P5 = [GR_ad_p],16 // Load P_5 for near1 path
-(p8) ldfe FR_P2 = [GR_ad_p2],16 // Load P_2 for near1 path
-(p8) fmpy.s1 FR_wsq = FR_W, FR_W // wsq = w * w for near1 path
-}
-;;
-
-{ .mmi
-(p8) ldfe FR_P1 = [GR_ad_p2],16 ;; // Load P_1 for near1 path
- nop.m 999
-(p9) extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-;;
-
-{ .mfi
-(p9) shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
-(p9) fcvt.xf FR_float_N = FR_float_N
- nop.i 999
-}
-;;
-
-{ .mfi
-(p9) ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- nop.f 999
- nop.i 999
-}
-;;
-
-{ .mfi
-(p9) ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
-(p9) fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 999
-}
-;;
-
-{ .mmf
- nop.m 999
- nop.m 999
-(p9) fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fmpy.s1 FR_w4 = FR_wsq, FR_wsq // w4 = w^4 for near1 path
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p87 = FR_W, FR_P8, FR_P7 // p87 = w * P8 + P7
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p43 = FR_W, FR_P4, FR_P3 // p43 = w * P4 + P3
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fmpy.s1 FR_w6 = FR_w4, FR_wsq // w6 = w^6 for near1 path
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p432 = FR_W, FR_p43, FR_P2 // p432 = w * p43 + P2
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p876 = FR_W, FR_p87, FR_P6 // p876 = w * p87 + P6
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi = N * log2_hi + H
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N * log2_lo + h
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p4321 = FR_W, FR_p432, FR_P1 // p4321 = w * p432 + P1
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p8765 = FR_W, FR_p876, FR_P5 // p8765 = w * p876 + P5
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_lo = FR_wsq, FR_p4321, f0 // Y_lo = wsq * p4321
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_hi = FR_W, f1, f0 // Y_hi = w for near1 path
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo = poly_lo * r + Q2
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_lo = FR_w6, FR_p8765,FR_Y_lo // Y_lo = w6 * p8765 + w2 * p4321
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1 * rsq + r
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h // poly_lo = poly_lo*r^3 + h
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo = poly_hi + poly_lo
- nop.i 999
-}
-;;
-
-// Remainder of code is common for near1 and regular paths
-{ .mfi
- nop.m 999
-(p7) fadd.s0 f8 = FR_Y_lo,FR_Y_hi // If logl, result=Y_lo+Y_hi
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p14) fma.s1 FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
- nop.i 999
-}
-;;
-
-{ .mfb
- nop.m 999
-(p14) fma.s0 f8 = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
- br.ret.sptk b0 // Common exit for 0 < x < inf
-}
-;;
-
-
-// Here if x=+-0
-LOGL_64_zero:
-//
-// If x=+-0 raise divide by zero and return -inf
-//
-{ .mfi
-(p7) mov GR_Parameter_TAG = 0
- fsub.s1 FR_Output_X_tmp = f0, f1
- nop.i 999
-}
-;;
-
-{ .mfb
-(p14) mov GR_Parameter_TAG = 6
- frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-LOGL_64_special:
-{ .mfi
- nop.m 999
- fclass.m.unc p8, p0 = FR_Input_X, 0x1E1 // Test for natval, nan, +inf
- nop.i 999
-}
-;;
-
-//
-// For SNaN raise invalid and return QNaN.
-// For QNaN raise invalid and return QNaN.
-// For +Inf return +Inf.
-//
-{ .mfb
- nop.m 999
-(p8) fmpy.s0 f8 = FR_Input_X, f1
-(p8) br.ret.sptk b0 // Return for natval, nan, +inf
-}
-;;
-
-//
-// For -Inf raise invalid and return QNaN.
-//
-{ .mmi
-(p7) mov GR_Parameter_TAG = 1
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mfb
-(p14) mov GR_Parameter_TAG = 7
- fmpy.s0 FR_Output_X_tmp = FR_Input_X, f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-// Here if x denormal or unnormal
-LOGL_64_denormal:
-{ .mmi
- getf.sig GR_signif = FR_X_Prime // Get significand of normalized input
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mmb
- getf.exp GR_N = FR_X_Prime // Get exponent of normalized input
- nop.m 999
- br.cond.sptk LOGL_64_COMMON // Branch back to common code
-}
-;;
-
-LOGL_64_unsupported:
-//
-// Return generated NaN or other value.
-//
-{ .mfb
- nop.m 999
- fmpy.s0 f8 = FR_Input_X, f0
- br.ret.sptk b0
-}
-;;
-
-// Here if -inf < x < 0
-LOGL_64_negative:
-//
-// Deal with x < 0 in a special way - raise
-// invalid and produce QNaN indefinite.
-//
-{ .mfi
-(p7) mov GR_Parameter_TAG = 1
- frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
- nop.i 999
-}
-;;
-
-{ .mib
-(p14) mov GR_Parameter_TAG = 7
- nop.i 999
- br.cond.sptk __libm_error_region
-}
-;;
-
-
-GLOBAL_IEEE754_END(log10l)
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 999
- nop.m 999
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_gamma_r.c b/sysdeps/ia64/fpu/e_logl.c
index 41254ae60a..41254ae60a 100644
--- a/sysdeps/ia64/fpu/e_gamma_r.c
+++ b/sysdeps/ia64/fpu/e_logl.c
diff --git a/sysdeps/ia64/fpu/e_pow.S b/sysdeps/ia64/fpu/e_pow.S
index 89449c79ec..56f7f078ba 100644
--- a/sysdeps/ia64/fpu/e_pow.S
+++ b/sysdeps/ia64/fpu/e_pow.S
@@ -1,10 +1,10 @@
.file "pow.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,42 +35,30 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/03/00 Added p12 to definite over/under path. With odd power we did not
+// 2/02/00 Initial version
+// 2/03/00 Added p12 to definite over/under path. With odd power we did not
// maintain the sign of x in this path.
-// 04/04/00 Unwind support added
-// 04/19/00 pow(+-1,inf) now returns NaN
-// pow(+-val, +-inf) returns 0 or inf, but now does not call error
-// support
+// 4/04/00 Unwind support added
+// 4/19/00 pow(+-1,inf) now returns NaN
+// pow(+-val, +-inf) returns 0 or inf, but now does not call error support
// Added s1 to fcvt.fx because invalid flag was incorrectly set.
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
+// 9/07/00 Improved performance by eliminating bank conflicts and other stalls,
// and tweaking the critical path
-// 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
-// 09/28/00 Updated NaN**0 path
-// 01/20/01 Fixed denormal flag settings.
-// 02/13/01 Improved speed.
-// 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
-// problem in round up, down, and to zero modes. Also corrected
-// overflow result when x negative, y odd in round up, down, zero.
-// 06/14/01 Added brace missing from bundle
-// 12/10/01 Corrected case where x negative, 2^52 <= |y| < 2^53, y odd integer.
-// 12/20/01 Fixed monotonity problem in round to nearest.
-// 02/08/02 Fixed overflow/underflow cases that were not calling error support.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/29/02 Improved Itanium 2 performance
-// 09/21/02 Added branch for |y*log(x)|<2^-11 to fix monotonicity problems.
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
+// 9/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
+// 9/28/00 Updated NaN**0 path
+// 1/20/01 Fixed denormal flag settings.
+// 2/12/01 Improved speed.
//
// API
//==============================================================
-// double pow(double x, double y)
+// double pow(double)
+// float powf(float)
//
// Overview of operation
//==============================================================
@@ -79,51 +67,51 @@
// 1. Log(x)
// 2. y Log(x)
// 3. exp(y log(x))
-//
+//
// This means we work with the absolute value of x and merge in the sign later.
// Log(x) = G + delta + r -rsq/2 + p
// G,delta depend on the exponent of x and table entries. The table entries are
// indexed by the exponent of x, called K.
-//
+//
// The G and delta come out of the reduction; r is the reduced x.
-//
+//
// B = frcpa(x)
// xB-1 is small means that B is the approximate inverse of x.
-//
+//
// Log(x) = Log( (1/B)(Bx) )
// = Log(1/B) + Log(Bx)
// = Log(1/B) + Log( 1 + (Bx-1))
-//
+//
// x = 2^K 1.x_1x_2.....x_52
-// B= frcpa(x) = 2^-k Cm
+// B= frcpa(x) = 2^-k Cm
// Log(1/B) = Log(1/(2^-K Cm))
// Log(1/B) = Log((2^K/ Cm))
// Log(1/B) = K Log(2) + Log(1/Cm)
-//
+//
// Log(x) = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
-//
+//
// If you take the significand of x, set the exponent to true 0, then Cm is
// the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
// The frcpa table is indexed by 8 bits, the x_1 thru x_8.
// m = x_1x_2...x_8 is an 8-bit index.
-//
+//
// Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
-//
+//
// We tabluate as two doubles, T and t, where T +t is the value itself.
-//
+//
// Log(x) = (K Log(2)_hi + T) + (Log(2)_hi + t) + Log( 1 + (Bx-1))
// Log(x) = G + delta + Log( 1 + (Bx-1))
-//
+//
// The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
-//
+//
// Log( 1 + (Bx-1)) = r - rsq/2 + p
-//
+//
// Then,
-//
+//
// yLog(x) = yG + y delta + y(r-rsq/2) + yp
// yLog(x) = Z1 + e3 + Z2 + Z3 + (e2 + e3)
-//
-//
+//
+//
// exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
//
//
@@ -145,7 +133,7 @@
// exp(r) = exp(Z - N log2/128)
//
// r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
-// = Z - N (log2/128)
+// = Z - N (log2/128)
//
// Z = s+d +N (log2/128)
//
@@ -161,22 +149,22 @@
// n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
// n log2/128 = I2 log2/8 + I1 log2/128
//
-// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
+// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
//
// exp(Z) = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
// exp(Z) = exp(s) (1+d1) (1+d2)(2^M) 2^I2/8 2^I1/128
// exp(Z) = exp(s) f1 f2 (2^M) 2^I2/8 2^I1/128
//
// I1, I2 are table indices. Use a series for exp(s).
-// Then get exp(Z)
+// Then get exp(Z)
//
// exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
-// exp(yLog(x)) = exp(Z) exp(Z3) f3
-// exp(yLog(x)) = exp(Z)f3 exp(Z3)
-// exp(yLog(x)) = A exp(Z3)
+// exp(yLog(x)) = exp(Z) exp(Z3) f3
+// exp(yLog(x)) = exp(Z)f3 exp(Z3)
+// exp(yLog(x)) = A exp(Z3)
//
// We actually calculate exp(Z3) -1.
-// Then,
+// Then,
// exp(yLog(x)) = A + A( exp(Z3) -1)
//
@@ -187,146 +175,142 @@
// ==============
// The operation (K*log2_hi) must be exact. K is the true exponent of x.
// If we allow gradual underflow (denormals), K can be represented in 12 bits
-// (as a two's complement number). We assume 13 bits as an engineering
-// precaution.
-//
+// (as a two's complement number). We assume 13 bits as an engineering precaution.
+//
// +------------+----------------+-+
// | 13 bits | 50 bits | |
// +------------+----------------+-+
// 0 1 66
// 2 34
-//
+//
// So we want the lsb(log2_hi) to be 2^-50
// We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
-//
+//
// 0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
-//
+//
// Consider numbering the bits left to right, starting at 0 thru 127.
// Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
-//
+//
// ...79ab
// 0111 1001 1010 1011
// 44
// 89
-//
-// So if we shift off the rightmost 14 bits, then (shift back only
+//
+// So if we shift off the rightmost 14 bits, then (shift back only
// the top half) we get
-//
+//
// 0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
-//
+//
// Put the right 64-bit signficand in an FR register, convert to double;
// it is exact. Put the next 128 bits into a quad register and round to double.
// The true exponent of the low part is -51.
-//
+//
// hi is 0 fffe b17217f7d1cf4000
// lo is 0 ffcc e6af278ece601000
-//
+//
// Convert to double memory format and get
-//
+//
// hi is 0x3fe62e42fefa39e8
-// lo is 0x3cccd5e4f1d9cc02
-//
+// lo is 0x3cccd5e4f1d9cc02
+//
// log2_hi + log2_lo is an accurate value for log2.
-//
-//
+//
+//
// The T and t values
// ==================
// A similar method is used to generate the T and t values.
-//
+//
// K * log2_hi + T must be exact.
-//
+//
// Smallest T,t
// ----------
-// The smallest T,t is
+// The smallest T,t is
// T t
-// 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
-//
+// data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
+//
// The exponent is 0x3f6 (biased) or -9 (true).
// For the smallest T value, what we want is to clip the significand such that
-// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
-// specific for the first entry. In general, it is 0xffff - (biased 15-bit
-// exponent).
+// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the specific
+// for the first entry. In general, it is 0xffff - (biased 15-bit exponent).
-// Independently, what we have calculated is the table value as a quad
-// precision number.
+// Independently, what we have calculated is the table value as a quad precision number.
// Table entry 1 is
// 0 fff6 80200aaeac44ef38 338f77605fdf8000
-//
+//
// We store this quad precision number in a data structure that is
-// sign: 1
+// sign: 1
// exponent: 15
// signficand_hi: 64 (includes explicit bit)
// signficand_lo: 49
// Because the explicit bit is included, the significand is 113 bits.
-//
+//
// Consider significand_hi for table entry 1.
-//
-//
+//
+//
// +-+--- ... -------+--------------------+
// | |
// +-+--- ... -------+--------------------+
// 0 1 4444444455555555556666
// 2345678901234567890123
-//
+//
// Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
// Bit 42 is 2^-42. If we shift to the right by 9, the bit in
// bit 42 goes in 51.
-//
+//
// So what we want to do is shift bits 43 thru 63 into significand_lo.
-// This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
-// Then shifting (just with signficaand_hi) back into bit 42.
-//
-// The shift_value is 63-42 = 21. In general, this is
+// This is shifting bit 42 into bit 63, taking care to retain the shifted-off bits.
+// Then shifting (just with signficaand_hi) back into bit 42.
+//
+// The shift_value is 63-42 = 21. In general, this is
// 63 - (51 -(0xffff - 0xfff6))
// For this example, it is
// 63 - (51 - 9) = 63 - 42 = 21
-//
-// This means we are shifting 21 bits into significand_lo. We must maintain more
-// that a 128-bit signficand not to lose bits. So before the shift we put the
-// 128-bit significand into a 256-bit signficand and then shift.
+//
+// This means we are shifting 21 bits into significand_lo. We must maintain more
+// that a 128-bit signficand not to lose bits. So before the shift we put the 128-bit
+// significand into a 256-bit signficand and then shift.
// The 256-bit significand has four parts: hh, hl, lh, and ll.
-//
+//
// Start off with
// hh hl lh ll
// <64> <49><15_0> <64_0> <64_0>
-//
+//
// After shift by 21 (then return for significand_hi),
// <43><21_0> <21><43> <6><58_0> <64_0>
-//
+//
// Take the hh part and convert to a double. There is no rounding here.
-// The conversion is exact. The true exponent of the high part is the same as
-// the true exponent of the input quad.
-//
-// We have some 64 plus significand bits for the low part. In this example, we
-// have 70 bits. We want to round this to a double. Put them in a quad and then
-// do a quad fnorm.
-// For this example the true exponent of the low part is
+// The conversion is exact. The true exponent of the high part is the same as the
+// true exponent of the input quad.
+//
+// We have some 64 plus significand bits for the low part. In this example, we have
+// 70 bits. We want to round this to a double. Put them in a quad and then do a quad fnorm.
+// For this example the true exponent of the low part is
// true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
-// In general, this is
-// true_exponent_of_high - (64 - shift_value)
-//
-//
+// In general, this is
+// true_exponent_of_high - (64 - shift_value)
+//
+//
// Largest T,t
// ----------
// The largest T,t is
-// 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))=+6.92171e-001
-//
+// data8 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))= +6.92171e-001
+//
// Table entry 256 is
// 0 fffe b1321ff67cba178c 51da12f4df5a0000
-//
-// The shift value is
+//
+// The shift value is
// 63 - (51 -(0xffff - 0xfffe)) = 13
-//
-// The true exponent of the low part is
+//
+// The true exponent of the low part is
// true_exponent_of_high - (64 - shift_value)
// -1 - (64-13) = -52
// Biased as a double, this is 0x3cb
-//
-//
-//
+//
+//
+//
// So then lsb(T) must be >= 2^-51
// msb(Klog2_hi) <= 2^12
-//
+//
// +--------+---------+
// | 51 bits | <== largest T
// +--------+---------+
@@ -336,6 +320,7 @@
// +------------+----------------+-+
+
// Special Cases
//==============================================================
@@ -400,67 +385,63 @@
// X any Y =0 +1
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
// integer registers used
-pow_GR_signexp_X = r14
-pow_GR_17ones = r15
-pow_AD_P = r16
-pow_GR_exp_2tom8 = r17
-pow_GR_sig_X = r18
-pow_GR_10033 = r19
-pow_GR_16ones = r20
-
-pow_AD_Tt = r21
-pow_GR_exp_X = r22
-pow_AD_Q = r23
-pow_GR_true_exp_X = r24
-pow_GR_y_zero = r25
-
-pow_GR_exp_Y = r26
-pow_AD_tbl1 = r27
-pow_AD_tbl2 = r28
-pow_GR_offset = r29
-pow_GR_exp_Xm1 = r30
-pow_GR_xneg_yodd = r31
-
-pow_GR_signexp_Xm1 = r35
-pow_GR_int_W1 = r36
-pow_GR_int_W2 = r37
-pow_GR_int_N = r38
-pow_GR_index1 = r39
-pow_GR_index2 = r40
-
-pow_AD_T1 = r41
-pow_AD_T2 = r42
-pow_int_GR_M = r43
-pow_GR_sig_int_Y = r44
-pow_GR_sign_Y_Gpr = r45
-
-pow_GR_17ones_m1 = r46
-pow_GR_one = r47
-pow_GR_sign_Y = r48
-pow_GR_signexp_Y_Gpr = r49
-pow_GR_exp_Y_Gpr = r50
-
-pow_GR_true_exp_Y_Gpr = r51
-pow_GR_signexp_Y = r52
-pow_GR_x_one = r53
-pow_GR_exp_2toM63 = r54
-pow_GR_big_pos = r55
-
-pow_GR_big_neg = r56
-
-GR_SAVE_B0 = r50
-GR_SAVE_GP = r51
-GR_SAVE_PFS = r52
-
-GR_Parameter_X = r53
-GR_Parameter_Y = r54
-GR_Parameter_RESULT = r55
-pow_GR_tag = r56
+pow_AD_Tt = r33
+pow_GR_FFF7 = r34
+pow_GR_exp_Y = r34 // duplicate
+pow_GR_17ones = r35
+
+pow_AD_P = r36
+pow_AD_Q = r37
+pow_AD_tbl1 = r38
+pow_AD_tbl2 = r39
+pow_GR_exp_X = r40
+pow_GR_true_exp_X = r40 // duplicate
+
+pow_GR_offset = r41
+pow_GR_exp_Xm1 = r42
+pow_GR_sig_X = r43
+pow_GR_signexp_X = r44
+
+pow_GR_signexp_Xm1 = r46
+pow_GR_int_W1 = r47
+pow_GR_int_W2 = r48
+pow_GR_int_N = r49
+pow_GR_index1 = r50
+
+pow_GR_index2 = r51
+pow_AD_T1 = r52
+pow_AD_T2 = r53
+pow_GR_gt_ln = r53 // duplicate
+pow_int_GR_M = r54
+pow_GR_10033 = r55
+
+pow_GR_16ones = r56
+pow_GR_sig_int_Y = r57
+pow_GR_sign_Y_Gpr = r58
+pow_GR_17ones_m1 = r59
+pow_GR_one = r60
+pow_GR_sign_Y = r60
+
+pow_GR_signexp_Y_Gpr = r61
+pow_GR_exp_Y_Gpr = r62
+pow_GR_true_exp_Y_Gpr = r63
+pow_GR_signexp_Y = r64
+
+GR_SAVE_B0 = r65
+GR_SAVE_GP = r66
+GR_SAVE_PFS = r67
+
+GR_Parameter_X = r68
+GR_Parameter_Y = r69
+GR_Parameter_RESULT = r70
+pow_GR_tag = r71
// floating point registers used
@@ -483,8 +464,7 @@ POW_log2_lo = f43
POW_r = f44
POW_Q0_half = f45
-POW_Q1 = f46
-POW_tmp = f47
+POW_Q1 = f46
POW_log2_hi = f48
POW_Q4 = f49
POW_P1 = f50
@@ -496,7 +476,6 @@ POW_Yrcub = f54
POW_log2_by_128_lo = f55
POW_v6 = f56
-POW_xsq = f57
POW_v4 = f58
POW_v2 = f59
POW_T = f60
@@ -505,7 +484,6 @@ POW_Tt = f61
POW_RSHF = f62
POW_v21ps = f63
POW_s4 = f64
-POW_twoV = f65
POW_U = f66
POW_G = f67
@@ -555,45 +533,44 @@ POW_1ps = f103
POW_A = f104
POW_es = f105
-POW_Xp1 = f106
POW_int_K = f107
POW_K = f108
POW_f123 = f109
POW_Gpr = f110
-POW_Y_Gpr = f111
+POW_Y_Gpr = f111
POW_int_Y = f112
-POW_abs_q = f114
-POW_2toM63 = f115
POW_float_int_Y = f116
POW_ftz_urm_f8 = f117
POW_wre_urm_f8 = f118
-POW_big_neg = f119
-POW_big_pos = f120
+POW_abs_A = f119
+POW_gt_pln = f120
-POW_GY_Z2 = f121
-POW_pYrcub_e3 = f122
-POW_d = f123
-POW_d2 = f124
-POW_poly_d_hi = f121
-POW_poly_d_lo = f122
-POW_poly_d = f121
+POW_xsq = f121
+
+POW_twoV = f122
+POW_Xp1 = f123
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(pow_table_P)
+pow_table_P:
+ASM_TYPE_DIRECTIVE(pow_table_P,@object)
data8 0x8000F7B249FF332D, 0x0000BFFC // P_5
data8 0xAAAAAAA9E7902C7F, 0x0000BFFC // P_3
data8 0x80000000000018E5, 0x0000BFFD // P_1
data8 0xb8aa3b295c17f0bc, 0x00004006 // inv_ln2_by_128
-//
-//
+
+
data8 0x3FA5555555554A9E // Q_2
data8 0x3F8111124F4DD9F9 // Q_3
data8 0x3FE0000000000000 // Q_0
@@ -603,18 +580,20 @@ data8 0x43e8000000000000 // Right shift constant for exp
data8 0xc9e3b39803f2f6af, 0x00003fb7 // ln2_by_128_lo
data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
-LOCAL_OBJECT_END(pow_table_P)
+ASM_SIZE_DIRECTIVE(pow_table_P)
-LOCAL_OBJECT_START(pow_table_Q)
+pow_table_Q:
+ASM_TYPE_DIRECTIVE(pow_table_Q,@object)
data8 0x9249FE7F0DC423CF, 0x00003FFC // P_4
data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC // P_2
data8 0xAAAAAAAAAAAAB505, 0x00003FFD // P_0
data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo = +6.93147e-001
data8 0xb17217f7d1cf79ab, 0x00003ff7 // ln2_by_128_hi
-LOCAL_OBJECT_END(pow_table_Q)
+ASM_SIZE_DIRECTIVE(pow_table_Q)
-LOCAL_OBJECT_START(pow_Tt)
+pow_Tt:
+ASM_TYPE_DIRECTIVE(pow_Tt,@object)
data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 // log(1/frcpa(1+0/256))= +1.95503e-003
data8 0x3f78121214586a00, 0x3cb540e0a5cfc9bc // log(1/frcpa(1+1/256))= +5.87661e-003
data8 0x3f841929f9683200, 0x3cbdf1d57404da1f // log(1/frcpa(1+2/256))= +9.81362e-003
@@ -871,12 +850,13 @@ data8 0x3fe5f673c61a2ed0, 0x3caa385eef5f2789 // log(1/frcpa(1+252/256))= +6.863
data8 0x3fe6065bea385924, 0x3cb11624f165c5b4 // log(1/frcpa(1+253/256))= +6.88276e-001
data8 0x3fe6164bfa7cc068, 0x3cbad884f87073fa // log(1/frcpa(1+254/256))= +6.90222e-001
data8 0x3fe62643fecf9740, 0x3cb78c51da12f4df // log(1/frcpa(1+255/256))= +6.92171e-001
-LOCAL_OBJECT_END(pow_Tt)
+ASM_SIZE_DIRECTIVE(pow_Tt)
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
-LOCAL_OBJECT_START(pow_tbl1)
+pow_tbl1:
+ASM_TYPE_DIRECTIVE(pow_tbl1,@object)
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
@@ -893,12 +873,13 @@ data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(pow_tbl1)
+ASM_SIZE_DIRECTIVE(pow_tbl1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(pow_tbl2)
+pow_tbl2:
+ASM_TYPE_DIRECTIVE(pow_tbl2,@object)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
@@ -907,319 +888,402 @@ data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(pow_tbl2)
+ASM_SIZE_DIRECTIVE(pow_tbl2)
+
+.global pow
.section .text
-GLOBAL_LIBM_ENTRY(pow)
+.proc pow
+.align 32
+
+pow:
-// Get exponent of x. Will be used to calculate K.
{ .mfi
- getf.exp pow_GR_signexp_X = f8
- fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
- mov pow_GR_17ones = 0x1FFFF
+ alloc r32=ar.pfs,1,35,4,0
+ fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
+ mov pow_GR_17ones = 0x1FFFF
}
{ .mfi
- addl pow_AD_P = @ltoff(pow_table_P), gp
- fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
+(p0) addl pow_AD_P = @ltoff(pow_table_P), gp
+ fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
nop.i 999
;;
}
-// Get significand of x. Will be used to get index to fetch T, Tt.
+
+// Get exponent of x. Will be used to calculate K.
{ .mfi
- getf.sig pow_GR_sig_X = f8
- frcpa.s1 POW_B, p6 = f1,f8
+ getf.exp pow_GR_signexp_X = f8
+ frcpa.s1 POW_B, p6 = f1,f8
nop.i 999
}
{ .mfi
ld8 pow_AD_P = [pow_AD_P]
- fma.s1 POW_NORM_X = f8,f1,f0
- mov pow_GR_exp_2tom8 = 0xFFF7
+ fma.s1 POW_NORM_X = f8,f1,f0
+ mov pow_GR_FFF7 = 0xFFF7
}
;;
+
+
+// Get significand of x. Will be used to get index to fetch T, Tt.
// p13 = TRUE ==> X is unorm
// DOUBLE 0x10033 exponent limit at which y is an integer
+// SINGLE 0x10016
{ .mfi
- nop.m 999
- fclass.m p13,p0 = f8, 0x0b // Test for x unorm
- addl pow_GR_10033 = 0x10033, r0
+ getf.sig pow_GR_sig_X = f8
+ fclass.m p13,p0 = f8, 0x0b // Test for x unorm
+ addl pow_GR_10033 = 0x10033, r0
}
{ .mfi
mov pow_GR_16ones = 0xFFFF
- fma.s1 POW_NORM_Y = f9,f1,f0
+ fma.s1 POW_NORM_Y = f9,f1,f0
nop.i 999
}
;;
+
// p14 = TRUE ==> X is ZERO
{ .mfi
adds pow_AD_Tt = pow_Tt - pow_table_P, pow_AD_P
- fclass.m p14,p0 = f8, 0x07
- and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
+ fclass.m p14,p15 = f8, 0x07
+ and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
}
{ .mfi
- adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
+ adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
nop.f 999
nop.i 999
}
;;
{ .mfi
- ldfe POW_P5 = [pow_AD_P], 16
- fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
- nop.i 999
+ ldfe POW_P5 = [pow_AD_P], 16
+ fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
+ shl pow_GR_offset = pow_GR_sig_X, 1
}
{ .mib
- ldfe POW_P4 = [pow_AD_Q], 16
- sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
-(p13) br.cond.spnt POW_X_DENORM
+ ldfe POW_P4 = [pow_AD_Q], 16
+ sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
+(p13) br.cond.spnt L(POW_X_DENORM)
}
;;
+
// Continue normal and denormal paths here
-POW_COMMON:
+L(POW_COMMON):
// p11 = TRUE ==> Y is a NAN
{ .mfi
- ldfe POW_P3 = [pow_AD_P], 16
- fclass.m p11,p0 = f9, 0xc3
- nop.i 999
+ ldfe POW_P3 = [pow_AD_P], 16
+ fclass.m.unc p11,p0 = f9, 0xc3
+ shr.u pow_GR_offset = pow_GR_offset,56
}
{ .mfi
- ldfe POW_P2 = [pow_AD_Q], 16
+ ldfe POW_P2 = [pow_AD_Q], 16
nop.f 999
- mov pow_GR_y_zero = 0
+ nop.i 999
}
;;
-// Note POW_Xm1 and POW_r1 are used interchangably
+
+
+// Compute xsq to decide later if |x|=1
+// p11 = TRUE ==> Y is a NaN
{ .mfi
- alloc r32=ar.pfs,2,19,4,0
- fms.s1 POW_r = POW_B, POW_NORM_X,f1
- nop.i 999
+ setf.sig POW_int_K = pow_GR_true_exp_X
+(p15) fms.s1 POW_r = POW_B, POW_NORM_X,f1
+ shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
}
{ .mfi
- setf.sig POW_int_K = pow_GR_true_exp_X
-(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
+ nop.m 999
+(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
nop.i 999
}
;;
-// p12 = TRUE if Y is ZERO
-// Compute xsq to decide later if |x|=1
+
+
+// p12 = TRUE ==> X is ZERO and Y is ZERO
{ .mfi
- ldfe POW_P1 = [pow_AD_P], 16
- fclass.m p12,p0 = f9, 0x07
- shl pow_GR_offset = pow_GR_sig_X, 1
+ ldfe POW_P1 = [pow_AD_P], 16
+(p14) fclass.m.unc p12,p0 = f9, 0x07
+ nop.i 999
}
{ .mfb
- ldfe POW_P0 = [pow_AD_Q], 16
+ ldfe POW_P0 = [pow_AD_Q], 16
fma.s1 POW_xsq = POW_NORM_X, POW_NORM_X, f0
-(p11) br.cond.spnt POW_Y_NAN // Branch if y=nan
+(p11) br.cond.spnt L(POW_Y_NAN)
}
;;
+
+.pred.rel "mutex",p8,p9
// Get exponent of |x|-1 to use in comparison to 2^-8
-{ .mfi
- getf.exp pow_GR_signexp_Xm1 = POW_Xm1
- fcvt.fx.s1 POW_int_Y = POW_NORM_Y
- shr.u pow_GR_offset = pow_GR_offset,56
+{ .mmf
+(p8) getf.exp pow_GR_signexp_Xm1 = POW_Xp1
+(p9) getf.exp pow_GR_signexp_Xm1 = POW_Xm1
+ fcvt.fx.s1 POW_int_Y = POW_NORM_Y
}
;;
+
// p11 = TRUE ==> X is a NAN
{ .mfi
ldfpd POW_log2_hi, POW_log2_lo = [pow_AD_Q], 16
- fclass.m p11,p0 = f8, 0xc3
- shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
+ fclass.m.unc p11,p0 = f8, 0xc3
+ nop.i 999
}
-{ .mfi
- ldfe POW_inv_log2_by_128 = [pow_AD_P], 16
- fma.s1 POW_delta = f0,f0,f0 // delta=0 in case |x| near 1
-(p12) mov pow_GR_y_zero = 1
+{ .mib
+ ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16
+ nop.i 999
+(p12) br.cond.spnt L(POW_X_0_Y_0)
}
;;
+
+// p14 = TRUE ==> X is zero
+// p15 = TRUE ==> X is zero AND Y is negative
+// p10 = TRUE ==> X is zero AND Y is >= zero
{ .mfi
- ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16
- fma.s1 POW_G = f0,f0,f0 // G=0 in case |x| near 1
- and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
+ ldfe POW_inv_log2_by_128 = [pow_AD_P], 16
+(p14) fcmp.lt.unc.s1 p15, p10 = f9,f0
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+ nop.f 999
+ and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
+}
;;
+
// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
+// p12 = TRUE ==> X is a NAN and Y is a zero
+// p13 = TRUE ==> X is a NAN and Y is anything else
{ .mfi
- getf.exp pow_GR_signexp_Y = POW_NORM_Y
- nop.f 999
- cmp.lt p6,p7 = pow_GR_exp_Xm1, pow_GR_exp_2tom8
-}
-{ .mfb
- ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16
- fma.s1 POW_rsq = POW_r, POW_r,f0
-(p11) br.cond.spnt POW_X_NAN // Branch if x=nan and y not nan
+ getf.exp pow_GR_signexp_Y = POW_NORM_Y
+(p11) fclass.m.unc p12,p13 = f9, 0x07
+ cmp.lt.unc p6,p7 = pow_GR_exp_Xm1, pow_GR_FFF7
}
+{ .mfi
+ ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16
+ fma.s1 POW_rsq = POW_r, POW_r,f0
+ nop.i 999
;;
+}
// If on the x near 1 path, assign r1 to r and r1*r1 to rsq
{ .mfi
- ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16
-(p6) fma.s1 POW_r = POW_r1, f1, f0
+ ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16
+(p6) fma.s1 POW_r = POW_r1, f1, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
nop.i 999
+;;
+}
+
+
+{ .mfi
+ ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16
+(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4
+ and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
}
{ .mfb
nop.m 999
-(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
-(p14) br.cond.spnt POW_X_0 // Branch if x zero and y not nan
+(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4
+(p12) br.cond.spnt L(POW_X_NAN_Y_0)
}
;;
+
{ .mfi
- ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16
-(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4
- nop.i 999
+ nop.m 999
+(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2
+ andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
}
-{ .mfi
- mov pow_GR_exp_2toM63 = 0xffc0 // Exponent of 2^-63
-(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4
- nop.i 999
+{ .mfb
+ nop.m 999
+(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2
+(p12) br.cond.spnt L(POW_X_NAN_Y_0)
}
;;
{ .mfi
- setf.exp POW_2toM63 = pow_GR_exp_2toM63 // Form 2^-63 for test of q
-(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2
+ nop.m 999
+ fcvt.xf POW_K = POW_int_K
nop.i 999
}
-{ .mfi
+{ .mfb
nop.m 999
-(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2
- nop.i 999
+(p13) fma.d f8 = f8,f1,f0
+(p13) br.ret.spnt b0 // Exit if x nan, y anything but zero
}
;;
-
+
+// p10 = TRUE ==> X is zero AND Y is positive
+// p8 = TRUE ==> X is zero AND Y is outside integer range (treat as even int)
+// return +0
+// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer)
+{ .mfi
+(p10) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033
+(p6) fmerge.s POW_delta = f0,f0
+ nop.i 999
+}
{ .mfi
nop.m 999
- fcvt.xf POW_K = POW_int_K
+(p6) fma.s1 POW_G = f0,f0,f0
nop.i 999
}
;;
{ .mfi
- getf.sig pow_GR_sig_int_Y = POW_int_Y
- fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0
- and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
+ getf.sig pow_GR_sig_int_Y = POW_int_Y
+ fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0
+ nop.i 999
}
-{ .mfb
- andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
- fma.s1 POW_U = POW_NORM_Y,POW_r,f0
-(p12) br.cond.spnt POW_Y_0 // Branch if y=zero, x not zero or nan
+{ .mfi
+ nop.m 999
+ fma.s1 POW_U = POW_NORM_Y,POW_r,f0
+ nop.i 999
}
;;
-// p11 = TRUE ==> X is NEGATIVE but not inf
{ .mfi
- ldfe POW_log2_by_128_lo = [pow_AD_P], 16
- fclass.m p11,p0 = f8, 0x1a
+ ldfe POW_log2_by_128_lo = [pow_AD_P], 16
+(p6) fma.s1 POW_v2 = POW_P1, POW_r1, POW_P0
nop.i 999
}
{ .mfi
- ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
- fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
+ ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
+(p7) fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
nop.i 999
}
;;
+
{ .mfi
nop.m 999
- fcvt.xf POW_float_int_Y = POW_int_Y
+ fcvt.xf POW_float_int_Y = POW_int_Y
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4
- adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
+ fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4
+ adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
}
;;
{ .mfi
nop.m 999
-(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt
+(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt
nop.i 999
}
{ .mfi
nop.m 999
-(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
- adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
+(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
+ adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
}
;;
+
{ .mfi
nop.m 999
- fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U
+ fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U
+ fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U
nop.i 999
}
;;
+// p11 = TRUE ==> X is NEGATIVE
+// p8 = TRUE ==> X is zero AND Y is outside intger range (treat as even int)
+// return +0
{ .mfi
nop.m 999
- fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
+ fclass.m.unc p11,p0 = f8, 0x1a
nop.i 999
}
-{ .mfi
+{ .mfb
+ nop.m 999
+(p8) fma.d f8 = f0,f0,f0
+(p8) br.ret.spnt b0
+}
+;;
+
+{ .mfi
nop.m 999
- fma.s1 POW_p = POW_rsq, POW_v3, POW_v2
+ fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 POW_p = POW_rsq, POW_v3, POW_v2
nop.i 999
}
;;
-// p11 = TRUE ==> X is NEGATIVE but not inf
-// p12 = TRUE ==> X is NEGATIVE AND Y already even int
+
+// p11 = TRUE ==> X is NEGATIVE
+// p12 = TRUE ==> X is NEGATIVE AND Y already int
// p13 = TRUE ==> X is NEGATIVE AND Y possible int
{ .mfi
nop.m 999
- fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0
-(p11) cmp.gt.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
+ fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0
+(p11) cmp.ge.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
}
{ .mfi
nop.m 999
- fma.s1 POW_Gpr = POW_G, f1, POW_r
+ fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
nop.i 999
}
;;
-// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
+// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer)
+// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd)
+// p7 = TRUE ==> X is zero AND Y is NOT an integer, return +0
{ .mfi
nop.m 999
- fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF
+(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y
nop.i 999
}
-{ .mfi
+{ .mfi
nop.m 999
- fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2
+ fma.s1 POW_Gpr = POW_G, f1, POW_r
nop.i 999
}
;;
+// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
- fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
+ fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2
nop.i 999
}
;;
+
+// If x=0 and y>0, test y and flag denormal
+// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd)
+// p8 = TRUE ==> X is zero AND Y is an odd integer
+// p9 = TRUE ==> X is zero AND Y is an even integer
{ .mfi
nop.m 999
- fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
- nop.i 999
+(p10) fcmp.eq.s0 p15,p0 = f9,f0
+(p6) tbit.nz.unc p8,p9 = pow_GR_sig_int_Y,0
}
{ .mfi
nop.m 999
- fma.s1 POW_GY_Z2 = POW_G, POW_NORM_Y, POW_Z2
+ fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
nop.i 999
}
;;
@@ -1227,7 +1291,7 @@ POW_COMMON:
// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
- fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1
+ fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1
nop.i 999
}
{ .mfi
@@ -1237,60 +1301,81 @@ POW_COMMON:
}
;;
-// p13 = TRUE ==> X is NEGATIVE AND Y possible int
-// p10 = TRUE ==> X is NEG and Y is an int
-// p12 = TRUE ==> X is NEG and Y is not an int
{ .mfi
nop.m 999
-(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
- mov pow_GR_xneg_yodd = 0
+(p7) fma.d f8 = f0,f0,f0 // Result +0 if x zero and y not integer
+ nop.i 999
}
-{ .mfi
+{ .mfb
nop.m 999
- fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
- nop.i 999
+ fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
+(p8) br.ret.spnt b0 // Exit if x zero and y odd integer
}
;;
// By subtracting RSHF we get rounded integer POW_N2float
+// p15 = TRUE ==> X_0_Y_NEG
{ .mfi
nop.m 999
fms.s1 POW_N2float = POW_W2, f1, POW_RSHF
nop.i 999
}
-{ .mfi
+{ .mfb
nop.m 999
- fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2
- nop.i 999
+ fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2
+(p15) br.cond.spnt L(POW_X_0_Y_NEG)
}
;;
+
+
{ .mfi
nop.m 999
- fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
+ fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
nop.i 999
}
-{ .mfi
+{ .mfb
nop.m 999
- fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2
- nop.i 999
+ fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2
+(p7) br.ret.spnt b0 // Exit if x zero and y not an integer
}
;;
+
+
// Extract rounded integer from rightmost significand of POW_W2
// By subtracting RSHF we get rounded integer POW_N1float
{ .mfi
- getf.sig pow_GR_int_W2 = POW_W2
+ getf.sig pow_GR_int_W2 = POW_W2
fms.s1 POW_N1float = POW_W1, f1, POW_RSHF
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half
+ fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half
nop.i 999
}
;;
+
+
+
+// p13 = TRUE ==> X is NEGATIVE AND Y possible int
+// p10 = TRUE ==> X is NEG and Y is an int
+// p12 = TRUE ==> X is NEG and Y is not an int
+{ .mfi
+ nop.m 999
+(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p9) fma.d f8 = f0,f0,f0 // Result +0 if x zero and y even integer
+(p9) br.ret.spnt b0 // Exit if x zero and y even integer
+}
+;;
+
+
{ .mfi
nop.m 999
fnma.s1 POW_s2 = POW_N2float, POW_log2_by_128_hi, POW_Z2
@@ -1298,7 +1383,7 @@ POW_COMMON:
}
{ .mfi
nop.m 999
- fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV
+ fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV
nop.i 999
}
;;
@@ -1306,283 +1391,278 @@ POW_COMMON:
// Extract rounded integer from rightmost significand of POW_W1
// Test if x inf
{ .mfi
- getf.sig pow_GR_int_W1 = POW_W1
- fclass.m p15,p0 = POW_NORM_X, 0x23
+ getf.sig pow_GR_int_W1 = POW_W1
+ fclass.m.unc p15,p0 = POW_NORM_X, 0x23
nop.i 999
}
{ .mfb
nop.m 999
fnma.s1 POW_f2 = POW_N2float, POW_log2_by_128_lo, f1
-(p12) br.cond.spnt POW_X_NEG_Y_NONINT // Branch if x neg, y not integer
+(p12) br.cond.spnt L(POW_X_NEG_Y_NONINT) // Branch if x neg, y not integer
}
;;
-// p11 = TRUE ==> X is +1.0
// p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer
{ .mfi
- getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
- fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
-(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
-}
-{ .mfi
- nop.m 999
- fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4
- nop.i 999
+ getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
+ fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4
+(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
}
;;
+
{ .mfi
- nop.m 999
+ add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2
fnma.s1 POW_f1 = POW_N1float, POW_log2_by_128_lo, f1
nop.i 999
}
{ .mfb
nop.m 999
fnma.s1 POW_s1 = POW_N1float, POW_log2_by_128_hi, POW_Z1
-(p15) br.cond.spnt POW_X_INF
+(p15) br.cond.spnt L(POW_X_INF)
}
;;
+
// Test x and y and flag denormal
{ .mfi
- nop.m 999
+ and pow_GR_index1 = 0x0f, pow_GR_int_N
fcmp.eq.s0 p15,p0 = f8,f9
- nop.i 999
+ shr r2 = pow_GR_int_N, 7
}
{ .mfi
- nop.m 999
- fma.s1 POW_pYrcub_e3 = POW_p, POW_Yrcub, POW_e3
- nop.i 999
+ and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+ nop.f 999
+ and pow_GR_index2 = 0x70, pow_GR_int_N
}
;;
+
+
{ .mfi
- nop.m 999
+ shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0
- nop.i 999
+ sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
}
{ .mfi
- nop.m 999
- fma.s1 POW_e12 = POW_e1,f1,POW_e2
- nop.i 999
+ addl pow_int_GR_M = 0xFFFF, r2
+ fma.s1 POW_e12 = POW_e1,f1,POW_e2
+ add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
}
;;
-{ .mfi
- add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2
-(p11) fma.d.s0 f8 = f1,f1,f0 // If x=1, result is +1
- nop.i 999
-}
-{ .mib
-(p12) mov pow_GR_xneg_yodd = 1
- nop.i 999
-(p11) br.ret.spnt b0 // Early exit if x=1.0, result is +1
+
+{ .mmi
+ ldfe POW_T1 = [pow_AD_T1],16
+ setf.exp POW_2M = pow_int_GR_M
+ andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
}
;;
-{ .mfi
- and pow_GR_index1 = 0x0f, pow_GR_int_N
- fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2
- shr pow_int_GR_M = pow_GR_int_N, 7 // M = N/128
-}
-{ .mib
- and pow_GR_index2 = 0x70, pow_GR_int_N
- cmp.eq p6, p0 = pow_GR_xneg_yodd, r0
+
+{ .mfb
+ ldfe POW_T2 = [pow_AD_T2],16
+ fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2
(p7) br.ret.spnt b0 // Early exit if y=1.0, result is x
}
;;
+
+// double: p8 TRUE ==> |Y(G + r)| >= 10
+// single: p8 TRUE ==> |Y(G + r)| >= 7
+
+// double
+// -2^10 -2^9 2^9 2^10
+// -----+-----+----+ ... +-----+-----+-----
+// p8 | p9 | p8
+// | | p10 | |
+// single
+// -2^7 -2^6 2^6 2^7
+// -----+-----+----+ ... +-----+-----+-----
+// p8 | p9 | p8
+// | | p10 | |
+
+
{ .mfi
- shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
- fma.s1 POW_s = POW_s1, f1, POW_s2
- add pow_int_GR_M = pow_GR_16ones, pow_int_GR_M
+(p0) cmp.le.unc p8,p9 = 10, pow_GR_true_exp_Y_Gpr
+ fma.s1 POW_s = POW_s1, f1, POW_s2
+ nop.i 999
}
{ .mfi
- add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
- fma.s1 POW_f12 = POW_f1, POW_f2,f0
- and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+ nop.m 999
+ fma.s1 POW_f12 = POW_f1, POW_f2,f0
+ nop.i 999
}
;;
-{ .mmi
- ldfe POW_T1 = [pow_AD_T1]
- ldfe POW_T2 = [pow_AD_T2]
- sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
-}
-;;
{ .mfi
- setf.exp POW_2M = pow_int_GR_M
- fma.s1 POW_e123 = POW_e12, f1, POW_e3
- nop.i 999
-}
-{ .mfb
-(p6) cmp.gt p6, p0 = -11, pow_GR_true_exp_Y_Gpr
- fma.s1 POW_d = POW_GY_Z2, f1, POW_pYrcub_e3
-(p6) br.cond.spnt POW_NEAR_ONE // branch if |y*log(x)| < 2^(-11)
+ nop.f 999
+(p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr
}
;;
-{ .mfi
+
+
+{ .mfb
nop.m 999
- fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
- nop.i 999
+ fma.s1 POW_e123 = POW_e12, f1, POW_e3
+(p8) br.cond.spnt L(POW_OVER_UNDER_X_NOT_INF)
}
;;
-// p8 TRUE ==> |Y(G + r)| >= 10
-// double
-// -2^10 -2^9 2^9 2^10
-// -----+-----+----+ ... +-----+-----+-----
-// p8 | p9 | p8
-// | | p10 | |
+{ .mmf
+ fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
+}
+;;
+
-// Form signexp of constants to indicate overflow
{ .mfi
- mov pow_GR_big_pos = 0x103ff
- fma.s1 POW_ssq = POW_s, POW_s, f0
- cmp.le p8,p9 = 10, pow_GR_true_exp_Y_Gpr
+ nop.m 999
+ fma.s1 POW_ssq = POW_s, POW_s, f0
+ nop.i 999
}
{ .mfi
- mov pow_GR_big_neg = 0x303ff
- fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2
- andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+ nop.m 999
+ fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2
+ nop.i 999
}
;;
-// Form big positive and negative constants to test for possible overflow
{ .mfi
- setf.exp POW_big_pos = pow_GR_big_pos
- fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half
-(p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr
+ nop.m 999
+ fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half
+ nop.i 999
}
-{ .mfb
- setf.exp POW_big_neg = pow_GR_big_neg
- fma.s1 POW_1ps = f1,f1,POW_s
-(p8) br.cond.spnt POW_OVER_UNDER_X_NOT_INF
+{ .mfi
+ nop.m 999
+ fma.s1 POW_1ps = f1,f1,POW_s
+ nop.i 999
}
;;
-// f123 = f12*(e123+1) = f12*e123+f12
{ .mfi
nop.m 999
- fma.s1 POW_f123 = POW_e123,POW_f12,POW_f12
+ fma.s1 POW_f3 = POW_e123,f1,f1
nop.i 999
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
+ fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
nop.i 999
}
+;;
+
{ .mfi
nop.m 999
- fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4
- cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
+ fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4
+ nop.i 999
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps
+ fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_s4 = POW_ssq, POW_ssq, f0
+ fma.s1 POW_s4 = POW_ssq, POW_ssq, f0
nop.i 999
}
;;
{ .mfi
nop.m 999
-(p12) fnma.s1 POW_A = POW_2M, POW_f123, f0
+ fma.s1 POW_f123 = POW_f12, POW_f3, f0
nop.i 999
}
-{ .mfi
- nop.m 999
-(p13) fma.s1 POW_A = POW_2M, POW_f123, f0
- cmp.eq p14,p11 = r0,r0 // Initialize p14 on, p11 off
-}
;;
{ .mfi
nop.m 999
- fmerge.s POW_abs_q = f0, POW_q // Form |q| so can test its size
+ fma.s1 POW_A = POW_2M, POW_T1T2, f0
nop.i 999
}
;;
+
+
{ .mfi
-(p10) cmp.eq p0,p14 = r0,r0 // Turn off p14 if no overflow
- fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps
+ nop.m 999
+(p12) fmerge.s POW_f123 = f8,POW_f123 // if x neg, y odd int
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_A = POW_A, POW_T1T2, f0
+// fma.s1 POW_es = POW_ssq, POW_v3, POW_v2
nop.i 999
}
;;
{ .mfi
-// Test for |q| < 2^-63. If so then reverse last two steps of the result
-// to avoid monotonicity problems for results near 1.0 in round up/down/zero.
-// p11 will be set if need to reverse the order, p14 if not.
nop.m 999
-(p10) fcmp.lt.s0 p11,p14 = POW_abs_q, POW_2toM63 // Test |q| <2^-63
+ fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps
nop.i 999
}
;;
-.pred.rel "mutex",p11,p14
+
{ .mfi
nop.m 999
-(p14) fma.s1 POW_A = POW_A, POW_es, f0
+ fma.s1 POW_A = POW_A, POW_f123, f0
nop.i 999
}
{ .mfi
nop.m 999
-(p11) fma.s1 POW_A = POW_A, POW_q, POW_A
+// fma.s1 POW_es = POW_es, POW_ssq, POW_1ps
nop.i 999
}
;;
-// Dummy op to set inexact if |q| < 2^-63
+
{ .mfi
nop.m 999
-(p11) fma.d.s0 POW_tmp = POW_A, POW_q, POW_A
+ fma.s1 POW_A = POW_A, POW_es,f0
nop.i 999
}
;;
-{ .mfi
- nop.m 999
-(p14) fma.d.s0 f8 = POW_A, POW_q, POW_A
- nop.i 999
-}
+
+
{ .mfb
nop.m 999
-(p11) fma.d.s0 f8 = POW_A, POW_es, f0
-(p10) br.ret.sptk b0 // Exit main branch if no over/underflow
+(p10) fma.d f8 = POW_A, POW_q, POW_A
+(p10) br.ret.sptk b0
}
;;
+
+
+
+
// POSSIBLE_OVER_UNDER
-// p6 = TRUE ==> Y_Gpr negative
-// Result is already computed. We just need to know if over/underflow occurred.
+// p6 = TRUE ==> Y negative
-{ .mfb
- cmp.eq p0,p6 = pow_GR_sign_Y_Gpr, r0
- nop.f 999
-(p6) br.cond.spnt POW_POSSIBLE_UNDER
+{ .mfi
+ nop.m 999
+ fmerge.s POW_abs_A = f0, POW_A
+ cmp.eq.unc p0,p6 = pow_GR_sign_Y, r0
+}
+;;
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(POW_POSSIBLE_UNDER)
}
;;
// POSSIBLE_OVER
-// We got an answer.
+// We got an answer.
// overflow is a possibility, not a certainty
@@ -1612,20 +1692,21 @@ POW_COMMON:
// RN RN
// RZ
+
// Put in s2 (td set, wre set)
{ .mfi
- nop.m 999
+ mov pow_GR_gt_ln = 0x103ff
fsetc.s2 0x7F,0x42
- nop.i 999
+ nop.i 999
}
;;
+
{ .mfi
- nop.m 999
- fma.d.s2 POW_wre_urm_f8 = POW_A, POW_q, POW_A
- nop.i 999
+ setf.exp POW_gt_pln = pow_GR_gt_ln
+ fma.d.s2 POW_wre_urm_f8 = POW_abs_A, POW_q, POW_abs_A
+ nop.i 999 ;;
}
-;;
// Return s2 to default
{ .mfi
@@ -1635,67 +1716,31 @@ POW_COMMON:
}
;;
+
// p7 = TRUE ==> yes, we have an overflow
{ .mfi
nop.m 999
- fcmp.ge.s1 p7, p8 = POW_wre_urm_f8, POW_big_pos
+ fcmp.ge.unc.s1 p7, p0 = POW_wre_urm_f8, POW_gt_pln
nop.i 999
}
;;
-{ .mfi
- nop.m 999
-(p8) fcmp.le.s1 p7, p0 = POW_wre_urm_f8, POW_big_neg
- nop.i 999
-}
-;;
-{ .mbb
-(p7) mov pow_GR_tag = 24
-(p7) br.cond.spnt __libm_error_region // Branch if overflow
- br.ret.sptk b0 // Exit if did not overflow
-}
-;;
-// Here if |y*log(x)| < 2^(-11)
-// pow(x,y) ~ exp(d) ~ 1 + d + 0.5*d^2 + Q1*d^3 + Q2*d^4, where d = y*log(x)
-.align 32
-POW_NEAR_ONE:
-
-{ .mfi
- nop.m 999
- fma.s1 POW_d2 = POW_d, POW_d, f0
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
- fma.s1 POW_poly_d_hi = POW_d, POW_Q0_half, f1
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fma.s1 POW_poly_d_lo = POW_d, POW_Q2, POW_Q1
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
- fma.s1 POW_poly_d = POW_d2, POW_poly_d_lo, POW_poly_d_hi
- nop.i 999
+{ .mfb
+(p7) mov pow_GR_tag = 24
+ fma.d f8 = POW_A, POW_q, POW_A
+(p7) br.cond.spnt __libm_error_region
}
-;;
-
{ .mfb
- nop.m 999
- fma.d.s0 f8 = POW_d, POW_poly_d, f1
- br.ret.sptk b0 // exit function for arguments |y*log(x)| < 2^(-11)
+ nop.m 999
+ nop.f 999
+(p0) br.ret.sptk b0
}
;;
-POW_POSSIBLE_UNDER:
+
+L(POW_POSSIBLE_UNDER):
// We got an answer. input was < -2^9 but > -2^10 (double)
// We got an answer. input was < -2^6 but > -2^7 (float)
// underflow is a possibility, not a certainty
@@ -1718,250 +1763,124 @@ POW_POSSIBLE_UNDER:
// 0.1...11 2^-3ffe (biased, 1)
// largest dn smallest normal
+
// Put in s2 (td set, ftz set)
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x41
- nop.i 999
+ nop.i 999
}
;;
+
+
{ .mfi
nop.m 999
- fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A
+ fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A
nop.i 999
}
;;
+
// Return s2 to default
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40
- nop.i 999
+ nop.i 999
}
;;
+
// p7 = TRUE ==> yes, we have an underflow
{ .mfi
nop.m 999
- fcmp.eq.s1 p7, p0 = POW_ftz_urm_f8, f0
- nop.i 999
+ fcmp.eq.unc.s1 p7, p0 = POW_ftz_urm_f8, f0
+ nop.i 999
}
;;
-{ .mbb
-(p7) mov pow_GR_tag = 25
-(p7) br.cond.spnt __libm_error_region // Branch if underflow
- br.ret.sptk b0 // Exit if did not underflow
-}
-;;
-
-POW_X_DENORM:
-// Here if x unorm. Use the NORM_X for getf instructions, and then back
-// to normal path
-{ .mfi
- getf.exp pow_GR_signexp_X = POW_NORM_X
- nop.f 999
- nop.i 999
-}
-;;
-{ .mmi
- getf.sig pow_GR_sig_X = POW_NORM_X
-;;
- and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
- nop.i 999
-}
-;;
-
-{ .mib
- sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
- nop.i 999
- br.cond.sptk POW_COMMON
-}
-;;
-POW_X_0:
-// Here if x=0 and y not nan
-//
-// We have the following cases:
-// p6 x=0 and y>0 and is an integer (may be even or odd)
-// p7 x=0 and y>0 and is NOT an integer, return +0
-// p8 x=0 and y>0 and so big as to always be an even integer, return +0
-// p9 x=0 and y>0 and may not be integer
-// p10 x=0 and y>0 and is an odd integer, return x
-// p11 x=0 and y>0 and is an even integer, return +0
-// p12 used in dummy fcmp to set denormal flag if y=unorm
-// p13 x=0 and y>0
-// p14 x=0 and y=0, branch to code for calling error handling
-// p15 x=0 and y<0, branch to code for calling error handling
-//
-{ .mfi
- getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
- fcmp.lt.s1 p15,p13 = f9, f0 // Test for y<0
- and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
-}
-{ .mfb
- cmp.ne p14,p0 = pow_GR_y_zero,r0 // Test for y=0
- fcvt.xf POW_float_int_Y = POW_int_Y
-(p14) br.cond.spnt POW_X_0_Y_0 // Branch if x=0 and y=0
-}
-;;
-// If x=0 and y>0, test y and flag denormal
{ .mfb
-(p13) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
-(p13) fcmp.eq.s0 p12,p0 = f9,f0 // If x=0, y>0 dummy op to flag denormal
-(p15) br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
+(p7) mov pow_GR_tag = 25
+ fma.d f8 = POW_A, POW_q, POW_A
+(p7) br.cond.spnt __libm_error_region
}
;;
-// Here if x=0 and y>0
-{ .mfi
- nop.m 999
-(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y // Test y=int
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.d.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
- nop.i 999
-}
-;;
-{ .mfi
- nop.m 999
-(p7) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y>0 and not integer
-(p6) tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
-}
-;;
-
-// Note if x=0, y>0 and odd integer, just return x
{ .mfb
nop.m 999
-(p11) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y even integer
- br.ret.sptk b0 // Exit if x=0 and y>0
-}
-;;
-
-POW_X_0_Y_0:
-// When X is +-0 and Y is +-0, IEEE returns 1.0
-// We call error support with this value
-
-{ .mfb
- mov pow_GR_tag = 26
- fma.d.s0 f8 = f1,f1,f0
- br.cond.sptk __libm_error_region
+ nop.f 999
+ br.ret.sptk b0
}
;;
-POW_X_0_Y_NEG:
-// When X is +-0 and Y is negative, IEEE returns
-// X Y answer
-// +0 -odd int +inf
-// -0 -odd int -inf
-
-// +0 !-odd int +inf
-// -0 !-odd int +inf
-
-// p6 == Y is a floating point number outside the integer.
-// Hence it is an integer and is even.
-// return +inf
-
-// p7 == Y is a floating point number within the integer range.
-// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
-// p11 odd
-// return (sign_of_x)inf
-// p12 even
-// return +inf
-// p10 == Y is not an integer
-// return +inf
-//
+L(POW_X_DENORM):
+// Here if x unorm. Use the NORM_X for getf instructions, and the back
+// to normal path
{ .mfi
- nop.m 999
- nop.f 999
- cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
+ getf.exp pow_GR_signexp_X = POW_NORM_X
+ nop.f 999
+ nop.i 999
}
;;
{ .mfi
- mov pow_GR_tag = 27
-(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
- nop.i 999
-}
-;;
-
-{ .mfb
- nop.m 999
-(p6) frcpa.s0 f8,p13 = f1, f0
-(p6) br.cond.sptk __libm_error_region // x=0, y<0, y large neg int
+ getf.sig pow_GR_sig_X = POW_NORM_X
+ nop.f 999
+ nop.i 999
}
;;
-{ .mfb
- nop.m 999
-(p10) frcpa.s0 f8,p13 = f1, f0
-(p10) br.cond.sptk __libm_error_region // x=0, y<0, y not int
+{ .mfi
+ and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
+ nop.f 999
}
;;
-// x=0, y<0, y an int
{ .mib
- nop.m 999
-(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
- nop.b 999
+ sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
+ shl pow_GR_offset = pow_GR_sig_X, 1
+ br.cond.sptk L(POW_COMMON)
}
;;
-{ .mfi
- nop.m 999
-(p12) frcpa.s0 f8,p13 = f1,f0
- nop.i 999
-}
-;;
+
+L(POW_X_0_Y_0):
+// When X is +-0 and Y is +-0, IEEE returns 1.0
+// We call error support with this value
{ .mfb
- nop.m 999
-(p11) frcpa.s0 f8,p13 = f1,f8
- br.cond.sptk __libm_error_region
+ mov pow_GR_tag = 26
+ fma.d f8 = f1,f1,f0
+ br.cond.sptk __libm_error_region
}
;;
-POW_Y_0:
-// Here for y zero, x anything but zero and nan
-// Set flag if x denormal
-// Result is +1.0
-{ .mfi
- nop.m 999
- fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag if x denormal
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fma.d.s0 f8 = f1,f1,f0
- br.ret.sptk b0
-}
-;;
-POW_X_INF:
-// Here when X is +-inf
+L(POW_X_INF):
+// When X is +-inf and Y is +-, IEEE returns
-// X +inf Y +inf +inf
-// X -inf Y +inf +inf
+// overflow
+// X +inf Y +inf +inf
+// X -inf Y +inf +inf
-// X +inf Y >0 +inf
+// X +inf Y >0 +inf
// X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !!
-// X -inf Y >0, odd integer -inf
+// X -inf Y >0, odd integer -inf
-// X +inf Y -inf +0
-// X -inf Y -inf +0
+// underflow
+// X +inf Y -inf +0
+// X -inf Y -inf +0
-// X +inf Y <0 +0
-// X -inf Y <0, !odd integer +0
-// X -inf Y <0, odd integer -0
+// X +inf Y <0 +0
+// X -inf Y <0, !odd integer +0
+// X -inf Y <0, odd integer -0
// X + inf Y=+0 +1
// X + inf Y=-0 +1
@@ -1973,30 +1892,32 @@ POW_X_INF:
// p6 == Y is a floating point number outside the integer.
// Hence it is an integer and is even.
-// p13 == (Y negative)
+// p13 == (Y negative)
// return +inf
// p14 == (Y positive)
// return +0
+
+
// p7 == Y is a floating point number within the integer range.
// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
// p11 odd
-// p13 == (Y negative)
+// p13 == (Y negative)
// return (sign_of_x)inf
-// p14 == (Y positive)
+// p14 == (Y positive)
// return (sign_of_x)0
-// pxx even
-// p13 == (Y negative)
-// return +inf
+// pxx even
+// p13 == (Y negative)
+// return +inf
// p14 == (Y positive)
-// return +0
+// return +0
// pxx == Y is not an integer
-// p13 == (Y negative)
+// p13 == (Y negative)
// return +inf
// p14 == (Y positive)
// return +0
-//
+//
// If x=inf, test y and flag denormal
{ .mfi
@@ -2008,131 +1929,207 @@ POW_X_INF:
{ .mfi
nop.m 999
- fcmp.lt.s0 p13,p14 = POW_NORM_Y,f0
- cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
+ fcmp.lt p13,p14 = POW_NORM_Y,f0
+ cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033
}
{ .mfi
nop.m 999
- fclass.m p12,p0 = f9, 0x23 //@inf
+ fclass.m p12,p0 = f9, 0x23
nop.i 999
}
;;
+
{ .mfi
nop.m 999
- fclass.m p15,p0 = f9, 0x07 //@zero
+ fclass.m p15,p0 = f9, 0x07 //@zero
nop.i 999
}
;;
{ .mfb
nop.m 999
-(p15) fmerge.s f8 = f1,f1 // Return +1.0 if x=inf, y=0
-(p15) br.ret.spnt b0 // Exit if x=inf, y=0
+(p15) fmerge.s f8 = f1,f1
+(p15) br.ret.spnt b0
}
;;
+
{ .mfi
- nop.m 999
-(p14) frcpa.s1 f8,p10 = f1,f0 // If x=inf, y>0, assume result +inf
+(p13) mov pow_GR_tag = 25
+(p14) frcpa.s1 f8,p10 = f1,f0
nop.i 999
}
{ .mfb
+(p14) mov pow_GR_tag = 24
+(p13) fma.s1 f8 = f0,f0,f0
+(p12) br.ret.spnt b0
+}
+;;
+
+
+
+{ .mfb
nop.m 999
-(p13) fma.d.s0 f8 = f0,f0,f0 // If x=inf, y<0, assume result +0.0
-(p12) br.ret.spnt b0 // Exit if x=inf, y=inf
+(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y
+ nop.b 999
}
;;
-// Here if x=inf, and 0 < |y| < inf. Need to correct results if y odd integer.
{ .mfi
nop.m 999
-(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y // Is y integer?
- nop.i 999
+ nop.f 999
+(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0
}
;;
+{ .mfb
+ nop.m 999
+(p11) fmerge.s f8 = POW_NORM_X,f8
+ br.ret.sptk b0
+}
+;;
+
+
+
+L(POW_X_0_Y_NEG):
+// When X is +-0 and Y is negative, IEEE returns
+// X Y answer
+// +0 -odd int +inf
+// -0 -odd int -inf
+
+// +0 !-odd int +inf
+// -0 !-odd int +inf
+
+
+// p6 == Y is a floating point number outside the integer.
+// Hence it is an integer and is even.
+// return +inf
+
+// p7 == Y is a floating point number within the integer range.
+// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
+// p11 odd
+// return (sign_of_x)inf
+// p12 even
+// return +inf
+// p10 == Y is not an integer
+// return +inf
+//
+//
+
{ .mfi
nop.m 999
nop.f 999
-(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 // Test for y odd integer
+ cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033
}
;;
+
+{ .mfi
+ mov pow_GR_tag = 27
+(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
+ nop.i 999
+}
+;;
+
+
{ .mfb
nop.m 999
-(p11) fmerge.s f8 = POW_NORM_X,f8 // If y odd integer use sign of x
- br.ret.sptk b0 // Exit for x=inf, 0 < |y| < inf
+(p6) frcpa.s0 f8,p13 = f1, f0
+(p6) br.cond.sptk __libm_error_region
}
;;
+{ .mfb
+ nop.m 999
+(p10) frcpa.s0 f8,p13 = f1, f0
+(p10) br.cond.sptk __libm_error_region
+}
+;;
-POW_X_NEG_Y_NONINT:
-// When X is negative and Y is a non-integer, IEEE
-// returns a qnan indefinite.
-// We call error support with this value
-{ .mfb
- mov pow_GR_tag = 28
- frcpa.s0 f8,p6 = f0,f0
- br.cond.sptk __libm_error_region
+
+{ .mib
+ nop.m 999
+(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
+ nop.b 999
}
;;
-POW_X_NAN:
-// Here if x=nan, y not nan
+
+
{ .mfi
- nop.m 999
- fclass.m p9,p13 = f9, 0x07 // Test y=zero
- nop.i 999
+ nop.m 999
+(p12) frcpa.s0 f8,p13 = f1,f0
+ nop.i 999
+}
+;;
+
+{ .mfb
+ nop.m 999
+(p11) frcpa f8,p13 = f1,f8
+ br.cond.sptk __libm_error_region
}
;;
+
+
+
+L(POW_X_NEG_Y_NONINT):
+// When X is negative and Y is a non-integer, IEEE
+// returns a qnan indefinite.
+// We call error support with this value
+
{ .mfb
- nop.m 999
-(p13) fma.d.s0 f8 = f8,f1,f0
-(p13) br.ret.sptk b0 // Exit if x nan, y anything but zero or nan
+ mov pow_GR_tag = 28
+ frcpa f8,p6 = f0,f0
+ br.cond.sptk __libm_error_region
}
;;
-POW_X_NAN_Y_0:
+
+
+
+L(POW_X_NAN_Y_0):
// When X is a NAN and Y is zero, IEEE returns 1.
// We call error support with this value.
+
{ .mfi
- nop.m 999
- fcmp.eq.s0 p6,p0 = f8,f0 // Dummy op to set invalid on snan
- nop.i 999
+ nop.m 0
+ fma.d.s0 f10 = f8,f1,f0
+ nop.i 0
}
{ .mfb
- mov pow_GR_tag = 29
- fma.d.s0 f8 = f0,f0,f1
+ mov pow_GR_tag = 29
+ fma.d.s0 f8 = f0,f0,f1
br.cond.sptk __libm_error_region
}
;;
-POW_OVER_UNDER_X_NOT_INF:
+L(POW_OVER_UNDER_X_NOT_INF):
// p8 is TRUE for overflow
// p9 is TRUE for underflow
// if y is infinity, we should not over/underflow
+
{ .mfi
nop.m 999
- fcmp.eq.s1 p14, p13 = POW_xsq,f1 // Test |x|=1
- cmp.eq p8,p9 = pow_GR_sign_Y_Gpr, r0
+ fcmp.eq.unc.s1 p14, p13 = POW_xsq,f1
+ cmp.eq.unc p8,p9 = pow_GR_sign_Y_Gpr, r0
}
;;
{ .mfi
nop.m 999
-(p14) fclass.m.unc p15, p0 = f9, 0x23 // If |x|=1, test y=inf
+(p14) fclass.m.unc p15, p0 = f9, 0x23
nop.i 999
}
{ .mfi
nop.m 999
-(p13) fclass.m.unc p11,p0 = f9, 0x23 // If |x| not 1, test y=inf
+(p13) fclass.m.unc p11,p0 = f9, 0x23
nop.i 999
}
;;
@@ -2140,33 +2137,31 @@ POW_OVER_UNDER_X_NOT_INF:
// p15 = TRUE if |x|=1, y=inf, return +1
{ .mfb
nop.m 999
-(p15) fma.d.s0 f8 = f1,f1,f0 // If |x|=1, y=inf, result +1
-(p15) br.ret.spnt b0 // Exit if |x|=1, y=inf
+(p15) fma.d f8 = f1,f1,f0
+(p15) br.ret.spnt b0
}
;;
.pred.rel "mutex",p8,p9
{ .mfb
-(p8) setf.exp f8 = pow_GR_17ones // If exp(+big), result inf
-(p9) fmerge.s f8 = f0,f0 // If exp(-big), result 0
-(p11) br.ret.sptk b0 // Exit if |x| not 1, y=inf
+(p8) setf.exp f8 = pow_GR_17ones
+(p9) fmerge.s f8 = f0,f0
+(p11) br.ret.sptk b0
}
-;;
{ .mfb
nop.m 999
nop.f 999
- br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
+ br.cond.sptk L(POW_OVER_UNDER_ERROR)
}
;;
+L(POW_Y_NAN):
-POW_Y_NAN:
-// Here if y=nan, x anything
-// If x = +1 then result is +1, else result is quiet Y
+// Is x = +1 then result is +1, else result is quiet Y
{ .mfi
nop.m 999
- fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
+ fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
nop.i 999
}
;;
@@ -2180,118 +2175,148 @@ POW_Y_NAN:
{ .mfi
nop.m 999
-(p10) fma.d.s0 f8 = f1,f1,f0
+(p10) fma.d f8 = f1,f1,f0
nop.i 999
}
{ .mfb
nop.m 999
-(p9) fma.d.s0 f8 = f9,f8,f0
- br.ret.sptk b0 // Exit y=nan
+(p9) fma.d f8 = f9,f8,f0
+ br.ret.sptk b0
}
;;
-POW_OVER_UNDER_ERROR:
-// Here if we have overflow or underflow.
-// Enter with p12 true if x negative and y odd int to force -0 or -inf
+L(POW_OVER_UNDER_ERROR):
{ .mfi
- sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
- nop.f 999
- mov pow_GR_one = 0x1
+ nop.m 999
+ fmerge.s f10 = POW_NORM_X,POW_NORM_X
+ nop.i 999
+}
+{ .mfi
+ sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
+ nop.f 999
+ mov pow_GR_one = 0x1
}
;;
-// overflow, force inf with O flag
+// overflow
{ .mmb
-(p8) mov pow_GR_tag = 24
-(p8) setf.exp POW_tmp = pow_GR_17ones_m1
+(p8) mov pow_GR_tag = 24
+(p8) setf.exp f11 = pow_GR_17ones_m1
nop.b 999
}
;;
-// underflow, force zero with I, U flags
+
+// underflow
{ .mmi
-(p9) mov pow_GR_tag = 25
-(p9) setf.exp POW_tmp = pow_GR_one
+(p9) mov pow_GR_tag = 25
+(p9) setf.exp f11 = pow_GR_one
nop.i 999
}
;;
+
+// p12 x is negative and y is an odd integer
+
+
{ .mfi
nop.m 999
- fma.d.s0 f8 = POW_tmp, POW_tmp, f0
+ fma.d f8 = f11, f11, f0
nop.i 999
}
;;
-// p12 x is negative and y is an odd integer, change sign of result
{ .mfi
nop.m 999
-(p12) fnma.d.s0 f8 = POW_tmp, POW_tmp, f0
+(p12) fmerge.ns f8 = f8, f8
nop.i 999
}
;;
-GLOBAL_LIBM_END(pow)
+
+.endp pow
+ASM_SIZE_DIRECTIVE(pow)
+
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
+
+// Answer is inf for overflow and 0 for underflow.
.prologue
+// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+// (2)
{ .mmi
stfd [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
+// (3)
{ .mib
- stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
+ stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+// (4)
{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/e_powf.S b/sysdeps/ia64/fpu/e_powf.S
index 1406a94b65..d464058262 100644
--- a/sysdeps/ia64/fpu/e_powf.S
+++ b/sysdeps/ia64/fpu/e_powf.S
@@ -1,10 +1,10 @@
.file "powf.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,42 +35,30 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/03/00 Added p12 to definite over/under path. With odd power we did not
+// 2/02/00 Initial version
+// 2/03/00 Added p12 to definite over/under path. With odd power we did not
// maintain the sign of x in this path.
-// 04/04/00 Unwind support added
-// 04/19/00 pow(+-1,inf) now returns NaN
-// pow(+-val, +-inf) returns 0 or inf, but now does not call error
-// support
+// 4/04/00 Unwind support added
+// 4/19/00 pow(+-1,inf) now returns NaN
+// pow(+-val, +-inf) returns 0 or inf, but now does not call error support
// Added s1 to fcvt.fx because invalid flag was incorrectly set.
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
+// 9/07/00 Improved performance by eliminating bank conflicts and other stalls,
// and tweaking the critical path
-// 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
-// 09/28/00 Updated NaN**0 path
-// 01/20/01 Fixed denormal flag settings.
-// 02/13/01 Improved speed.
-// 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
-// problem in round up, down, and to zero modes. Also corrected
-// overflow result when x negative, y odd in round up, down, zero.
-// 06/14/01 Added brace missing from bundle
-// 12/10/01 Corrected case where x negative, 2^23 <= |y| < 2^24, y odd integer.
-// 02/08/02 Fixed overflow/underflow cases that were not calling error support.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/29/02 Improved Itanium 2 performance
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 10/09/03 Modified algorithm to improve performance, reduce table size, and
-// fix boundary case powf(2.0,-150.0)
-// 03/31/05 Reformatted delimiters between data tables
+// 9/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
+// 9/28/00 Updated NaN**0 path
+// 1/20/01 Fixed denormal flag settings.
+// 2/12/01 Improved speed.
//
// API
//==============================================================
-// float powf(float x, float y)
+// double pow(double)
+// float powf(float)
//
// Overview of operation
//==============================================================
@@ -79,69 +67,73 @@
// 1. Log(x)
// 2. y Log(x)
// 3. exp(y log(x))
-//
+//
// This means we work with the absolute value of x and merge in the sign later.
// Log(x) = G + delta + r -rsq/2 + p
// G,delta depend on the exponent of x and table entries. The table entries are
// indexed by the exponent of x, called K.
-//
+//
// The G and delta come out of the reduction; r is the reduced x.
-//
+//
// B = frcpa(x)
// xB-1 is small means that B is the approximate inverse of x.
-//
+//
// Log(x) = Log( (1/B)(Bx) )
// = Log(1/B) + Log(Bx)
// = Log(1/B) + Log( 1 + (Bx-1))
-//
+//
// x = 2^K 1.x_1x_2.....x_52
-// B= frcpa(x) = 2^-k Cm
+// B= frcpa(x) = 2^-k Cm
// Log(1/B) = Log(1/(2^-K Cm))
// Log(1/B) = Log((2^K/ Cm))
// Log(1/B) = K Log(2) + Log(1/Cm)
-//
+//
// Log(x) = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
-//
+//
// If you take the significand of x, set the exponent to true 0, then Cm is
// the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
// The frcpa table is indexed by 8 bits, the x_1 thru x_8.
// m = x_1x_2...x_8 is an 8-bit index.
-//
+//
// Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
-//
-// We tabluate as one double, T for single precision power
-//
-// Log(x) = (K Log(2)_hi + T) + (K Log(2)_lo) + Log( 1 + (Bx-1))
-// Log(x) = G + delta + Log( 1 + (Bx-1))
-//
+//
+// We tabluate as two doubles, T and t, where T +t is the value itself.
+//
+// Log(x) = (K Log(2)_hi + T) + (Log(2)_hi + t) + Log( 1 + (Bx-1))
+// Log(x) = G + delta + Log( 1 + (Bx-1))
+//
// The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
-//
+//
// Log( 1 + (Bx-1)) = r - rsq/2 + p
-// where p = r^3(P0 + P1*r + P2*r^2)
-//
+//
// Then,
-//
+//
// yLog(x) = yG + y delta + y(r-rsq/2) + yp
-// yLog(x) = Z1 + e3 + Z2 + Z3
-//
-//
-// exp(yLog(x)) = exp(Z1 + Z2) exp(Z3) exp(e3)
+// yLog(x) = Z1 + e3 + Z2 + Z3 + (e2 + e3)
+//
+//
+// exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
//
//
// exp(Z3) is another series.
-// exp(e3) is approximated as f3 = 1 + e3
+// exp(e1 + e2 + e3) is approximated as f3 = 1 + (e1 + e2 + e3)
//
-// exp(Z1 + Z2) = exp(Z)
-// Z (128/log2) = number of log2/128 in Z is N
+// Z1 (128/log2) = number of log2/128 in Z1 is N1
+// Z2 (128/log2) = number of log2/128 in Z2 is N2
+//
+// s1 = Z1 - N1 log2/128
+// s2 = Z2 - N2 log2/128
//
-// s = Z - N log2/128
+// s = s1 + s2
+// N = N1 + N2
//
+// exp(Z1 + Z2) = exp(Z)
// exp(Z) = exp(s) exp(N log2/128)
//
// exp(r) = exp(Z - N log2/128)
//
// r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
-// = Z - N (log2/128)
+// = Z - N (log2/128)
//
// Z = s+d +N (log2/128)
//
@@ -157,20 +149,22 @@
// n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
// n log2/128 = I2 log2/8 + I1 log2/128
//
-// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
+// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
//
// exp(Z) = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
-// exp(Z) = exp(s) f12 (2^M) 2^I2/8 2^I1/128
+// exp(Z) = exp(s) (1+d1) (1+d2)(2^M) 2^I2/8 2^I1/128
+// exp(Z) = exp(s) f1 f2 (2^M) 2^I2/8 2^I1/128
//
// I1, I2 are table indices. Use a series for exp(s).
-// Then get exp(Z)
+// Then get exp(Z)
//
-// exp(yLog(x)) = exp(Z) exp(Z3) f3
-// exp(yLog(x)) = exp(Z)f3 exp(Z3)
-// exp(yLog(x)) = A exp(Z3)
+// exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
+// exp(yLog(x)) = exp(Z) exp(Z3) f3
+// exp(yLog(x)) = exp(Z)f3 exp(Z3)
+// exp(yLog(x)) = A exp(Z3)
//
// We actually calculate exp(Z3) -1.
-// Then,
+// Then,
// exp(yLog(x)) = A + A( exp(Z3) -1)
//
@@ -181,146 +175,142 @@
// ==============
// The operation (K*log2_hi) must be exact. K is the true exponent of x.
// If we allow gradual underflow (denormals), K can be represented in 12 bits
-// (as a two's complement number). We assume 13 bits as an engineering
-// precaution.
-//
+// (as a two's complement number). We assume 13 bits as an engineering precaution.
+//
// +------------+----------------+-+
// | 13 bits | 50 bits | |
// +------------+----------------+-+
// 0 1 66
// 2 34
-//
+//
// So we want the lsb(log2_hi) to be 2^-50
// We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
-//
+//
// 0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
-//
+//
// Consider numbering the bits left to right, starting at 0 thru 127.
// Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
-//
+//
// ...79ab
// 0111 1001 1010 1011
// 44
// 89
-//
-// So if we shift off the rightmost 14 bits, then (shift back only
+//
+// So if we shift off the rightmost 14 bits, then (shift back only
// the top half) we get
-//
+//
// 0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
-//
+//
// Put the right 64-bit signficand in an FR register, convert to double;
// it is exact. Put the next 128 bits into a quad register and round to double.
// The true exponent of the low part is -51.
-//
+//
// hi is 0 fffe b17217f7d1cf4000
// lo is 0 ffcc e6af278ece601000
-//
+//
// Convert to double memory format and get
-//
+//
// hi is 0x3fe62e42fefa39e8
-// lo is 0x3cccd5e4f1d9cc02
-//
+// lo is 0x3cccd5e4f1d9cc02
+//
// log2_hi + log2_lo is an accurate value for log2.
-//
-//
+//
+//
// The T and t values
// ==================
// A similar method is used to generate the T and t values.
-//
+//
// K * log2_hi + T must be exact.
-//
+//
// Smallest T,t
// ----------
-// The smallest T,t is
+// The smallest T,t is
// T t
-// 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
-//
+// data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
+//
// The exponent is 0x3f6 (biased) or -9 (true).
// For the smallest T value, what we want is to clip the significand such that
-// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
-// specific for the first entry. In general, it is 0xffff - (biased 15-bit
-// exponent).
+// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the specific
+// for the first entry. In general, it is 0xffff - (biased 15-bit exponent).
-// Independently, what we have calculated is the table value as a quad
-// precision number.
+// Independently, what we have calculated is the table value as a quad precision number.
// Table entry 1 is
// 0 fff6 80200aaeac44ef38 338f77605fdf8000
-//
+//
// We store this quad precision number in a data structure that is
-// sign: 1
+// sign: 1
// exponent: 15
// signficand_hi: 64 (includes explicit bit)
// signficand_lo: 49
// Because the explicit bit is included, the significand is 113 bits.
-//
+//
// Consider significand_hi for table entry 1.
-//
-//
+//
+//
// +-+--- ... -------+--------------------+
// | |
// +-+--- ... -------+--------------------+
// 0 1 4444444455555555556666
// 2345678901234567890123
-//
+//
// Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
// Bit 42 is 2^-42. If we shift to the right by 9, the bit in
// bit 42 goes in 51.
-//
+//
// So what we want to do is shift bits 43 thru 63 into significand_lo.
-// This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
-// Then shifting (just with signficaand_hi) back into bit 42.
-//
-// The shift_value is 63-42 = 21. In general, this is
+// This is shifting bit 42 into bit 63, taking care to retain the shifted-off bits.
+// Then shifting (just with signficaand_hi) back into bit 42.
+//
+// The shift_value is 63-42 = 21. In general, this is
// 63 - (51 -(0xffff - 0xfff6))
// For this example, it is
// 63 - (51 - 9) = 63 - 42 = 21
-//
-// This means we are shifting 21 bits into significand_lo. We must maintain more
-// that a 128-bit signficand not to lose bits. So before the shift we put the
-// 128-bit significand into a 256-bit signficand and then shift.
+//
+// This means we are shifting 21 bits into significand_lo. We must maintain more
+// that a 128-bit signficand not to lose bits. So before the shift we put the 128-bit
+// significand into a 256-bit signficand and then shift.
// The 256-bit significand has four parts: hh, hl, lh, and ll.
-//
+//
// Start off with
// hh hl lh ll
// <64> <49><15_0> <64_0> <64_0>
-//
+//
// After shift by 21 (then return for significand_hi),
// <43><21_0> <21><43> <6><58_0> <64_0>
-//
+//
// Take the hh part and convert to a double. There is no rounding here.
-// The conversion is exact. The true exponent of the high part is the same as
-// the true exponent of the input quad.
-//
-// We have some 64 plus significand bits for the low part. In this example, we
-// have 70 bits. We want to round this to a double. Put them in a quad and then
-// do a quad fnorm.
-// For this example the true exponent of the low part is
+// The conversion is exact. The true exponent of the high part is the same as the
+// true exponent of the input quad.
+//
+// We have some 64 plus significand bits for the low part. In this example, we have
+// 70 bits. We want to round this to a double. Put them in a quad and then do a quad fnorm.
+// For this example the true exponent of the low part is
// true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
-// In general, this is
-// true_exponent_of_high - (64 - shift_value)
-//
-//
+// In general, this is
+// true_exponent_of_high - (64 - shift_value)
+//
+//
// Largest T,t
// ----------
// The largest T,t is
-// 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))=+6.92171e-001
-//
+// data8 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))= +6.92171e-001
+//
// Table entry 256 is
// 0 fffe b1321ff67cba178c 51da12f4df5a0000
-//
-// The shift value is
+//
+// The shift value is
// 63 - (51 -(0xffff - 0xfffe)) = 13
-//
-// The true exponent of the low part is
+//
+// The true exponent of the low part is
// true_exponent_of_high - (64 - shift_value)
// -1 - (64-13) = -52
// Biased as a double, this is 0x3cb
-//
-//
-//
+//
+//
+//
// So then lsb(T) must be >= 2^-51
// msb(Klog2_hi) <= 2^12
-//
+//
// +--------+---------+
// | 51 bits | <== largest T
// +--------+---------+
@@ -328,8 +318,7 @@
// +------------+----------------+-+
// | 13 bits | 50 bits | |
// +------------+----------------+-+
-//
-// Note: For powf only the table of T is needed
+
// Special Cases
@@ -396,70 +385,63 @@
// X any Y =0 +1
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
// integer registers used
-pow_GR_exp_half = r10
-pow_GR_signexp_Xm1 = r11
-pow_GR_tmp = r11
-
-pow_GR_signexp_X = r14
-pow_GR_17ones = r15
-pow_GR_Fpsr = r15
-pow_AD_P = r16
-pow_GR_rcs0_mask = r16
-pow_GR_exp_2tom8 = r17
-pow_GR_rcs0 = r17
-pow_GR_sig_X = r18
-pow_GR_10033 = r19
-pow_GR_16ones = r20
-
-pow_AD_Tt = r21
-pow_GR_exp_X = r22
-pow_AD_Q = r23
-pow_GR_true_exp_X = r24
-pow_GR_y_zero = r25
-
-pow_GR_exp_Y = r26
-pow_AD_tbl1 = r27
-pow_AD_tbl2 = r28
-pow_GR_offset = r29
-pow_GR_exp_Xm1 = r30
-pow_GR_xneg_yodd = r31
-
-pow_GR_int_N = r38
-pow_GR_index1 = r39
-pow_GR_index2 = r40
-
-pow_AD_T1 = r41
-pow_AD_T2 = r42
-pow_int_GR_M = r43
-pow_GR_sig_int_Y = r44
-pow_GR_sign_Y_Gpr = r45
-
-pow_GR_17ones_m1 = r46
-pow_GR_one = r47
-pow_GR_sign_Y = r48
-pow_GR_signexp_Y_Gpr = r49
-pow_GR_exp_Y_Gpr = r50
-
-pow_GR_true_exp_Y_Gpr = r51
-pow_GR_signexp_Y = r52
-pow_GR_x_one = r53
-pow_GR_big_pos = r55
-
-pow_GR_big_neg = r56
-
-GR_SAVE_B0 = r50
-GR_SAVE_GP = r51
-GR_SAVE_PFS = r52
-
-GR_Parameter_X = r53
-GR_Parameter_Y = r54
-GR_Parameter_RESULT = r55
-pow_GR_tag = r56
+pow_AD_Tt = r33
+pow_GR_FFF7 = r34
+pow_GR_exp_Y = r34 // duplicate
+pow_GR_17ones = r35
+
+pow_AD_P = r36
+pow_AD_Q = r37
+pow_AD_tbl1 = r38
+pow_AD_tbl2 = r39
+pow_GR_exp_X = r40
+pow_GR_true_exp_X = r40 // duplicate
+
+pow_GR_offset = r41
+pow_GR_exp_Xm1 = r42
+pow_GR_sig_X = r43
+pow_GR_signexp_X = r44
+
+pow_GR_signexp_Xm1 = r46
+pow_GR_int_W1 = r47
+pow_GR_int_W2 = r48
+pow_GR_int_N = r49
+pow_GR_index1 = r50
+
+pow_GR_index2 = r51
+pow_AD_T1 = r52
+pow_AD_T2 = r53
+pow_GR_gt_ln = r53 // duplicate
+pow_int_GR_M = r54
+pow_GR_10033 = r55
+
+pow_GR_16ones = r56
+pow_GR_sig_int_Y = r57
+pow_GR_sign_Y_Gpr = r58
+pow_GR_17ones_m1 = r59
+pow_GR_one = r60
+pow_GR_sign_Y = r60
+
+pow_GR_signexp_Y_Gpr = r61
+pow_GR_exp_Y_Gpr = r62
+pow_GR_true_exp_Y_Gpr = r63
+pow_GR_signexp_Y = r64
+
+GR_SAVE_B0 = r65
+GR_SAVE_GP = r66
+GR_SAVE_PFS = r67
+
+GR_Parameter_X = r68
+GR_Parameter_Y = r69
+GR_Parameter_RESULT = r70
+pow_GR_tag = r71
// floating point registers used
@@ -468,20 +450,23 @@ POW_B = f32
POW_NORM_X = f33
POW_Xm1 = f34
POW_r1 = f34
+POW_P4 = f35
+POW_P5 = f36
POW_NORM_Y = f37
POW_Q2 = f38
-POW_eps = f39
+POW_Q3 = f39
POW_P2 = f40
+POW_P3 = f41
POW_P0 = f42
POW_log2_lo = f43
POW_r = f44
POW_Q0_half = f45
-POW_tmp = f47
+POW_Q1 = f46
POW_log2_hi = f48
-POW_Q1 = f49
+POW_Q4 = f49
POW_P1 = f50
POW_log2_by_128_hi = f51
@@ -490,33 +475,52 @@ POW_rsq = f53
POW_Yrcub = f54
POW_log2_by_128_lo = f55
-POW_xsq = f57
+POW_v6 = f56
+POW_v4 = f58
POW_v2 = f59
POW_T = f60
+POW_Tt = f61
POW_RSHF = f62
-POW_v210 = f63
-POW_twoV = f65
+POW_v21ps = f63
+POW_s4 = f64
POW_U = f66
POW_G = f67
POW_delta = f68
+POW_v3 = f69
POW_V = f70
POW_p = f71
-POW_Z = f72
+POW_Z1 = f72
POW_e3 = f73
+POW_e2 = f74
POW_Z2 = f75
+POW_e1 = f76
POW_W1 = f77
+POW_UmZ2 = f78
+POW_W2 = f79
POW_Z3 = f80
+POW_int_W1 = f81
+POW_e12 = f82
+POW_int_W2 = f83
+POW_UmZ2pV = f84
POW_Z3sq = f85
-POW_Nfloat = f87
+POW_e123 = f86
+POW_N1float = f87
+POW_N2float = f88
POW_f3 = f89
POW_q = f90
+POW_s1 = f91
+POW_Nfloat = f92
+POW_s2 = f93
+POW_f2 = f94
+POW_f1 = f95
+
POW_T1 = f96
POW_T2 = f97
POW_2M = f98
@@ -529,312 +533,330 @@ POW_1ps = f103
POW_A = f104
POW_es = f105
-POW_Xp1 = f106
POW_int_K = f107
POW_K = f108
POW_f123 = f109
POW_Gpr = f110
-POW_Y_Gpr = f111
+POW_Y_Gpr = f111
POW_int_Y = f112
-POW_2Mqp1 = f113
POW_float_int_Y = f116
POW_ftz_urm_f8 = f117
POW_wre_urm_f8 = f118
-POW_big_neg = f119
-POW_big_pos = f120
+POW_abs_A = f119
+POW_gt_pln = f120
+
+POW_xsq = f121
+
+POW_twoV = f122
+POW_Xp1 = f123
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(pow_table_P)
+pow_table_P:
+ASM_TYPE_DIRECTIVE(pow_table_P,@object)
+data8 0x8000F7B249FF332D, 0x0000BFFC // P_5
+data8 0xAAAAAAA9E7902C7F, 0x0000BFFC // P_3
data8 0x80000000000018E5, 0x0000BFFD // P_1
data8 0xb8aa3b295c17f0bc, 0x00004006 // inv_ln2_by_128
-//
-//
+
+
data8 0x3FA5555555554A9E // Q_2
-data8 0x0000000000000000 // Pad
+data8 0x3F8111124F4DD9F9 // Q_3
+data8 0x3FE0000000000000 // Q_0
data8 0x3FC5555555554733 // Q_1
+data8 0x3F56C16D9360FFA0 // Q_4
data8 0x43e8000000000000 // Right shift constant for exp
data8 0xc9e3b39803f2f6af, 0x00003fb7 // ln2_by_128_lo
-LOCAL_OBJECT_END(pow_table_P)
+data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
+data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
+ASM_SIZE_DIRECTIVE(pow_table_P)
-LOCAL_OBJECT_START(pow_table_Q)
+pow_table_Q:
+ASM_TYPE_DIRECTIVE(pow_table_Q,@object)
+data8 0x9249FE7F0DC423CF, 0x00003FFC // P_4
data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC // P_2
data8 0xAAAAAAAAAAAAB505, 0x00003FFD // P_0
data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo = +6.93147e-001
data8 0xb17217f7d1cf79ab, 0x00003ff7 // ln2_by_128_hi
-LOCAL_OBJECT_END(pow_table_Q)
-
-
-LOCAL_OBJECT_START(pow_Tt)
-data8 0x3f60040155d58800 // log(1/frcpa(1+0/256))= +1.95503e-003
-data8 0x3f78121214586a00 // log(1/frcpa(1+1/256))= +5.87661e-003
-data8 0x3f841929f9683200 // log(1/frcpa(1+2/256))= +9.81362e-003
-data8 0x3f8c317384c75f00 // log(1/frcpa(1+3/256))= +1.37662e-002
-data8 0x3f91a6b91ac73380 // log(1/frcpa(1+4/256))= +1.72376e-002
-data8 0x3f95ba9a5d9ac000 // log(1/frcpa(1+5/256))= +2.12196e-002
-data8 0x3f99d2a807432580 // log(1/frcpa(1+6/256))= +2.52177e-002
-data8 0x3f9d6b2725979800 // log(1/frcpa(1+7/256))= +2.87291e-002
-data8 0x3fa0c58fa19dfa80 // log(1/frcpa(1+8/256))= +3.27573e-002
-data8 0x3fa2954c78cbce00 // log(1/frcpa(1+9/256))= +3.62953e-002
-data8 0x3fa4a94d2da96c40 // log(1/frcpa(1+10/256))= +4.03542e-002
-data8 0x3fa67c94f2d4bb40 // log(1/frcpa(1+11/256))= +4.39192e-002
-data8 0x3fa85188b630f040 // log(1/frcpa(1+12/256))= +4.74971e-002
-data8 0x3faa6b8abe73af40 // log(1/frcpa(1+13/256))= +5.16017e-002
-data8 0x3fac441e06f72a80 // log(1/frcpa(1+14/256))= +5.52072e-002
-data8 0x3fae1e6713606d00 // log(1/frcpa(1+15/256))= +5.88257e-002
-data8 0x3faffa6911ab9300 // log(1/frcpa(1+16/256))= +6.24574e-002
-data8 0x3fb0ec139c5da600 // log(1/frcpa(1+17/256))= +6.61022e-002
-data8 0x3fb1dbd2643d1900 // log(1/frcpa(1+18/256))= +6.97605e-002
-data8 0x3fb2cc7284fe5f00 // log(1/frcpa(1+19/256))= +7.34321e-002
-data8 0x3fb3bdf5a7d1ee60 // log(1/frcpa(1+20/256))= +7.71173e-002
-data8 0x3fb4b05d7aa012e0 // log(1/frcpa(1+21/256))= +8.08161e-002
-data8 0x3fb580db7ceb5700 // log(1/frcpa(1+22/256))= +8.39975e-002
-data8 0x3fb674f089365a60 // log(1/frcpa(1+23/256))= +8.77219e-002
-data8 0x3fb769ef2c6b5680 // log(1/frcpa(1+24/256))= +9.14602e-002
-data8 0x3fb85fd927506a40 // log(1/frcpa(1+25/256))= +9.52125e-002
-data8 0x3fb9335e5d594980 // log(1/frcpa(1+26/256))= +9.84401e-002
-data8 0x3fba2b0220c8e5e0 // log(1/frcpa(1+27/256))= +1.02219e-001
-data8 0x3fbb0004ac1a86a0 // log(1/frcpa(1+28/256))= +1.05469e-001
-data8 0x3fbbf968769fca00 // log(1/frcpa(1+29/256))= +1.09274e-001
-data8 0x3fbccfedbfee13a0 // log(1/frcpa(1+30/256))= +1.12548e-001
-data8 0x3fbda727638446a0 // log(1/frcpa(1+31/256))= +1.15832e-001
-data8 0x3fbea3257fe10f60 // log(1/frcpa(1+32/256))= +1.19677e-001
-data8 0x3fbf7be9fedbfde0 // log(1/frcpa(1+33/256))= +1.22985e-001
-data8 0x3fc02ab352ff25f0 // log(1/frcpa(1+34/256))= +1.26303e-001
-data8 0x3fc097ce579d2040 // log(1/frcpa(1+35/256))= +1.29633e-001
-data8 0x3fc1178e8227e470 // log(1/frcpa(1+36/256))= +1.33531e-001
-data8 0x3fc185747dbecf30 // log(1/frcpa(1+37/256))= +1.36885e-001
-data8 0x3fc1f3b925f25d40 // log(1/frcpa(1+38/256))= +1.40250e-001
-data8 0x3fc2625d1e6ddf50 // log(1/frcpa(1+39/256))= +1.43627e-001
-data8 0x3fc2d1610c868130 // log(1/frcpa(1+40/256))= +1.47015e-001
-data8 0x3fc340c597411420 // log(1/frcpa(1+41/256))= +1.50414e-001
-data8 0x3fc3b08b6757f2a0 // log(1/frcpa(1+42/256))= +1.53825e-001
-data8 0x3fc40dfb08378000 // log(1/frcpa(1+43/256))= +1.56677e-001
-data8 0x3fc47e74e8ca5f70 // log(1/frcpa(1+44/256))= +1.60109e-001
-data8 0x3fc4ef51f6466de0 // log(1/frcpa(1+45/256))= +1.63553e-001
-data8 0x3fc56092e02ba510 // log(1/frcpa(1+46/256))= +1.67010e-001
-data8 0x3fc5d23857cd74d0 // log(1/frcpa(1+47/256))= +1.70478e-001
-data8 0x3fc6313a37335d70 // log(1/frcpa(1+48/256))= +1.73377e-001
-data8 0x3fc6a399dabbd380 // log(1/frcpa(1+49/256))= +1.76868e-001
-data8 0x3fc70337dd3ce410 // log(1/frcpa(1+50/256))= +1.79786e-001
-data8 0x3fc77654128f6120 // log(1/frcpa(1+51/256))= +1.83299e-001
-data8 0x3fc7e9d82a0b0220 // log(1/frcpa(1+52/256))= +1.86824e-001
-data8 0x3fc84a6b759f5120 // log(1/frcpa(1+53/256))= +1.89771e-001
-data8 0x3fc8ab47d5f5a300 // log(1/frcpa(1+54/256))= +1.92727e-001
-data8 0x3fc91fe490965810 // log(1/frcpa(1+55/256))= +1.96286e-001
-data8 0x3fc981634011aa70 // log(1/frcpa(1+56/256))= +1.99261e-001
-data8 0x3fc9f6c407089660 // log(1/frcpa(1+57/256))= +2.02843e-001
-data8 0x3fca58e729348f40 // log(1/frcpa(1+58/256))= +2.05838e-001
-data8 0x3fcabb55c31693a0 // log(1/frcpa(1+59/256))= +2.08842e-001
-data8 0x3fcb1e104919efd0 // log(1/frcpa(1+60/256))= +2.11855e-001
-data8 0x3fcb94ee93e367c0 // log(1/frcpa(1+61/256))= +2.15483e-001
-data8 0x3fcbf851c0675550 // log(1/frcpa(1+62/256))= +2.18516e-001
-data8 0x3fcc5c0254bf23a0 // log(1/frcpa(1+63/256))= +2.21558e-001
-data8 0x3fccc000c9db3c50 // log(1/frcpa(1+64/256))= +2.24609e-001
-data8 0x3fcd244d99c85670 // log(1/frcpa(1+65/256))= +2.27670e-001
-data8 0x3fcd88e93fb2f450 // log(1/frcpa(1+66/256))= +2.30741e-001
-data8 0x3fcdedd437eaef00 // log(1/frcpa(1+67/256))= +2.33820e-001
-data8 0x3fce530effe71010 // log(1/frcpa(1+68/256))= +2.36910e-001
-data8 0x3fceb89a1648b970 // log(1/frcpa(1+69/256))= +2.40009e-001
-data8 0x3fcf1e75fadf9bd0 // log(1/frcpa(1+70/256))= +2.43117e-001
-data8 0x3fcf84a32ead7c30 // log(1/frcpa(1+71/256))= +2.46235e-001
-data8 0x3fcfeb2233ea07c0 // log(1/frcpa(1+72/256))= +2.49363e-001
-data8 0x3fd028f9c7035c18 // log(1/frcpa(1+73/256))= +2.52501e-001
-data8 0x3fd05c8be0d96358 // log(1/frcpa(1+74/256))= +2.55649e-001
-data8 0x3fd085eb8f8ae790 // log(1/frcpa(1+75/256))= +2.58174e-001
-data8 0x3fd0b9c8e32d1910 // log(1/frcpa(1+76/256))= +2.61339e-001
-data8 0x3fd0edd060b78080 // log(1/frcpa(1+77/256))= +2.64515e-001
-data8 0x3fd122024cf00638 // log(1/frcpa(1+78/256))= +2.67701e-001
-data8 0x3fd14be2927aecd0 // log(1/frcpa(1+79/256))= +2.70257e-001
-data8 0x3fd180618ef18ad8 // log(1/frcpa(1+80/256))= +2.73461e-001
-data8 0x3fd1b50bbe2fc638 // log(1/frcpa(1+81/256))= +2.76675e-001
-data8 0x3fd1df4cc7cf2428 // log(1/frcpa(1+82/256))= +2.79254e-001
-data8 0x3fd214456d0eb8d0 // log(1/frcpa(1+83/256))= +2.82487e-001
-data8 0x3fd23ec5991eba48 // log(1/frcpa(1+84/256))= +2.85081e-001
-data8 0x3fd2740d9f870af8 // log(1/frcpa(1+85/256))= +2.88333e-001
-data8 0x3fd29ecdabcdfa00 // log(1/frcpa(1+86/256))= +2.90943e-001
-data8 0x3fd2d46602adcce8 // log(1/frcpa(1+87/256))= +2.94214e-001
-data8 0x3fd2ff66b04ea9d0 // log(1/frcpa(1+88/256))= +2.96838e-001
-data8 0x3fd335504b355a30 // log(1/frcpa(1+89/256))= +3.00129e-001
-data8 0x3fd360925ec44f58 // log(1/frcpa(1+90/256))= +3.02769e-001
-data8 0x3fd38bf1c3337e70 // log(1/frcpa(1+91/256))= +3.05417e-001
-data8 0x3fd3c25277333180 // log(1/frcpa(1+92/256))= +3.08735e-001
-data8 0x3fd3edf463c16838 // log(1/frcpa(1+93/256))= +3.11399e-001
-data8 0x3fd419b423d5e8c0 // log(1/frcpa(1+94/256))= +3.14069e-001
-data8 0x3fd44591e0539f48 // log(1/frcpa(1+95/256))= +3.16746e-001
-data8 0x3fd47c9175b6f0a8 // log(1/frcpa(1+96/256))= +3.20103e-001
-data8 0x3fd4a8b341552b08 // log(1/frcpa(1+97/256))= +3.22797e-001
-data8 0x3fd4d4f390890198 // log(1/frcpa(1+98/256))= +3.25498e-001
-data8 0x3fd501528da1f960 // log(1/frcpa(1+99/256))= +3.28206e-001
-data8 0x3fd52dd06347d4f0 // log(1/frcpa(1+100/256))= +3.30921e-001
-data8 0x3fd55a6d3c7b8a88 // log(1/frcpa(1+101/256))= +3.33644e-001
-data8 0x3fd5925d2b112a58 // log(1/frcpa(1+102/256))= +3.37058e-001
-data8 0x3fd5bf406b543db0 // log(1/frcpa(1+103/256))= +3.39798e-001
-data8 0x3fd5ec433d5c35a8 // log(1/frcpa(1+104/256))= +3.42545e-001
-data8 0x3fd61965cdb02c18 // log(1/frcpa(1+105/256))= +3.45300e-001
-data8 0x3fd646a84935b2a0 // log(1/frcpa(1+106/256))= +3.48063e-001
-data8 0x3fd6740add31de90 // log(1/frcpa(1+107/256))= +3.50833e-001
-data8 0x3fd6a18db74a58c0 // log(1/frcpa(1+108/256))= +3.53610e-001
-data8 0x3fd6cf31058670e8 // log(1/frcpa(1+109/256))= +3.56396e-001
-data8 0x3fd6f180e852f0b8 // log(1/frcpa(1+110/256))= +3.58490e-001
-data8 0x3fd71f5d71b894e8 // log(1/frcpa(1+111/256))= +3.61289e-001
-data8 0x3fd74d5aefd66d58 // log(1/frcpa(1+112/256))= +3.64096e-001
-data8 0x3fd77b79922bd378 // log(1/frcpa(1+113/256))= +3.66911e-001
-data8 0x3fd7a9b9889f19e0 // log(1/frcpa(1+114/256))= +3.69734e-001
-data8 0x3fd7d81b037eb6a0 // log(1/frcpa(1+115/256))= +3.72565e-001
-data8 0x3fd8069e33827230 // log(1/frcpa(1+116/256))= +3.75404e-001
-data8 0x3fd82996d3ef8bc8 // log(1/frcpa(1+117/256))= +3.77538e-001
-data8 0x3fd85855776dcbf8 // log(1/frcpa(1+118/256))= +3.80391e-001
-data8 0x3fd8873658327cc8 // log(1/frcpa(1+119/256))= +3.83253e-001
-data8 0x3fd8aa75973ab8c8 // log(1/frcpa(1+120/256))= +3.85404e-001
-data8 0x3fd8d992dc8824e0 // log(1/frcpa(1+121/256))= +3.88280e-001
-data8 0x3fd908d2ea7d9510 // log(1/frcpa(1+122/256))= +3.91164e-001
-data8 0x3fd92c59e79c0e50 // log(1/frcpa(1+123/256))= +3.93332e-001
-data8 0x3fd95bd750ee3ed0 // log(1/frcpa(1+124/256))= +3.96231e-001
-data8 0x3fd98b7811a3ee58 // log(1/frcpa(1+125/256))= +3.99138e-001
-data8 0x3fd9af47f33d4068 // log(1/frcpa(1+126/256))= +4.01323e-001
-data8 0x3fd9df270c1914a0 // log(1/frcpa(1+127/256))= +4.04245e-001
-data8 0x3fda0325ed14fda0 // log(1/frcpa(1+128/256))= +4.06442e-001
-data8 0x3fda33440224fa78 // log(1/frcpa(1+129/256))= +4.09379e-001
-data8 0x3fda57725e80c380 // log(1/frcpa(1+130/256))= +4.11587e-001
-data8 0x3fda87d0165dd198 // log(1/frcpa(1+131/256))= +4.14539e-001
-data8 0x3fdaac2e6c03f890 // log(1/frcpa(1+132/256))= +4.16759e-001
-data8 0x3fdadccc6fdf6a80 // log(1/frcpa(1+133/256))= +4.19726e-001
-data8 0x3fdb015b3eb1e790 // log(1/frcpa(1+134/256))= +4.21958e-001
-data8 0x3fdb323a3a635948 // log(1/frcpa(1+135/256))= +4.24941e-001
-data8 0x3fdb56fa04462908 // log(1/frcpa(1+136/256))= +4.27184e-001
-data8 0x3fdb881aa659bc90 // log(1/frcpa(1+137/256))= +4.30182e-001
-data8 0x3fdbad0bef3db160 // log(1/frcpa(1+138/256))= +4.32437e-001
-data8 0x3fdbd21297781c28 // log(1/frcpa(1+139/256))= +4.34697e-001
-data8 0x3fdc039236f08818 // log(1/frcpa(1+140/256))= +4.37718e-001
-data8 0x3fdc28cb1e4d32f8 // log(1/frcpa(1+141/256))= +4.39990e-001
-data8 0x3fdc4e19b84723c0 // log(1/frcpa(1+142/256))= +4.42267e-001
-data8 0x3fdc7ff9c74554c8 // log(1/frcpa(1+143/256))= +4.45311e-001
-data8 0x3fdca57b64e9db00 // log(1/frcpa(1+144/256))= +4.47600e-001
-data8 0x3fdccb130a5ceba8 // log(1/frcpa(1+145/256))= +4.49895e-001
-data8 0x3fdcf0c0d18f3268 // log(1/frcpa(1+146/256))= +4.52194e-001
-data8 0x3fdd232075b5a200 // log(1/frcpa(1+147/256))= +4.55269e-001
-data8 0x3fdd490246defa68 // log(1/frcpa(1+148/256))= +4.57581e-001
-data8 0x3fdd6efa918d25c8 // log(1/frcpa(1+149/256))= +4.59899e-001
-data8 0x3fdd9509707ae528 // log(1/frcpa(1+150/256))= +4.62221e-001
-data8 0x3fddbb2efe92c550 // log(1/frcpa(1+151/256))= +4.64550e-001
-data8 0x3fddee2f3445e4a8 // log(1/frcpa(1+152/256))= +4.67663e-001
-data8 0x3fde148a1a2726c8 // log(1/frcpa(1+153/256))= +4.70004e-001
-data8 0x3fde3afc0a49ff38 // log(1/frcpa(1+154/256))= +4.72350e-001
-data8 0x3fde6185206d5168 // log(1/frcpa(1+155/256))= +4.74702e-001
-data8 0x3fde882578823d50 // log(1/frcpa(1+156/256))= +4.77060e-001
-data8 0x3fdeaedd2eac9908 // log(1/frcpa(1+157/256))= +4.79423e-001
-data8 0x3fded5ac5f436be0 // log(1/frcpa(1+158/256))= +4.81792e-001
-data8 0x3fdefc9326d16ab8 // log(1/frcpa(1+159/256))= +4.84166e-001
-data8 0x3fdf2391a21575f8 // log(1/frcpa(1+160/256))= +4.86546e-001
-data8 0x3fdf4aa7ee031928 // log(1/frcpa(1+161/256))= +4.88932e-001
-data8 0x3fdf71d627c30bb0 // log(1/frcpa(1+162/256))= +4.91323e-001
-data8 0x3fdf991c6cb3b378 // log(1/frcpa(1+163/256))= +4.93720e-001
-data8 0x3fdfc07ada69a908 // log(1/frcpa(1+164/256))= +4.96123e-001
-data8 0x3fdfe7f18eb03d38 // log(1/frcpa(1+165/256))= +4.98532e-001
-data8 0x3fe007c053c5002c // log(1/frcpa(1+166/256))= +5.00946e-001
-data8 0x3fe01b942198a5a0 // log(1/frcpa(1+167/256))= +5.03367e-001
-data8 0x3fe02f74400c64e8 // log(1/frcpa(1+168/256))= +5.05793e-001
-data8 0x3fe04360be7603ac // log(1/frcpa(1+169/256))= +5.08225e-001
-data8 0x3fe05759ac47fe30 // log(1/frcpa(1+170/256))= +5.10663e-001
-data8 0x3fe06b5f1911cf50 // log(1/frcpa(1+171/256))= +5.13107e-001
-data8 0x3fe078bf0533c568 // log(1/frcpa(1+172/256))= +5.14740e-001
-data8 0x3fe08cd9687e7b0c // log(1/frcpa(1+173/256))= +5.17194e-001
-data8 0x3fe0a10074cf9018 // log(1/frcpa(1+174/256))= +5.19654e-001
-data8 0x3fe0b5343a234474 // log(1/frcpa(1+175/256))= +5.22120e-001
-data8 0x3fe0c974c89431cc // log(1/frcpa(1+176/256))= +5.24592e-001
-data8 0x3fe0ddc2305b9884 // log(1/frcpa(1+177/256))= +5.27070e-001
-data8 0x3fe0eb524bafc918 // log(1/frcpa(1+178/256))= +5.28726e-001
-data8 0x3fe0ffb54213a474 // log(1/frcpa(1+179/256))= +5.31214e-001
-data8 0x3fe114253da97d9c // log(1/frcpa(1+180/256))= +5.33709e-001
-data8 0x3fe128a24f1d9afc // log(1/frcpa(1+181/256))= +5.36210e-001
-data8 0x3fe1365252bf0864 // log(1/frcpa(1+182/256))= +5.37881e-001
-data8 0x3fe14ae558b4a92c // log(1/frcpa(1+183/256))= +5.40393e-001
-data8 0x3fe15f85a19c7658 // log(1/frcpa(1+184/256))= +5.42910e-001
-data8 0x3fe16d4d38c119f8 // log(1/frcpa(1+185/256))= +5.44592e-001
-data8 0x3fe18203c20dd130 // log(1/frcpa(1+186/256))= +5.47121e-001
-data8 0x3fe196c7bc4b1f38 // log(1/frcpa(1+187/256))= +5.49656e-001
-data8 0x3fe1a4a738b7a33c // log(1/frcpa(1+188/256))= +5.51349e-001
-data8 0x3fe1b981c0c9653c // log(1/frcpa(1+189/256))= +5.53895e-001
-data8 0x3fe1ce69e8bb1068 // log(1/frcpa(1+190/256))= +5.56447e-001
-data8 0x3fe1dc619de06944 // log(1/frcpa(1+191/256))= +5.58152e-001
-data8 0x3fe1f160a2ad0da0 // log(1/frcpa(1+192/256))= +5.60715e-001
-data8 0x3fe2066d7740737c // log(1/frcpa(1+193/256))= +5.63285e-001
-data8 0x3fe2147dba47a390 // log(1/frcpa(1+194/256))= +5.65001e-001
-data8 0x3fe229a1bc5ebac0 // log(1/frcpa(1+195/256))= +5.67582e-001
-data8 0x3fe237c1841a502c // log(1/frcpa(1+196/256))= +5.69306e-001
-data8 0x3fe24cfce6f80d98 // log(1/frcpa(1+197/256))= +5.71898e-001
-data8 0x3fe25b2c55cd5760 // log(1/frcpa(1+198/256))= +5.73630e-001
-data8 0x3fe2707f4d5f7c40 // log(1/frcpa(1+199/256))= +5.76233e-001
-data8 0x3fe285e0842ca380 // log(1/frcpa(1+200/256))= +5.78842e-001
-data8 0x3fe294294708b770 // log(1/frcpa(1+201/256))= +5.80586e-001
-data8 0x3fe2a9a2670aff0c // log(1/frcpa(1+202/256))= +5.83207e-001
-data8 0x3fe2b7fb2c8d1cc0 // log(1/frcpa(1+203/256))= +5.84959e-001
-data8 0x3fe2c65a6395f5f4 // log(1/frcpa(1+204/256))= +5.86713e-001
-data8 0x3fe2dbf557b0df40 // log(1/frcpa(1+205/256))= +5.89350e-001
-data8 0x3fe2ea64c3f97654 // log(1/frcpa(1+206/256))= +5.91113e-001
-data8 0x3fe3001823684d70 // log(1/frcpa(1+207/256))= +5.93762e-001
-data8 0x3fe30e97e9a8b5cc // log(1/frcpa(1+208/256))= +5.95531e-001
-data8 0x3fe32463ebdd34e8 // log(1/frcpa(1+209/256))= +5.98192e-001
-data8 0x3fe332f4314ad794 // log(1/frcpa(1+210/256))= +5.99970e-001
-data8 0x3fe348d90e7464cc // log(1/frcpa(1+211/256))= +6.02643e-001
-data8 0x3fe35779f8c43d6c // log(1/frcpa(1+212/256))= +6.04428e-001
-data8 0x3fe36621961a6a98 // log(1/frcpa(1+213/256))= +6.06217e-001
-data8 0x3fe37c299f3c3668 // log(1/frcpa(1+214/256))= +6.08907e-001
-data8 0x3fe38ae2171976e4 // log(1/frcpa(1+215/256))= +6.10704e-001
-data8 0x3fe399a157a603e4 // log(1/frcpa(1+216/256))= +6.12504e-001
-data8 0x3fe3afccfe77b9d0 // log(1/frcpa(1+217/256))= +6.15210e-001
-data8 0x3fe3be9d503533b4 // log(1/frcpa(1+218/256))= +6.17018e-001
-data8 0x3fe3cd7480b4a8a0 // log(1/frcpa(1+219/256))= +6.18830e-001
-data8 0x3fe3e3c43918f76c // log(1/frcpa(1+220/256))= +6.21554e-001
-data8 0x3fe3f2acb27ed6c4 // log(1/frcpa(1+221/256))= +6.23373e-001
-data8 0x3fe4019c2125ca90 // log(1/frcpa(1+222/256))= +6.25197e-001
-data8 0x3fe4181061389720 // log(1/frcpa(1+223/256))= +6.27937e-001
-data8 0x3fe42711518df544 // log(1/frcpa(1+224/256))= +6.29769e-001
-data8 0x3fe436194e12b6bc // log(1/frcpa(1+225/256))= +6.31604e-001
-data8 0x3fe445285d68ea68 // log(1/frcpa(1+226/256))= +6.33442e-001
-data8 0x3fe45bcc464c8938 // log(1/frcpa(1+227/256))= +6.36206e-001
-data8 0x3fe46aed21f117fc // log(1/frcpa(1+228/256))= +6.38053e-001
-data8 0x3fe47a1527e8a2d0 // log(1/frcpa(1+229/256))= +6.39903e-001
-data8 0x3fe489445efffcc8 // log(1/frcpa(1+230/256))= +6.41756e-001
-data8 0x3fe4a018bcb69834 // log(1/frcpa(1+231/256))= +6.44543e-001
-data8 0x3fe4af5a0c9d65d4 // log(1/frcpa(1+232/256))= +6.46405e-001
-data8 0x3fe4bea2a5bdbe84 // log(1/frcpa(1+233/256))= +6.48271e-001
-data8 0x3fe4cdf28f10ac44 // log(1/frcpa(1+234/256))= +6.50140e-001
-data8 0x3fe4dd49cf994058 // log(1/frcpa(1+235/256))= +6.52013e-001
-data8 0x3fe4eca86e64a680 // log(1/frcpa(1+236/256))= +6.53889e-001
-data8 0x3fe503c43cd8eb68 // log(1/frcpa(1+237/256))= +6.56710e-001
-data8 0x3fe513356667fc54 // log(1/frcpa(1+238/256))= +6.58595e-001
-data8 0x3fe522ae0738a3d4 // log(1/frcpa(1+239/256))= +6.60483e-001
-data8 0x3fe5322e26867854 // log(1/frcpa(1+240/256))= +6.62376e-001
-data8 0x3fe541b5cb979808 // log(1/frcpa(1+241/256))= +6.64271e-001
-data8 0x3fe55144fdbcbd60 // log(1/frcpa(1+242/256))= +6.66171e-001
-data8 0x3fe560dbc45153c4 // log(1/frcpa(1+243/256))= +6.68074e-001
-data8 0x3fe5707a26bb8c64 // log(1/frcpa(1+244/256))= +6.69980e-001
-data8 0x3fe587f60ed5b8fc // log(1/frcpa(1+245/256))= +6.72847e-001
-data8 0x3fe597a7977c8f30 // log(1/frcpa(1+246/256))= +6.74763e-001
-data8 0x3fe5a760d634bb88 // log(1/frcpa(1+247/256))= +6.76682e-001
-data8 0x3fe5b721d295f10c // log(1/frcpa(1+248/256))= +6.78605e-001
-data8 0x3fe5c6ea94431ef8 // log(1/frcpa(1+249/256))= +6.80532e-001
-data8 0x3fe5d6bb22ea86f4 // log(1/frcpa(1+250/256))= +6.82462e-001
-data8 0x3fe5e6938645d38c // log(1/frcpa(1+251/256))= +6.84397e-001
-data8 0x3fe5f673c61a2ed0 // log(1/frcpa(1+252/256))= +6.86335e-001
-data8 0x3fe6065bea385924 // log(1/frcpa(1+253/256))= +6.88276e-001
-data8 0x3fe6164bfa7cc068 // log(1/frcpa(1+254/256))= +6.90222e-001
-data8 0x3fe62643fecf9740 // log(1/frcpa(1+255/256))= +6.92171e-001
-LOCAL_OBJECT_END(pow_Tt)
+ASM_SIZE_DIRECTIVE(pow_table_Q)
+
+
+pow_Tt:
+ASM_TYPE_DIRECTIVE(pow_Tt,@object)
+data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 // log(1/frcpa(1+0/256))= +1.95503e-003
+data8 0x3f78121214586a00, 0x3cb540e0a5cfc9bc // log(1/frcpa(1+1/256))= +5.87661e-003
+data8 0x3f841929f9683200, 0x3cbdf1d57404da1f // log(1/frcpa(1+2/256))= +9.81362e-003
+data8 0x3f8c317384c75f00, 0x3c69806208c04c22 // log(1/frcpa(1+3/256))= +1.37662e-002
+data8 0x3f91a6b91ac73380, 0x3c7874daa716eb32 // log(1/frcpa(1+4/256))= +1.72376e-002
+data8 0x3f95ba9a5d9ac000, 0x3cacbb84e08d78ac // log(1/frcpa(1+5/256))= +2.12196e-002
+data8 0x3f99d2a807432580, 0x3cbcf80538b441e1 // log(1/frcpa(1+6/256))= +2.52177e-002
+data8 0x3f9d6b2725979800, 0x3c6095e5c8f8f359 // log(1/frcpa(1+7/256))= +2.87291e-002
+data8 0x3fa0c58fa19dfa80, 0x3cb4c5d4e9d0dda2 // log(1/frcpa(1+8/256))= +3.27573e-002
+data8 0x3fa2954c78cbce00, 0x3caa932b860ab8d6 // log(1/frcpa(1+9/256))= +3.62953e-002
+data8 0x3fa4a94d2da96c40, 0x3ca670452b76bbd5 // log(1/frcpa(1+10/256))= +4.03542e-002
+data8 0x3fa67c94f2d4bb40, 0x3ca84104f9941798 // log(1/frcpa(1+11/256))= +4.39192e-002
+data8 0x3fa85188b630f040, 0x3cb40a882cbf0153 // log(1/frcpa(1+12/256))= +4.74971e-002
+data8 0x3faa6b8abe73af40, 0x3c988d46e25c9059 // log(1/frcpa(1+13/256))= +5.16017e-002
+data8 0x3fac441e06f72a80, 0x3cae3e930a1a2a96 // log(1/frcpa(1+14/256))= +5.52072e-002
+data8 0x3fae1e6713606d00, 0x3c8a796f6283b580 // log(1/frcpa(1+15/256))= +5.88257e-002
+data8 0x3faffa6911ab9300, 0x3c5193070351e88a // log(1/frcpa(1+16/256))= +6.24574e-002
+data8 0x3fb0ec139c5da600, 0x3c623f2a75eb992d // log(1/frcpa(1+17/256))= +6.61022e-002
+data8 0x3fb1dbd2643d1900, 0x3ca649b2ef8927f0 // log(1/frcpa(1+18/256))= +6.97605e-002
+data8 0x3fb2cc7284fe5f00, 0x3cbc5e86599513e2 // log(1/frcpa(1+19/256))= +7.34321e-002
+data8 0x3fb3bdf5a7d1ee60, 0x3c90bd4bb69dada3 // log(1/frcpa(1+20/256))= +7.71173e-002
+data8 0x3fb4b05d7aa012e0, 0x3c54e377c9b8a54f // log(1/frcpa(1+21/256))= +8.08161e-002
+data8 0x3fb580db7ceb5700, 0x3c7fdb2f98354cde // log(1/frcpa(1+22/256))= +8.39975e-002
+data8 0x3fb674f089365a60, 0x3cb9994c9d3301c1 // log(1/frcpa(1+23/256))= +8.77219e-002
+data8 0x3fb769ef2c6b5680, 0x3caaec639db52a79 // log(1/frcpa(1+24/256))= +9.14602e-002
+data8 0x3fb85fd927506a40, 0x3c9f9f99a3cf8e25 // log(1/frcpa(1+25/256))= +9.52125e-002
+data8 0x3fb9335e5d594980, 0x3ca15c3abd47d99a // log(1/frcpa(1+26/256))= +9.84401e-002
+data8 0x3fba2b0220c8e5e0, 0x3cb4ca639adf6fc3 // log(1/frcpa(1+27/256))= +1.02219e-001
+data8 0x3fbb0004ac1a86a0, 0x3ca7cb81bf959a59 // log(1/frcpa(1+28/256))= +1.05469e-001
+data8 0x3fbbf968769fca00, 0x3cb0c646c121418e // log(1/frcpa(1+29/256))= +1.09274e-001
+data8 0x3fbccfedbfee13a0, 0x3ca0465fce24ab4b // log(1/frcpa(1+30/256))= +1.12548e-001
+data8 0x3fbda727638446a0, 0x3c82803f4e2e6603 // log(1/frcpa(1+31/256))= +1.15832e-001
+data8 0x3fbea3257fe10f60, 0x3cb986a3f2313d1a // log(1/frcpa(1+32/256))= +1.19677e-001
+data8 0x3fbf7be9fedbfde0, 0x3c97d16a6a621cf4 // log(1/frcpa(1+33/256))= +1.22985e-001
+data8 0x3fc02ab352ff25f0, 0x3c9cc6baad365600 // log(1/frcpa(1+34/256))= +1.26303e-001
+data8 0x3fc097ce579d2040, 0x3cb9ba16d329440b // log(1/frcpa(1+35/256))= +1.29633e-001
+data8 0x3fc1178e8227e470, 0x3cb7bc671683f8e6 // log(1/frcpa(1+36/256))= +1.33531e-001
+data8 0x3fc185747dbecf30, 0x3c9d1116f66d2345 // log(1/frcpa(1+37/256))= +1.36885e-001
+data8 0x3fc1f3b925f25d40, 0x3c8162c9ef939ac6 // log(1/frcpa(1+38/256))= +1.40250e-001
+data8 0x3fc2625d1e6ddf50, 0x3caad3a1ec384fc3 // log(1/frcpa(1+39/256))= +1.43627e-001
+data8 0x3fc2d1610c868130, 0x3cb3ad997036941b // log(1/frcpa(1+40/256))= +1.47015e-001
+data8 0x3fc340c597411420, 0x3cbc2308262c7998 // log(1/frcpa(1+41/256))= +1.50414e-001
+data8 0x3fc3b08b6757f2a0, 0x3cb2170d6cdf0526 // log(1/frcpa(1+42/256))= +1.53825e-001
+data8 0x3fc40dfb08378000, 0x3c9bb453c4f7b685 // log(1/frcpa(1+43/256))= +1.56677e-001
+data8 0x3fc47e74e8ca5f70, 0x3cb836a48fdfce9d // log(1/frcpa(1+44/256))= +1.60109e-001
+data8 0x3fc4ef51f6466de0, 0x3ca07a43919aa64b // log(1/frcpa(1+45/256))= +1.63553e-001
+data8 0x3fc56092e02ba510, 0x3ca85006899d97b0 // log(1/frcpa(1+46/256))= +1.67010e-001
+data8 0x3fc5d23857cd74d0, 0x3ca30a5ba6e7abbe // log(1/frcpa(1+47/256))= +1.70478e-001
+data8 0x3fc6313a37335d70, 0x3ca905586f0ac97e // log(1/frcpa(1+48/256))= +1.73377e-001
+data8 0x3fc6a399dabbd380, 0x3c9b2c6657a96684 // log(1/frcpa(1+49/256))= +1.76868e-001
+data8 0x3fc70337dd3ce410, 0x3cb50bc52f55cdd8 // log(1/frcpa(1+50/256))= +1.79786e-001
+data8 0x3fc77654128f6120, 0x3cad2eb7c9a39efe // log(1/frcpa(1+51/256))= +1.83299e-001
+data8 0x3fc7e9d82a0b0220, 0x3cba127e90393c01 // log(1/frcpa(1+52/256))= +1.86824e-001
+data8 0x3fc84a6b759f5120, 0x3cbd7fd52079f706 // log(1/frcpa(1+53/256))= +1.89771e-001
+data8 0x3fc8ab47d5f5a300, 0x3cbfae141751a3de // log(1/frcpa(1+54/256))= +1.92727e-001
+data8 0x3fc91fe490965810, 0x3cb69cf30a1c319e // log(1/frcpa(1+55/256))= +1.96286e-001
+data8 0x3fc981634011aa70, 0x3ca5bb3d208bc42a // log(1/frcpa(1+56/256))= +1.99261e-001
+data8 0x3fc9f6c407089660, 0x3ca04d68658179a0 // log(1/frcpa(1+57/256))= +2.02843e-001
+data8 0x3fca58e729348f40, 0x3c99f5411546c286 // log(1/frcpa(1+58/256))= +2.05838e-001
+data8 0x3fcabb55c31693a0, 0x3cb9a5350eb327d5 // log(1/frcpa(1+59/256))= +2.08842e-001
+data8 0x3fcb1e104919efd0, 0x3c18965fcce7c406 // log(1/frcpa(1+60/256))= +2.11855e-001
+data8 0x3fcb94ee93e367c0, 0x3cb503716da45184 // log(1/frcpa(1+61/256))= +2.15483e-001
+data8 0x3fcbf851c0675550, 0x3cbdf1b3f7ab5378 // log(1/frcpa(1+62/256))= +2.18516e-001
+data8 0x3fcc5c0254bf23a0, 0x3ca7aab9ed0b1d7b // log(1/frcpa(1+63/256))= +2.21558e-001
+data8 0x3fccc000c9db3c50, 0x3c92a7a2a850072a // log(1/frcpa(1+64/256))= +2.24609e-001
+data8 0x3fcd244d99c85670, 0x3c9f6019120edf4c // log(1/frcpa(1+65/256))= +2.27670e-001
+data8 0x3fcd88e93fb2f450, 0x3c6affb96815e081 // log(1/frcpa(1+66/256))= +2.30741e-001
+data8 0x3fcdedd437eaef00, 0x3c72553595897976 // log(1/frcpa(1+67/256))= +2.33820e-001
+data8 0x3fce530effe71010, 0x3c90913b020fa182 // log(1/frcpa(1+68/256))= +2.36910e-001
+data8 0x3fceb89a1648b970, 0x3c837ba4045bfd25 // log(1/frcpa(1+69/256))= +2.40009e-001
+data8 0x3fcf1e75fadf9bd0, 0x3cbcea6d13e0498d // log(1/frcpa(1+70/256))= +2.43117e-001
+data8 0x3fcf84a32ead7c30, 0x3ca5e3a67b3c6d77 // log(1/frcpa(1+71/256))= +2.46235e-001
+data8 0x3fcfeb2233ea07c0, 0x3cba0c6f0049c5a6 // log(1/frcpa(1+72/256))= +2.49363e-001
+data8 0x3fd028f9c7035c18, 0x3cb0a30b06677ff6 // log(1/frcpa(1+73/256))= +2.52501e-001
+data8 0x3fd05c8be0d96358, 0x3ca0f1c77ccb5865 // log(1/frcpa(1+74/256))= +2.55649e-001
+data8 0x3fd085eb8f8ae790, 0x3cbd513f45fe7a97 // log(1/frcpa(1+75/256))= +2.58174e-001
+data8 0x3fd0b9c8e32d1910, 0x3c927449047ca006 // log(1/frcpa(1+76/256))= +2.61339e-001
+data8 0x3fd0edd060b78080, 0x3c89b52d8435f53e // log(1/frcpa(1+77/256))= +2.64515e-001
+data8 0x3fd122024cf00638, 0x3cbdd976fabda4bd // log(1/frcpa(1+78/256))= +2.67701e-001
+data8 0x3fd14be2927aecd0, 0x3cb02f90ad0bc471 // log(1/frcpa(1+79/256))= +2.70257e-001
+data8 0x3fd180618ef18ad8, 0x3cbd003792c71a98 // log(1/frcpa(1+80/256))= +2.73461e-001
+data8 0x3fd1b50bbe2fc638, 0x3ca9ae64c6403ead // log(1/frcpa(1+81/256))= +2.76675e-001
+data8 0x3fd1df4cc7cf2428, 0x3cb43f0455f7e395 // log(1/frcpa(1+82/256))= +2.79254e-001
+data8 0x3fd214456d0eb8d0, 0x3cb0fbd748d75d30 // log(1/frcpa(1+83/256))= +2.82487e-001
+data8 0x3fd23ec5991eba48, 0x3c906edd746b77e2 // log(1/frcpa(1+84/256))= +2.85081e-001
+data8 0x3fd2740d9f870af8, 0x3ca9802e6a00a670 // log(1/frcpa(1+85/256))= +2.88333e-001
+data8 0x3fd29ecdabcdfa00, 0x3cacecef70890cfa // log(1/frcpa(1+86/256))= +2.90943e-001
+data8 0x3fd2d46602adcce8, 0x3cb97911955f3521 // log(1/frcpa(1+87/256))= +2.94214e-001
+data8 0x3fd2ff66b04ea9d0, 0x3cb12dabe191d1c9 // log(1/frcpa(1+88/256))= +2.96838e-001
+data8 0x3fd335504b355a30, 0x3cbdf9139df924ec // log(1/frcpa(1+89/256))= +3.00129e-001
+data8 0x3fd360925ec44f58, 0x3cb253e68977a1e3 // log(1/frcpa(1+90/256))= +3.02769e-001
+data8 0x3fd38bf1c3337e70, 0x3cb3d283d2a2da21 // log(1/frcpa(1+91/256))= +3.05417e-001
+data8 0x3fd3c25277333180, 0x3cadaa5b035eae27 // log(1/frcpa(1+92/256))= +3.08735e-001
+data8 0x3fd3edf463c16838, 0x3cb983d680d3c108 // log(1/frcpa(1+93/256))= +3.11399e-001
+data8 0x3fd419b423d5e8c0, 0x3cbc86dd921c139d // log(1/frcpa(1+94/256))= +3.14069e-001
+data8 0x3fd44591e0539f48, 0x3c86a76d6dc2782e // log(1/frcpa(1+95/256))= +3.16746e-001
+data8 0x3fd47c9175b6f0a8, 0x3cb59a2e013c6b5f // log(1/frcpa(1+96/256))= +3.20103e-001
+data8 0x3fd4a8b341552b08, 0x3c93f1e86e468694 // log(1/frcpa(1+97/256))= +3.22797e-001
+data8 0x3fd4d4f390890198, 0x3cbf5e4ea7c5105a // log(1/frcpa(1+98/256))= +3.25498e-001
+data8 0x3fd501528da1f960, 0x3cbf58da53e9ad10 // log(1/frcpa(1+99/256))= +3.28206e-001
+data8 0x3fd52dd06347d4f0, 0x3cb98a28cebf6eef // log(1/frcpa(1+100/256))= +3.30921e-001
+data8 0x3fd55a6d3c7b8a88, 0x3c9c76b67c2d1fd4 // log(1/frcpa(1+101/256))= +3.33644e-001
+data8 0x3fd5925d2b112a58, 0x3c9029616a4331b8 // log(1/frcpa(1+102/256))= +3.37058e-001
+data8 0x3fd5bf406b543db0, 0x3c9fb8292ecfc820 // log(1/frcpa(1+103/256))= +3.39798e-001
+data8 0x3fd5ec433d5c35a8, 0x3cb71a1229d17eec // log(1/frcpa(1+104/256))= +3.42545e-001
+data8 0x3fd61965cdb02c18, 0x3cbba94fe1dbb8d2 // log(1/frcpa(1+105/256))= +3.45300e-001
+data8 0x3fd646a84935b2a0, 0x3c9ee496d2c9ae57 // log(1/frcpa(1+106/256))= +3.48063e-001
+data8 0x3fd6740add31de90, 0x3cb1da3a6c7a9dfd // log(1/frcpa(1+107/256))= +3.50833e-001
+data8 0x3fd6a18db74a58c0, 0x3cb494c257add8dc // log(1/frcpa(1+108/256))= +3.53610e-001
+data8 0x3fd6cf31058670e8, 0x3cb0b244a70a8da9 // log(1/frcpa(1+109/256))= +3.56396e-001
+data8 0x3fd6f180e852f0b8, 0x3c9db7aefa866720 // log(1/frcpa(1+110/256))= +3.58490e-001
+data8 0x3fd71f5d71b894e8, 0x3cbe91c4bf324957 // log(1/frcpa(1+111/256))= +3.61289e-001
+data8 0x3fd74d5aefd66d58, 0x3cb06b3d9bfac023 // log(1/frcpa(1+112/256))= +3.64096e-001
+data8 0x3fd77b79922bd378, 0x3cb727d8804491f4 // log(1/frcpa(1+113/256))= +3.66911e-001
+data8 0x3fd7a9b9889f19e0, 0x3ca2ef22df5bc543 // log(1/frcpa(1+114/256))= +3.69734e-001
+data8 0x3fd7d81b037eb6a0, 0x3cb8fd3ba07a7ece // log(1/frcpa(1+115/256))= +3.72565e-001
+data8 0x3fd8069e33827230, 0x3c8bd1e25866e61a // log(1/frcpa(1+116/256))= +3.75404e-001
+data8 0x3fd82996d3ef8bc8, 0x3ca5aab9f5928928 // log(1/frcpa(1+117/256))= +3.77538e-001
+data8 0x3fd85855776dcbf8, 0x3ca56f33337789d6 // log(1/frcpa(1+118/256))= +3.80391e-001
+data8 0x3fd8873658327cc8, 0x3cbb8ef0401db49d // log(1/frcpa(1+119/256))= +3.83253e-001
+data8 0x3fd8aa75973ab8c8, 0x3cbb9961f509a680 // log(1/frcpa(1+120/256))= +3.85404e-001
+data8 0x3fd8d992dc8824e0, 0x3cb220512a53732d // log(1/frcpa(1+121/256))= +3.88280e-001
+data8 0x3fd908d2ea7d9510, 0x3c985f0e513bfb5c // log(1/frcpa(1+122/256))= +3.91164e-001
+data8 0x3fd92c59e79c0e50, 0x3cb82e073fd30d63 // log(1/frcpa(1+123/256))= +3.93332e-001
+data8 0x3fd95bd750ee3ed0, 0x3ca4aa7cdb6dd8a8 // log(1/frcpa(1+124/256))= +3.96231e-001
+data8 0x3fd98b7811a3ee58, 0x3caa93a5b660893e // log(1/frcpa(1+125/256))= +3.99138e-001
+data8 0x3fd9af47f33d4068, 0x3cac294b3b3190ba // log(1/frcpa(1+126/256))= +4.01323e-001
+data8 0x3fd9df270c1914a0, 0x3cbe1a58fd0cd67e // log(1/frcpa(1+127/256))= +4.04245e-001
+data8 0x3fda0325ed14fda0, 0x3cb1efa7950fb57e // log(1/frcpa(1+128/256))= +4.06442e-001
+data8 0x3fda33440224fa78, 0x3c8915fe75e7d477 // log(1/frcpa(1+129/256))= +4.09379e-001
+data8 0x3fda57725e80c380, 0x3ca72bd1062b1b7f // log(1/frcpa(1+130/256))= +4.11587e-001
+data8 0x3fda87d0165dd198, 0x3c91f7845f58dbad // log(1/frcpa(1+131/256))= +4.14539e-001
+data8 0x3fdaac2e6c03f890, 0x3cb6f237a911c509 // log(1/frcpa(1+132/256))= +4.16759e-001
+data8 0x3fdadccc6fdf6a80, 0x3c90ddc4b7687169 // log(1/frcpa(1+133/256))= +4.19726e-001
+data8 0x3fdb015b3eb1e790, 0x3c692dd7d90e1e8e // log(1/frcpa(1+134/256))= +4.21958e-001
+data8 0x3fdb323a3a635948, 0x3c6f85655cbe14de // log(1/frcpa(1+135/256))= +4.24941e-001
+data8 0x3fdb56fa04462908, 0x3c95252d841994de // log(1/frcpa(1+136/256))= +4.27184e-001
+data8 0x3fdb881aa659bc90, 0x3caa53a745a3642f // log(1/frcpa(1+137/256))= +4.30182e-001
+data8 0x3fdbad0bef3db160, 0x3cb32f2540dcc16a // log(1/frcpa(1+138/256))= +4.32437e-001
+data8 0x3fdbd21297781c28, 0x3cbd8e891e106f1d // log(1/frcpa(1+139/256))= +4.34697e-001
+data8 0x3fdc039236f08818, 0x3c809435af522ba7 // log(1/frcpa(1+140/256))= +4.37718e-001
+data8 0x3fdc28cb1e4d32f8, 0x3cb3944752fbd81e // log(1/frcpa(1+141/256))= +4.39990e-001
+data8 0x3fdc4e19b84723c0, 0x3c9a465260cd3fe5 // log(1/frcpa(1+142/256))= +4.42267e-001
+data8 0x3fdc7ff9c74554c8, 0x3c92447d5b6ca369 // log(1/frcpa(1+143/256))= +4.45311e-001
+data8 0x3fdca57b64e9db00, 0x3cb44344a8a00c82 // log(1/frcpa(1+144/256))= +4.47600e-001
+data8 0x3fdccb130a5ceba8, 0x3cbefaddfb97b73f // log(1/frcpa(1+145/256))= +4.49895e-001
+data8 0x3fdcf0c0d18f3268, 0x3cbd3e7bfee57898 // log(1/frcpa(1+146/256))= +4.52194e-001
+data8 0x3fdd232075b5a200, 0x3c9222599987447c // log(1/frcpa(1+147/256))= +4.55269e-001
+data8 0x3fdd490246defa68, 0x3cabafe9a767a80d // log(1/frcpa(1+148/256))= +4.57581e-001
+data8 0x3fdd6efa918d25c8, 0x3cb58a2624e1c6fd // log(1/frcpa(1+149/256))= +4.59899e-001
+data8 0x3fdd9509707ae528, 0x3cbdc3babce578e7 // log(1/frcpa(1+150/256))= +4.62221e-001
+data8 0x3fddbb2efe92c550, 0x3cb0ac0943c434a4 // log(1/frcpa(1+151/256))= +4.64550e-001
+data8 0x3fddee2f3445e4a8, 0x3cbba9d07ce820e8 // log(1/frcpa(1+152/256))= +4.67663e-001
+data8 0x3fde148a1a2726c8, 0x3cb6537e3375b205 // log(1/frcpa(1+153/256))= +4.70004e-001
+data8 0x3fde3afc0a49ff38, 0x3cbfed5518dbc20e // log(1/frcpa(1+154/256))= +4.72350e-001
+data8 0x3fde6185206d5168, 0x3cb6572601f73d5c // log(1/frcpa(1+155/256))= +4.74702e-001
+data8 0x3fde882578823d50, 0x3c9b24abd4584d1a // log(1/frcpa(1+156/256))= +4.77060e-001
+data8 0x3fdeaedd2eac9908, 0x3cb0ceb5e4d2c8f7 // log(1/frcpa(1+157/256))= +4.79423e-001
+data8 0x3fded5ac5f436be0, 0x3ca72f21f1f5238e // log(1/frcpa(1+158/256))= +4.81792e-001
+data8 0x3fdefc9326d16ab8, 0x3c85081a1639a45c // log(1/frcpa(1+159/256))= +4.84166e-001
+data8 0x3fdf2391a21575f8, 0x3cbf11015bdd297a // log(1/frcpa(1+160/256))= +4.86546e-001
+data8 0x3fdf4aa7ee031928, 0x3cb3795bc052a2d1 // log(1/frcpa(1+161/256))= +4.88932e-001
+data8 0x3fdf71d627c30bb0, 0x3c35c61f0f5a88f3 // log(1/frcpa(1+162/256))= +4.91323e-001
+data8 0x3fdf991c6cb3b378, 0x3c97d99419be6028 // log(1/frcpa(1+163/256))= +4.93720e-001
+data8 0x3fdfc07ada69a908, 0x3cbfe9341ded70b1 // log(1/frcpa(1+164/256))= +4.96123e-001
+data8 0x3fdfe7f18eb03d38, 0x3cb85718a640c33f // log(1/frcpa(1+165/256))= +4.98532e-001
+data8 0x3fe007c053c5002c, 0x3cb3addc9c065f09 // log(1/frcpa(1+166/256))= +5.00946e-001
+data8 0x3fe01b942198a5a0, 0x3c9d5aa4c77da6ac // log(1/frcpa(1+167/256))= +5.03367e-001
+data8 0x3fe02f74400c64e8, 0x3cb5a0ee4450ef52 // log(1/frcpa(1+168/256))= +5.05793e-001
+data8 0x3fe04360be7603ac, 0x3c9dd00c35630fe0 // log(1/frcpa(1+169/256))= +5.08225e-001
+data8 0x3fe05759ac47fe30, 0x3cbd063e1f0bd82c // log(1/frcpa(1+170/256))= +5.10663e-001
+data8 0x3fe06b5f1911cf50, 0x3cae8da674af5289 // log(1/frcpa(1+171/256))= +5.13107e-001
+data8 0x3fe078bf0533c568, 0x3c62241edf5fd1f7 // log(1/frcpa(1+172/256))= +5.14740e-001
+data8 0x3fe08cd9687e7b0c, 0x3cb3007febcca227 // log(1/frcpa(1+173/256))= +5.17194e-001
+data8 0x3fe0a10074cf9018, 0x3ca496e84603816b // log(1/frcpa(1+174/256))= +5.19654e-001
+data8 0x3fe0b5343a234474, 0x3cb46098d14fc90a // log(1/frcpa(1+175/256))= +5.22120e-001
+data8 0x3fe0c974c89431cc, 0x3cac0a7cdcbb86c6 // log(1/frcpa(1+176/256))= +5.24592e-001
+data8 0x3fe0ddc2305b9884, 0x3cb2f753210410ff // log(1/frcpa(1+177/256))= +5.27070e-001
+data8 0x3fe0eb524bafc918, 0x3c88affd6682229e // log(1/frcpa(1+178/256))= +5.28726e-001
+data8 0x3fe0ffb54213a474, 0x3cadeefbab9af993 // log(1/frcpa(1+179/256))= +5.31214e-001
+data8 0x3fe114253da97d9c, 0x3cbaf1c2b8bc160a // log(1/frcpa(1+180/256))= +5.33709e-001
+data8 0x3fe128a24f1d9afc, 0x3cb9cf4df375e650 // log(1/frcpa(1+181/256))= +5.36210e-001
+data8 0x3fe1365252bf0864, 0x3c985a621d4be111 // log(1/frcpa(1+182/256))= +5.37881e-001
+data8 0x3fe14ae558b4a92c, 0x3ca104c4aa8977d1 // log(1/frcpa(1+183/256))= +5.40393e-001
+data8 0x3fe15f85a19c7658, 0x3cbadf26e540f375 // log(1/frcpa(1+184/256))= +5.42910e-001
+data8 0x3fe16d4d38c119f8, 0x3cb3aea11caec416 // log(1/frcpa(1+185/256))= +5.44592e-001
+data8 0x3fe18203c20dd130, 0x3cba82d1211d1d6d // log(1/frcpa(1+186/256))= +5.47121e-001
+data8 0x3fe196c7bc4b1f38, 0x3cb6267acc4f4f4a // log(1/frcpa(1+187/256))= +5.49656e-001
+data8 0x3fe1a4a738b7a33c, 0x3c858930213c987d // log(1/frcpa(1+188/256))= +5.51349e-001
+data8 0x3fe1b981c0c9653c, 0x3c9bc2a4a30f697b // log(1/frcpa(1+189/256))= +5.53895e-001
+data8 0x3fe1ce69e8bb1068, 0x3cb7ae6199cf2a00 // log(1/frcpa(1+190/256))= +5.56447e-001
+data8 0x3fe1dc619de06944, 0x3c6b50bb38388177 // log(1/frcpa(1+191/256))= +5.58152e-001
+data8 0x3fe1f160a2ad0da0, 0x3cbd05b2778a5e1d // log(1/frcpa(1+192/256))= +5.60715e-001
+data8 0x3fe2066d7740737c, 0x3cb32e828f9c6bd6 // log(1/frcpa(1+193/256))= +5.63285e-001
+data8 0x3fe2147dba47a390, 0x3cbd579851b8b672 // log(1/frcpa(1+194/256))= +5.65001e-001
+data8 0x3fe229a1bc5ebac0, 0x3cbb321be5237ce8 // log(1/frcpa(1+195/256))= +5.67582e-001
+data8 0x3fe237c1841a502c, 0x3cb3b56e0915ea64 // log(1/frcpa(1+196/256))= +5.69306e-001
+data8 0x3fe24cfce6f80d98, 0x3cb34a4d1a422919 // log(1/frcpa(1+197/256))= +5.71898e-001
+data8 0x3fe25b2c55cd5760, 0x3cb237401ea5015e // log(1/frcpa(1+198/256))= +5.73630e-001
+data8 0x3fe2707f4d5f7c40, 0x3c9d30f20acc8341 // log(1/frcpa(1+199/256))= +5.76233e-001
+data8 0x3fe285e0842ca380, 0x3cbc4d866d5f21c0 // log(1/frcpa(1+200/256))= +5.78842e-001
+data8 0x3fe294294708b770, 0x3cb85e14d5dc54fa // log(1/frcpa(1+201/256))= +5.80586e-001
+data8 0x3fe2a9a2670aff0c, 0x3c7e6f8f468bbf91 // log(1/frcpa(1+202/256))= +5.83207e-001
+data8 0x3fe2b7fb2c8d1cc0, 0x3c930ffcf63c8b65 // log(1/frcpa(1+203/256))= +5.84959e-001
+data8 0x3fe2c65a6395f5f4, 0x3ca0afe20b53d2d2 // log(1/frcpa(1+204/256))= +5.86713e-001
+data8 0x3fe2dbf557b0df40, 0x3cb646be1188fbc9 // log(1/frcpa(1+205/256))= +5.89350e-001
+data8 0x3fe2ea64c3f97654, 0x3c96516fa8df33b2 // log(1/frcpa(1+206/256))= +5.91113e-001
+data8 0x3fe3001823684d70, 0x3cb96d64e16d1360 // log(1/frcpa(1+207/256))= +5.93762e-001
+data8 0x3fe30e97e9a8b5cc, 0x3c98ef96bc97cca0 // log(1/frcpa(1+208/256))= +5.95531e-001
+data8 0x3fe32463ebdd34e8, 0x3caef1dc9a56c1bf // log(1/frcpa(1+209/256))= +5.98192e-001
+data8 0x3fe332f4314ad794, 0x3caa4f0ac5d5fa11 // log(1/frcpa(1+210/256))= +5.99970e-001
+data8 0x3fe348d90e7464cc, 0x3cbe7889f0516acd // log(1/frcpa(1+211/256))= +6.02643e-001
+data8 0x3fe35779f8c43d6c, 0x3ca96bbab7245411 // log(1/frcpa(1+212/256))= +6.04428e-001
+data8 0x3fe36621961a6a98, 0x3ca31f32262db9fb // log(1/frcpa(1+213/256))= +6.06217e-001
+data8 0x3fe37c299f3c3668, 0x3cb15c72c107ee29 // log(1/frcpa(1+214/256))= +6.08907e-001
+data8 0x3fe38ae2171976e4, 0x3cba42a2554b2dd4 // log(1/frcpa(1+215/256))= +6.10704e-001
+data8 0x3fe399a157a603e4, 0x3cb99c62286d8919 // log(1/frcpa(1+216/256))= +6.12504e-001
+data8 0x3fe3afccfe77b9d0, 0x3ca11048f96a43bd // log(1/frcpa(1+217/256))= +6.15210e-001
+data8 0x3fe3be9d503533b4, 0x3ca4022f47588c3e // log(1/frcpa(1+218/256))= +6.17018e-001
+data8 0x3fe3cd7480b4a8a0, 0x3cb4ba7afc2dc56a // log(1/frcpa(1+219/256))= +6.18830e-001
+data8 0x3fe3e3c43918f76c, 0x3c859673d064b8ba // log(1/frcpa(1+220/256))= +6.21554e-001
+data8 0x3fe3f2acb27ed6c4, 0x3cb55c6b452a16a8 // log(1/frcpa(1+221/256))= +6.23373e-001
+data8 0x3fe4019c2125ca90, 0x3cb8c367879c5a31 // log(1/frcpa(1+222/256))= +6.25197e-001
+data8 0x3fe4181061389720, 0x3cb2c17a79c5cc6c // log(1/frcpa(1+223/256))= +6.27937e-001
+data8 0x3fe42711518df544, 0x3ca5f38d47012fc5 // log(1/frcpa(1+224/256))= +6.29769e-001
+data8 0x3fe436194e12b6bc, 0x3cb9854d65a9b426 // log(1/frcpa(1+225/256))= +6.31604e-001
+data8 0x3fe445285d68ea68, 0x3ca3ff9b3a81cd81 // log(1/frcpa(1+226/256))= +6.33442e-001
+data8 0x3fe45bcc464c8938, 0x3cb0a2d8011a6c05 // log(1/frcpa(1+227/256))= +6.36206e-001
+data8 0x3fe46aed21f117fc, 0x3c8a2be41f8e9f3d // log(1/frcpa(1+228/256))= +6.38053e-001
+data8 0x3fe47a1527e8a2d0, 0x3cba4a83594fab09 // log(1/frcpa(1+229/256))= +6.39903e-001
+data8 0x3fe489445efffcc8, 0x3cbf306a23dcbcde // log(1/frcpa(1+230/256))= +6.41756e-001
+data8 0x3fe4a018bcb69834, 0x3ca46c9285029fd1 // log(1/frcpa(1+231/256))= +6.44543e-001
+data8 0x3fe4af5a0c9d65d4, 0x3cbbc1db897580e3 // log(1/frcpa(1+232/256))= +6.46405e-001
+data8 0x3fe4bea2a5bdbe84, 0x3cb84d880d7ef775 // log(1/frcpa(1+233/256))= +6.48271e-001
+data8 0x3fe4cdf28f10ac44, 0x3cb3ec4b7893ce1f // log(1/frcpa(1+234/256))= +6.50140e-001
+data8 0x3fe4dd49cf994058, 0x3c897224d59d3408 // log(1/frcpa(1+235/256))= +6.52013e-001
+data8 0x3fe4eca86e64a680, 0x3cbccf620f24f0cd // log(1/frcpa(1+236/256))= +6.53889e-001
+data8 0x3fe503c43cd8eb68, 0x3c3f872c65971084 // log(1/frcpa(1+237/256))= +6.56710e-001
+data8 0x3fe513356667fc54, 0x3cb9ca64cc3d52c8 // log(1/frcpa(1+238/256))= +6.58595e-001
+data8 0x3fe522ae0738a3d4, 0x3cbe708164c75968 // log(1/frcpa(1+239/256))= +6.60483e-001
+data8 0x3fe5322e26867854, 0x3cb9988ba4aea615 // log(1/frcpa(1+240/256))= +6.62376e-001
+data8 0x3fe541b5cb979808, 0x3ca1662e3a6b95f5 // log(1/frcpa(1+241/256))= +6.64271e-001
+data8 0x3fe55144fdbcbd60, 0x3cb3acd4ca45c1e0 // log(1/frcpa(1+242/256))= +6.66171e-001
+data8 0x3fe560dbc45153c4, 0x3cb4988947959fed // log(1/frcpa(1+243/256))= +6.68074e-001
+data8 0x3fe5707a26bb8c64, 0x3cb3017fe6607ba9 // log(1/frcpa(1+244/256))= +6.69980e-001
+data8 0x3fe587f60ed5b8fc, 0x3cbe7a3266366ed4 // log(1/frcpa(1+245/256))= +6.72847e-001
+data8 0x3fe597a7977c8f30, 0x3ca1e12b9959a90e // log(1/frcpa(1+246/256))= +6.74763e-001
+data8 0x3fe5a760d634bb88, 0x3cb7c365e53d9602 // log(1/frcpa(1+247/256))= +6.76682e-001
+data8 0x3fe5b721d295f10c, 0x3cb716c2551ccbf0 // log(1/frcpa(1+248/256))= +6.78605e-001
+data8 0x3fe5c6ea94431ef8, 0x3ca02b2ed0e28261 // log(1/frcpa(1+249/256))= +6.80532e-001
+data8 0x3fe5d6bb22ea86f4, 0x3caf43a8bbb2f974 // log(1/frcpa(1+250/256))= +6.82462e-001
+data8 0x3fe5e6938645d38c, 0x3cbcedc98821b333 // log(1/frcpa(1+251/256))= +6.84397e-001
+data8 0x3fe5f673c61a2ed0, 0x3caa385eef5f2789 // log(1/frcpa(1+252/256))= +6.86335e-001
+data8 0x3fe6065bea385924, 0x3cb11624f165c5b4 // log(1/frcpa(1+253/256))= +6.88276e-001
+data8 0x3fe6164bfa7cc068, 0x3cbad884f87073fa // log(1/frcpa(1+254/256))= +6.90222e-001
+data8 0x3fe62643fecf9740, 0x3cb78c51da12f4df // log(1/frcpa(1+255/256))= +6.92171e-001
+ASM_SIZE_DIRECTIVE(pow_Tt)
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
-LOCAL_OBJECT_START(pow_tbl1)
+pow_tbl1:
+ASM_TYPE_DIRECTIVE(pow_tbl1,@object)
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
@@ -851,12 +873,13 @@ data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(pow_tbl1)
+ASM_SIZE_DIRECTIVE(pow_tbl1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(pow_tbl2)
+pow_tbl2:
+ASM_TYPE_DIRECTIVE(pow_tbl2,@object)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
@@ -865,514 +888,781 @@ data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(pow_tbl2)
+ASM_SIZE_DIRECTIVE(pow_tbl2)
+
+.global powf
.section .text
-GLOBAL_LIBM_ENTRY(powf)
+.proc powf
+.align 32
+
+powf:
-// Get exponent of x. Will be used to calculate K.
{ .mfi
- getf.exp pow_GR_signexp_X = f8
- fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
- mov pow_GR_17ones = 0x1FFFF
+ alloc r32=ar.pfs,1,35,4,0
+ fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
+ mov pow_GR_17ones = 0x1FFFF
}
{ .mfi
- addl pow_AD_P = @ltoff(pow_table_P), gp
- fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
+(p0) addl pow_AD_P = @ltoff(pow_table_P), gp
+ fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
nop.i 999
-}
;;
+}
-// Get significand of x. Will be used to get index to fetch T, Tt.
+
+// Get exponent of x. Will be used to calculate K.
{ .mfi
- getf.sig pow_GR_sig_X = f8
- frcpa.s1 POW_B, p6 = f1,f8
- mov pow_GR_exp_half = 0xFFFE // Exponent for 0.5
+ getf.exp pow_GR_signexp_X = f8
+ frcpa.s1 POW_B, p6 = f1,f8
+ nop.i 999
}
{ .mfi
ld8 pow_AD_P = [pow_AD_P]
- fma.s1 POW_NORM_X = f8,f1,f0
- mov pow_GR_exp_2tom8 = 0xFFF7
+ fma.s1 POW_NORM_X = f8,f1,f0
+ mov pow_GR_FFF7 = 0xFFF7
}
;;
+
+
+// Get significand of x. Will be used to get index to fetch T, Tt.
+// p13 = TRUE ==> X is unorm
// DOUBLE 0x10033 exponent limit at which y is an integer
+// SINGLE 0x10016
{ .mfi
- nop.m 999
- fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
- addl pow_GR_10033 = 0x10033, r0
+ getf.sig pow_GR_sig_X = f8
+ fclass.m p13,p0 = f8, 0x0b // Test for x unorm
+ addl pow_GR_10033 = 0x10033, r0
}
{ .mfi
mov pow_GR_16ones = 0xFFFF
- fma.s1 POW_NORM_Y = f9,f1,f0
+ fma.s1 POW_NORM_Y = f9,f1,f0
nop.i 999
}
;;
-// p13 = TRUE ==> X is unorm
+
+// p14 = TRUE ==> X is ZERO
{ .mfi
- setf.exp POW_Q0_half = pow_GR_exp_half // Form 0.5
- fclass.m p13,p0 = f8, 0x0b // Test for x unorm
adds pow_AD_Tt = pow_Tt - pow_table_P, pow_AD_P
+ fclass.m p14,p15 = f8, 0x07
+ and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
}
{ .mfi
- adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
+ adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
nop.f 999
nop.i 999
}
;;
-// p14 = TRUE ==> X is ZERO
{ .mfi
- ldfe POW_P2 = [pow_AD_Q], 16
- fclass.m p14,p0 = f8, 0x07
- nop.i 999
+ ldfe POW_P5 = [pow_AD_P], 16
+ fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
+ shl pow_GR_offset = pow_GR_sig_X, 1
}
-// Note POW_Xm1 and POW_r1 are used interchangably
-{ .mfb
- nop.m 999
-(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
-(p13) br.cond.spnt POW_X_DENORM
+{ .mib
+ ldfe POW_P4 = [pow_AD_Q], 16
+ sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
+(p13) br.cond.spnt L(POW_X_DENORM)
}
;;
+
// Continue normal and denormal paths here
-POW_COMMON:
+L(POW_COMMON):
// p11 = TRUE ==> Y is a NAN
{ .mfi
- and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
- fclass.m p11,p0 = f9, 0xc3
- nop.i 999
+ ldfe POW_P3 = [pow_AD_P], 16
+ fclass.m.unc p11,p0 = f9, 0xc3
+ shr.u pow_GR_offset = pow_GR_offset,56
}
{ .mfi
- nop.m 999
- fms.s1 POW_r = POW_B, POW_NORM_X,f1
- mov pow_GR_y_zero = 0
+ ldfe POW_P2 = [pow_AD_Q], 16
+ nop.f 999
+ nop.i 999
}
;;
-// Get exponent of |x|-1 to use in comparison to 2^-8
-{ .mmi
- getf.exp pow_GR_signexp_Xm1 = POW_Xm1
- sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
- extr.u pow_GR_offset = pow_GR_sig_X, 55, 8
-}
-;;
+
+// Compute xsq to decide later if |x|=1
+// p11 = TRUE ==> Y is a NaN
{ .mfi
- alloc r32=ar.pfs,2,19,4,0
- fcvt.fx.s1 POW_int_Y = POW_NORM_Y
- shladd pow_AD_Tt = pow_GR_offset, 3, pow_AD_Tt
+ setf.sig POW_int_K = pow_GR_true_exp_X
+(p15) fms.s1 POW_r = POW_B, POW_NORM_X,f1
+ shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
}
{ .mfi
- setf.sig POW_int_K = pow_GR_true_exp_X
- nop.f 999
+ nop.m 999
+(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
nop.i 999
}
;;
-// p12 = TRUE if Y is ZERO
-// Compute xsq to decide later if |x|=1
+
+
+// p12 = TRUE ==> X is ZERO and Y is ZERO
{ .mfi
- ldfe POW_P1 = [pow_AD_P], 16
- fclass.m p12,p0 = f9, 0x07
+ ldfe POW_P1 = [pow_AD_P], 16
+(p14) fclass.m.unc p12,p0 = f9, 0x07
nop.i 999
}
{ .mfb
- ldfe POW_P0 = [pow_AD_Q], 16
+ ldfe POW_P0 = [pow_AD_Q], 16
fma.s1 POW_xsq = POW_NORM_X, POW_NORM_X, f0
-(p11) br.cond.spnt POW_Y_NAN // Branch if y=nan
+(p11) br.cond.spnt L(POW_Y_NAN)
}
;;
+
+.pred.rel "mutex",p8,p9
+// Get exponent of |x|-1 to use in comparison to 2^-8
{ .mmf
- getf.exp pow_GR_signexp_Y = POW_NORM_Y
- ldfd POW_T = [pow_AD_Tt]
- fma.s1 POW_rsq = POW_r, POW_r,f0
+(p8) getf.exp pow_GR_signexp_Xm1 = POW_Xp1
+(p9) getf.exp pow_GR_signexp_Xm1 = POW_Xm1
+ fcvt.fx.s1 POW_int_Y = POW_NORM_Y
}
;;
+
// p11 = TRUE ==> X is a NAN
{ .mfi
ldfpd POW_log2_hi, POW_log2_lo = [pow_AD_Q], 16
- fclass.m p11,p0 = POW_NORM_X, 0xc3
+ fclass.m.unc p11,p0 = f8, 0xc3
nop.i 999
}
+{ .mib
+ ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16
+ nop.i 999
+(p12) br.cond.spnt L(POW_X_0_Y_0)
+}
+;;
+
+
+// p14 = TRUE ==> X is zero
+// p15 = TRUE ==> X is zero AND Y is negative
+// p10 = TRUE ==> X is zero AND Y is >= zero
{ .mfi
ldfe POW_inv_log2_by_128 = [pow_AD_P], 16
- fma.s1 POW_delta = f0,f0,f0 // delta=0 in case |x| near 1
-(p12) mov pow_GR_y_zero = 1
+(p14) fcmp.lt.unc.s1 p15, p10 = f9,f0
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+ nop.f 999
+ and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
+}
;;
+
+// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
+// p12 = TRUE ==> X is a NAN and Y is a zero
+// p13 = TRUE ==> X is a NAN and Y is anything else
+{ .mfi
+ getf.exp pow_GR_signexp_Y = POW_NORM_Y
+(p11) fclass.m.unc p12,p13 = f9, 0x07
+ cmp.lt.unc p6,p7 = pow_GR_exp_Xm1, pow_GR_FFF7
+}
+{ .mfi
+ ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16
+ fma.s1 POW_rsq = POW_r, POW_r,f0
+ nop.i 999
+;;
+}
+
+// If on the x near 1 path, assign r1 to r and r1*r1 to rsq
{ .mfi
- ldfd POW_Q2 = [pow_AD_P], 16
- fnma.s1 POW_twoV = POW_r, POW_Q0_half,f1
- and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
+ ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16
+(p6) fma.s1 POW_r = POW_r1, f1, f0
+ nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_U = POW_NORM_Y,POW_r,f0
+(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
nop.i 999
+;;
+}
+
+
+{ .mfi
+ ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16
+(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4
+ and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
+}
+{ .mfb
+ nop.m 999
+(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4
+(p12) br.cond.spnt L(POW_X_NAN_Y_0)
}
;;
-// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
+
{ .mfi
nop.m 999
- fcvt.xf POW_K = POW_int_K
- cmp.lt p6,p7 = pow_GR_exp_Xm1, pow_GR_exp_2tom8
+(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2
+ andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
}
{ .mfb
nop.m 999
- fma.s1 POW_G = f0,f0,f0 // G=0 in case |x| near 1
-(p11) br.cond.spnt POW_X_NAN // Branch if x=nan and y not nan
+(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2
+(p12) br.cond.spnt L(POW_X_NAN_Y_0)
}
;;
-// If on the x near 1 path, assign r1 to r
{ .mfi
- ldfpd POW_Q1, POW_RSHF = [pow_AD_P], 16
-(p6) fma.s1 POW_r = POW_r1, f1, f0
+ nop.m 999
+ fcvt.xf POW_K = POW_int_K
nop.i 999
}
{ .mfb
nop.m 999
-(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
-(p14) br.cond.spnt POW_X_0 // Branch if x zero and y not nan
+(p13) fma.s f8 = f8,f1,f0
+(p13) br.ret.spnt b0 // Exit if x nan, y anything but zero
+}
+;;
+
+// p10 = TRUE ==> X is zero AND Y is positive
+// p8 = TRUE ==> X is zero AND Y is outside integer range (treat as even int)
+// return +0
+// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer)
+{ .mfi
+(p10) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033
+(p6) fmerge.s POW_delta = f0,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p6) fma.s1 POW_G = f0,f0,f0
+ nop.i 999
}
;;
{ .mfi
- getf.sig pow_GR_sig_int_Y = POW_int_Y
-(p6) fnma.s1 POW_twoV = POW_r1, POW_Q0_half,f1
- and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
+ getf.sig pow_GR_sig_int_Y = POW_int_Y
+ fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0
+ nop.i 999
}
-{ .mfb
- andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
-(p6) fma.s1 POW_U = POW_NORM_Y,POW_r1,f0
-(p12) br.cond.spnt POW_Y_0 // Branch if y=zero, x not zero or nan
+{ .mfi
+ nop.m 999
+ fma.s1 POW_U = POW_NORM_Y,POW_r,f0
+ nop.i 999
}
;;
{ .mfi
- ldfe POW_log2_by_128_lo = [pow_AD_P], 16
-(p7) fma.s1 POW_Z2 = POW_twoV, POW_U, f0
+ ldfe POW_log2_by_128_lo = [pow_AD_P], 16
+(p6) fma.s1 POW_v2 = POW_P1, POW_r1, POW_P0
nop.i 999
}
{ .mfi
- ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
- nop.f 999
+ ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
+(p7) fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
nop.i 999
}
;;
+
{ .mfi
nop.m 999
- fcvt.xf POW_float_int_Y = POW_int_Y
+ fcvt.xf POW_float_int_Y = POW_int_Y
nop.i 999
}
{ .mfi
nop.m 999
-(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
- adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
+ fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4
+ adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
}
;;
-// p11 = TRUE ==> X is NEGATIVE but not inf
{ .mfi
nop.m 999
- fclass.m p11,p0 = POW_NORM_X, 0x1a
+(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt
nop.i 999
}
{ .mfi
nop.m 999
-(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, f0
- adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
+(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
+ adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
}
;;
+
{ .mfi
nop.m 999
-(p6) fma.s1 POW_Z = POW_twoV, POW_U, f0
+ fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
+ fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U
+ nop.i 999
+}
+;;
+
+// p11 = TRUE ==> X is NEGATIVE
+// p8 = TRUE ==> X is zero AND Y is outside intger range (treat as even int)
+// return +0
+{ .mfi
+ nop.m 999
+ fclass.m.unc p11,p0 = f8, 0x1a
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p8) fma.s f8 = f0,f0,f0
+(p8) br.ret.spnt b0
+}
+;;
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 POW_p = POW_rsq, POW_v3, POW_v2
nop.i 999
}
;;
-// p11 = TRUE ==> X is NEGATIVE but not inf
-// p12 = TRUE ==> X is NEGATIVE AND Y already even int
+
+// p11 = TRUE ==> X is NEGATIVE
+// p12 = TRUE ==> X is NEGATIVE AND Y already int
// p13 = TRUE ==> X is NEGATIVE AND Y possible int
{ .mfi
nop.m 999
-(p7) fma.s1 POW_Z = POW_NORM_Y, POW_G, POW_Z2
-(p11) cmp.gt.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
+ fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0
+(p11) cmp.ge.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
}
{ .mfi
nop.m 999
- fma.s1 POW_Gpr = POW_G, f1, POW_r
+ fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
nop.i 999
}
;;
+// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer)
+// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd)
+// p7 = TRUE ==> X is zero AND Y is NOT an integer, return +0
{ .mfi
nop.m 999
- fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
+(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y
nop.i 999
}
-{ .mfi
+{ .mfi
nop.m 999
- fma.s1 POW_p = POW_rsq, POW_P2, POW_v2
+ fma.s1 POW_Gpr = POW_G, f1, POW_r
nop.i 999
}
;;
-// Test if x inf
+// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
- fclass.m p15,p0 = POW_NORM_X, 0x23
+ fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF
nop.i 999
}
-// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
- fma.s1 POW_W1 = POW_Z, POW_inv_log2_by_128, POW_RSHF
+ fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2
nop.i 999
}
;;
-// p13 = TRUE ==> X is NEGATIVE AND Y possible int
-// p10 = TRUE ==> X is NEG and Y is an int
-// p12 = TRUE ==> X is NEG and Y is not an int
+
+// If x=0 and y>0, test y and flag denormal
+// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd)
+// p8 = TRUE ==> X is zero AND Y is an odd integer
+// p9 = TRUE ==> X is zero AND Y is an even integer
{ .mfi
nop.m 999
-(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
- mov pow_GR_xneg_yodd = 0
+(p10) fcmp.eq.s0 p15,p0 = f9,f0
+(p6) tbit.nz.unc p8,p9 = pow_GR_sig_int_Y,0
}
{ .mfi
nop.m 999
- fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
+ fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
nop.i 999
}
;;
-// p11 = TRUE ==> X is +1.0
+// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
+{ .mfi
+ nop.m 999
+ fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1
+ nop.i 999
+}
{ .mfi
nop.m 999
- fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
+ fma.s1 POW_W1 = POW_Z1, POW_inv_log2_by_128, POW_RSHF
nop.i 999
}
;;
-// Extract rounded integer from rightmost significand of POW_W1
-// By subtracting RSHF we get rounded integer POW_Nfloat
{ .mfi
- getf.sig pow_GR_int_N = POW_W1
- fms.s1 POW_Nfloat = POW_W1, f1, POW_RSHF
+ nop.m 999
+(p7) fma.s f8 = f0,f0,f0 // Result +0 if x zero and y not integer
nop.i 999
}
{ .mfb
nop.m 999
- fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
-(p12) br.cond.spnt POW_X_NEG_Y_NONINT // Branch if x neg, y not integer
+ fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
+(p8) br.ret.spnt b0 // Exit if x zero and y odd integer
}
;;
-// p7 = TRUE ==> Y is +1.0
-// p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer
+// By subtracting RSHF we get rounded integer POW_N2float
+// p15 = TRUE ==> X_0_Y_NEG
{ .mfi
- getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
- fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0
-(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
+ nop.m 999
+ fms.s1 POW_N2float = POW_W2, f1, POW_RSHF
+ nop.i 999
}
{ .mfb
nop.m 999
-(p11) fma.s.s0 f8 = f1,f1,f0 // If x=1, result is +1
-(p15) br.cond.spnt POW_X_INF
+ fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2
+(p15) br.cond.spnt L(POW_X_0_Y_NEG)
}
;;
-// Test x and y and flag denormal
+
+
{ .mfi
nop.m 999
- fcmp.eq.s0 p15,p0 = f8,f9
+ fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
nop.i 999
}
{ .mfb
nop.m 999
- fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
-(p11) br.ret.spnt b0 // Early exit if x=1.0, result is +1
+ fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2
+(p7) br.ret.spnt b0 // Exit if x zero and y not an integer
}
;;
+
+
+// Extract rounded integer from rightmost significand of POW_W2
+// By subtracting RSHF we get rounded integer POW_N1float
{ .mfi
-(p12) mov pow_GR_xneg_yodd = 1
- fnma.s1 POW_f12 = POW_Nfloat, POW_log2_by_128_lo, f1
+ getf.sig pow_GR_int_W2 = POW_W2
+ fms.s1 POW_N1float = POW_W1, f1, POW_RSHF
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
- fnma.s1 POW_s = POW_Nfloat, POW_log2_by_128_hi, POW_Z
-(p7) br.ret.spnt b0 // Early exit if y=1.0, result is x
+ fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half
+ nop.i 999
}
;;
-{ .mmi
- and pow_GR_index1 = 0x0f, pow_GR_int_N
- and pow_GR_index2 = 0x70, pow_GR_int_N
- shr pow_int_GR_M = pow_GR_int_N, 7 // M = N/128
+
+
+
+// p13 = TRUE ==> X is NEGATIVE AND Y possible int
+// p10 = TRUE ==> X is NEG and Y is an int
+// p12 = TRUE ==> X is NEG and Y is not an int
+{ .mfi
+ nop.m 999
+(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p9) fma.s f8 = f0,f0,f0 // Result +0 if x zero and y even integer
+(p9) br.ret.spnt b0 // Exit if x zero and y even integer
}
;;
+
{ .mfi
- shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
- fma.s1 POW_q = POW_Z3, POW_Q1, POW_Q0_half
- add pow_int_GR_M = pow_GR_16ones, pow_int_GR_M
+ nop.m 999
+ fnma.s1 POW_s2 = POW_N2float, POW_log2_by_128_hi, POW_Z2
+ nop.i 999
}
{ .mfi
- add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
- fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
+ nop.m 999
+ fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV
nop.i 999
}
;;
-{ .mmi
- ldfe POW_T1 = [pow_AD_T1]
- ldfe POW_T2 = [pow_AD_T2]
+// Extract rounded integer from rightmost significand of POW_W1
+// Test if x inf
+{ .mfi
+ getf.sig pow_GR_int_W1 = POW_W1
+ fclass.m.unc p15,p0 = POW_NORM_X, 0x23
nop.i 999
}
+{ .mfb
+ nop.m 999
+ fnma.s1 POW_f2 = POW_N2float, POW_log2_by_128_lo, f1
+(p12) br.cond.spnt L(POW_X_NEG_Y_NONINT) // Branch if x neg, y not integer
+}
;;
-// f123 = f12*(e3+1) = f12*e3+f12
+// p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer
{ .mfi
- setf.exp POW_2M = pow_int_GR_M
- fma.s1 POW_f123 = POW_e3,POW_f12,POW_f12
- nop.i 999
+ getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
+ fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4
+(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
}
+;;
+
+
{ .mfi
- nop.m 999
- fma.s1 POW_ssq = POW_s, POW_s, f0
+ add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2
+ fnma.s1 POW_f1 = POW_N1float, POW_log2_by_128_lo, f1
nop.i 999
}
+{ .mfb
+ nop.m 999
+ fnma.s1 POW_s1 = POW_N1float, POW_log2_by_128_hi, POW_Z1
+(p15) br.cond.spnt L(POW_X_INF)
+}
;;
+
+// Test x and y and flag denormal
{ .mfi
- nop.m 999
- fma.s1 POW_v2 = POW_s, POW_Q2, POW_Q1
- and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+ and pow_GR_index1 = 0x0f, pow_GR_int_N
+ fcmp.eq.s0 p15,p0 = f8,f9
+ shr r2 = pow_GR_int_N, 7
+}
+{ .mfi
+ and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+ nop.f 999
+ and pow_GR_index2 = 0x70, pow_GR_int_N
}
;;
+
+
+{ .mfi
+ shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
+ fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0
+ sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
+}
{ .mfi
- cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
- fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
- sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
+ addl pow_int_GR_M = 0xFFFF, r2
+ fma.s1 POW_e12 = POW_e1,f1,POW_e2
+ add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
}
;;
-// p8 TRUE ==> |Y(G + r)| >= 7
+{ .mmi
+ ldfe POW_T1 = [pow_AD_T1],16
+ setf.exp POW_2M = pow_int_GR_M
+ andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+}
+;;
+
+
+{ .mfb
+ ldfe POW_T2 = [pow_AD_T2],16
+ fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2
+(p7) br.ret.spnt b0 // Early exit if y=1.0, result is x
+}
+;;
+
+
+// double: p8 TRUE ==> |Y(G + r)| >= 10
+// single: p8 TRUE ==> |Y(G + r)| >= 7
+
+// double
+// -2^10 -2^9 2^9 2^10
+// -----+-----+----+ ... +-----+-----+-----
+// p8 | p9 | p8
+// | | p10 | |
// single
// -2^7 -2^6 2^6 2^7
// -----+-----+----+ ... +-----+-----+-----
// p8 | p9 | p8
// | | p10 | |
-// Form signexp of constants to indicate overflow
+
{ .mfi
- mov pow_GR_big_pos = 0x1007f
- nop.f 999
- cmp.le p8,p9 = 7, pow_GR_true_exp_Y_Gpr
+(p0) cmp.le.unc p8,p9 = 7, pow_GR_true_exp_Y_Gpr
+ fma.s1 POW_s = POW_s1, f1, POW_s2
+ nop.i 999
}
{ .mfi
- mov pow_GR_big_neg = 0x3007f
- nop.f 999
- andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+ nop.m 999
+ fma.s1 POW_f12 = POW_f1, POW_f2,f0
+ nop.i 999
}
;;
-// Form big positive and negative constants to test for possible overflow
-// Scale both terms of the polynomial by POW_f123
+
{ .mfi
- setf.exp POW_big_pos = pow_GR_big_pos
- fma.s1 POW_ssq = POW_ssq, POW_f123, f0
-(p9) cmp.le.unc p0,p10 = 6, pow_GR_true_exp_Y_Gpr
+ nop.f 999
+(p9) cmp.le.unc p0,p10 = 6, pow_GR_true_exp_Y_Gpr
}
+;;
+
+
+
{ .mfb
- setf.exp POW_big_neg = pow_GR_big_neg
- fma.s1 POW_1ps = POW_s, POW_f123, POW_f123
-(p8) br.cond.spnt POW_OVER_UNDER_X_NOT_INF
+ nop.m 999
+ fma.s1 POW_e123 = POW_e12, f1, POW_e3
+(p8) br.cond.spnt L(POW_OVER_UNDER_X_NOT_INF)
+}
+;;
+
+
+{ .mmf
+ fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
+}
+;;
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_ssq = POW_s, POW_s, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2
+ nop.i 999
}
;;
{ .mfi
nop.m 999
-(p12) fnma.s1 POW_T1T2 = POW_T1, POW_T2, f0
+ fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half
nop.i 999
}
{ .mfi
nop.m 999
-(p13) fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
+ fma.s1 POW_1ps = f1,f1,POW_s
nop.i 999
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_v210 = POW_s, POW_v2, POW_Q0_half
+ fma.s1 POW_f3 = POW_e123,f1,f1
nop.i 999
}
+;;
+
{ .mfi
nop.m 999
- fma.s1 POW_2Mqp1 = POW_2M, POW_q, POW_2M
+ fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
nop.i 999
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_es = POW_ssq, POW_v210, POW_1ps
+ fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4
nop.i 999
}
+;;
+
{ .mfi
nop.m 999
- fma.s1 POW_A = POW_T1T2, POW_2Mqp1, f0
+ fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 POW_s4 = POW_ssq, POW_ssq, f0
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_f123 = POW_f12, POW_f3, f0
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_A = POW_2M, POW_T1T2, f0
+ nop.i 999
+}
+;;
+
+
+
+{ .mfi
+ nop.m 999
+(p12) fmerge.s POW_f123 = f8,POW_f123 // if x neg, y odd int
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+// fma.s1 POW_es = POW_ssq, POW_v3, POW_v2
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps
+ nop.i 999
+}
+;;
+
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_A = POW_A, POW_f123, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+// fma.s1 POW_es = POW_es, POW_ssq, POW_1ps
nop.i 999
}
;;
-// Dummy op to set inexact
+
{ .mfi
nop.m 999
- fma.s0 POW_tmp = POW_2M, POW_q, POW_2M
+ fma.s1 POW_A = POW_A, POW_es,f0
nop.i 999
}
;;
+
+
{ .mfb
nop.m 999
- fma.s.s0 f8 = POW_A, POW_es, f0
-(p10) br.ret.sptk b0 // Exit main branch if no over/underflow
+(p10) fma.s f8 = POW_A, POW_q, POW_A
+(p10) br.ret.sptk b0
}
;;
+
+
+
+
// POSSIBLE_OVER_UNDER
-// p6 = TRUE ==> Y_Gpr negative
-// Result is already computed. We just need to know if over/underflow occurred.
+// p6 = TRUE ==> Y negative
-{ .mfb
- cmp.eq p0,p6 = pow_GR_sign_Y_Gpr, r0
- nop.f 999
-(p6) br.cond.spnt POW_POSSIBLE_UNDER
+{ .mfi
+ nop.m 999
+ fmerge.s POW_abs_A = f0, POW_A
+ cmp.eq.unc p0,p6 = pow_GR_sign_Y, r0
+}
+;;
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(POW_POSSIBLE_UNDER)
}
;;
// POSSIBLE_OVER
-// We got an answer.
+// We got an answer.
// overflow is a possibility, not a certainty
@@ -1402,20 +1692,21 @@ POW_COMMON:
// RN RN
// RZ
+
// Put in s2 (td set, wre set)
{ .mfi
- nop.m 999
+ mov pow_GR_gt_ln = 0x1007f
fsetc.s2 0x7F,0x42
- nop.i 999
+ nop.i 999
}
;;
+
{ .mfi
- nop.m 999
- fma.s.s2 POW_wre_urm_f8 = POW_A, POW_es, f0
- nop.i 999
+ setf.exp POW_gt_pln = pow_GR_gt_ln
+ fma.s.s2 POW_wre_urm_f8 = POW_abs_A, POW_q, POW_abs_A
+ nop.i 999 ;;
}
-;;
// Return s2 to default
{ .mfi
@@ -1425,30 +1716,31 @@ POW_COMMON:
}
;;
+
// p7 = TRUE ==> yes, we have an overflow
{ .mfi
nop.m 999
- fcmp.ge.s1 p7, p8 = POW_wre_urm_f8, POW_big_pos
+ fcmp.ge.unc.s1 p7, p0 = POW_wre_urm_f8, POW_gt_pln
nop.i 999
}
;;
-{ .mfi
- nop.m 999
-(p8) fcmp.le.s1 p7, p0 = POW_wre_urm_f8, POW_big_neg
- nop.i 999
-}
-;;
-{ .mbb
-(p7) mov pow_GR_tag = 30
-(p7) br.cond.spnt __libm_error_region // Branch if overflow
- br.ret.sptk b0 // Exit if did not overflow
+
+{ .mfb
+(p7) mov pow_GR_tag = 30
+ fma.s f8 = POW_A, POW_q, POW_A
+(p7) br.cond.spnt __libm_error_region
+}
+{ .mfb
+ nop.m 999
+ nop.f 999
+(p0) br.ret.sptk b0
}
;;
-POW_POSSIBLE_UNDER:
+L(POW_POSSIBLE_UNDER):
// We got an answer. input was < -2^9 but > -2^10 (double)
// We got an answer. input was < -2^6 but > -2^7 (float)
// underflow is a possibility, not a certainty
@@ -1471,437 +1763,373 @@ POW_POSSIBLE_UNDER:
// 0.1...11 2^-3ffe (biased, 1)
// largest dn smallest normal
-// Form small constant (2^-170) to correct underflow result near region of
-// smallest denormal in round-nearest.
// Put in s2 (td set, ftz set)
-.pred.rel "mutex",p12,p13
{ .mfi
- mov pow_GR_Fpsr = ar40 // Read the fpsr--need to check rc.s0
+ nop.m 999
fsetc.s2 0x7F,0x41
- mov pow_GR_rcs0_mask = 0x0c00 // Set mask for rc.s0
-}
-{ .mfi
-(p12) mov pow_GR_tmp = 0x2ffff - 170
- nop.f 999
-(p13) mov pow_GR_tmp = 0x0ffff - 170
+ nop.i 999
}
;;
+
+
{ .mfi
- setf.exp POW_eps = pow_GR_tmp // Form 2^-170
- fma.s.s2 POW_ftz_urm_f8 = POW_A, POW_es, f0
+ nop.m 999
+ fma.s.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A
nop.i 999
}
;;
+
// Return s2 to default
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40
- nop.i 999
+ nop.i 999
}
;;
+
// p7 = TRUE ==> yes, we have an underflow
{ .mfi
nop.m 999
- fcmp.eq.s1 p7, p0 = POW_ftz_urm_f8, f0
- nop.i 999
+ fcmp.eq.unc.s1 p7, p0 = POW_ftz_urm_f8, f0
+ nop.i 999
}
;;
-{ .mmi
-(p7) and pow_GR_rcs0 = pow_GR_rcs0_mask, pow_GR_Fpsr // Isolate rc.s0
-;;
-(p7) cmp.eq.unc p6,p0 = pow_GR_rcs0, r0 // Test for round to nearest
- nop.i 999
+
+
+
+{ .mfb
+(p7) mov pow_GR_tag = 31
+ fma.s f8 = POW_A, POW_q, POW_A
+(p7) br.cond.spnt __libm_error_region
}
;;
-// Tweak result slightly if underflow to get correct rounding near smallest
-// denormal if round-nearest
-{ .mfi
+
+{ .mfb
nop.m 999
-(p6) fms.s.s0 f8 = POW_A, POW_es, POW_eps
- nop.i 999
-}
-{ .mbb
-(p7) mov pow_GR_tag = 31
-(p7) br.cond.spnt __libm_error_region // Branch if underflow
- br.ret.sptk b0 // Exit if did not underflow
+ nop.f 999
+ br.ret.sptk b0
}
;;
-POW_X_DENORM:
-// Here if x unorm. Use the NORM_X for getf instructions, and then back
+
+L(POW_X_DENORM):
+// Here if x unorm. Use the NORM_X for getf instructions, and the back
// to normal path
{ .mfi
- getf.exp pow_GR_signexp_X = POW_NORM_X
+ getf.exp pow_GR_signexp_X = POW_NORM_X
nop.f 999
nop.i 999
}
;;
-{ .mib
- getf.sig pow_GR_sig_X = POW_NORM_X
+{ .mfi
+ getf.sig pow_GR_sig_X = POW_NORM_X
+ nop.f 999
nop.i 999
- br.cond.sptk POW_COMMON
}
;;
-POW_X_0:
-// Here if x=0 and y not nan
-//
-// We have the following cases:
-// p6 x=0 and y>0 and is an integer (may be even or odd)
-// p7 x=0 and y>0 and is NOT an integer, return +0
-// p8 x=0 and y>0 and so big as to always be an even integer, return +0
-// p9 x=0 and y>0 and may not be integer
-// p10 x=0 and y>0 and is an odd integer, return x
-// p11 x=0 and y>0 and is an even integer, return +0
-// p12 used in dummy fcmp to set denormal flag if y=unorm
-// p13 x=0 and y>0
-// p14 x=0 and y=0, branch to code for calling error handling
-// p15 x=0 and y<0, branch to code for calling error handling
-//
{ .mfi
- getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
- fcmp.lt.s1 p15,p13 = f9, f0 // Test for y<0
- and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
-}
-{ .mfb
- cmp.ne p14,p0 = pow_GR_y_zero,r0 // Test for y=0
- fcvt.xf POW_float_int_Y = POW_int_Y
-(p14) br.cond.spnt POW_X_0_Y_0 // Branch if x=0 and y=0
+ and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
+ nop.f 999
}
;;
-// If x=0 and y>0, test y and flag denormal
-{ .mfb
-(p13) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
-(p13) fcmp.eq.s0 p12,p0 = f9,f0 // If x=0, y>0 dummy op to flag denormal
-(p15) br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
+{ .mib
+ sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
+ shl pow_GR_offset = pow_GR_sig_X, 1
+ br.cond.sptk L(POW_COMMON)
}
;;
-// Here if x=0 and y>0
-{ .mfi
- nop.m 999
-(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y // Test y=int
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
- nop.i 999
-}
-;;
-{ .mfi
- nop.m 999
-(p7) fma.s.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y>0 and not integer
-(p6) tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
-}
-;;
+L(POW_X_0_Y_0):
+// When X is +-0 and Y is +-0, IEEE returns 1.0
+// We call error support with this value
-// Note if x=0, y>0 and odd integer, just return x
{ .mfb
- nop.m 999
-(p11) fma.s.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y even integer
- br.ret.sptk b0 // Exit if x=0 and y>0
+ mov pow_GR_tag = 32
+ fma.s f8 = f1,f1,f0
+ br.cond.sptk __libm_error_region
}
;;
-POW_X_0_Y_0:
-// When X is +-0 and Y is +-0, IEEE returns 1.0
-// We call error support with this value
-{ .mfb
- mov pow_GR_tag = 32
- fma.s.s0 f8 = f1,f1,f0
- br.cond.sptk __libm_error_region
-}
-;;
-POW_X_0_Y_NEG:
-// When X is +-0 and Y is negative, IEEE returns
-// X Y answer
-// +0 -odd int +inf
-// -0 -odd int -inf
-// +0 !-odd int +inf
-// -0 !-odd int +inf
+L(POW_X_INF):
+// When X is +-inf and Y is +-, IEEE returns
+
+// overflow
+// X +inf Y +inf +inf
+// X -inf Y +inf +inf
+
+// X +inf Y >0 +inf
+// X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !!
+// X -inf Y >0, odd integer -inf
+
+// underflow
+// X +inf Y -inf +0
+// X -inf Y -inf +0
+
+// X +inf Y <0 +0
+// X -inf Y <0, !odd integer +0
+// X -inf Y <0, odd integer -0
+
+// X + inf Y=+0 +1
+// X + inf Y=-0 +1
+// X - inf Y=+0 +1
+// X - inf Y=-0 +1
+
+// p13 == Y negative
+// p14 == Y positive
// p6 == Y is a floating point number outside the integer.
// Hence it is an integer and is even.
-// return +inf
+// p13 == (Y negative)
+// return +inf
+// p14 == (Y positive)
+// return +0
+
+
// p7 == Y is a floating point number within the integer range.
// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
// p11 odd
-// return (sign_of_x)inf
-// p12 even
-// return +inf
-// p10 == Y is not an integer
-// return +inf
-//
+// p13 == (Y negative)
+// return (sign_of_x)inf
+// p14 == (Y positive)
+// return (sign_of_x)0
+// pxx even
+// p13 == (Y negative)
+// return +inf
+// p14 == (Y positive)
+// return +0
+// pxx == Y is not an integer
+// p13 == (Y negative)
+// return +inf
+// p14 == (Y positive)
+// return +0
+//
+
+// If x=inf, test y and flag denormal
{ .mfi
nop.m 999
- nop.f 999
- cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
+ fcmp.eq.s0 p10,p11 = f9,f0
+ nop.i 999
}
;;
{ .mfi
- mov pow_GR_tag = 33
-(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
- nop.i 999
+ nop.m 999
+ fcmp.lt p13,p14 = POW_NORM_Y,f0
+ cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033
}
-;;
-
-{ .mfb
+{ .mfi
nop.m 999
-(p6) frcpa.s0 f8,p13 = f1, f0
-(p6) br.cond.sptk __libm_error_region // x=0, y<0, y large neg int
+ fclass.m p12,p0 = f9, 0x23
+ nop.i 999
}
;;
-{ .mfb
+
+{ .mfi
nop.m 999
-(p10) frcpa.s0 f8,p13 = f1, f0
-(p10) br.cond.sptk __libm_error_region // x=0, y<0, y not int
+ fclass.m p15,p0 = f9, 0x07 //@zero
+ nop.i 999
}
;;
-// x=0, y<0, y an int
-{ .mib
+{ .mfb
nop.m 999
-(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
- nop.b 999
+(p15) fmerge.s f8 = f1,f1
+(p15) br.ret.spnt b0
}
;;
+
{ .mfi
- nop.m 999
-(p12) frcpa.s0 f8,p13 = f1,f0
+(p13) mov pow_GR_tag = 31
+(p14) frcpa.s1 f8,p10 = f1,f0
nop.i 999
}
+{ .mfb
+(p14) mov pow_GR_tag = 30
+(p13) fma.s1 f8 = f0,f0,f0
+(p12) br.ret.spnt b0
+}
;;
+
+
{ .mfb
nop.m 999
-(p11) frcpa.s0 f8,p13 = f1,f8
- br.cond.sptk __libm_error_region
+(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y
+ nop.b 999
}
;;
-
-POW_Y_0:
-// Here for y zero, x anything but zero and nan
-// Set flag if x denormal
-// Result is +1.0
{ .mfi
- nop.m 999
- fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag if x denormal
- nop.i 999
+ nop.m 999
+ nop.f 999
+(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0
}
+;;
+
{ .mfb
- nop.m 999
- fma.s.s0 f8 = f1,f1,f0
- br.ret.sptk b0
+ nop.m 999
+(p11) fmerge.s f8 = POW_NORM_X,f8
+ br.ret.sptk b0
}
;;
-POW_X_INF:
-// Here when X is +-inf
-// X +inf Y +inf +inf
-// X -inf Y +inf +inf
-
-// X +inf Y >0 +inf
-// X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !!
-// X -inf Y >0, odd integer -inf
-
-// X +inf Y -inf +0
-// X -inf Y -inf +0
-
-// X +inf Y <0 +0
-// X -inf Y <0, !odd integer +0
-// X -inf Y <0, odd integer -0
+L(POW_X_0_Y_NEG):
+// When X is +-0 and Y is negative, IEEE returns
+// X Y answer
+// +0 -odd int +inf
+// -0 -odd int -inf
-// X + inf Y=+0 +1
-// X + inf Y=-0 +1
-// X - inf Y=+0 +1
-// X - inf Y=-0 +1
+// +0 !-odd int +inf
+// -0 !-odd int +inf
-// p13 == Y negative
-// p14 == Y positive
// p6 == Y is a floating point number outside the integer.
// Hence it is an integer and is even.
-// p13 == (Y negative)
-// return +inf
-// p14 == (Y positive)
-// return +0
+// return +inf
// p7 == Y is a floating point number within the integer range.
// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
// p11 odd
-// p13 == (Y negative)
-// return (sign_of_x)inf
-// p14 == (Y positive)
-// return (sign_of_x)0
-// pxx even
-// p13 == (Y negative)
-// return +inf
-// p14 == (Y positive)
-// return +0
-
-// pxx == Y is not an integer
-// p13 == (Y negative)
-// return +inf
-// p14 == (Y positive)
-// return +0
-//
+// return (sign_of_x)inf
+// p12 even
+// return +inf
+// p10 == Y is not an integer
+// return +inf
+//
+//
-// If x=inf, test y and flag denormal
{ .mfi
nop.m 999
- fcmp.eq.s0 p10,p11 = f9,f0
- nop.i 999
+ nop.f 999
+ cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033
}
;;
-{ .mfi
- nop.m 999
- fcmp.lt.s0 p13,p14 = POW_NORM_Y,f0
- cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
-}
-{ .mfi
- nop.m 999
- fclass.m p12,p0 = f9, 0x23 //@inf
- nop.i 999
-}
-;;
{ .mfi
- nop.m 999
- fclass.m p15,p0 = f9, 0x07 //@zero
+ mov pow_GR_tag = 33
+(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
nop.i 999
}
;;
+
{ .mfb
nop.m 999
-(p15) fmerge.s f8 = f1,f1 // Return +1.0 if x=inf, y=0
-(p15) br.ret.spnt b0 // Exit if x=inf, y=0
+(p6) frcpa.s0 f8,p13 = f1, f0
+(p6) br.cond.sptk __libm_error_region
}
;;
-{ .mfi
- nop.m 999
-(p14) frcpa.s1 f8,p10 = f1,f0 // If x=inf, y>0, assume result +inf
- nop.i 999
-}
{ .mfb
nop.m 999
-(p13) fma.s.s0 f8 = f0,f0,f0 // If x=inf, y<0, assume result +0.0
-(p12) br.ret.spnt b0 // Exit if x=inf, y=inf
+(p10) frcpa.s0 f8,p13 = f1, f0
+(p10) br.cond.sptk __libm_error_region
}
;;
-// Here if x=inf, and 0 < |y| < inf. Need to correct results if y odd integer.
-{ .mfi
+
+
+{ .mib
nop.m 999
-(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y // Is y integer?
- nop.i 999
+(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
+ nop.b 999
}
;;
+
+
{ .mfi
nop.m 999
- nop.f 999
-(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 // Test for y odd integer
+(p12) frcpa.s0 f8,p13 = f1,f0
+ nop.i 999
}
;;
{ .mfb
nop.m 999
-(p11) fmerge.s f8 = POW_NORM_X,f8 // If y odd integer use sign of x
- br.ret.sptk b0 // Exit for x=inf, 0 < |y| < inf
+(p11) frcpa f8,p13 = f1,f8
+ br.cond.sptk __libm_error_region
}
;;
-POW_X_NEG_Y_NONINT:
+
+
+L(POW_X_NEG_Y_NONINT):
// When X is negative and Y is a non-integer, IEEE
// returns a qnan indefinite.
-// We call error support with this value
+// We call error support with this value
{ .mfb
- mov pow_GR_tag = 34
- frcpa.s0 f8,p6 = f0,f0
+ mov pow_GR_tag = 34
+ frcpa f8,p6 = f0,f0
br.cond.sptk __libm_error_region
}
;;
-POW_X_NAN:
-// Here if x=nan, y not nan
-{ .mfi
- nop.m 999
- fclass.m p9,p13 = f9, 0x07 // Test y=zero
- nop.i 999
-}
-;;
-{ .mfb
- nop.m 999
-(p13) fma.s.s0 f8 = f8,f1,f0
-(p13) br.ret.sptk b0 // Exit if x nan, y anything but zero or nan
-}
-;;
-POW_X_NAN_Y_0:
+
+L(POW_X_NAN_Y_0):
// When X is a NAN and Y is zero, IEEE returns 1.
// We call error support with this value.
+
{ .mfi
- nop.m 999
- fcmp.eq.s0 p6,p0 = f8,f0 // Dummy op to set invalid on snan
- nop.i 999
+ nop.m 0
+ fma.s.s0 f10 = f8,f1,f0
+ nop.i 0
}
{ .mfb
- mov pow_GR_tag = 35
- fma.s.s0 f8 = f0,f0,f1
+ mov pow_GR_tag = 35
+ fma.s.s0 f8 = f0,f0,f1
br.cond.sptk __libm_error_region
}
;;
-POW_OVER_UNDER_X_NOT_INF:
+L(POW_OVER_UNDER_X_NOT_INF):
// p8 is TRUE for overflow
// p9 is TRUE for underflow
// if y is infinity, we should not over/underflow
+
{ .mfi
nop.m 999
- fcmp.eq.s1 p14, p13 = POW_xsq,f1 // Test |x|=1
- cmp.eq p8,p9 = pow_GR_sign_Y_Gpr, r0
+ fcmp.eq.unc.s1 p14, p13 = POW_xsq,f1
+ cmp.eq.unc p8,p9 = pow_GR_sign_Y_Gpr, r0
}
;;
{ .mfi
nop.m 999
-(p14) fclass.m.unc p15, p0 = f9, 0x23 // If |x|=1, test y=inf
+(p14) fclass.m.unc p15, p0 = f9, 0x23
nop.i 999
}
{ .mfi
nop.m 999
-(p13) fclass.m.unc p11,p0 = f9, 0x23 // If |x| not 1, test y=inf
+(p13) fclass.m.unc p11,p0 = f9, 0x23
nop.i 999
}
;;
@@ -1909,33 +2137,31 @@ POW_OVER_UNDER_X_NOT_INF:
// p15 = TRUE if |x|=1, y=inf, return +1
{ .mfb
nop.m 999
-(p15) fma.s.s0 f8 = f1,f1,f0 // If |x|=1, y=inf, result +1
-(p15) br.ret.spnt b0 // Exit if |x|=1, y=inf
+(p15) fma.s f8 = f1,f1,f0
+(p15) br.ret.spnt b0
}
;;
.pred.rel "mutex",p8,p9
{ .mfb
-(p8) setf.exp f8 = pow_GR_17ones // If exp(+big), result inf
-(p9) fmerge.s f8 = f0,f0 // If exp(-big), result 0
-(p11) br.ret.sptk b0 // Exit if |x| not 1, y=inf
+(p8) setf.exp f8 = pow_GR_17ones
+(p9) fmerge.s f8 = f0,f0
+(p11) br.ret.sptk b0
}
-;;
{ .mfb
nop.m 999
nop.f 999
- br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
+ br.cond.sptk L(POW_OVER_UNDER_ERROR)
}
;;
+L(POW_Y_NAN):
-POW_Y_NAN:
-// Here if y=nan, x anything
-// If x = +1 then result is +1, else result is quiet Y
+// Is x = +1 then result is +1, else result is quiet Y
{ .mfi
nop.m 999
- fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
+ fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
nop.i 999
}
;;
@@ -1949,118 +2175,148 @@ POW_Y_NAN:
{ .mfi
nop.m 999
-(p10) fma.s.s0 f8 = f1,f1,f0
+(p10) fma.s f8 = f1,f1,f0
nop.i 999
}
{ .mfb
nop.m 999
-(p9) fma.s.s0 f8 = f9,f8,f0
- br.ret.sptk b0 // Exit y=nan
+(p9) fma.s f8 = f9,f8,f0
+ br.ret.sptk b0
}
;;
-POW_OVER_UNDER_ERROR:
-// Here if we have overflow or underflow.
-// Enter with p12 true if x negative and y odd int to force -0 or -inf
+L(POW_OVER_UNDER_ERROR):
{ .mfi
- sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
- nop.f 999
- mov pow_GR_one = 0x1
+ nop.m 999
+ fmerge.s f10 = POW_NORM_X,POW_NORM_X
+ nop.i 999
+}
+{ .mfi
+ sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
+ nop.f 999
+ mov pow_GR_one = 0x1
}
;;
-// overflow, force inf with O flag
+// overflow
{ .mmb
-(p8) mov pow_GR_tag = 30
-(p8) setf.exp POW_tmp = pow_GR_17ones_m1
+(p8) mov pow_GR_tag = 30
+(p8) setf.exp f11 = pow_GR_17ones_m1
nop.b 999
}
;;
-// underflow, force zero with I, U flags
+
+// underflow
{ .mmi
-(p9) mov pow_GR_tag = 31
-(p9) setf.exp POW_tmp = pow_GR_one
+(p9) mov pow_GR_tag = 31
+(p9) setf.exp f11 = pow_GR_one
nop.i 999
}
;;
+
+// p12 x is negative and y is an odd integer
+
+
{ .mfi
nop.m 999
- fma.s.s0 f8 = POW_tmp, POW_tmp, f0
+ fma.s f8 = f11, f11, f0
nop.i 999
}
;;
-// p12 x is negative and y is an odd integer, change sign of result
{ .mfi
nop.m 999
-(p12) fnma.s.s0 f8 = POW_tmp, POW_tmp, f0
+(p12) fmerge.ns f8 = f8, f8
nop.i 999
}
;;
-GLOBAL_LIBM_END(powf)
+.endp powf
+ASM_SIZE_DIRECTIVE(powf)
+
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+
+.proc __libm_error_region
+__libm_error_region:
+
+// Answer is inf for overflow and 0 for underflow.
.prologue
+// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+// (2)
{ .mmi
stfs [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
+// (3)
{ .mib
- stfs [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
+ stfs [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
- stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
+ stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+// (4)
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/e_powl.S b/sysdeps/ia64/fpu/e_powl.S
index 3f93f6090e..d286e9abad 100644
--- a/sysdeps/ia64/fpu/e_powl.S
+++ b/sysdeps/ia64/fpu/e_powl.S
@@ -1,10 +1,10 @@
.file "powl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,70 +20,61 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
// Function: powl(x,y), where
-// y
+// y
// powl(x,y) = x , for double extended precision x and y values
//
-//*********************************************************************
+// *********************************************************************
//
-// History:
-// 02/02/00 (Hand Optimized)
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// History:
+// 2/02/00 (Hand Optimized)
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 01/22/01 Corrected results for powl(1,inf), powl(1,nan), and
+// 1/22/01 Corrected results for powl(1,inf), powl(1,nan), and
// powl(snan,0) to be 1 per C99, not nan. Fixed many flag settings.
-// 02/06/01 Call __libm_error support if over/underflow when y=2.
-// 04/17/01 Support added for y close to 1 and x a non-special value.
-// Shared software under/overflow detection for all paths
-// 02/07/02 Corrected sf3 setting to disable traps
-// 05/13/02 Improved performance of all paths
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 04/17/03 Added missing mutex directive
-// 10/13/03 Corrected .endp names to match .proc names
-//
-//*********************************************************************
+// 2/06/01 Call __libm_error support if over/underflow when y=2.
+//
+// *********************************************************************
//
// Resources Used:
//
-// Floating-Point Registers:
-// f8 (Input x and Return Value)
-// f9 (Input y)
-// f10-f15,f32-f79
+// Floating-Point Registers:
+// f8 (Input and Return Value)
+// f9-f15,f32-f63,f99
//
// General Purpose Registers:
-// Locals r14-24,r32-r65
+// Locals r32 - r61
// Parameters to __libm_error_support r62,r63,r64,r65
//
// Predicate Registers: p6-p15
//
-//*********************************************************************
+// *********************************************************************
//
// Special Cases and IEEE special conditions:
//
// Denormal fault raised on denormal inputs
-// Overflow exceptions raised when appropriate for pow
-// Underflow exceptions raised when appropriate for pow
+// Overflow exceptions raised when appropriate for pow
+// Underflow exceptions raised when appropriate for pow
// (Error Handling Routine called for overflow and Underflow)
// Inexact raised when appropriate by algorithm
//
@@ -111,8 +102,8 @@
// 22. X or Y denorm/unorm and denorm/unorm operand trap is enabled,
// generate denorm/unorm fault except if invalid or div_0 raised.
//
-//*********************************************************************
-//
+// *********************************************************************
+//
// Algorithm
// =========
//
@@ -122,23 +113,23 @@
// If Y = 0.5, return sqrt(X).
//
// Compute log(X) to extra precision.
-//
+//
// ker_log_80( X, logX_hi, logX_lo, Safe );
//
-// ...logX_hi + logX_lo approximates log(X) to roughly 80
+// ...logX_hi + logX_lo approximates log(X) to roughly 80
// ...significant bits of accuracy.
//
// Compute Y*log(X) to extra precision.
//
// P_hi := Y * logX_hi
-// P_lo := Y * logX_hi - P_hi ...using FMA
-// P_lo := Y * logX_lo + P_lo ...using FMA
+// P_lo := Y * logX_hi - P_hi ...using FMA
+// P_lo := Y * logX_lo + P_lo ...using FMA
//
// Compute exp(P_hi + P_lo)
//
-// Flag := 2;
+// Flag := 2;
// Expo_Range := 2; (assuming double-extended power function)
-// ker_exp_64( P_hi, P_lo, Flag, Expo_Range,
+// ker_exp_64( P_hi, P_lo, Flag, Expo_Range,
// Z_hi, Z_lo, scale, Safe )
//
// scale := sgn * scale
@@ -147,7 +138,7 @@
// return scale*Z_hi + (scale*Z_lo)
// quickly
// Else
-// take necessary precaution in computing
+// take necessary precaution in computing
// scale*Z_hi + (scale*Z_lo)
// to set possible exceptions correctly.
// End If
@@ -161,8 +152,8 @@
// If Y is qNaN, return Y without exception.
// If X is qNaN, return X without exception.
//
-// At this point, X is real and Y is +-inf.
-// Thus |X| can only be 1, strictly bigger than 1, or
+// At this point, X is real and Y is +-inf.
+// Thus |X| can only be 1, strictly bigger than 1, or
// strictly less than 1.
//
// If |X| < 1, then
@@ -178,8 +169,8 @@
// ...Note that Y is real, finite, non-zero, and not +1.
//
// If X is qNaN, return X without exception.
-//
-// If X is +-0,
+//
+// If X is +-0,
// return ( Y > 0 ? +0 : +inf )
//
// If X is +inf
@@ -189,11 +180,11 @@
// return -0 ** -Y
// return ( Y > 0 ? +inf : +0 )
//
-// Case_Invalid
+// Case_Invalid
//
// Return 0 * inf to generate a quiet NaN together
// with an invalid exception.
-//
+//
// Implementation
// ==============
//
@@ -202,15 +193,15 @@
//
// STAGE 1
// -------
-// This stage contains two threads.
+// This stage contains two threads.
//
// Stage1.Thread1
//
// fclass.m X_excep, X_ok = X, (NatVal or s/qNaN) or
-// +-0, +-infinity
+// +-0, +-infinity
//
// fclass.nm X_unsupp, X_supp = X, (NatVal or s/qNaN) or
-// +-(0, unnorm, norm, infinity)
+// +-(0, unnorm, norm, infinity)
//
// X_norm := fnorm( X ) with traps disabled
//
@@ -218,26 +209,26 @@
// If (X_unsupp) goto Filtering (Step 2)
//
// Stage1.Thread2
-// ..............
+// ..............
//
// fclass.m Y_excep, Y_ok = Y, (NatVal or s/qNaN) or
-// +-0, +-infinity
+// +-0, +-infinity
//
// fclass.nm Y_unsupp, Y_supp = Y, (NatVal or s/qNaN) or
-// +-(0, unnorm, norm, infinity)
+// +-(0, unnorm, norm, infinity)
//
// Y_norm := fnorm( Y ) with traps disabled
//
// If (Y_excep) goto Filtering (Step 2)
// If (Y_unsupp) goto Filtering (Step 2)
//
-//
+//
// STAGE 2
// -------
// This stage contains two threads.
//
-// Stage2.Thread1
-// ..............
+// Stage2.Thread1
+// ..............
//
// Set X_lt_0 if X < 0 (using fcmp)
// sgn := +1.0
@@ -254,14 +245,14 @@
// This stage contains two threads.
//
//
-// Stage3.Thread1
-// ..............
+// Stage3.Thread1
+// ..............
//
// X := fnorm(X) in prevailing traps
//
//
-// Stage3.Thread2
-// ..............
+// Stage3.Thread2
+// ..............
//
// Y := fnorm(Y) in prevailing traps
//
@@ -271,56 +262,60 @@
// Go to Case_Normal.
//
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 2^12/ln(2) is needed for the computation of N. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*2^12/ln2 into the rightmost bits of the significand.
-// The result of this fma is N_signif.
-// 2. RSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from N_signif * 2^(-51) to give
-// the integer part of N, N_fix, as a floating-point number.
-// The result of this fms is float_N.
-RODATA
-
-.align 16
-// L_hi, L_lo
-LOCAL_OBJECT_START(Constants_exp_64_Arg)
-data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
-data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
-LOCAL_OBJECT_END(Constants_exp_64_Arg)
-
-LOCAL_OBJECT_START(Constants_exp_64_A)
-// Reversed
-data8 0xAAAAAAABB1B736A0,0x00003FFA
-data8 0xAAAAAAAB90CD6327,0x00003FFC
-data8 0xFFFFFFFFFFFFFFFF,0x00003FFD
-LOCAL_OBJECT_END(Constants_exp_64_A)
-
-LOCAL_OBJECT_START(Constants_exp_64_P)
-// Reversed
-data8 0xD00D6C8143914A8A,0x00003FF2
-data8 0xB60BC4AC30304B30,0x00003FF5
-data8 0x888888887474C518,0x00003FF8
-data8 0xAAAAAAAA8DAE729D,0x00003FFA
-data8 0xAAAAAAAAAAAAAF61,0x00003FFC
-data8 0x80000000000004C7,0x00003FFE
-LOCAL_OBJECT_END(Constants_exp_64_P)
-
-LOCAL_OBJECT_START(Constants_exp_64_T1)
-data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
-data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
+#include "libm_support.h"
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+// Inv_L, L_hi, L_lo
+.align 64
+Constants_exp_64_Arg:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Arg,@object)
+data4 0x5C17F0BC,0xB8AA3B29,0x0000400B,0x00000000
+data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000
+data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Arg)
+
+.align 64
+Constants_exp_64_Exponents:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Exponents,@object)
+data4 0x0000007E,0x00000000,0xFFFFFF83,0xFFFFFFFF
+data4 0x000003FE,0x00000000,0xFFFFFC03,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0xFFFFFFE2,0xFFFFFFFF,0xFFFFFFC4,0xFFFFFFFF
+data4 0xFFFFFFBA,0xFFFFFFFF,0xFFFFFFBA,0xFFFFFFFF
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Exponents)
+
+.align 64
+Constants_exp_64_A:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_A,@object)
+// Reversed
+data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000
+data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000
+data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_exp_64_A)
+
+.align 64
+Constants_exp_64_P:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_P,@object)
+// Reversed
+data4 0x43914A8A,0xD00D6C81,0x00003FF2,0x00000000
+data4 0x30304B30,0xB60BC4AC,0x00003FF5,0x00000000
+data4 0x7474C518,0x88888888,0x00003FF8,0x00000000
+data4 0x8DAE729D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAAF61,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x000004C7,0x80000000,0x00003FFE,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_exp_64_P)
+
+.align 64
+Constants_exp_64_T1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T1,@object)
+data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
+data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
@@ -335,263 +330,274 @@ data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
-LOCAL_OBJECT_END(Constants_exp_64_T1)
-
-LOCAL_OBJECT_START(Constants_exp_64_T2)
-data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
-data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
-data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
-data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
-data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
-data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
-data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
-data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
-data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
-data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
-data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
-data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
-data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
-data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
-data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T1)
+
+.align 64
+Constants_exp_64_T2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T2,@object)
+data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
+data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
+data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
+data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
+data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
+data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
+data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
+data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
+data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
+data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
+data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
+data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
+data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
+data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
+data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
-LOCAL_OBJECT_END(Constants_exp_64_T2)
-
-LOCAL_OBJECT_START(Constants_exp_64_W1)
-data8 0x0000000000000000, 0xBE384454171EC4B4
-data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
-data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
-data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
-data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
-data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
-data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
-data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
-data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
-data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
-data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
-data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
-data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
-data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
-data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
-data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
-data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
-data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
-data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
-data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
-data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
-data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
-data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
-data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
-data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
-data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
-data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
-data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
-data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
-data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
-data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
-data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
-LOCAL_OBJECT_END(Constants_exp_64_W1)
-
-LOCAL_OBJECT_START(Constants_exp_64_W2)
-data8 0x0000000000000000, 0xBE641F2537A3D7A2
-data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
-data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
-data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
-data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
-data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
-data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
-data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
-data8 0xBE56856B49BFF529, 0x3E66DD3300508651
-data8 0x3E51165FC114BC13, 0x3E53333DC453290F
-data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
-data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
-data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
-data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
-data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
-data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
-data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
-data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
-data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
-data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
-data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
-data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
-data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
-data8 0xBE559725ADE45917, 0xBE68C29C042FC476
-data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
-data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
-data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
-data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
-data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
-data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
-data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
-data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
-LOCAL_OBJECT_END(Constants_exp_64_W2)
-
-LOCAL_OBJECT_START(Constants_log_80_P)
-// P_8, P_7, ..., P_1
-data8 0xCCCE8B883B1042BC, 0x0000BFFB // P_8
-data8 0xE38997B7CADC2149, 0x00003FFB // P_7
-data8 0xFFFFFFFEB1ACB090, 0x0000BFFB // P_6
-data8 0x9249249806481C81, 0x00003FFC // P_5
-data8 0x0000000000000000, 0x00000000 // Pad for bank conflicts
-data8 0xAAAAAAAAAAAAB0EF, 0x0000BFFC // P_4
-data8 0xCCCCCCCCCCC91416, 0x00003FFC // P_3
-data8 0x8000000000000000, 0x0000BFFD // P_2
-data8 0xAAAAAAAAAAAAAAAB, 0x00003FFD // P_1
-LOCAL_OBJECT_END(Constants_log_80_P)
-
-LOCAL_OBJECT_START(Constants_log_80_Q)
-// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
-data8 0xB172180000000000,0x00003FFE
-data8 0x82E308654361C4C6,0x0000BFE2
-data8 0x92492453A51BE0AF,0x00003FFC
-data8 0xAAAAAB73A0CFD29F,0x0000BFFC
-data8 0xCCCCCCCCCCCE3872,0x00003FFC
-data8 0xFFFFFFFFFFFFB4FB,0x0000BFFC
-data8 0xAAAAAAAAAAAAAAAB,0x00003FFD
-data8 0x8000000000000000,0x0000BFFE
-LOCAL_OBJECT_END(Constants_log_80_Q)
-
-LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h1)
-// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T2)
+
+.align 64
+Constants_exp_64_W1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W1,@object)
+data4 0x00000000,0x00000000,0x171EC4B4,0xBE384454
+data4 0x4AA72766,0xBE694741,0xD42518F8,0xBE5D32B6
+data4 0x3A319149,0x3E68D96D,0x62415F36,0xBE68F4DA
+data4 0xC9C86A3B,0xBE6DDA2F,0xF49228FE,0x3E6B2E50
+data4 0x1188B886,0xBE49C0C2,0x1A4C2F1F,0x3E64BFC2
+data4 0x2CB98B54,0xBE6A2FBB,0x9A55D329,0x3E5DC5DE
+data4 0x39A7AACE,0x3E696490,0x5C66DBA5,0x3E54728B
+data4 0xBA1C7D7D,0xBE62B0DB,0x09F1AF5F,0x3E576E04
+data4 0x1A0DD6A1,0x3E612500,0x795FBDEF,0xBE66A419
+data4 0xE1BD41FC,0xBE5CDE8C,0xEA54964F,0xBE621376
+data4 0x476E76EE,0x3E6370BE,0x3427EB92,0x3E390D1A
+data4 0x2BF82BF8,0x3E1336DE,0xD0F7BD9E,0xBE5FF1CB
+data4 0x0CEB09DD,0xBE60A355,0x0980F30D,0xBE5CA37E
+data4 0x4C082D25,0xBE5C541B,0x3B467D29,0xBE5BBECA
+data4 0xB9D946C5,0xBE400D8A,0x07ED374A,0xBE5E2A08
+data4 0x365C8B0A,0xBE66CB28,0xD3403BCA,0x3E3AAD5B
+data4 0xC7EA21E0,0x3E526055,0xE72880D6,0xBE442C75
+data4 0x85222A43,0x3E58B2BB,0x522C42BF,0xBE5AAB79
+data4 0x469DC2BC,0xBE605CB4,0xA48C40DC,0xBE589FA7
+data4 0x1AA42614,0xBE51C214,0xC37293F4,0xBE48D087
+data4 0xA2D673E0,0x3E367A1C,0x114F7A38,0xBE51BEBB
+data4 0x661A4B48,0xBE6348E5,0x1D3B9962,0xBDF52643
+data4 0x35A78A53,0x3E3A3B5E,0x1CECD788,0xBE46C46C
+data4 0x7857D689,0xBE60B7EC,0xD14F1AD7,0xBE594D3D
+data4 0x4C9A8F60,0xBE4F9C30,0x02DFF9D2,0xBE521873
+data4 0x55E6D68F,0xBE5E4C88,0x667F3DC4,0xBE62140F
+data4 0x3BF88747,0xBE36961B,0xC96EC6AA,0x3E602861
+data4 0xD57FD718,0xBE3B5151,0xFC4A627B,0x3E561CD0
+data4 0xCA913FEA,0xBE3A5217,0x9A5D193A,0x3E40A3CC
+data4 0x10A9C312,0xBE5AB713,0xC5F57719,0x3E4FDADB
+data4 0xDBDF59D5,0x3E361428,0x61B4180D,0x3E5DB5DB
+data4 0x7408D856,0xBE42AD5F,0x31B2B707,0x3E2A3148
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W1)
+
+.align 64
+Constants_exp_64_W2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W2,@object)
+data4 0x00000000,0x00000000,0x37A3D7A2,0xBE641F25
+data4 0xAD028C40,0xBE68DD57,0xF212B1B6,0xBE5C77D8
+data4 0x1BA5B070,0x3E57878F,0x2ECAE6FE,0xBE55A36A
+data4 0x569DFA3B,0xBE620608,0xA6D300A3,0xBE53B50E
+data4 0x223F8F2C,0x3E5B5EF2,0xD6DE0DF4,0xBE56A0D9
+data4 0xEAE28F51,0xBE64EEF3,0x367EA80B,0xBE5E5AE2
+data4 0x5FCBC02D,0x3E47CB1A,0x9BDAFEB7,0xBE656BA0
+data4 0x805AFEE7,0x3E6E70C6,0xA3415EBA,0xBE6E0509
+data4 0x49BFF529,0xBE56856B,0x00508651,0x3E66DD33
+data4 0xC114BC13,0x3E51165F,0xC453290F,0x3E53333D
+data4 0x05539FDA,0x3E6A072B,0x7C0A7696,0xBE47CD87
+data4 0xEB05C6D9,0xBE668BF4,0x6AE86C93,0xBE67C3E3
+data4 0xD0B3E84B,0xBE533904,0x556B53CE,0x3E63E8D9
+data4 0x63A98DC8,0x3E212C89,0x032A7A22,0xBE33138F
+data4 0xBC584008,0x3E530FA9,0xCCB93C97,0xBE6ADF82
+data4 0x8370EA39,0x3E5F9113,0xFB6A05D8,0x3E5443A4
+data4 0x181FEE7A,0x3E63DACD,0xF0F67DEC,0xBE62B29D
+data4 0x3DDE6307,0x3E65C483,0xD40A24C1,0x3E5BF030
+data4 0x14E437BE,0x3E658B8F,0xED98B6C7,0xBE631C29
+data4 0x04CF7C71,0x3E6335D2,0xE954A79D,0x3E529EED
+data4 0xF64A2FB8,0x3E5D9257,0x854ED06C,0xBE6BED1B
+data4 0xD71405CB,0x3E5096F6,0xACB9FDF5,0xBE3D4893
+data4 0x01B68349,0xBDFEB158,0xC6A463B9,0x3E628D35
+data4 0xADE45917,0xBE559725,0x042FC476,0xBE68C29C
+data4 0x01E511FA,0xBE67593B,0x398801ED,0xBE4A4313
+data4 0xDA7C3300,0x3E699571,0x08062A9E,0x3E5349BE
+data4 0x755BB28E,0x3E5229C4,0x77A1F80D,0x3E67E426
+data4 0x6B69C352,0xBE52B33F,0x084DA57F,0xBE6B3550
+data4 0xD1D09A20,0xBE6DB03F,0x2161B2C1,0xBE60CBC4
+data4 0x78A2B771,0x3E56ED9C,0x9D0FA795,0xBE508E31
+data4 0xFD1A54E9,0xBE59482A,0xB07FD23E,0xBE2A17CE
+data4 0x17365712,0x3E68BF5C,0xB3785569,0x3E3956F9
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W2)
+
+.align 64
+Constants_log_80_P:
+ASM_TYPE_DIRECTIVE(Constants_log_80_P,@object)
+// 1/2, P_8, P_7, ..., P_1
+data4 0x00000000, 0x80000000, 0x00003FFE, 0x00000000
+data4 0x3B1042BC, 0xCCCE8B88, 0x0000BFFB, 0x00000000
+data4 0xCADC2149, 0xE38997B7, 0x00003FFB, 0x00000000
+data4 0xB1ACB090, 0xFFFFFFFE, 0x0000BFFB, 0x00000000
+data4 0x06481C81, 0x92492498, 0x00003FFC, 0x00000000
+data4 0xAAAAB0EF, 0xAAAAAAAA, 0x0000BFFC, 0x00000000
+data4 0xCCC91416, 0xCCCCCCCC, 0x00003FFC, 0x00000000
+data4 0x00000000, 0x80000000, 0x0000BFFD, 0x00000000
+data4 0xAAAAAAAB, 0xAAAAAAAA, 0x00003FFD
+ASM_SIZE_DIRECTIVE(Constants_log_80_P)
+
+.align 64
+Constants_log_80_Q:
+ASM_TYPE_DIRECTIVE(Constants_log_80_Q,@object)
+// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
+data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
+data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4 0xA51BE0AF,0x92492453,0x00003FFC,0x00000000
+data4 0xA0CFD29F,0xAAAAAB73,0x0000BFFC,0x00000000
+data4 0xCCCE3872,0xCCCCCCCC,0x00003FFC,0x00000000
+data4 0xFFFFB4FB,0xFFFFFFFF,0x0000BFFC,0x00000000
+data4 0xAAAAAAAB,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0x00000000,0x80000000,0x0000BFFE,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_log_80_Q)
+
+.align 64
+Constants_log_80_Z_G_H_h1:
+ASM_TYPE_DIRECTIVE(Constants_log_80_Z_G_H_h1,@object)
+// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
-data4 0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000
data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000
data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000
data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000
data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000
-data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
+data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000
-data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
-data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
-data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
-data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
+data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
+data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
+data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
+data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000
-data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
-data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
-data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
-data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
-data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
-data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
-data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
-data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
-data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
-data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
+data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
+data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
+data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
+data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
+data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
+data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
+data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
+data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
+data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
+data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000
-data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
-data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
-data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
-data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
-data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
+data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
+data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
+data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
+data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
+data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
data4 0x00004211,0x3F042108,0x3F29516A,0x00000000
-data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
-LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h1)
-
-LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h2)
-// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
-data4 0x00008000,0x3F800000,0x00000000,0x00000000
-data4 0x00000000,0x00000000,0x00000000,0x00000000
-data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
+data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_log_80_Z_G_H_h1)
+
+.align 64
+Constants_log_80_Z_G_H_h2:
+ASM_TYPE_DIRECTIVE(Constants_log_80_Z_G_H_h2,@object)
+// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
+data4 0x00008000,0x3F800000,0x00000000,0x00000000
+data4 0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000
-data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
-data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
-data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
-data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
-data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
-data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
-data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
+data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
+data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
+data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
+data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
+data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
+data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
+data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000
-data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
-data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
+data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
+data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000
-data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
-data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
-data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
-data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
-data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
-data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
-data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
-data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
-data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
-data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
-data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
-data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
-data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
-data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
-data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
-data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
+data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
+data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
+data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
+data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
+data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
+data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
+data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
+data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
+data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
+data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
+data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
+data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
+data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
+data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
+data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
+data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
data4 0xBE11C424,0xA49C8DB5,0x0000BFE0,0x00000000
-LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h2)
-
-LOCAL_OBJECT_START(Constants_log_80_h3_G_H)
-// h3 IEEE double extended, H3 and G3 IEEE single
-data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
+ASM_SIZE_DIRECTIVE(Constants_log_80_Z_G_H_h2)
+
+.align 64
+Constants_log_80_h3_G_H:
+ASM_TYPE_DIRECTIVE(Constants_log_80_h3_G_H,@object)
+// h3 IEEE double extended, H3 and G3 IEEE single
+data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
data4 0x9B7FAD21,0x90051030,0x00003FD8,0x3F7FF400
-data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
-data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
+data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
+data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
data4 0xCA964D95,0xCE65C1D8,0x0000BFD8,0x3F7FDC00
-data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
-data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
-data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
-data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
-data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
-data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
+data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
+data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
+data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
+data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
+data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
+data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
data4 0x2F053150,0xB25CA912,0x0000BFDA,0x3F7FA420
-data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
-data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
-data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
-data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
-data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
-data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
-data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
-data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
-data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
-data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
-data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
+data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
+data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
+data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
+data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
+data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
+data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
+data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
+data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
+data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
+data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
+data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
data4 0x1F34A7EB,0x9A995A97,0x0000BFDC,0x3F7F4488
-data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
-data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
-data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
-data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
-data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
-data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
-data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
-data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
-data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
-data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
+data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
+data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
+data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
+data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
+data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
+data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
+data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
+data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
+data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
+data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
data4 0x3A87F20B,0x3A97F68B,0x3AA7EB86,0x3AB7E101
-data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
-data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
-data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
-data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
-data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
-LOCAL_OBJECT_END(Constants_log_80_h3_G_H)
-
-GR_sig_inv_ln2 = r14
-GR_rshf_2to51 = r15
-GR_exp_2tom51 = r16
-GR_rshf = r17
-GR_exp_half = r18
-GR_sign_mask = r19
-GR_exp_square_oflow = r20
-GR_exp_square_uflow = r21
-GR_exp_ynear1_oflow = r22
-GR_exp_ynear1_uflow = r23
-GR_signif_Z = r24
-
-GR_signexp_x = r32
-
-GR_exp_x = r33
-
+data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
+data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
+data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
+data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
+data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
+ASM_SIZE_DIRECTIVE(Constants_log_80_h3_G_H)
+
+.align 64
+Constant_half:
+ASM_TYPE_DIRECTIVE(Constant_half,@object)
+data4 0x00000000,0x80000000,0x00003FFE
+ASM_SIZE_DIRECTIVE(Constant_half)
+
+GR_Expo_Range = r32
+GR_Flag = r33
GR_Table_Ptr = r34
GR_Table_Ptr1 = r35
+GR_BIAS = r35
GR_Index1 = r36
+GR_sign_mask = r36
GR_Index2 = r37
GR_Expo_X = r37
+GR_signif_Z = r38
GR_M = r38
GR_X_0 = r39
@@ -614,49 +620,45 @@ GR_k = r44
GR_Big_Pos_Exp = r45
-GR_exp_pos_max = r46
-GR_exp_bias_p_k = r47
+GR_BIAS_p_k = r47
+GR_BIASed_exp_y = r47
+GR_Big_Neg_Exp = r48
GR_Index3 = r48
GR_temp = r48
GR_vsm_expo = r49
+GR_y_sign = r49
GR_T1_ptr = r50
-GR_P_ptr1 = r50
GR_T2_ptr = r51
-GR_P_ptr2 = r51
GR_N_fix = r52
GR_exp_y = r53
GR_signif_y = r54
-GR_signexp_y = r55
-GR_fraction_y = r55
+GR_exp_and_sign_y = r55
GR_low_order_bit = r56
-GR_exp_mask = r57
-GR_exp_bias = r58
-GR_y_sign = r59
-GR_table_base = r60
-GR_ptr_exp_Arg = r61
-GR_Delta_Exp = r62
-GR_Special_Exp = r63
-GR_exp_neg_max = r64
-GR_Big_Neg_Exp = r65
-
-//** Registers for unwind support
+GR_get_exp_mask = r57
+GR_exponent_zero = r58
+
+// ** Registers for unwind support
GR_SAVE_PFS = r59
GR_SAVE_B0 = r60
GR_SAVE_GP = r61
-GR_Parameter_X = r62
-GR_Parameter_Y = r63
-GR_Parameter_RESULT = r64
-GR_Parameter_TAG = r65
+GR_Parameter_X = r62
+GR_Parameter_Y = r63
+GR_Parameter_RESULT = r64
+GR_Parameter_TAG = r65
-//**
+FR_X = f8
+FR_Y = f9
+FR_RESULT = f99
+
+// **
FR_Input_X = f8
-FR_Result = f8
+FR_Output = f8
FR_Input_Y = f9
FR_Neg = f10
@@ -669,6 +671,7 @@ FR_poly_hi = f11
FR_Sgn = f12
+FR_Neg_X = f13
FR_half_W = f13
FR_X_cor = f14
@@ -695,11 +698,13 @@ FR_Scale = f36
FR_G_1 = f37
FR_G = f37
FR_Wsq = f37
+FR_L_Inv = f37
FR_temp = f37
FR_H_1 = f38
FR_H = f38
FR_W4 = f38
+FR_float_N = f38
FR_h = f39
FR_h_1 = f39
@@ -715,7 +720,9 @@ FR_L_lo = f41
FR_A_1 = f41
FR_h_2 = f42
+FR_P_6 = f42
+FR_abs_W = f43
FR_W1 = f43
FR_G_3 = f44
@@ -733,6 +740,7 @@ FR_H_3 = f47
FR_float_N = f48
+FR_P_4 = f49
FR_A_2 = f49
FR_Q_4 = f50
@@ -760,6 +768,7 @@ FR_Two = f56
FR_Big = f57
FR_neg_2_mK = f58
+FR_NBig = f58
FR_r = f59
@@ -768,1253 +777,1652 @@ FR_poly_lo = f60
FR_poly = f61
FR_P_5 = f62
-FR_Result_small = f62
FR_rsq = f63
-FR_Delta = f64
-
-FR_save_Input_X = f65
-FR_norm_X = f66
-FR_norm_Y = f67
-FR_Y_lo_2 = f68
-
-FR_P_6 = f69
-FR_Result_big = f69
-
-FR_RSHF_2TO51 = f70
-FR_INV_LN2_2TO63 = f71
-FR_2TOM51 = f72
-FR_RSHF = f73
-FR_TMP1 = f74
-FR_TMP2 = f75
-FR_TMP3 = f76
-FR_Tscale = f77
-FR_P_4 = f78
-FR_NBig = f79
-
+FR_Result = f99
+FR_Result_small = f100
+FR_Result_big = f101
.section .text
-GLOBAL_LIBM_ENTRY(powl)
-//
-// Get significand of x. It is the critical path.
-//
+.proc powl#
+.global powl#
+.align 64
+
+powl:
{ .mfi
- getf.sig GR_signif_Z = FR_Input_X // Get significand of x
- fclass.m p11, p12 = FR_Input_X, 0x0b // Test x unorm
- nop.i 999
+alloc GR_Expo_Range = ar.pfs,0,30,4,0
+(p0) fclass.m.unc p7, p13 = FR_Input_Y, 0x1E7
+nop.i 0
}
{ .mfi
- nop.m 999
- fnorm.s1 FR_norm_X = FR_Input_X // Normalize x
- mov GR_exp_half = 0xffff - 1 // Exponent for 0.5
-}
-;;
-
+(p0) getf.exp GR_exp_and_sign_y = FR_Input_Y
+//
+// Save State
+//
+(p0) fclass.m.unc p6, p12 = FR_Input_X, 0x1E7
+nop.i 0
+};;
{ .mfi
- alloc r32 = ar.pfs,0,30,4,0
- fclass.m p7, p0 = FR_Input_Y, 0x1E7 // Test y natval, nan, inf, zero
- mov GR_exp_pos_max = 0x13fff // Max exponent for pos oflow test
+(p0) getf.sig GR_signif_y = FR_Input_Y
+(p0) fcmp.eq.unc.s1 p12, p13 = FR_Input_X, f1
+nop.i 0
}
{ .mfi
- addl GR_table_base = @ltoff(Constants_exp_64_Arg#), gp // Ptr to tables
- fnorm.s1 FR_norm_Y = FR_Input_Y // Normalize y
- mov GR_exp_neg_max = 0x33fff // Max exponent for neg oflow test
+ nop.m 999
+//
+// Check for y = 1
+// Identify EM unsupporteds.
+// Load FR_half = .5
+//
+(p0) fadd.s1 FR_Two = f1, f1
+//
+// Load 1/2 in GP register
+//
+nop.i 0
}
;;
-{ .mfi
- getf.exp GR_signexp_y = FR_Input_Y // Get sign and exp of y
-(p12) fclass.m p11, p0 = FR_Input_Y, 0x0b // Test y unorm
- mov GR_sign_mask = 0x20000 // Sign mask
-}
-{ .mfi
- ld8 GR_table_base = [GR_table_base] // Get base address for tables
- fadd.s1 FR_Two = f1, f1 // Form 2.0 for square test
- mov GR_exp_mask = 0x1FFFF // Exponent mask
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Ptr = @ltoff(Constant_half#), gp
+ nop.i 999
}
;;
-{ .mfi
- getf.sig GR_signif_y = FR_Input_Y // Get significand of y
- fclass.m p6, p0 = FR_Input_X, 0x1E7 // Test x natval, nan, inf, zero
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ nop.m 999
nop.i 999
}
;;
+{ .mlx
+(p0) ldfe FR_Half =[GR_Table_Ptr],0
+(p0) movl GR_get_exp_mask = 0x1FFFF ;;
+}
+
{ .mfi
- getf.exp GR_signexp_x = FR_Input_X // Get signexp of x
- fmerge.s FR_save_Input_X = FR_Input_X, FR_Input_X
- extr.u GR_Index1 = GR_signif_Z, 59, 4 // Extract upper 4 signif bits of x
+ nop.m 999
+(p0) fclass.nm.unc p9, p15 = FR_Input_Y, 0x1FF
+//
+// Create FR_Two = 2
+// Get exp and significand of Y
+// Crate Masks
+// sgn = 1
+//
+(p0) and GR_exp_y = GR_get_exp_mask,GR_exp_and_sign_y
}
-{ .mfb
- setf.exp FR_Half = GR_exp_half // Load half
- nop.f 999
-(p11) br.cond.spnt POWL_DENORM // Branch if x or y denorm/unorm
+{ .mlx
+ nop.m 999
+(p0) movl GR_exponent_zero = 0xFFFF ;;
}
-;;
-
-// Return here from POWL_DENORM
-POWL_COMMON:
{ .mfi
- setf.exp FR_Big = GR_exp_pos_max // Form big pos value for oflow test
- fclass.nm p11, p0 = FR_Input_Y, 0x1FF // Test Y unsupported
- shl GR_Index1 = GR_Index1,5 // Adjust index1 pointer x 32
+ nop.m 999
+(p0) mov FR_Sgn = f1
+ nop.i 999
}
{ .mfi
- add GR_Table_Ptr = 0x7c0, GR_table_base // Constants_log_80_Z_G_H_h1
- fma.s1 FR_Sgn = f1,f1,f0 // Assume result positive
- mov GR_exp_bias = 0xFFFF // Form exponent bias
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p10, p11 = FR_Input_Y, f1
+ nop.i 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
//
// Identify NatVals, NaNs, Infs, and Zeros.
+// Load Half
//
-//
+(p0) fclass.nm.unc p8, p14 = FR_Input_X, 0x1FF
+//
// Remove sign bit from exponent of y.
-// Check for x = 1
+// Check for x = 1
+//
+(p6) br.cond.spnt L(POWL_64_SPECIAL) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.spnt L(POWL_64_SPECIAL) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(POWL_64_UNSUPPORT) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt L(POWL_64_UNSUPPORT) ;;
+}
+{ .mfi
+(p0) cmp.lt.unc p9, p0 = GR_exp_y,GR_exponent_zero
+(p0) fcmp.lt.unc.s1 p6, p13 = FR_Input_X, f0
+//
// Branch on Infs, Nans, Zeros, and Natvals
// Check to see that exponent < 0
//
+(p0) sub GR_exp_y = GR_exp_y,GR_exponent_zero
+}
+// x not zero, is y ==2?
{ .mfi
- setf.exp FR_NBig = GR_exp_neg_max // Form big neg value for oflow test
- fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test X unsupported
- and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p7, p14 = FR_Input_Y, FR_Two
+ nop.i 999 ;;
}
{ .mfb
- add GR_Index1 = GR_Index1,GR_Table_Ptr
- nop.f 999
-(p6) br.cond.spnt POWL_64_SPECIAL // Branch if x natval, nan, inf, zero
+ nop.m 999
+(p9) fcmp.lt.unc.s1 p9, p0 = FR_Input_X, f0
+(p7) br.cond.spnt L(POWL_64_SQUARE) ;; // Branch if x not zero and y=2
}
-;;
-
-// load Z_1 from Index1
-
-// There is logic starting here to determine if y is an integer when x < 0.
-// If 0 < |y| < 1 then clearly y is not an integer.
-// If |y| > 1, then the significand of y is shifted left by the size of
-// the exponent of y. This preserves the lsb of the integer part + the
-// fractional bits. The lsb of the integer can be tested to determine if
-// the integer is even or odd. The fractional bits can be tested. If zero,
-// then y is an integer.
+{ .mfi
+ nop.m 999
+(p6) fmerge.ns FR_Neg_X = FR_Input_X, FR_Input_X
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p10) fmpy.s0 FR_Result = FR_Input_X, f1
//
+// For y = 1, compute result = x
+// For x = 1, compute 1
+// When Y is one return X and possible raise
+// denormal operand exception.
+// Remove exponent BIAS
+//
+(p6) shl GR_exp_and_sign_y= GR_signif_y,GR_exp_y ;;
+}
{ .mfi
- ld2 GR_Z_1 =[GR_Index1],4 // Load Z_1
- fmerge.s FR_Z = f0, FR_norm_X // Z = |x|
- extr.u GR_X_0 = GR_signif_Z, 49, 15 // Extract X_0 from significand
+(p9) or GR_exp_and_sign_y = 0xF,GR_signif_y
+(p12) fma.s0 FR_Result = FR_Input_Y, f0, f1
+ nop.i 999 ;;
}
-{ .mfb
- cmp.lt p9, p0 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
- nop.f 999
-(p7) br.cond.spnt POWL_64_SPECIAL // Branch if y natval, nan, inf, zero
+{ .mii
+ nop.m 999
+(p6) extr.u GR_exp_y = GR_exp_and_sign_y,63,1 ;;
+(p6) cmp.ne.unc p9, p0 = GR_exp_y, r0
}
-;;
-
-{ .mfb
- ldfs FR_G_1 = [GR_Index1],4 // Load G_1
- fcmp.eq.s1 p10, p0 = FR_Input_Y, f1 // Test Y = +1.0
-(p8) br.cond.spnt POWL_64_UNSUPPORT // Branch if x unsupported
+{ .mii
+ nop.m 999
+//
+// Both predicates can be set.
+// Don't consider y's < 1.
+//
+(p6) shl GR_signif_y= GR_exp_and_sign_y,1 ;;
+//
+// Is shift off integer part of y.
+// Get y's even or odd bit.
+//
+(p6) cmp.ne.unc p8, p0 = GR_signif_y, r0
}
-;;
-
+{ .mib
+ nop.m 999
+ nop.i 999
//
-// X_0 = High order 15 bit of Z
+// Is the fractional part of the y = 0?
+// Is the integer even or odd.
//
-{ .mfb
- ldfs FR_H_1 = [GR_Index1],8 // Load H_1
-(p9) fcmp.lt.unc.s1 p9, p0 = FR_Input_X, f0 // Test x<0, 0 <|y|<1
-(p11) br.cond.spnt POWL_64_UNSUPPORT // Branch if y unsupported
+(p10) br.cond.spnt L(POWL_64_RETURN) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p12) br.cond.spnt L(POWL_64_RETURN) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(POWL_64_XNEG) ;;
}
-;;
-
{ .mfi
- ldfe FR_h_1 = [GR_Index1] // Load h_1
- fcmp.eq.s1 p7, p0 = FR_Input_Y, FR_Two // Test y = 2.0
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // X_1 = X_0 * Z_1 (bits 15-30)
- // Wait 4 cycles to use result
+ nop.m 999
+(p9) fmerge.ns FR_Sgn = FR_Sgn, FR_Sgn
+ nop.i 999
}
{ .mfi
- add GR_Table_Ptr = 0x9c0, GR_table_base // Constants_log_80_Z_G_H_h2
- nop.f 999
- sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent of y
+ nop.m 999
+(p0) fcmp.eq.unc.s0 p11, p0 = FR_Input_Y, FR_Half
+ nop.i 999 ;;
}
-;;
-
//
-// Branch for (x < 0) and Y not an integer.
+// Raise possible denormal operand exception for both
+// X and Y.
//
{ .mfb
- nop.m 999
- fcmp.lt.s1 p6, p0 = FR_Input_X, f0 // Test x < 0
-(p9) br.cond.spnt POWL_64_XNEG // Branch if x < 0, 0 < |y| < 1
+ nop.m 999
+//
+// Branch for (x < 0) and Y not an integer.
+//
+(p0) fcmp.eq.unc.s0 p12, p0 = FR_Input_X, f1
+//
+// For x < 0 and y integer, make x positive
+// For x < 0 and y odd integer,, set sign = -1.
+//
+(p11) br.cond.spnt L(POWL_64_SQRT) ;;
+}
+{ .mmf
+(p0) cmp.eq.unc p15, p14 = r0, r0
+ nop.m 999
+(p13) fnorm.s1 FR_Z = FR_Input_X ;;
+}
+{ .mfi
+ nop.m 999
+(p6) fnorm.s1 FR_Z = FR_Neg_X
+ nop.i 999
}
;;
-{ .mfi
+//
+// Branch to embedded sqrt(x)
+//
+//
+// Computes ln( x ) to extra precision
+// Input FR 1: FR_X
+// Output FR 2: FR_Y_hi
+// Output FR 3: FR_Y_lo
+// Output PR 1: PR_Safe
+//
+
+{ .mmi
nop.m 999
- fcmp.eq.s1 p12, p0 = FR_Input_X, f1 // Test x=+1.0
+(p0) addl GR_Table_Ptr = @ltoff(Constants_log_80_Z_G_H_h1#), gp
nop.i 999
}
-{ .mfb
- nop.m 999
- fsub.s1 FR_W = FR_Z, f1 // W = Z - 1
-(p7) br.cond.spnt POWL_64_SQUARE // Branch if y=2
-}
;;
-{ .mfi
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
nop.m 999
-(p10) fmpy.s0 FR_Result = FR_Input_X, f1 // If y=+1.0, result=x
-(p6) shl GR_fraction_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
- // Wait 4 cycles to use result
+ nop.i 999
}
;;
+
+{ .mlx
+ nop.m 999
+(p0) movl GR_BIAS = 0x000000000000FFFF ;;
+}
{ .mfi
- nop.m 999
-(p12) fma.s0 FR_Result = FR_Input_Y, f0, f1 // If x=1.0, result=1, chk denorm
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract index2
+ nop.m 999
+(p0) fsub.s1 FR_W = FR_Z, f1
+ nop.i 999 ;;
}
-;;
-
-//
-// N = exponent of Z
-//
-{ .mib
- getf.exp GR_N = FR_Z // Get exponent of Z (also x)
- shl GR_Index2=GR_Index2,5 // Index2 x 32 bytes
-(p10) br.ret.spnt b0 // Exit if y=+1.0
+//
+// Z = Norm(X) - both + and - case
+// Set Safe = True
+//
+{ .mmb
+(p0) getf.sig GR_signif_Z = FR_Z
+(p0) getf.exp GR_N = FR_Z
+ nop.b 999 ;;
+}
+{ .mii
+ nop.m 999
+//
+// Get significand of Z
+// W = Z - 1
+//
+(p0) extr.u GR_Index1 = GR_signif_Z, 59, 4 ;;
+//
+// Index1 = High order 4 bits of Z
+// X_0 = High order 15 bit of Z
+//
+(p0) shl GR_Index1 = GR_Index1,5 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Add offset to Index1 ptr.
+//
+(p0) fabs FR_abs_W = FR_W
+//
+// BIAS = 0x000...FFFF
+// Adjust Index1 ptr ( x 32) .
+//
+(p0) add GR_Index1 = GR_Index1,GR_Table_Ptr
+}
+{ .mmi
+ nop.m 999 ;;
+(p0) ld2 GR_Z_1 =[GR_Index1],4
+(p0) extr.u GR_X_0 = GR_signif_Z, 49, 15
}
;;
-{ .mib
- add GR_Index2 = GR_Index2, GR_Table_Ptr // Pointer to table 2
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Ptr = @ltoff(Constants_log_80_Z_G_H_h2#), gp
nop.i 999
-(p12) br.ret.spnt b0 // Exit if x=+1.0
}
;;
{ .mmi
- ld2 GR_Z_2 =[GR_Index2],4 // Load Z_2
-;;
- ldfs FR_G_2 = [GR_Index2],4 // Load G_2
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ nop.m 999
nop.i 999
}
;;
-{ .mii
- ldfs FR_H_2 = [GR_Index2],8 // Load H_2
-(p6) tbit.nz.unc p9, p0 = GR_fraction_y, 63 // Test x<0 and y odd integer
- add GR_Table_Ptr = 0xbcc, GR_table_base // Constants_log_80_h3_G_H, G_3
-}
-;;
+{ .mmi
+(p0) ldfs FR_G_1 = [GR_Index1],4 ;;
+(p0) ldfs FR_H_1 = [GR_Index1],8
+ nop.i 999 ;;
+}
//
-// For x < 0 and y odd integer,, set sign = -1.
+// Adjust Index2 (x 32).
//
{ .mfi
- getf.exp GR_M = FR_W // Get signexp of W
- nop.f 999
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // X_2 = X_1 * Z_2 (bits 15-30)
+(p0) ldfe FR_h_1 = [GR_Index1],0
+ nop.f 999
+(p0) pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 ;;
}
-{ .mfi
- ldfe FR_h_2 = [GR_Index2] // Load h_2
-(p9) fnma.s1 FR_Sgn = f1, f1, f0 // If x<0, y odd int, result negative
- sub GR_N = GR_N, GR_exp_bias // Get true exponent of x = N
+{ .mmi
+ nop.m 999 ;;
+//
+// load Z_1 from Index1
+// abs_W = |W|
+// Point to Table2
+//
+(p0) getf.exp GR_M = FR_abs_W
+//
+// M = M - BIAS
+// Load G_1
+// N = exponent of Z
+//
+ nop.i 999;;
}
-;;
-
-{ .mfi
- add GR_Table_Ptr1 = 0xdc0, GR_table_base // Ptr to H_3
- fcmp.eq.s0 p11, p0 = FR_Input_Y, FR_Half // Test y=0.5, also set denorm
-(p6) shl GR_fraction_y= GR_fraction_y, 1 // Shift left 1 to get fraction
+{ .mmi
+ nop.m 999
+ nop.m 999
+ nop.i 999;;
}
-;;
-
-{ .mmb
- setf.sig FR_float_N = GR_N
-(p6) cmp.ne.unc p8, p0 = GR_fraction_y, r0 // Test x<0 and y not integer
-(p8) br.cond.spnt POWL_64_XNEG // Branch if x<0 and y not int
+{ .mmi
+ nop.m 999
+ nop.m 999
+ nop.i 999;;
}
-;;
-
+{ .mmi
+ nop.m 999
+ nop.m 999
+(p0) extr.u GR_Index2 = GR_X_1, 6, 4 ;;
+}
+{ .mii
+ nop.m 999
+//
+// Extract Index2
+// Load H_1
+// Is -8 > M ?
//
-// Raise possible denormal operand exception for both X and Y.
-// Set pointers in case |x| near 1
-// Branch to embedded sqrt(x) if y=0.5
+(p0) shl GR_Index2=GR_Index2,5 ;;
+(p0) add GR_Index2 = GR_Index2, GR_Table_Ptr
+}
//
-{ .mfi
- add GR_P_ptr1 = 0x6b0, GR_table_base // Constants_log_80_P, P8, NEAR path
- fcmp.eq.s0 p12, p0 = FR_Input_X, FR_Input_Y // Dummy to set denormal
- add GR_P_ptr2 = 0x700, GR_table_base // Constants_log_80_P, P4, NEAR path
+// M = exponent of abs_W
+// X_1 = X_0 * Z_1
+//
+{ .mii
+(p0) sub GR_M = GR_M, GR_BIAS
+ nop.i 999 ;;
+(p0) cmp.gt.unc p7, p14 = -8, GR_M
}
-{ .mfb
- cmp.eq p15, p14 = r0, r0 // Assume result safe (no over/under)
- fsub.s1 FR_Delta = FR_Input_Y,f1 // Delta = y - 1.0
-(p11) br.cond.spnt POWL_64_SQRT // Branch if y=0.5
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.spnt L(LOGL80_NEAR) ;;
}
-;;
-
//
-// Computes ln( x ) to extra precision
-// Input FR 1: FR_X
-// Output FR 2: FR_Y_hi
-// Output FR 3: FR_Y_lo
-// Output PR 1: PR_Safe
+// Load h_1
+// Possible branch out.
+// Add offset of table to Index2
//
{ .mfi
- and GR_M = GR_exp_mask, GR_M // Mask to get exponent of W
- nop.f 999
- extr.u GR_Index3 = GR_X_2, 1, 5 // Get index3
+(p0) ld2 GR_Z_2 =[GR_Index2],4
+(p0) fmerge.se FR_S = f1,FR_Z
+(p0) sub GR_N = GR_N, GR_BIAS
}
;;
{ .mmi
- shladd GR_Table_Ptr1 = GR_Index3,2,GR_Table_Ptr1 // Ptr to H_3
- shladd GR_Index3 = GR_Index3,4,GR_Table_Ptr // Ptr to G_3
- sub GR_M = GR_M, GR_exp_bias // Get true exponent of W
-}
-;;
-
-{ .mib
- ldfs FR_G_3 = [GR_Index3],-12 // Load G_3
- cmp.gt p7, p14 = -8, GR_M // Test if |x-1| < 2^-8
-(p7) br.cond.spnt LOGL80_NEAR // Branch if |x-1| < 2^-8
-}
-;;
-
-// Here if |x-1| >= 2^-8
-{ .mmf
- ldfs FR_H_3 = [GR_Table_Ptr1] // Load H_3
nop.m 999
- nop.f 999
+(p0) addl GR_Table_Ptr = @ltoff(Constants_log_80_h3_G_H#), gp
+ nop.i 999
}
;;
-{ .mfi
- ldfe FR_h_3 = [GR_Index3] // Load h_3
- fmerge.se FR_S = f1,FR_Z // S = merge of 1.0 and signif(Z)
- nop.i 999
-}
-{ .mfi
- add GR_Table_Ptr = 0x740, GR_table_base // Constants_log_80_Q
- fmpy.s1 FR_G = FR_G_1, FR_G_2 // G = G_1 * G_2
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ nop.m 999
nop.i 999
}
;;
+//
+// load Z_2
+// N - BIAS
+// Point to Table 3.
+// S = merging of Z and 1.0
+//
+{ .mmi
+(p0) ldfs FR_G_2 = [GR_Index2],4
+(p0) setf.sig FR_float_N = GR_N
+(p0) add GR_Table_Ptr1 = 0x200,GR_Table_Ptr ;;
+}
//
-// Begin Loading Q's - load log2_hi part
+// load G_2
+// X_2 = X_1 * Z_2
+// Add offset to Table 2 ptr.
+// float_N = significand of N
//
-{ .mfi
- ldfe FR_log2_hi = [GR_Table_Ptr],16 // Load log2_hi
- fadd.s1 FR_H = FR_H_1, FR_H_2 // H = H_1 + H_2
- nop.i 999
-};;
-
+{ .mmi
+(p0) ldfs FR_H_2 = [GR_Index2],8 ;;
//
-// h = h_1 + h_2
+// load H_2
+// G = G * G_2
//
+(p0) ldfe FR_h_2 = [GR_Index2],0
+(p0) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;;
+}
+{ .mmi
+ nop.m 999
+ nop.m 999
+ nop.i 999;;
+}
+{ .mmi
+ nop.m 999
+ nop.m 999
+ nop.i 999;;
+}
+{ .mmi
+ nop.m 999
+ nop.m 999
+ nop.i 999;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) extr.u GR_Index3 = GR_X_2, 1, 5 ;;
+}
{ .mfi
- ldfe FR_log2_lo = [GR_Table_Ptr],16 // Load log2_lo
- fadd.s1 FR_h = FR_h_1, FR_h_2 // h = h_1 + h_2
- nop.i 999
+(p0) shladd GR_Table_Ptr1 = GR_Index3,2,GR_Table_Ptr1
+ nop.f 999
+//
+// h = h_1 + h_2
+// Adjust Index3
+//
+(p0) shladd GR_Index3 = GR_Index3,4,GR_Table_Ptr ;;
+}
+{ .mmb
+ nop.m 999
+(p0) ldfe FR_h_3 = [GR_Index3],12
+ nop.b 999 ;;
+}
+{ .mmf
+(p0) ldfs FR_H_3 = [GR_Table_Ptr1],0
+//
+// float_N = Make N a fp number
+// Load h_3
+// Get pointer to Q table.
+//
+(p0) ldfs FR_G_3 = [GR_Index3],0
+(p0) fmpy.s1 FR_G = FR_G_1, FR_G_2
}
;;
-{ .mfi
- ldfe FR_Q_6 = [GR_Table_Ptr],16 // Load Q_6
- fcvt.xf FR_float_N = FR_float_N
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Ptr = @ltoff(Constants_log_80_Q#), gp
nop.i 999
}
;;
-{ .mfi
- ldfe FR_Q_5 = [GR_Table_Ptr],16 // Load Q_5
- nop.f 999
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ nop.m 999
nop.i 999
}
;;
+
+
+{ .mfi
+(p0) ldfe FR_log2_hi = [GR_Table_Ptr],16
+(p0) fadd.s1 FR_H = FR_H_1, FR_H_2
+ nop.i 999 ;;
+}
+{ .mmf
+ nop.m 999
//
-// G = G_1 * G_2 * G_3
+// G = G_1 * G_2 * G_3
//
-{ .mfi
- ldfe FR_Q_4 = [GR_Table_Ptr],16 // Load Q_4
- fmpy.s1 FR_G = FR_G, FR_G_3
- nop.i 999
+(p0) ldfe FR_log2_lo = [GR_Table_Ptr],16
+//
+// load h_2
+// H = H_1 + H_2
+// Get Index3
+//
+(p0) fadd.s1 FR_h = FR_h_1, FR_h_2 ;;
}
-;;
-
//
-// H = H_1 + H_2 + H_3
+// Load log2_lo part
+// r = G*S -1
//
{ .mfi
- ldfe FR_Q_3 = [GR_Table_Ptr],16 // Load Q_3
- fadd.s1 FR_H = FR_H, FR_H_3
- nop.i 999
+(p0) ldfe FR_Q_6 = [GR_Table_Ptr],16
+//
+// Load H_3
+//
+(p0) fcvt.xf FR_float_N = FR_float_N
+ nop.i 999 ;;
}
-;;
-
//
-// Y_lo = poly + Y_lo
+// Load Q_6
//
-// h = h_1 + h_2 + h_3
+{ .mmi
+(p0) ldfe FR_Q_5 = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_Q_4 = [GR_Table_Ptr],16
+ nop.i 999 ;;
+}
+{ .mmi
+(p0) ldfe FR_Q_3 = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_Q_2 = [GR_Table_Ptr],16
+ nop.i 999 ;;
+}
+{ .mmf
+ nop.m 999
//
+// poly_lo = Q_5 + r * Q_6
+// Load Q_2
+// rsq = r * r
+//
+(p0) ldfe FR_Q_1 = [GR_Table_Ptr],16
+//
+// h = h_1 + h_2 + h_3
+// H = H_1 + H_2 + H_3
+// Load G_3.
+// Begin Loading Q's - load log2_hi part
+//
+(p0) fmpy.s1 FR_G = FR_G, FR_G_3
+}
{ .mfi
- ldfe FR_Q_2 = [GR_Table_Ptr],16 // Load Q_2
- fadd.s1 FR_h = FR_h, FR_h_3
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 FR_H = FR_H, FR_H_3
+ nop.i 999
}
;;
//
-// GS_hi = G*S
-// r = G*S -1
+// Y_lo = poly + Y_lo
//
-{ .mfi
- ldfe FR_Q_1 = [GR_Table_Ptr],16 // Load Q_1
- fmpy.s1 FR_GS_hi = FR_G, FR_S
+
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Ptr = @ltoff(Constants_exp_64_Arg#), gp
nop.i 999
}
-{ .mfi
+;;
+
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
nop.m 999
- fms.s1 FR_r = FR_G, FR_S, f1
nop.i 999
}
;;
+
+{ .mfi
+ nop.m 999
+(p0) fadd.s1 FR_h = FR_h, FR_h_3
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
//
-// poly_lo = Q_5 + r * Q_6
+// Load Q_5
//
+(p0) fmpy.s1 FR_GS_hi = FR_G, FR_S
+ nop.i 999
+}
{ .mfi
- getf.exp GR_Delta_Exp = FR_Delta // Get signexp of y-1 for exp calc
- fma.s1 FR_poly_lo = FR_r, FR_Q_6, FR_Q_5
- nop.i 999
+ nop.m 999
+(p0) fms.s1 FR_r = FR_G, FR_S, f1
+ nop.i 999 ;;
}
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_poly_lo = FR_r, FR_Q_6, FR_Q_5
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
//
-// r_cor = GS_hi -1
+// GS_hi = G*S
+// Load Q_4
//
+(p0) fsub.s1 FR_r_cor = FR_GS_hi, f1
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fsub.s1 FR_r_cor = FR_GS_hi, f1
- nop.i 999
+ nop.m 999
+(p0) fms.s1 FR_GS_lo = FR_G, FR_S, FR_GS_hi
+ nop.i 999
}
-;;
-
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_poly = FR_r, FR_Q_2, FR_Q_1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
//
+// Load Q_3
+// r_cor = GS_hi -1
// GS_lo = G*S - GS_hi
//
+(p0) fmpy.s1 FR_rsq = FR_r, FR_r
+ nop.i 999
+}
{ .mfi
- nop.m 999
- fms.s1 FR_GS_lo = FR_G, FR_S, FR_GS_hi
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_G = FR_float_N, FR_log2_hi, FR_H
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// rsq = r * r
+// poly = poly_hi + rsq * poly_lo
+// Tbl = float_N*log2_hi + H
//
-{ .mfi
- nop.m 999
- fmpy.s1 FR_rsq = FR_r, FR_r
- nop.i 999
+(p0) fma.s1 FR_Y_lo = FR_float_N, FR_log2_lo, FR_h
+ nop.i 999 ;;
}
+{ .mfi
+ nop.m 999
//
-// G = float_N*log2_hi + H
+// r_cor = r_cor - r
+// poly_hi = r * Q_2 + Q_1
//
-{ .mfi
- nop.m 999
- fma.s1 FR_G = FR_float_N, FR_log2_hi, FR_H
- nop.i 999
+(p0) fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_4
+ nop.i 999
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// Y_lo = float_N*log2_lo + h
+// Load Q_1
//
+(p0) fsub.s1 FR_r_cor = FR_r_cor, FR_r
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fma.s1 FR_Y_lo = FR_float_N, FR_log2_lo, FR_h
- nop.i 999
+ nop.m 999
+//
+// Y_lo = float_N*log2_lo + h
+//
+(p0) fadd.s1 FR_Y_hi = FR_G, FR_r
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// poly_lo = Q_4 + r * poly_lo
-// r_cor = r_cor - r
+// poly_lo = Q_4 + r * poly_lo;;
+// r_cor = r_cor + GS_lo;;
//
+(p0) fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_3
+ nop.i 999
+}
{ .mfi
- nop.m 999
- fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_4
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 FR_r_cor = FR_r_cor, FR_GS_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fsub.s1 FR_r_cor = FR_r_cor, FR_r
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 FR_r_cor = FR_r_cor, FR_Y_lo
+ nop.i 999
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// poly_hi = r * Q_2 + Q_1
-// Y_hi = G + r
+// poly_lo = Q_3 + r * poly_lo;;
//
+(p0) fma.s1 FR_poly = FR_rsq, FR_poly_lo, FR_poly
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_r, FR_Q_2, FR_Q_1
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 FR_Y_lo = FR_G, FR_Y_hi
+ nop.i 999
+}
+{ .mmi
+(p0) ldfe FR_L_Inv = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_L_hi = [GR_Table_Ptr],16
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fadd.s1 FR_Y_hi = FR_G, FR_r
- nop.i 999
+(p0) ldfe FR_L_lo = [GR_Table_Ptr],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// poly_lo = Q_3 + r * poly_lo
-// r_cor = r_cor + GS_lo
+// Y_hi = Tbl + r
+// r_cor = r_cor + Y_lo
//
-{ .mfi
- nop.m 999
- fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_3
- nop.i 999
+(p0) fma.s1 FR_poly = FR_rsq, FR_poly, FR_r_cor
+ nop.i 999 ;;
}
{ .mfi
+ nop.m 999
+// Y_lo = Tbl - Y_hi
+// poly = rsq * poly + r_cor
+//
+(p0) fadd.s1 FR_Y_lo = FR_Y_lo, FR_r
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+//
+// Y_lo = Y_lo + r
+//
+(p0) fadd.s1 FR_Y_lo = FR_Y_lo, FR_poly
+//
+// Load L_Inv
+// Load L_hi
+// Load L_lo
+// all long before they are needed.
+// They are used in LOGL_RETURN PATH
+//
+br.cond.sptk L(LOGL_RETURN) ;;
+}
+L(LOGL80_NEAR):
+//
+// Branch LOGL80_NEAR
+//
+
+{ .mmi
nop.m 999
- fadd.s1 FR_r_cor = FR_r_cor, FR_GS_lo
+(p0) addl GR_Table_Ptr = @ltoff(Constants_log_80_P#), gp
nop.i 999
}
;;
-//
-// Y_lo = G - Y_hi
-//
-{ .mfi
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
nop.m 999
- fsub.s1 FR_Y_lo_2 = FR_G, FR_Y_hi
nop.i 999
}
;;
+{ .mfi
+ nop.m 999
+(p0) fmpy.s1 FR_Wsq = FR_W, FR_W
+(p0) add GR_Table_Ptr1 = 0x50,GR_Table_Ptr
+}
//
-// r_cor = r_cor + Y_lo
-// poly = poly_hi + rsq * poly_lo
+// Adjust ptr to 1/2
+// Adjust Ptr1 to P_4
//
-{ .mfi
- add GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
- fadd.s1 FR_r_cor = FR_r_cor, FR_Y_lo
- nop.i 999
+{ .mmi
+(p0) ldfe FR_Half = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_P_4 = [GR_Table_Ptr1],16
+ nop.i 999
}
-{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_rsq, FR_poly_lo, FR_poly
- nop.i 999
+//
+// Load 1/2
+//
+{ .mmi
+(p0) ldfe FR_P_8 = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_P_3 = [GR_Table_Ptr1],16
+ nop.i 999
+}
+{ .mmi
+(p0) ldfe FR_P_7 = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_P_2 = [GR_Table_Ptr1],16
+ nop.i 999
}
-;;
-
//
-// Load L_hi
-// Load L_lo
-// all long before they are needed.
-// They are used in LOGL_RETURN PATH
+// Load P_7
+// half_W = .5 * W
+// Load P_3
//
-// Y_lo = Y_lo + r
-// poly = rsq * poly + r_cor
+{ .mmi
+(p0) ldfe FR_P_6 = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_P_1 = [GR_Table_Ptr1],16
+ nop.i 999 ;;
+}
+//
+// Load P_6
+// Wsq = w * w
+// poly = w*P_4 + P_3
+// Load P_2
//
{ .mfi
- ldfe FR_L_hi = [GR_Table_Ptr],16 // Load L_hi
- fadd.s1 FR_Y_lo = FR_Y_lo_2, FR_r
- nop.i 999
+(p0) ldfe FR_P_5 = [GR_Table_Ptr],16
+//
+// Load P_5
+// poly_lo = w * P_8 + P_7
+// Y_hi = w - (1/2)w*w
+// Load P_1
+//
+(p0) fmpy.s1 FR_W4 = FR_Wsq, FR_Wsq
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_rsq, FR_poly, FR_r_cor
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 FR_W3 = FR_Wsq, FR_W
+ nop.i 999
}
;;
-{ .mfb
- ldfe FR_L_lo = [GR_Table_Ptr],16 // Load L_lo
- fadd.s1 FR_Y_lo = FR_Y_lo, FR_poly
- br.cond.sptk LOGL_RETURN // Branch to common code
-}
-;;
-
-
-LOGL80_NEAR:
-// Here if |x-1| < 2^-8
//
-// Branch LOGL80_NEAR
+// Y_lo = W3 * poly + Y_lo
//
-{ .mmf
- ldfe FR_P_8 = [GR_P_ptr1],16 // Load P_8
- ldfe FR_P_4 = [GR_P_ptr2],16 // Load P_4
- fmpy.s1 FR_Wsq = FR_W, FR_W
-}
-;;
-
{ .mmi
- ldfe FR_P_7 = [GR_P_ptr1],16 // Load P_7
- ldfe FR_P_3 = [GR_P_ptr2],16 // Load P_3
+ nop.m 999
+(p0) addl GR_Table_Ptr = @ltoff(Constants_exp_64_Arg#), gp
nop.i 999
}
;;
{ .mmi
- ldfe FR_P_6 = [GR_P_ptr1],16 // Load P_6
- ldfe FR_P_2 = [GR_P_ptr2],16 // Load P_2
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ nop.m 999
nop.i 999
}
;;
+
{ .mmi
- ldfe FR_P_5 = [GR_P_ptr1],16 // Load P_5
- ldfe FR_P_1 = [GR_P_ptr2],16 // Load P_1
- nop.i 999
+(p0) ldfe FR_L_Inv = [GR_Table_Ptr],16 ;;
+(p0) ldfe FR_L_hi = [GR_Table_Ptr],16
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- getf.exp GR_Delta_Exp = FR_Delta // Get signexp of y-1 for exp calc
- fmpy.s1 FR_W4 = FR_Wsq, FR_Wsq
- nop.i 999
+(p0) ldfe FR_L_lo = [GR_Table_Ptr],16
+//
+// Load P_8
+// Load P_4
+//
+(p0) fmpy.s1 FR_half_W = FR_Half, FR_W
+ nop.i 999 ;;
}
{ .mfi
- add GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
- fmpy.s1 FR_W3 = FR_Wsq, FR_W
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly_lo = FR_W, FR_P_8,FR_P_7
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_half_W = FR_Half, FR_W
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly = FR_W, FR_P_4, FR_P_3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- ldfe FR_L_hi = [GR_Table_Ptr],16
- fma.s1 FR_poly_lo = FR_W, FR_P_8,FR_P_7
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 FR_Y_hi = FR_W, FR_half_W, FR_W
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_W, FR_P_4, FR_P_3
- nop.i 999
+ nop.m 999
+//
+// W4 = Wsq * Wsq
+// poly = w *poly + P_2
+//
+(p0) fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_6
+ nop.i 999
}
-;;
-
{ .mfi
- ldfe FR_L_lo = [GR_Table_Ptr],16
- fnma.s1 FR_Y_hi = FR_W, FR_half_W, FR_W
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly = FR_W, FR_poly, FR_P_2
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_6
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 FR_Y_lo = FR_W, FR_Y_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_W, FR_poly, FR_P_2
- nop.i 999
+ nop.m 999
+//
+// poly = w * poly + P_1
+// w3 = wsq * w
+//
+(p0) fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_5
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 FR_Y_lo = FR_W, FR_Y_hi
- nop.i 999
+ nop.m 999
+//
+// poly_lo = w * poly_lo + P_6
+// Y_lo = W - Y_hi
+//
+(p0) fma.s1 FR_poly = FR_W, FR_poly, FR_P_1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_5
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 FR_Y_lo = FR_W, FR_half_W, FR_Y_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_W, FR_poly, FR_P_1
- nop.i 999
+ nop.m 999
+//
+// poly_lo = w * poly_lo +
+// Y_lo = Y_lo - w * (1/2)w
+//
+(p0) fma.s1 FR_poly = FR_poly_lo, FR_W4, FR_poly
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fnma.s1 FR_Y_lo = FR_W, FR_half_W, FR_Y_lo
- nop.i 999
+ nop.m 999
+//
+// Y_lo = (W-Y_hi) - w * (1/2)w
+// poly = W4* poly_lo + poly
+//
+(p0) fma.s1 FR_Y_lo = FR_poly, FR_W3, FR_Y_lo
+ nop.i 999 ;;
+}
+L(LOGL_RETURN):
+{ .mfi
+(p0) add GR_Expo_Range = 0x2,r0
+//
+// Load L_Inv
+// Load L_hi
+// Load L_lo
+// all long before they are needed.
+//
+//
+// kernel_log_80 computed ln(X)
+// and return logX_hi and logX_lo as results.
+// PR_pow_Safe set as well.
+//
+(p0) fmpy.s1 FR_X_lo = FR_Input_Y, FR_logx_lo
+//
+// Compute Y * (logX_hi + logX_lo)
+// P_hi -> X
+// P_lo -> X_cor
+// (Manipulate names so that inputs are in
+// the place kernel_exp expects them)
+// Set GR_Flag to 2
+// Set GR_Expo_Range to Double
+//
+// This function computes exp( x + x_cor)
+// Input FR 1: FR_X
+// Input FR 2: FR_X_cor
+// Input GR 1: GR_Flag
+// Input GR 2: GR_Expo_Range
+// Output FR 3: FR_Y_hi
+// Output FR 4: FR_Y_lo
+// Output FR 5: FR_Scale
+// Output PR 1: PR_Safe
+//
+(p0) cmp.eq.unc p15, p0 = r0, r0
}
;;
-{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_poly_lo, FR_W4, FR_poly
- nop.i 999
+{ .mmi
+(p0) addl GR_W1_ptr = @ltoff(Constants_exp_64_W1#), gp
+(p0) addl GR_W2_ptr = @ltoff(Constants_exp_64_W2#), gp
+(p0) add GR_Flag = 0x2,r0
}
;;
-{ .mfi
- nop.m 999
- fma.s1 FR_Y_lo = FR_poly, FR_W3, FR_Y_lo
- nop.i 999
+{ .mmi
+ ld8 GR_W1_ptr = [GR_W1_ptr]
+ ld8 GR_W2_ptr = [GR_W2_ptr]
+(p0) cmp.ne.unc p7, p0 = 0x1, GR_Flag
}
;;
+{ .mlx
+ nop.m 999
+(p0) movl GR_Mask = 0x1FFFF ;;
+}
-LOGL_RETURN:
-// Common code for completion of both logx paths
+{ .mlx
+ nop.m 999
+(p0) movl GR_BIAS = 0x0FFFF ;;
+}
+{ .mfi
+ nop.m 999
//
-// L_hi, L_lo already loaded.
-//
-//
-// kernel_log_80 computed ln(X)
-// and return logX_hi and logX_lo as results.
-// PR_pow_Safe set as well.
+// X_lo = Y * logX_lo
//
+(p0) fma.s1 FR_P_hi = FR_Input_Y, FR_logx_hi,FR_X_lo
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
//
-// Compute Y * (logX_hi + logX_lo)
-// P_hi -> X
-// P_lo -> X_cor
-// (Manipulate names so that inputs are in
-// the place kernel_exp expects them)
+// Set Safe=True
+// Flag is always 2 for this routine
//
-// This function computes exp( x + x_cor)
-// Input FR 1: FR_X
-// Input FR 2: FR_X_cor
-// Output FR 3: FR_Y_hi
-// Output FR 4: FR_Y_lo
-// Output FR 5: FR_Scale
-// Output PR 1: PR_Safe
+(p0) fmpy.s1 FR_float_N = FR_X, FR_L_Inv
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
//
-// P15 is True
+// X_hi = Y * logX_hi + X_lo
+// Set GR_Flag = 2 for exp(x + xcor)
//
-// Load constants used in computing N using right-shift technique
-{ .mlx
- mov GR_exp_2tom51 = 0xffff-51
- movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
+(p0) fms.s1 FR_P_lo= FR_Input_Y, FR_logx_hi, FR_P_hi
+ nop.i 999 ;;
}
-{ .mlx
- add GR_Special_Exp = -50,GR_exp_bias
- movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
+{ .mmi
+ nop.m 999 ;;
+(p0) getf.exp GR_Expo_X = FR_X
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+(p0) and GR_Expo_X = GR_Expo_X, GR_Mask
//
+// Calculate unBIASed exponent of X
// Point to Table of W1s
// Point to Table of W2s
//
-{ .mmi
- add GR_W1_ptr = 0x2b0, GR_table_base // Constants_exp_64_W1
- add GR_W2_ptr = 0x4b0, GR_table_base // Constants_exp_64_W2
- cmp.le p6,p0= GR_Delta_Exp,GR_Special_Exp
-};;
-
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
-
+(p0) fcvt.fx.s1 FR_N = FR_float_N
+ nop.i 999 ;;
+}
{ .mfi
- setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
- nop.f 999
- and GR_Delta_Exp=GR_Delta_Exp,GR_exp_mask // Get exponent of y-1
+ nop.m 999
+(p0) fadd.s1 FR_P_lo = FR_P_lo, FR_X_lo
+//
+// Float_N = X * L_Inv
+// Create exponent BIAS
+// Get BIASed exponent of X
+//
+(p0) sub GR_Expo_X = GR_Expo_X, GR_BIAS ;;
}
-{ .mlx
- setf.d FR_RSHF_2TO51 = GR_rshf_2to51 // Form const 1.1000 * 2^(63+51)
- movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
+{ .mib
+(p0) cmp.gt.unc p9, p0 = -6, GR_Expo_X
+ nop.i 999
+//
+// N = fcvt.fx(float_N)
+// If -6 > Expo_X, set P9
+//
+(p9) br.cond.spnt L(EXPL_SMALL)
}
;;
-{ .mfi
- nop.m 999
- fmpy.s1 FR_X_lo = FR_Input_Y, FR_logx_lo // logx_lo is Y_lo
- cmp.eq p15, p0= r0, r0 // Set p15, assume safe
-};;
-
+//
+// If expo_X < -6 goto exp_small
+//
{ .mmi
- setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
- setf.d FR_RSHF = GR_rshf // Form right shift const 1.1000 * 2^63
- add GR_Table_Ptr1 = 0x50, GR_table_base // Constants_exp_64_P for
- // EXPL_SMALL path
+ nop.m 999
+(p0) addl GR_T1_ptr = @ltoff(Constants_exp_64_T1#), gp
+(p0) cmp.lt.unc p10, p0 = 14, GR_Expo_X
}
;;
{ .mmi
- ldfe FR_P_6 = [GR_Table_Ptr1],16 // Load P_6 for EXPL_SMALL path
-;;
- ldfe FR_P_5 = [GR_Table_Ptr1],16 // Load P_5 for EXPL_SMALL path
+ ld8 GR_T1_ptr = [GR_T1_ptr]
+ nop.m 999
nop.i 999
}
;;
-{ .mfi
- ldfe FR_P_4 = [GR_Table_Ptr1],16 // Load P_4 for EXPL_SMALL path
- fma.s1 FR_P_hi = FR_Input_Y, FR_logx_hi,FR_X_lo // logx_hi ix Y_hi
- nop.i 999
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// If 14 < Expo_X, set P10
+// Create pointer to T1 table
+//
+(p10) br.cond.spnt L(EXPL_HUGE) ;;
}
-;;
+
{ .mmi
- ldfe FR_P_3 = [GR_Table_Ptr1],16 // Load P_3 for EXPL_SMALL path
-;;
- ldfe FR_P_2 = [GR_Table_Ptr1],16 // Load P_2 for EXPL_SMALL path
+(p0) addl GR_Table_Ptr = @ltoff(Constants_exp_64_Exponents#), gp
+(p0) addl GR_T2_ptr = @ltoff(Constants_exp_64_T2#), gp
nop.i 999
}
;;
-// N = X * Inv_log2_by_2^12
-// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
-// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
-{ .mfi
- ldfe FR_P_1 = [GR_Table_Ptr1] // Load P_1 for EXPL_SMALL path
- fma.s1 FR_N = FR_X, FR_INV_LN2_2TO63, FR_RSHF_2TO51
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fms.s1 FR_P_lo= FR_Input_Y, FR_logx_hi, FR_P_hi // P_hi is X
-(p6) br.cond.spnt POWL_Y_ALMOST_1 // Branch if |y-1| < 2^-50
-}
-;;
-
{ .mmi
- getf.exp GR_Expo_X = FR_X
- add GR_T1_ptr = 0x0b0, GR_table_base // Constants_exp_64_T1
- add GR_T2_ptr = 0x1b0, GR_table_base // Constants_exp_64_T2
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ ld8 GR_T2_ptr = [GR_T2_ptr]
+ nop.i 999
}
;;
-// float_N = round_int(N)
-// The signficand of N contains the rounded integer part of X * 2^12/ln2,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into GR_N_fix.
-
-// Since N is scaled by 2^51, it must be multiplied by 2^-51
-// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
-// Thus, float_N contains the floating point version of N
-
-{ .mfi
- add GR_Table_Ptr = 0x20, GR_table_base // Constants_exp_64_A
- fms.s1 FR_float_N = FR_N, FR_2TOM51, FR_RSHF // Form float_N
- nop.i 999
-}
-// Create low part of Y(ln(x)_hi + ln(x)_lo) as P_lo
-{ .mfi
- mov GR_Big_Pos_Exp = 0x3ffe // 16382, largest safe exponent
- fadd.s1 FR_P_lo = FR_P_lo, FR_X_lo
- mov GR_Big_Neg_Exp = -0x3ffd // -16381 smallest safe exponent
-};;
-
-{ .mfi
- nop.m 999
- fmpy.s1 FR_rsq = FR_X, FR_X // rsq = X*X for EXPL_SMALL path
- mov GR_vsm_expo = -70 // Exponent for very small path
+{ .mmi
+(p0) shladd GR_Table_Ptr = GR_Expo_Range,4,GR_Table_Ptr ;;
+//
+// Adjust T1_ptr by x 4 for single-precision values
+// Adjust T2_ptr by x 4 for single-precision values
+//
+(p0) ld8 GR_Big_Pos_Exp = [GR_Table_Ptr],8
+ nop.i 999 ;;
}
+//
+// Load double W1
+// Load +max exponent
+//
{ .mfi
- nop.m 999
- fma.s1 FR_poly_lo = FR_P_6, FR_X, FR_P_5 // poly_lo for EXPL_SMALL path
- add GR_temp = 0x1,r0 // For tiny signif if small path
+(p0) ld8 GR_Big_Neg_Exp = [GR_Table_Ptr],0
+//
+// If 14 < Expo_X, goto exp_huge
+//
+(p0) fcvt.xf FR_float_N = FR_N
+ nop.i 999
}
;;
//
-// If expo_X < -6 goto exp_small
+// Load double W2
+// Load -max exponent
+// Load ptr to A's
//
+
{ .mmi
- getf.sig GR_N_fix = FR_N
- ldfe FR_A_3 = [GR_Table_Ptr],16 // Load A_3
- and GR_Expo_X = GR_Expo_X, GR_exp_mask // Get exponent of X
+(p0) getf.sig GR_N_fix = FR_N
+(p0) addl GR_Table_Ptr = @ltoff(Constants_exp_64_A#), gp
+ nop.i 999
}
;;
-{ .mfi
- ldfe FR_A_2 = [GR_Table_Ptr],16 // Load A_2
- nop.f 999
- sub GR_Expo_X = GR_Expo_X, GR_exp_bias // Get true exponent of X
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+ nop.m 999
+ nop.i 999
}
;;
//
-// If -6 > Expo_X, set P9 and branch
+// Load single T1
+// Load single T2
+// W_1_p1 = W_1 + 1
//
-{ .mfb
- cmp.gt p9, p0 = -6, GR_Expo_X
- fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_X // r = X - L_hi * float_N
-(p9) br.cond.spnt EXPL_SMALL // Branch if |X| < 2^-6
+{ .mmi
+(p0) ldfe FR_A_3 = [GR_Table_Ptr],16 ;;
+//
+// Load A_3
+// if k > big_pos_exp, set p14 and Safe=False
+//
+(p0) ldfe FR_A_2 = [GR_Table_Ptr],16
+(p0) extr.u GR_M1 = GR_N_fix, 6, 6
}
-;;
-
+{ .mmi
+ nop.m 999 ;;
+(p0) shladd GR_W1_ptr = GR_M1,3,GR_W1_ptr
//
-// If 14 <= Expo_X, set P10
+// float_N = fcvt.xf(N)
+// N_fix = significand of N
+// Create pointer to T2 table
//
-{ .mib
- cmp.le p10, p0 = 14, GR_Expo_X
- nop.i 999
-(p10) br.cond.spnt EXPL_HUGE // Branch if |X| >= 2^14
+(p0) extr.u GR_M2 = GR_N_fix, 0, 6
}
-;;
-
//
-// Load single T1
-// Load single T2
-// W_1_p1 = W_1 + 1
+// r = r + X_cor
+// Adjust W1_ptr by x 8 for double-precision values
+// Adjust W2_ptr by x 8 for double-precision values
+// Adjust Table_ptr by Expo_Rangex16
//
{ .mmi
- nop.m 999
- nop.m 999
- extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
+(p0) shladd GR_T1_ptr = GR_M1,2,GR_T1_ptr ;;
+(p0) ldfd FR_W1 = [GR_W1_ptr],0
+(p0) shladd GR_W2_ptr = GR_M2,3,GR_W2_ptr
}
-;;
-
//
-// k = extr.u(N_fix,0,6)
+// Load ptr to A's
//
-{ .mmi
- shladd GR_W1_ptr = GR_M1,3,GR_W1_ptr // Point to W1
- shladd GR_T1_ptr = GR_M1,2,GR_T1_ptr // Point to T1
- extr.u GR_M2 = GR_N_fix, 0, 6 // Extract index M_2
+{ .mfi
+(p0) ldfs FR_T1 = [GR_T1_ptr],0
+(p0) fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_X
+(p0) shladd GR_T2_ptr = GR_M2,2,GR_T2_ptr ;;
}
-;;
-
-// N_fix is only correct up to 50 bits because of our right shift technique.
-// Actually in the normal path we will have restricted K to about 14 bits.
-// Somewhat arbitrarily we extract 32 bits.
{ .mmi
- ldfd FR_W1 = [GR_W1_ptr]
- shladd GR_W2_ptr = GR_M2,3,GR_W2_ptr // Point to W2
- extr GR_k = GR_N_fix, 12, 32 // Extract k
+(p0) ldfd FR_W2 = [GR_W2_ptr],0
+(p0) ldfs FR_T2 = [GR_T2_ptr],0
+//
+// r = x - L_hi * float_N
+// M2 = extr.u(N_fix,0,6)
+// M1 = extr.u(N_fix,6,6)
+//
+(p0) extr GR_k = GR_N_fix, 12, 52 ;;
}
-;;
-
+//
+// Load A_1
+// poly = A_3 * r + A_2
+// rsq = r*r
+//
+{ .mii
+(p0) add GR_BIAS_p_k = GR_BIAS, GR_k
+(p0) cmp.gt.unc p14,p15 = GR_k,GR_Big_Pos_Exp ;;
+(p15) cmp.lt p14,p15 = GR_k,GR_Big_Neg_Exp
+}
+//
+// BIAS_p_K = BIAS + k
+// T = T1 * T2
+//
{ .mfi
- ldfs FR_T1 = [GR_T1_ptr]
- fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r
- shladd GR_T2_ptr = GR_M2,2,GR_T2_ptr // Point to T2
+(p0) setf.exp FR_Scale = GR_BIAS_p_k
+ nop.f 999
+ nop.i 999 ;;
}
{ .mfi
- add GR_exp_bias_p_k = GR_exp_bias, GR_k
- nop.f 999
- cmp.gt p14,p15 = GR_k,GR_Big_Pos_Exp
+ nop.m 999
+(p0) fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r
+ nop.i 999
}
-;;
-
//
-// if k < big_neg_exp, set p14 and Safe=False
+// W = W_1_p1 * W2 + W1
//
-{ .mmi
- ldfs FR_T2 = [GR_T2_ptr]
-(p15) cmp.lt p14,p15 = GR_k,GR_Big_Neg_Exp
- nop.i 999
+{ .mfi
+(p0) ldfe FR_A_1 = [GR_Table_Ptr],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
-{ .mmi
- setf.exp FR_Scale = GR_exp_bias_p_k
- ldfd FR_W2 = [GR_W2_ptr]
- nop.i 999
+{ .mfi
+ nop.m 999
+(p0) fadd.s1 FR_W_1_p1 = FR_W1, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- ldfe FR_A_1 = [GR_Table_Ptr],16
- fadd.s1 FR_r = FR_r, FR_X_cor
- nop.i 999
+ nop.m 999
+//
+// k = extr.u(N_fix,0,6)
+// r = r - N * L_lo
+// Load ptr to Table of exponent thresholds.
+//
+(p0) fadd.s1 FR_r = FR_r, FR_X_cor
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 FR_W_1_p1 = FR_W1, f1
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 FR_T = FR_T1, FR_T2
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_r, FR_A_3, FR_A_2
- nop.i 999
+ nop.m 999
+//
+// if k < big_neg_exp, set p14 and Safe=False
+// Load A_2
+//
+(p0) fma.s1 FR_W = FR_W2, FR_W_1_p1, FR_W1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 FR_rsq = FR_r, FR_r
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly = FR_r, FR_A_3, FR_A_2
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_T = FR_T1, FR_T2
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 FR_rsq = FR_r, FR_r
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_W = FR_W2, FR_W_1_p1, FR_W1
- nop.i 999
+ nop.m 999
+(p0) mov FR_Y_hi = FR_T
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_TMP1 = FR_Scale, FR_Sgn, f0
- nop.i 999
+ nop.m 999
+//
+// Scale = set_exp(BIAS_p_k)
+// poly = r * poly + A_1
+//
+(p0) fadd.s1 FR_Wp1 = FR_W, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_r, FR_poly, FR_A_1
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly = FR_r, FR_poly, FR_A_1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_TMP2 = FR_T, f1, f0 // TMP2 = Y_hi = T
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly = FR_rsq, FR_poly,FR_r
+ nop.i 999 ;;
}
-;;
-
{ .mfi
+ nop.m 999
+//
+// Wp1 = W + 1
+// poly = rsq * poly + rk
+//
+(p0) fma.s1 FR_Y_lo = FR_Wp1, FR_poly, FR_W
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+//
+// Y_lo = poly * Wp1 + W
+// Y_hi = T
+//
+(p0) fmpy.s1 FR_Y_lo = FR_Y_lo, FR_T
+//
+// Y_lo = T * Y_lo
+//
+(p0) br.cond.sptk L(EXPL_RETURN) ;;
+}
+
+L(EXPL_SMALL):
+
+//
+// r4 = rsq * rsq
+//
+
+{ .mmi
nop.m 999
- fadd.s1 FR_Wp1 = FR_W, f1
+(p0) addl GR_Table_Ptr1 = @ltoff(Constants_exp_64_P), gp
nop.i 999
}
;;
-{ .mfi
+{ .mmi
+ ld8 GR_Table_Ptr1 = [GR_Table_Ptr1]
nop.m 999
- fma.s1 FR_poly = FR_rsq, FR_poly,FR_r
nop.i 999
}
;;
-{ .mfi
- nop.m 999
- fma.s1 FR_Tscale = FR_T, FR_TMP1, f0 // Scale * Sgn * T
- nop.i 999
+{ .mmf
+ nop.m 999
+(p0) ldfe FR_P_6 = [GR_Table_Ptr1],16
+//
+// Return
+//
+(p0) fadd.s1 FR_r = FR_X,f0 ;;
}
-{ .mfi
+
+{ .mmi
nop.m 999
- fma.s1 FR_Y_lo = FR_Wp1, FR_poly, FR_W
+(p0) addl GR_Table_Ptr = @ltoff(Constants_exp_64_Exponents#), gp
nop.i 999
}
;;
-{ .mfb
- nop.m 999
- fmpy.s1 FR_TMP3 = FR_Y_lo, FR_Tscale
- br.cond.sptk POWL_64_SHARED
+{ .mmi
+ ld8 GR_Table_Ptr = [GR_Table_Ptr]
+(p0) ldfe FR_P_5 = [GR_Table_Ptr1],16
+ nop.i 999
}
;;
-
-EXPL_SMALL:
-// Here if |ylogx| < 2^-6
//
-// Begin creating lsb to perturb final result
+// Is input very small?
+// Load P_5
+//
+{ .mii
+(p0) ldfe FR_P_4 = [GR_Table_Ptr1],16
+(p0) add GR_Table_Ptr = 0x040,GR_Table_Ptr ;;
+(p0) shladd GR_Table_Ptr = GR_Expo_Range,3,GR_Table_Ptr ;;
+}
+{ .mmb
+(p0) ldfe FR_P_3 = [GR_Table_Ptr1],16
//
+// Adjust ptr.
+//
+(p0) ld8 GR_vsm_expo = [GR_Table_Ptr],0
+ nop.b 999 ;;
+}
{ .mfi
- setf.sig FR_temp = GR_temp
- fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_4
- cmp.lt p12, p0 = GR_Expo_X, GR_vsm_expo // Test |ylogx| < 2^-70
+ nop.m 999
+//
+// r = X (don't seem to need X_Cor)
+// Load the threshold exponents
+//
+(p0) fmpy.s1 FR_rsq = FR_r, FR_r
+ nop.i 999 ;;
}
+//
+// Load the negative integer
+// Load P_5
+//
{ .mfi
- nop.m 999
- fma.s1 FR_poly_hi = FR_P_2, FR_X, FR_P_1
- nop.i 999
+(p0) cmp.lt.unc p12, p0 = GR_Expo_X, GR_vsm_expo
+ nop.f 999
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+//
+// rsq = r * r
+// Offset into exponents
+//
+(p0) fmpy.s1 FR_r4 = FR_rsq, FR_rsq
+(p12) br.cond.spnt L(EXPL_VERY_SMALL) ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_TMP2 = f1, f1
- nop.i 999
+(p0) ldfe FR_P_2 = [GR_Table_Ptr1],16
+//
+// Load p4,p3,p2,p1
+//
+(p0) fma.s1 FR_poly_lo = FR_P_6, FR_r, FR_P_5
+//
+// Y_lo = r4 * poly_lo + poly_hi
+// Scale = 1.0
+//
+(p0) add GR_temp = 0x1,r0 ;;
}
+{ .mmf
+ nop.m 999
+(p0) ldfe FR_P_1 = [GR_Table_Ptr1],0
+(p0) mov FR_Scale = f1
+}
+//
+// Begin creating lsb to perturb final result
+//
{ .mfi
- nop.m 999
- fmpy.s1 FR_TMP1 = FR_Sgn, f1
- nop.i 999
+(p0) setf.sig FR_temp = GR_temp
+(p0) mov FR_Y_hi = f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_r4 = FR_rsq, FR_rsq
-(p12) cmp.eq p15, p0 = r0, r0 // Set safe if |ylogx| < 2^-70
+ nop.m 999
+//
+// poly_lo = p_5 + p_6 * r
+// poly_hi = p_1 + p_2 * r
+//
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_P_4
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 999
-(p12) fmpy.s1 FR_TMP3 = FR_Sgn, FR_X
-(p12) br.cond.spnt POWL_64_SHARED // Branch if |ylogx| < 2^-70
+{ .mfi
+ nop.m 999
+//
+// poly_lo = p_4 + poly_lo * r
+// poly_hi = r + poly_hi * rsq
+//
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_P_3
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_3
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly_hi = FR_P_2, FR_r, FR_P_1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, FR_X
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, FR_r
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_Y_lo = FR_poly_lo, FR_r4, FR_poly_hi
- nop.i 999
+ nop.m 999
+//
+// poly_lo = p_3 + poly_lo * r
+// Y_hi = 1, always
+//
+(p0) fma.s1 FR_Y_lo = FR_poly_lo, FR_r4, FR_poly_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_TMP3 = FR_Y_lo, FR_TMP1 // Add sign info
- nop.i 999
+ nop.m 999
+//
+// Set lsb in fp register
+//
+(p0) for FR_temp = FR_Y_lo,FR_temp
+ nop.i 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
//
// Toggle on last bit of Y_lo
+//
+(p0) fmerge.se FR_Y_lo = FR_Y_lo,FR_temp
+//
// Set lsb of Y_lo to 1
//
+(p0) br.cond.sptk L(EXPL_RETURN) ;;
+}
+L(EXPL_VERY_SMALL):
{ .mfi
- nop.m 999
- for FR_temp = FR_Y_lo,FR_temp
- nop.i 999
+ nop.m 999
+(p0) mov FR_Y_lo = FR_r
+(p0) cmp.eq.unc p15, p0 = r0, r0
}
-;;
-
+{ .mfi
+ nop.m 999
+(p0) mov FR_Scale = f1
+ nop.i 999
+};;
{ .mfb
- nop.m 999
- fmerge.se FR_TMP3 = FR_TMP3,FR_temp
- br.cond.sptk POWL_64_SHARED
+ nop.m 999
+(p0) mov FR_Y_hi = f1
+//
+// If flag_not_1,
+// Y_hi = 1.0
+// Y_lo = X + X_cor
+// PR_Safe = true
+//
+(p0) br.cond.sptk L(EXPL_RETURN) ;;
}
-;;
-
-
-EXPL_HUGE:
-// Here if |ylogx| >= 2^14
+L(EXPL_HUGE):
{ .mfi
- mov GR_temp = 0x0A1DC // If X < 0, exponent -24100
- fcmp.gt.s1 p12, p13 = FR_X, f0 // Test X > 0
- cmp.eq p14, p15 = r0, r0 // Set Safe to false
+ nop.m 999
+//
+// Return for flag=2
+//
+(p0) fcmp.gt.unc.s1 p12, p13 = FR_X, f0
+(p0) cmp.eq.unc p14, p15 = r0, r0 ;;
}
-;;
-
-{ .mmi
-(p12) mov GR_Mask = 0x15DC0 // If X > 0, exponent +24000
-(p13) mov GR_Mask = 0x0A240 // If X < 0, exponent -24000
- nop.i 999
+{ .mlx
+ nop.m 999
+//
+// Set Safe to false
+// Is x > 0
+//
+(p12) movl GR_Mask = 0x15DC0 ;;
}
-;;
-
-{ .mmf
- setf.exp FR_TMP2 = GR_Mask // Form Y_hi = TMP2
-(p13) setf.exp FR_Y_lo = GR_temp // If X < 0, Y_lo = 2^-24100
-(p12) mov FR_Y_lo = f1 // IF X > 0, Y_lo = 1.0
+{ .mlx
+(p12) setf.exp FR_Y_hi = GR_Mask
+(p13) movl GR_Mask = 0xA240 ;;
+}
+{ .mlx
+(p13) setf.exp FR_Y_hi = GR_Mask
+//
+// x > 0: Create mask for Y_hi = 2**(24,000)
+// x <= 0: Create mask for Y_hi = 2**(-24,000)
+//
+(p13) movl GR_temp = 0xA1DC ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_TMP1 = FR_TMP2, FR_Sgn // TMP1 = Y_hi * Sgn
- nop.i 999
+(p13) setf.exp FR_Y_lo = GR_temp
+//
+// x < =0: Create mask for 2**(-24,100)
+// x <= 0: Y_lo = w**(-24,100)
+//
+(p12) mov FR_Y_lo = f1
+ nop.i 999 ;;
}
-;;
-
-{ .mfb
- nop.m 999
- fmpy.s1 FR_TMP3 = FR_Y_lo,FR_TMP1 // TMP3 = Y_lo * (Y_hi * Sgn)
- br.cond.sptk POWL_64_SHARED
+{ .mfi
+ nop.m 999
+(p12) mov FR_Scale = FR_Y_hi
+ nop.i 999 ;;
}
-;;
-
-POWL_Y_ALMOST_1:
-// Here if delta = |y-1| < 2^-50
+{ .mfi
+ nop.m 999
//
-// x**(1 + delta) = x * e (ln(x)*delta) = x ( 1 + ln(x) * delta)
+// x > 0: Y_lo = 1.0
+// x > 0: Scale = 2**(24,000)
//
-// Computation will be safe for 2^-16381 <= x < 2^16383
-
+(p13) mov FR_Scale = FR_Y_hi
+ nop.i 999 ;;
+}
+L(EXPL_RETURN):
{ .mfi
- mov GR_exp_ynear1_oflow = 0xffff + 16383
- fma.s1 FR_TMP1 = FR_Input_X,FR_Delta,f0
- and GR_exp_x = GR_exp_mask, GR_signexp_x
+ nop.m 999
+//
+// Scale = 2**(24,000)
+//
+//
+// exp(y *ln(x)) almost complete
+// FR_Scale is Scale
+// f34 is Z_hi
+// f35 is Z_lo
+//
+(p0) fmpy.s1 FR_Sgn = FR_Scale, FR_Sgn
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- cmp.lt p15, p14 = GR_exp_x, GR_exp_ynear1_oflow
- fma.s1 FR_TMP2 = FR_logx_hi,f1,FR_X_lo
- mov GR_exp_ynear1_uflow = 0xffff - 16381
+ nop.m 999
+//
+// sgn * scale
+//
+(p0) fmpy.s1 FR_Y_lo = FR_Y_lo,FR_Sgn
+ nop.i 999 ;;
}
-;;
-
{ .mfb
-(p15) cmp.ge p15, p14 = GR_exp_x, GR_exp_ynear1_uflow
- fma.s1 FR_TMP3 = FR_Input_X,f1,f0
- br.cond.sptk POWL_64_SHARED
-};;
-
-POWL_64_SQUARE:
+ nop.m 999
+//
+// Z_lo * (sgn * scale)
//
-// Here if x not zero and y=2.
+(p0) fma.s0 FR_Result = FR_Y_hi, FR_Sgn, FR_Y_lo
//
-// Setup for multipath code
+// Z_hi * (sgn * scale) + Z_lo
//
+(p15) br.cond.sptk L(POWL_64_RETURN) ;;
+}
{ .mfi
- mov GR_exp_square_oflow = 0xffff + 8192 // Exponent where x*x overflows
- fmerge.se FR_TMP1 = FR_Input_X, FR_Input_X
- and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x01
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+//
+// Z_hi * (sgn * scale) + Z_lo with wre & td
+// Z_hi * (sgn * scale) + Z_lo with fz & td
+//
+(p0) movl GR_T1_ptr = 0x00000000013FFF ;;
}
-;;
-
{ .mfi
- cmp.lt p15, p14 = GR_exp_x, GR_exp_square_oflow // Decide safe/unsafe
- fmerge.se FR_TMP2 = FR_Input_X, FR_Input_X
- mov GR_exp_square_uflow = 0xffff - 8191 // Exponent where x*x underflows
+ nop.m 999
+(p0) fma.s3 FR_Result_small = FR_Y_hi, FR_Sgn, FR_Y_lo
+ nop.i 999
}
-;;
-
{ .mfi
-(p15) cmp.ge p15, p14 = GR_exp_x, GR_exp_square_uflow // Decide safe/unsafe
- fma.s1 FR_TMP3 = f0,f0,f0
- nop.i 999
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x40
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// This is the shared path that will set overflow and underflow.
+// Return if no danger of over of underflow.
//
-POWL_64_SHARED:
-
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
+}
+{ .mfi
+ nop.m 999
//
-// Return if no danger of over or underflow.
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
//
-{ .mfb
- nop.m 999
- fma.s0 FR_Result = FR_TMP1, FR_TMP2, FR_TMP3
-(p15) br.ret.sptk b0 // Main path return if certain no over/underflow
+(p0) fma.s2 FR_Result_big = FR_Y_hi, FR_Sgn, FR_Y_lo
+ nop.i 999 ;;
}
-;;
-
//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S2 user supplied status + FZ + TD (Underflows)
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
//
//
// If (Safe) is true, then
@@ -2022,742 +2430,973 @@ POWL_64_SHARED:
// No overflow or underflow here, but perhaps inexact.
// Return
// Else
-// Determine if overflow or underflow was raised.
-// Fetch +/- overflow threshold for IEEE double extended
-
+// Determine if overflow or underflow was raised.
+// Fetch +/- overflow threshold for IEEE single, double,
+// double extended
+//
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x41 // For underflow test, set S2=User+TD+FTZ
- nop.i 999
+(p0) setf.exp FR_Big = GR_T1_ptr
+(p0) fsetc.s2 0x7F,0x40
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s2 FR_Result_small = FR_TMP1, FR_TMP2, FR_TMP3
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = FR_Result_small, 0x00F
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x42 // For overflow test, set S2=User+TD+WRE
- nop.i 999
+ nop.m 999
+(p0) fmerge.ns FR_NBig = FR_Big, FR_Big
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s2 FR_Result_big = FR_TMP1, FR_TMP2,FR_TMP3
- nop.i 999
+ nop.m 999
+//
+// Create largest double exponent + 1.
+// Create smallest double exponent - 1.
+// Identify denormals
+//
+(p0) fcmp.ge.unc.s1 p8, p0 = FR_Result_big , FR_Big
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// fcmp: resultS2 <= - overflow threshold
+// fclass: resultS3 is denorm/unorm/0
+//
+(p8) mov GR_Parameter_TAG = 18 ;;
+}
+{ .mfb
+ nop.m 999
+//
+// fcmp: resultS2 >= + overflow threshold
+//
+(p0) fcmp.le.unc.s1 p9, p0 = FR_Result_big, FR_NBig
+(p8) br.cond.spnt __libm_error_region ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov GR_Parameter_TAG = 18
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt __libm_error_region ;;
+}
+//
+// Report that pow overflowed - either +Inf, or -Inf
+//
+{ .mmb
+(p11) mov GR_Parameter_TAG = 19
+ nop.m 999
+(p11) br.cond.spnt __libm_error_region ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Report that pow underflowed
+//
+(p0) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
+
+L(POWL_64_SQUARE):
+// Here if x not zero and y=2.
+// Must call __libm_error_support for overflow or underflow
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x40 // Reset S2=User
- nop.i 999
+ nop.m 999
+(p0) fma.s0 FR_Result = FR_Input_X, FR_Input_X, f0
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p11, p0 = FR_Result_small, 0x00F // Test small result unorm/zero
- nop.i 999
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x01
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_T1_ptr = 0x00000000013FFF ;;
}
-;;
-
{ .mfi
- nop.m 999
- fcmp.ge.s1 p8, p0 = FR_Result_big , FR_Big // Test >= + oflow threshold
- nop.i 999
+ nop.m 999
+(p0) fma.s3 FR_Result_small = FR_Input_X, FR_Input_X, f0
+ nop.i 999
}
-;;
-
-{ .mfb
-(p11) mov GR_Parameter_TAG = 19 // Set tag for underflow
- fcmp.le.s1 p9, p0 = FR_Result_big, FR_NBig // Test <= - oflow threshold
-(p11) br.cond.spnt __libm_error_region // Branch if pow underflowed
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x40
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Return if no danger of over of underflow.
+//
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
+}
+{ .mfi
+ nop.m 999
+(p0) fma.s2 FR_Result_big = FR_Input_X, FR_Input_X, f0
+ nop.i 999 ;;
+}
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+//
+// If (Safe) is true, then
+// Compute result using user supplied status field.
+// No overflow or underflow here, but perhaps inexact.
+// Return
+// Else
+// Determine if overflow or underflow was raised.
+// Fetch +/- overflow threshold for IEEE single, double,
+// double extended
+//
+{ .mfi
+(p0) setf.exp FR_Big = GR_T1_ptr
+(p0) fsetc.s2 0x7F,0x40
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = FR_Result_small, 0x00F
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns FR_NBig = FR_Big, FR_Big
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// Create largest double exponent + 1.
+// Create smallest double exponent - 1.
+// Identify denormals
+//
+(p0) fcmp.ge.unc.s1 p8, p0 = FR_Result_big , FR_Big
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// fcmp: resultS2 <= - overflow threshold
+// fclass: resultS3 is denorm/unorm/0
+//
+(p8) mov GR_Parameter_TAG = 18 ;;
}
-;;
-
{ .mfb
-(p8) mov GR_Parameter_TAG = 18 // Set tag for overflow
- nop.f 999
-(p8) br.cond.spnt __libm_error_region // Branch if pow +overflow
+ nop.m 999
+//
+// fcmp: resultS2 >= + overflow threshold
+//
+(p0) fcmp.le.unc.s1 p9, p0 = FR_Result_big, FR_NBig
+(p8) br.cond.spnt __libm_error_region ;;
}
-;;
-
-{ .mbb
-(p9) mov GR_Parameter_TAG = 18 // Set tag for overflow
-(p9) br.cond.spnt __libm_error_region // Branch if pow -overflow
- br.ret.sptk b0 // Branch if result really ok
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov GR_Parameter_TAG = 18
}
-;;
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt __libm_error_region ;;
+}
+//
+// Report that pow overflowed - either +Inf, or -Inf
+//
+{ .mmb
+(p11) mov GR_Parameter_TAG = 19
+ nop.m 999
+(p11) br.cond.spnt __libm_error_region ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Report that pow underflowed
+//
+(p0) br.cond.sptk L(POWL_64_RETURN) ;;
+}
+
-POWL_64_SPECIAL:
-// Here if x or y is NatVal, nan, inf, or zero
+
+L(POWL_64_SPECIAL):
{ .mfi
- nop.m 999
- fcmp.eq.s1 p15, p0 = FR_Input_X, f1 // Test x=+1
- nop.i 999
+ nop.m 999
+(p0) fcmp.eq.s1 p15, p0 = FR_Input_X, f1 // Is x=+1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p8, p0 = FR_Input_X, 0x143 // Test x natval, snan
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p14, p0 = FR_Input_Y, 0x023
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 999
-(p15) fcmp.eq.unc.s0 p6,p0 = FR_Input_Y, f0 // If x=1, flag invalid if y=SNaN
- nop.i 999
+ nop.m 999
+(p15) fcmp.eq.unc.s0 p6,p0 = FR_Input_Y, f0 // If x=1, flag invalid if y=SNaN
+ nop.i 999
}
{ .mfb
- nop.m 999
-(p15) fmpy.s0 FR_Result = f1,f1 // If x=1, result=1
-(p15) br.ret.spnt b0 // Exit if x=1
+ nop.m 999
+(p15) fmpy.s0 FR_Result = f1,f1 // If x=1, result=1
+(p15) br.cond.spnt L(POWL_64_RETURN) ;; // Exit if x=1
}
-;;
{ .mfi
- nop.m 999
- fclass.m p6, p0 = FR_Input_Y, 0x007 // Test y zero
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p13, p0 = FR_Input_X, 0x023
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p9, p0 = FR_Input_Y, 0x143 // Test y natval, snan
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p8, p0 = FR_Input_X, 0x143
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p10, p0 = FR_Input_X, 0x083 // Test x qnan
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p9, p0 = FR_Input_Y, 0x143
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If x=snan, result=qnan
-(p6) cmp.ne p8,p0 = r0,r0 // Don't exit if x=snan, y=0 ==> result=+1
+ nop.m 999
+(p0) fclass.m.unc p10, p0 = FR_Input_X, 0x083
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fclass.m.unc p15, p0 = FR_Input_X,0x007 // Test x=0, y=0
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = FR_Input_Y, 0x083
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 999
-(p9) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If y=snan, result=qnan
-(p8) br.ret.spnt b0 // Exit if x=snan, y not 0,
- // result=qnan
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = FR_Input_Y, 0x007
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fcmp.eq.s1 p7, p0 = FR_Input_Y, f1 // Test y +1.0
- nop.i 999
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p7, p0 = FR_Input_Y, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// set p13 if x +/- Inf
+// set p14 if y +/- Inf
+// set p8 if x Natval or +/-SNaN
+// set p9 if y Natval or +/-SNaN
+// set p10 if x QNaN
+// set p11 if y QNaNs
+// set p6 if y is +/-0
+// set p7 if y is 1
+//
+(p8) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X
+(p6) cmp.ne p8,p0 = r0,r0 ;; // Don't exit if x=snan, y=0 ==> result=+1
}
{ .mfb
- nop.m 999
-(p10) fmpy.s0 FR_Result = FR_Input_X, f0 // If x=qnan, result=qnan
-(p9) br.ret.spnt b0 // Exit if y=snan, result=qnan
+ nop.m 999
+(p9) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X
+(p8) br.cond.spnt L(POWL_64_RETURN) ;;
+}
+{ .mfb
+ nop.m 999
+(p10) fmpy.s0 FR_Result = FR_Input_X, f0
+(p9) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fclass.m.unc p8, p0 = FR_Input_X,0x0C3 // Test x=nan, y=0
- nop.i 999
+ nop.m 999
+//
+// Produce result for SNaN and NatVals and return
+//
+(p6) fclass.m.unc p15, p0 = FR_Input_X,0x007
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+//
+// If Y +/- 0, set p15 if x +/- 0
+//
+(p6) fclass.m.unc p8, p0 = FR_Input_X,0x0C3
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 999
-(p6) fcmp.eq.s0 p9,p0 = FR_Input_X, f0 // If y=0, flag if x denormal
- nop.i 999
+ nop.m 999
+(p6) fcmp.eq.s0 p9,p0 = FR_Input_X, f0 // If y=0, flag if x denormal
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p6) fadd.s0 FR_Result = f1, f0 // If y=0, result=1
- nop.i 999
+ nop.m 999
+(p6) fadd.s0 FR_Result = f1, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p11, p0 = FR_Input_Y, 0x083 // Test y qnan
- nop.i 999
+ nop.m 999
+//
+// Set p8 if y = +/-0 and X is a QNaN/SNaN
+// If y = +/-0, let result = 1.0
+//
+(p7) fmpy.s0 FR_Result = FR_Input_X,f1
+//
+// If y == 1, result = x * 1
+//
+(p15) mov GR_Parameter_TAG = 20
}
-{ .mfb
-(p15) mov GR_Parameter_TAG = 20 // Error tag for x=0, y=0
-(p7) fmpy.s0 FR_Result = FR_Input_X,f1 // If y=1, result=x
-(p15) br.cond.spnt __libm_error_region // Branch if x=0, y=0, result=1
+{ .mib
+ nop.m 999
+ nop.i 999
+(p15) br.cond.spnt __libm_error_region ;;
}
-;;
-
-{ .mfb
-(p8) mov GR_Parameter_TAG = 23 // Error tag for x=nan, y=0
- fclass.m p14, p0 = FR_Input_Y, 0x023 // Test y inf
-(p8) br.cond.spnt __libm_error_region // Branch if x=snan, y=0,
- // result=1
+{ .mib
+ nop.m 999
+//
+// If x and y are both zero, result = 1.0 and call error
+// support.
+//
+(p8) mov GR_Parameter_TAG = 23
+(p8) br.cond.spnt __libm_error_region ;;
}
-;;
-
-{ .mfb
- nop.m 999
- fclass.m p13, p0 = FR_Input_X, 0x023 // Test x inf
-(p6) br.ret.spnt b0 // Exit y=0, x not nan or 0,
- // result=1
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// If y = +/-0 and x is a QNaN, result = 1.0 and call error
+// support.
+//
+(p6) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
+// If x=0, y=-inf, go to the X_IS_ZERO path
{ .mfb
- nop.m 999
-(p14) fcmp.eq.unc.s1 p0,p14 = FR_Input_X,f0 // Test x not 0, y=inf
-(p7) br.ret.spnt b0 // Exit y=1, x not snan,
- // result=x
+ nop.m 999
+(p14) fcmp.eq.unc.s1 p0,p14 = FR_Input_X,f0
+(p7) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-{ .mfb
- nop.m 999
-(p10) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X // If x=qnan, y not snan,
- // result=qnan
-(p10) br.ret.spnt b0 // Exit x=qnan, y not snan,
- // result=qnan
+{ .mfi
+ nop.m 999
+//
+// Produce all results for x**0 and x**1
+// Let all the result x ** 0 == 1 and return
+// Let all x ** 1 == x and return
+//
+(p10) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
-(p11) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X // If y=qnan, x not nan or 1,
- // result=qnan
-(p11) br.ret.spnt b0 // Exit y=qnan, x not nan or 1,
- // result=qnan
+ nop.m 999
+(p11) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X
+(p10) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
-{ .mbb
- nop.m 999
-(p14) br.cond.spnt POWL_64_Y_IS_INF // Branch if y=inf, x not 1 or nan
-(p13) br.cond.spnt POWL_64_X_IS_INF // Branch if x=inf, y not 1 or nan
+{ .mib
+ nop.m 999
+ nop.i 999
+(p11) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
-
-POWL_64_X_IS_ZERO:
-// Here if x=0, y not nan or 1 or inf or 0
-
-// There is logic starting here to determine if y is an integer when x = 0.
-// If 0 < |y| < 1 then clearly y is not an integer.
-// If |y| > 1, then the significand of y is shifted left by the size of
-// the exponent of y. This preserves the lsb of the integer part + the
-// fractional bits. The lsb of the integer can be tested to determine if
-// the integer is even or odd. The fractional bits can be tested. If zero,
-// then y is an integer.
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Return result for x or y QNaN input with QNaN result
+//
+(p14) br.cond.spnt L(POWL_64_Y_IS_INF) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p13) br.cond.spnt L(POWL_64_X_IS_INF) ;;
+}
+L(POWL_64_X_IS_ZERO):
+{ .mmb
+(p0) getf.sig GR_signif_y = FR_Input_Y
+(p0) getf.exp GR_BIASed_exp_y = FR_Input_Y
+ nop.b 999 ;;
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Mask = 0x1FFFF
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_y_sign = 0x20000 ;;
+}
+//
+// Get BIASed exp and significand of y
//
{ .mfi
- and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
- nop.f 999
- and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
+(p0) and GR_exp_y = GR_Mask,GR_BIASed_exp_y
+ nop.f 999
+(p0) and GR_y_sign = GR_y_sign,GR_BIASed_exp_y
}
-;;
-
+{ .mlx
+ nop.m 999
+(p0) movl GR_BIAS = 0xFFFF ;;
+}
+{ .mfi
+(p0) cmp.lt.unc p9, p8 = GR_exp_y,GR_BIAS
+ nop.f 999
//
// Maybe y is < 1 already, so
// can never be an integer.
+// Remove sign bit from exponent.
+//
+(p0) sub GR_exp_y = GR_exp_y,GR_BIAS ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Remove exponent BIAS
//
+(p8) shl GR_exp_y= GR_signif_y,GR_exp_y ;;
+}
{ .mfi
- cmp.lt p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
- nop.f 999
- sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent of y
+(p9) or GR_exp_y= 0xF,GR_signif_y
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
+{ .mii
+ nop.m 999
//
// Shift significand of y looking for nonzero bits
// For y > 1, shift signif_y exp_y bits to the left
-// For y < 1, turn on 4 low order bits of significand of y
+// For y < 1, turn on 4 low order bits of significand of y
// so that the fraction will always be non-zero
//
-{ .mmi
-(p9) or GR_exp_y= 0xF,GR_signif_y // Force nonzero fraction if y<1
-;;
- nop.m 999
-(p8) shl GR_exp_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
- // Wait 4 cycles to use result
+(p0) shl GR_signif_y= GR_exp_y,1 ;;
+(p0) extr.u GR_low_order_bit = GR_exp_y,63,1
}
-;;
-
-{ .mmi
- nop.m 999
-;;
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mmi
- nop.m 999
-;;
- nop.m 999
- shl GR_fraction_y= GR_exp_y,1 // Shift left 1 to get fraction
-}
-;;
-
//
// Integer part of y shifted off.
// Get y's low even or odd bit - y might not be an int.
//
{ .mii
- cmp.eq p13,p0 = GR_fraction_y, r0 // Test for y integer
- cmp.eq p8,p0 = GR_y_sign, r0 // Test for y > 0
-;;
-(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63 // Test if y an odd integer
-}
-;;
-
-{ .mfi
-(p13) cmp.eq.unc p13,p14 = GR_y_sign, r0 // Test y pos odd integer
-(p8) fcmp.eq.s0 p12,p0 = FR_Input_Y, f0 // If x=0 and y>0 flag if y denormal
- nop.i 999
+(p0) cmp.eq.unc p13,p0 = GR_signif_y, r0
+(p0) cmp.eq.unc p8,p9 = GR_y_sign, r0 ;;
+//
+// Is y an int?
+// Is y positive
+//
+(p13) cmp.ne.unc p13,p0 = GR_low_order_bit, r0 ;;
}
-;;
-
//
-// Return +/-0 when x=+/-0 and y is positive odd integer
+// Is y and int and odd?
//
{ .mfb
- nop.m 999
-(p13) mov FR_Result = FR_Input_X // If x=0, y pos odd int, result=x
-(p13) br.ret.spnt b0 // Exit x=0, y pos odd int, result=x
+(p13) cmp.eq.unc p13,p14 = GR_y_sign, r0
+(p8) fcmp.eq.s0 p12,p0 = FR_Input_Y, f0 // If x=0 and y>0 flag if y denormal
+ nop.b 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
//
-// Return +/-inf when x=+/-0 and y is negative odd int
+// Is y and int and odd and positive?
//
-{ .mfb
-(p14) mov GR_Parameter_TAG = 21
-(p14) frcpa.s0 FR_Result, p0 = f1, FR_Input_X // Result +-inf, set Z flag
-(p14) br.cond.spnt __libm_error_region
+(p13) mov FR_Result = FR_Input_X
+(p13) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// Return +0 when x=+/-0 and y positive and not an odd integer
+// Return +/-0 when x=+/-0 and y is and odd pos. int
//
-{ .mfb
- nop.m 999
-(p8) mov FR_Result = f0 // If x=0, y>0 and not odd integer, result=+0
-(p8) br.ret.sptk b0 // Exit x=0, y>0 and not odd integer, result=+0
+(p14) frcpa.s0 FR_Result, p10 = f1, FR_Input_X
+(p14) mov GR_Parameter_TAG = 21
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p14) br.cond.spnt __libm_error_region ;;
}
-;;
+{ .mfb
+ nop.m 999
//
-// Return +inf when x=+/-0 and y is negative and not odd int
+// Return +/-0 when x=+/-Inf and y is and odd neg int
+// and raise dz exception
//
-{ .mfb
- mov GR_Parameter_TAG = 21
- frcpa.s0 FR_Result, p10 = f1,f0 // Result +inf, raise Z flag
- br.cond.sptk __libm_error_region
+(p8) mov FR_Result = f0
+(p8) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
-
-POWL_64_X_IS_INF:
+{ .mfi
+ nop.m 999
//
-// Here if x=inf, y not 1 or nan
+// Return +0 when x=+/-0 and y > 0 and not odd.
//
+(p9) frcpa.s0 FR_Result, p10 = f1,f0
+(p9) mov GR_Parameter_TAG = 21
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.sptk __libm_error_region ;;
+}
+L(POWL_64_X_IS_INF):
{ .mfi
- and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent y
- fclass.m p13, p0 = FR_Input_X,0x022 // Test x=-inf
- nop.i 999
+(p0) getf.exp GR_exp_y = FR_Input_Y
+(p0) fclass.m.unc p13, p0 = FR_Input_X,0x022
+(p0) mov GR_Mask = 0x1FFFF ;;
}
-;;
{ .mfi
- and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
- fcmp.eq.s0 p9,p0 = FR_Input_Y, f0 // Dummy to set flag if y denorm
- nop.i 999
+(p0) getf.sig GR_signif_y = FR_Input_Y
+(p0) fcmp.eq.s0 p9,p0 = FR_Input_Y, f0 // Flag if y denormal
+ nop.i 999 ;;
}
-;;
//
-// Maybe y is < 1 already, so
-// isn't an int.
+// Get exp and significand of y
+// Create exponent mask and sign mask
//
-{ .mfi
-(p13) cmp.lt.unc p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1 if x=-inf
- fclass.m p11, p0 = FR_Input_X,0x021 // Test x=+inf
- sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent y
+{ .mlx
+(p0) and GR_low_order_bit = GR_Mask,GR_exp_y
+(p0) movl GR_BIAS = 0xFFFF
}
-;;
-
+{ .mmi
+ nop.m 999 ;;
//
-// Shift significand of y looking for nonzero bits
-// For y > 1, shift signif_y exp_y bits to the left
-// For y < 1, turn on 4 low order bits of significand of y
-// so that the fraction will always be non-zero
+// Remove sign bit from exponent.
//
-{ .mmi
-(p9) or GR_exp_y= 0xF,GR_signif_y // Force nonzero fraction if y<1
-;;
-(p11) cmp.eq.unc p14,p12 = GR_y_sign, r0 // Test x=+inf, y>0
-(p8) shl GR_exp_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
- // Wait 4 cycles to use result
-}
-;;
-
+(p0) cmp.lt.unc p9, p8 = GR_low_order_bit,GR_BIAS
//
-// Return +inf for x=+inf, y > 0
-// Return +0 for x=+inf, y < 0
+// Maybe y is < 1 already, so
+// isn't an int.
//
-{ .mfi
- nop.m 999
-(p12) mov FR_Result = f0 // If x=+inf, y<0, result=+0
- nop.i 999
+(p0) sub GR_low_order_bit = GR_low_order_bit,GR_BIAS
}
-{ .mfb
- nop.m 999
-(p14) fma.s0 FR_Result = FR_Input_X,f1,f0 // If x=+inf, y>0, result=+inf
-(p11) br.ret.sptk b0 // Exit x=+inf
+{ .mlx
+ nop.m 999
+(p0) movl GR_sign_mask = 0x20000 ;;
}
-;;
-
+{ .mfi
+(p0) and GR_sign_mask = GR_sign_mask,GR_exp_y
//
-// Here only if x=-inf. Wait until can use result of shl...
+// Return +Inf when x=+/-0 and y < 0 and not odd and raise
+// divide-by-zero exception.
//
+(p0) fclass.m.unc p11, p0 = FR_Input_X,0x021
+ nop.i 999 ;;
+}
{ .mmi
- nop.m 999
-;;
- nop.m 999
- nop.i 999
+ nop.m 999 ;;
+//
+// Is shift off integer part of y.
+// Get y's even or odd bit - y might not be an int.
+//
+(p11) cmp.eq.unc p11,p12 = GR_sign_mask, r0
+//
+// Remove exponent BIAS
+//
+(p8) shl GR_exp_y = GR_signif_y,GR_low_order_bit ;;
}
-;;
-
{ .mfi
- cmp.eq p8,p9 = GR_y_sign, r0 // Test y pos
- nop.f 999
- shl GR_fraction_y = GR_exp_y,1 // Shift left 1 to get fraction
+(p9) or GR_exp_y = 0xF,GR_signif_y
+//
+// Is y positive or negative when x is +Inf?
+// Is y and int when x = -Inf
+//
+(p11) mov FR_Result = FR_Input_X
+ nop.i 999 ;;
}
-;;
-
-{ .mmi
- cmp.eq p13,p0 = GR_fraction_y, r0 // Test y integer
-;;
- nop.m 999
-(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63 // Test y odd integer
+{ .mfi
+ nop.m 999
+(p12) mov FR_Result = f0
+ nop.i 999 ;;
}
-;;
-
+{ .mii
+ nop.m 999
//
-// Is y even or odd?
+// Shift signficand looking for nonzero bits
+// For y non-ints, upset the significand.
//
+(p0) shl GR_signif_y = GR_exp_y,1 ;;
+(p13) cmp.eq.unc p13,p0 = GR_signif_y, r0
+}
{ .mii
-(p13) cmp.eq.unc p14,p10 = GR_y_sign, r0 // Test x=-inf, y pos odd int
-(p13) cmp.ne.and p8,p9 = r0,r0 // If y odd int, turn off p8,p9
- nop.i 999
+ nop.m 999
+(p0) extr.u GR_low_order_bit = GR_exp_y,63,1 ;;
+(p13) cmp.ne.unc p13,p0 = GR_low_order_bit, r0
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p11) br.cond.sptk L(POWL_64_RETURN) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p12) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
//
-// Return -0 for x = -inf and y < 0 and odd int.
-// Return -Inf for x = -inf and y > 0 and odd int.
+// Return Inf for y > 0
+// Return +0 for y < 0
+// Is y even or odd?
//
-{ .mfi
- nop.m 999
-(p10) fmerge.ns FR_Result = f0, f0 // If x=-inf, y neg odd int, result=-0
- nop.i 999
+{ .mii
+(p13) cmp.eq.unc p13,p10 = GR_sign_mask, r0
+(p0) cmp.eq.unc p8,p9 = GR_sign_mask, r0 ;;
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p14) fmpy.s0 FR_Result = FR_Input_X,f1 // If x=-inf, y pos odd int, result=-inf
- nop.i 999
-}
-;;
-
+ nop.m 999
//
-// Return Inf for x = -inf and y > 0 not an odd int.
-// Return +0 for x = -inf and y < 0 not an odd int.
+// For x = -inf, y is and int, positive
+// and odd
+// Is y positive in general?
//
-.pred.rel "mutex",p8,p9
-{ .mfi
- nop.m 999
-(p8) fmerge.ns FR_Result = FR_Input_X, FR_Input_X // If x=-inf, y>0 not odd int
- // result=+inf
- nop.i 999
+(p13) mov FR_Result = FR_Input_X
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p9) fmpy.s0 FR_Result = f0,f0 // If x=-inf, y<0 not odd int
- // result=+0
- br.ret.sptk b0 // Exit for x=-inf
+ nop.m 999
+(p10) fmerge.ns FR_Result = f0, f0
+(p13) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
-
-POWL_64_Y_IS_INF:
-// Here if y=inf, x not 1 or nan
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.sptk L(POWL_64_RETURN) ;;
+}
+{ .mfi
+ nop.m 999
//
-// For y = +Inf and |x| < 1 returns 0
-// For y = +Inf and |x| > 1 returns Inf
-// For y = -Inf and |x| < 1 returns Inf
-// For y = -Inf and |x| > 1 returns 0
-// For y = Inf and |x| = 1 returns 1
+// Return -Inf for x = -inf and y > 0 and odd int.
+// Return -0 for x = -inf and y < 0 and odd int.
//
-{ .mfi
- nop.m 999
- fclass.m p8, p0 = FR_Input_Y, 0x021 // Test y=+inf
- nop.i 999
+(p8) fmerge.ns FR_Result = FR_Input_X, FR_Input_X
+ nop.i 999 ;;
}
-;;
-
-{ .mfi
- nop.m 999
- fclass.m p9, p0 = FR_Input_Y, 0x022 // Test y=-inf
- nop.i 999
+{ .mfb
+ nop.m 999
+(p9) mov FR_Result = f0
+(p8) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.sptk L(POWL_64_RETURN) ;;
+}
+L(POWL_64_Y_IS_INF):
{ .mfi
- nop.m 999
- fabs FR_X = FR_Input_X // Form |x|
- nop.i 999
+ nop.m 999
+//
+// Return Inf for x = -inf and y > 0 not an odd int.
+// Return +0 for x = -inf and y < 0 and not an odd int.
+//
+(p0) fclass.m.unc p8, p0 = FR_Input_Y, 0x021
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fcmp.eq.s0 p10,p0 = FR_Input_X, f0 // flag if x denormal
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p9, p0 = FR_Input_Y, 0x022
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p8) fcmp.lt.unc.s1 p6, p0 = FR_X, f1 // Test y=+inf, |x|<1
- nop.i 999
+ nop.m 999
+(p0) fabs FR_X = FR_Input_X
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 999
-(p8) fcmp.gt.unc.s1 p7, p0 = FR_X, f1 // Test y=+inf, |x|>1
- nop.i 999
+ nop.m 999
+(p0) fcmp.eq.s0 p10,p0 = FR_Input_X, f0 // flag if x denormal
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 999
-(p9) fcmp.lt.unc.s1 p12, p0 = FR_X, f1 // Test y=-inf, |x|<1
- nop.i 999
+ nop.m 999
+//
+// Find y = +/- Inf
+// Compute |x|
+//
+(p8) fcmp.lt.unc.s1 p6, p0 = FR_X, f1
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p6) fmpy.s0 FR_Result = f0,f0 // If y=+inf, |x|<1, result=+0
- nop.i 999
+ nop.m 999
+(p8) fcmp.gt.unc.s1 p7, p0 = FR_X, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fcmp.gt.unc.s1 p13, p0 = FR_X, f1 // Test y=-inf, |x|>1
- nop.i 999
+ nop.m 999
+(p9) fcmp.lt.unc.s1 p12, p0 = FR_X, f1
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p7) fmpy.s0 FR_Result = FR_Input_Y, f1 // If y=+inf, |x|>1, result=+inf
- nop.i 999
+ nop.m 999
+(p9) fcmp.gt.unc.s1 p13, p0 = FR_X, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fcmp.eq.s1 p14, p0 = FR_X, f1 // Test y=inf, |x|=1
- nop.i 999
+ nop.m 999
+//
+// For y = +Inf and |x| < 1 returns 0
+// For y = +Inf and |x| > 1 returns Inf
+// For y = -Inf and |x| < 1 returns Inf
+// For y = -Inf and |x| > 1 returns 0
+//
+(p6) mov FR_Result = f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p12) fnma.s0 FR_Result = FR_Input_Y, f1, f0 // If y=-inf, |x|<1, result=+inf
- nop.i 999
+ nop.m 999
+(p7) mov FR_Result = FR_Input_Y
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p13) mov FR_Result = f0 // If y=-inf, |x|>1, result=+0
- nop.i 999
+ nop.m 999
+(p12) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_Y
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
-(p14) fmpy.s0 FR_Result = f1,f1 // If y=inf, |x|=1, result=+1
- br.ret.sptk b0 // Common return for y=inf
+ nop.m 999
+(p13) mov FR_Result = f0
+//
+// Produce x ** +/- Inf results
+//
+(p6) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
-
-// Here if x or y denorm/unorm
-POWL_DENORM:
-{ .mmi
- getf.sig GR_signif_Z = FR_norm_X // Get significand of x
-;;
- getf.exp GR_signexp_y = FR_norm_Y // Get sign and exp of y
- nop.i 999
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
-{ .mfi
- getf.sig GR_signif_y = FR_norm_Y // Get significand of y
- nop.f 999
- nop.i 999
+{ .mib
+ nop.m 999
+ nop.i 999
+(p12) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
{ .mib
- getf.exp GR_signexp_x = FR_norm_X // Get sign and exp of x
- extr.u GR_Index1 = GR_signif_Z, 59, 4 // Extract upper 4 signif bits of x
- br.cond.sptk POWL_COMMON // Branch back to main path
+ nop.m 999
+ nop.i 999
+(p13) br.cond.spnt L(POWL_64_RETURN) ;;
}
-;;
-
-
-POWL_64_UNSUPPORT:
+{ .mfb
+ nop.m 999
//
-// Raise exceptions for specific
-// values - pseudo NaN and
-// infinities.
-// Return NaN and raise invalid
+// +/-1 ** +/-Inf, result is +1
//
-{ .mfb
- nop.m 999
- fmpy.s0 FR_Result = FR_Input_X,f0
- br.ret.sptk b0
+(p0) fmpy.s0 FR_Result = f1,f1
+(p0) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
-POWL_64_XNEG:
+L(POWL_64_UNSUPPORT):
+{ .mfb
+ nop.m 999
//
-// Raise invalid for x < 0 and
-// y not an integer
+// Return NaN and raise invalid
//
+(p0) fmpy.s0 FR_Result = FR_Input_X,f0
+//
+// Raise exceptions for specific
+// values - pseudo NaN and
+// infinities.
+//
+(p0) br.cond.sptk L(POWL_64_RETURN) ;;
+}
+L(POWL_64_XNEG):
{ .mfi
- nop.m 999
- frcpa.s0 FR_Result, p8 = f0, f0
- mov GR_Parameter_TAG = 22
+ nop.m 999
+(p0) frcpa.s0 FR_Result, p8 = f0, f0
+//
+// Raise invalid for x < 0 and
+// y not an integer and
+//
+(p0) mov GR_Parameter_TAG = 22
}
{ .mib
- nop.m 999
- nop.i 999
- br.cond.sptk __libm_error_region
+ nop.m 999
+ nop.i 999
+(p0) br.cond.sptk __libm_error_region ;;
}
-;;
-
-POWL_64_SQRT:
+L(POWL_64_SQRT):
{ .mfi
- nop.m 999
- frsqrta.s0 FR_Result,p10 = FR_save_Input_X
- nop.i 999 ;;
+ nop.m 999
+(p0) frsqrta.s0 FR_Result,p10 = FR_Input_X
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f62=FR_Half,FR_save_Input_X,f0
- nop.i 999 ;;
+ nop.m 999
+(p10) fma.s1 f62=FR_Half,FR_Input_X,f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f63=FR_Result,FR_Result,f0
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (2)
+// h = 1/2 * a in f9
+//
+(p10) fma.s1 f63=FR_Result,FR_Result,f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fnma.s1 f32=f63,f62,FR_Half
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (3)
+// t1 = y0 * y0 in f10
+//
+(p10) fnma.s1 f32=f63,f62,f11
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f33=f32,FR_Result,FR_Result
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (4)
+// t2 = 1/2 - t1 * h in f10
+//
+(p10) fma.s1 f33=f32,FR_Result,FR_Result
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f34=f33,f62,f0
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (5)
+// y1 = y0 + t2 * y0 in f13
+//
+(p10) fma.s1 f34=f33,f62,f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fnma.s1 f35=f34,f33,FR_Half
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (6)
+// t3 = y1 * h in f10
+//
+(p10) fnma.s1 f35=f34,f33,f11
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f63=f35,f33,f33
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (7)
+// t4 = 1/2 - t3 * y1 in f10
+//
+(p10) fma.s1 f63=f35,f33,f33
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f32=FR_save_Input_X,f63,f0
- nop.i 999
+ nop.m 999
+//
+// Step (8)
+// y2 = y1 + t4 * y1 in f13
+//
+(p10) fma.s1 f32=FR_Input_X,f63,f0
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_Result=f63,f62,f0
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (9)
+// S = a * y2 in f10
+//
+(p10) fma.s1 FR_Result=f63,f62,f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f33=f11,f63,f0
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (10)
+// t5 = y2 * h in f9
+//
+(p10) fma.s1 f33=f11,f63,f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fnma.s1 f34=f32,f32,FR_save_Input_X
- nop.i 999
+ nop.m 999
+//
+// Step (11)
+// H = 1/2 * y2 in f11
+//
+(p10) fnma.s1 f34=f32,f32,f8
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fnma.s1 f35=FR_Result,f63,FR_Half
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (12)
+// d = a - S * S in f12
+//
+(p10) fnma.s1 f35=FR_Result,f63,f11
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f62=f33,f34,f32
- nop.i 999
+ nop.m 999
+//
+// Step (13)
+// t6 = 1/2 - t5 * y2 in f7
+//
+(p10) fma.s1 f62=f33,f34,f32
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s1 f63=f33,f35,f33
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (14)
+// S1 = S + d * H in f13
+//
+(p10) fma.s1 f63=f33,f35,f33
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fnma.s1 f32=f62,f62,FR_save_Input_X
- nop.i 999 ;;
+ nop.m 999
+//
+// Step (15)
+// H1 = H + t6 * h in f7
+//
+(p10) fnma.s1 f32=f62,f62,FR_Input_X
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p10) fma.s0 FR_Result=f32,f63,f62
- br.ret.sptk b0 // Exit for x > 0, y = 0.5
+ nop.m 999
+//
+// Step (16)
+// d1 = a - S1 * S1
+//
+(p10) fma.s0 FR_Result=f32,f63,f62
+//
+// Step (17)
+// R = S1 + d1 * H1
+//
+(p10) br.cond.sptk L(POWL_64_RETURN) ;;
}
-;;
-
-GLOBAL_LIBM_END(powl)
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Do the Newton-Raphson iteration from the EAS.
+//
+(p0) br.cond.sptk L(POWL_64_RETURN) ;;
+}
+//
+// Take care of the degenerate cases.
+//
+L(POWL_64_RETURN):
+{ .mfb
+ nop.m 999
+(p0) mov FR_Output = FR_Result
+(p0) br.ret.sptk b0 ;;
+}
+.endp powl
+ASM_SIZE_DIRECTIVE(powl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -2772,32 +3411,32 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfe [GR_Parameter_Y] = FR_Input_Y,16 // Save Parameter 2 on stack
+ stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
- stfe [GR_Parameter_X] = FR_save_Input_X // Store Parameter 1 on stack
+ stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [GR_Parameter_Y] = FR_Result // Store Parameter 3 on stack
+ stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
@@ -2805,6 +3444,7 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_remainder.S b/sysdeps/ia64/fpu/e_remainder.S
index f655567f52..d8a27722de 100644
--- a/sysdeps/ia64/fpu/e_remainder.S
+++ b/sysdeps/ia64/fpu/e_remainder.S
@@ -1,10 +1,10 @@
-.file "remainder.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+ .file "remainder.asm"
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska, Bob Norin,
+// Shane Story, and Ping Tak Peter Tang of the Computational Software Lab,
+// Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,19 +35,17 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//====================================================================
-// 02/02/00 Initial version
-// 03/02/00 New Algorithm
-// 04/04/00 Unwind support added
-// 07/21/00 Fixed quotient=2^{24*m+23}*1.q1...q23 1 bug
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 3/02/00 New Algorithm
+// 4/04/00 Unwind support added
+// 7/21/00 Fixed quotient=2^{24*m+23}*1.q1...q23 1 bug
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 11/29/00 Set FR_Y to f9
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+//11/29/00 Set FR_Y to f9
//
// API
//====================================================================
@@ -80,12 +78,16 @@
// a=+/- Inf, or b=+/-0: return NaN, call libm_error_support
// a=NaN or b=NaN: return NaN
+#include "libm_support.h"
+
// Registers used
//====================================================================
// Predicate registers: p6-p14
// General registers: r2,r3,r28,r29,r32 (ar.pfs), r33-r39
// Floating point registers: f6-f15,f32
+ .section .text
+
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
@@ -101,9 +103,18 @@ FR_Y = f9
FR_RESULT = f8
-.section .text
-GLOBAL_IEEE754_ENTRY(remainder)
+ .proc remainder#
+ .align 32
+ .global remainder#
+ .align 32
+
+remainder:
+#ifdef _LIBC
+.global __remainder
+.type __remainder,@function
+__remainder:
+#endif
// inputs in f8, f9
// result in f8
@@ -128,7 +139,7 @@ GLOBAL_IEEE754_ENTRY(remainder)
// Y +-NAN, +-inf, +-0? p11
{ .mfi
setf.exp f32=r28
- fclass.m.unc p11,p0 = f9, 0xe7
+(p0) fclass.m.unc p11,p0 = f9, 0xe7
nop.i 999
}
// qnan snan inf norm unorm 0 -+
@@ -137,7 +148,7 @@ GLOBAL_IEEE754_ENTRY(remainder)
// X +-NAN, +-inf, ? p9
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f8, 0xe3
+(p0) fclass.m.unc p9,p0 = f8, 0xe3
nop.i 999;;
}
@@ -156,8 +167,8 @@ GLOBAL_IEEE754_ENTRY(remainder)
}
{.bbb
- (p9) br.cond.spnt FREM_X_NAN_INF
- (p11) br.cond.spnt FREM_Y_NAN_INF_ZERO
+ (p9) br.cond.spnt L(FREM_X_NAN_INF)
+ (p11) br.cond.spnt L(FREM_Y_NAN_INF_ZERO)
nop.b 0
} {.mfi
nop.m 0
@@ -167,7 +178,7 @@ GLOBAL_IEEE754_ENTRY(remainder)
}
-remloop24:
+L(remloop24):
{ .mfi
nop.m 0
// Step (2)
@@ -189,7 +200,7 @@ remloop24:
{.mfi
nop.m 0
// q1=q0*(1+e0)
- (p6) fma.s1 f15=f12,f7,f12
+ fma.s1 f15=f12,f7,f12
nop.i 0
}
{ .mfi
@@ -320,7 +331,7 @@ remloop24:
// (p9) set r=r2 (new a, if not last iteration)
// (p10) new a =r
(p10) mov f13=f6
- (p12) br.cond.sptk remloop24;;
+ (p12) br.cond.sptk L(remloop24);;
}
// last iteration
@@ -377,7 +388,7 @@ remloop24:
}
-FREM_X_NAN_INF:
+L(FREM_X_NAN_INF):
// Y zero ?
{.mfi
@@ -394,19 +405,19 @@ FREM_X_NAN_INF:
nop.m 0
nop.i 0
// if Y zero
- (p11) br.cond.spnt FREM_Y_ZERO;;
+ (p11) br.cond.spnt L(FREM_Y_ZERO);;
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p8,p0 = f8, 0x23
+(p0) fclass.m.unc p8,p0 = f8, 0x23
nop.i 999
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p11,p0 = f8, 0x23
+(p0) fclass.m.unc p11,p0 = f8, 0x23
nop.i 999;;
}
// Y NaN ?
@@ -434,14 +445,14 @@ FREM_X_NAN_INF:
}
{ .mfi
nop.m 999
-(p8) fma.d.s0 f8=f8,f1,f0
+(p8) fma.d f8=f8,f1,f0
nop.i 0 ;;
}
{ .mfb
nop.m 999
frcpa.s0 f8,p7=f8,f9
- (p11) br.cond.spnt EXP_ERROR_RETURN;;
+ (p11) br.cond.spnt L(EXP_ERROR_RETURN);;
}
{ .mib
nop.m 0
@@ -450,35 +461,35 @@ FREM_X_NAN_INF:
}
-FREM_Y_NAN_INF_ZERO:
+L(FREM_Y_NAN_INF_ZERO):
// Y INF
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x23
+(p0) fclass.m.unc p7,p0 = f9, 0x23
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p7) fma.d.s0 f8=f8,f1,f0
+(p7) fma.d f8=f8,f1,f0
(p7) br.ret.spnt b0 ;;
}
// Y NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f9, 0xc3
+(p0) fclass.m.unc p9,p0 = f9, 0xc3
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p9) fma.d.s0 f8=f9,f1,f0
+(p9) fma.d f8=f9,f1,f0
(p9) br.ret.spnt b0 ;;
}
-FREM_Y_ZERO:
+L(FREM_Y_ZERO):
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
@@ -486,7 +497,7 @@ FREM_Y_ZERO:
// X NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p10 = f8, 0xc3
+(p0) fclass.m.unc p9,p10 = f8, 0xc3
nop.i 999 ;;
}
{ .mfi
@@ -497,42 +508,47 @@ FREM_Y_ZERO:
{.mfi
nop.m 999
- (p9) frcpa.s0 f11,p7=f8,f0
+ (p9) frcpa f11,p7=f8,f0
nop.i 0;;
}
{ .mfi
nop.m 999
-(p10) frcpa.s0 f11,p7 = f0,f0
+(p10) frcpa f11,p7 = f0,f0
nop.i 999;;
}
{ .mfi
nop.m 999
- fmerge.s f10 = f8, f8
+(p0) fmerge.s f10 = f8, f8
nop.i 999
}
{ .mfi
nop.m 999
- fma.d.s0 f8=f11,f1,f0
+(p0) fma.d f8=f11,f1,f0
nop.i 999
}
-EXP_ERROR_RETURN:
+L(EXP_ERROR_RETURN):
{ .mib
- mov GR_Parameter_TAG = 124
+(p0) mov GR_Parameter_TAG = 124
nop.i 999
- br.sptk __libm_error_region;;
+(p0) br.sptk __libm_error_region;;
}
-GLOBAL_IEEE754_END(remainder)
+.endp remainder
+ASM_SIZE_DIRECTIVE(remainder)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__remainder)
+#endif
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -580,11 +596,10 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
diff --git a/sysdeps/ia64/fpu/e_remainderf.S b/sysdeps/ia64/fpu/e_remainderf.S
index 0e9bedd652..40f9b32921 100644
--- a/sysdeps/ia64/fpu/e_remainderf.S
+++ b/sysdeps/ia64/fpu/e_remainderf.S
@@ -1,10 +1,11 @@
-.file "remainderf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+ .file "remainderf.asm"
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the Computational
+// Software Lab,
+// Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +21,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,19 +36,17 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//====================================================================
-// 02/02/00 Initial version
-// 03/02/00 New algorithm
-// 04/04/00 Unwind support added
-// 07/21/00 Fixed quotient=2^{24*m+23} bug
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 3/02/00 New algorithm
+// 4/04/00 Unwind support added
+// 7/21/00 Fixed quotient=2^{24*m+23} bug
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 11/29/00 Set FR_Y to f9
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+//11/29/00 Set FR_Y to f9
//
// API
//====================================================================
@@ -79,6 +78,9 @@
//====================================================================
// a=+/- Inf, or b=+/-0: return NaN, call libm_error_support
// a=NaN or b=NaN: return NaN
+
+#include "libm_support.h"
+
//
// Registers used
//====================================================================
@@ -87,6 +89,8 @@
// Floating point registers: f6-f15
//
+.section .text
+
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
@@ -102,9 +106,17 @@ FR_Y = f9
FR_RESULT = f8
-.section .text
-GLOBAL_IEEE754_ENTRY(remainderf)
+ .proc remainderf#
+ .align 32
+ .global remainderf#
+ .align 32
+remainderf:
+#ifdef _LIBC
+.global __remainderf
+.type __remainderf,@function
+__remainderf:
+#endif
// inputs in f8, f9
// result in f8
@@ -129,7 +141,7 @@ GLOBAL_IEEE754_ENTRY(remainderf)
// Y +-NAN, +-inf, +-0? p11
{ .mfi
nop.m 999
- fclass.m.unc p11,p0 = f9, 0xe7
+(p0) fclass.m.unc p11,p0 = f9, 0xe7
nop.i 999
}
// qnan snan inf norm unorm 0 -+
@@ -138,7 +150,7 @@ GLOBAL_IEEE754_ENTRY(remainderf)
// X +-NAN, +-inf, ? p9
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f8, 0xe3
+(p0) fclass.m.unc p9,p0 = f8, 0xe3
nop.i 999;;
}
@@ -156,8 +168,8 @@ GLOBAL_IEEE754_ENTRY(remainderf)
nop.i 0;;
}
{.bbb
- (p9) br.cond.spnt FREM_X_NAN_INF
- (p11) br.cond.spnt FREM_Y_NAN_INF_ZERO
+ (p9) br.cond.spnt L(FREM_X_NAN_INF)
+ (p11) br.cond.spnt L(FREM_Y_NAN_INF_ZERO)
nop.b 0
} {.mfi
nop.m 0
@@ -167,7 +179,7 @@ GLOBAL_IEEE754_ENTRY(remainderf)
}
.align 32
-remloop24:
+L(remloop24):
{ .mfi
// f12=2^{24}-2
setf.s f12=r3
@@ -335,7 +347,7 @@ remloop24:
// (p9) set r=r2 (new a, if not last iteration)
// (p10) new a =r
(p10) mov f13=f6
- (p12) br.cond.sptk remloop24;;
+ (p12) br.cond.sptk L(remloop24);;
}
// last iteration
@@ -396,7 +408,7 @@ remloop24:
}
-FREM_X_NAN_INF:
+L(FREM_X_NAN_INF):
// Y zero ?
{.mfi
@@ -413,19 +425,19 @@ FREM_X_NAN_INF:
nop.m 0
nop.i 0
// if Y zero
- (p11) br.cond.spnt FREM_Y_ZERO;;
+ (p11) br.cond.spnt L(FREM_Y_ZERO);;
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p8,p0 = f8, 0x23
+(p0) fclass.m.unc p8,p0 = f8, 0x23
nop.i 999
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p11,p0 = f8, 0x23
+(p0) fclass.m.unc p11,p0 = f8, 0x23
nop.i 999;;
}
// Y NaN ?
@@ -453,14 +465,14 @@ FREM_X_NAN_INF:
}
{ .mfi
nop.m 999
-(p8) fma.s.s0 f8=f8,f1,f0
+(p8) fma.s f8=f8,f1,f0
nop.i 0 ;;
}
{ .mfb
nop.m 999
frcpa.s0 f8,p7=f8,f9
- (p11) br.cond.spnt EXP_ERROR_RETURN;;
+ (p11) br.cond.spnt L(EXP_ERROR_RETURN);;
}
{ .mib
nop.m 0
@@ -469,35 +481,35 @@ FREM_X_NAN_INF:
}
-FREM_Y_NAN_INF_ZERO:
+L(FREM_Y_NAN_INF_ZERO):
// Y INF
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x23
+(p0) fclass.m.unc p7,p0 = f9, 0x23
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p7) fma.s.s0 f8=f8,f1,f0
+(p7) fma.s f8=f8,f1,f0
(p7) br.ret.spnt b0 ;;
}
// Y NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p0 = f9, 0xc3
+(p0) fclass.m.unc p9,p0 = f9, 0xc3
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p9) fma.s.s0 f8=f9,f1,f0
+(p9) fma.s f8=f9,f1,f0
(p9) br.ret.spnt b0 ;;
}
-FREM_Y_ZERO:
+L(FREM_Y_ZERO):
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
@@ -505,7 +517,7 @@ FREM_Y_ZERO:
// X NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p10 = f8, 0xc3
+(p0) fclass.m.unc p9,p10 = f8, 0xc3
nop.i 999 ;;
}
{ .mfi
@@ -516,42 +528,47 @@ FREM_Y_ZERO:
{.mfi
nop.m 999
- (p9) frcpa.s0 f11,p7=f8,f0
+ (p9) frcpa f11,p7=f8,f0
nop.i 0;;
}
{ .mfi
nop.m 999
-(p10) frcpa.s0 f11,p7 = f0,f0
+(p10) frcpa f11,p7 = f0,f0
nop.i 999;;
}
{ .mfi
nop.m 999
- fmerge.s f10 = f8, f8
+(p0) fmerge.s f10 = f8, f8
nop.i 999
}
{ .mfi
nop.m 999
- fma.s.s0 f8=f11,f1,f0
+(p0) fma.s f8=f11,f1,f0
nop.i 999
}
-EXP_ERROR_RETURN:
+L(EXP_ERROR_RETURN):
{ .mib
- mov GR_Parameter_TAG = 125
+(p0) mov GR_Parameter_TAG = 125
nop.i 999
- br.sptk __libm_error_region;;
+(p0) br.sptk __libm_error_region;;
}
-GLOBAL_IEEE754_END(remainderf)
+.endp remainderf
+ASM_SIZE_DIRECTIVE(remainderf)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__remainderf)
+#endif
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -599,11 +616,9 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
-
diff --git a/sysdeps/ia64/fpu/e_remainderl.S b/sysdeps/ia64/fpu/e_remainderl.S
index 8c1630e3ab..5856861442 100644
--- a/sysdeps/ia64/fpu/e_remainderl.S
+++ b/sysdeps/ia64/fpu/e_remainderl.S
@@ -1,10 +1,10 @@
-.file "remainderl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+.file "remainderl.asm"
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the Computational
+// Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,19 +35,17 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//====================================================================
-// 02/02/00 Initial version
-// 03/02/00 New algorithm
-// 04/04/00 Unwind support added
-// 07/21/00 Fixed quotient=2^{24*m+23}*1.q1...q23 1 bug
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 3/02/00 New algorithm
+// 4/04/00 Unwind support added
+// 7/21/00 Fixed quotient=2^{24*m+23}*1.q1...q23 1 bug
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 11/29/00 Set FR_Y to f9
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+//11/29/00 Set FR_Y to f9
//
// API
//====================================================================
@@ -79,6 +77,9 @@
//====================================================================
// a=+/- Inf, or b=+/-0: return NaN, call libm_error_support
// a=NaN or b=NaN: return NaN
+
+#include "libm_support.h"
+
//
// Registers used
//====================================================================
@@ -86,6 +87,8 @@
// General registers: r2,r3,r28,r29,r32 (ar.pfs), r33-r39
// Floating point registers: f6-f15,f32
//
+.section .text
+
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
@@ -102,9 +105,19 @@ FR_Y = f9
FR_RESULT = f8
-.section .text
-GLOBAL_IEEE754_ENTRY(remainderl)
+
+ .proc remainderl#
+ .align 32
+ .global remainderl#
+ .align 32
+
+remainderl:
+#ifdef _LIBC
+.global __remainderl
+.type __remainderl,@function
+__remainderl:
+#endif
// inputs in f8, f9
// result in f8
@@ -146,7 +159,7 @@ cmp.eq p11,p10=r29,r0;;
// X +-NAN, +-inf, ? p9
{ .mfi
nop.m 999
- fclass.m.unc p9,p8 = f8, 0xe3
+(p0) fclass.m.unc p9,p8 = f8, 0xe3
nop.i 999;;
}
@@ -183,8 +196,8 @@ cmp.eq p11,p10=r29,r0;;
}
{.bbb
- (p9) br.cond.spnt FREM_X_NAN_INF
- (p11) br.cond.spnt FREM_Y_NAN_INF_ZERO
+ (p9) br.cond.spnt L(FREM_X_NAN_INF)
+ (p11) br.cond.spnt L(FREM_Y_NAN_INF_ZERO)
nop.b 0
} {.mfi
nop.m 0
@@ -193,7 +206,7 @@ cmp.eq p11,p10=r29,r0;;
nop.i 0;;
}
-remloop24:
+L(remloop24):
{ .mfi
nop.m 0
// Step (2)
@@ -215,7 +228,7 @@ remloop24:
{.mfi
nop.m 0
// q1=q0*(1+e0)
- (p6) fma.s1 f15=f12,f7,f12
+ fma.s1 f15=f12,f7,f12
nop.i 0
}
{ .mfi
@@ -345,7 +358,7 @@ remloop24:
// (p9) set r=r2 (new a, if not last iteration)
// (p10) new a =r
(p10) mov f13=f6
- (p12) br.cond.sptk remloop24;;
+ (p12) br.cond.sptk L(remloop24);;
}
// last iteration
@@ -403,7 +416,7 @@ remloop24:
-FREM_X_NAN_INF:
+L(FREM_X_NAN_INF):
// Y zero ?
{.mfi
@@ -420,19 +433,19 @@ FREM_X_NAN_INF:
nop.m 0
nop.i 0
// if Y zero
- (p11) br.cond.spnt FREM_Y_ZERO;;
+ (p11) br.cond.spnt L(FREM_Y_ZERO);;
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p8,p0 = f8, 0x23
+(p0) fclass.m.unc p8,p0 = f8, 0x23
nop.i 999
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
- fclass.m.unc p11,p0 = f8, 0x23
+(p0) fclass.m.unc p11,p0 = f8, 0x23
nop.i 999;;
}
// Y NaN ?
@@ -460,14 +473,14 @@ FREM_X_NAN_INF:
}
{ .mfi
nop.m 999
-(p8) fma.s0 f8=f8,f1,f0
+(p8) fma f8=f8,f1,f0
nop.i 0 ;;
}
{ .mfb
nop.m 999
frcpa.s0 f8,p7=f8,f9
- (p11) br.cond.spnt EXP_ERROR_RETURN;;
+ (p11) br.cond.spnt L(EXP_ERROR_RETURN);;
}
{ .mib
nop.m 0
@@ -476,24 +489,24 @@ FREM_X_NAN_INF:
}
-FREM_Y_NAN_INF_ZERO:
+L(FREM_Y_NAN_INF_ZERO):
// Y INF
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x23
+(p0) fclass.m.unc p7,p0 = f9, 0x23
nop.i 999 ;;
}
{ .mfb
nop.m 999
-(p7) fma.s0 f8=f8,f1,f0
+(p7) fma f8=f8,f1,f0
(p7) br.ret.spnt b0 ;;
}
// Y NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p10 = f9, 0xc3
+(p0) fclass.m.unc p9,p10 = f9, 0xc3
nop.i 999 ;;
}
{ .mfi
@@ -504,11 +517,11 @@ FREM_Y_NAN_INF_ZERO:
{ .mfb
nop.m 999
-(p9) fma.s0 f8=f9,f1,f0
+(p9) fma f8=f9,f1,f0
(p9) br.ret.spnt b0 ;;
}
-FREM_Y_ZERO:
+L(FREM_Y_ZERO):
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
@@ -516,7 +529,7 @@ FREM_Y_ZERO:
// X NAN?
{ .mfi
nop.m 999
- fclass.m.unc p9,p10 = f8, 0xc3
+(p0) fclass.m.unc p9,p10 = f8, 0xc3
nop.i 999 ;;
}
{ .mfi
@@ -527,38 +540,43 @@ FREM_Y_ZERO:
{.mfi
nop.m 999
- (p9) frcpa.s0 f11,p7=f8,f0
+ (p9) frcpa f11,p7=f8,f0
nop.i 0;;
}
{ .mfi
nop.m 999
-(p10) frcpa.s0 f11,p7 = f0,f0
+(p10) frcpa f11,p7 = f0,f0
nop.i 999;;
}
{ .mfi
nop.m 999
- fmerge.s f10 = f8, f8
+(p0) fmerge.s f10 = f8, f8
nop.i 999
}
{ .mfi
nop.m 999
- fma.s0 f8=f11,f1,f0
+(p0) fma f8=f11,f1,f0
nop.i 999;;
}
-EXP_ERROR_RETURN:
+L(EXP_ERROR_RETURN):
{ .mib
- mov GR_Parameter_TAG = 123
+(p0) mov GR_Parameter_TAG = 123
nop.i 999
- br.sptk __libm_error_region;;
+(p0) br.sptk __libm_error_region;;
}
-GLOBAL_IEEE754_END(remainderl)
+.endp remainderl
+ASM_SIZE_DIRECTIVE(remainderl)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__remainderl)
+#endif
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -606,12 +624,9 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
-
-
-
-
diff --git a/sysdeps/ia64/fpu/e_scalb.S b/sysdeps/ia64/fpu/e_scalb.S
index 3d48aab189..7f5b5796de 100644
--- a/sysdeps/ia64/fpu/e_scalb.S
+++ b/sysdeps/ia64/fpu/e_scalb.S
@@ -1,10 +1,10 @@
.file "scalb.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,83 +20,61 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 Scalb completely reworked and now standalone version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/06/03 Improved performance
+// 2/02/00 Initial version
+// 1/26/01 Scalb completely reworked and now standalone version
//
// API
//==============================================================
-// double = scalb (double x, double n)
+// double = scalb (double x, double n)
// input floating point f8 and floating point f9
// output floating point f8
//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
// Returns x* 2**n using an fma and detects overflow
-// and underflow.
+// and underflow.
//
//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x103fe -> Certain overflow
-// exp_Result = 0x103fe -> Possible overflow
-// 0x0fc01 <= exp_Result < 0x103fe -> No over/underflow (main path)
-// 0x0fc01 - 52 <= exp_Result < 0x0fc01 -> Possible underflow
-// exp_Result < 0x0fc01 - 52 -> Certain underflow
-FR_Big = f6
-FR_NBig = f7
+#include "libm_support.h"
+
FR_Floating_X = f8
FR_Result = f8
FR_Floating_N = f9
FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
+FR_Norm_N = f10
+FR_Result3 = f11
+FR_Norm_X = f12
FR_N_float_int = f13
-FR_Norm_N = f14
+FR_Two_N = f14
+FR_Two_to_Big = f15
+FR_Big = f6
+FR_NBig = f7
-GR_neg_ov_limit= r14
-GR_big_exp = r14
GR_N_Biased = r15
GR_Big = r16
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_exp_sure_ou = r19
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
GR_Bias = r20
GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-GR_Scratch = r28
-GR_signexp_N = r29
-GR_exp_N = r30
GR_SAVE_B0 = r32
GR_SAVE_GP = r33
@@ -106,447 +84,433 @@ GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Tag = r38
+.align 32
+.global scalb
+
.section .text
-GLOBAL_IEEE754_ENTRY(scalb)
+.proc scalb
+.align 32
+
+scalb:
+#ifdef _LIBC
+.global __ieee754_scalb
+.type __ieee754_scalb,@function
+__ieee754_scalb:
+#endif
//
// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
//
{ .mfi
- getf.exp GR_signexp_N = FR_Floating_N // Get signexp of n
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fcvt.fx.trunc.s1 FR_N_float_int = FR_Floating_N // Get N in significand
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p7,p0 = FR_Floating_N, 0x0b // Test for n=unorm
- nop.i 0
+ alloc r32=ar.pfs,0,3,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Scratch = 0x019C3F,r0
}
//
-// Normalize n
+// Is y a NAN, INF, ZERO, +-?
//
{ .mfi
- mov GR_exp_mask = 0x1ffff // Exponent mask
- fnorm.s1 FR_Norm_N = FR_Floating_N
- nop.i 0
+ nop.m 999
+ fclass.m.unc p6,p0 = FR_Floating_N, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Scratch1 = 0x063BF,r0
}
;;
//
-// Is n NAN, INF, ZERO, +-?
+// Convert N to a fp integer
+// Normalize x
//
{ .mfi
- mov GR_big_exp = 0x1003e // Exponent at which n is integer
- fclass.m p9,p0 = FR_Floating_N, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_max_exp = 0x103fe // Exponent of maximum double
+ nop.m 0
+ fnorm.s1 FR_Norm_N = FR_Floating_N
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ nop.i 999
+};;
+
//
+// Create 2*big
+// Create 2**-big
// Normalize x
+// Branch on special values.
//
-{ .mfb
- nop.m 0
- fnorm.s1 FR_Norm_X = FR_Floating_X
-(p7) br.cond.spnt SCALB_N_UNORM // Branch if n=unorm
-}
-;;
-
-SCALB_COMMON1:
-// Main path continues. Also return here from u=unorm path.
-// Handle special cases if x = Nan, Inf, Zero
-{ .mfb
- nop.m 0
- fcmp.lt.s1 p7,p0 = FR_Floating_N, f0 // Test N negative
-(p6) br.cond.spnt SCALB_NAN_INF_ZERO
+{ .mib
+ setf.exp FR_Big = GR_Scratch
+ nop.i 0
+(p6) br.cond.spnt L(SCALB_NAN_INF_ZERO)
}
-;;
+{ .mib
+ setf.exp FR_NBig = GR_Scratch1
+ nop.i 0
+(p7) br.cond.spnt L(SCALB_NAN_INF_ZERO)
+};;
-// Handle special cases if n = Nan, Inf, Zero
+//
+// Convert N to a fp integer
+// Create -35000
+//
{ .mfi
- getf.sig GR_N_as_int = FR_N_float_int // Get n from significand
- fclass.m p8,p0 = FR_Floating_X, 0x0b // Test for x=unorm
- mov GR_exp_sure_ou = 0x1000e // Exp_N where x*2^N sure over/under
-}
-{ .mfb
- mov GR_min_exp = 0x0fc01 // Exponent of minimum double
- fcvt.xf FR_N_float_int = FR_N_float_int // Convert N to FP integer
-(p9) br.cond.spnt SCALB_NAN_INF_ZERO
-}
-;;
-
-{ .mmi
- and GR_exp_N = GR_exp_mask, GR_signexp_N // Get exponent of N
-(p7) sub GR_Big = r0, GR_Big // Limit for N
- nop.i 0
+ addl GR_Scratch = 1,r0
+ fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N
+ addl GR_NBig = -35000,r0
}
;;
-{ .mib
- cmp.lt p9,p0 = GR_exp_N, GR_big_exp // N possible non-integer?
- cmp.ge p6,p0 = GR_exp_N, GR_exp_sure_ou // N certain over/under?
-(p8) br.cond.spnt SCALB_X_UNORM // Branch if x=unorm
+//
+// Put N if a GP register
+// Convert N_float_int to floating point value
+// Create 35000
+// Build the exponent Bias
+//
+{ .mii
+ getf.sig GR_N_as_int = FR_N_float_int
+ shl GR_Scratch = GR_Scratch,63
+ addl GR_Big = 35000,r0
}
-;;
+{ .mfi
+ addl GR_Bias = 0x0FFFF,r0
+ fcvt.xf FR_N_float_int = FR_N_float_int
+ nop.i 0
+};;
-SCALB_COMMON2:
-// Main path continues. Also return here from x=unorm path.
-// Create biased exponent for 2**N
-{ .mmi
-(p6) mov GR_N_as_int = GR_Big // Limit N
-;;
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.i 0
+//
+// Catch those fp values that are beyond 2**64-1
+// Is N > 35000
+// Is N < -35000
+//
+{ .mfi
+ cmp.ne.unc p9,p10 = GR_N_as_int,GR_Scratch
+ nop.f 0
+ nop.i 0
}
-;;
+{ .mmi
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+ nop.i 0
+};;
+//
+// Is N really an int, only for those non-int indefinites?
+// Create exp bias.
+//
{ .mfi
- setf.exp FR_Two_N = GR_N_Biased // Form 2**N
-(p9) fcmp.neq.unc.s1 p9,p0 = FR_Norm_N, FR_N_float_int // Test if N an integer
- and GR_exp_X = GR_exp_mask, GR_signexp_X // Get exponent of X
-}
-;;
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+(p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
+ nop.i 0
+};;
//
-// Compute biased result exponent
-// Branch if N is not an integer
+// Branch and return if N is not an int.
+// Main path, create 2**N
//
-{ .mib
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- mov GR_min_den_exp = 0x0fc01 - 52 // Exponent of min denorm dble
-(p9) br.cond.spnt SCALB_N_NOT_INT
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.i 999
}
-;;
+{ .mfb
+ nop.m 0
+(p7) frcpa f8,p11 = f0,f0
+(p7) br.ret.spnt b0
+};;
//
-// Raise Denormal operand flag with compare
-// Do final operation
+// Set denormal on denormal input x and denormal input N
//
{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fcmp.ge.s0 p0,p11 = FR_Floating_X,FR_Floating_N // Dummy to set denorm
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- fma.d.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
-(p9) br.cond.spnt SCALB_UNDERFLOW // Branch if certain underflow
+ nop.m 999
+(p10)fcmp.ge.s1 p6,p8 = FR_Norm_N,f0
+ nop.i 0
+};;
+{ .mfi
+ nop.m 999
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ nop.i 999
}
-;;
+{ .mfi
+ nop.m 999
+ fcmp.ge.s0 p12,p13 = FR_Floating_N,f0
+ nop.i 0
+};;
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
+//
+// Adjust 2**N if N was very small or very large
+//
-{ .bbb
-(p6) br.cond.spnt SCALB_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALB_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALB_POSSIBLE_UNDERFLOW // Branch if possible underflow
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0fc01-52 <= exp_Result < 0x0fc01
-SCALB_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x103fe = exp_Result
-SCALB_POSSIBLE_OVERFLOW:
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x00000000000303FF
+};;
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x00000000000103FF
+};;
-// Set up necessary status fields
+// Set up necessary status fields
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S3 user supplied status + FZ + TD (Underflows)
//
{ .mfi
- mov GR_pos_ov_limit = 0x103ff // Exponent for positive overflow
- fsetc.s3 0x7F,0x41
- nop.i 0
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
}
{ .mfi
- mov GR_neg_ov_limit = 0x303ff // Exponent for negative overflow
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
//
-// Do final operation with s2 and s3
+// Do final operation
//
{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.d.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
+ setf.exp FR_NBig = GR_Scratch
+ fma.d.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
}
{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.d.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
+ nop.m 999
+ fma.d.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.d.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
// Check for overflow or underflow.
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflow)
+// S3 user supplied status + FZ + TD (Underflow)
+//
+//
// Restore s3
// Restore s2
//
{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
}
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
//
// Is the result zero?
//
{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
+ addl GR_Tag = 53, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
//
// Detect masked underflow - Tiny + Inexact Only
//
{ .mfi
- nop.m 0
+ nop.m 999
(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
+ nop.i 999
+};;
//
// Is result bigger the allowed range?
// Branch out for underflow
//
{ .mfb
- nop.m 0
+(p6) addl GR_Tag = 54, r0
(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALB_UNDERFLOW
-}
-;;
+(p6) br.cond.spnt L(SCALB_UNDERFLOW)
+};;
//
// Branch out for overflow
//
-{ .bbb
-(p7) br.cond.spnt SCALB_OVERFLOW
-(p9) br.cond.spnt SCALB_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALB_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 53, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(SCALB_OVERFLOW)
+(p9) br.cond.spnt L(SCALB_OVERFLOW)
+};;
-// Here if result underflows
-SCALB_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 54, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
}
-;;
-SCALB_NAN_INF_ZERO:
+L(SCALB_NAN_INF_ZERO):
//
-// Before entry, N has been converted to a fp integer in significand of
-// FR_N_float_int
-//
-// Convert N_float_int to floating point value
-//
+// Convert N to a fp integer
+//
{ .mfi
- getf.sig GR_N_as_int = FR_N_float_int
- fclass.m p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
- nop.i 0
+ addl GR_Scratch = 1,r0
+ fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N
+ nop.i 999
}
{ .mfi
- addl GR_Scratch = 1,r0
- fcvt.xf FR_N_float_int = FR_N_float_int
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
- shl GR_Scratch = GR_Scratch,63
-}
-;;
-
+ nop.m 0
+ fclass.m.unc p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
+ nop.i 0
+};;
{ .mfi
- nop.m 0
- fclass.m p8,p0 = FR_Floating_N, 0x21 // @inf
- nop.i 0
-}
+ nop.m 0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
+ shl GR_Scratch = GR_Scratch,63
+};;
{ .mfi
- nop.m 0
- fclass.m p9,p0 = FR_Floating_N, 0x22 // @-inf
- nop.i 0
-}
-;;
+ nop.m 0
+ fclass.m.unc p8,p0 = FR_Floating_N, 0x21 // @inf
+ nop.i 0
+}
+ { .mfi
+ nop.m 0
+ fclass.m.unc p9,p0 = FR_Floating_N, 0x22 // @-inf
+ nop.i 0
+};;
//
// Either X or N is a Nan, return result and possible raise invalid.
//
{ .mfb
- nop.m 0
-(p6) fma.d.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
+ nop.m 0
+(p6) fma.d.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
(p6) br.ret.spnt b0
-}
-;;
-
+};;
{ .mfb
- nop.m 0
-(p7) fma.d.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
+ getf.sig GR_N_as_int = FR_N_float_int
+(p7) fma.d.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
(p7) br.ret.spnt b0
-}
-;;
+};;
//
// If N + Inf do something special
// For N = -Inf, create Int
//
{ .mfb
- nop.m 0
-(p8) fma.d.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0
-(p8) br.ret.spnt b0
+ nop.m 0
+(p8) fma.d.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0
+(p8) br.ret.spnt b0
}
{ .mfi
- nop.m 0
-(p9) fnma.d.s0 FR_Floating_N = FR_Floating_N, f1, f0
- nop.i 0
-}
-;;
+ nop.m 0
+(p9) fnma.d.s0 FR_Floating_N = FR_Floating_N, f1, f0
+ nop.i 0
+};;
//
// If N==-Inf,return x/(-N)
//
{ .mfb
- cmp.ne p7,p0 = GR_N_as_int,GR_Scratch
-(p9) frcpa.s0 FR_Result,p0 = FR_Floating_X,FR_Floating_N
-(p9) br.ret.spnt b0
-}
-;;
+ nop.m 0
+(p9) frcpa.s0 FR_Result,p6 = FR_Floating_X,FR_Floating_N
+(p9) br.ret.spnt b0
+};;
+
+//
+// Convert N_float_int to floating point value
+//
+{ .mfi
+ cmp.ne.unc p9,p0 = GR_N_as_int,GR_Scratch
+ fcvt.xf FR_N_float_int = FR_N_float_int
+ nop.i 0
+};;
//
// Is N an integer.
//
{ .mfi
- nop.m 0
-(p7) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
- nop.i 0
-}
-;;
+ nop.m 0
+(p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
+ nop.i 0
+};;
//
// If N not an int, return NaN and raise invalid.
//
{ .mfb
- nop.m 0
-(p7) frcpa.s0 FR_Result,p0 = f0,f0
-(p7) br.ret.spnt b0
-}
-;;
+ nop.m 0
+(p7) frcpa.s0 FR_Result,p6 = f0,f0
+(p7) br.ret.spnt b0
+};;
//
-// Always return x in other path.
+// Always return x in other path.
//
{ .mfb
- nop.m 0
- fma.d.s0 FR_Result = FR_Floating_X,f1,f0
- br.ret.sptk b0
-}
-;;
-
-// Here if n not int
-// Return NaN and raise invalid.
-SCALB_N_NOT_INT:
-{ .mfb
- nop.m 0
- frcpa.s0 FR_Result,p0 = f0,f0
- br.ret.sptk b0
-}
-;;
-
-// Here if n=unorm
-SCALB_N_UNORM:
-{ .mfb
- getf.exp GR_signexp_N = FR_Norm_N // Get signexp of normalized n
- fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N // Get N in significand
- br.cond.sptk SCALB_COMMON1 // Return to main path
-}
-;;
+ nop.m 0
+ fma.d.s0 FR_Result = FR_Floating_X,f1,f0
+ br.ret.sptk b0
+};;
-// Here if x=unorm
-SCALB_X_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALB_COMMON2 // Return to main path
-}
-;;
+.endp scalb
+ASM_SIZE_DIRECTIVE(scalb)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__ieee754_scalb)
+#endif
+.proc __libm_error_region
+__libm_error_region:
-GLOBAL_IEEE754_END(scalb)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+L(SCALB_OVERFLOW):
+L(SCALB_UNDERFLOW):
//
// Get stack address of N
//
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp
+ add GR_Parameter_Y=-32,sp
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
+ mov GR_SAVE_PFS=ar.pfs
}
//
-// Adjust sp
+// Adjust sp
//
{ .mfi
.fframe 64
- add sp=-64,sp
+ add sp=-64,sp
nop.f 0
- mov GR_SAVE_GP=gp
+ mov GR_SAVE_GP=gp
};;
//
-// Store N on stack in correct position
+// Store N on stack in correct position
// Locate the address of x on stack
//
{ .mmi
- stfd [GR_Parameter_Y] = FR_Norm_N,16
- add GR_Parameter_X = 16,sp
+ stfd [GR_Parameter_Y] = FR_Norm_N,16
+ add GR_Parameter_X = 16,sp
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
+ mov GR_SAVE_B0=b0
};;
//
@@ -555,45 +519,46 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
//
.body
{ .mib
- stfd [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ stfd [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_Result
+ stfd [GR_Parameter_Y] = FR_Result
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
+ br.call.sptk b0=__libm_error_support#
};;
//
// Get location of result on stack
//
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
//
-// Get the new result
+// Get the new result
//
{ .mmi
- ldfd FR_Result = [GR_Parameter_RESULT]
+ ldfd FR_Result = [GR_Parameter_RESULT]
.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
};;
//
// Restore gp, ar.pfs and return
//
{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_scalbf.S b/sysdeps/ia64/fpu/e_scalbf.S
index e965667d7a..40af080d38 100644
--- a/sysdeps/ia64/fpu/e_scalbf.S
+++ b/sysdeps/ia64/fpu/e_scalbf.S
@@ -1,10 +1,10 @@
.file "scalbf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,83 +20,61 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 Scalb completely reworked and now standalone version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/06/03 Improved performance
+// 2/02/00 Initial version
+// 1/26/01 Scalb completely reworked and now standalone version
//
// API
//==============================================================
-// float = scalbf (float x, float n)
+// float = scalbf (float x, float n)
// input floating point f8 and floating point f9
// output floating point f8
//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
// Returns x* 2**n using an fma and detects overflow
-// and underflow.
+// and underflow.
//
//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x1007e -> Certain overflow
-// exp_Result = 0x1007e -> Possible overflow
-// 0x0ff81 <= exp_Result < 0x1007e -> No over/underflow (main path)
-// 0x0ff81 - 23 <= exp_Result < 0x0ff81 -> Possible underflow
-// exp_Result < 0x0ff81 - 23 -> Certain underflow
-FR_Big = f6
-FR_NBig = f7
+#include "libm_support.h"
+
FR_Floating_X = f8
FR_Result = f8
FR_Floating_N = f9
FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
+FR_Norm_N = f10
+FR_Result3 = f11
+FR_Norm_X = f12
FR_N_float_int = f13
-FR_Norm_N = f14
+FR_Two_N = f14
+FR_Two_to_Big = f15
+FR_Big = f6
+FR_NBig = f7
-GR_neg_ov_limit= r14
-GR_big_exp = r14
GR_N_Biased = r15
GR_Big = r16
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_exp_sure_ou = r19
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
GR_Bias = r20
GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-GR_Scratch = r28
-GR_signexp_N = r29
-GR_exp_N = r30
GR_SAVE_B0 = r32
GR_SAVE_GP = r33
@@ -106,447 +84,433 @@ GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Tag = r38
+.align 32
+.global scalbf
+
.section .text
-GLOBAL_IEEE754_ENTRY(scalbf)
+.proc scalbf
+.align 32
+
+scalbf:
+#ifdef _LIBC
+.global __ieee754_scalbf
+.type __ieee754_scalbf,@function
+__ieee754_scalbf:
+#endif
//
// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
//
{ .mfi
- getf.exp GR_signexp_N = FR_Floating_N // Get signexp of n
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fcvt.fx.trunc.s1 FR_N_float_int = FR_Floating_N // Get N in significand
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p7,p0 = FR_Floating_N, 0x0b // Test for n=unorm
- nop.i 0
+ alloc r32=ar.pfs,0,3,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Scratch = 0x019C3F,r0
}
//
-// Normalize n
+// Is y a NAN, INF, ZERO, +-?
//
{ .mfi
- mov GR_exp_mask = 0x1ffff // Exponent mask
- fnorm.s1 FR_Norm_N = FR_Floating_N
- nop.i 0
+ nop.m 999
+ fclass.m.unc p6,p0 = FR_Floating_N, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Scratch1 = 0x063BF,r0
}
;;
//
-// Is n NAN, INF, ZERO, +-?
+// Convert N to a fp integer
+// Normalize x
//
{ .mfi
- mov GR_big_exp = 0x1003e // Exponent at which n is integer
- fclass.m p9,p0 = FR_Floating_N, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_max_exp = 0x1007e // Exponent of maximum float
+ nop.m 0
+ fnorm.s1 FR_Norm_N = FR_Floating_N
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ nop.i 999
+};;
+
//
+// Create 2*big
+// Create 2**-big
// Normalize x
+// Branch on special values.
//
-{ .mfb
- nop.m 0
- fnorm.s1 FR_Norm_X = FR_Floating_X
-(p7) br.cond.spnt SCALBF_N_UNORM // Branch if n=unorm
-}
-;;
-
-SCALBF_COMMON1:
-// Main path continues. Also return here from u=unorm path.
-// Handle special cases if x = Nan, Inf, Zero
-{ .mfb
- nop.m 0
- fcmp.lt.s1 p7,p0 = FR_Floating_N, f0 // Test N negative
-(p6) br.cond.spnt SCALBF_NAN_INF_ZERO
+{ .mib
+ setf.exp FR_Big = GR_Scratch
+ nop.i 0
+(p6) br.cond.spnt L(SCALBF_NAN_INF_ZERO)
}
-;;
+{ .mib
+ setf.exp FR_NBig = GR_Scratch1
+ nop.i 0
+(p7) br.cond.spnt L(SCALBF_NAN_INF_ZERO)
+};;
-// Handle special cases if n = Nan, Inf, Zero
+//
+// Convert N to a fp integer
+// Create -35000
+//
{ .mfi
- getf.sig GR_N_as_int = FR_N_float_int // Get n from significand
- fclass.m p8,p0 = FR_Floating_X, 0x0b // Test for x=unorm
- mov GR_exp_sure_ou = 0x1000e // Exp_N where x*2^N sure over/under
-}
-{ .mfb
- mov GR_min_exp = 0x0ff81 // Exponent of minimum float
- fcvt.xf FR_N_float_int = FR_N_float_int // Convert N to FP integer
-(p9) br.cond.spnt SCALBF_NAN_INF_ZERO
-}
-;;
-
-{ .mmi
- and GR_exp_N = GR_exp_mask, GR_signexp_N // Get exponent of N
-(p7) sub GR_Big = r0, GR_Big // Limit for N
- nop.i 0
+ addl GR_Scratch = 1,r0
+ fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N
+ addl GR_NBig = -35000,r0
}
;;
-{ .mib
- cmp.lt p9,p0 = GR_exp_N, GR_big_exp // N possible non-integer?
- cmp.ge p6,p0 = GR_exp_N, GR_exp_sure_ou // N certain over/under?
-(p8) br.cond.spnt SCALBF_X_UNORM // Branch if x=unorm
+//
+// Put N if a GP register
+// Convert N_float_int to floating point value
+// Create 35000
+// Build the exponent Bias
+//
+{ .mii
+ getf.sig GR_N_as_int = FR_N_float_int
+ shl GR_Scratch = GR_Scratch,63
+ addl GR_Big = 35000,r0
}
-;;
+{ .mfi
+ addl GR_Bias = 0x0FFFF,r0
+ fcvt.xf FR_N_float_int = FR_N_float_int
+ nop.i 0
+};;
-SCALBF_COMMON2:
-// Main path continues. Also return here from x=unorm path.
-// Create biased exponent for 2**N
-{ .mmi
-(p6) mov GR_N_as_int = GR_Big // Limit N
-;;
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.i 0
+//
+// Catch those fp values that are beyond 2**64-1
+// Is N > 35000
+// Is N < -35000
+//
+{ .mfi
+ cmp.ne.unc p9,p10 = GR_N_as_int,GR_Scratch
+ nop.f 0
+ nop.i 0
}
-;;
+{ .mmi
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+ nop.i 0
+};;
+//
+// Is N really an int, only for those non-int indefinites?
+// Create exp bias.
+//
{ .mfi
- setf.exp FR_Two_N = GR_N_Biased // Form 2**N
-(p9) fcmp.neq.unc.s1 p9,p0 = FR_Norm_N, FR_N_float_int // Test if N an integer
- and GR_exp_X = GR_exp_mask, GR_signexp_X // Get exponent of X
-}
-;;
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+(p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
+ nop.i 0
+};;
//
-// Compute biased result exponent
-// Branch if N is not an integer
+// Branch and return if N is not an int.
+// Main path, create 2**N
//
-{ .mib
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- mov GR_min_den_exp = 0x0ff81 - 23 // Exponent of min denorm float
-(p9) br.cond.spnt SCALBF_N_NOT_INT
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.i 999
}
-;;
+{ .mfb
+ nop.m 0
+(p7) frcpa f8,p11 = f0,f0
+(p7) br.ret.spnt b0
+};;
//
-// Raise Denormal operand flag with compare
-// Do final operation
+// Set denormal on denormal input x and denormal input N
//
{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fcmp.ge.s0 p0,p11 = FR_Floating_X,FR_Floating_N // Dummy to set denorm
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
-(p9) br.cond.spnt SCALBF_UNDERFLOW // Branch if certain underflow
+ nop.m 999
+(p10)fcmp.ge.s1 p6,p8 = FR_Norm_N,f0
+ nop.i 0
+};;
+{ .mfi
+ nop.m 999
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ nop.i 999
}
-;;
+{ .mfi
+ nop.m 999
+ fcmp.ge.s0 p12,p13 = FR_Floating_N,f0
+ nop.i 0
+};;
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
+//
+// Adjust 2**N if N was very small or very large
+//
-{ .bbb
-(p6) br.cond.spnt SCALBF_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALBF_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALBF_POSSIBLE_UNDERFLOW // Branch if possible underflow
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0ff81-23 <= exp_Result < 0x0ff81
-SCALBF_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x1007e = exp_Result
-SCALBF_POSSIBLE_OVERFLOW:
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x000000000003007F
+};;
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x000000000001007F
+};;
-// Set up necessary status fields
+// Set up necessary status fields
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S3 user supplied status + FZ + TD (Underflows)
//
{ .mfi
- mov GR_pos_ov_limit = 0x1007f // Exponent for positive overflow
- fsetc.s3 0x7F,0x41
- nop.i 0
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
}
{ .mfi
- mov GR_neg_ov_limit = 0x3007f // Exponent for negative overflow
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
//
-// Do final operation with s2 and s3
+// Do final operation
//
{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
+ setf.exp FR_NBig = GR_Scratch
+ fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
}
{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
+ nop.m 999
+ fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
// Check for overflow or underflow.
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflow)
+// S3 user supplied status + FZ + TD (Underflow)
+//
+//
// Restore s3
// Restore s2
//
{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
}
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
//
// Is the result zero?
//
{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
+ addl GR_Tag = 55, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
//
// Detect masked underflow - Tiny + Inexact Only
//
{ .mfi
- nop.m 0
+ nop.m 999
(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
+ nop.i 999
+};;
//
// Is result bigger the allowed range?
// Branch out for underflow
//
{ .mfb
- nop.m 0
+(p6) addl GR_Tag = 56, r0
(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALBF_UNDERFLOW
-}
-;;
+(p6) br.cond.spnt L(SCALBF_UNDERFLOW)
+};;
//
// Branch out for overflow
//
-{ .bbb
-(p7) br.cond.spnt SCALBF_OVERFLOW
-(p9) br.cond.spnt SCALBF_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALBF_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 55, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(SCALBF_OVERFLOW)
+(p9) br.cond.spnt L(SCALBF_OVERFLOW)
+};;
-// Here if result underflows
-SCALBF_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 56, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
}
-;;
-SCALBF_NAN_INF_ZERO:
+L(SCALBF_NAN_INF_ZERO):
//
-// Before entry, N has been converted to a fp integer in significand of
-// FR_N_float_int
-//
-// Convert N_float_int to floating point value
-//
+// Convert N to a fp integer
+//
{ .mfi
- getf.sig GR_N_as_int = FR_N_float_int
- fclass.m p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
- nop.i 0
+ addl GR_Scratch = 1,r0
+ fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N
+ nop.i 999
}
{ .mfi
- addl GR_Scratch = 1,r0
- fcvt.xf FR_N_float_int = FR_N_float_int
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
- shl GR_Scratch = GR_Scratch,63
-}
-;;
-
+ nop.m 0
+ fclass.m.unc p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
+ nop.i 0
+};;
{ .mfi
- nop.m 0
- fclass.m p8,p0 = FR_Floating_N, 0x21 // @inf
- nop.i 0
-}
+ nop.m 0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
+ shl GR_Scratch = GR_Scratch,63
+};;
{ .mfi
- nop.m 0
- fclass.m p9,p0 = FR_Floating_N, 0x22 // @-inf
- nop.i 0
-}
-;;
+ nop.m 0
+ fclass.m.unc p8,p0 = FR_Floating_N, 0x21 // @inf
+ nop.i 0
+}
+ { .mfi
+ nop.m 0
+ fclass.m.unc p9,p0 = FR_Floating_N, 0x22 // @-inf
+ nop.i 0
+};;
//
// Either X or N is a Nan, return result and possible raise invalid.
//
{ .mfb
- nop.m 0
-(p6) fma.s.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
+ nop.m 0
+(p6) fma.s.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
(p6) br.ret.spnt b0
-}
-;;
-
+};;
{ .mfb
- nop.m 0
-(p7) fma.s.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
+ getf.sig GR_N_as_int = FR_N_float_int
+(p7) fma.s.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
(p7) br.ret.spnt b0
-}
-;;
+};;
//
// If N + Inf do something special
// For N = -Inf, create Int
//
{ .mfb
- nop.m 0
-(p8) fma.s.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0
-(p8) br.ret.spnt b0
+ nop.m 0
+(p8) fma.s.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0
+(p8) br.ret.spnt b0
}
{ .mfi
- nop.m 0
-(p9) fnma.s.s0 FR_Floating_N = FR_Floating_N, f1, f0
- nop.i 0
-}
-;;
+ nop.m 0
+(p9) fnma.s.s0 FR_Floating_N = FR_Floating_N, f1, f0
+ nop.i 0
+};;
//
// If N==-Inf,return x/(-N)
//
{ .mfb
- cmp.ne p7,p0 = GR_N_as_int,GR_Scratch
-(p9) frcpa.s0 FR_Result,p0 = FR_Floating_X,FR_Floating_N
-(p9) br.ret.spnt b0
-}
-;;
+ nop.m 0
+(p9) frcpa.s0 FR_Result,p6 = FR_Floating_X,FR_Floating_N
+(p9) br.ret.spnt b0
+};;
+
+//
+// Convert N_float_int to floating point value
+//
+{ .mfi
+ cmp.ne.unc p9,p0 = GR_N_as_int,GR_Scratch
+ fcvt.xf FR_N_float_int = FR_N_float_int
+ nop.i 0
+};;
//
// Is N an integer.
//
{ .mfi
- nop.m 0
-(p7) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
- nop.i 0
-}
-;;
+ nop.m 0
+(p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
+ nop.i 0
+};;
//
// If N not an int, return NaN and raise invalid.
//
{ .mfb
- nop.m 0
-(p7) frcpa.s0 FR_Result,p0 = f0,f0
-(p7) br.ret.spnt b0
-}
-;;
+ nop.m 0
+(p7) frcpa.s0 FR_Result,p6 = f0,f0
+(p7) br.ret.spnt b0
+};;
//
-// Always return x in other path.
+// Always return x in other path.
//
{ .mfb
- nop.m 0
- fma.s.s0 FR_Result = FR_Floating_X,f1,f0
- br.ret.sptk b0
-}
-;;
-
-// Here if n not int
-// Return NaN and raise invalid.
-SCALBF_N_NOT_INT:
-{ .mfb
- nop.m 0
- frcpa.s0 FR_Result,p0 = f0,f0
- br.ret.sptk b0
-}
-;;
-
-// Here if n=unorm
-SCALBF_N_UNORM:
-{ .mfb
- getf.exp GR_signexp_N = FR_Norm_N // Get signexp of normalized n
- fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N // Get N in significand
- br.cond.sptk SCALBF_COMMON1 // Return to main path
-}
-;;
+ nop.m 0
+ fma.s.s0 FR_Result = FR_Floating_X,f1,f0
+ br.ret.sptk b0
+};;
-// Here if x=unorm
-SCALBF_X_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALBF_COMMON2 // Return to main path
-}
-;;
+.endp scalbf
+ASM_SIZE_DIRECTIVE(scalbf)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__ieee754_scalbf)
+#endif
+.proc __libm_error_region
+__libm_error_region:
-GLOBAL_IEEE754_END(scalbf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+L(SCALBF_OVERFLOW):
+L(SCALBF_UNDERFLOW):
//
// Get stack address of N
//
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp
+ add GR_Parameter_Y=-32,sp
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
+ mov GR_SAVE_PFS=ar.pfs
}
//
-// Adjust sp
+// Adjust sp
//
{ .mfi
.fframe 64
- add sp=-64,sp
+ add sp=-64,sp
nop.f 0
- mov GR_SAVE_GP=gp
+ mov GR_SAVE_GP=gp
};;
//
-// Store N on stack in correct position
+// Store N on stack in correct position
// Locate the address of x on stack
//
{ .mmi
- stfs [GR_Parameter_Y] = FR_Norm_N,16
- add GR_Parameter_X = 16,sp
+ stfs [GR_Parameter_Y] = FR_Norm_N,16
+ add GR_Parameter_X = 16,sp
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
+ mov GR_SAVE_B0=b0
};;
//
@@ -555,45 +519,46 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
//
.body
{ .mib
- stfs [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ stfs [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0
}
{ .mib
- stfs [GR_Parameter_Y] = FR_Result
+ stfs [GR_Parameter_Y] = FR_Result
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
+ br.call.sptk b0=__libm_error_support#
};;
//
// Get location of result on stack
//
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
//
-// Get the new result
+// Get the new result
//
{ .mmi
- ldfs FR_Result = [GR_Parameter_RESULT]
+ ldfs FR_Result = [GR_Parameter_RESULT]
.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
};;
//
// Restore gp, ar.pfs and return
//
{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_scalbl.S b/sysdeps/ia64/fpu/e_scalbl.S
index 9b6467ff20..43eac7a2ad 100644
--- a/sysdeps/ia64/fpu/e_scalbl.S
+++ b/sysdeps/ia64/fpu/e_scalbl.S
@@ -1,10 +1,10 @@
.file "scalbl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,83 +20,61 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 Scalb completely reworked and now standalone version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/06/03 Improved performance
+// 2/02/00 Initial version
+// 1/26/01 Scalb completely reworked and now standalone version
//
// API
//==============================================================
-// long double = scalbl (long double x, long double n)
+// double-extended = scalbl (double-extended x, double-extended n)
// input floating point f8 and floating point f9
// output floating point f8
//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
// Returns x* 2**n using an fma and detects overflow
-// and underflow.
+// and underflow.
//
//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x13ffe -> Certain overflow
-// exp_Result = 0x13ffe -> Possible overflow
-// 0x0c001 <= exp_Result < 0x13ffe -> No over/underflow (main path)
-// 0x0c001 - 63 <= exp_Result < 0x0c001 -> Possible underflow
-// exp_Result < 0x0c001 - 63 -> Certain underflow
-FR_Big = f6
-FR_NBig = f7
+#include "libm_support.h"
+
FR_Floating_X = f8
FR_Result = f8
FR_Floating_N = f9
FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
+FR_Norm_N = f10
+FR_Result3 = f11
+FR_Norm_X = f12
FR_N_float_int = f13
-FR_Norm_N = f14
+FR_Two_N = f14
+FR_Two_to_Big = f15
+FR_Big = f6
+FR_NBig = f7
-GR_neg_ov_limit= r14
-GR_big_exp = r14
GR_N_Biased = r15
GR_Big = r16
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_exp_sure_ou = r19
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
GR_Bias = r20
GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-GR_Scratch = r28
-GR_signexp_N = r29
-GR_exp_N = r30
GR_SAVE_B0 = r32
GR_SAVE_GP = r33
@@ -106,447 +84,433 @@ GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Tag = r38
+.align 32
+.global scalbl
+
.section .text
-GLOBAL_IEEE754_ENTRY(scalbl)
+.proc scalbl
+.align 32
+
+scalbl:
+#ifdef _LIBC
+.global __ieee754_scalbl
+.type __ieee754_scalbl,@function
+__ieee754_scalbl:
+#endif
//
// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
//
{ .mfi
- getf.exp GR_signexp_N = FR_Floating_N // Get signexp of n
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fcvt.fx.trunc.s1 FR_N_float_int = FR_Floating_N // Get N in significand
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p7,p0 = FR_Floating_N, 0x0b // Test for n=unorm
- nop.i 0
+ alloc r32=ar.pfs,0,3,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Scratch = 0x019C3F,r0
}
//
-// Normalize n
+// Is y a NAN, INF, ZERO, +-?
//
{ .mfi
- mov GR_exp_mask = 0x1ffff // Exponent mask
- fnorm.s1 FR_Norm_N = FR_Floating_N
- nop.i 0
+ nop.m 999
+ fclass.m.unc p6,p0 = FR_Floating_N, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Scratch1 = 0x063BF,r0
}
;;
//
-// Is n NAN, INF, ZERO, +-?
+// Convert N to a fp integer
+// Normalize x
//
{ .mfi
- mov GR_big_exp = 0x1003e // Exponent at which n is integer
- fclass.m p9,p0 = FR_Floating_N, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_max_exp = 0x13ffe // Exponent of maximum long double
+ nop.m 0
+ fnorm.s1 FR_Norm_N = FR_Floating_N
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ nop.i 999
+};;
+
//
+// Create 2*big
+// Create 2**-big
// Normalize x
+// Branch on special values.
//
-{ .mfb
- nop.m 0
- fnorm.s1 FR_Norm_X = FR_Floating_X
-(p7) br.cond.spnt SCALBL_N_UNORM // Branch if n=unorm
-}
-;;
-
-SCALBL_COMMON1:
-// Main path continues. Also return here from u=unorm path.
-// Handle special cases if x = Nan, Inf, Zero
-{ .mfb
- nop.m 0
- fcmp.lt.s1 p7,p0 = FR_Floating_N, f0 // Test N negative
-(p6) br.cond.spnt SCALBL_NAN_INF_ZERO
+{ .mib
+ setf.exp FR_Big = GR_Scratch
+ nop.i 0
+(p6) br.cond.spnt L(SCALBL_NAN_INF_ZERO)
}
-;;
+{ .mib
+ setf.exp FR_NBig = GR_Scratch1
+ nop.i 0
+(p7) br.cond.spnt L(SCALBL_NAN_INF_ZERO)
+};;
-// Handle special cases if n = Nan, Inf, Zero
+//
+// Convert N to a fp integer
+// Create -35000
+//
{ .mfi
- getf.sig GR_N_as_int = FR_N_float_int // Get n from significand
- fclass.m p8,p0 = FR_Floating_X, 0x0b // Test for x=unorm
- mov GR_exp_sure_ou = 0x1000e // Exp_N where x*2^N sure over/under
-}
-{ .mfb
- mov GR_min_exp = 0x0c001 // Exponent of minimum long double
- fcvt.xf FR_N_float_int = FR_N_float_int // Convert N to FP integer
-(p9) br.cond.spnt SCALBL_NAN_INF_ZERO
-}
-;;
-
-{ .mmi
- and GR_exp_N = GR_exp_mask, GR_signexp_N // Get exponent of N
-(p7) sub GR_Big = r0, GR_Big // Limit for N
- nop.i 0
+ addl GR_Scratch = 1,r0
+ fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N
+ addl GR_NBig = -35000,r0
}
;;
-{ .mib
- cmp.lt p9,p0 = GR_exp_N, GR_big_exp // N possible non-integer?
- cmp.ge p6,p0 = GR_exp_N, GR_exp_sure_ou // N certain over/under?
-(p8) br.cond.spnt SCALBL_X_UNORM // Branch if x=unorm
+//
+// Put N if a GP register
+// Convert N_float_int to floating point value
+// Create 35000
+// Build the exponent Bias
+//
+{ .mii
+ getf.sig GR_N_as_int = FR_N_float_int
+ shl GR_Scratch = GR_Scratch,63
+ addl GR_Big = 35000,r0
}
-;;
+{ .mfi
+ addl GR_Bias = 0x0FFFF,r0
+ fcvt.xf FR_N_float_int = FR_N_float_int
+ nop.i 0
+};;
-SCALBL_COMMON2:
-// Main path continues. Also return here from x=unorm path.
-// Create biased exponent for 2**N
-{ .mmi
-(p6) mov GR_N_as_int = GR_Big // Limit N
-;;
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.i 0
+//
+// Catch those fp values that are beyond 2**64-1
+// Is N > 35000
+// Is N < -35000
+//
+{ .mfi
+ cmp.ne.unc p9,p10 = GR_N_as_int,GR_Scratch
+ nop.f 0
+ nop.i 0
}
-;;
+{ .mmi
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+ nop.i 0
+};;
+//
+// Is N really an int, only for those non-int indefinites?
+// Create exp bias.
+//
{ .mfi
- setf.exp FR_Two_N = GR_N_Biased // Form 2**N
-(p9) fcmp.neq.unc.s1 p9,p0 = FR_Norm_N, FR_N_float_int // Test if N an integer
- and GR_exp_X = GR_exp_mask, GR_signexp_X // Get exponent of X
-}
-;;
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+(p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
+ nop.i 0
+};;
//
-// Compute biased result exponent
-// Branch if N is not an integer
+// Branch and return if N is not an int.
+// Main path, create 2**N
//
-{ .mib
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- mov GR_min_den_exp = 0x0c001 - 63 // Exp of min denorm long dble
-(p9) br.cond.spnt SCALBL_N_NOT_INT
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.i 999
}
-;;
+{ .mfb
+ nop.m 0
+(p7) frcpa f8,p11 = f0,f0
+(p7) br.ret.spnt b0
+};;
//
-// Raise Denormal operand flag with compare
-// Do final operation
+// Set denormal on denormal input x and denormal input N
//
{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fcmp.ge.s0 p0,p11 = FR_Floating_X,FR_Floating_N // Dummy to set denorm
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
-(p9) br.cond.spnt SCALBL_UNDERFLOW // Branch if certain underflow
+ nop.m 999
+(p10)fcmp.ge.s1 p6,p8 = FR_Norm_N,f0
+ nop.i 0
+};;
+{ .mfi
+ nop.m 999
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ nop.i 999
}
-;;
+{ .mfi
+ nop.m 999
+ fcmp.ge.s0 p12,p13 = FR_Floating_N,f0
+ nop.i 0
+};;
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
+//
+// Adjust 2**N if N was very small or very large
+//
-{ .bbb
-(p6) br.cond.spnt SCALBL_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALBL_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALBL_POSSIBLE_UNDERFLOW // Branch if possible underflow
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0c001-63 <= exp_Result < 0x0c001
-SCALBL_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x13ffe = exp_Result
-SCALBL_POSSIBLE_OVERFLOW:
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x0000000000033FFF
+};;
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x0000000000013FFF
+};;
-// Set up necessary status fields
+// Set up necessary status fields
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S3 user supplied status + FZ + TD (Underflows)
//
{ .mfi
- mov GR_pos_ov_limit = 0x13fff // Exponent for positive overflow
- fsetc.s3 0x7F,0x41
- nop.i 0
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
}
{ .mfi
- mov GR_neg_ov_limit = 0x33fff // Exponent for negative overflow
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
//
-// Do final operation with s2 and s3
+// Do final operation
//
{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
+ setf.exp FR_NBig = GR_Scratch
+ fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
}
{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
+ nop.m 999
+ fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
// Check for overflow or underflow.
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflow)
+// S3 user supplied status + FZ + TD (Underflow)
+//
+//
// Restore s3
// Restore s2
//
{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
}
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
//
// Is the result zero?
//
{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
+ addl GR_Tag = 51, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
//
// Detect masked underflow - Tiny + Inexact Only
//
{ .mfi
- nop.m 0
+ nop.m 999
(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
+ nop.i 999
+};;
//
// Is result bigger the allowed range?
// Branch out for underflow
//
{ .mfb
- nop.m 0
+(p6) addl GR_Tag = 52, r0
(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALBL_UNDERFLOW
-}
-;;
+(p6) br.cond.spnt L(SCALBL_UNDERFLOW)
+};;
//
// Branch out for overflow
//
-{ .bbb
-(p7) br.cond.spnt SCALBL_OVERFLOW
-(p9) br.cond.spnt SCALBL_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALBL_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 51, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(SCALBL_OVERFLOW)
+(p9) br.cond.spnt L(SCALBL_OVERFLOW)
+};;
-// Here if result underflows
-SCALBL_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 52, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
}
-;;
-SCALBL_NAN_INF_ZERO:
+L(SCALBL_NAN_INF_ZERO):
//
-// Before entry, N has been converted to a fp integer in significand of
-// FR_N_float_int
-//
-// Convert N_float_int to floating point value
-//
+// Convert N to a fp integer
+//
{ .mfi
- getf.sig GR_N_as_int = FR_N_float_int
- fclass.m p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
- nop.i 0
+ addl GR_Scratch = 1,r0
+ fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N
+ nop.i 999
}
{ .mfi
- addl GR_Scratch = 1,r0
- fcvt.xf FR_N_float_int = FR_N_float_int
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
- shl GR_Scratch = GR_Scratch,63
-}
-;;
-
+ nop.m 0
+ fclass.m.unc p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
+ nop.i 0
+};;
{ .mfi
- nop.m 0
- fclass.m p8,p0 = FR_Floating_N, 0x21 // @inf
- nop.i 0
-}
+ nop.m 0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
+ shl GR_Scratch = GR_Scratch,63
+};;
{ .mfi
- nop.m 0
- fclass.m p9,p0 = FR_Floating_N, 0x22 // @-inf
- nop.i 0
-}
-;;
+ nop.m 0
+ fclass.m.unc p8,p0 = FR_Floating_N, 0x21 // @inf
+ nop.i 0
+}
+ { .mfi
+ nop.m 0
+ fclass.m.unc p9,p0 = FR_Floating_N, 0x22 // @-inf
+ nop.i 0
+};;
//
// Either X or N is a Nan, return result and possible raise invalid.
//
{ .mfb
- nop.m 0
-(p6) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
+ nop.m 0
+(p6) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
(p6) br.ret.spnt b0
-}
-;;
-
+};;
{ .mfb
- nop.m 0
-(p7) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
+ getf.sig GR_N_as_int = FR_N_float_int
+(p7) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0
(p7) br.ret.spnt b0
-}
-;;
+};;
//
// If N + Inf do something special
// For N = -Inf, create Int
//
{ .mfb
- nop.m 0
-(p8) fma.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0
-(p8) br.ret.spnt b0
+ nop.m 0
+(p8) fma.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0
+(p8) br.ret.spnt b0
}
{ .mfi
- nop.m 0
-(p9) fnma.s0 FR_Floating_N = FR_Floating_N, f1, f0
- nop.i 0
-}
-;;
+ nop.m 0
+(p9) fnma.s0 FR_Floating_N = FR_Floating_N, f1, f0
+ nop.i 0
+};;
//
// If N==-Inf,return x/(-N)
//
{ .mfb
- cmp.ne p7,p0 = GR_N_as_int,GR_Scratch
-(p9) frcpa.s0 FR_Result,p0 = FR_Floating_X,FR_Floating_N
-(p9) br.ret.spnt b0
-}
-;;
+ nop.m 0
+(p9) frcpa.s0 FR_Result,p6 = FR_Floating_X,FR_Floating_N
+(p9) br.ret.spnt b0
+};;
+
+//
+// Convert N_float_int to floating point value
+//
+{ .mfi
+ cmp.ne.unc p9,p0 = GR_N_as_int,GR_Scratch
+ fcvt.xf FR_N_float_int = FR_N_float_int
+ nop.i 0
+};;
//
// Is N an integer.
//
{ .mfi
- nop.m 0
-(p7) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
- nop.i 0
-}
-;;
+ nop.m 0
+(p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
+ nop.i 0
+};;
//
// If N not an int, return NaN and raise invalid.
//
{ .mfb
- nop.m 0
-(p7) frcpa.s0 FR_Result,p0 = f0,f0
-(p7) br.ret.spnt b0
-}
-;;
+ nop.m 0
+(p7) frcpa.s0 FR_Result,p6 = f0,f0
+(p7) br.ret.spnt b0
+};;
//
-// Always return x in other path.
+// Always return x in other path.
//
{ .mfb
- nop.m 0
- fma.s0 FR_Result = FR_Floating_X,f1,f0
- br.ret.sptk b0
-}
-;;
-
-// Here if n not int
-// Return NaN and raise invalid.
-SCALBL_N_NOT_INT:
-{ .mfb
- nop.m 0
- frcpa.s0 FR_Result,p0 = f0,f0
- br.ret.sptk b0
-}
-;;
-
-// Here if n=unorm
-SCALBL_N_UNORM:
-{ .mfb
- getf.exp GR_signexp_N = FR_Norm_N // Get signexp of normalized n
- fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N // Get N in significand
- br.cond.sptk SCALBL_COMMON1 // Return to main path
-}
-;;
+ nop.m 0
+ fma.s0 FR_Result = FR_Floating_X,f1,f0
+ br.ret.sptk b0
+};;
-// Here if x=unorm
-SCALBL_X_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALBL_COMMON2 // Return to main path
-}
-;;
+.endp scalbl
+ASM_SIZE_DIRECTIVE(scalbl)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__ieee754_scalbl)
+#endif
+.proc __libm_error_region
+__libm_error_region:
-GLOBAL_IEEE754_END(scalbl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+L(SCALBL_OVERFLOW):
+L(SCALBL_UNDERFLOW):
//
// Get stack address of N
//
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp
+ add GR_Parameter_Y=-32,sp
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
+ mov GR_SAVE_PFS=ar.pfs
}
//
-// Adjust sp
+// Adjust sp
//
{ .mfi
.fframe 64
- add sp=-64,sp
+ add sp=-64,sp
nop.f 0
- mov GR_SAVE_GP=gp
+ mov GR_SAVE_GP=gp
};;
//
-// Store N on stack in correct position
+// Store N on stack in correct position
// Locate the address of x on stack
//
{ .mmi
- stfe [GR_Parameter_Y] = FR_Norm_N,16
- add GR_Parameter_X = 16,sp
+ stfe [GR_Parameter_Y] = FR_Norm_N,16
+ add GR_Parameter_X = 16,sp
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
+ mov GR_SAVE_B0=b0
};;
//
@@ -555,45 +519,46 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
//
.body
{ .mib
- stfe [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ stfe [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0
}
{ .mib
- stfe [GR_Parameter_Y] = FR_Result
+ stfe [GR_Parameter_Y] = FR_Result
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
+ br.call.sptk b0=__libm_error_support#
};;
//
// Get location of result on stack
//
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
//
-// Get the new result
+// Get the new result
//
{ .mmi
- ldfe FR_Result = [GR_Parameter_RESULT]
+ ldfe FR_Result = [GR_Parameter_RESULT]
.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
};;
//
// Restore gp, ar.pfs and return
//
{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_sinh.S b/sysdeps/ia64/fpu/e_sinh.S
index f60907b72b..4415dc7524 100644
--- a/sysdeps/ia64/fpu/e_sinh.S
+++ b/sysdeps/ia64/fpu/e_sinh.S
@@ -1,10 +1,10 @@
.file "sinh.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,840 +20,1249 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
-// 01/22/01 Fixed to set inexact flag for small args.
-// 05/02/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/20/02 Improved speed with new algorithm
-// 03/31/05 Reformatted delimiters between data tables
-
+// 1/22/01 Fixed to set inexact flag for small args.
+//
// API
//==============================================================
-// double sinh(double)
-
+// double = sinh(double)
+// input floating point f8
+// output floating point f8
+//
+// Registers used
+//==============================================================
+// general registers:
+// r32 -> r47
+// predicate registers used:
+// p6 p7 p8 p9
+// floating-point registers used:
+// f9 -> f15; f32 -> f45;
+// f8 has input, then output
+//
// Overview of operation
//==============================================================
-// Case 1: 0 < |x| < 2^-60
-// Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding
+// There are four paths
+// 1. |x| < 0.25 SINH_BY_POLY
+// 2. |x| < 32 SINH_BY_TBL
+// 3. |x| < 2^14 SINH_BY_EXP
+// 4. |x_ >= 2^14 SINH_HUGE
+//
+// For double extended we get infinity for x >= 400c b174 ddc0 31ae c0ea
+// >= 1.0110001.... x 2^13
+// >= 11357.2166
+//
+// But for double we get infinity for x >= 408633ce8fb9f87e
+// >= 1.0110...x 2^9
+// >= +7.10476e+002
+//
+// And for single we get infinity for x >= 42b3a496
+// >= 1.0110... 2^6
+// >= 89.8215
//
-// Case 2: 2^-60 < |x| < 0.25
-// Evaluate sinh(x) by a 13th order polynomial
-// Care is take for the order of multiplication; and A1 is not exactly 1/3!,
-// A2 is not exactly 1/5!, etc.
-// sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9 + A5*x^11 + A6*x^13)
+// SAFE: If there is danger of overflow set SAFE to 0
+// NOT implemented: if there is danger of underflow, set SAFE to 0
+// SAFE for all paths listed below
//
-// Case 3: 0.25 < |x| < 710.47586
-// Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2.
-// The algorithm for exp is described as below. There are a number of
-// economies from evaluating both exp(x) and exp(-x). Although we
-// are evaluating both quantities, only where the quantities diverge do we
-// duplicate the computations. The basic algorithm for exp(x) is described
-// below.
+// 1. SINH_BY_POLY
+// ===============
+// If |x| is less than the tiny threshold, then clear SAFE
+// For double, the tiny threshold is -1022 = -0x3fe => -3fe + ffff = fc01
+// register-biased, this is fc01
+// For single, the tiny threshold is -126 = -7e => -7e + ffff = ff81
+// If |x| < tiny threshold, set SAFE = 0
//
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 128/log2
-// n = int(w)
-// x = n log2/128 + r + delta
+// 2. SINH_BY_TBL
+// =============
+// SAFE: SAFE is always 1 for TBL;
+//
+// 3. SINH_BY_EXP
+// ==============
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// r34 has N-1; 16382 is in register biased form, 0x13ffd
+// There is danger of double overflow if N-1 > 0x3fe
+// in register biased form, 0x103fd
+// Analagously, there is danger of single overflow if N-1 > 0x7e
+// in register biased form, 0x1007d
+// SAFE: If there is danger of overflow set SAFE to 0
+//
+// 4. SINH_HUGE
+// ============
+// SAFE: SAFE is always 0 for HUGE
-// n = 128M + index_1 + 2^4 index_2
-// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
+#include "libm_support.h"
-// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
-// Construct 2^M
-// Get 2^(index_1/128) from table_1;
-// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by 5th order polynomial
-// r = x - n (log2/128)_high
-// delta = - n (log2/128)_low
-// Calculate exp(delta) as 1 + delta
+//
+// Assembly macros
+//==============================================================
+sinh_FR_X = f44
+sinh_FR_X2 = f9
+sinh_FR_X4 = f10
+sinh_FR_SGNX = f40
+sinh_FR_all_ones = f45
+sinh_FR_tmp = f42
+sinh_FR_Inv_log2by64 = f9
+sinh_FR_log2by64_lo = f11
+sinh_FR_log2by64_hi = f10
-// Special values
-//==============================================================
-// sinh(+0) = +0
-// sinh(-0) = -0
+sinh_FR_A1 = f9
+sinh_FR_A2 = f10
+sinh_FR_A3 = f11
-// sinh(+qnan) = +qnan
-// sinh(-qnan) = -qnan
-// sinh(+snan) = +qnan
-// sinh(-snan) = -qnan
+sinh_FR_Rcub = f12
+sinh_FR_M_temp = f13
+sinh_FR_R_temp = f13
+sinh_FR_Rsq = f13
+sinh_FR_R = f14
-// sinh(-inf) = -inf
-// sinh(+inf) = +inf
+sinh_FR_M = f38
-// Overflow and Underflow
-//=======================
-// sinh(x) = largest double normal when
-// |x| = 710.47586 = 0x408633ce8fb9f87d
-//
-// Underflow is handled as described in case 1 above
+sinh_FR_B1 = f15
+sinh_FR_B2 = f32
+sinh_FR_B3 = f33
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6 -> f15, f32 -> f61
+sinh_FR_peven_temp1 = f34
+sinh_FR_peven_temp2 = f35
+sinh_FR_peven = f36
-// General registers used:
-// r14 -> r40
+sinh_FR_podd_temp1 = f34
+sinh_FR_podd_temp2 = f35
+sinh_FR_podd = f37
-// Predicate registers used:
-// p6 -> p15
+sinh_FR_poly_podd_temp1 = f11
+sinh_FR_poly_podd_temp2 = f13
+sinh_FR_poly_peven_temp1 = f11
+sinh_FR_poly_peven_temp2 = f13
-// Assembly macros
-//==============================================================
+sinh_FR_J_temp = f9
+sinh_FR_J = f10
+
+sinh_FR_Mmj = f39
+
+sinh_FR_N_temp1 = f11
+sinh_FR_N_temp2 = f12
+sinh_FR_N = f13
+
+sinh_FR_spos = f14
+sinh_FR_sneg = f15
+
+sinh_FR_Tjhi = f32
+sinh_FR_Tjlo = f33
+sinh_FR_Tmjhi = f34
+sinh_FR_Tmjlo = f35
+
+sinh_GR_mJ = r35
+sinh_GR_J = r36
+
+sinh_AD_mJ = r38
+sinh_AD_J = r39
+sinh_GR_all_ones = r40
+
+sinh_FR_S_hi = f9
+sinh_FR_S_hi_temp = f10
+sinh_FR_S_lo_temp1 = f11
+sinh_FR_S_lo_temp2 = f12
+sinh_FR_S_lo_temp3 = f13
+
+sinh_FR_S_lo = f38
+sinh_FR_C_hi = f39
+
+sinh_FR_C_hi_temp1 = f10
+sinh_FR_Y_hi = f11
+sinh_FR_Y_lo_temp = f12
+sinh_FR_Y_lo = f13
+sinh_FR_SINH = f9
+
+sinh_FR_P1 = f14
+sinh_FR_P2 = f15
+sinh_FR_P3 = f32
+sinh_FR_P4 = f33
+sinh_FR_P5 = f34
+sinh_FR_P6 = f35
+
+sinh_FR_TINY_THRESH = f9
-rRshf = r14
-rN_neg = r14
-rAD_TB1 = r15
-rAD_TB2 = r16
-rAD_P = r17
-rN = r18
-rIndex_1 = r19
-rIndex_2_16 = r20
-rM = r21
-rBiased_M = r21
-rSig_inv_ln2 = r22
-rIndex_1_neg = r22
-rExp_bias = r23
-rExp_bias_minus_1 = r23
-rExp_mask = r24
-rTmp = r24
-rGt_ln = r24
-rIndex_2_16_neg = r24
-rM_neg = r25
-rBiased_M_neg = r25
-rRshf_2to56 = r26
-rAD_T1_neg = r26
-rExp_2tom56 = r28
-rAD_T2_neg = r28
-rAD_T1 = r29
-rAD_T2 = r30
-rSignexp_x = r31
-rExp_x = r31
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-fRSHF_2TO56 = f6
-fINV_LN2_2TO63 = f7
-fW_2TO56_RSH = f9
-f2TOM56 = f11
-fP5 = f12
-fP4 = f13
-fP3 = f14
-fP2 = f15
-
-fLn2_by_128_hi = f33
-fLn2_by_128_lo = f34
-
-fRSHF = f35
-fNfloat = f36
-fNormX = f37
-fR = f38
-fF = f39
-
-fRsq = f40
-f2M = f41
-fS1 = f42
-fT1 = f42
-fS2 = f43
-fT2 = f43
-fS = f43
-fWre_urm_f8 = f44
-fAbsX = f44
-
-fMIN_DBL_OFLOW_ARG = f45
-fMAX_DBL_NORM_ARG = f46
-fXsq = f47
-fX4 = f48
-fGt_pln = f49
-fTmp = f49
-
-fP54 = f50
-fP5432 = f50
-fP32 = f51
-fP = f52
-fP54_neg = f53
-fP5432_neg = f53
-fP32_neg = f54
-fP_neg = f55
-fF_neg = f56
-
-f2M_neg = f57
-fS1_neg = f58
-fT1_neg = f58
-fS2_neg = f59
-fT2_neg = f59
-fS_neg = f59
-fExp = f60
-fExp_neg = f61
-
-fA6 = f50
-fA65 = f50
-fA6543 = f50
-fA654321 = f50
-fA5 = f51
-fA4 = f52
-fA43 = f52
-fA3 = f53
-fA2 = f54
-fA21 = f54
-fA1 = f55
-fX3 = f56
+sinh_FR_SINH_temp = f10
+sinh_FR_SCALE = f11
+
+sinh_FR_signed_hi_lo = f10
+
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
.align 16
+double_sinh_arg_reduction:
+ASM_TYPE_DIRECTIVE(double_sinh_arg_reduction,@object)
+ data8 0xB8AA3B295C17F0BC, 0x00004005
+ data8 0xB17217F7D1000000, 0x00003FF8
+ data8 0xCF79ABC9E3B39804, 0x00003FD0
+ASM_SIZE_DIRECTIVE(double_sinh_arg_reduction)
+
+double_sinh_p_table:
+ASM_TYPE_DIRECTIVE(double_sinh_p_table,@object)
+ data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC
+ data8 0x8888888888888412, 0x00003FF8
+ data8 0xD00D00D00D4D39F2, 0x00003FF2
+ data8 0xB8EF1D28926D8891, 0x00003FEC
+ data8 0xD732377688025BE9, 0x00003FE5
+ data8 0xB08AF9AE78C1239F, 0x00003FDE
+ASM_SIZE_DIRECTIVE(double_sinh_p_table)
+
+double_sinh_ab_table:
+ASM_TYPE_DIRECTIVE(double_sinh_ab_table,@object)
+ data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
+ data8 0x88888888884ECDD5, 0x00003FF8
+ data8 0xD00D0C6DCC26A86B, 0x00003FF2
+ data8 0x8000000000000002, 0x00003FFE
+ data8 0xAAAAAAAAAA402C77, 0x00003FFA
+ data8 0xB60B6CC96BDB144D, 0x00003FF5
+ASM_SIZE_DIRECTIVE(double_sinh_ab_table)
+
+double_sinh_j_table:
+ASM_TYPE_DIRECTIVE(double_sinh_j_table,@object)
+ data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
+ data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
+ data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
+ data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
+ data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
+ data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
+ data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
+ data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
+ data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
+ data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
+ data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
+ data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
+ data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
+ data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
+ data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
+ data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
+ data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
+ data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
+ data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
+ data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
+ data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
+ data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
+ data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
+ data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
+ data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
+ data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
+ data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
+ data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
+ data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
+ data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
+ data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
+ data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
+ data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
+ data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
+ data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
+ data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
+ data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
+ data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
+ data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
+ data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
+ data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
+ data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
+ data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
+ data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
+ data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
+ data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
+ data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
+ data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
+ data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
+ data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
+ data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
+ data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
+ data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
+ data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
+ data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
+ data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
+ data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
+ data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
+ data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
+ data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
+ data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
+ data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
+ data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
+ data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
+ data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
+ASM_SIZE_DIRECTIVE(double_sinh_j_table)
+
+.align 32
+.global sinh#
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
+.section .text
+.proc sinh#
+.align 32
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*128/ln2 into the rightmost bits of the significand.
-// The result of this fma is fW_2TO56_RSH.
-// 2. fRSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
-// the integer part of w, n, as a floating-point number.
-// The result of this fms is fNfloat.
-
-
-LOCAL_OBJECT_START(exp_table_1)
-data8 0x408633ce8fb9f87e // smallest dbl overflow arg
-data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_table_2)
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
-
-
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P5
-data8 0x3fa55555d787761c //P4
-data8 0x3fc5555555555414 //P3
-data8 0x3fdffffffffffd6a //P2
-LOCAL_OBJECT_END(exp_p_table)
-
-LOCAL_OBJECT_START(sinh_p_table)
-data8 0xB08AF9AE78C1239F, 0x00003FDE // A6
-data8 0xB8EF1D28926D8891, 0x00003FEC // A4
-data8 0x8888888888888412, 0x00003FF8 // A2
-data8 0xD732377688025BE9, 0x00003FE5 // A5
-data8 0xD00D00D00D4D39F2, 0x00003FF2 // A3
-data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // A1
-LOCAL_OBJECT_END(sinh_p_table)
+sinh:
+#ifdef _LIBC
+.global __ieee754_sinh
+.type __ieee754_sinh,@function
+__ieee754_sinh:
+#endif
+// X infinity or NAN?
+// Take invalid fault if enabled
-.section .text
-GLOBAL_IEEE754_ENTRY(sinh)
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
-}
-{ .mlx
- addl rAD_TB1 = @ltoff(exp_table_1), gp
- movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
+{ .mfi
+ alloc r32 = ar.pfs,0,12,4,0
+(p0) fclass.m.unc p6,p0 = f8, 0xe3 //@qnan | @snan | @inf
+ mov sinh_GR_all_ones = -1
}
;;
-{ .mfi
- ld8 rAD_TB1 = [rAD_TB1]
- fclass.m p6,p0 = f8,0x0b // Test for x=unorm
- mov rExp_mask = 0x1ffff
+
+{ .mfb
+ nop.m 999
+(p6) fma.d.s0 f8 = f8,f1,f8
+(p6) br.ret.spnt b0 ;;
}
+
+// Put 0.25 in f9; p6 true if x < 0.25
+// Make constant that will generate inexact when squared
+{ .mlx
+ setf.sig sinh_FR_all_ones = sinh_GR_all_ones
+(p0) movl r32 = 0x000000000000fffd ;;
+}
+
{ .mfi
- mov rExp_bias = 0xffff
- fnorm.s1 fNormX = f8
- mov rExp_2tom56 = 0xffff-56
+(p0) setf.exp f9 = r32
+(p0) fclass.m.unc p7,p0 = f8, 0x07 //@zero
+ nop.i 999 ;;
}
-;;
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
+{ .mfb
+ nop.m 999
+(p0) fmerge.s sinh_FR_X = f0,f8
+(p7) br.ret.spnt b0 ;;
+}
+// Identify denormal operands.
{ .mfi
- setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
- fclass.m p8,p0 = f8,0x07 // Test for x=0
- nop.i 999
+ nop.m 999
+ fclass.m.unc p10,p0 = f8, 0x09 // + denorm
+ nop.i 999
+};;
+{ .mfi
+ nop.m 999
+ fclass.m.unc p11,p0 = f8, 0x0a // - denorm
+ nop.i 999
}
-{ .mlx
- setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
- movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.s sinh_FR_SGNX = f8,f1
+ nop.i 999 ;;
}
-;;
{ .mfi
- ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
- fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT
- nop.i 0
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
+ nop.i 999 ;;
}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.sptk L(SINH_BY_TBL) ;;
+}
+
+
+L(SINH_BY_POLY):
+
+// POLY cannot overflow so there is no need to call __libm_error_support
+// Set tiny_SAFE (p7) to 1(0) if answer is not tiny
+// Currently we do not use tiny_SAFE. So the setting of tiny_SAFE is
+// commented out.
+//(p0) movl r32 = 0x000000000000fc01
+//(p0) setf.exp f10 = r32
+//(p0) fcmp.lt.unc.s1 p6,p7 = f8,f10
+// Here is essentially the algorithm for SINH_BY_POLY. Care is take for the order
+// of multiplication; and P_1 is not exactly 1/3!, P_2 is not exactly 1/5!, etc.
+// Note that ax = |x|
+// sinh(x) = sign * (series(e^x) - series(e^-x))/2
+// = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11! + ax^13/13!)
+// = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
+// + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ) )
+// = sign * (ax + ax*p_odd + (ax*p_even))
+// = sign * (ax + Y_lo)
+// sinh(x) = sign * (Y_hi + Y_lo)
+// Get the values of P_x from the table
{ .mfb
- setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
- nop.f 0
-(p6) br.cond.spnt SINH_UNORM // Branch if x=unorm
+(p0) addl r34 = @ltoff(double_sinh_p_table), gp
+(p10) fma.d.s0 f8 = f8,f8,f8
+(p10) br.ret.spnt b0
}
;;
-SINH_COMMON:
-{ .mfi
- ldfe fLn2_by_128_hi = [rAD_TB1],16
- nop.f 0
- nop.i 0
-}
{ .mfb
- setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
- nop.f 0
-(p8) br.ret.spnt b0 // Exit for x=0, result=x
+ ld8 r34 = [r34]
+(p11) fnma.d.s0 f8 = f8,f8,f8
+(p11) br.ret.spnt b0
}
;;
-{ .mfi
- ldfe fLn2_by_128_lo = [rAD_TB1],16
- nop.f 0
- nop.i 0
+// Calculate sinh_FR_X2 = ax*ax and sinh_FR_X4 = ax*ax*ax*ax
+{ .mmf
+ nop.m 999
+(p0) ldfe sinh_FR_P1 = [r34],16
+(p0) fma.s1 sinh_FR_X2 = sinh_FR_X, sinh_FR_X, f0 ;;
}
-{ .mfb
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
-(p10) fma.d.s0 f8 = f8,f1,f0 // Result if x=inf, nan, NaT
-(p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT
+
+{ .mmi
+(p0) ldfe sinh_FR_P2 = [r34],16 ;;
+(p0) ldfe sinh_FR_P3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_P4 = [r34],16 ;;
+(p0) ldfe sinh_FR_P5 = [r34],16
+ nop.i 999 ;;
}
-;;
-// After that last load rAD_TB1 points to the beginning of table 1
{ .mfi
- nop.m 0
- fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
+(p0) ldfe sinh_FR_P6 = [r34],16
+(p0) fma.s1 sinh_FR_X4 = sinh_FR_X2, sinh_FR_X2, f0
+ nop.i 999 ;;
}
-;;
+// Calculate sinh_FR_podd = p_odd and sinh_FR_peven = p_even
{ .mfi
- nop.m 0
- fmerge.s fAbsX = f0, fNormX // Form |x|
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_podd_temp1 = sinh_FR_X4, sinh_FR_P5, sinh_FR_P3
+ nop.i 999 ;;
}
-{ .mfb
- cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
- fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
-(p7) br.cond.spnt SINH_SMALL // Branch if 0 < |x| < 2^-2
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_podd_temp2 = sinh_FR_X4, sinh_FR_poly_podd_temp1, sinh_FR_P1
+ nop.i 999
}
-;;
-// W = X * Inv_log2_by_128
-// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
-// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_peven_temp1 = sinh_FR_X4, sinh_FR_P6, sinh_FR_P4
+ nop.i 999 ;;
+}
{ .mfi
- add rAD_P = 0x180, rAD_TB1
- fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
- add rAD_TB2 = 0x100, rAD_TB1
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd = sinh_FR_X2, sinh_FR_poly_podd_temp2, f0
+ nop.i 999
}
-;;
-// Divide arguments into the following categories:
-// Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG
-// Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
-// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
-//
-// If the input is really a double arg, then there will never be
-// "Possible Overflow" arguments.
-//
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_peven_temp2 = sinh_FR_X4, sinh_FR_poly_peven_temp1, sinh_FR_P2
+ nop.i 999 ;;
+}
{ .mfi
- ldfpd fP5, fP4 = [rAD_P] ,16
- fcmp.ge.s1 p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven = sinh_FR_X4, sinh_FR_poly_peven_temp2, f0
+ nop.i 999 ;;
}
-;;
-// Nfloat = round_int(W)
-// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into rN.
+// Calculate sinh_FR_Y_lo = ax*p_odd + (ax*p_even)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_X, sinh_FR_peven, f0
+ nop.i 999 ;;
+}
-// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
-// Thus, fNfloat contains the floating point version of N
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_X, sinh_FR_podd, sinh_FR_Y_lo_temp
+ nop.i 999 ;;
+}
+// Calculate sinh_FR_SINH = Y_hi + Y_lo. Note that ax = Y_hi
{ .mfi
- ldfpd fP3, fP2 = [rAD_P]
-(p14) fcmp.gt.unc.s1 p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH = sinh_FR_X, f1, sinh_FR_Y_lo
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
-(p15) br.cond.spnt SINH_CERTAIN_OVERFLOW
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999
}
-;;
-{ .mfi
- getf.sig rN = fW_2TO56_RSH
- nop.f 0
- mov rExp_bias_minus_1 = 0xfffe
+// Calculate f8 = sign * (Y_hi + Y_lo)
+// Go to return
+{ .mfb
+ nop.m 999
+(p0) fma.d.s0 f8 = sinh_FR_SGNX,sinh_FR_SINH,f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-// rIndex_1 has index_1
-// rIndex_2_16 has index_2 * 16
-// rBiased_M has M
-// rM has true M
-// r = x - Nfloat * ln2_by_128_hi
-// f = 1 - Nfloat * ln2_by_128_lo
+L(SINH_BY_TBL):
+
+// Now that we are at TBL; so far all we know is that |x| >= 0.25.
+// The first two steps are the same for TBL and EXP, but if we are HUGE
+// we want to leave now.
+// Double-extended:
+// Go to HUGE if |x| >= 2^14, 1000d (register-biased) is e = 14 (true)
+// Double
+// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
+// Single
+// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010009 ;;
+}
+
{ .mfi
- and rIndex_1 = 0x0f, rN
- fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
- shr rM = rN, 0x7
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- and rIndex_2_16 = 0x70, rN
- fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
- sub rN_neg = r0, rN
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p6,p7 = sinh_FR_X,f9
+ nop.i 999 ;;
}
-;;
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(SINH_HUGE) ;;
+}
+
+// r32 = 1
+// r34 = N-1
+// r35 = N
+// r36 = j
+// r37 = N+1
+
+// TBL can never overflow
+// sinh(x) = sinh(B+R)
+// = sinh(B)cosh(R) + cosh(B)sinh(R)
+//
+// ax = |x| = M*log2/64 + R
+// B = M*log2/64
+// M = 64*N + j
+// We will calcualte M and get N as (M-j)/64
+// The division is a shift.
+// exp(B) = exp(N*log2 + j*log2/64)
+// = 2^N * 2^(j*log2/64)
+// sinh(B) = 1/2(e^B -e^-B)
+// = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
+// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
+// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
+// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
+// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
+// R = ax - M*log2/64
+// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
+// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
+// = 1 + p_odd + p_even
+// where the p_even uses the A coefficients and the p_even uses the B coefficients
+// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
+// cosh(R) = 1 + p_even
+// sinh(B) = S_hi + S_lo
+// cosh(B) = C_hi
+// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
+// ******************************************************
+// STEP 1 (TBL and EXP)
+// ******************************************************
+// Get the following constants.
+// f9 = Inv_log2by64
+// f10 = log2by64_hi
+// f11 = log2by64_lo
{ .mmi
- and rIndex_1_neg = 0x0f, rN_neg
- add rBiased_M = rExp_bias_minus_1, rM
- shr rM_neg = rN_neg, 0x7
+(p0) adds r32 = 0x1,r0
+(p0) addl r34 = @ltoff(double_sinh_arg_reduction), gp
+ nop.i 999
}
+;;
+
{ .mmi
- and rIndex_2_16_neg = 0x70, rN_neg
- add rAD_T2 = rAD_TB2, rIndex_2_16
- shladd rAD_T1 = rIndex_1, 4, rAD_TB1
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
-// rAD_T1 has address of T1
-// rAD_T2 has address if T2
+
+// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
+// put them in an exponent.
+// sinh_FR_spos = 2^(N-1) and sinh_FR_sneg = 2^(-N-1)
+// r39 = 0xffff + (N-1) = 0xffff +N -1
+// r40 = 0xffff - (N +1) = 0xffff -N -1
+
+{ .mlx
+ nop.m 999
+(p0) movl r38 = 0x000000000000fffe ;;
+}
{ .mmi
- setf.exp f2M = rBiased_M
- ldfe fT2 = [rAD_T2]
- nop.i 0
+(p0) ldfe sinh_FR_Inv_log2by64 = [r34],16 ;;
+(p0) ldfe sinh_FR_log2by64_hi = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mbb
+(p0) ldfe sinh_FR_log2by64_lo = [r34],16
+ nop.b 999
+ nop.b 999 ;;
}
+
+// Get the A coefficients
+// f9 = A_1
+// f10 = A_2
+// f11 = A_3
+
{ .mmi
- add rBiased_M_neg = rExp_bias_minus_1, rM_neg
- add rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
- shladd rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
+ nop.m 999
+(p0) addl r34 = @ltoff(double_sinh_ab_table), gp
+ nop.i 999
}
;;
-// Create Scale = 2^M
-// Load T1 and T2
{ .mmi
- ldfe fT1 = [rAD_T1]
- nop.m 0
- nop.i 0
-}
-{ .mmf
- setf.exp f2M_neg = rBiased_M_neg
- ldfe fT2_neg = [rAD_T2_neg]
- fma.s1 fF_neg = fNfloat, fLn2_by_128_lo, f1
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
+
+// Calculate M and keep it as integer and floating point.
+// f38 = M = round-to-integer(x*Inv_log2by64)
+// sinh_FR_M = M = truncate(ax/(log2/64))
+// Put the significand of M in r35
+// and the floating point representation of M in sinh_FR_M
+
{ .mfi
- nop.m 0
- fma.s1 fRsq = fR, fR, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_M = sinh_FR_X, sinh_FR_Inv_log2by64, f0
+ nop.i 999
}
+
{ .mfi
- ldfe fT1_neg = [rAD_T1_neg]
- fma.s1 fP54 = fR, fP5, fP4
- nop.i 0
+(p0) ldfe sinh_FR_A1 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP32 = fR, fP3, fP2
- nop.i 0
+ nop.m 999
+(p0) fcvt.fx.s1 sinh_FR_M_temp = sinh_FR_M
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fnma.s1 fP54_neg = fR, fP5, fP4
- nop.i 0
+ nop.m 999
+(p0) fnorm.s1 sinh_FR_M = sinh_FR_M_temp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fnma.s1 fP32_neg = fR, fP3, fP2
- nop.i 0
+(p0) getf.sig r35 = sinh_FR_M_temp
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fP5432 = fRsq, fP54, fP32
- nop.i 0
+// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
+// has a range of -32 thru 31.
+// r35 = M
+// r36 = j
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) and r36 = 0x3f, r35 ;;
}
+
+// Calculate R
+// f13 = f44 - f12*f10 = ax - M*log2by64_hi
+// f14 = f13 - f8*f11 = R = (ax - M*log2by64_hi) - M*log2by64_lo
+
{ .mfi
- nop.m 0
- fma.s1 fS2 = fF,fT2,f0
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 sinh_FR_R_temp = sinh_FR_M, sinh_FR_log2by64_hi, sinh_FR_X
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fS1 = f2M,fT1,f0
- nop.i 0
+(p0) ldfe sinh_FR_A2 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fP5432_neg = fRsq, fP54_neg, fP32_neg
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 sinh_FR_R = sinh_FR_M, sinh_FR_log2by64_lo, sinh_FR_R_temp
+ nop.i 999
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fS1_neg = f2M_neg,fT1_neg,f0
- nop.i 0
+// Get the B coefficients
+// f15 = B_1
+// f32 = B_2
+// f33 = B_3
+
+{ .mmi
+(p0) ldfe sinh_FR_A3 = [r34],16 ;;
+(p0) ldfe sinh_FR_B1 = [r34],16
+ nop.i 999 ;;
}
+
+{ .mmi
+(p0) ldfe sinh_FR_B2 = [r34],16 ;;
+(p0) ldfe sinh_FR_B3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl r34 = r36, 0x2 ;;
+(p0) sxt1 r37 = r34 ;;
+}
+
+// ******************************************************
+// STEP 2 (TBL and EXP)
+// ******************************************************
+// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// f12 = R*R*R
+// f13 = R*R
+// f14 = R <== from above
+
{ .mfi
- nop.m 0
- fma.s1 fS2_neg = fF_neg,fT2_neg,f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Rsq = sinh_FR_R, sinh_FR_R, f0
+(p0) shr r36 = r37, 0x2 ;;
+}
+
+// r34 = M-j = r35 - r36
+// r35 = N = (M-j)/64
+
+{ .mii
+(p0) sub r34 = r35, r36
+ nop.i 999 ;;
+(p0) shr r35 = r34, 0x6 ;;
+}
+
+{ .mii
+(p0) sub r40 = r38, r35
+(p0) adds r37 = 0x1, r35
+(p0) add r39 = r38, r35 ;;
+}
+
+// Get the address of the J table, add the offset,
+// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
+// f32 = T(j)_hi
+// f33 = T(j)_lo
+// f34 = T(-j)_hi
+// f35 = T(-j)_lo
+
+{ .mmi
+(p0) sub r34 = r35, r32
+(p0) addl r37 = @ltoff(double_sinh_j_table), gp
+ nop.i 999
}
;;
+{ .mmi
+ ld8 r37 = [r37]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
{ .mfi
- nop.m 0
- fma.s1 fP = fRsq, fP5432, fR
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Rcub = sinh_FR_Rsq, sinh_FR_R, f0
+ nop.i 999
}
+
+// ******************************************************
+// STEP 3 Now decide if we need to branch to EXP
+// ******************************************************
+// Put 32 in f9; p6 true if x < 32
+// Go to EXP if |x| >= 32
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010004 ;;
+}
+
+// Calculate p_even
+// f34 = B_2 + Rsq *B_3
+// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
+// f36 = p_even = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+
{ .mfi
- nop.m 0
- fma.s1 fS = fS1,fS2,f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven_temp1 = sinh_FR_Rsq, sinh_FR_B3, sinh_FR_B2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fms.s1 fP_neg = fRsq, fP5432_neg, fR
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven_temp2 = sinh_FR_Rsq, sinh_FR_peven_temp1, sinh_FR_B1
+ nop.i 999
}
+
+// Calculate p_odd
+// f34 = A_2 + Rsq *A_3
+// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
+// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
+
{ .mfi
- nop.m 0
- fma.s1 fS_neg = fS1_neg,fS2_neg,f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd_temp1 = sinh_FR_Rsq, sinh_FR_A3, sinh_FR_A2
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
-(p14) br.cond.spnt SINH_POSSIBLE_OVERFLOW
+{ .mfi
+(p0) setf.exp sinh_FR_N_temp1 = r39
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fExp = fS, fP, fS
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven = sinh_FR_Rsq, sinh_FR_peven_temp2, f0
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- fma.s1 fExp_neg = fS_neg, fP_neg, fS_neg
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd_temp2 = sinh_FR_Rsq, sinh_FR_podd_temp1, sinh_FR_A1
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- fms.d.s0 f8 = fExp, f1, fExp_neg
- br.ret.sptk b0 // Normal path exit
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-// Here if 0 < |x| < 0.25
-SINH_SMALL:
{ .mfi
- add rAD_T1 = 0x1a0, rAD_TB1
- fcmp.lt.s1 p7, p8 = fNormX, f0 // Test sign of x
- cmp.gt p6, p0 = -60, rExp_x // Test |x| < 2^(-60)
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd = sinh_FR_podd_temp2, sinh_FR_Rcub, sinh_FR_R
+ nop.i 999
+}
+
+// sinh_GR_mj contains the table offset for -j
+// sinh_GR_j contains the table offset for +j
+// p6 is true when j <= 0
+
+{ .mlx
+(p0) setf.exp sinh_FR_N_temp2 = r40
+(p0) movl r40 = 0x0000000000000020 ;;
}
+
{ .mfi
- add rAD_T2 = 0x1d0, rAD_TB1
- nop.f 0
- nop.i 0
+(p0) sub sinh_GR_mJ = r40, r36
+(p0) fmerge.se sinh_FR_spos = sinh_FR_N_temp1, f1
+(p0) adds sinh_GR_J = 0x20, r36 ;;
}
-;;
-{ .mmb
- ldfe fA6 = [rAD_T1],16
- ldfe fA5 = [rAD_T2],16
-(p6) br.cond.spnt SINH_VERY_SMALL // Branch if |x| < 2^(-60)
+{ .mii
+ nop.m 999
+(p0) shl sinh_GR_mJ = sinh_GR_mJ, 5 ;;
+(p0) add sinh_AD_mJ = r37, sinh_GR_mJ ;;
}
-;;
{ .mmi
- ldfe fA4 = [rAD_T1],16
- ldfe fA3 = [rAD_T2],16
- nop.i 0
+ nop.m 999
+(p0) ldfe sinh_FR_Tmjhi = [sinh_AD_mJ],16
+(p0) shl sinh_GR_J = sinh_GR_J, 5 ;;
+}
+
+{ .mfi
+(p0) ldfs sinh_FR_Tmjlo = [sinh_AD_mJ],16
+(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
+(p0) add sinh_AD_J = r37, sinh_GR_J ;;
}
-;;
{ .mmi
- ldfe fA2 = [rAD_T1]
- ldfe fA1 = [rAD_T2]
- nop.i 0
+(p0) ldfe sinh_FR_Tjhi = [sinh_AD_J],16 ;;
+(p0) ldfs sinh_FR_Tjlo = [sinh_AD_J],16
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.se sinh_FR_sneg = sinh_FR_N_temp2, f1
+(p7) br.cond.spnt L(SINH_BY_EXP) ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fX3 = fNormX, fXsq, f0
- nop.i 0
+ nop.m 999
+ nop.f 999
+ nop.i 999 ;;
}
+
+// ******************************************************
+// If NOT branch to EXP
+// ******************************************************
+// Calculate S_hi and S_lo
+// sinh_FR_S_hi_temp = sinh_FR_sneg * sinh_FR_Tmjhi
+// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi_temp
+// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - (sinh_FR_sneg * sinh_FR_Tmjlo)
+
{ .mfi
- nop.m 0
- fma.s1 fX4 = fXsq, fXsq, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_hi_temp = sinh_FR_sneg, sinh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA65 = fXsq, fA6, fA5
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi_temp
+ nop.i 999
}
+
+// Calculate C_hi
+// sinh_FR_C_hi_temp1 = sinh_FR_sneg * sinh_FR_Tmjhi
+// sinh_FR_C_hi = sinh_FR_spos * sinh_FR_Tjhi + sinh_FR_C_hi_temp1
+
{ .mfi
- nop.m 0
- fma.s1 fA43 = fXsq, fA4, fA3
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_C_hi_temp1 = sinh_FR_sneg, sinh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
+
+// sinh_FR_S_lo_temp1 = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi
+// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi)
+// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_S_lo_temp1 )
{ .mfi
- nop.m 0
- fma.s1 fA21 = fXsq, fA2, fA1
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_lo_temp1 = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA6543 = fX4, fA65, fA43
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_C_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_C_hi_temp1
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA654321 = fX4, fA6543, fA21
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 sinh_FR_S_lo_temp2 = sinh_FR_sneg, sinh_FR_Tmjhi, sinh_FR_S_lo_temp1
+ nop.i 999
}
-;;
-// Dummy multiply to generate inexact
+// sinh_FR_S_lo_temp1 = sinh_FR_sneg * sinh_FR_Tmjlo
+// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo - sinh_FR_S_lo_temp1
+// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo -(sinh_FR_sneg * sinh_FR_Tmjlo)
+// sinh_FR_S_lo = sinh_FR_S_lo_temp3 + sinh_FR_S_lo_temp2
+
{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fA6, fA6
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_lo_temp1 = sinh_FR_sneg, sinh_FR_Tmjlo, f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fA654321, fX3, fNormX
- br.ret.sptk b0 // Exit if 2^-60 < |x| < 0.25
+
+/////////// BUG FIX fma to fms -TK
+{ .mfi
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_lo_temp3 = sinh_FR_spos, sinh_FR_Tjlo, sinh_FR_S_lo_temp1
+ nop.i 999 ;;
}
-;;
-SINH_VERY_SMALL:
-// Here if 0 < |x| < 2^-60
-// Compute result by x + sgn(x)*x^2 to get properly rounded result
-.pred.rel "mutex",p7,p8
{ .mfi
- nop.m 0
-(p7) fnma.d.s0 f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_lo = sinh_FR_S_lo_temp3, f1, sinh_FR_S_lo_temp2
+ nop.i 999 ;;
}
+
+// Y_hi = S_hi
+// Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
+// sinh_FR_Y_lo_temp = sinh_FR_S_hi * sinh_FR_peven + sinh_FR_S_lo
+// sinh_FR_Y_lo = sinh_FR_C_hi * sinh_FR_podd + sinh_FR_Y_lo_temp
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_S_hi, sinh_FR_peven, sinh_FR_S_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_C_hi, sinh_FR_podd, sinh_FR_Y_lo_temp
+ nop.i 999 ;;
+}
+
+// sinh_FR_SINH = Y_hi + Y_lo
+// f8 = answer = sinh_FR_SGNX * sinh_FR_SINH
+
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH = sinh_FR_S_hi, f1, sinh_FR_Y_lo
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 0
-(p8) fma.d.s0 f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2
- br.ret.sptk b0 // Exit if |x| < 2^-60
+ nop.m 999
+(p0) fma.d.s0 f8 = sinh_FR_SGNX, sinh_FR_SINH,f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-SINH_POSSIBLE_OVERFLOW:
+L(SINH_BY_EXP):
-// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
-// This cannot happen if input is a double, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+// When p7 is true, we know that an overflow is not going to happen
+// When p7 is false, we must check for possible overflow
+// p7 is the over_SAFE flag
+// Y_hi = Tjhi
+// Y_lo = Tjhi * (p_odd + p_even) +Tjlo
+// Scale = sign * 2^(N-1)
+// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_peven + sinh_FR_podd)
+// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_Y_lo_temp )
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest double, then we have
-// overflow
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_peven, f1, sinh_FR_podd
+ nop.i 999
+}
+
+// Now we are in EXP. This is the only path where an overflow is possible
+// but not for certain. So this is the only path where over_SAFE has any use.
+// r34 still has N-1
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// There is a danger of double overflow if N-1 > 0x3fe = 1022
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x00000000000003fe ;;
+}
{ .mfi
- mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+(p0) cmp.gt.unc p0,p7 = r34, r32
+(p0) fmerge.s sinh_FR_SCALE = sinh_FR_SGNX, sinh_FR_spos
+ nop.i 999 ;;
}
-;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
- fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_Tjhi, sinh_FR_Y_lo_temp, sinh_FR_Tjlo
+ nop.i 999 ;;
}
-;;
+// f8 = answer = scale * (Y_hi + Y_lo)
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH_temp = sinh_FR_Y_lo, f1, sinh_FR_Tjhi
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+(p0) fma.d.s0 f44 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt SINH_CERTAIN_OVERFLOW // Branch if overflow
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p7) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999 ;;
}
-;;
+// If over_SAFE is set, return
{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 999
+(p7) fmerge.s f8 = f44,f44
+(p7) br.ret.sptk b0 ;;
}
-;;
-SINH_CERTAIN_OVERFLOW:
+// Else see if we overflowed
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// If WRE is set then an overflow will not occur in EXP.
+// The input value that would cause a register (WRE) value to overflow is about 2^15
+// and this input would go into the HUGE path.
+// Answer with WRE is in f43.
+
{ .mfi
- sub rTmp = rExp_mask, r0, 1
- fcmp.lt.s1 p6, p7 = fNormX, f0 // Test for x < 0
- nop.i 0
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.d.s2 f43 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
+ nop.i 999 ;;
+}
+
+// 103FF => 103FF -FFFF = 400(true)
+// 400 + 3FF = 7FF, which is 1 more that the exponent of the largest
+// double (7FE). So 0 103FF 8000000000000000 is one ulp more than
+// largest double in register bias
+// Now set p8 if the answer with WRE is greater than or equal this value
+// Also set p9 if the answer with WRE is less than or equal to negative this value
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x000000000103FF ;;
}
-;;
{ .mmf
- alloc r32=ar.pfs,1,4,4,0
- setf.exp fTmp = rTmp
- fmerge.s FR_X = f8,f8
+ nop.m 999
+(p0) setf.exp f41 = r32
+(p0) fsetc.s2 0x7F,0x40 ;;
}
-;;
{ .mfi
- mov GR_Parameter_TAG = 127
-(p6) fnma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and -INF result
- nop.i 0
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
+ nop.i 999
}
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns f42 = f41, f41
+ nop.i 999 ;;
+}
+
+// The error tag for overflow is 127
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p8) mov r47 = 127 ;;
+}
+
{ .mfb
- nop.m 0
-(p7) fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
+(p8) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov r47 = 127
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
+}
+
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999 ;;
}
-;;
-// Here if x unorm
-SINH_UNORM:
{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk SINH_COMMON
+ nop.m 999
+(p0) fmerge.s f8 = f44,f44
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_IEEE754_END(sinh)
+L(SINH_HUGE):
+
+// for SINH_HUGE, put 24000 in exponent; take sign from input; add 1
+// SAFE: SAFE is always 0 for HUGE
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000015dbf ;;
+}
+
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
-LOCAL_LIBM_ENTRY(__libm_error_region)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_signed_hi_lo = sinh_FR_SGNX, f9, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.d.s0 f44 = sinh_FR_signed_hi_lo, f9, f0
+(p0) mov r47 = 127
+}
+.endp sinh
+ASM_SIZE_DIRECTIVE(sinh)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__ieee754_sinh)
+#endif
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
+
+.proc __libm_error_region
+__libm_error_region:
+L(SINH_ERROR_SUPPORT):
.prologue
+
+// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
@@ -862,32 +1271,39 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+
+// (2)
{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+// (3)
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = f44 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+
+// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
@@ -900,6 +1316,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_sinhf.S b/sysdeps/ia64/fpu/e_sinhf.S
index 6d808cb478..d5aa2dca16 100644
--- a/sysdeps/ia64/fpu/e_sinhf.S
+++ b/sysdeps/ia64/fpu/e_sinhf.S
@@ -1,10 +1,10 @@
.file "sinhf.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,729 +20,1305 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
// History
-//*********************************************************************
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+//==============================================================
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
-// 01/22/01 Fixed to set inexact flag for small args.
-// 05/02/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/20/02 Improved algorithm based on expf
-// 03/31/05 Reformatted delimiters between data tables
+// 1/22/01 Fixed to set inexact flag for small args.
//
// API
-//*********************************************************************
-// float sinhf(float)
+//==============================================================
+// float = sinhf(float)
+// input floating point f8
+// output floating point f8
+//
+// Registers used
+//==============================================================
+// general registers:
+// r32 -> r47
+// predicate registers used:
+// p6 p7 p8 p9
+// floating-point registers used:
+// f9 -> f15; f32 -> f45;
+// f8 has input, then output
//
// Overview of operation
-//*********************************************************************
-// Case 1: 0 < |x| < 2^-60
-// Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding
+//==============================================================
+// There are four paths
+// 1. |x| < 0.25 SINH_BY_POLY
+// 2. |x| < 32 SINH_BY_TBL
+// 3. |x| < 2^14 SINH_BY_EXP
+// 4. |x_ >= 2^14 SINH_HUGE
//
-// Case 2: 2^-60 < |x| < 0.25
-// Evaluate sinh(x) by a 9th order polynomial
-// Care is take for the order of multiplication; and A2 is not exactly 1/5!,
-// A3 is not exactly 1/7!, etc.
-// sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9)
+// For double extended we get infinity for x >= 400c b174 ddc0 31ae c0ea
+// >= 1.0110001.... x 2^13
+// >= 11357.2166
//
-// Case 3: 0.25 < |x| < 89.41598
-// Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2.
-// The algorithm for exp is described as below. There are a number of
-// economies from evaluating both exp(x) and exp(-x). Although we
-// are evaluating both quantities, only where the quantities diverge do we
-// duplicate the computations. The basic algorithm for exp(x) is described
-// below.
+// But for double we get infinity for x >= 408633ce8fb9f87e
+// >= 1.0110...x 2^9
+// >= +7.10476e+002
//
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 64/log2
-// NJ = int(w)
-// x = NJ*log2/64 + R
-
-// NJ = 64*n + j
-// x = n*log2 + (log2/64)*j + R
+// And for single we get infinity for x >= 42b3a496
+// >= 1.0110... 2^6
+// >= 89.8215
//
-// So, exp(x) = 2^n * 2^(j/64)* exp(R)
+// SAFE: If there is danger of overflow set SAFE to 0
+// NOT implemented: if there is danger of underflow, set SAFE to 0
+// SAFE for all paths listed below
//
-// T = 2^n * 2^(j/64)
-// Construct 2^n
-// Get 2^(j/64) table
-// actually all the entries of 2^(j/64) table are stored in DP and
-// with exponent bits set to 0 -> multiplication on 2^n can be
-// performed by doing logical "or" operation with bits presenting 2^n
-
-// exp(R) = 1 + (exp(R) - 1)
-// P = exp(R) - 1 approximated by Taylor series of 3rd degree
-// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
+// 1. SINH_BY_POLY
+// ===============
+// If |x| is less than the tiny threshold, then clear SAFE
+// For double, the tiny threshold is -1022 = -0x3fe => -3fe + ffff = fc01
+// register-biased, this is fc01
+// For single, the tiny threshold is -126 = -7e => -7e + ffff = ff81
+// If |x| < tiny threshold, set SAFE = 0
+//
+// 2. SINH_BY_TBL
+// =============
+// SAFE: SAFE is always 1 for TBL;
+//
+// 3. SINH_BY_EXP
+// ==============
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// r34 has N-1; 16382 is in register biased form, 0x13ffd
+// There is danger of double overflow if N-1 > 0x3fe
+// in register biased form, 0x103fd
+// Analagously, there is danger of single overflow if N-1 > 0x7e
+// in register biased form, 0x1007d
+// SAFE: If there is danger of overflow set SAFE to 0
+//
+// 4. SINH_HUGE
+// ============
+// SAFE: SAFE is always 0 for HUGE
//
-// The final result is reconstructed as follows
-// exp(x) = T + T*P
+#include "libm_support.h"
-// Special values
-//*********************************************************************
-// sinhf(+0) = +0
-// sinhf(-0) = -0
+// Assembly macros
+//==============================================================
+sinh_FR_X = f44
+sinh_FR_X2 = f9
+sinh_FR_X4 = f10
+sinh_FR_SGNX = f40
+sinh_FR_all_ones = f45
+sinh_FR_tmp = f42
-// sinhf(+qnan) = +qnan
-// sinhf(-qnan) = -qnan
-// sinhf(+snan) = +qnan
-// sinhf(-snan) = -qnan
+sinh_FR_Inv_log2by64 = f9
+sinh_FR_log2by64_lo = f11
+sinh_FR_log2by64_hi = f10
-// sinhf(-inf) = -inf
-// sinhf(+inf) = +inf
+sinh_FR_A1 = f9
+sinh_FR_A2 = f10
+sinh_FR_A3 = f11
-// Overflow and Underflow
-//*********************************************************************
-// sinhf(x) = largest single normal when
-// x = 89.41598 = 0x42b2d4fc
-//
-// Underflow is handled as described in case 1 above
+sinh_FR_Rcub = f12
+sinh_FR_M_temp = f13
+sinh_FR_R_temp = f13
+sinh_FR_Rsq = f13
+sinh_FR_R = f14
-// Registers used
-//*********************************************************************
-// Floating Point registers used:
-// f8 input, output
-// f6,f7, f9 -> f15, f32 -> f45
+sinh_FR_M = f38
-// General registers used:
-// r2, r3, r16 -> r38
+sinh_FR_B1 = f15
+sinh_FR_B2 = f32
+sinh_FR_B3 = f33
-// Predicate registers used:
-// p6 -> p15
+sinh_FR_peven_temp1 = f34
+sinh_FR_peven_temp2 = f35
+sinh_FR_peven = f36
-// Assembly macros
-//*********************************************************************
-// integer registers used
-// scratch
-rNJ = r2
-rNJ_neg = r3
-
-rJ_neg = r16
-rN_neg = r17
-rSignexp_x = r18
-rExp_x = r18
-rExp_mask = r19
-rExp_bias = r20
-rAd1 = r21
-rAd2 = r22
-rJ = r23
-rN = r24
-rTblAddr = r25
-rA3 = r26
-rExpHalf = r27
-rLn2Div64 = r28
-rGt_ln = r29
-r17ones_m1 = r29
-rRightShifter = r30
-rJ_mask = r30
-r64DivLn2 = r31
-rN_mask = r31
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
-
-// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-// scratch
-fRightShifter = f6
-f64DivLn2 = f7
-fNormX = f9
-fNint = f10
-fN = f11
-fR = f12
-fLn2Div64 = f13
-fA2 = f14
-fA3 = f15
-// stacked
-fP = f32
-fT = f33
-fMIN_SGL_OFLOW_ARG = f34
-fMAX_SGL_NORM_ARG = f35
-fRSqr = f36
-fA1 = f37
-fA21 = f37
-fA4 = f38
-fA43 = f38
-fA4321 = f38
-fX4 = f39
-fTmp = f39
-fGt_pln = f39
-fWre_urm_f8 = f40
-fXsq = f40
-fP_neg = f41
-fX3 = f41
-fT_neg = f42
-fExp = f43
-fExp_neg = f44
-fAbsX = f45
-
-
-RODATA
-.align 16
+sinh_FR_podd_temp1 = f34
+sinh_FR_podd_temp2 = f35
+sinh_FR_podd = f37
-LOCAL_OBJECT_START(_sinhf_table)
-data4 0x42b2d4fd // Smallest single arg to overflow single result
-data4 0x42b2d4fc // Largest single arg to give normal single result
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-//
-// 2^(j/64) table, j goes from 0 to 63
-data8 0x0000000000000000 // 2^(0/64)
-data8 0x00002C9A3E778061 // 2^(1/64)
-data8 0x000059B0D3158574 // 2^(2/64)
-data8 0x0000874518759BC8 // 2^(3/64)
-data8 0x0000B5586CF9890F // 2^(4/64)
-data8 0x0000E3EC32D3D1A2 // 2^(5/64)
-data8 0x00011301D0125B51 // 2^(6/64)
-data8 0x0001429AAEA92DE0 // 2^(7/64)
-data8 0x000172B83C7D517B // 2^(8/64)
-data8 0x0001A35BEB6FCB75 // 2^(9/64)
-data8 0x0001D4873168B9AA // 2^(10/64)
-data8 0x0002063B88628CD6 // 2^(11/64)
-data8 0x0002387A6E756238 // 2^(12/64)
-data8 0x00026B4565E27CDD // 2^(13/64)
-data8 0x00029E9DF51FDEE1 // 2^(14/64)
-data8 0x0002D285A6E4030B // 2^(15/64)
-data8 0x000306FE0A31B715 // 2^(16/64)
-data8 0x00033C08B26416FF // 2^(17/64)
-data8 0x000371A7373AA9CB // 2^(18/64)
-data8 0x0003A7DB34E59FF7 // 2^(19/64)
-data8 0x0003DEA64C123422 // 2^(20/64)
-data8 0x0004160A21F72E2A // 2^(21/64)
-data8 0x00044E086061892D // 2^(22/64)
-data8 0x000486A2B5C13CD0 // 2^(23/64)
-data8 0x0004BFDAD5362A27 // 2^(24/64)
-data8 0x0004F9B2769D2CA7 // 2^(25/64)
-data8 0x0005342B569D4F82 // 2^(26/64)
-data8 0x00056F4736B527DA // 2^(27/64)
-data8 0x0005AB07DD485429 // 2^(28/64)
-data8 0x0005E76F15AD2148 // 2^(29/64)
-data8 0x0006247EB03A5585 // 2^(30/64)
-data8 0x0006623882552225 // 2^(31/64)
-data8 0x0006A09E667F3BCD // 2^(32/64)
-data8 0x0006DFB23C651A2F // 2^(33/64)
-data8 0x00071F75E8EC5F74 // 2^(34/64)
-data8 0x00075FEB564267C9 // 2^(35/64)
-data8 0x0007A11473EB0187 // 2^(36/64)
-data8 0x0007E2F336CF4E62 // 2^(37/64)
-data8 0x00082589994CCE13 // 2^(38/64)
-data8 0x000868D99B4492ED // 2^(39/64)
-data8 0x0008ACE5422AA0DB // 2^(40/64)
-data8 0x0008F1AE99157736 // 2^(41/64)
-data8 0x00093737B0CDC5E5 // 2^(42/64)
-data8 0x00097D829FDE4E50 // 2^(43/64)
-data8 0x0009C49182A3F090 // 2^(44/64)
-data8 0x000A0C667B5DE565 // 2^(45/64)
-data8 0x000A5503B23E255D // 2^(46/64)
-data8 0x000A9E6B5579FDBF // 2^(47/64)
-data8 0x000AE89F995AD3AD // 2^(48/64)
-data8 0x000B33A2B84F15FB // 2^(49/64)
-data8 0x000B7F76F2FB5E47 // 2^(50/64)
-data8 0x000BCC1E904BC1D2 // 2^(51/64)
-data8 0x000C199BDD85529C // 2^(52/64)
-data8 0x000C67F12E57D14B // 2^(53/64)
-data8 0x000CB720DCEF9069 // 2^(54/64)
-data8 0x000D072D4A07897C // 2^(55/64)
-data8 0x000D5818DCFBA487 // 2^(56/64)
-data8 0x000DA9E603DB3285 // 2^(57/64)
-data8 0x000DFC97337B9B5F // 2^(58/64)
-data8 0x000E502EE78B3FF6 // 2^(59/64)
-data8 0x000EA4AFA2A490DA // 2^(60/64)
-data8 0x000EFA1BEE615A27 // 2^(61/64)
-data8 0x000F50765B6E4540 // 2^(62/64)
-data8 0x000FA7C1819E90D8 // 2^(63/64)
-LOCAL_OBJECT_END(_sinhf_table)
-
-LOCAL_OBJECT_START(sinh_p_table)
-data8 0x3ec749d84bc96d7d // A4
-data8 0x3f2a0168d09557cf // A3
-data8 0x3f811111326ed15a // A2
-data8 0x3fc55555552ed1e2 // A1
-LOCAL_OBJECT_END(sinh_p_table)
+sinh_FR_poly_podd_temp1 = f11
+sinh_FR_poly_podd_temp2 = f13
+sinh_FR_poly_peven_temp1 = f11
+sinh_FR_poly_peven_temp2 = f13
+
+sinh_FR_J_temp = f9
+sinh_FR_J = f10
+sinh_FR_Mmj = f39
+
+sinh_FR_N_temp1 = f11
+sinh_FR_N_temp2 = f12
+sinh_FR_N = f13
+
+sinh_FR_spos = f14
+sinh_FR_sneg = f15
+
+sinh_FR_Tjhi = f32
+sinh_FR_Tjlo = f33
+sinh_FR_Tmjhi = f34
+sinh_FR_Tmjlo = f35
+
+sinh_GR_mJ = r35
+sinh_GR_J = r36
+
+sinh_AD_mJ = r38
+sinh_AD_J = r39
+sinh_GR_all_ones = r40
+
+sinh_FR_S_hi = f9
+sinh_FR_S_hi_temp = f10
+sinh_FR_S_lo_temp1 = f11
+sinh_FR_S_lo_temp2 = f12
+sinh_FR_S_lo_temp3 = f13
+
+sinh_FR_S_lo = f38
+sinh_FR_C_hi = f39
+
+sinh_FR_C_hi_temp1 = f10
+sinh_FR_Y_hi = f11
+sinh_FR_Y_lo_temp = f12
+sinh_FR_Y_lo = f13
+sinh_FR_SINH = f9
+
+sinh_FR_P1 = f14
+sinh_FR_P2 = f15
+sinh_FR_P3 = f32
+sinh_FR_P4 = f33
+sinh_FR_P5 = f34
+sinh_FR_P6 = f35
+
+sinh_FR_TINY_THRESH = f9
+
+sinh_FR_SINH_temp = f10
+sinh_FR_SCALE = f11
+
+sinh_FR_signed_hi_lo = f10
+
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
+
+// Data tables
+//==============================================================
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+.align 16
+double_sinh_arg_reduction:
+ASM_TYPE_DIRECTIVE(double_sinh_arg_reduction,@object)
+ data8 0xB8AA3B295C17F0BC, 0x00004005
+ data8 0xB17217F7D1000000, 0x00003FF8
+ data8 0xCF79ABC9E3B39804, 0x00003FD0
+ASM_SIZE_DIRECTIVE(double_sinh_arg_reduction)
+
+double_sinh_p_table:
+ASM_TYPE_DIRECTIVE(double_sinh_p_table,@object)
+ data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC
+ data8 0x8888888888888412, 0x00003FF8
+ data8 0xD00D00D00D4D39F2, 0x00003FF2
+ data8 0xB8EF1D28926D8891, 0x00003FEC
+ data8 0xD732377688025BE9, 0x00003FE5
+ data8 0xB08AF9AE78C1239F, 0x00003FDE
+ASM_SIZE_DIRECTIVE(double_sinh_p_table)
+
+double_sinh_ab_table:
+ASM_TYPE_DIRECTIVE(double_sinh_ab_table,@object)
+ data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
+ data8 0x88888888884ECDD5, 0x00003FF8
+ data8 0xD00D0C6DCC26A86B, 0x00003FF2
+ data8 0x8000000000000002, 0x00003FFE
+ data8 0xAAAAAAAAAA402C77, 0x00003FFA
+ data8 0xB60B6CC96BDB144D, 0x00003FF5
+ASM_SIZE_DIRECTIVE(double_sinh_ab_table)
+
+double_sinh_j_table:
+ASM_TYPE_DIRECTIVE(double_sinh_j_table,@object)
+ data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
+ data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
+ data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
+ data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
+ data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
+ data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
+ data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
+ data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
+ data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
+ data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
+ data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
+ data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
+ data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
+ data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
+ data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
+ data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
+ data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
+ data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
+ data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
+ data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
+ data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
+ data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
+ data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
+ data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
+ data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
+ data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
+ data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
+ data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
+ data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
+ data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
+ data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
+ data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
+ data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
+ data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
+ data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
+ data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
+ data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
+ data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
+ data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
+ data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
+ data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
+ data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
+ data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
+ data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
+ data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
+ data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
+ data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
+ data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
+ data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
+ data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
+ data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
+ data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
+ data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
+ data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
+ data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
+ data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
+ data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
+ data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
+ data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
+ data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
+ data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
+ data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
+ data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
+ data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
+ data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
+ASM_SIZE_DIRECTIVE(double_sinh_j_table)
+
+.align 32
+.global sinhf#
.section .text
-GLOBAL_IEEE754_ENTRY(sinhf)
+.proc sinhf#
+.align 32
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
+sinhf:
+#ifdef _LIBC
+.global __ieee754_sinhf
+.type __ieee754_sinhf,@function
+__ieee754_sinhf:
+#endif
+
+// X infinity or NAN?
+// Take invalid fault if enabled
+
+
+{ .mfi
+ alloc r32 = ar.pfs,0,12,4,0
+(p0) fclass.m.unc p6,p0 = f8, 0xe3 //@qnan | @snan | @inf
+ mov sinh_GR_all_ones = -1
+}
+;;
+
+
+{ .mfb
+ nop.m 999
+(p6) fma.s.s0 f8 = f8,f1,f8
+(p6) br.ret.spnt b0 ;;
}
+
+// Put 0.25 in f9; p6 true if x < 0.25
+// Make constant that will generate inexact when squared
{ .mlx
- addl rTblAddr = @ltoff(_sinhf_table),gp
- movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
+ setf.sig sinh_FR_all_ones = sinh_GR_all_ones
+(p0) movl r32 = 0x000000000000fffd ;;
}
-;;
{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- fclass.m p6, p0 = f8, 0x0b // Test for x=unorm
- addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
+(p0) setf.exp f9 = r32
+(p0) fclass.m.unc p7,p0 = f8, 0x07 //@zero
+ nop.i 999 ;;
}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // normalized x
- addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.s sinh_FR_X = f0,f8
+(p7) br.ret.spnt b0 ;;
}
-;;
+// Identify denormal operands.
+{ .mfi
+ nop.m 999
+ fclass.m.unc p10,p0 = f8, 0x09 // + denorm
+ nop.i 999
+};;
{ .mfi
- setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
- fclass.m p15, p0 = f8, 0x1e3 // test for NaT,NaN,Inf
- nop.i 0
+ nop.m 999
+ fclass.m.unc p11,p0 = f8, 0x0a // - denorm
+ nop.i 999
}
-{ .mlx
- // load Right Shifter to FP reg
- setf.d fRightShifter = rRightShifter
- movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.s sinh_FR_SGNX = f8,f1
+ nop.i 999 ;;
}
-;;
{ .mfi
- mov rExp_mask = 0x1ffff
- fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
- shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.sptk L(SINH_BY_TBL) ;;
}
+
+
+L(SINH_BY_POLY):
+
+// POLY cannot overflow so there is no need to call __libm_error_support
+// Set tiny_SAFE (p7) to 1(0) if answer is not tiny
+// Currently we do not use tiny_SAFE. So the setting of tiny_SAFE is
+// commented out.
+//(p0) movl r32 = 0x000000000000fc01
+//(p0) setf.exp f10 = r32
+//(p0) fcmp.lt.unc.s1 p6,p7 = f8,f10
+// Here is essentially the algorithm for SINH_BY_POLY. Care is take for the order
+// of multiplication; and P_1 is not exactly 1/3!, P_2 is not exactly 1/5!, etc.
+// Note that ax = |x|
+// sinh(x) = sign * (series(e^x) - series(e^-x))/2
+// = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11! + ax^13/13!)
+// = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
+// + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ) )
+// = sign * (ax + ax*p_odd + (ax*p_even))
+// = sign * (ax + Y_lo)
+// sinh(x) = sign * (Y_hi + Y_lo)
+// Get the values of P_x from the table
{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt SINH_UNORM // Branch if x=unorm
+(p0) addl r34 = @ltoff(double_sinh_p_table), gp
+(p10) fma.s.s0 f8 = f8,f8,f8
+(p10) br.ret.spnt b0
}
;;
-SINH_COMMON:
-{ .mfi
- setf.exp fA2 = rExpHalf // load A2 to FP reg
- nop.f 0
- mov rExp_bias = 0xffff
-}
{ .mfb
- setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
-(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,Inf
-(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,Inf
+ ld8 r34 = [r34]
+(p11) fnma.s.s0 f8 = f8,f8,f8
+(p11) br.ret.spnt b0
}
;;
+// Calculate sinh_FR_X2 = ax*ax and sinh_FR_X4 = ax*ax*ax*ax
+{ .mmf
+ nop.m 999
+(p0) ldfe sinh_FR_P1 = [r34],16
+(p0) fma.s1 sinh_FR_X2 = sinh_FR_X, sinh_FR_X, f0 ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_P2 = [r34],16 ;;
+(p0) ldfe sinh_FR_P3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_P4 = [r34],16 ;;
+(p0) ldfe sinh_FR_P5 = [r34],16
+ nop.i 999 ;;
+}
+
{ .mfi
- // min overflow and max normal threshold
- ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
- nop.f 0
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+(p0) ldfe sinh_FR_P6 = [r34],16
+(p0) fma.s1 sinh_FR_X4 = sinh_FR_X2, sinh_FR_X2, f0
+ nop.i 999 ;;
}
-{ .mfb
- setf.s fA3 = rA3 // load A3 to FP reg
- nop.f 0
-(p13) br.ret.spnt b0 // exit here if x=0.0, return x
+
+// Calculate sinh_FR_podd = p_odd and sinh_FR_peven = p_even
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_podd_temp1 = sinh_FR_X4, sinh_FR_P5, sinh_FR_P3
+ nop.i 999 ;;
}
-;;
{ .mfi
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
- fmerge.s fAbsX = f0, fNormX // Form |x|
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_podd_temp2 = sinh_FR_X4, sinh_FR_poly_podd_temp1, sinh_FR_P1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_peven_temp1 = sinh_FR_X4, sinh_FR_P6, sinh_FR_P4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd = sinh_FR_X2, sinh_FR_poly_podd_temp2, f0
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- // x*(64/ln(2)) + Right Shifter
- fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
- add rTblAddr = 8, rTblAddr
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_peven_temp2 = sinh_FR_X4, sinh_FR_poly_peven_temp1, sinh_FR_P2
+ nop.i 999 ;;
}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven = sinh_FR_X4, sinh_FR_poly_peven_temp2, f0
+ nop.i 999 ;;
+}
+
+// Calculate sinh_FR_Y_lo = ax*p_odd + (ax*p_even)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_X, sinh_FR_peven, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_X, sinh_FR_podd, sinh_FR_Y_lo_temp
+ nop.i 999 ;;
+}
+
+// Calculate sinh_FR_SINH = Y_hi + Y_lo. Note that ax = Y_hi
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH = sinh_FR_X, f1, sinh_FR_Y_lo
+ nop.i 999 ;;
+}
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999
+}
+
+// Calculate f8 = sign * (Y_hi + Y_lo)
+// Go to return
{ .mfb
- cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
- fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
-(p7) br.cond.spnt SINH_SMALL // Branch if 0 < |x| < 2^-2
+ nop.m 999
+(p0) fma.s.s0 f8 = sinh_FR_SGNX,sinh_FR_SINH,f0
+(p0) br.ret.sptk b0 ;;
+}
+
+
+L(SINH_BY_TBL):
+
+// Now that we are at TBL; so far all we know is that |x| >= 0.25.
+// The first two steps are the same for TBL and EXP, but if we are HUGE
+// we want to leave now.
+// Double-extended:
+// Go to HUGE if |x| >= 2^14, 1000d (register-biased) is e = 14 (true)
+// Double
+// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
+// Single
+// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010006 ;;
}
-;;
{ .mfi
- nop.m 0
- // check for overflow
- fcmp.ge.s1 p12, p13 = fAbsX, fMIN_SGL_OFLOW_ARG
- mov rJ_mask = 0x3f // 6-bit mask for J
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p6,p7 = sinh_FR_X,f9
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(SINH_HUGE) ;;
+}
+
+// r32 = 1
+// r34 = N-1
+// r35 = N
+// r36 = j
+// r37 = N+1
+
+// TBL can never overflow
+// sinh(x) = sinh(B+R)
+// = sinh(B)cosh(R) + cosh(B)sinh(R)
+//
+// ax = |x| = M*log2/64 + R
+// B = M*log2/64
+// M = 64*N + j
+// We will calcualte M and get N as (M-j)/64
+// The division is a shift.
+// exp(B) = exp(N*log2 + j*log2/64)
+// = 2^N * 2^(j*log2/64)
+// sinh(B) = 1/2(e^B -e^-B)
+// = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
+// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
+// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
+// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
+// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
+// R = ax - M*log2/64
+// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
+// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
+// = 1 + p_odd + p_even
+// where the p_even uses the A coefficients and the p_even uses the B coefficients
+// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
+// cosh(R) = 1 + p_even
+// sinh(B) = S_hi + S_lo
+// cosh(B) = C_hi
+// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
+// ******************************************************
+// STEP 1 (TBL and EXP)
+// ******************************************************
+// Get the following constants.
+// f9 = Inv_log2by64
+// f10 = log2by64_hi
+// f11 = log2by64_lo
+
+{ .mmi
+(p0) adds r32 = 0x1,r0
+(p0) addl r34 = @ltoff(double_sinh_arg_reduction), gp
+ nop.i 999
}
;;
-{ .mfb
- nop.m 0
- fms.s1 fN = fNint, f1, fRightShifter // n in FP register
- // branch out if overflow
-(p12) br.cond.spnt SINH_CERTAIN_OVERFLOW
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
-{ .mfi
- getf.sig rNJ = fNint // bits of n, j
- // check for possible overflow
- fcmp.gt.s1 p13, p0 = fAbsX, fMAX_SGL_NORM_ARG
- nop.i 0
+
+// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
+// put them in an exponent.
+// sinh_FR_spos = 2^(N-1) and sinh_FR_sneg = 2^(-N-1)
+// r39 = 0xffff + (N-1) = 0xffff +N -1
+// r40 = 0xffff - (N +1) = 0xffff -N -1
+
+{ .mlx
+ nop.m 999
+(p0) movl r38 = 0x000000000000fffe ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_Inv_log2by64 = [r34],16 ;;
+(p0) ldfe sinh_FR_log2by64_hi = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mbb
+(p0) ldfe sinh_FR_log2by64_lo = [r34],16
+ nop.b 999
+ nop.b 999 ;;
+}
+
+// Get the A coefficients
+// f9 = A_1
+// f10 = A_2
+// f11 = A_3
+
+{ .mmi
+ nop.m 999
+(p0) addl r34 = @ltoff(double_sinh_ab_table), gp
+ nop.i 999
}
;;
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+// Calculate M and keep it as integer and floating point.
+// f38 = M = round-to-integer(x*Inv_log2by64)
+// sinh_FR_M = M = truncate(ax/(log2/64))
+// Put the significand of M in r35
+// and the floating point representation of M in sinh_FR_M
+
{ .mfi
- addl rN = 0xFFBF - 63, rNJ // biased and shifted n-1,j
- fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
- and rJ = rJ_mask, rNJ // bits of j
+ nop.m 999
+(p0) fma.s1 sinh_FR_M = sinh_FR_X, sinh_FR_Inv_log2by64, f0
+ nop.i 999
}
+
{ .mfi
- sub rNJ_neg = r0, rNJ // bits of n, j for -x
- nop.f 0
- andcm rN_mask = -1, rJ_mask // 0xff...fc0 to mask N
+(p0) ldfe sinh_FR_A1 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
- nop.f 0
- and rN = rN_mask, rN // biased, shifted n-1
+ nop.m 999
+(p0) fcvt.fx.s1 sinh_FR_M_temp = sinh_FR_M
+ nop.i 999 ;;
}
+
{ .mfi
- addl rN_neg = 0xFFBF - 63, rNJ_neg // -x biased, shifted n-1,j
- nop.f 0
- and rJ_neg = rJ_mask, rNJ_neg // bits of j for -x
+ nop.m 999
+(p0) fnorm.s1 sinh_FR_M = sinh_FR_M_temp
+ nop.i 999 ;;
}
-;;
{ .mfi
- ld8 rJ = [rJ] // Table value
- nop.f 0
- shl rN = rN, 46 // 2^(n-1) bits in DP format
+(p0) getf.sig r35 = sinh_FR_M_temp
+ nop.f 999
+ nop.i 999 ;;
}
+
+// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
+// has a range of -32 thru 31.
+// r35 = M
+// r36 = j
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) and r36 = 0x3f, r35 ;;
+}
+
+// Calculate R
+// f13 = f44 - f12*f10 = ax - M*log2by64_hi
+// f14 = f13 - f8*f11 = R = (ax - M*log2by64_hi) - M*log2by64_lo
+
{ .mfi
- shladd rJ_neg = rJ_neg, 3, rTblAddr // addr in 2^(j/64) table -x
- nop.f 0
- and rN_neg = rN_mask, rN_neg // biased, shifted n-1 for -x
+ nop.m 999
+(p0) fnma.s1 sinh_FR_R_temp = sinh_FR_M, sinh_FR_log2by64_hi, sinh_FR_X
+ nop.i 999
}
-;;
{ .mfi
- ld8 rJ_neg = [rJ_neg] // Table value for -x
- nop.f 0
- shl rN_neg = rN_neg, 46 // 2^(n-1) bits in DP format for -x
+(p0) ldfe sinh_FR_A2 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 sinh_FR_R = sinh_FR_M, sinh_FR_log2by64_lo, sinh_FR_R_temp
+ nop.i 999
+}
+
+// Get the B coefficients
+// f15 = B_1
+// f32 = B_2
+// f33 = B_3
+
+{ .mmi
+(p0) ldfe sinh_FR_A3 = [r34],16 ;;
+(p0) ldfe sinh_FR_B1 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_B2 = [r34],16 ;;
+(p0) ldfe sinh_FR_B3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl r34 = r36, 0x2 ;;
+(p0) sxt1 r37 = r34 ;;
}
-;;
+
+// ******************************************************
+// STEP 2 (TBL and EXP)
+// ******************************************************
+// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// f12 = R*R*R
+// f13 = R*R
+// f14 = R <== from above
{ .mfi
- or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Rsq = sinh_FR_R, sinh_FR_R, f0
+(p0) shr r36 = r37, 0x2 ;;
+}
+
+// r34 = M-j = r35 - r36
+// r35 = N = (M-j)/64
+
+{ .mii
+(p0) sub r34 = r35, r36
+ nop.i 999 ;;
+(p0) shr r35 = r34, 0x6 ;;
+}
+
+{ .mii
+(p0) sub r40 = r38, r35
+(p0) adds r37 = 0x1, r35
+(p0) add r39 = r38, r35 ;;
+}
+
+// Get the address of the J table, add the offset,
+// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
+// f32 = T(j)_hi
+// f33 = T(j)_lo
+// f34 = T(-j)_hi
+// f35 = T(-j)_lo
+
+{ .mmi
+(p0) sub r34 = r35, r32
+(p0) addl r37 = @ltoff(double_sinh_j_table), gp
+ nop.i 999
}
;;
-{ .mmf
- setf.d fT = rN // 2^(n-1) * 2^(j/64)
- or rN_neg = rN_neg, rJ_neg // -x bits of 2^n * 2^(j/64) in DP
- fma.s1 fRSqr = fR, fR, f0 // R^2
+{ .mmi
+ ld8 r37 = [r37]
+ nop.m 999
+ nop.i 999
}
;;
+
{ .mfi
- setf.d fT_neg = rN_neg // 2^(n-1) * 2^(j/64) for -x
- fma.s1 fP = fA3, fR, fA2 // A3*R + A2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Rcub = sinh_FR_Rsq, sinh_FR_R, f0
+ nop.i 999
+}
+
+// ******************************************************
+// STEP 3 Now decide if we need to branch to EXP
+// ******************************************************
+// Put 32 in f9; p6 true if x < 32
+// Go to EXP if |x| >= 32
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010004 ;;
}
+
+// Calculate p_even
+// f34 = B_2 + Rsq *B_3
+// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
+// f36 = p_even = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+
{ .mfi
- nop.m 0
- fnma.s1 fP_neg = fA3, fR, fA2 // A3*R + A2 for -x
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven_temp1 = sinh_FR_Rsq, sinh_FR_B3, sinh_FR_B2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven_temp2 = sinh_FR_Rsq, sinh_FR_peven_temp1, sinh_FR_B1
+ nop.i 999
}
+
+// Calculate p_odd
+// f34 = A_2 + Rsq *A_3
+// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
+// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
+
{ .mfi
- nop.m 0
- fms.s1 fP_neg = fP_neg, fRSqr, fR // P = (A3*R + A2)*R^2 + R, -x
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd_temp1 = sinh_FR_Rsq, sinh_FR_A3, sinh_FR_A2
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fLn2Div64, fLn2Div64 // Force inexact
- nop.i 0
+(p0) setf.exp sinh_FR_N_temp1 = r39
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fExp = fP, fT, fT // exp(x)/2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven = sinh_FR_Rsq, sinh_FR_peven_temp2, f0
+ nop.i 999
}
-{ .mfb
- nop.m 0
- fma.s1 fExp_neg = fP_neg, fT_neg, fT_neg // exp(-x)/2
- // branch out if possible overflow result
-(p13) br.cond.spnt SINH_POSSIBLE_OVERFLOW
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd_temp2 = sinh_FR_Rsq, sinh_FR_podd_temp1, sinh_FR_A1
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd = sinh_FR_podd_temp2, sinh_FR_Rcub, sinh_FR_R
+ nop.i 999
+}
+
+// sinh_GR_mj contains the table offset for -j
+// sinh_GR_j contains the table offset for +j
+// p6 is true when j <= 0
+
+{ .mlx
+(p0) setf.exp sinh_FR_N_temp2 = r40
+(p0) movl r40 = 0x0000000000000020 ;;
+}
+
+{ .mfi
+(p0) sub sinh_GR_mJ = r40, r36
+(p0) fmerge.se sinh_FR_spos = sinh_FR_N_temp1, f1
+(p0) adds sinh_GR_J = 0x20, r36 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl sinh_GR_mJ = sinh_GR_mJ, 5 ;;
+(p0) add sinh_AD_mJ = r37, sinh_GR_mJ ;;
+}
+
+{ .mmi
+ nop.m 999
+(p0) ldfe sinh_FR_Tmjhi = [sinh_AD_mJ],16
+(p0) shl sinh_GR_J = sinh_GR_J, 5 ;;
+}
+
+{ .mfi
+(p0) ldfs sinh_FR_Tmjlo = [sinh_AD_mJ],16
+(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
+(p0) add sinh_AD_J = r37, sinh_GR_J ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_Tjhi = [sinh_AD_J],16 ;;
+(p0) ldfs sinh_FR_Tjlo = [sinh_AD_J],16
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- // final result in the absence of overflow
- fms.s.s0 f8 = fExp, f1, fExp_neg // result = (exp(x)-exp(-x))/2
- // exit here in the absence of overflow
- br.ret.sptk b0 // Exit main path, 0.25 <= |x| < 89.41598
+ nop.m 999
+(p0) fmerge.se sinh_FR_sneg = sinh_FR_N_temp2, f1
+(p7) br.cond.spnt L(SINH_BY_EXP) ;;
}
-;;
-// Here if 0 < |x| < 0.25. Evaluate 9th order polynomial.
-SINH_SMALL:
{ .mfi
- add rAd1 = 0x200, rTblAddr
- fcmp.lt.s1 p7, p8 = fNormX, f0 // Test sign of x
- cmp.gt p6, p0 = -60, rExp_x // Test |x| < 2^(-60)
+ nop.m 999
+ nop.f 999
+ nop.i 999 ;;
}
+
+// ******************************************************
+// If NOT branch to EXP
+// ******************************************************
+// Calculate S_hi and S_lo
+// sinh_FR_S_hi_temp = sinh_FR_sneg * sinh_FR_Tmjhi
+// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi_temp
+// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - (sinh_FR_sneg * sinh_FR_Tmjlo)
+
{ .mfi
- add rAd2 = 0x210, rTblAddr
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_hi_temp = sinh_FR_sneg, sinh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
-;;
-{ .mmb
- ldfpd fA4, fA3 = [rAd1]
- ldfpd fA2, fA1 = [rAd2]
-(p6) br.cond.spnt SINH_VERY_SMALL // Branch if |x| < 2^(-60)
+{ .mfi
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi_temp
+ nop.i 999
}
-;;
+
+// Calculate C_hi
+// sinh_FR_C_hi_temp1 = sinh_FR_sneg * sinh_FR_Tmjhi
+// sinh_FR_C_hi = sinh_FR_spos * sinh_FR_Tjhi + sinh_FR_C_hi_temp1
{ .mfi
- nop.m 0
- fma.s1 fX3 = fXsq, fNormX, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_C_hi_temp1 = sinh_FR_sneg, sinh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
+
+// sinh_FR_S_lo_temp1 = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi
+// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi)
+// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_S_lo_temp1 )
+
{ .mfi
- nop.m 0
- fma.s1 fX4 = fXsq, fXsq, f0
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_lo_temp1 = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fA43 = fXsq, fA4, fA3
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_C_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_C_hi_temp1
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fA21 = fXsq, fA2, fA1
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 sinh_FR_S_lo_temp2 = sinh_FR_sneg, sinh_FR_Tmjhi, sinh_FR_S_lo_temp1
+ nop.i 999
}
-;;
+
+// sinh_FR_S_lo_temp1 = sinh_FR_sneg * sinh_FR_Tmjlo
+// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo - sinh_FR_S_lo_temp1
+// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo -(sinh_FR_sneg * sinh_FR_Tmjlo)
+// sinh_FR_S_lo = sinh_FR_S_lo_temp3 + sinh_FR_S_lo_temp2
{ .mfi
- nop.m 0
- fma.s1 fA4321 = fX4, fA43, fA21
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_lo_temp1 = sinh_FR_sneg, sinh_FR_Tmjlo, f0
+ nop.i 999 ;;
}
-;;
-// Dummy multiply to generate inexact
+/////////// BUG FIX fma to fms -TK
{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fA4, fA4
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_lo_temp3 = sinh_FR_spos, sinh_FR_Tjlo, sinh_FR_S_lo_temp1
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = fA4321, fX3, fNormX
- br.ret.sptk b0 // Exit if 2^-60 < |x| < 0.25
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_lo = sinh_FR_S_lo_temp3, f1, sinh_FR_S_lo_temp2
+ nop.i 999 ;;
+}
+
+// Y_hi = S_hi
+// Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
+// sinh_FR_Y_lo_temp = sinh_FR_S_hi * sinh_FR_peven + sinh_FR_S_lo
+// sinh_FR_Y_lo = sinh_FR_C_hi * sinh_FR_podd + sinh_FR_Y_lo_temp
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_S_hi, sinh_FR_peven, sinh_FR_S_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_C_hi, sinh_FR_podd, sinh_FR_Y_lo_temp
+ nop.i 999 ;;
}
-;;
-SINH_VERY_SMALL:
-// Here if 0 < |x| < 2^-60
-// Compute result by x + sgn(x)*x^2 to get properly rounded result
-.pred.rel "mutex",p7,p8
+// sinh_FR_SINH = Y_hi + Y_lo
+// f8 = answer = sinh_FR_SGNX * sinh_FR_SINH
+
+// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
-(p7) fnma.s.s0 f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2
- nop.i 0
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH = sinh_FR_S_hi, f1, sinh_FR_Y_lo
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 0
-(p8) fma.s.s0 f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2
- br.ret.sptk b0 // Exit if |x| < 2^-60
+ nop.m 999
+(p0) fma.s.s0 f8 = sinh_FR_SGNX, sinh_FR_SINH,f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-SINH_POSSIBLE_OVERFLOW:
-// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
-// This cannot happen if input is a single, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+L(SINH_BY_EXP):
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest single, then we have
-// overflow
+// When p7 is true, we know that an overflow is not going to happen
+// When p7 is false, we must check for possible overflow
+// p7 is the over_SAFE flag
+// Y_hi = Tjhi
+// Y_lo = Tjhi * (p_odd + p_even) +Tjlo
+// Scale = sign * 2^(N-1)
+// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_peven + sinh_FR_podd)
+// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_Y_lo_temp )
{ .mfi
- mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_peven, f1, sinh_FR_podd
+ nop.i 999
+}
+
+// Now we are in EXP. This is the only path where an overflow is possible
+// but not for certain. So this is the only path where over_SAFE has any use.
+// r34 still has N-1
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// There is a danger of double overflow if N-1 > 0x3fe = 1022
+// There is a danger of single overflow if N-1 > 0x7e = 126
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x000000000000007e ;;
}
-;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
- fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
- nop.i 0
+(p0) cmp.gt.unc p0,p7 = r34, r32
+(p0) fmerge.s sinh_FR_SCALE = sinh_FR_SGNX, sinh_FR_spos
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_Tjhi, sinh_FR_Y_lo_temp, sinh_FR_Tjlo
+ nop.i 999 ;;
}
-;;
+// f8 = answer = scale * (Y_hi + Y_lo)
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH_temp = sinh_FR_Y_lo, f1, sinh_FR_Tjhi
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt SINH_CERTAIN_OVERFLOW // Branch if overflow
+{ .mfi
+ nop.m 999
+(p0) fma.s.s0 f44 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
+ nop.i 999 ;;
+}
+
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p7) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999 ;;
}
-;;
+// If over_SAFE is set, return
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fP, fT, fT
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 999
+(p7) fmerge.s f8 = f44,f44
+(p7) br.ret.sptk b0 ;;
}
-;;
-// here if overflow
-SINH_CERTAIN_OVERFLOW:
+// Else see if we overflowed
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// If WRE is set then an overflow will not occur in EXP.
+// The input value that would cause a register (WRE) value to overflow is about 2^15
+// and this input would go into the HUGE path.
+// Answer with WRE is in f43.
+
{ .mfi
- addl r17ones_m1 = 0x1FFFE, r0
- fcmp.lt.s1 p6, p7 = fNormX, f0 // Test for x < 0
- nop.i 0
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s.s2 f43 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
+ nop.i 999 ;;
+}
+
+// 1007F => 1007F -FFFF = 80(true)
+// 80 + 7F = FF, which is 1 more that the exponent of the largest
+// double (FE). So 0 1007F 8000000000000000 is one ulp more than
+// largest single in register bias
+// Now set p8 if the answer with WRE is greater than or equal this value
+// Also set p9 if the answer with WRE is less than or equal to negative this value
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000001007F ;;
}
-;;
{ .mmf
- alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
- setf.exp fTmp = r17ones_m1
- fmerge.s FR_X = f8,f8
+ nop.m 999
+(p0) setf.exp f41 = r32
+(p0) fsetc.s2 0x7F,0x40 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
+ nop.i 999
}
-;;
{ .mfi
- mov GR_Parameter_TAG = 128
-(p6) fnma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and -INF result
- nop.i 0
+ nop.m 999
+(p0) fmerge.ns f42 = f41, f41
+ nop.i 999 ;;
}
+
+// The error tag for overflow is 128
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p8) mov r47 = 128 ;;
+}
+
{ .mfb
- nop.m 0
-(p7) fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
+(p8) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov r47 = 128
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
+}
+
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999 ;;
}
-;;
-// Here if x unorm
-SINH_UNORM:
{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk SINH_COMMON // Return to main path
+ nop.m 999
+(p0) fmerge.s f8 = f44,f44
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_IEEE754_END(sinhf)
+L(SINH_HUGE):
+// for SINH_HUGE, put 24000 in exponent; take sign from input; add 1
+// SAFE: SAFE is always 0 for HUGE
-LOCAL_LIBM_ENTRY(__libm_error_region)
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000015dbf ;;
+}
+
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_signed_hi_lo = sinh_FR_SGNX, f9, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s.s0 f44 = sinh_FR_signed_hi_lo, f9, f0
+(p0) mov r47 = 128
+}
+.endp sinhf
+ASM_SIZE_DIRECTIVE(sinhf)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__ieee754_sinhf)
+#endif
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
+
+.proc __libm_error_region
+__libm_error_region:
+L(SINH_ERROR_SUPPORT):
.prologue
+
+// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+
+// (2)
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
-{ .mfi
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- nop.f 0
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+// (3)
+{ .mib
+ stfs [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfs [GR_Parameter_Y] = f44 // STORE Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+// (4)
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_sinhl.S b/sysdeps/ia64/fpu/e_sinhl.S
index 5b4a4addc2..b880b95b64 100644
--- a/sysdeps/ia64/fpu/e_sinhl.S
+++ b/sysdeps/ia64/fpu/e_sinhl.S
@@ -1,10 +1,10 @@
.file "sinhl.s"
-
-// Copyright (c) 2000 - 2002, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,20 +35,17 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
-// 01/22/01 Fixed to set inexact flag for small args. Fixed incorrect
+// 1/22/01 Fixed to set inexact flag for small args. Fixed incorrect
// call to __libm_error_support for 710.476 < x < 11357.2166.
-// 05/02/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 12/04/02 Improved performance
//
// API
//==============================================================
@@ -59,1059 +56,1269 @@
// Registers used
//==============================================================
// general registers:
-// r14 -> r40
+// r32 -> r47
// predicate registers used:
-// p6 -> p11
+// p6 p7 p8 p9
// floating-point registers used:
-// f9 -> f15; f32 -> f90;
+// f9 -> f15; f32 -> f45;
// f8 has input, then output
//
// Overview of operation
//==============================================================
-// There are seven paths
-// 1. 0 < |x| < 0.25 SINH_BY_POLY
-// 2. 0.25 <=|x| < 32 SINH_BY_TBL
-// 3. 32 <= |x| < 11357.21655 SINH_BY_EXP (merged path with SINH_BY_TBL)
-// 4. |x| >= 11357.21655 SINH_HUGE
-// 5. x=0 Done with early exit
-// 6. x=inf,nan Done with early exit
-// 7. x=denormal SINH_DENORM
+// There are four paths
+// 1. |x| < 0.25 SINH_BY_POLY
+// 2. |x| < 32 SINH_BY_TBL
+// 3. |x| < 2^14 SINH_BY_EXP
+// 4. |x_ >= 2^14 SINH_HUGE
//
-// For double extended we get overflow for x >= 400c b174 ddc0 31ae c0ea
-// >= 11357.21655
+// For double extended we get infinity for x >= 400c b174 ddc0 31ae c0ea
+// >= 1.0110001.... x 2^13
+// >= 11357.2166
//
+// But for double we get infinity for x >= 408633ce8fb9f87e
+// >= 1.0110...x 2^9
+// >= +7.10476e+002
//
-// 1. SINH_BY_POLY 0 < |x| < 0.25
-// ===============
-// Evaluate sinh(x) by a 13th order polynomial
-// Care is take for the order of multiplication; and P_1 is not exactly 1/3!,
-// P_2 is not exactly 1/5!, etc.
-// sinh(x) = sign * (series(e^x) - series(e^-x))/2
-// = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11!
-// + ax^13/13!)
-// = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
-// + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ))
-// = sign * (ax + ax*p_odd + (ax*p_even))
-// = sign * (ax + Y_lo)
-// sinh(x) = sign * (Y_hi + Y_lo)
-// Note that ax = |x|
+// And for single we get infinity for x >= 42b3a496
+// >= 1.0110... 2^6
+// >= 89.8215
//
-// 2. SINH_BY_TBL 0.25 <= |x| < 32.0
-// =============
-// sinh(x) = sinh(B+R)
-// = sinh(B)cosh(R) + cosh(B)sinh(R)
-//
-// ax = |x| = M*log2/64 + R
-// B = M*log2/64
-// M = 64*N + j
-// We will calculate M and get N as (M-j)/64
-// The division is a shift.
-// exp(B) = exp(N*log2 + j*log2/64)
-// = 2^N * 2^(j*log2/64)
-// sinh(B) = 1/2(e^B -e^-B)
-// = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
-// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
-// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
-// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
-// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
+// SAFE: If there is danger of overflow set SAFE to 0
+// NOT implemented: if there is danger of underflow, set SAFE to 0
+// SAFE for all paths listed below
//
-// R = ax - M*log2/64
-// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
-// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
-// = 1 + p_odd + p_even
-// where the p_even uses the A coefficients and the p_even uses
-// the B coefficients
+// 1. SINH_BY_POLY
+// ===============
+// If |x| is less than the tiny threshold, then clear SAFE
+// For double, the tiny threshold is -1022 = -0x3fe => -3fe + ffff = fc01
+// register-biased, this is fc01
+// For single, the tiny threshold is -126 = -7e => -7e + ffff = ff81
+// If |x| < tiny threshold, set SAFE = 0
//
-// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
-// cosh(R) = 1 + p_even
-// sinh(B) = S_hi + S_lo
-// cosh(B) = C_hi
-// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
+// 2. SINH_BY_TBL
+// =============
+// SAFE: SAFE is always 1 for TBL;
//
-// 3. SINH_BY_EXP 32.0 <= |x| < 11357.21655 ( 400c b174 ddc0 31ae c0ea )
+// 3. SINH_BY_EXP
// ==============
-// Can approximate result by exp(x)/2 in this region.
-// Y_hi = Tjhi
-// Y_lo = Tjhi * (p_odd + p_even) + Tjlo
-// sinh(x) = Y_hi + Y_lo
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// r34 has N-1; 16382 is in register biased form, 0x13ffd
+// There is danger of double overflow if N-1 > 0x3fe
+// in register biased form, 0x103fd
+// Analagously, there is danger of single overflow if N-1 > 0x7e
+// in register biased form, 0x1007d
+// SAFE: If there is danger of overflow set SAFE to 0
//
-// 4. SINH_HUGE |x| >= 11357.21655 ( 400c b174 ddc0 31ae c0ea )
+// 4. SINH_HUGE
// ============
-// Set error tag and call error support
-//
+// SAFE: SAFE is always 0 for HUGE
//
+
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
-r_ad5 = r14
-r_rshf_2to57 = r15
-r_exp_denorm = r15
-r_ad_mJ_lo = r15
-r_ad_J_lo = r16
-r_2Nm1 = r17
-r_2mNm1 = r18
-r_exp_x = r18
-r_ad_J_hi = r19
-r_ad2o = r19
-r_ad_mJ_hi = r20
-r_mj = r21
-r_ad2e = r22
-r_ad3 = r23
-r_ad1 = r24
-r_Mmj = r24
-r_rshf = r25
-r_M = r25
-r_N = r25
-r_jshf = r26
-r_exp_2tom57 = r26
-r_j = r26
-r_exp_mask = r27
-r_signexp_x = r28
-r_signexp_sgnx_0_5 = r28
-r_exp_0_25 = r29
-r_sig_inv_ln2 = r30
-r_exp_32 = r30
-r_exp_huge = r30
-r_ad4 = r31
-
-GR_SAVE_PFS = r34
-GR_SAVE_B0 = r35
-GR_SAVE_GP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-f_ABS_X = f9
-f_X2 = f10
-f_X4 = f11
-f_tmp = f14
-f_RSHF = f15
-
-f_Inv_log2by64 = f32
-f_log2by64_lo = f33
-f_log2by64_hi = f34
-f_A1 = f35
-
-f_A2 = f36
-f_A3 = f37
-f_Rcub = f38
-f_M_temp = f39
-f_R_temp = f40
-
-f_Rsq = f41
-f_R = f42
-f_M = f43
-f_B1 = f44
-f_B2 = f45
-
-f_B3 = f46
-f_peven_temp1 = f47
-f_peven_temp2 = f48
-f_peven = f49
-f_podd_temp1 = f50
-
-f_podd_temp2 = f51
-f_podd = f52
-f_poly65 = f53
-f_poly6543 = f53
-f_poly6to1 = f53
-f_poly43 = f54
-f_poly21 = f55
-
-f_X3 = f56
-f_INV_LN2_2TO63 = f57
-f_RSHF_2TO57 = f58
-f_2TOM57 = f59
-f_smlst_oflow_input = f60
-
-f_pre_result = f61
-f_huge = f62
-f_spos = f63
-f_sneg = f64
-f_Tjhi = f65
-
-f_Tjlo = f66
-f_Tmjhi = f67
-f_Tmjlo = f68
-f_S_hi = f69
-f_SC_hi_temp = f70
-
-f_S_lo_temp1 = f71
-f_S_lo_temp2 = f72
-f_S_lo_temp3 = f73
-f_S_lo_temp4 = f73
-f_S_lo = f74
-f_C_hi = f75
-
-f_Y_hi = f77
-f_Y_lo_temp = f78
-f_Y_lo = f79
-f_NORM_X = f80
-
-f_P1 = f81
-f_P2 = f82
-f_P3 = f83
-f_P4 = f84
-f_P5 = f85
-
-f_P6 = f86
-f_Tjhi_spos = f87
-f_Tjlo_spos = f88
-f_huge = f89
-f_signed_hi_lo = f90
+sinh_FR_X = f44
+sinh_FR_X2 = f9
+sinh_FR_X4 = f10
+sinh_FR_SGNX = f40
+sinh_FR_all_ones = f45
+sinh_FR_tmp = f42
+
+sinh_FR_Inv_log2by64 = f9
+sinh_FR_log2by64_lo = f11
+sinh_FR_log2by64_hi = f10
+
+sinh_FR_A1 = f9
+sinh_FR_A2 = f10
+sinh_FR_A3 = f11
+
+sinh_FR_Rcub = f12
+sinh_FR_M_temp = f13
+sinh_FR_R_temp = f13
+sinh_FR_Rsq = f13
+sinh_FR_R = f14
+
+sinh_FR_M = f38
+
+sinh_FR_B1 = f15
+sinh_FR_B2 = f32
+sinh_FR_B3 = f33
+
+sinh_FR_peven_temp1 = f34
+sinh_FR_peven_temp2 = f35
+sinh_FR_peven = f36
+sinh_FR_podd_temp1 = f34
+sinh_FR_podd_temp2 = f35
+sinh_FR_podd = f37
+
+sinh_FR_poly_podd_temp1 = f11
+sinh_FR_poly_podd_temp2 = f13
+sinh_FR_poly_peven_temp1 = f11
+sinh_FR_poly_peven_temp2 = f13
+
+sinh_FR_J_temp = f9
+sinh_FR_J = f10
+
+sinh_FR_Mmj = f39
+
+sinh_FR_N_temp1 = f11
+sinh_FR_N_temp2 = f12
+sinh_FR_N = f13
+
+sinh_FR_spos = f14
+sinh_FR_sneg = f15
+
+sinh_FR_Tjhi = f32
+sinh_FR_Tjlo = f33
+sinh_FR_Tmjhi = f34
+sinh_FR_Tmjlo = f35
+
+sinh_GR_mJ = r35
+sinh_GR_J = r36
+
+sinh_AD_mJ = r38
+sinh_AD_J = r39
+sinh_GR_all_ones = r40
+
+sinh_FR_S_hi = f9
+sinh_FR_S_hi_temp = f10
+sinh_FR_S_lo_temp1 = f11
+sinh_FR_S_lo_temp2 = f12
+sinh_FR_S_lo_temp3 = f13
+
+sinh_FR_S_lo = f38
+sinh_FR_C_hi = f39
+
+sinh_FR_C_hi_temp1 = f10
+sinh_FR_Y_hi = f11
+sinh_FR_Y_lo_temp = f12
+sinh_FR_Y_lo = f13
+sinh_FR_SINH = f9
+
+sinh_FR_P1 = f14
+sinh_FR_P2 = f15
+sinh_FR_P3 = f32
+sinh_FR_P4 = f33
+sinh_FR_P5 = f34
+sinh_FR_P6 = f35
+
+sinh_FR_TINY_THRESH = f9
+
+sinh_FR_SINH_temp = f10
+sinh_FR_SCALE = f11
+
+sinh_FR_signed_hi_lo = f10
+
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+GR_Parameter_X = r44
+GR_Parameter_Y = r45
+GR_Parameter_RESULT = r46
// Data tables
//==============================================================
-// DO NOT CHANGE ORDER OF THESE TABLES
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(sinh_arg_reduction)
-// data8 0xB8AA3B295C17F0BC, 0x00004005 // 64/log2 -- signif loaded with setf
- data8 0xB17217F7D1000000, 0x00003FF8 // log2/64 high part
- data8 0xCF79ABC9E3B39804, 0x00003FD0 // log2/64 low part
- data8 0xb174ddc031aec0ea, 0x0000400c // Smallest x to overflow (11357.21655)
-LOCAL_OBJECT_END(sinh_arg_reduction)
-
-LOCAL_OBJECT_START(sinh_p_table)
- data8 0xB08AF9AE78C1239F, 0x00003FDE // P6
- data8 0xB8EF1D28926D8891, 0x00003FEC // P4
- data8 0x8888888888888412, 0x00003FF8 // P2
- data8 0xD732377688025BE9, 0x00003FE5 // P5
- data8 0xD00D00D00D4D39F2, 0x00003FF2 // P3
- data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // P1
-LOCAL_OBJECT_END(sinh_p_table)
-
-LOCAL_OBJECT_START(sinh_ab_table)
- data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC // A1
- data8 0x88888888884ECDD5, 0x00003FF8 // A2
- data8 0xD00D0C6DCC26A86B, 0x00003FF2 // A3
- data8 0x8000000000000002, 0x00003FFE // B1
- data8 0xAAAAAAAAAA402C77, 0x00003FFA // B2
- data8 0xB60B6CC96BDB144D, 0x00003FF5 // B3
-LOCAL_OBJECT_END(sinh_ab_table)
-
-LOCAL_OBJECT_START(sinh_j_hi_table)
- data8 0xB504F333F9DE6484, 0x00003FFE
- data8 0xB6FD91E328D17791, 0x00003FFE
- data8 0xB8FBAF4762FB9EE9, 0x00003FFE
- data8 0xBAFF5AB2133E45FB, 0x00003FFE
- data8 0xBD08A39F580C36BF, 0x00003FFE
- data8 0xBF1799B67A731083, 0x00003FFE
- data8 0xC12C4CCA66709456, 0x00003FFE
- data8 0xC346CCDA24976407, 0x00003FFE
- data8 0xC5672A115506DADD, 0x00003FFE
- data8 0xC78D74C8ABB9B15D, 0x00003FFE
- data8 0xC9B9BD866E2F27A3, 0x00003FFE
- data8 0xCBEC14FEF2727C5D, 0x00003FFE
- data8 0xCE248C151F8480E4, 0x00003FFE
- data8 0xD06333DAEF2B2595, 0x00003FFE
- data8 0xD2A81D91F12AE45A, 0x00003FFE
- data8 0xD4F35AABCFEDFA1F, 0x00003FFE
- data8 0xD744FCCAD69D6AF4, 0x00003FFE
- data8 0xD99D15C278AFD7B6, 0x00003FFE
- data8 0xDBFBB797DAF23755, 0x00003FFE
- data8 0xDE60F4825E0E9124, 0x00003FFE
- data8 0xE0CCDEEC2A94E111, 0x00003FFE
- data8 0xE33F8972BE8A5A51, 0x00003FFE
- data8 0xE5B906E77C8348A8, 0x00003FFE
- data8 0xE8396A503C4BDC68, 0x00003FFE
- data8 0xEAC0C6E7DD24392F, 0x00003FFE
- data8 0xED4F301ED9942B84, 0x00003FFE
- data8 0xEFE4B99BDCDAF5CB, 0x00003FFE
- data8 0xF281773C59FFB13A, 0x00003FFE
- data8 0xF5257D152486CC2C, 0x00003FFE
- data8 0xF7D0DF730AD13BB9, 0x00003FFE
- data8 0xFA83B2DB722A033A, 0x00003FFE
- data8 0xFD3E0C0CF486C175, 0x00003FFE
- data8 0x8000000000000000, 0x00003FFF // Center of table
- data8 0x8164D1F3BC030773, 0x00003FFF
- data8 0x82CD8698AC2BA1D7, 0x00003FFF
- data8 0x843A28C3ACDE4046, 0x00003FFF
- data8 0x85AAC367CC487B15, 0x00003FFF
- data8 0x871F61969E8D1010, 0x00003FFF
- data8 0x88980E8092DA8527, 0x00003FFF
- data8 0x8A14D575496EFD9A, 0x00003FFF
- data8 0x8B95C1E3EA8BD6E7, 0x00003FFF
- data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF
- data8 0x8EA4398B45CD53C0, 0x00003FFF
- data8 0x9031DC431466B1DC, 0x00003FFF
- data8 0x91C3D373AB11C336, 0x00003FFF
- data8 0x935A2B2F13E6E92C, 0x00003FFF
- data8 0x94F4EFA8FEF70961, 0x00003FFF
- data8 0x96942D3720185A00, 0x00003FFF
- data8 0x9837F0518DB8A96F, 0x00003FFF
- data8 0x99E0459320B7FA65, 0x00003FFF
- data8 0x9B8D39B9D54E5539, 0x00003FFF
- data8 0x9D3ED9A72CFFB751, 0x00003FFF
- data8 0x9EF5326091A111AE, 0x00003FFF
- data8 0xA0B0510FB9714FC2, 0x00003FFF
- data8 0xA27043030C496819, 0x00003FFF
- data8 0xA43515AE09E6809E, 0x00003FFF
- data8 0xA5FED6A9B15138EA, 0x00003FFF
- data8 0xA7CD93B4E965356A, 0x00003FFF
- data8 0xA9A15AB4EA7C0EF8, 0x00003FFF
- data8 0xAB7A39B5A93ED337, 0x00003FFF
- data8 0xAD583EEA42A14AC6, 0x00003FFF
- data8 0xAF3B78AD690A4375, 0x00003FFF
- data8 0xB123F581D2AC2590, 0x00003FFF
- data8 0xB311C412A9112489, 0x00003FFF
- data8 0xB504F333F9DE6484, 0x00003FFF
-LOCAL_OBJECT_END(sinh_j_hi_table)
-
-LOCAL_OBJECT_START(sinh_j_lo_table)
- data4 0x1EB2FB13
- data4 0x1CE2CBE2
- data4 0x1DDC3CBC
- data4 0x1EE9AA34
- data4 0x9EAEFDC1
- data4 0x9DBF517B
- data4 0x1EF88AFB
- data4 0x1E03B216
- data4 0x1E78AB43
- data4 0x9E7B1747
- data4 0x9EFE3C0E
- data4 0x9D36F837
- data4 0x9DEE53E4
- data4 0x9E24AE8E
- data4 0x1D912473
- data4 0x1EB243BE
- data4 0x1E669A2F
- data4 0x9BBC610A
- data4 0x1E761035
- data4 0x9E0BE175
- data4 0x1CCB12A1
- data4 0x1D1BFE90
- data4 0x1DF2F47A
- data4 0x1EF22F22
- data4 0x9E3F4A29
- data4 0x1EC01A5B
- data4 0x1E8CAC3A
- data4 0x9DBB3FAB
- data4 0x1EF73A19
- data4 0x9BB795B5
- data4 0x1EF84B76
- data4 0x9EF5818B
- data4 0x00000000 // Center of table
- data4 0x1F77CACA
- data4 0x1EF8A91D
- data4 0x1E57C976
- data4 0x9EE8DA92
- data4 0x1EE85C9F
- data4 0x1F3BF1AF
- data4 0x1D80CA1E
- data4 0x9D0373AF
- data4 0x9F167097
- data4 0x1EB70051
- data4 0x1F6EB029
- data4 0x1DFD6D8E
- data4 0x9EB319B0
- data4 0x1EBA2BEB
- data4 0x1F11D537
- data4 0x1F0D5A46
- data4 0x9E5E7BCA
- data4 0x9F3AAFD1
- data4 0x9E86DACC
- data4 0x9F3EDDC2
- data4 0x1E496E3D
- data4 0x9F490BF6
- data4 0x1DD1DB48
- data4 0x1E65EBFB
- data4 0x9F427496
- data4 0x1F283C4A
- data4 0x1F4B0047
- data4 0x1F130152
- data4 0x9E8367C0
- data4 0x9F705F90
- data4 0x1EFB3C53
- data4 0x1F32FB13
-LOCAL_OBJECT_END(sinh_j_lo_table)
-
+double_sinh_arg_reduction:
+ASM_TYPE_DIRECTIVE(double_sinh_arg_reduction,@object)
+ data8 0xB8AA3B295C17F0BC, 0x00004005
+ data8 0xB17217F7D1000000, 0x00003FF8
+ data8 0xCF79ABC9E3B39804, 0x00003FD0
+ASM_SIZE_DIRECTIVE(double_sinh_arg_reduction)
+
+double_sinh_p_table:
+ASM_TYPE_DIRECTIVE(double_sinh_p_table,@object)
+ data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC
+ data8 0x8888888888888412, 0x00003FF8
+ data8 0xD00D00D00D4D39F2, 0x00003FF2
+ data8 0xB8EF1D28926D8891, 0x00003FEC
+ data8 0xD732377688025BE9, 0x00003FE5
+ data8 0xB08AF9AE78C1239F, 0x00003FDE
+ASM_SIZE_DIRECTIVE(double_sinh_p_table)
+
+double_sinh_ab_table:
+ASM_TYPE_DIRECTIVE(double_sinh_ab_table,@object)
+ data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
+ data8 0x88888888884ECDD5, 0x00003FF8
+ data8 0xD00D0C6DCC26A86B, 0x00003FF2
+ data8 0x8000000000000002, 0x00003FFE
+ data8 0xAAAAAAAAAA402C77, 0x00003FFA
+ data8 0xB60B6CC96BDB144D, 0x00003FF5
+ASM_SIZE_DIRECTIVE(double_sinh_ab_table)
+
+double_sinh_j_table:
+ASM_TYPE_DIRECTIVE(double_sinh_j_table,@object)
+ data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
+ data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
+ data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
+ data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
+ data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
+ data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
+ data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
+ data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
+ data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
+ data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
+ data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
+ data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
+ data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
+ data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
+ data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
+ data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
+ data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
+ data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
+ data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
+ data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
+ data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
+ data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
+ data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
+ data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
+ data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
+ data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
+ data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
+ data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
+ data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
+ data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
+ data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
+ data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
+ data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
+ data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
+ data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
+ data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
+ data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
+ data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
+ data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
+ data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
+ data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
+ data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
+ data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
+ data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
+ data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
+ data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
+ data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
+ data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
+ data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
+ data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
+ data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
+ data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
+ data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
+ data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
+ data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
+ data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
+ data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
+ data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
+ data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
+ data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
+ data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
+ data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
+ data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
+ data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
+ data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
+ASM_SIZE_DIRECTIVE(double_sinh_j_table)
+
+.align 32
+.global sinhl#
.section .text
-GLOBAL_IEEE754_ENTRY(sinhl)
+.proc sinhl#
+.align 32
-{ .mlx
- getf.exp r_signexp_x = f8 // Get signexp of x, must redo if unorm
- movl r_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
+sinhl:
+#ifdef _LIBC
+.global __ieee754_sinhl
+.type __ieee754_sinhl,@function
+__ieee754_sinhl:
+#endif
+
+// X infinity or NAN?
+// Take invalid fault if enabled
+
+
+{ .mfi
+ alloc r32 = ar.pfs,0,12,4,0
+(p0) fclass.m.unc p6,p0 = f8, 0xe3 //@qnan | @snan | @inf
+ mov sinh_GR_all_ones = -1
}
+;;
+
+
+{ .mfb
+ nop.m 999
+(p6) fma.s0 f8 = f8,f1,f8
+(p6) br.ret.spnt b0 ;;
+}
+
+// Put 0.25 in f9; p6 true if x < 0.25
+// Make constant that will generate inexact when squared
{ .mlx
- addl r_ad1 = @ltoff(sinh_arg_reduction), gp
- movl r_rshf_2to57 = 0x4778000000000000 // 1.10000 2^(63+57)
+ setf.sig sinh_FR_all_ones = sinh_GR_all_ones
+(p0) movl r32 = 0x000000000000fffd ;;
+}
+
+{ .mfi
+(p0) setf.exp f9 = r32
+(p0) fclass.m.unc p7,p0 = f8, 0x07 //@zero
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.s sinh_FR_X = f0,f8
+(p7) br.ret.spnt b0 ;;
}
-;;
+// Identify denormal operands.
+{ .mfi
+ nop.m 999
+ fclass.m.unc p10,p0 = f8, 0x09 // + denorm
+ nop.i 999
+};;
{ .mfi
- ld8 r_ad1 = [r_ad1]
- fmerge.s f_ABS_X = f0,f8
- mov r_exp_0_25 = 0x0fffd // Form exponent for 0.25
+ nop.m 999
+ fclass.m.unc p11,p0 = f8, 0x0a // - denorm
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- fnorm.s1 f_NORM_X = f8
- mov r_exp_2tom57 = 0xffff-57
+ nop.m 999
+(p0) fmerge.s sinh_FR_SGNX = f8,f1
+ nop.i 999 ;;
}
-;;
{ .mfi
- setf.d f_RSHF_2TO57 = r_rshf_2to57 // Form const 1.100 * 2^120
- fclass.m p10,p0 = f8, 0x0b // Test for denorm
- mov r_exp_mask = 0x1ffff
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
+ nop.i 999 ;;
}
-{ .mlx
- setf.sig f_INV_LN2_2TO63 = r_sig_inv_ln2 // Form 1/ln2 * 2^63
- movl r_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.sptk L(SINH_BY_TBL) ;;
+}
+
+
+L(SINH_BY_POLY):
+
+// POLY cannot overflow so there is no need to call __libm_error_support
+// Set tiny_SAFE (p7) to 1(0) if answer is not tiny
+// Currently we do not use tiny_SAFE. So the setting of tiny_SAFE is
+// commented out.
+//(p0) movl r32 = 0x000000000000fc01
+//(p0) setf.exp f10 = r32
+//(p0) fcmp.lt.unc.s1 p6,p7 = f8,f10
+// Here is essentially the algorithm for SINH_BY_POLY. Care is take for the order
+// of multiplication; and P_1 is not exactly 1/3!, P_2 is not exactly 1/5!, etc.
+// Note that ax = |x|
+// sinh(x) = sign * (series(e^x) - series(e^-x))/2
+// = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11! + ax^13/13!)
+// = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
+// + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ) )
+// = sign * (ax + ax*p_odd + (ax*p_even))
+// = sign * (ax + Y_lo)
+// sinh(x) = sign * (Y_hi + Y_lo)
+// Get the values of P_x from the table
+{ .mfb
+(p0) addl r34 = @ltoff(double_sinh_p_table), gp
+(p10) fma.s0 f8 = f8,f8,f8
+(p10) br.ret.spnt b0
+}
+;;
+
+{ .mfb
+ ld8 r34 = [r34]
+(p11) fnma.s0 f8 = f8,f8,f8
+(p11) br.ret.spnt b0
}
;;
+// Calculate sinh_FR_X2 = ax*ax and sinh_FR_X4 = ax*ax*ax*ax
+{ .mmf
+ nop.m 999
+(p0) ldfe sinh_FR_P1 = [r34],16
+(p0) fma.s1 sinh_FR_X2 = sinh_FR_X, sinh_FR_X, f0 ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_P2 = [r34],16 ;;
+(p0) ldfe sinh_FR_P3 = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_P4 = [r34],16 ;;
+(p0) ldfe sinh_FR_P5 = [r34],16
+ nop.i 999 ;;
+}
+
{ .mfi
- nop.m 0
- fclass.m p7,p0 = f8, 0x07 // Test if x=0
- nop.i 0
+(p0) ldfe sinh_FR_P6 = [r34],16
+(p0) fma.s1 sinh_FR_X4 = sinh_FR_X2, sinh_FR_X2, f0
+ nop.i 999 ;;
}
+
+// Calculate sinh_FR_podd = p_odd and sinh_FR_peven = p_even
{ .mfi
- setf.exp f_2TOM57 = r_exp_2tom57 // Form 2^-57 for scaling
- nop.f 0
- add r_ad3 = 0x90, r_ad1 // Point to ab_table
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_podd_temp1 = sinh_FR_X4, sinh_FR_P5, sinh_FR_P3
+ nop.i 999 ;;
}
-;;
{ .mfi
- setf.d f_RSHF = r_rshf // Form right shift const 1.100 * 2^63
- fclass.m p6,p0 = f8, 0xe3 // Test if x nan, inf
- add r_ad4 = 0x2f0, r_ad1 // Point to j_hi_table midpoint
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_podd_temp2 = sinh_FR_X4, sinh_FR_poly_podd_temp1, sinh_FR_P1
+ nop.i 999
}
-{ .mib
- add r_ad2e = 0x20, r_ad1 // Point to p_table
- nop.i 0
-(p10) br.cond.spnt SINH_DENORM // Branch if x denorm
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_peven_temp1 = sinh_FR_X4, sinh_FR_P6, sinh_FR_P4
+ nop.i 999 ;;
}
-;;
-// Common path -- return here from SINH_DENORM if x is unnorm
-SINH_COMMON:
{ .mfi
- ldfe f_smlst_oflow_input = [r_ad2e],16
- nop.f 0
- add r_ad5 = 0x580, r_ad1 // Point to j_lo_table midpoint
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd = sinh_FR_X2, sinh_FR_poly_podd_temp2, f0
+ nop.i 999
}
-{ .mib
- ldfe f_log2by64_hi = [r_ad1],16
- and r_exp_x = r_exp_mask, r_signexp_x
-(p7) br.ret.spnt b0 // Exit if x=0
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_poly_peven_temp2 = sinh_FR_X4, sinh_FR_poly_peven_temp1, sinh_FR_P2
+ nop.i 999 ;;
}
-;;
-// Get the A coefficients for SINH_BY_TBL
{ .mfi
- ldfe f_A1 = [r_ad3],16
- fcmp.lt.s1 p8,p9 = f8,f0 // Test for x<0
- cmp.lt p7,p0 = r_exp_x, r_exp_0_25 // Test x < 0.25
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven = sinh_FR_X4, sinh_FR_poly_peven_temp2, f0
+ nop.i 999 ;;
}
-{ .mfb
- add r_ad2o = 0x30, r_ad2e // Point to p_table odd coeffs
-(p6) fma.s0 f8 = f8,f1,f0 // Result for x nan, inf
-(p6) br.ret.spnt b0 // Exit for x nan, inf
+
+// Calculate sinh_FR_Y_lo = ax*p_odd + (ax*p_even)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_X, sinh_FR_peven, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_X, sinh_FR_podd, sinh_FR_Y_lo_temp
+ nop.i 999 ;;
}
-;;
-// Calculate X2 = ax*ax for SINH_BY_POLY
+// Calculate sinh_FR_SINH = Y_hi + Y_lo. Note that ax = Y_hi
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH = sinh_FR_X, f1, sinh_FR_Y_lo
+ nop.i 999 ;;
+}
+// Dummy multiply to generate inexact
{ .mfi
- ldfe f_log2by64_lo = [r_ad1],16
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999
}
+
+// Calculate f8 = sign * (Y_hi + Y_lo)
+// Go to return
{ .mfb
- ldfe f_A2 = [r_ad3],16
- fma.s1 f_X2 = f_NORM_X, f_NORM_X, f0
-(p7) br.cond.spnt SINH_BY_POLY
+ nop.m 999
+(p0) fma.s0 f8 = sinh_FR_SGNX,sinh_FR_SINH,f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-// Here if |x| >= 0.25
-SINH_BY_TBL:
+
+L(SINH_BY_TBL):
+
+// Now that we are at TBL; so far all we know is that |x| >= 0.25.
+// The first two steps are the same for TBL and EXP, but if we are HUGE
+// we want to leave now.
+// Double-extended:
+// Go to HUGE if |x| >= 2^14, 1000d (register-biased) is e = 14 (true)
+// Double
+// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
+// Single
+// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x000000000001000d ;;
+}
+
+{ .mfi
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p6,p7 = sinh_FR_X,f9
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(SINH_HUGE) ;;
+}
+
+// r32 = 1
+// r34 = N-1
+// r35 = N
+// r36 = j
+// r37 = N+1
+
+// TBL can never overflow
+// sinh(x) = sinh(B+R)
+// = sinh(B)cosh(R) + cosh(B)sinh(R)
+//
+// ax = |x| = M*log2/64 + R
+// B = M*log2/64
+// M = 64*N + j
+// We will calcualte M and get N as (M-j)/64
+// The division is a shift.
+// exp(B) = exp(N*log2 + j*log2/64)
+// = 2^N * 2^(j*log2/64)
+// sinh(B) = 1/2(e^B -e^-B)
+// = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
+// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
+// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
+// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
+// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
+// R = ax - M*log2/64
+// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
+// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
+// = 1 + p_odd + p_even
+// where the p_even uses the A coefficients and the p_even uses the B coefficients
+// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
+// cosh(R) = 1 + p_even
+// sinh(B) = S_hi + S_lo
+// cosh(B) = C_hi
+// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
// ******************************************************
-// STEP 1 (TBL and EXP) - Argument reduction
+// STEP 1 (TBL and EXP)
// ******************************************************
// Get the following constants.
-// Inv_log2by64
-// log2by64_hi
-// log2by64_lo
+// f9 = Inv_log2by64
+// f10 = log2by64_hi
+// f11 = log2by64_lo
+
+{ .mmi
+(p0) adds r32 = 0x1,r0
+(p0) addl r34 = @ltoff(double_sinh_arg_reduction), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
+}
+;;
// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
// put them in an exponent.
-// f_spos = 2^(N-1) and f_sneg = 2^(-N-1)
-// 0xffff + (N-1) = 0xffff +N -1
-// 0xffff - (N +1) = 0xffff -N -1
+// sinh_FR_spos = 2^(N-1) and sinh_FR_sneg = 2^(-N-1)
+// r39 = 0xffff + (N-1) = 0xffff +N -1
+// r40 = 0xffff - (N +1) = 0xffff -N -1
+{ .mlx
+ nop.m 999
+(p0) movl r38 = 0x000000000000fffe ;;
+}
-// Calculate M and keep it as integer and floating point.
-// M = round-to-integer(x*Inv_log2by64)
-// f_M = M = truncate(ax/(log2/64))
-// Put the integer representation of M in r_M
-// and the floating point representation of M in f_M
+{ .mmi
+(p0) ldfe sinh_FR_Inv_log2by64 = [r34],16 ;;
+(p0) ldfe sinh_FR_log2by64_hi = [r34],16
+ nop.i 999 ;;
+}
+
+{ .mbb
+(p0) ldfe sinh_FR_log2by64_lo = [r34],16
+ nop.b 999
+ nop.b 999 ;;
+}
+
+// Get the A coefficients
+// f9 = A_1
+// f10 = A_2
+// f11 = A_3
-// Get the remaining A,B coefficients
{ .mmi
- ldfe f_A3 = [r_ad3],16
- nop.m 0
- nop.i 0
+ nop.m 999
+(p0) addl r34 = @ltoff(double_sinh_ab_table), gp
+ nop.i 999
}
;;
-.pred.rel "mutex",p8,p9
-// Use constant (1.100*2^(63-6)) to get rounded M into rightmost significand
-// |x| * 64 * 1/ln2 * 2^(63-6) + 1.1000 * 2^(63+(63-6))
-{ .mfi
-(p8) mov r_signexp_sgnx_0_5 = 0x2fffe // signexp of -0.5
- fma.s1 f_M_temp = f_ABS_X, f_INV_LN2_2TO63, f_RSHF_2TO57
-(p9) mov r_signexp_sgnx_0_5 = 0x0fffe // signexp of +0.5
+{ .mmi
+ ld8 r34 = [r34]
+ nop.m 999
+ nop.i 999
}
;;
-// Test for |x| >= overflow limit
+
+// Calculate M and keep it as integer and floating point.
+// f38 = M = round-to-integer(x*Inv_log2by64)
+// sinh_FR_M = M = truncate(ax/(log2/64))
+// Put the significand of M in r35
+// and the floating point representation of M in sinh_FR_M
+
{ .mfi
- ldfe f_B1 = [r_ad3],16
- fcmp.ge.s1 p6,p0 = f_ABS_X, f_smlst_oflow_input
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_M = sinh_FR_X, sinh_FR_Inv_log2by64, f0
+ nop.i 999
}
-;;
{ .mfi
- ldfe f_B2 = [r_ad3],16
- nop.f 0
- mov r_exp_32 = 0x10004
+(p0) ldfe sinh_FR_A1 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-// Subtract RSHF constant to get rounded M as a floating point value
-// M_temp * 2^(63-6) - 2^63
-{ .mfb
- ldfe f_B3 = [r_ad3],16
- fms.s1 f_M = f_M_temp, f_2TOM57, f_RSHF
-(p6) br.cond.spnt SINH_HUGE // Branch if result will overflow
+{ .mfi
+ nop.m 999
+(p0) fcvt.fx.s1 sinh_FR_M_temp = sinh_FR_M
+ nop.i 999 ;;
}
-;;
{ .mfi
- getf.sig r_M = f_M_temp
- nop.f 0
- cmp.ge p7,p6 = r_exp_x, r_exp_32 // Test if x >= 32
+ nop.m 999
+(p0) fnorm.s1 sinh_FR_M = sinh_FR_M_temp
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p0) getf.sig r35 = sinh_FR_M_temp
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-// Calculate j. j is the signed extension of the six lsb of M. It
+// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
// has a range of -32 thru 31.
+// r35 = M
+// r36 = j
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) and r36 = 0x3f, r35 ;;
+}
// Calculate R
-// ax - M*log2by64_hi
-// R = (ax - M*log2by64_hi) - M*log2by64_lo
+// f13 = f44 - f12*f10 = ax - M*log2by64_hi
+// f14 = f13 - f8*f11 = R = (ax - M*log2by64_hi) - M*log2by64_lo
{ .mfi
- nop.m 0
- fnma.s1 f_R_temp = f_M, f_log2by64_hi, f_ABS_X
- and r_j = 0x3f, r_M
+ nop.m 999
+(p0) fnma.s1 sinh_FR_R_temp = sinh_FR_M, sinh_FR_log2by64_hi, sinh_FR_X
+ nop.i 999
}
-;;
-{ .mii
- nop.m 0
- shl r_jshf = r_j, 0x2 // Shift j so can sign extend it
-;;
- sxt1 r_jshf = r_jshf
+{ .mfi
+(p0) ldfe sinh_FR_A2 = [r34],16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-{ .mii
- nop.m 0
- shr r_j = r_jshf, 0x2 // Now j has range -32 to 31
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fnma.s1 sinh_FR_R = sinh_FR_M, sinh_FR_log2by64_lo, sinh_FR_R_temp
+ nop.i 999
}
-;;
+
+// Get the B coefficients
+// f15 = B_1
+// f32 = B_2
+// f33 = B_3
{ .mmi
- shladd r_ad_J_hi = r_j, 4, r_ad4 // pointer to Tjhi
- sub r_Mmj = r_M, r_j // M-j
- sub r_mj = r0, r_j // Form -j
+(p0) ldfe sinh_FR_A3 = [r34],16 ;;
+(p0) ldfe sinh_FR_B1 = [r34],16
+ nop.i 999 ;;
}
-;;
-// The TBL and EXP branches are merged and predicated
-// If TBL, p6 true, 0.25 <= |x| < 32
-// If EXP, p7 true, 32 <= |x| < overflow_limit
-//
-// N = (M-j)/64
-{ .mfi
- ldfe f_Tjhi = [r_ad_J_hi]
- fnma.s1 f_R = f_M, f_log2by64_lo, f_R_temp
- shr r_N = r_Mmj, 0x6 // N = (M-j)/64
+{ .mmi
+(p0) ldfe sinh_FR_B2 = [r34],16 ;;
+(p0) ldfe sinh_FR_B3 = [r34],16
+ nop.i 999 ;;
}
-{ .mfi
- shladd r_ad_mJ_hi = r_mj, 4, r_ad4 // pointer to Tmjhi
- nop.f 0
- shladd r_ad_mJ_lo = r_mj, 2, r_ad5 // pointer to Tmjlo
+
+{ .mii
+ nop.m 999
+(p0) shl r34 = r36, 0x2 ;;
+(p0) sxt1 r37 = r34 ;;
}
-;;
+
+// ******************************************************
+// STEP 2 (TBL and EXP)
+// ******************************************************
+// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// f12 = R*R*R
+// f13 = R*R
+// f14 = R <== from above
{ .mfi
- sub r_2mNm1 = r_signexp_sgnx_0_5, r_N // signexp sgnx*2^(-N-1)
- nop.f 0
- shladd r_ad_J_lo = r_j, 2, r_ad5 // pointer to Tjlo
+ nop.m 999
+(p0) fma.s1 sinh_FR_Rsq = sinh_FR_R, sinh_FR_R, f0
+(p0) shr r36 = r37, 0x2 ;;
}
-{ .mfi
- ldfe f_Tmjhi = [r_ad_mJ_hi]
- nop.f 0
- add r_2Nm1 = r_signexp_sgnx_0_5, r_N // signexp sgnx*2^(N-1)
+
+// r34 = M-j = r35 - r36
+// r35 = N = (M-j)/64
+
+{ .mii
+(p0) sub r34 = r35, r36
+ nop.i 999 ;;
+(p0) shr r35 = r34, 0x6 ;;
}
-;;
-{ .mmf
- ldfs f_Tmjlo = [r_ad_mJ_lo]
- setf.exp f_sneg = r_2mNm1 // Form sgnx * 2^(-N-1)
- nop.f 0
+{ .mii
+(p0) sub r40 = r38, r35
+(p0) adds r37 = 0x1, r35
+(p0) add r39 = r38, r35 ;;
+}
+
+// Get the address of the J table, add the offset,
+// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
+// f32 = T(j)_hi
+// f33 = T(j)_lo
+// f34 = T(-j)_hi
+// f35 = T(-j)_lo
+
+{ .mmi
+(p0) sub r34 = r35, r32
+(p0) addl r37 = @ltoff(double_sinh_j_table), gp
+ nop.i 999
}
;;
-{ .mmf
- ldfs f_Tjlo = [r_ad_J_lo]
- setf.exp f_spos = r_2Nm1 // Form sgnx * 2^(N-1)
- nop.f 0
+{ .mmi
+ ld8 r37 = [r37]
+ nop.m 999
+ nop.i 999
}
;;
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Rcub = sinh_FR_Rsq, sinh_FR_R, f0
+ nop.i 999
+}
+
// ******************************************************
-// STEP 2 (TBL and EXP)
+// STEP 3 Now decide if we need to branch to EXP
// ******************************************************
-// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
+// Put 32 in f9; p6 true if x < 32
+// Go to EXP if |x| >= 32
-{ .mmf
- nop.m 0
- nop.m 0
- fma.s1 f_Rsq = f_R, f_R, f0
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000010004 ;;
}
-;;
-
// Calculate p_even
-// B_2 + Rsq *B_3
-// B_1 + Rsq * (B_2 + Rsq *B_3)
-// p_even = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+// f34 = B_2 + Rsq *B_3
+// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
+// f36 = p_even = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
+
{ .mfi
- nop.m 0
- fma.s1 f_peven_temp1 = f_Rsq, f_B3, f_B2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven_temp1 = sinh_FR_Rsq, sinh_FR_B3, sinh_FR_B2
+ nop.i 999 ;;
}
-// Calculate p_odd
-// A_2 + Rsq *A_3
-// A_1 + Rsq * (A_2 + Rsq *A_3)
-// podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
+
{ .mfi
- nop.m 0
- fma.s1 f_podd_temp1 = f_Rsq, f_A3, f_A2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven_temp2 = sinh_FR_Rsq, sinh_FR_peven_temp1, sinh_FR_B1
+ nop.i 999
}
-;;
+
+// Calculate p_odd
+// f34 = A_2 + Rsq *A_3
+// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
+// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
{ .mfi
- nop.m 0
- fma.s1 f_Rcub = f_Rsq, f_R, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd_temp1 = sinh_FR_Rsq, sinh_FR_A3, sinh_FR_A2
+ nop.i 999 ;;
}
-;;
-//
-// If TBL,
-// Calculate S_hi and S_lo, and C_hi
-// SC_hi_temp = sneg * Tmjhi
-// S_hi = spos * Tjhi - SC_hi_temp
-// S_hi = spos * Tjhi - (sneg * Tmjhi)
-// C_hi = spos * Tjhi + SC_hi_temp
-// C_hi = spos * Tjhi + (sneg * Tmjhi)
+{ .mfi
+(p0) setf.exp sinh_FR_N_temp1 = r39
+ nop.f 999
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 0
-(p6) fma.s1 f_SC_hi_temp = f_sneg, f_Tmjhi, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_peven = sinh_FR_Rsq, sinh_FR_peven_temp2, f0
+ nop.i 999
}
-;;
-// If TBL,
-// S_lo_temp3 = sneg * Tmjlo
-// S_lo_temp4 = spos * Tjlo - S_lo_temp3
-// S_lo_temp4 = spos * Tjlo -(sneg * Tmjlo)
{ .mfi
- nop.m 0
-(p6) fma.s1 f_S_lo_temp3 = f_sneg, f_Tmjlo, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd_temp2 = sinh_FR_Rsq, sinh_FR_podd_temp1, sinh_FR_A1
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 f_peven_temp2 = f_Rsq, f_peven_temp1, f_B1
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 f_podd_temp2 = f_Rsq, f_podd_temp1, f_A1
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_podd = sinh_FR_podd_temp2, sinh_FR_Rcub, sinh_FR_R
+ nop.i 999
+}
+
+// sinh_GR_mj contains the table offset for -j
+// sinh_GR_j contains the table offset for +j
+// p6 is true when j <= 0
+
+{ .mlx
+(p0) setf.exp sinh_FR_N_temp2 = r40
+(p0) movl r40 = 0x0000000000000020 ;;
}
-;;
-// If EXP,
-// Compute sgnx * 2^(N-1) * Tjhi and sgnx * 2^(N-1) * Tjlo
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Tjhi_spos = f_Tjhi, f_spos, f0
- nop.i 0
+(p0) sub sinh_GR_mJ = r40, r36
+(p0) fmerge.se sinh_FR_spos = sinh_FR_N_temp1, f1
+(p0) adds sinh_GR_J = 0x20, r36 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) shl sinh_GR_mJ = sinh_GR_mJ, 5 ;;
+(p0) add sinh_AD_mJ = r37, sinh_GR_mJ ;;
+}
+
+{ .mmi
+ nop.m 999
+(p0) ldfe sinh_FR_Tmjhi = [sinh_AD_mJ],16
+(p0) shl sinh_GR_J = sinh_GR_J, 5 ;;
}
+
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Tjlo_spos = f_Tjlo, f_spos, f0
- nop.i 0
+(p0) ldfs sinh_FR_Tmjlo = [sinh_AD_mJ],16
+(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
+(p0) add sinh_AD_J = r37, sinh_GR_J ;;
+}
+
+{ .mmi
+(p0) ldfe sinh_FR_Tjhi = [sinh_AD_J],16 ;;
+(p0) ldfs sinh_FR_Tjlo = [sinh_AD_J],16
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fmerge.se sinh_FR_sneg = sinh_FR_N_temp2, f1
+(p7) br.cond.spnt L(SINH_BY_EXP) ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fms.s1 f_S_hi = f_spos, f_Tjhi, f_SC_hi_temp
- nop.i 0
+ nop.m 999
+ nop.f 999
+ nop.i 999 ;;
}
-;;
+
+// ******************************************************
+// If NOT branch to EXP
+// ******************************************************
+// Calculate S_hi and S_lo
+// sinh_FR_S_hi_temp = sinh_FR_sneg * sinh_FR_Tmjhi
+// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi_temp
+// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - (sinh_FR_sneg * sinh_FR_Tmjlo)
{ .mfi
- nop.m 0
-(p6) fma.s1 f_C_hi = f_spos, f_Tjhi, f_SC_hi_temp
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_hi_temp = sinh_FR_sneg, sinh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
-(p6) fms.s1 f_S_lo_temp4 = f_spos, f_Tjlo, f_S_lo_temp3
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi_temp
+ nop.i 999
}
-;;
+
+// Calculate C_hi
+// sinh_FR_C_hi_temp1 = sinh_FR_sneg * sinh_FR_Tmjhi
+// sinh_FR_C_hi = sinh_FR_spos * sinh_FR_Tjhi + sinh_FR_C_hi_temp1
{ .mfi
- nop.m 0
- fma.s1 f_peven = f_Rsq, f_peven_temp2, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_C_hi_temp1 = sinh_FR_sneg, sinh_FR_Tmjhi, f0
+ nop.i 999 ;;
}
+
+// sinh_FR_S_lo_temp1 = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi
+// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi)
+// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_S_lo_temp1 )
+
{ .mfi
- nop.m 0
- fma.s1 f_podd = f_podd_temp2, f_Rcub, f_R
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_lo_temp1 = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi
+ nop.i 999
}
-;;
-// If TBL,
-// S_lo_temp1 = spos * Tjhi - S_hi
-// S_lo_temp2 = -sneg * Tmjlo + S_lo_temp1
-// S_lo_temp2 = -sneg * Tmjlo + (spos * Tjhi - S_hi)
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_C_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_C_hi_temp1
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 0
-(p6) fms.s1 f_S_lo_temp1 = f_spos, f_Tjhi, f_S_hi
- nop.i 0
+ nop.m 999
+(p0) fnma.s1 sinh_FR_S_lo_temp2 = sinh_FR_sneg, sinh_FR_Tmjhi, sinh_FR_S_lo_temp1
+ nop.i 999
}
-;;
+
+// sinh_FR_S_lo_temp1 = sinh_FR_sneg * sinh_FR_Tmjlo
+// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo - sinh_FR_S_lo_temp1
+// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo -(sinh_FR_sneg * sinh_FR_Tmjlo)
+// sinh_FR_S_lo = sinh_FR_S_lo_temp3 + sinh_FR_S_lo_temp2
{ .mfi
- nop.m 0
-(p6) fnma.s1 f_S_lo_temp2 = f_sneg, f_Tmjhi, f_S_lo_temp1
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_lo_temp1 = sinh_FR_sneg, sinh_FR_Tmjlo, f0
+ nop.i 999 ;;
}
-;;
-// If EXP,
-// Y_hi = sgnx * 2^(N-1) * Tjhi
-// Y_lo = sgnx * 2^(N-1) * Tjhi * (p_odd + p_even) + sgnx * 2^(N-1) * Tjlo
+/////////// BUG FIX fma to fms -TK
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Y_lo_temp = f_peven, f1, f_podd
- nop.i 0
+ nop.m 999
+(p0) fms.s1 sinh_FR_S_lo_temp3 = sinh_FR_spos, sinh_FR_Tjlo, sinh_FR_S_lo_temp1
+ nop.i 999 ;;
}
-;;
-// If TBL,
-// S_lo = S_lo_temp4 + S_lo_temp2
{ .mfi
- nop.m 0
-(p6) fma.s1 f_S_lo = f_S_lo_temp4, f1, f_S_lo_temp2
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_S_lo = sinh_FR_S_lo_temp3, f1, sinh_FR_S_lo_temp2
+ nop.i 999 ;;
}
-;;
-// If TBL,
// Y_hi = S_hi
// Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
+// sinh_FR_Y_lo_temp = sinh_FR_S_hi * sinh_FR_peven + sinh_FR_S_lo
+// sinh_FR_Y_lo = sinh_FR_C_hi * sinh_FR_podd + sinh_FR_Y_lo_temp
+
{ .mfi
- nop.m 0
-(p6) fma.s1 f_Y_lo_temp = f_S_hi, f_peven, f_S_lo
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_S_hi, sinh_FR_peven, sinh_FR_S_lo
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p7) fma.s1 f_Y_lo = f_Tjhi_spos, f_Y_lo_temp, f_Tjlo_spos
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_C_hi, sinh_FR_podd, sinh_FR_Y_lo_temp
+ nop.i 999 ;;
}
-;;
+
+// sinh_FR_SINH = Y_hi + Y_lo
+// f8 = answer = sinh_FR_SGNX * sinh_FR_SINH
// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fmpy.s0 f_tmp = f_B2, f_B2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p6) fma.s1 f_Y_lo = f_C_hi, f_podd, f_Y_lo_temp
- nop.i 0
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999
}
-;;
-
-// f8 = answer = Y_hi + Y_lo
{ .mfi
- nop.m 0
-(p7) fma.s0 f8 = f_Y_lo, f1, f_Tjhi_spos
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH = sinh_FR_S_hi, f1, sinh_FR_Y_lo
+ nop.i 999 ;;
}
-;;
-// f8 = answer = Y_hi + Y_lo
{ .mfb
- nop.m 0
-(p6) fma.s0 f8 = f_Y_lo, f1, f_S_hi
- br.ret.sptk b0 // Exit for SINH_BY_TBL and SINH_BY_EXP
+ nop.m 999
+(p0) fma.s0 f8 = sinh_FR_SGNX, sinh_FR_SINH,f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-// Here if 0 < |x| < 0.25
-SINH_BY_POLY:
-{ .mmf
- ldfe f_P6 = [r_ad2e],16
- ldfe f_P5 = [r_ad2o],16
- nop.f 0
-}
-;;
+L(SINH_BY_EXP):
-{ .mmi
- ldfe f_P4 = [r_ad2e],16
- ldfe f_P3 = [r_ad2o],16
- nop.i 0
+// When p7 is true, we know that an overflow is not going to happen
+// When p7 is false, we must check for possible overflow
+// p7 is the over_SAFE flag
+// Y_hi = Tjhi
+// Y_lo = Tjhi * (p_odd + p_even) +Tjlo
+// Scale = sign * 2^(N-1)
+// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_peven + sinh_FR_podd)
+// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_Y_lo_temp )
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_peven, f1, sinh_FR_podd
+ nop.i 999
}
-;;
-{ .mmi
- ldfe f_P2 = [r_ad2e],16
- ldfe f_P1 = [r_ad2o],16
- nop.i 0
+// Now we are in EXP. This is the only path where an overflow is possible
+// but not for certain. So this is the only path where over_SAFE has any use.
+// r34 still has N-1
+// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
+// There is a danger of double overflow if N-1 > 0x3fe = 1022
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000003ffe ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 f_X3 = f_NORM_X, f_X2, f0
- nop.i 0
+(p0) cmp.gt.unc p0,p7 = r34, r32
+(p0) fmerge.s sinh_FR_SCALE = sinh_FR_SGNX, sinh_FR_spos
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 f_X4 = f_X2, f_X2, f0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_Tjhi, sinh_FR_Y_lo_temp, sinh_FR_Tjlo
+ nop.i 999 ;;
}
-;;
+// f8 = answer = scale * (Y_hi + Y_lo)
{ .mfi
- nop.m 0
- fma.s1 f_poly65 = f_X2, f_P6, f_P5
- nop.i 0
+ nop.m 999
+(p0) fma.s1 sinh_FR_SINH_temp = sinh_FR_Y_lo, f1, sinh_FR_Tjhi
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 f_poly43 = f_X2, f_P4, f_P3
- nop.i 0
+ nop.m 999
+(p0) fma.s0 f44 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
+ nop.i 999 ;;
}
-;;
+// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fma.s1 f_poly21 = f_X2, f_P2, f_P1
- nop.i 0
+ nop.m 999
+(p7) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- fma.s1 f_poly6543 = f_X4, f_poly65, f_poly43
- nop.i 0
+// If over_SAFE is set, return
+{ .mfb
+ nop.m 999
+(p7) fmerge.s f8 = f44,f44
+(p7) br.ret.sptk b0 ;;
}
-;;
+
+// Else see if we overflowed
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// If WRE is set then an overflow will not occur in EXP.
+// The input value that would cause a register (WRE) value to overflow is about 2^15
+// and this input would go into the HUGE path.
+// Answer with WRE is in f43.
{ .mfi
- nop.m 0
- fma.s1 f_poly6to1 = f_X4, f_poly6543, f_poly21
- nop.i 0
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
}
-;;
-// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
- fmpy.s0 f_tmp = f_P6, f_P6
- nop.i 0
+ nop.m 999
+(p0) fma.s2 f43 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fma.s0 f8 = f_poly6to1, f_X3, f_NORM_X
- br.ret.sptk b0 // Exit SINH_BY_POLY
-}
-;;
+// 13FFF => 13FFF -FFFF = 4000(true)
+// 4000 + 3FFF = 7FFF, which is 1 more that the exponent of the largest
+// long double (7FFE). So 0 13FFF 8000000000000000 is one ulp more than
+// largest long double in register bias
+// Now set p8 if the answer with WRE is greater than or equal this value
+// Also set p9 if the answer with WRE is less than or equal to negative this value
+
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x00000000013FFF ;;
+}
-// Here if x denorm or unorm
-SINH_DENORM:
-// Determine if x really a denorm and not a unorm
{ .mmf
- getf.exp r_signexp_x = f_NORM_X
- mov r_exp_denorm = 0x0c001 // Real denorms have exp < this
- fmerge.s f_ABS_X = f0, f_NORM_X
+ nop.m 999
+(p0) setf.exp f41 = r32
+(p0) fsetc.s2 0x7F,0x40 ;;
}
-;;
{ .mfi
- nop.m 0
- fcmp.eq.s0 p10,p0 = f8, f0 // Set denorm flag
- nop.i 0
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
+ nop.i 999
}
-;;
-// Set p8 if really a denorm
-{ .mmi
- and r_exp_x = r_exp_mask, r_signexp_x
-;;
- cmp.lt p8,p9 = r_exp_x, r_exp_denorm
- nop.i 0
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns f42 = f41, f41
+ nop.i 999 ;;
+}
+
+// The error tag for overflow is 126
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p8) mov r47 = 126 ;;
}
-;;
-// Identify denormal operands.
{ .mfb
- nop.m 0
-(p8) fcmp.ge.unc.s1 p6,p7 = f8, f0 // Test sign of denorm
-(p9) br.cond.sptk SINH_COMMON // Return to main path if x unorm
+ nop.m 999
+(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
+(p8) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) mov r47 = 126
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
}
-;;
+// Dummy multiply to generate inexact
{ .mfi
- nop.m 0
-(p6) fma.s0 f8 = f8,f8,f8 // If x +denorm, result=x+x^2
- nop.i 0
+ nop.m 999
+(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
+ nop.i 999 ;;
}
+
{ .mfb
- nop.m 0
-(p7) fnma.s0 f8 = f8,f8,f8 // If x -denorm, result=x-x^2
- br.ret.sptk b0 // Exit if x denorm
+ nop.m 999
+(p0) fmerge.s f8 = f44,f44
+(p0) br.ret.sptk b0 ;;
}
-;;
+L(SINH_HUGE):
-// Here if |x| >= overflow limit
-SINH_HUGE:
-// for SINH_HUGE, put 24000 in exponent; take sign from input
-{ .mmi
- mov r_exp_huge = 0x15dbf
-;;
- setf.exp f_huge = r_exp_huge
- nop.i 0
-}
-;;
+// for SINH_HUGE, put 24000 in exponent; take sign from input; add 1
+// SAFE: SAFE is always 0 for HUGE
-.pred.rel "mutex",p8,p9
-{ .mfi
- alloc r32 = ar.pfs,0,5,4,0
-(p8) fnma.s1 f_signed_hi_lo = f_huge, f1, f1
- nop.i 0
+{ .mlx
+ nop.m 999
+(p0) movl r32 = 0x0000000000015dbf ;;
}
+
{ .mfi
- nop.m 0
-(p9) fma.s1 f_signed_hi_lo = f_huge, f1, f1
- nop.i 0
+(p0) setf.exp f9 = r32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s0 f_pre_result = f_signed_hi_lo, f_huge, f0
- mov GR_Parameter_TAG = 126
+ nop.m 999
+(p0) fma.s1 sinh_FR_signed_hi_lo = sinh_FR_SGNX, f9, f1
+ nop.i 999 ;;
}
-;;
-
-GLOBAL_IEEE754_END(sinhl)
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
+{ .mfi
+ nop.m 999
+(p0) fma.s0 f44 = sinh_FR_signed_hi_lo, f9, f0
+(p0) mov r47 = 126
+}
+.endp sinhl
+ASM_SIZE_DIRECTIVE(sinhl)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__ieee754_sinhl)
+#endif
+
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
+
+.proc __libm_error_region
+__libm_error_region:
+L(SINH_ERROR_SUPPORT):
.prologue
+// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+// (2)
{ .mmi
- stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
+// (3)
{ .mib
- stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
+ stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
- stfe [GR_Parameter_Y] = f_pre_result // STORE Parameter 3 on stack
+ stfe [GR_Parameter_Y] = f44 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+// (4)
{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/e_sqrt.S b/sysdeps/ia64/fpu/e_sqrt.S
index 53e60ef23f..dd057f58ee 100644
--- a/sysdeps/ia64/fpu/e_sqrt.S
+++ b/sysdeps/ia64/fpu/e_sqrt.S
@@ -1,11 +1,11 @@
.file "sqrt.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,28 +35,27 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//********************************************************************
+// ********************************************************************
// History
-//********************************************************************
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// ********************************************************************
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
-//********************************************************************
+// ********************************************************************
//
// Function: Combined sqrt(x), where
// _
// sqrt(x) = |x, for double precision x values
//
-//********************************************************************
+// ********************************************************************
//
// Accuracy: Correctly Rounded
//
-//********************************************************************
+// ********************************************************************
//
// Resources Used:
//
@@ -69,7 +68,7 @@
//
// Predicate Registers: p6, p7, p8
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
@@ -79,13 +78,15 @@
// sqrt(+/-0) = +/-0
// sqrt(negative) = QNaN and error handling is called
//
-//*********************************************************************
+// *********************************************************************
//
// Implementation:
//
// Modified Newton-Raphson Algorithm
//
-//*********************************************************************
+// *********************************************************************
+
+#include "libm_support.h"
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
@@ -97,7 +98,19 @@ GR_Parameter_RESULT = r39
.section .text
-GLOBAL_IEEE754_ENTRY(sqrt)
+.proc sqrt#
+.global sqrt#
+.align 64
+
+sqrt:
+#ifdef _LIBC
+.global __sqrt
+.type __sqrt,@function
+__sqrt:
+.global __ieee754_sqrt
+.type __ieee754_sqrt,@function
+__ieee754_sqrt:
+#endif
{ .mfi
alloc r32= ar.pfs,0,5,4,0
frsqrta.s0 f7,p6=f8
@@ -242,7 +255,7 @@ GLOBAL_IEEE754_ENTRY(sqrt)
{ .mfb
nop.m 0
- mov f8 = f7
+ (p0) mov f8 = f7
(p8) br.ret.sptk b0 ;;
}
{ .mfb
@@ -251,7 +264,12 @@ GLOBAL_IEEE754_ENTRY(sqrt)
(p7) br.cond.sptk __libm_error_region ;;
}
// END DOUBLE PRECISION MINIMUM LATENCY SQUARE ROOT ALGORITHM
-GLOBAL_IEEE754_END(sqrt)
+.endp sqrt#
+ASM_SIZE_DIRECTIVE(sqrt)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__sqrt)
+ASM_SIZE_DIRECTIVE(__ieee754_sqrt)
+#endif
// Stack operations when calling error support.
// (1) (2) (3) (call) (4)
@@ -268,7 +286,8 @@ GLOBAL_IEEE754_END(sqrt)
// save gp restore ar.pfs
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
//
// This branch includes all those special values that are not negative,
@@ -333,9 +352,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
diff --git a/sysdeps/ia64/fpu/e_sqrtf.S b/sysdeps/ia64/fpu/e_sqrtf.S
index daa20454d7..1799845d6d 100644
--- a/sysdeps/ia64/fpu/e_sqrtf.S
+++ b/sysdeps/ia64/fpu/e_sqrtf.S
@@ -1,10 +1,10 @@
.file "sqrtf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,29 +35,27 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
// History:
//
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
-//*********************************************************************
+// *********************************************************************
//
// Function: Combined sqrtf(x), where
// _
// sqrtf(x) = |x, for single precision x values
//
-//********************************************************************
+// ********************************************************************
//
// Accuracy: Correctly Rounded
//
-//********************************************************************
+// ********************************************************************
//
// Resources Used:
//
@@ -70,7 +68,7 @@
//
// Predicate Registers: p6, p7, p8
//
-//********************************************************************
+// ********************************************************************
//
// IEEE Special Conditions:
//
@@ -80,14 +78,15 @@
// sqrtf(+/-0) = +/-0
// sqrtf(negative) = QNaN and error handling is called
//
-//********************************************************************
+// ********************************************************************
//
// Implementation:
//
// Modified Newton-Raphson Algorithm
//
-//********************************************************************
+// ********************************************************************
+#include "libm_support.h"
GR_SAVE_B0 = r34
GR_SAVE_PFS = r33
@@ -103,8 +102,21 @@ FR_Y = f0
FR_RESULT = f8
+
.section .text
-GLOBAL_IEEE754_ENTRY(sqrtf)
+.proc sqrtf#
+.global sqrtf#
+.align 64
+
+sqrtf:
+#ifdef _LIBC
+.global __sqrtf
+.type __sqrtf,@function
+__sqrtf:
+.global __ieee754_sqrtf
+.type __ieee754_sqrtf,@function
+__ieee754_sqrtf:
+#endif
{ .mlx
// BEGIN SINGLE PRECISION MINIMUM LATENCY SQUARE ROOT ALGORITHM
alloc r32= ar.pfs,0,5,4,0
@@ -185,7 +197,7 @@ GLOBAL_IEEE754_ENTRY(sqrtf)
// Step (10)
// d1 = a - S1 * S1 in f9
(p6) fnma.s1 f9=f7,f7,f8
- nop.i 0;;
+ nop.i 0;;;
} { .mfb
nop.m 0
// Step (11)
@@ -195,21 +207,27 @@ GLOBAL_IEEE754_ENTRY(sqrtf)
// END SINGLE PRECISION MINIMUM LATENCY SQUARE ROOT ALGORITHM
} { .mfb
nop.m 0
- mov f8 = f7
+ (p0) mov f8 = f7
(p8) br.ret.sptk b0 ;;
}
//
// This branch includes all those special values that are not negative,
// with the result equal to frcpa(x)
//
-GLOBAL_IEEE754_END(sqrtf)
+.endp sqrtf
+ASM_SIZE_DIRECTIVE(sqrtf)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__sqrtf)
+ASM_SIZE_DIRECTIVE(__ieee754_sqrtf)
+#endif
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mii
add GR_Parameter_Y=-32,sp // Parameter 2 value
- mov GR_Parameter_TAG = 50
+(p0) mov GR_Parameter_TAG = 50
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
@@ -253,7 +271,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
diff --git a/sysdeps/ia64/fpu/e_sqrtl.S b/sysdeps/ia64/fpu/e_sqrtl.S
index 6a5735d45a..e41148243a 100644
--- a/sysdeps/ia64/fpu/e_sqrtl.S
+++ b/sysdeps/ia64/fpu/e_sqrtl.S
@@ -1,10 +1,10 @@
.file "sqrtl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,25 +35,23 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//********************************************************************
+// ********************************************************************
//
// History:
-// 02/02/00 (hand-optimized)
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 (hand-optimized)
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
-//********************************************************************
+// ********************************************************************
//
// Function: Combined sqrtl(x), where
// _
// sqrtl(x) = |x, for double-extended precision x values
//
-//********************************************************************
+// ********************************************************************
//
// Resources Used:
//
@@ -66,7 +64,7 @@
//
// Predicate Registers: p6, p7, p8
//
-//********************************************************************
+// ********************************************************************
//
// IEEE Special Conditions:
//
@@ -76,13 +74,15 @@
// sqrtl(+/-0) = +/-0
// sqrtl(negative) = QNaN and error handling is called
//
-//********************************************************************
+// ********************************************************************
//
// Implementation:
//
// Modified Newton-Raphson Algorithm
//
-//********************************************************************
+// ********************************************************************
+
+#include "libm_support.h"
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
@@ -97,7 +97,19 @@ FR_Y = f0
FR_RESULT = f8
.section .text
-GLOBAL_IEEE754_ENTRY(sqrtl)
+.proc sqrtl#
+.global sqrtl#
+.align 64
+
+sqrtl:
+#ifdef _LIBC
+.global __sqrtl
+.type __sqrtl,@function
+__sqrtl:
+.global __ieee754_sqrtl
+.type __ieee754_sqrtl,@function
+__ieee754_sqrtl:
+#endif
{ .mlx
alloc r32= ar.pfs,0,5,4,0
// exponent of +1/2 in r2
@@ -139,7 +151,7 @@ alloc r32= ar.pfs,0,5,4,0
}
{ .mfi
nop.m 0
- mov f15=f8
+ (p0) mov f15=f8
nop.i 0;;
} { .mfi
nop.m 0
@@ -209,8 +221,8 @@ alloc r32= ar.pfs,0,5,4,0
(p6) br.ret.sptk b0 ;;
}
{ .mfb
- mov GR_Parameter_TAG = 48
- mov f8 = f7
+ (p0) mov GR_Parameter_TAG = 48
+ (p0) mov f8 = f7
(p8) br.ret.sptk b0 ;;
}
//
@@ -220,9 +232,15 @@ alloc r32= ar.pfs,0,5,4,0
// END DOUBLE EXTENDED PRECISION MINIMUM LATENCY SQUARE ROOT ALGORITHM
-GLOBAL_IEEE754_END(sqrtl)
+.endp sqrtl#
+ASM_SIZE_DIRECTIVE(sqrtl)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__sqrtl)
+ASM_SIZE_DIRECTIVE(__ieee754_sqrtl)
+#endif
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -270,6 +288,7 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/feholdexcpt.c b/sysdeps/ia64/fpu/feholdexcpt.c
index 27c9a1109e..fd13de6c35 100644
--- a/sysdeps/ia64/fpu/feholdexcpt.c
+++ b/sysdeps/ia64/fpu/feholdexcpt.c
@@ -1,5 +1,5 @@
/* Store current floating-point environment and clear exceptions.
- Copyright (C) 1997, 1999, 2000, 2005 Free Software Foundation, Inc.
+ Copyright (C) 1997, 1999, 2000 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Christian Boissat <Christian.Boissat@cern.ch>, 1999
@@ -31,4 +31,3 @@ feholdexcept (fenv_t *envp)
return 1;
}
-libm_hidden_def (feholdexcept)
diff --git a/sysdeps/ia64/fpu/fesetround.c b/sysdeps/ia64/fpu/fesetround.c
index 13801c848b..26a6be4ea3 100644
--- a/sysdeps/ia64/fpu/fesetround.c
+++ b/sysdeps/ia64/fpu/fesetround.c
@@ -1,5 +1,5 @@
/* Set current rounding direction.
- Copyright (C) 1999, 2000, 2005, 2007 Free Software Foundation, Inc.
+ Copyright (C) 1999, 2000 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Christian Boissat <Christian.Boissat@cern.ch>, 1999.
@@ -26,7 +26,7 @@ fesetround (int round)
fenv_t fpsr;
if (round & ~3)
- return 1;
+ return 0;
/* Get the current state. */
__asm__ __volatile__ ("mov.m %0=ar.fpsr" : "=r" (fpsr));
@@ -37,6 +37,5 @@ fesetround (int round)
/* Put the new state in effect. */
__asm__ __volatile__ ("mov.m ar.fpsr=%0" :: "r" (fpsr) : "memory");
- return 0;
+ return 1;
}
-libm_hidden_def (fesetround)
diff --git a/sysdeps/ia64/fpu/gen_import_file_list b/sysdeps/ia64/fpu/gen_import_file_list
deleted file mode 100644
index b8bd6a54f3..0000000000
--- a/sysdeps/ia64/fpu/gen_import_file_list
+++ /dev/null
@@ -1,90 +0,0 @@
-#!/bin/sh
-
-libm_dir=$1
-
-import() {
- # $1 = name
- # $2 = source file-name
- # $3 = destination file-name
- echo "$1 $libm_dir/$2 $3"
-}
-
-import_c() {
- # $1 = name
- # $2 = source file-name
- # $3 = destination file-name
- echo "$1 $libm_dir/$2 $3"
-}
-
-dummy_files="
-libm_cpu_defs.h
-libm_error_codes.h
-libm_support.h
-libm_error.c
-"
-
-for f in $dummy_files
-do
- import_c DUMMY $f $f
-done
-
-import_c scalblnf scalblnf.c s_scalblnf.c
-
-for f in acos acosh asin atanh cosh exp2 exp10 fmod log2 pow remainder \
- scalb sinh sqrt; do
- for t in "" f l; do
- import $f$t $f$t.s e_$f$t.S
- done
-done
-
-for f in atan2 exp; do
- for t in "" f; do
- import $f$t $f$t.s e_$f$t.S
- done
-done
-import "atan" atan.s s_atan.S
-import "atanf" atanf.s s_atanf.S
-import "atan(2)?l" atanl.s s_atanl.S
-import "exp(m1)?l" expl_m1.s s_expm1l.S
-
-for t in "" f l; do
- import "log(10)?$t" log$t.s e_log$t.S
- import tgamma$t tgamma$t.s w_tgamma$t.S
- import "(hypot|cabs)$t" hypot$t.s e_hypot$t.S
-done
-
-for f in asinh cbrt ceil erf erfc fabs floor \
- ilogb log1p logb modf nearbyint nextafter nexttoward \
- rint round significand fdim fma fmax tanh trunc; do
- for t in "" f l; do
- import $f$t $f$t.s s_$f$t.S
- done
-done
-
-for t in "" f l; do
- import "(tan|cot)$t" tancot$t.s s_tan$t.S
-done
-
-for t in "" f l; do
- import "(sin|cos)$t" sincos$t.s s_cos$t.S
- import_c frexp$t frexp$t.c s_frexp$t.c
- import_c ldexp$t ldexp$t.c s_ldexp$t.c
- import_c scalbn$t scalbn$t.c s_scalbn$t.c
-done
-
-import expm1 exp_m1.s s_expm1.S
-import expm1f expf_m1.s s_expm1f.S
-
-for f in frexp frexpf frexpl reduce; do
- import __libm_$f libm_$f.s libm_$f.S
-done
-
-for t in "" f l; do
- import __libm_ldexp$t libm_ldexp$t.s s_libm_ldexp$t.S
- import "(__libm_)?(sincos|cis)$t" libm_sincos$t.s libm_sincos$t.S
- import __libm_lgamma$t libm_lgamma$t.s libm_lgamma$t.S
- import __libm_scalbn$t libm_scalbn$t.s s_libm_scalbn$t.S
-done
-import __libm_scalblnf libm_scalblnf.s libm_scalblnf.S
-import "__libm_(sin|cos|sincos)_large" libm_sincos_large.s \
- libm_sincos_large.S
diff --git a/sysdeps/ia64/fpu/import_check b/sysdeps/ia64/fpu/import_check
deleted file mode 100644
index 21176f578d..0000000000
--- a/sysdeps/ia64/fpu/import_check
+++ /dev/null
@@ -1,81 +0,0 @@
-#!/bin/sh
-
-objdir="$1"
-
-num_errors=0
-
-check_syms() {
- global_count=0
- entry_count=0
- while read value type name; do
- if [ $value = "U" ]; then
- name=$type
- # undefined symbols must start with double-underscore
- if [ $(expr $name : '\(..\)') != "__" ]; then
- echo -e "$(basename $file):\tError: undefined reference $name doesn't start with \"__\"."
- num_errors=$(($num_errors + 1))
- fi
- continue
- fi
-
- case "$type" in
- W)
- entry_count=$(($entry_count + 1))
- ;;
- *)
- entry_count=$(($entry_count + 1))
- if [ "$(expr $name : '\(..\)')" != "__" ]; then
- global_count=$(($global_count + 1))
- fi
- ;;
- esac
- done
- if [ $entry_count -gt 1 -a $global_count -gt 0 ]; then
- echo -e "$(basename $file):\tError: detected $global_count strong " \
- "global and $entry_count entry-points."
- num_errors=$(($num_errors + 1))
- fi
-}
-
-check_file() {
- file=$1
- size=$(readelf -S $file | \
- (sz=0; while read line; do
- if echo $line | fgrep -q " .rodata"; then
- read sz rest
- break
- fi
- done;
- printf "%d" 0x$sz))
-
- summands=$(readelf -s $file | fgrep " OBJECT " | tr -s ' ' |
- cut -f4 -d' ' | sed 's,$,+,')0
- sum=$(($summands))
- if [ $sum != $size ]; then
- echo -e "$(basename $file):\tError: sum of objects=$sum bytes, .rodata size=$size bytes"
- num_errors=$(($num_errors + 1))
- fi
-
- tmp=$(tempfile -p syms)
- nm -g $file > $tmp
- check_syms < $tmp
-}
-
-do_checks() {
- echo "Note: 1 error expected in w_tgammal.o due to 64-byte alignment-padding."
- while read func_pattern src_file dst_file; do
- if [ "$(expr $dst_file : '.*\(S\)$')" = "S" ]; then
- objfile=$(expr $dst_file : '\(.*\)[.]S$')
- check_file $objdir/$objfile.o
- fi
- done
-}
-
-do_checks < import_file_list
-
-if [ $num_errors -gt 0 ]; then
- echo "FAILURE: Detected $num_errors error(s)."
- exit 1
-fi
-echo SUCCESS
-exit 0
diff --git a/sysdeps/ia64/fpu/import_diffs b/sysdeps/ia64/fpu/import_diffs
deleted file mode 100644
index 147280d5fd..0000000000
--- a/sysdeps/ia64/fpu/import_diffs
+++ /dev/null
@@ -1,7 +0,0 @@
-#!/bin/sh
-do_diffs() {
- while read func_pattern src_file dst_file; do
- diff -up $src_file $dst_file
- done
-}
-do_diffs < import_file_list
diff --git a/sysdeps/ia64/fpu/import_file.awk b/sysdeps/ia64/fpu/import_file.awk
deleted file mode 100644
index 97fe77e181..0000000000
--- a/sysdeps/ia64/fpu/import_file.awk
+++ /dev/null
@@ -1,151 +0,0 @@
-BEGIN {
- getline;
- while (!match($0, "^/[/*] static char cvs_id")) {
- print;
- getline;
- }
- getline;
- while (!match($0, "^// WARRANTY DISCLAIMER")) {
- print;
- if (!getline) {
- break;
- }
- }
- if (getline)
- {
- printf \
-"// Redistribution and use in source and binary forms, with or without\n" \
-"// modification, are permitted provided that the following conditions are\n" \
-"// met:\n" \
-"//\n" \
-"// * Redistributions of source code must retain the above copyright\n" \
-"// notice, this list of conditions and the following disclaimer.\n" \
-"//\n" \
-"// * Redistributions in binary form must reproduce the above copyright\n" \
-"// notice, this list of conditions and the following disclaimer in the\n" \
-"// documentation and/or other materials provided with the distribution.\n" \
-"//\n" \
-"// * The name of Intel Corporation may not be used to endorse or promote\n" \
-"// products derived from this software without specific prior written\n" \
-"// permission.\n\n";
- if (LICENSE_ONLY == "y") {
- do {
- print;
- } while (getline);
- }
- }
-}
-
-/^[.]data/ {
- print "RODATA";
- next;
-}
-/^([a-zA-Z_0-9]*_(tb[l0-9]|Tt|[tT]able|data|low|coeffs|constants|CONSTANTS|reduction|Stirling)(_?([1-9cdimpqstPQT]+|tail))?|(Constants|Poly|coeff)_.+|(double_sin_?cos|double_cis)[fl]?_.+):/ {
- table_name=substr($1,1,length($1)-1);
- printf "LOCAL_OBJECT_START(%s)\n", table_name;
- getline;
- while (!match($0, "^[ \t]*data")) {
- print;
- getline;
- }
- while (match($0, "(//|^[ \t]*data)")) {
- print;
- getline;
- }
- printf "LOCAL_OBJECT_END(%s)\n\n", table_name;
- next;
-}
-/^[.]proc[ \t]+__libm_(error_region|callout)/ {
- printf "LOCAL_LIBM_ENTRY(%s)\n", $2;
- getline;
- next;
-}
-/^[.]endp[ \t]+__libm_(error_region|callout)/ {
- printf "LOCAL_LIBM_END(%s)\n", $2;
- next;
-}
-/^[.]global/ {
- split($2, part, "#");
- name=part[1];
- if (match(name, "^"FUNC"$")) {
- next;
- }
-}
-/^[.]proc/ {
- split($2, part, "#");
- name=part[1];
- if (match(name, "^"FUNC"$")) {
- local_funcs=("^(" \
- "cis|cisf|cisl" \
- "|cabs|cabsf|cabsl" \
- "|cot|cotf|cotl" \
- ")$");
- ieee754_funcs=("^(" \
- "atan2|atan2f|atan2l|atanl" \
- "|cos|cosf|cosl" \
- "|cosh|coshf|coshl" \
- "|exp|expf|expl" \
- "|exp10|exp10f|exp10l" \
- "|expm1|expm1f|expm1l" \
- "|fmod|fmodf|fmodl" \
- "|hypot|hypotf|hypotl" \
- "|fabs|fabsf|fabsl" \
- "|floor|floorf|floorl" \
- "|log1p|log1pf|log1pl" \
- "|log|log10|log10f|log10l|log2l|logf|logl" \
- "|remainder|remainderf|remainderl|" \
- "|rint|rintf|rintl|" \
- "|scalb|scalbf|scalbl" \
- "|sin|sinf|sinl" \
- "|sincos|sincosf|sincosl" \
- "|sinh|sinhf|sinhl" \
- "|sqrt|sqrtf|sqrtl" \
- "|tan|tanf|tanl" \
- ")$");
- if (match(name, ieee754_funcs)) {
- type="GLOBAL_IEEE754";
- } else if (match (name, local_funcs)) {
- type="LOCAL_LIBM";
- } else {
- type="GLOBAL_LIBM";
- }
- printf "%s_ENTRY(%s)\n", type, name;
- getline;
- while (!match($0, "^"name"#?:")) {
- getline;
- }
- getline;
- while (!match($0, "^.endp")) {
- print
- getline;
- }
- printf "%s_END(%s)\n", type, name;
- if (match(name, "^exp10[fl]?$")) {
- t=substr(name,6)
- printf "weak_alias (exp10%s, pow10%s)\n", t, t
- }
- next;
- }
-}
-/^[a-zA-Z_]+:/ {
- split($1, part, ":");
- name=part[1];
- if (match(name, "^"FUNC"$")) {
- printf "GLOBAL_LIBM_ENTRY(%s)\n", name;
- getline;
- while (!match($0, "^"name"#?:")) {
- getline;
- }
- getline;
- while (!match($0, "^.endp")) {
- print
- getline;
- }
- getline;
- printf "GLOBAL_LIBM_END(%s)\n", name;
- next;
- }
-}
-
-{ print }
-
diff --git a/sysdeps/ia64/fpu/import_intel_libm b/sysdeps/ia64/fpu/import_intel_libm
deleted file mode 100644
index 1aaa646a93..0000000000
--- a/sysdeps/ia64/fpu/import_intel_libm
+++ /dev/null
@@ -1,106 +0,0 @@
-#!/bin/sh
-
-# Notes:
-
-# We don't import copysign finite, fpclassify, isinf, isnan, and signbit
-# since our own versions are nicer and just as correct and fast (except
-# perhaps that they don't handle non-finite arguments well?).
-#
-# Also, leave out cabs for now since it doesn't seem overridable in
-# glibc.
-
-libm_dir=$1
-
-import_s() {
- # $1 = name
- # $2 = source file-name
- # $3 = destination file-name
- echo "Importing $1 from $2 -> $3"
- rm -f $3
- awk -f import_file.awk FUNC=$1 $2 > $3
-}
-
-import_c() {
- # $1 = name
- # $2 = source file-name
- # $3 = destination file-name
- echo "Importing $1 from $2 -> $3"
- rm -f $3
- awk -f import_file.awk LICENSE_ONLY=y $2 > $3
-}
-
-do_imports() {
- while read func_pattern src_file dst_file; do
- case $src_file in
- *.[ch])
- import_c "$func_pattern" "$src_file" "$dst_file"
- ;;
- *)
- import_s "$func_pattern" "$src_file" "$dst_file"
- ;;
- esac
- done
-}
-
-./gen_import_file_list $libm_dir > import_file_list
-
-do_imports < import_file_list
-
-emptyfiles="
-e_gamma_r.c
-e_gammaf_r.c
-e_gammal_r.c
-s_sincos.c
-s_sincosf.c
-s_sincosl.c
-t_exp.c
-w_acosh.c
-w_acoshf.c
-w_acoshl.c
-w_atanh.c
-w_atanhf.c
-w_atanhl.c
-w_exp10.c
-w_exp10f.c
-w_exp10l.c
-w_exp2.c
-w_exp2f.c
-w_exp2l.c
-w_expl.c
-w_lgamma_r.c
-w_lgammaf_r.c
-w_lgammal_r.c
-w_log2.c
-w_log2f.c
-w_log2l.c
-w_sinh.c
-w_sinhf.c
-w_sinhl.c
-"
-for f in $emptyfiles
-do
- rm -f $f
- echo "/* Not needed. */" > $f
-done
-
-removedfiles="
-libm_atan2_reg.S
-s_ldexp.S
-s_ldexpf.S
-s_ldexpl.S
-s_scalbn.S
-s_scalbnf.S
-s_scalbnl.S
-"
-
-rm -f $removedfiles
-
-for f in lgammaf_r.c lgammal_r.c lgamma_r.c
-do
- import_c $f $libm_dir/$f e_$f
-done
-
-for f in lgamma.c lgammaf.c lgammal.c
-do
- import_c $f $libm_dir/$f w_$f
-done
diff --git a/sysdeps/ia64/fpu/libm-symbols.h b/sysdeps/ia64/fpu/libm-symbols.h
deleted file mode 100644
index 5b5e4b7d7b..0000000000
--- a/sysdeps/ia64/fpu/libm-symbols.h
+++ /dev/null
@@ -1,64 +0,0 @@
-#include <sysdep.h>
-#undef ret /* get rid of the stupid "ret" macro; it breaks br.ret */
-
-/* Support for compatible assembler handling. */
-
-#ifdef __ELF__
-# define ASM_SIZE_DIRECTIVE(name) .size name,.-name
-# define ASM_TYPE_DIRECTIVE(name,T) .type name,T
-#else
-# define ASM_SIZE_DIRECTIVE(name)
-# define ASM_TYPE_DIRECTIVE(name,T)
-#endif
-
-#define LOCAL_LIBM_ENTRY(name) \
- .proc name; \
- name:
-
-#define LOCAL_LIBM_END(name) \
- .endp name; \
- ASM_SIZE_DIRECTIVE(name)
-
-
-#define RODATA .rodata
-#define LOCAL_OBJECT_START(name) \
- name:; \
- ASM_TYPE_DIRECTIVE(name, @object)
-#define LOCAL_OBJECT_END(name) \
- ASM_SIZE_DIRECTIVE(name)
-
-#define GLOBAL_LIBM_ENTRY(name) \
- LOCAL_LIBM_ENTRY(name); \
- .global name
-#define GLOBAL_LIBM_END(name) LOCAL_LIBM_END(name)
-
-#define INTERNAL_LIBM_ENTRY(name) \
- GLOBAL_LIBM_ENTRY(__libm_##name); \
- .global __libm_##name
-#define INTERNAL_LIBM_END(name) GLOBAL_LIBM_END(__libm_##name)
-
-#define WEAK_LIBM_ENTRY(name) \
- .align 32; \
- LOCAL_LIBM_ENTRY(__##name); \
- .global __##name; \
- __##name:
-#define WEAK_LIBM_END(name) \
- weak_alias (__##name, name); \
- .hidden __##name; \
- LOCAL_LIBM_END(__##name); \
- ASM_SIZE_DIRECTIVE(__##name); \
- ASM_TYPE_DIRECTIVE(__##name, @function)
-
-#define GLOBAL_IEEE754_ENTRY(name) \
- WEAK_LIBM_ENTRY(name); \
- .global __ieee754_##name; \
- .hidden __ieee754_##name; \
- __ieee754_##name:
-#define GLOBAL_IEEE754_END(name) \
- WEAK_LIBM_END(name); \
- ASM_SIZE_DIRECTIVE(__ieee754_##name); \
- ASM_TYPE_DIRECTIVE(__ieee754_##name, @function)
-
-#if defined ASSEMBLER && !defined NOT_IN_libc
-# define __libm_error_support HIDDEN_JUMPTARGET(__libm_error_support)
-#endif
diff --git a/sysdeps/ia64/fpu/libm-test-ulps b/sysdeps/ia64/fpu/libm-test-ulps
index c5a2a08549..2f67d213b4 100644
--- a/sysdeps/ia64/fpu/libm-test-ulps
+++ b/sysdeps/ia64/fpu/libm-test-ulps
@@ -8,14 +8,14 @@ ildouble: 2
ldouble: 2
# cacosh
-Test "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
+Test "Real part of: cacosh (-2 - 3 i) == -1.9833870299165354323470769028940395 + 2.1414491111159960199416055713254211 i":
double: 1
float: 7
idouble: 1
ifloat: 7
ildouble: 7
ldouble: 7
-Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
+Test "Imaginary part of: cacosh (-2 - 3 i) == -1.9833870299165354323470769028940395 + 2.1414491111159960199416055713254211 i":
double: 1
idouble: 1
ildouble: 1
@@ -253,8 +253,8 @@ double: 1
float: 4
idouble: 1
ifloat: 4
-ildouble: 6
-ldouble: 6
+ildouble: 1
+ldouble: 1
Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
ildouble: 1
ldouble: 1
@@ -451,26 +451,21 @@ ifloat: 1
# j0
Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":
double: 1
-float: 2
+float: 1
idouble: 1
-ifloat: 2
+ifloat: 1
ildouble: 2
ldouble: 2
Test "j0 (10.0) == -0.245935764451348335197760862485328754":
-double: 3
+double: 2
float: 1
-idouble: 3
+idouble: 2
ifloat: 1
-ildouble: 1
-ldouble: 1
-Test "j0 (2.0) == 0.223890779141235668051827454649948626":
-float: 2
-ifloat: 2
Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":
double: 1
-float: 2
+float: 1
idouble: 1
-ifloat: 2
+ifloat: 1
ildouble: 2
ldouble: 2
Test "j0 (8.0) == 0.171650807137553906090869407851972001":
@@ -493,26 +488,21 @@ idouble: 1
# jn
Test "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":
double: 1
-float: 2
+float: 1
idouble: 1
-ifloat: 2
+ifloat: 1
ildouble: 2
ldouble: 2
Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":
-double: 3
+double: 2
float: 1
-idouble: 3
+idouble: 2
ifloat: 1
-ildouble: 1
-ldouble: 1
-Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":
-float: 2
-ifloat: 2
Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":
double: 1
-float: 2
+float: 1
idouble: 1
-ifloat: 2
+ifloat: 1
ildouble: 2
ldouble: 2
Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":
@@ -553,8 +543,8 @@ ifloat: 1
ildouble: 2
ldouble: 2
Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":
-float: 4
-ifloat: 4
+float: 3
+ifloat: 3
ildouble: 1
ldouble: 1
Test "jn (3, -1.0) == -0.0195633539826684059189053216217515083":
@@ -573,16 +563,16 @@ ildouble: 1
ldouble: 1
Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":
double: 3
-float: 2
+float: 1
idouble: 3
-ifloat: 2
+ifloat: 1
ildouble: 1
ldouble: 1
Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":
double: 1
-float: 2
+float: 1
idouble: 1
-ifloat: 2
+ifloat: 1
ildouble: 1
ldouble: 1
@@ -695,8 +685,6 @@ ldouble: 1
# y1
Test "y1 (0.125) == -5.19993611253477499595928744876579921":
-double: 1
-idouble: 1
ildouble: 1
ldouble: 1
Test "y1 (10.0) == 0.249015424206953883923283474663222803":
@@ -704,11 +692,6 @@ double: 3
float: 1
idouble: 3
ifloat: 1
-Test "y1 (1.5) == -0.412308626973911295952829820633445323";
-float: 1
-ifloat: 1
-ildouble: 1
-ldouble: 1
Test "y1 (2.0) == -0.107032431540937546888370772277476637":
double: 1
float: 1
@@ -754,8 +737,6 @@ ifloat: 1
ildouble: 1
ldouble: 1
Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":
-double: 1
-idouble: 1
ildouble: 1
ldouble: 1
Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":
@@ -763,11 +744,6 @@ double: 3
float: 1
idouble: 3
ifloat: 1
-Test "yn (1, 1.5) == -0.412308626973911295952829820633445323";
-float: 1
-ifloat: 1
-ldouble: 1
-ildouble: 1
Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":
double: 1
float: 1
@@ -781,8 +757,6 @@ float: 2
idouble: 1
ifloat: 2
Test "yn (10, 0.125) == -127057845771019398.252538486899753195":
-double: 1
-idouble: 1
ildouble: 2
ldouble: 2
Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":
@@ -795,17 +769,13 @@ float: 2
ifloat: 2
Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":
double: 2
-float: 2
idouble: 2
-ifloat: 2
Test "yn (10, 2.0) == -129184.542208039282635913145923304214":
double: 3
float: 1
idouble: 3
ifloat: 1
Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":
-double: 1
-idouble: 1
ildouble: 1
ldouble: 1
Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":
@@ -956,8 +926,8 @@ double: 2
float: 5
idouble: 2
ifloat: 5
-ildouble: 6
-ldouble: 6
+ildouble: 3
+ldouble: 3
Function: Imaginary part of "cpow":
double: 2
@@ -1058,10 +1028,10 @@ float: 1
ifloat: 1
Function: "j0":
-double: 3
-float: 2
-idouble: 3
-ifloat: 2
+double: 2
+float: 1
+idouble: 2
+ifloat: 1
ildouble: 2
ldouble: 2
@@ -1075,9 +1045,9 @@ ldouble: 1
Function: "jn":
double: 3
-float: 4
+float: 3
idouble: 3
-ifloat: 4
+ifloat: 3
ildouble: 2
ldouble: 2
diff --git a/sysdeps/ia64/fpu/libm_atan2_reg.S b/sysdeps/ia64/fpu/libm_atan2_reg.S
new file mode 100644
index 0000000000..5649670d19
--- /dev/null
+++ b/sysdeps/ia64/fpu/libm_atan2_reg.S
@@ -0,0 +1,1234 @@
+.file "libm_atan2_reg.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00: Initial version
+// 4/04/00 Unwind support added
+
+#include "libm_support.h"
+
+.data
+
+.align 64
+ASM_TYPE_DIRECTIVE(Constants_atan#,@object)
+Constants_atan:
+data4 0x54442D18, 0x3FF921FB, 0x248D3132, 0x3E000000
+// double pi/2, single lo_pi/2, two**(-3)
+data4 0xAAAAAAA3, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // P_1
+data4 0xCCCC54B2, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // P_2
+data4 0x47E4D0C2, 0x92492492, 0x0000BFFC, 0x00000000 // P_3
+data4 0x58870889, 0xE38E38E0, 0x00003FFB, 0x00000000 // P_4
+data4 0x290149F8, 0xBA2E895B, 0x0000BFFB, 0x00000000 // P_5
+data4 0x250F733D, 0x9D88E6D4, 0x00003FFB, 0x00000000 // P_6
+data4 0xFB8745A0, 0x884E51FF, 0x0000BFFB, 0x00000000 // P_7
+data4 0x394396BD, 0xE1C7412B, 0x00003FFA, 0x00000000 // P_8
+data4 0xAAAAA52F, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // Q_1
+data4 0xC75B60D3, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // Q_2
+data4 0x011F1940, 0x924923AD, 0x0000BFFC, 0x00000000 // Q_3
+data4 0x2A5F89BD, 0xE36F716D, 0x00003FFB, 0x00000000 // Q_4
+// Entries Tbl_hi (double precision)
+// B = 1+Index/16+1/32 Index = 0
+// Entries Tbl_lo (single precision)
+// B = 1+Index/16+1/32 Index = 0
+data4 0xA935BD8E, 0x3FE9A000, 0x23ACA08F, 0x00000000
+// Entries Tbl_hi (double precision) Index = 0,1,...,15
+// B = 2^(-1)*(1+Index/16+1/32)
+// Entries Tbl_lo (single precision)
+// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32)
+data4 0x7F175A34, 0x3FDE77EB, 0x238729EE, 0x00000000
+data4 0x73C1A40B, 0x3FE0039C, 0x249334DB, 0x00000000
+data4 0x5B5B43DA, 0x3FE0C614, 0x22CBA7D1, 0x00000000
+data4 0x88BE7C13, 0x3FE1835A, 0x246310E7, 0x00000000
+data4 0xE2CC9E6A, 0x3FE23B71, 0x236210E5, 0x00000000
+data4 0x8406CBCA, 0x3FE2EE62, 0x2462EAF5, 0x00000000
+data4 0x1CD41719, 0x3FE39C39, 0x24B73EF3, 0x00000000
+data4 0x5B795B55, 0x3FE44506, 0x24C11260, 0x00000000
+data4 0x5BB6EC04, 0x3FE4E8DE, 0x242519EE, 0x00000000
+data4 0x1F732FBA, 0x3FE587D8, 0x24D4346C, 0x00000000
+data4 0x115D7B8D, 0x3FE6220D, 0x24ED487B, 0x00000000
+data4 0x920B3D98, 0x3FE6B798, 0x2495FF1E, 0x00000000
+data4 0x8FBA8E0F, 0x3FE74897, 0x223D9531, 0x00000000
+data4 0x289FA093, 0x3FE7D528, 0x242B0411, 0x00000000
+data4 0x576CC2C5, 0x3FE85D69, 0x2335B374, 0x00000000
+data4 0xA99CC05D, 0x3FE8E17A, 0x24C27CFB, 0x00000000
+//
+// Entries Tbl_hi (double precision) Index = 0,1,...,15
+// B = 2^(-2)*(1+Index/16+1/32)
+// Entries Tbl_lo (single precision)
+// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32)
+//
+data4 0x510665B5, 0x3FD025FA, 0x24263482, 0x00000000
+data4 0x362431C9, 0x3FD1151A, 0x242C8DC9, 0x00000000
+data4 0x67E47C95, 0x3FD20255, 0x245CF9BA, 0x00000000
+data4 0x7A823CFE, 0x3FD2ED98, 0x235C892C, 0x00000000
+data4 0x29271134, 0x3FD3D6D1, 0x2389BE52, 0x00000000
+data4 0x586890E6, 0x3FD4BDEE, 0x24436471, 0x00000000
+data4 0x175E0F4E, 0x3FD5A2E0, 0x2389DBD4, 0x00000000
+data4 0x9F5FA6FD, 0x3FD68597, 0x2476D43F, 0x00000000
+data4 0x52817501, 0x3FD76607, 0x24711774, 0x00000000
+data4 0xB8DF95D7, 0x3FD84422, 0x23EBB501, 0x00000000
+data4 0x7CD0C662, 0x3FD91FDE, 0x23883A0C, 0x00000000
+data4 0x66168001, 0x3FD9F930, 0x240DF63F, 0x00000000
+data4 0x5422058B, 0x3FDAD00F, 0x23FE261A, 0x00000000
+data4 0x378624A5, 0x3FDBA473, 0x23A8CD0E, 0x00000000
+data4 0x0AAD71F8, 0x3FDC7655, 0x2422D1D0, 0x00000000
+data4 0xC9EC862B, 0x3FDD45AE, 0x2344A109, 0x00000000
+//
+// Entries Tbl_hi (double precision) Index = 0,1,...,15
+// B = 2^(-3)*(1+Index/16+1/32)
+// Entries Tbl_lo (single precision)
+// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32)
+//
+data4 0x84212B3D, 0x3FC068D5, 0x239874B6, 0x00000000
+data4 0x41060850, 0x3FC16465, 0x2335E774, 0x00000000
+data4 0x171A535C, 0x3FC25F6E, 0x233E36BE, 0x00000000
+data4 0xEDEB99A3, 0x3FC359E8, 0x239680A3, 0x00000000
+data4 0xC6092A9E, 0x3FC453CE, 0x230FB29E, 0x00000000
+data4 0xBA11570A, 0x3FC54D18, 0x230C1418, 0x00000000
+data4 0xFFB3AA73, 0x3FC645BF, 0x23F0564A, 0x00000000
+data4 0xE8A7D201, 0x3FC73DBD, 0x23D4A5E1, 0x00000000
+data4 0xE398EBC7, 0x3FC8350B, 0x23D4ADDA, 0x00000000
+data4 0x7D050271, 0x3FC92BA3, 0x23BCB085, 0x00000000
+data4 0x601081A5, 0x3FCA217E, 0x23BC841D, 0x00000000
+data4 0x574D780B, 0x3FCB1696, 0x23CF4A8E, 0x00000000
+data4 0x4D768466, 0x3FCC0AE5, 0x23BECC90, 0x00000000
+data4 0x4E1D5395, 0x3FCCFE65, 0x2323DCD2, 0x00000000
+data4 0x864C9D9D, 0x3FCDF110, 0x23F53F3A, 0x00000000
+data4 0x451D980C, 0x3FCEE2E1, 0x23CCB11F, 0x00000000
+data4 0x54442D18, 0x400921FB, 0x33145C07, 0x3CA1A626 // I two doubles
+data4 0x54442D18, 0x3FF921FB, 0x33145C07, 0x3C91A626 // I_by_2 two dbls
+data4 0x54442D18, 0x3FE921FB, 0x33145C07, 0x3C81A626 // I_by_4 two dbls
+data4 0x7F3321D2, 0x4002D97C, 0x4C9E8A0A, 0x3C9A7939 // 3I_by_4 two dbls
+ASM_SIZE_DIRECTIVE(Constants_atan#)
+.section .text
+
+.proc __libm_atan2_reg#
+.global __libm_atan2_reg#
+.align 64
+__libm_atan2_reg:
+
+
+{ .mfi
+ alloc r32 = ar.pfs,0,20,4,0
+(p0) mov f32 = f8
+ nop.i 0
+}
+{ .mmi
+ nop.m 0
+(p0) addl r39 = @ltoff(Constants_atan#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 r39 = [r39]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+{ .mfi
+ nop 999 // EMbo added ...
+(p0) mov f33 = f9
+ nop.i 0
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.nm.unc p9,p0 = f32 ,0x1FF
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.nm.unc p8,p0 = f33 ,0x1FF
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p6,p0 = f33 ,0x103
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p7,p0 = f32 ,0x103
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p12,p0 = f33 ,0x0C3
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// Check for NatVals.
+// Check for EM Unsupporteds
+// Check for NaNs.
+//
+(p0) fclass.m.unc p13,p0 = f32 ,0x0C3
+(p6) br.cond.sptk L(ATAN_NATVAL);;
+ } { .mbb
+ nop 999 // EMbo added ...
+(p7) br.cond.sptk L(ATAN_NATVAL)
+(p8) br.cond.sptk L(ATAN_UNSUPPORTED);;
+ } { .mib
+(p0) add r40 = 96, r39
+ nop 999 // EMbo added ...
+(p9) br.cond.sptk L(ATAN_UNSUPPORTED);;
+ } { .mib
+(p0) ldfd f50 = [r39],8
+ nop 999 // EMbo added ...
+(p12) br.cond.sptk L(ATAN_NAN);;
+ } { .mfb
+ nop 999 // EMbo added ...
+(p0) fnorm.s1 f33 = f33
+(p13) br.cond.sptk L(ATAN_NAN);;
+ } { .mfi
+(p0) ldfs f51 = [r39],4
+//
+// Remove sign bits from exponents
+// Load 2**(-3)
+// Normalize the input argument.
+//
+(p0) fnorm.s1 f32 = f32
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) mov f82 = f1
+ nop 999;; // EMbo added ...
+ } { .mmi
+ nop 999;; // EMbo added ...
+(p0) ldfs f78 = [r39],180
+ nop 999;; // EMbo added ...
+ } { .mmi
+(p0) getf.exp r36 = f33;;
+//
+// Get exp and sign of ArgX
+// Get exp and sign of ArgY
+// Load 2**(-3) and increment ptr to Q_4.
+//
+(p0) getf.exp r37 = f32
+(p0) shr.u r36 = r36,17;;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmerge.s f84 = f1,f32
+(p0) shr.u r37 = r37,17;;
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// ArgX_abs = |ArgX|
+// ArgY_abs = |ArgY|
+// sign_X is sign bit of ArgX
+// sign_Y is sign bit of ArgY
+//
+(p0) fmerge.s f83 = f1,f33
+(p0) cmp.eq.unc p8,p9 = 0x00000, r37;;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p8) fadd.s1 f34 = f0, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p9) fsub.s1 f34 = f0, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmin.s1 f36 = f83, f84
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmax.s1 f35 = f83, f84
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// Is ArgX_abs >= ArgY_abs
+// Is sign_Y == 0?
+//
+(p0) fcmp.ge.s1 p6,p7 = f83,f84
+ nop 999;; // EMbo added ...
+ } { .mii
+(p6) cmp.eq.unc p10, p11 = 0x00000, r36
+(p6) add r38 = r0, r0;;
+//
+// U = max(ArgX_abs,ArgY_abs)
+// V = min(ArgX_abs,ArgY_abs)
+// if p6, swap = 0
+// if p7, swap = 1
+//
+//
+// Let M = 1.0
+// if p8, s_Y = 1.0
+// if p9, s_Y = -1.0
+//
+(p7) add r38 = 1,r0;;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) frcpa.s1 f37, p6 = f36, f35
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// E = frcpa(V,U)
+//
+(p10) fsub.s1 f82 = f82, f1
+(p6) br.cond.sptk L(ATAN_STEP2);;
+ } { .mib
+ nop 999 // EMbo added ...
+ nop 999 // EMbo added ...
+// /**************************************************/
+// /********************* STEP2 **********************/
+// /**************************************************/
+(p0) br.cond.spnt L(ATAN_SPECIAL_HANDLING);;
+ }
+L(ATAN_STEP2):
+ { .mlx
+ nop 999 // EMbo added ...
+(p0) movl r47 = 0x8400000000000000
+ } { .mlx
+ nop 999 // EMbo added ...
+(p0) movl r48 = 0x0000000000000100;;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f38 = f37, f36
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fcmp.lt.unc.s0 p0,p9 = f9,f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fcmp.lt.unc.s0 p0,p8 = f8,f1
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// Q = E * V
+//
+(p11) fadd.s1 f82 = f82, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+(p0) getf.sig r46 = f38
+(p0) fcmp.lt.unc p6,p7 = f38,f78
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f38 = f37, f36
+(p0) extr.u r42 = r46, 59, 4;;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f50 = f82, f50
+(p0) dep r47 = r42, r47, 59, 4
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f51 = f82, f51
+ nop 999;; // EMbo added ...
+ } { .mmi
+ nop 999;; // EMbo added ...
+//
+// Is Q < 2**(-3)?
+//
+//
+// Do fcmp to raise any denormal operand
+// exceptions.
+//
+(p0) getf.exp r45 = f38
+ nop 999;; // EMbo added ...
+ } { .mib
+//
+// lookup = b_1 b_2 b_3 B_4
+//
+//
+// Generate 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
+//
+(p0) andcm r41 = 0x0003, r45
+ nop 999 // EMbo added ...
+//
+// We waited a few extra cycles so P_lo and P_hi could be calculated.
+// Load the constant 256 for loading up table entries.
+//
+// /**************************************************/
+// /********************* STEP3 **********************/
+// /**************************************************/
+(p6) br.cond.spnt L(ATAN_POLY);;
+ } { .mii
+(p0) setf.sig f39 = r47
+(p0) cmp.eq.unc p8, p9 = 0x0000, r41
+//
+// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
+// point to beginning of Tbl_hi entries - k = 0.
+//
+(p0) add r40 = 16, r39
+ } { .mmi
+(p0) ldfe f73 = [r39],-16;;
+(p9) sub r41 = r41,r0,1
+(p9) add r40 = 16,r40
+ } { .mfi
+(p8) ldfd f48 = [r40],8
+(p0) fmpy.s1 f50 = f34, f50
+(p0) xor r38 = r36,r38;;
+ } { .mmi
+(p0) ldfe f71 = [r39],-16;;
+(p8) ldfs f49 = [r40],8
+(p9) pmpy2.r r41 = r41,r48;;
+ } { .mfi
+(p0) ldfe f69 = [r39],-16
+//
+// Let z_hi have exponent and sign of original Q
+// Load the Tbl_hi(0) else, increment pointer.
+//
+(p0) fmerge.se f39 = f38,f39
+(p9) shladd r42 = r42,0x0004,r41;;
+ } { .mmi
+(p9) add r40 = r40, r42;;
+(p9) ldfd f48 = [r40],8
+ nop 999;; // EMbo added ...
+ } { .mmi
+(p0) ldfe f67 = [r39],-16;;
+(p9) ldfs f49 = [r40],8
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// U_prime_hi = U + V * z_hi
+// Load the Tbl_lo(0)
+//
+(p0) fma.s1 f40 = f36, f39, f35
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fnma.s1 f42 = f35, f39, f36
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) mov f52 = f48
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) frcpa.s1 f43, p6 = f1, f40
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// U_prime_lo = U - U_prime_hi
+// k = k * 256 - result can be 0, 256, or 512.
+//
+(p0) fsub.s1 f41 = f35, f40
+(p0) cmp.eq.unc p7, p6 = 0x00000, r38
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f52 = f34, f52
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p7) fadd.s1 f54 = f0, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fsub.s1 f54 = f0, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fnma.s1 f80 = f43, f40, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fadd.s1 f79 = f41, f40
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f41 = f36, f39, f41
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f56 = f54, f52, f50
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f43 = f80, f43, f43
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// U_prime_lo = U - U_hold
+// lookup -> lookup * 16 + k
+//
+//
+// V_prime = V - U * z_hi
+// U_prime_lo = V * z_hi + U_prime_lo
+//
+(p0) fsub.s1 f79 = f35, f79
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fnma.s1 f80 = f43, f40, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// C_hi = frcpa(1,U_prime_hi)
+// U_prime_lo = U_prime_lo + U_hold
+//
+//
+// C_hi_hold = 1 - C_hi * U_prime_hi (1)
+//
+//
+// C_hi = C_hi + C_hi * C_hi_hold (1)
+//
+//
+// C_hi_hold = 1 - C_hi * U_prime_hi (2)
+//
+(p0) fadd.s1 f41 = f41, f79
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// C_hi = C_hi + C_hi * C_hi_hold (2)
+//
+(p0) fma.s1 f43 = f80, f43, f43
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// C_hi_hold = 1 - C_hi * U_prime_hi (3)
+//
+(p0) fnma.s1 f80 = f43, f40, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// C_hi = C_hi + C_hi * C_hi_hold (3)
+//
+(p0) fma.s1 f43 = f80, f43, f43
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// w_hi = V_prime * C_hi
+//
+(p0) fmpy.s1 f44 = f42, f43
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f46 = f44, f44
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// wsq = w_hi * w_hi
+// w_lo = = V_prime - w_hi * U_prime_hi
+//
+(p0) fnma.s1 f45 = f44, f40, f42
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f47 = f46, f73, f71
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly = Q_3 + wsq * Q_4
+// w_lo = = w_lo - w_hi * U_prime_lo
+//
+(p0) fnma.s1 f45 = f44, f41, f45
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f47 = f46, f47, f69
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly = Q_2 + wsq * poly
+// w_lo = = w_lo * C_hi
+//
+(p0) fmpy.s1 f45 = f43, f45
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f47 = f46, f47, f67
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly = Q_1 + wsq * poly
+// A_lo = Tbl_lo + w_lo
+// swap = xor(swap,sign_X)
+//
+(p0) fadd.s1 f53 = f49, f45
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// Is (swap) != 0 ?
+// poly = wsq * poly
+// A_hi = Tbl_hi
+//
+(p0) fmpy.s1 f47 = f46, f47
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly = wsq * poly
+//
+//
+// if (p6) sigma = -1.0
+// if (p7) sigma = 1.0
+//
+(p0) fmpy.s1 f47 = f44, f47
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// P_hi = s_Y * P_hi
+// A_lo = A_lo + poly
+//
+(p0) fadd.s1 f53 = f53, f47
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// A_lo = A_lo + w_hi
+// A_hi = s_Y * A_hi
+//
+(p0) fadd.s1 f53 = f53, f44
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// result_hi = P_hi + sigma * A_hi
+// result_lo = P_lo + sigma * A_lo
+//
+(p0) fma.s1 f55 = f54, f53, f51
+(p0) br.cond.sptk L(RETURN_ATAN);;
+}
+//
+// result = result_hi + result_lo * s_Y (User Supplied Rounding Mode)
+//
+// (p0) fma.d.s0 f57 = f55, f34, f56
+//
+// /**************************************************/
+// /********************* STEP4 **********************/
+// /**************************************************/
+//
+L(ATAN_POLY):
+{ .mmi
+(p0) xor r38 = r36,r38
+(p0) addl r39 = @ltoff(Constants_atan#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 r39 = [r39]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+{ .mlx
+ nop 999 // EMbo added ...
+(p0) movl r47 = 0x24005;;
+ } { .mfi
+(p0) add r39 = 128, r39
+(p0) fnma.s1 f81 = f37, f35, f1
+(p0) cmp.eq.unc p7, p6 = 0x00000, r38;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f77 = [r39],-16
+//
+// Iterate 3 times E = E + E*(1.0 - E*U)
+// Also load P_8, P_7, P_6, P_5, P_4
+// E_hold = 1.0 - E * U (1)
+// A_temp = Q
+//
+(p0) mov f85 = f38;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f76 = [r39],-16
+(p6) fsub.s1 f54 = f0, f1;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f75 = [r39],-16
+//
+// E = E + E_hold*E (1)
+// Point to P_8.
+//
+(p0) fma.s1 f37 = f37, f81, f37;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f74 = [r39],-16
+(p0) fnma.s1 f64 = f85, f35, f36;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f72 = [r39],-16
+(p7) fadd.s1 f54 = f0, f1;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f70 = [r39],-16
+//
+// E_hold = 1.0 - E * U (2)
+//
+(p0) fnma.s1 f81 = f37, f35, f1;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f68 = [r39],-16
+(p0) fmpy.s1 f50 = f34, f50;;
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfe f66 = [r39],-16
+(p0) fmpy.d.s0 f67 = f67, f67
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// E = E + E_hold*E (2)
+//
+(p0) fma.s1 f37 = f37, f81, f37
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// E_hold = 1.0 - E * U (3)
+//
+(p0) fnma.s1 f81 = f37, f35, f1
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// E = E + E_hold*E (3)
+// At this point E approximates 1/U to roughly working precision
+// z = V*E approximates V/U
+//
+(p0) fma.s1 f37 = f37, f81, f37
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// z = V * E
+//
+(p0) fmpy.s1 f59 = f36, f37
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f64 = f64, f37
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// zsq = z * z
+// Also load P_3
+//
+(p0) fmpy.s1 f60 = f59, f59
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fadd.s1 f52 = f85, f64
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f62 = f60, f77, f76
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f63 = f60, f70, f68
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// z8 = zsq * zsq
+// Also load P_2
+//
+(p0) fmpy.s1 f61 = f60, f60
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fsub.s1 f85 = f85, f52
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmerge.s f65 = f52,f52
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f62 = f60, f62, f75
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f63 = f60, f63, f66
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// z8 = z8 * z8
+// Also load P_1
+// poly1 = _4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
+// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
+//
+//
+// poly1 = P_7 + zsq * P_8
+// poly2 = P_2 + zsq * P_3
+// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*poly1))
+// poly2 = zsq*(P_1 + zsq*poly2)
+//
+//
+// poly1 = P_6 + zsq * poly1
+// poly2 = P_1 + zsq * poly2
+// poly1 = P_4 + zsq*(P_5 + zsq*poly1)
+// poly2 = zsq*poly2
+//
+(p0) fmpy.s1 f61 = f61, f61
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fadd.s1 f64 = f85, f64
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f62 = f60, f62, f74
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly1 = P_5 + zsq * poly1
+// poly2 = zsq * poly2
+// poly1 = P_4 + zsq*poly1
+//
+(p0) fmpy.s1 f63 = f63, f60
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly1 = P_4 + zsq * poly1
+// swap = xor(swap,sign_X)
+//
+(p0) fma.s1 f62 = f60, f62, f72
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// poly = z8*poly1 + poly2 (Typo in writeup)
+// Is (swap) != 0 ?
+//
+//
+// z_lo = V - A_temp * U
+// if (p7) sigma = 1.0
+// Writeup shows A_temp as A_hi
+//
+//
+// z_lo = z_lo * E
+// if (p6) sigma = -1.0
+// z_lo = (V - A_temp * U) *E
+//
+//
+// Fixup added to force inexact later -
+// A_hi = A_temp + z_lo
+// z_lo = (A_temp - A_hi) + z_lo
+// z_lo = A_hi - z_lo -A_hi + z_lo = about 0
+//
+(p0) fma.s1 f47 = f61, f62, f63
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// A_lo = z * poly + z_lo
+//
+(p0) fma.s1 f53 = f59, f47, f64
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fadd.s1 f52 = f65, f53
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fsub.s1 f65 = f65, f52
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fmpy.s1 f52 = f34, f52
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fadd.s1 f53 = f65, f53
+ nop 999 // EMbo added ...
+ } { .mfi
+(p0) setf.exp f65 = r47
+(p0) fma.s1 f56 = f54, f52, f50
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p6,p0 = f53,0x007
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// P_hi = s_Y * P_hi
+// A_hi = s_Y * A_hi
+//
+//
+// result_hi = P_hi + sigma * A_hi
+//
+(p6) mov f53 = f65
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// tmp = P_hi - result_hi
+//
+(p0) fsub.s1 f65 = f50, f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fma.s1 f65 = f52, f54, f65
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// tmp = sigma * A_hi + tmp
+// sigma = A_lo * sigma + P_lo
+//
+(p0) fma.s1 f54 = f53, f54, f51
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// result_lo = s_Y * sigma + tmp
+//
+(p0) fma.s1 f55 = f34, f54, f65
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop.m 0
+ mov f34 = f1
+(p0) br.cond.sptk L(RETURN_ATAN);;
+}
+//
+// result = result_hi + result_lo (User Supplied Rounding Mode)
+//
+// (p0) fadd.d.s0 f57 = f55, f56
+L(ATAN_UNSUPPORTED):
+L(ATAN_NATVAL):
+ { .mfb
+ nop 999 // EMbo added ...
+//
+// Deal with the NatVal and unsupported cases.
+// Raise invalid if warrented.
+//
+(p0) fmpy.d.s0 f57 = f8, f9
+br.cond.sptk L(RETURN_ATAN);;
+ }
+L(ATAN_NAN):
+ { .mfb
+ nop 999 // EMbo added ...
+//
+// If only one NaN, then generate the resulting
+// NaN and return - may raise invalid.
+//
+(p0) fmpy.d.s0 f57 = f8, f9
+(p0) br.cond.sptk L(RETURN_ATAN);;
+ }
+L(ATAN_SPECIAL_HANDLING):
+
+ { .mmf
+(p0) addl r39 = @ltoff(Constants_atan#), gp
+ nop.m 999
+(p0) fcmp.lt.s0 p0,p7 = f8,f1
+ }
+;;
+
+//
+// Raise denormal operand faults if necessary
+//
+
+{ .mfi
+ ld8 r39 = [r39]
+(p0) fcmp.lt.s0 p0,p6 = f9,f1
+ nop 999;; // EMbo added ...
+}
+;;
+
+
+
+{ .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p6,p7 = f32,0x007
+ nop 999;; // EMbo added ...
+ } { .mlx
+ nop 999 // EMbo added ...
+(p0) movl r47 = 992;;
+ } { .mib
+(p0) add r39 = r39, r47
+ nop 999 // EMbo added ...
+(p7) br.cond.sptk L(ATAN_ArgY_Not_ZERO);;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fclass.m.unc p14,p0 = f33,0x035
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fclass.m.unc p15,p0 = f33,0x036
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fclass.m.unc p13,p0 = f33,0x007
+ nop 999 // EMbo added ...
+ } { .mfi
+(p0) ldfd f56 = [r39],8
+ nop 999 // EMbo added ...
+ nop 999;; // EMbo added ...
+ } { .mfi
+(p0) ldfd f55 = [r39],-8
+(p14) fmerge.s f56 = f32,f0
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// Return sign_Y * 0 when Y = +/-0 and X > 0
+//
+(p14) fmerge.s f55 = f32,f0
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p15) fmerge.s f56 = f32,f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// Return sign_Y * PI when X < -0
+//
+//
+(p15) fmerge.s f55 = f32,f55
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fadd.d.s0 f57 = f56,f55
+ nop.i 0
+ } { .bbb
+//
+// Call error support function for atan(0,0)
+// - expected value already computed.
+//
+ nop.b 0
+ nop.b 0
+(p0) br.cond.sptk L(RETURN_ATAN)
+ }
+L(ATAN_ArgY_Not_ZERO):
+ { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p9,p10 = f32,0x023
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+(p9) fclass.m.unc p6,p0 = f33,0x017
+(p10) br.cond.sptk L(ATAN_ArgY_Not_INF);;
+ } { .mfi
+(p6) add r39 = 16,r39
+(p9) fclass.m.unc p7,p0 = f33,0x021
+ nop 999;; // EMbo added ...
+ } { .mmf
+ nop 999 // EMbo added ...
+(p0) ldfd f56 = [r39],8
+(p9) fclass.m.unc p8,p0 = f33,0x022;;
+ } { .mbb
+(p0) ldfd f55 = [r39],-8
+ nop 999 // EMbo added ...
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fmerge.s f56 = f32,f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fmerge.s f55 = f32,f55
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// Load I/2 and adjust its sign.
+// Return +I/2 when ArgY = +Inf and ArgX = +/-0,normal
+// Return -I/2 when ArgY = -Inf and ArgX = +/-0,normal
+//
+(p6) fadd.d.s0 f57 = f56, f55
+(p6) br.cond.sptk L(RETURN_ATAN);;
+ } { .mmi
+(p7) add r39 = 32,r39;;
+(p7) ldfd f56 = [r39],8
+ nop 999;; // EMbo added ...
+ } { .mmi
+ nop 999;; // EMbo added ...
+(p7) ldfd f55 = [r39],-8
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p7) fmerge.s f56 = f32,f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p7) fmerge.s f55 = f32,f55
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// Load PI/4 and adjust its sign.
+// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
+// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
+//
+(p7) fadd.d.s0 f57 = f56, f55
+(p7) br.cond.sptk L(RETURN_ATAN);;
+ } { .mmi
+(p8) add r39 = 48,r39;;
+(p8) ldfd f56 =[r39],8
+ nop 999;; // EMbo added ...
+ } { .mmi
+ nop 999;; // EMbo added ...
+(p8) ldfd f55 =[r39],-8
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p8) fmerge.s f56 = f32,f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p8) fmerge.s f55 = f32,f55
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// Load I/4 and adjust its sign.
+// Return +3I/4 when ArgY = +Inf and ArgX = -Inf
+// Return -3I/4 when ArgY = -Inf and ArgX = -Inf
+//
+(p8) fadd.d.s0 f57 = f56, f55
+(p8) br.cond.sptk L(RETURN_ATAN);;
+ }
+L(ATAN_ArgY_Not_INF):
+ { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p6,p0 = f33,0x007
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p7,p0 = f33,0x021
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p0) fclass.m.unc p8,p0 = f33,0x022
+(p6) add r39 = 16,r39;;
+ } { .mfi
+(p6) ldfd f56 =[r39],8
+ nop 999 // EMbo added ...
+ nop 999;; // EMbo added ...
+ } { .mmi
+ nop 999;; // EMbo added ...
+(p6) ldfd f55 =[r39],-8
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fmerge.s f56 = f32,f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p6) fmerge.s f55 = f32,f55
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// return = sign_Y * I/2 when ArgX = +/-0
+//
+(p6) fadd.d.s0 f57 = f56, f55
+(p6) br.cond.sptk L(RETURN_ATAN);;
+ } { .mfi
+ nop 999 // EMbo added ...
+(p7) fmerge.s f56 = f32,f0
+ nop 999 // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p7) fmerge.s f55 = f32,f0
+ nop 999;; // EMbo added ...
+ } { .mfb
+ nop 999 // EMbo added ...
+//
+// return = sign_Y * 0 when ArgX = Inf
+//
+(p7) fadd.d.s0 f57 = f56, f55
+(p7) br.cond.sptk L(RETURN_ATAN);;
+ } { .mfi
+(p8) ldfd f56 = [r39],8
+ nop 999 // EMbo added ...
+ nop 999;; // EMbo added ...
+ } { .mmi
+ nop 999;; // EMbo added ...
+(p8) ldfd f55 = [r39],-8
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p8) fmerge.s f56 = f32,f56
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+(p8) fmerge.s f55 = f32,f55
+ nop 999;; // EMbo added ...
+ } { .mfi
+ nop 999 // EMbo added ...
+//
+// return = sign_Y * I when ArgX = -Inf
+//
+(p8) fadd.d.s0 f57 = f56, f55
+ nop 999 // EMbo added ...
+ };;
+L(RETURN_ATAN):
+// mov f8 = f57 ;;
+// The answer is in f57.
+// But Z_hi is f56
+// Z_lo is f55
+// s_Y is f34
+// W is in f9 and untouched
+
+{ .mfi
+ nop 999
+mov f8 = f56
+ nop.i 0
+};;
+
+{ .mfi
+ nop 999
+mov f10 = f55
+ nop.i 999
+}
+{ .mfb
+ nop 999
+mov f11 = f34
+br.ret.sptk b0
+};;
+
+.endp __libm_atan2_reg
+ASM_SIZE_DIRECTIVE(__libm_atan2_reg)
diff --git a/sysdeps/ia64/fpu/libm_cpu_defs.h b/sysdeps/ia64/fpu/libm_cpu_defs.h
deleted file mode 100644
index 516128c404..0000000000
--- a/sysdeps/ia64/fpu/libm_cpu_defs.h
+++ /dev/null
@@ -1,156 +0,0 @@
-/* file: libm_cpu_defs.h */
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-
-#ifndef __LIBM_CPU_DEFS__H_INCLUDED__
-#define __LIBM_CPU_DEFS__H_INCLUDED__
-
-void __libm_sincos_pi4(double,double*,double*,int);
-void __libm_y0y1(double , double *, double *);
-void __libm_j0j1(double , double *, double *);
-double __libm_j0(double);
-double __libm_j1(double);
-double __libm_jn(int,double);
-double __libm_y0(double);
-double __libm_y1(double);
-double __libm_yn(int,double);
-
-double __libm_copysign (double, double);
-float __libm_copysignf (float, float);
-long double __libm_copysignl (long double, long double);
-
-extern double sqrt(double);
-extern double fabs(double);
-extern double log(double);
-extern double log1p(double);
-extern double sqrt(double);
-extern double sin(double);
-extern double exp(double);
-extern double modf(double, double *);
-extern double asinh(double);
-extern double acosh(double);
-extern double atanh(double);
-extern double tanh(double);
-extern double erf(double);
-extern double erfc(double);
-extern double j0(double);
-extern double j1(double);
-extern double jn(int, double);
-extern double y0(double);
-extern double y1(double);
-extern double yn(int, double);
-
-extern float fabsf(float);
-extern float asinhf(float);
-extern float acoshf(float);
-extern float atanhf(float);
-extern float tanhf(float);
-extern float erff(float);
-extern float erfcf(float);
-extern float j0f(float);
-extern float j1f(float);
-extern float jnf(int, float);
-extern float y0f(float);
-extern float y1f(float);
-extern float ynf(int, float);
-
-extern long double log1pl(long double);
-extern long double logl(long double);
-extern long double sqrtl(long double);
-extern long double expl(long double);
-extern long double fabsl(long double);
-
-#if !(defined(SIZE_LONG_INT_32) || defined(SIZE_LONG_INT_64))
-#error long int size not established; define SIZE_LONG_INT_32 or SIZE_LONG_INT_64
-#endif
-
-#if (defined(SIZE_LONG_INT_32) && defined(SIZE_LONG_INT_64))
-#error multiple long int size definitions; define SIZE_LONG_INT_32 or SIZE_LONG_INT_64
-#endif
-
-#if !(defined(SIZE_LONG_LONG_INT_32) || defined(SIZE_LONG_LONG_INT_64))
-#error long long int size not established; define SIZE_LONG_LONG_INT_32 or SIZE_LONG_LONG_INT_64
-#endif
-
-#if (defined(SIZE_LONG_LONG_INT_32) && defined(SIZE_LONG_LONG_INT_64))
-#error multiple long long int size definitions; define SIZE_LONG_LONG_INT_32 or SIZE_LONG_LONG_INT_64
-#endif
-
-#define HI_SIGNIFICAND_LESS(X, HI) ((X)->hi_significand < 0x ## HI)
-#define f64abs(x) ((x) < 0.0 ? -(x) : (x))
-
-#define FP80_DECLARE()
-#define FP80_SET()
-#define FP80_RESET()
-
-#ifdef _LIBC
-# include <math.h>
-#else
-
-static const unsigned INF[] = {
- DOUBLE_HEX(7ff00000, 00000000),
- DOUBLE_HEX(fff00000, 00000000)
-};
-
-static const double _zeroo = 0.0;
-static const double _bigg = 1.0e300;
-static const double _ponee = 1.0;
-static const double _nonee = -1.0;
-
-#define INVALID (_zeroo * *((double*)&INF[0]))
-#define PINF *((double*)&INF[0])
-#define NINF -PINF
-#define PINF_DZ (_ponee/_zeroo)
-#define X_TLOSS 1.41484755040568800000e+16
-#endif
-
-/* Set these appropriately to make thread Safe */
-#define ERRNO_RANGE errno = ERANGE
-#define ERRNO_DOMAIN errno = EDOM
-
-#ifndef _LIBC
-#if defined(__ICC) || defined(__ICL) || defined(__ECC) || defined(__ECL)
-# pragma warning( disable : 68 ) /* #68: integer conversion resulted in a change of sign */
-# pragma warning( disable : 186 ) /* #186: pointless comparison of unsigned integer with zero */
-# pragma warning( disable : 1572 ) /* #1572: floating-point equality and inequality comparisons are unreliable */
-#endif
-#endif
-
-#endif /*__LIBM_CPU_DEFS__H_INCLUDED__*/
diff --git a/sysdeps/ia64/fpu/libm_error.c b/sysdeps/ia64/fpu/libm_error.c
index 8ef4bb5a73..ebbaad02ad 100644
--- a/sysdeps/ia64/fpu/libm_error.c
+++ b/sysdeps/ia64/fpu/libm_error.c
@@ -1,10 +1,9 @@
-/* file: libm_error.c */
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+//
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, James
+// Edwards, and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +19,6 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
@@ -36,7 +34,7 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
@@ -49,84 +47,45 @@
// 12/07/00: Added code to make scalbn error support equivalent to ldexp.
// 2/07/01: Added __declspec(align(16)) to long double constants to correct
// alignment problem.
-// 4/23/01: Added code for remquo
-// 6/07/01: Added code for fdim, lrint, lround, llrint, llround
-// Deleted code for remquo
-// 8/15/01: Added code for scalbln, nexttoward
-// 12/10/01: Added code for erfc
-// 12/27/01: Added code for degree argument functions
-// 01/02/02: Added code for tand, cotd
-// 01/15/02: Corrected SVID/XOPEN code for log1p, pow, and acosh
-// 01/25/02: Corrected ISOC for lgamma and gamma to return EDOM for neg ints
-// 01/28/02: Corrected SVID/XOPEN stderr message for log2
-// 05/20/02: Added code for cot
-// 07/01/02: Added code for sinhcosh
-// 10/04/02: Underflow detection in ISOC path redefined to
-// be zero rather than tiny and inexact
-// 12/06/02: Added code for annuity and compound
-// 01/30/03: Corrected test for underflow in ISOC path to not set denormal
-// 04/10/03: Corrected ISOC branch for gamma/lgamma to return ERANGE for neg ints.
-// Added code for tgamma
-// 04/11/03: Corrected POSIX/SVID/XOPEN branches for gamma/lgamma
-// to return EDOM for neg ints.
-// 09/08/03: Corrected XOPEN/SVID result for pow overflow with neg x, pos y.
-// 10/14/03: Added ILP32 ifdef
-// 12/12/03: Corrected XOPEN/SVID results for powf_zero_to_negative,
-// powl_neg_to_non_integer, atan2f_zero, atan2df_zero,
-// acoshf_lt_one, acosh_lt_one.
-// 12/07/04: Cast name strings as char *.
-// 12/08/04: Corrected POSIX behavior for atan2_zero, acos_gt_one, asin_gt_one,
-// log_negative, log10_negative, log1p_negative, and log2_negative.
-// Added SVID and XOPEN case log2l_zero.
-// 12/13/04: Corrected POSIX behavior for exp2_overflow, exp2_underflow,
-// exp10_overflow, exp10_underflow. Added ISOC to set errno for
-// exp10_underflow.
-// 12/14/04: Corrected POSIX behavior for nextafter_overflow,
-// nextafter_underflow, nexttoward_overflow, nexttoward_underflow.
-// Added ISOC to set errno for nextafter and nexttoward underflow.
-// 12/15/04: Corrected POSIX behavior for exp, exp2, and exp10 underflow.
-// 03/31/05: Added missing ALIGNIT statement to 6 float constants.
+//
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include "libm_support.h"
-#ifdef _LIBC
-# define pmatherr matherr
-# define pmatherrf matherrf
-# define pmatherrl matherrl
-#else
+#ifndef _LIBC
_LIB_VERSION_TYPE
#if defined( __POSIX__ )
-_LIB_VERSIONIMF = _POSIX_;
+_LIB_VERSION = _POSIX_;
#elif defined( __XOPEN__ )
-_LIB_VERSIONIMF = _XOPEN_;
+_LIB_VERSION = _XOPEN_;
#elif defined( __SVID__ )
-_LIB_VERSIONIMF = _SVID_;
+_LIB_VERSION = _SVID_;
#elif defined( __IEEE__ )
-_LIB_VERSIONIMF = _IEEE_;
+_LIB_VERSION = _IEEE_;
#else
-_LIB_VERSIONIMF = _ISOC_;
+_LIB_VERSION = _ISOC_;
+#endif
#endif
/************************************************************/
/* matherrX function pointers and setusermatherrX functions */
/************************************************************/
+#if 0
int (*pmatherrf)(struct exceptionf*) = MATHERR_F;
int (*pmatherr)(struct EXC_DECL_D*) = MATHERR_D;
int (*pmatherrl)(struct exceptionl*) = matherrl;
void __libm_setusermatherrf( int(*user_merrf)(struct exceptionf*) )
-{ pmatherrf = ( (user_merrf==NULL)? (MATHERR_F) : (user_merrf) ); }
+{ pmatherrf = ( (user_merrf==NULL)? (MATHERR_F) : (user_merrf) ); }
void __libm_setusermatherr( int(*user_merr)(struct EXC_DECL_D*) )
-{ pmatherr = ( (user_merr==NULL)? (MATHERR_D) : (user_merr) ); }
+{ pmatherr = ( (user_merr==NULL)? (MATHERR_D) : (user_merr) ); }
void __libm_setusermatherrl( int(*user_merrl)(struct exceptionl*) )
-{ pmatherrl = ( (user_merrl==NULL)? (matherrl) : (user_merrl) ); }
-
-#endif /* !_LIBC */
+{ pmatherrl = ( (user_merrl==NULL)? (matherrl) : (user_merrl) ); }
+#endif
/***********************************************/
/* error-handling function, libm_error_support */
@@ -134,6 +93,7 @@ void __libm_setusermatherrl( int(*user_merrl)(struct exceptionl*) )
void __libm_error_support(void *arg1,void *arg2,void *retval,error_types input_tag)
{
+
# ifdef __cplusplus
struct __exception exc;
# else
@@ -143,72 +103,44 @@ struct exception exc;
struct exceptionf excf;
struct exceptionl excl;
-# ifdef __GNUC__
-#define ALIGNIT __attribute__ ((__aligned__ (16)))
-# elif defined opensource
+# if defined opensource || defined _LIBC
#define ALIGNIT
+#define ALIGNATTR __attribute__ ((__aligned__ (16)))
# else
#define ALIGNIT __declspec(align(16))
+#define ALIGNATTR
# endif
-# ifdef SIZE_LONG_INT_64
-#define __INT_64__ signed long
-# else
-# if ILP32
-#define __INT_64__ signed long long
-# else
-#define __INT_64__ __int64
-# endif
-# endif
-
-
-#define STATIC static
-
-ALIGNIT
-STATIC const char float_inf[4] = {0x00,0x00,0x80,0x7F};
-ALIGNIT
-STATIC const char float_huge[4] = {0xFF,0xFF,0x7F,0x7F};
-ALIGNIT
-STATIC const char float_zero[4] = {0x00,0x00,0x00,0x00};
+const char float_inf[4] = {0x00,0x00,0x80,0x7F};
+const char float_huge[4] = {0xFF,0xFF,0x7F,0x7F};
+const char float_zero[4] = {0x00,0x00,0x00,0x00};
+const char float_neg_inf[4] = {0x00,0x00,0x80,0xFF};
+const char float_neg_huge[4] = {0xFF,0xFF,0x7F,0xFF};
+const char float_neg_zero[4] = {0x00,0x00,0x00,0x80};
ALIGNIT
-STATIC const char float_neg_inf[4] = {0x00,0x00,0x80,0xFF};
-ALIGNIT
-STATIC const char float_neg_huge[4] = {0xFF,0xFF,0x7F,0xFF};
-ALIGNIT
-STATIC const char float_neg_zero[4] = {0x00,0x00,0x00,0x80};
-ALIGNIT
-STATIC const char double_inf[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0xF0,0x7F};
-#ifndef _LIBC
+const char double_inf[8] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0xF0,0x7F};
ALIGNIT
-STATIC const char double_huge[8] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xEF,0x7F};
-#endif
+//const char double_huge[8] ALIGNATTR = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xEF,0x7F};
ALIGNIT
-STATIC const char double_zero[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+const char double_zero[8] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
ALIGNIT
-STATIC const char double_neg_inf[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0xF0,0xFF};
-#ifndef _LIBC
+const char double_neg_inf[8] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0xF0,0xFF};
ALIGNIT
-STATIC const char double_neg_huge[8] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xEF,0xFF};
-#endif
+//const char double_neg_huge[8] ALIGNATTR = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xEF,0xFF};
ALIGNIT
-STATIC const char double_neg_zero[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80};
+const char double_neg_zero[8] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80};
ALIGNIT
-STATIC const char long_double_inf[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00};
+const char long_double_inf[16] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00};
ALIGNIT
-#ifndef _LIBC
-STATIC const char long_double_huge[16] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0x7F,0x00,0x00,0x00,0x00,0x00,0x00};
-#endif
+//const char long_double_huge[16] ALIGNATTR = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0x7F,0x00,0x00,0x00,0x00,0x00,0x00};
ALIGNIT
-STATIC const char long_double_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+const char long_double_zero[16] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
ALIGNIT
-STATIC const char long_double_neg_inf[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00};
+const char long_double_neg_inf[16] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00};
ALIGNIT
-#ifndef _LIBC
-STATIC const char long_double_neg_huge[16] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0x00,0x00,0x00,0x00,0x00,0x00};
-#endif
+//const char long_double_neg_huge[16] ALIGNATTR = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFE,0xFF,0x00,0x00,0x00,0x00,0x00,0x00};
ALIGNIT
-STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00};
-
+const char long_double_neg_zero[16] ALIGNATTR = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00};
#define RETVAL_HUGE_VALL *(long double *)retval = *(long double *)long_double_inf
#define RETVAL_NEG_HUGE_VALL *(long double *)retval = *(long double *)long_double_neg_inf
@@ -225,10 +157,6 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define RETVAL_HUGEF *(float *)retval = *(float *) float_huge
#define RETVAL_NEG_HUGEF *(float *)retval = *(float *) float_neg_huge
-#define ZEROL_VALUE *(long double *)long_double_zero
-#define ZEROD_VALUE *(double *)double_zero
-#define ZEROF_VALUE *(float *)float_zero
-
#define RETVAL_ZEROL *(long double *)retval = *(long double *)long_double_zero
#define RETVAL_ZEROD *(double *)retval = *(double *)double_zero
#define RETVAL_ZEROF *(float *)retval = *(float *)float_zero
@@ -241,11 +169,11 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define RETVAL_ONED *(double *)retval = 1.0
#define RETVAL_ONEF *(float *)retval = 1.0f
-#define NOT_MATHERRL excl.arg1=*(long double *)arg1;excl.arg2=*(long double *)arg2;excl.retval=*(long double *)retval;if(!pmatherrl(&excl))
-#define NOT_MATHERRD exc.arg1=*(double *)arg1;exc.arg2=*(double *)arg2;exc.retval=*(double *)retval;if(!pmatherr(&exc))
-#define NOT_MATHERRF excf.arg1=*(float *)arg1;excf.arg2=*(float *)arg2;excf.retval=*(float *)retval;if(!pmatherrf(&excf))
+#define NOT_MATHERRL excl.arg1=*(long double *)arg1;excl.arg2=*(long double *)arg2;excl.retval=*(long double *)retval;if(!matherrl(&excl))
+#define NOT_MATHERRD exc.arg1=*(double *)arg1;exc.arg2=*(double *)arg2;exc.retval=*(double *)retval;if(!MATHERR_D(&exc))
+#define NOT_MATHERRF excf.arg1=*(float *)arg1;excf.arg2=*(float *)arg2;excf.retval=*(float *)retval;if(!MATHERR_F(&excf))
-#define ifSVID if(_LIB_VERSIONIMF==_SVID_)
+#define ifSVID if(_LIB_VERSION==_SVID_)
#define NAMEL excl.name
#define NAMED exc.name
@@ -282,13 +210,12 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define INPUT_XL (excl.arg1=*(long double*)arg1)
#define INPUT_XD (exc.arg1=*(double*)arg1)
#define INPUT_XF (excf.arg1=*(float*)arg1)
-#define INPUT_YL (excl.arg2=*(long double*)arg2)
-#define INPUT_YD (exc.arg2=*(double*)arg2)
-#define INPUT_YF (excf.arg2=*(float*)arg2)
+#define INPUT_YL (excl.arg1=*(long double*)arg2)
+#define INPUT_YD (exc.arg1=*(double*)arg2)
+#define INPUT_YF (excf.arg1=*(float*)arg2)
#define INPUT_RESL (*(long double *)retval)
#define INPUT_RESD (*(double *)retval)
#define INPUT_RESF (*(float *)retval)
-#define INPUT_RESI64 (*(__INT_64__ *)retval)
#define WRITEL_LOG_ZERO fputs("logl: SING error\n",stderr)
#define WRITED_LOG_ZERO fputs("log: SING error\n",stderr)
@@ -306,7 +233,7 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define WRITED_Y1_ZERO fputs("y1: DOMAIN error\n",stderr)
#define WRITEF_Y1_ZERO fputs("y1f: DOMAIN error\n",stderr)
#define WRITEL_Y1_NEGATIVE fputs("y1l: DOMAIN error\n",stderr)
-#define WRITED_Y1_NEGATIVE fputs("y1: DOMAIN error\n",stderr)
+#define WRITED_Y1_NEGATIUE fputs("y1: DOMAIN error\n",stderr)
#define WRITEF_Y1_NEGATIVE fputs("y1f: DOMAIN error\n",stderr)
#define WRITEL_YN_ZERO fputs("ynl: DOMAIN error\n",stderr)
#define WRITED_YN_ZERO fputs("yn: DOMAIN error\n",stderr)
@@ -326,12 +253,6 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define WRITEL_LOG10_NEGATIVE fputs("log10l: DOMAIN error\n",stderr)
#define WRITED_LOG10_NEGATIVE fputs("log10: DOMAIN error\n",stderr)
#define WRITEF_LOG10_NEGATIVE fputs("log10f: DOMAIN error\n",stderr)
-#define WRITEL_LOG2_ZERO fputs("log2l: SING error\n",stderr)
-#define WRITED_LOG2_ZERO fputs("log2: SING error\n",stderr)
-#define WRITEF_LOG2_ZERO fputs("log2f: SING error\n",stderr)
-#define WRITEL_LOG2_NEGATIVE fputs("log2l: DOMAIN error\n",stderr)
-#define WRITED_LOG2_NEGATIVE fputs("log2: DOMAIN error\n",stderr)
-#define WRITEF_LOG2_NEGATIVE fputs("log2f: DOMAIN error\n",stderr)
#define WRITEL_POW_ZERO_TO_ZERO fputs("powl(0,0): DOMAIN error\n",stderr)
#define WRITED_POW_ZERO_TO_ZERO fputs("pow(0,0): DOMAIN error\n",stderr)
#define WRITEF_POW_ZERO_TO_ZERO fputs("powf(0,0): DOMAIN error\n",stderr)
@@ -374,9 +295,6 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define WRITEL_GAMMA_NEGATIVE fputs("gammal: SING error\n",stderr)
#define WRITED_GAMMA_NEGATIVE fputs("gamma: SING error\n",stderr)
#define WRITEF_GAMMA_NEGATIVE fputs("gammaf: SING error\n",stderr)
-#define WRITEL_TGAMMA_NEGATIVE fputs("tgammal: SING error\n",stderr)
-#define WRITED_TGAMMA_NEGATIVE fputs("tgamma: SING error\n",stderr)
-#define WRITEF_TGAMMA_NEGATIVE fputs("tgammaf: SING error\n",stderr)
#define WRITEL_J0_TLOSS fputs("j0l: TLOSS error\n",stderr)
#define WRITEL_Y0_TLOSS fputs("y0l: TLOSS error\n",stderr)
#define WRITEL_J1_TLOSS fputs("j1l: TLOSS error\n",stderr)
@@ -395,26 +313,16 @@ STATIC const char long_double_neg_zero[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00
#define WRITEF_Y1_TLOSS fputs("y1f: TLOSS error\n",stderr)
#define WRITEF_JN_TLOSS fputs("jnf: TLOSS error\n",stderr)
#define WRITEF_YN_TLOSS fputs("ynf: TLOSS error\n",stderr)
-#define WRITEL_ACOSD fputs("acosdl: DOMAIN error\n",stderr)
-#define WRITED_ACOSD fputs("acosd: DOMAIN error\n",stderr)
-#define WRITEF_ACOSD fputs("acosdf: DOMAIN error\n",stderr)
-#define WRITEL_ASIND fputs("asindl: DOMAIN error\n",stderr)
-#define WRITED_ASIND fputs("asind: DOMAIN error\n",stderr)
-#define WRITEF_ASIND fputs("asindf: DOMAIN error\n",stderr)
-#define WRITEL_ATAN2D_ZERO_BY_ZERO fputs("atan2dl: DOMAIN error\n",stderr)
-#define WRITED_ATAN2D_ZERO_BY_ZERO fputs("atan2d: DOMAIN error\n",stderr)
-#define WRITEF_ATAN2D_ZERO_BY_ZERO fputs("atan2df: DOMAIN error\n",stderr)
-
/***********************/
/* IEEE Path */
/***********************/
-if(_LIB_VERSIONIMF==_IEEE_) return;
+if(_LIB_VERSION==_IEEE_) return;
/***********************/
/* C9X Path */
/***********************/
-else if(_LIB_VERSIONIMF==_ISOC_)
+else if(_LIB_VERSION==_ISOC_)
{
switch(input_tag)
{
@@ -433,12 +341,21 @@ else if(_LIB_VERSIONIMF==_ISOC_)
case powl_overflow:
case pow_overflow:
case powf_overflow:
+ case powl_underflow:
+ case pow_underflow:
+ case powf_underflow:
case expl_overflow:
case exp_overflow:
case expf_overflow:
+ case expl_underflow:
+ case exp_underflow:
+ case expf_underflow:
case exp2l_overflow:
case exp2_overflow:
case exp2f_overflow:
+ case exp2l_underflow:
+ case exp2_underflow:
+ case exp2f_underflow:
case exp10l_overflow:
case exp10_overflow:
case exp10f_overflow:
@@ -457,135 +374,45 @@ else if(_LIB_VERSIONIMF==_ISOC_)
case scalbl_overflow:
case scalb_overflow:
case scalbf_overflow:
+ case scalbl_underflow:
+ case scalb_underflow:
+ case scalbf_underflow:
case coshl_overflow:
case cosh_overflow:
case coshf_overflow:
case nextafterl_overflow:
case nextafter_overflow:
case nextafterf_overflow:
- case nextafterl_underflow:
- case nextafter_underflow:
- case nextafterf_underflow:
- case nexttowardl_overflow:
- case nexttoward_overflow:
- case nexttowardf_overflow:
- case nexttowardl_underflow:
- case nexttoward_underflow:
- case nexttowardf_underflow:
case scalbnl_overflow:
case scalbn_overflow:
case scalbnf_overflow:
- case scalblnl_overflow:
- case scalbln_overflow:
- case scalblnf_overflow:
+ case scalbnl_underflow:
+ case scalbn_underflow:
+ case scalbnf_underflow:
case ldexpl_overflow:
case ldexp_overflow:
case ldexpf_overflow:
+ case ldexpl_underflow:
+ case ldexp_underflow:
+ case ldexpf_underflow:
case lgammal_overflow:
case lgamma_overflow:
case lgammaf_overflow:
- case gammal_overflow:
- case gamma_overflow:
- case gammaf_overflow:
case lgammal_negative:
case lgamma_negative:
case lgammaf_negative:
+ case gammal_overflow:
+ case gamma_overflow:
+ case gammaf_overflow:
case gammal_negative:
case gamma_negative:
case gammaf_negative:
case ilogbl_zero:
case ilogb_zero:
case ilogbf_zero:
- case fdiml_overflow:
- case fdim_overflow:
- case fdimf_overflow:
- case llrintl_large:
- case llrint_large:
- case llrintf_large:
- case llroundl_large:
- case llround_large:
- case llroundf_large:
- case lrintl_large:
- case lrint_large:
- case lrintf_large:
- case lroundl_large:
- case lround_large:
- case lroundf_large:
- case tandl_overflow:
- case tand_overflow:
- case tandf_overflow:
- case cotdl_overflow:
- case cotd_overflow:
- case cotdf_overflow:
- case cotl_overflow:
- case cot_overflow:
- case cotf_overflow:
- case sinhcoshl_overflow:
- case sinhcosh_overflow:
- case sinhcoshf_overflow:
- case annuityl_overflow:
- case annuity_overflow:
- case annuityf_overflow:
- case compoundl_overflow:
- case compound_overflow:
- case compoundf_overflow:
- case tgammal_overflow:
- case tgamma_overflow:
- case tgammaf_overflow:
{
ERRNO_RANGE; break;
}
- case powl_underflow:
- case expl_underflow:
- case exp10l_underflow:
- case exp2l_underflow:
- case scalbl_underflow:
- case scalbnl_underflow:
- case scalblnl_underflow:
- case ldexpl_underflow:
- case erfcl_underflow:
- case annuityl_underflow:
- case compoundl_underflow:
- {
- /* Test for zero by testing 64 significand bits for zero. An integer
- test is needed so denormal flag is not set by a floating-point test */
- if ( INPUT_RESI64 == 0 ) ERRNO_RANGE;
- break;
- }
- case pow_underflow:
- case exp_underflow:
- case exp10_underflow:
- case exp2_underflow:
- case scalb_underflow:
- case scalbn_underflow:
- case scalbln_underflow:
- case ldexp_underflow:
- case erfc_underflow:
- case annuity_underflow:
- case compound_underflow:
- {
- /* Test for zero by testing exp and significand bits for zero. An integer
- test is needed so denormal flag is not set by a floating-point test */
- if ( (INPUT_RESI64 << 1) == 0 ) ERRNO_RANGE;
- break;
- }
- case powf_underflow:
- case expf_underflow:
- case exp10f_underflow:
- case exp2f_underflow:
- case scalbf_underflow:
- case scalbnf_underflow:
- case scalblnf_underflow:
- case ldexpf_underflow:
- case erfcf_underflow:
- case annuityf_underflow:
- case compoundf_underflow:
- {
- /* Test for zero by testing exp and significand bits for zero. An integer
- test is needed so denormal flag is not set by a floating-point test */
- if ( (INPUT_RESI64 << 33) == 0 ) ERRNO_RANGE;
- break;
- }
case logl_negative:
case log_negative:
case logf_negative:
@@ -646,35 +473,11 @@ else if(_LIB_VERSIONIMF==_ISOC_)
case ynl_negative:
case yn_negative:
case ynf_negative:
- case acosdl_gt_one:
- case acosd_gt_one:
- case acosdf_gt_one:
- case asindl_gt_one:
- case asind_gt_one:
- case asindf_gt_one:
- case atan2dl_zero:
- case atan2d_zero:
- case atan2df_zero:
- case annuityl_by_zero:
- case annuity_by_zero:
- case annuityf_by_zero:
- case annuityl_less_m1:
- case annuity_less_m1:
- case annuityf_less_m1:
- case compoundl_by_zero:
- case compound_by_zero:
- case compoundf_by_zero:
- case compoundl_less_m1:
- case compound_less_m1:
- case compoundf_less_m1:
- case tgammal_negative:
- case tgamma_negative:
- case tgammaf_negative:
{
ERRNO_DOMAIN; break;
}
default:
- break;
+ abort();
}
return;
}
@@ -683,25 +486,22 @@ else if(_LIB_VERSIONIMF==_ISOC_)
/* _POSIX_ Path */
/***********************/
-else if(_LIB_VERSIONIMF==_POSIX_)
+else if(_LIB_VERSION==_POSIX_)
{
switch(input_tag)
{
case gammal_overflow:
case lgammal_overflow:
- case tgammal_overflow:
{
RETVAL_HUGE_VALL; ERRNO_RANGE; break;
}
case gamma_overflow:
case lgamma_overflow:
- case tgamma_overflow:
{
RETVAL_HUGE_VALD; ERRNO_RANGE; break;
}
case gammaf_overflow:
case lgammaf_overflow:
- case tgammaf_overflow:
{
RETVAL_HUGE_VALF; ERRNO_RANGE; break;
}
@@ -711,9 +511,6 @@ switch(input_tag)
case lgammal_negative:
case lgamma_negative:
case lgammaf_negative:
- case tgammal_negative:
- case tgamma_negative:
- case tgammaf_negative:
{
ERRNO_DOMAIN; break;
}
@@ -729,36 +526,6 @@ switch(input_tag)
case scalbn_underflow:
case scalbnf_overflow:
case scalbnf_underflow:
- case scalblnl_overflow:
- case scalblnl_underflow:
- case scalbln_overflow:
- case scalbln_underflow:
- case scalblnf_overflow:
- case scalblnf_underflow:
- case tandl_overflow:
- case tand_overflow:
- case tandf_overflow:
- case cotdl_overflow:
- case cotd_overflow:
- case cotdf_overflow:
- case cotl_overflow:
- case cot_overflow:
- case cotf_overflow:
- case sinhcoshl_overflow:
- case sinhcosh_overflow:
- case sinhcoshf_overflow:
- case nextafterl_overflow:
- case nextafter_overflow:
- case nextafterf_overflow:
- case nextafterl_underflow:
- case nextafter_underflow:
- case nextafterf_underflow:
- case nexttowardl_overflow:
- case nexttoward_overflow:
- case nexttowardf_overflow:
- case nexttowardl_underflow:
- case nexttoward_underflow:
- case nexttowardf_underflow:
{
ERRNO_RANGE; break;
}
@@ -829,10 +596,7 @@ switch(input_tag)
/* y1l(x < 0) */
/* ynl(x < 0) */
{
-#ifndef _LIBC
- RETVAL_NEG_HUGE_VALL;
-#endif
- ERRNO_DOMAIN; break;
+ RETVAL_NEG_HUGE_VALL; ERRNO_DOMAIN; break;
}
case y0_negative:
case y1_negative:
@@ -855,33 +619,28 @@ switch(input_tag)
case logl_zero:
case log1pl_zero:
case log10l_zero:
- case log2l_zero:
/* logl(0) */
- /* log1pl(-1) */
+ /* log1pl(0) */
/* log10l(0) */
- /* log2l(0) */
{
RETVAL_NEG_HUGE_VALL; ERRNO_RANGE; break;
}
case log_zero:
case log1p_zero:
case log10_zero:
- case log2_zero:
+ case log2l_zero:
/* log(0) */
- /* log1p(-1) */
+ /* log1p(0) */
/* log10(0) */
- /* log2(0) */
{
RETVAL_NEG_HUGE_VALD; ERRNO_RANGE; break;
}
case logf_zero:
case log1pf_zero:
case log10f_zero:
- case log2f_zero:
/* logf(0) */
- /* log1pf(-1) */
+ /* log1pf(0) */
/* log10f(0) */
- /* log2f(0) */
{
RETVAL_NEG_HUGE_VALF; ERRNO_RANGE; break;
}
@@ -890,9 +649,8 @@ switch(input_tag)
case log10l_negative:
case log2l_negative:
/* logl(x < 0) */
- /* log1pl(x < -1) */
+ /* log1pl(x < 0) */
/* log10l(x < 0) */
- /* log2l(x < 0) */
{
ERRNO_DOMAIN; break;
}
@@ -901,9 +659,8 @@ switch(input_tag)
case log10_negative:
case log2_negative:
/* log(x < 0) */
- /* log1p(x < -1) */
+ /* log1p(x < 0) */
/* log10(x < 0) */
- /* log2(x < 0) */
{
ERRNO_DOMAIN; break;
}
@@ -912,63 +669,40 @@ switch(input_tag)
case log10f_negative:
case log2f_negative:
/* logf(x < 0) */
- /* log1pf(x < -1) */
+ /* log1pf(x < 0) */
/* log10f(x < 0) */
- /* log2f(x < 0) */
{
ERRNO_DOMAIN; break;
}
case expl_overflow:
- case exp10l_overflow:
- case exp2l_overflow:
/* expl overflow */
- /* exp10l overflow */
- /* exp2l overflow */
{
RETVAL_HUGE_VALL; ERRNO_RANGE; break;
}
case exp_overflow:
- case exp10_overflow:
- case exp2_overflow:
/* exp overflow */
- /* exp10 overflow */
- /* exp2 overflow */
{
RETVAL_HUGE_VALD; ERRNO_RANGE; break;
}
case expf_overflow:
- case exp10f_overflow:
- case exp2f_overflow:
/* expf overflow */
{
RETVAL_HUGE_VALF; ERRNO_RANGE; break;
}
case expl_underflow:
- case exp10l_underflow:
- case exp2l_underflow:
/* expl underflow */
- /* exp10l underflow */
- /* exp2l underflow */
{
- ERRNO_RANGE; break;
+ RETVAL_ZEROL; ERRNO_RANGE; break;
}
case exp_underflow:
- case exp10_underflow:
- case exp2_underflow:
/* exp underflow */
- /* exp10 underflow */
- /* exp2 underflow */
{
- ERRNO_RANGE; break;
+ RETVAL_ZEROD; ERRNO_RANGE; break;
}
case expf_underflow:
- case exp10f_underflow:
- case exp2f_underflow:
/* expf underflow */
- /* exp10f underflow */
- /* exp2f underflow */
{
- ERRNO_RANGE; break;
+ RETVAL_ZEROF; ERRNO_RANGE; break;
}
case j0l_gt_loss:
case y0l_gt_loss:
@@ -1016,68 +750,41 @@ switch(input_tag)
break;
}
case powl_overflow:
- case annuityl_overflow:
- case compoundl_overflow:
/* powl(x,y) overflow */
{
- if (INPUT_RESL < ZEROL_VALUE /*0*/) RETVAL_NEG_HUGE_VALL;
+ if (INPUT_RESL < 0) RETVAL_NEG_HUGE_VALL;
else RETVAL_HUGE_VALL;
ERRNO_RANGE; break;
}
case pow_overflow:
- case annuity_overflow:
- case compound_overflow:
/* pow(x,y) overflow */
{
- if (INPUT_RESD < ZEROD_VALUE /*0*/) RETVAL_NEG_HUGE_VALD;
+ if (INPUT_RESD < 0) RETVAL_NEG_HUGE_VALD;
else RETVAL_HUGE_VALD;
ERRNO_RANGE; break;
}
case powf_overflow:
- case annuityf_overflow:
- case compoundf_overflow:
/* powf(x,y) overflow */
{
- if (INPUT_RESF < ZEROF_VALUE /*0*/) RETVAL_NEG_HUGE_VALF;
+ if (INPUT_RESF < 0) RETVAL_NEG_HUGE_VALF;
else RETVAL_HUGE_VALF;
ERRNO_RANGE; break;
}
case powl_underflow:
- case annuityl_underflow:
- case compoundl_underflow:
/* powl(x,y) underflow */
{
RETVAL_ZEROL; ERRNO_RANGE; break;
}
case pow_underflow:
- case annuity_underflow:
- case compound_underflow:
/* pow(x,y) underflow */
{
RETVAL_ZEROD; ERRNO_RANGE; break;
}
- case powf_underflow:
- case annuityf_underflow:
- case compoundf_underflow:
+ case powf_underflow:
/* powf(x,y) underflow */
{
RETVAL_ZEROF; ERRNO_RANGE; break;
}
- case annuityl_by_zero:
- case annuityl_less_m1:
- case compoundl_by_zero:
- case compoundl_less_m1:
- case annuity_by_zero:
- case annuity_less_m1:
- case compound_by_zero:
- case compound_less_m1:
- case annuityf_by_zero:
- case annuityf_less_m1:
- case compoundf_by_zero:
- case compoundf_less_m1:
- {
- ERRNO_DOMAIN; break;
- }
case powl_zero_to_negative:
/* 0**neg */
{
@@ -1125,25 +832,37 @@ switch(input_tag)
break;
}
case atan2l_zero:
- case atan2dl_zero:
/* atan2l(0,0) */
- /* atan2dl(0,0) */
{
- break;
+ /* XXX arg1 and arg2 are switched!!!! */
+ if (signbit (*(long double *) arg1))
+ /* y == -0 */
+ *(long double *) retval = copysignl (M_PIl, *(long double *) arg2);
+ else
+ *(long double *) retval = *(long double *) arg2;
+ ERRNO_DOMAIN; break;
}
case atan2_zero:
- case atan2d_zero:
/* atan2(0,0) */
- /* atan2d(0,0) */
{
- break;
+ /* XXX arg1 and arg2 are switched!!!! */
+ if (signbit (*(double *) arg1))
+ /* y == -0 */
+ *(double *) retval = copysign (M_PI, *(double *) arg2);
+ else
+ *(double *) retval = *(double *) arg2;
+ ERRNO_DOMAIN; break;
}
- case atan2f_zero:
- case atan2df_zero:
+ case
+ atan2f_zero:
/* atan2f(0,0) */
- /* atan2df(0,0) */
{
- break;
+ if (signbit (*(float *) arg2))
+ /* y == -0 */
+ *(float *) retval = copysignf (M_PI, *(float *) arg1);
+ else
+ *(float *) retval = *(float *) arg1;
+ ERRNO_DOMAIN; break;
}
case expm1l_overflow:
/* expm1 overflow */
@@ -1193,42 +912,42 @@ switch(input_tag)
case scalbl_underflow:
/* scalbl underflow */
{
- if (INPUT_XL < ZEROL_VALUE /*0*/) RETVAL_NEG_ZEROL;
+ if (INPUT_XL < 0) RETVAL_NEG_ZEROL;
else RETVAL_ZEROL;
ERRNO_RANGE; break;
}
case scalb_underflow:
/* scalb underflow */
{
- if (INPUT_XD < ZEROD_VALUE /*0*/) RETVAL_NEG_ZEROD;
+ if (INPUT_XD < 0) RETVAL_NEG_ZEROD;
else RETVAL_ZEROD;
ERRNO_RANGE; break;
}
case scalbf_underflow:
/* scalbf underflow */
{
- if (INPUT_XF < ZEROF_VALUE /*0*/) RETVAL_NEG_ZEROF;
+ if (INPUT_XF < 0) RETVAL_NEG_ZEROF;
else RETVAL_ZEROF;
ERRNO_RANGE; break;
}
case scalbl_overflow:
/* scalbl overflow */
{
- if (INPUT_XL < ZEROL_VALUE /*0*/) RETVAL_NEG_HUGE_VALL;
+ if (INPUT_XL < 0) RETVAL_NEG_HUGE_VALL;
else RETVAL_HUGE_VALL;
ERRNO_RANGE; break;
}
case scalb_overflow:
/* scalb overflow */
{
- if (INPUT_XD < ZEROD_VALUE /*0*/) RETVAL_NEG_HUGE_VALD;
+ if (INPUT_XD < 0) RETVAL_NEG_HUGE_VALD;
else RETVAL_HUGE_VALD;
ERRNO_RANGE; break;
}
case scalbf_overflow:
/* scalbf overflow */
{
- if (INPUT_XF < ZEROF_VALUE /*0*/) RETVAL_NEG_HUGE_VALF;
+ if (INPUT_XF < 0) RETVAL_NEG_HUGE_VALF;
else RETVAL_HUGE_VALF;
ERRNO_RANGE; break;
}
@@ -1248,44 +967,32 @@ switch(input_tag)
ERRNO_DOMAIN; break;
}
case acosl_gt_one:
- case acosdl_gt_one:
/* acosl(x > 1) */
- /* acosdl(x > 1) */
{
ERRNO_DOMAIN; break;
}
case acos_gt_one:
- case acosd_gt_one:
/* acos(x > 1) */
- /* acosd(x > 1) */
{
- ERRNO_DOMAIN; break;
+ ERRNO_DOMAIN; break;
}
case acosf_gt_one:
- case acosdf_gt_one:
/* acosf(x > 1) */
- /* acosdf(x > 1) */
{
- ERRNO_DOMAIN; break;
+ ERRNO_DOMAIN; break;
}
case asinl_gt_one:
- case asindl_gt_one:
/* asinl(x > 1) */
- /* asindl(x > 1) */
{
ERRNO_DOMAIN; break;
}
case asin_gt_one:
- case asind_gt_one:
/* asin(x > 1) */
- /* asind(x > 1) */
{
ERRNO_DOMAIN; break;
}
case asinf_gt_one:
- case asindf_gt_one:
/* asinf(x > 1) */
- /* asindf(x > 1) */
{
ERRNO_DOMAIN; break;
}
@@ -1325,21 +1032,21 @@ switch(input_tag)
case sinhl_overflow:
/* sinhl overflows */
{
- if (INPUT_XL > ZEROL_VALUE /*0*/) RETVAL_HUGE_VALL;
+ if (INPUT_XL > 0) RETVAL_HUGE_VALL;
else RETVAL_NEG_HUGE_VALL;
ERRNO_RANGE; break;
}
case sinh_overflow:
/* sinh overflows */
{
- if (INPUT_XD > ZEROD_VALUE /*0*/) RETVAL_HUGE_VALD;
+ if (INPUT_XD > 0) RETVAL_HUGE_VALD;
else RETVAL_NEG_HUGE_VALD;
ERRNO_RANGE; break;
}
case sinhf_overflow:
/* sinhf overflows */
{
- if (INPUT_XF > ZEROF_VALUE /*0*/) RETVAL_HUGE_VALF;
+ if (INPUT_XF > 0) RETVAL_HUGE_VALF;
else RETVAL_NEG_HUGE_VALF;
ERRNO_RANGE; break;
}
@@ -1374,7 +1081,7 @@ switch(input_tag)
ERRNO_RANGE; break;
}
default:
- break;
+ abort();
}
return;
/* _POSIX_ */
@@ -1399,51 +1106,9 @@ else
case scalbn_underflow:
case scalbnf_overflow:
case scalbnf_underflow:
- case scalblnl_overflow:
- case scalblnl_underflow:
- case scalbln_overflow:
- case scalbln_underflow:
- case scalblnf_overflow:
- case scalblnf_underflow:
- case tandl_overflow:
- case tand_overflow:
- case tandf_overflow:
- case cotdl_overflow:
- case cotd_overflow:
- case cotdf_overflow:
- case cotl_overflow:
- case cot_overflow:
- case cotf_overflow:
- case annuityl_overflow:
- case annuityl_underflow:
- case annuity_overflow:
- case annuity_underflow:
- case annuityf_overflow:
- case annuityf_underflow:
- case compoundl_overflow:
- case compoundl_underflow:
- case compound_overflow:
- case compound_underflow:
- case compoundf_overflow:
- case compoundf_underflow:
{
ERRNO_RANGE; break;
}
- case annuityl_by_zero:
- case annuityl_less_m1:
- case annuity_by_zero:
- case annuity_less_m1:
- case annuityf_by_zero:
- case annuityf_less_m1:
- case compoundl_by_zero:
- case compoundl_less_m1:
- case compound_by_zero:
- case compound_less_m1:
- case compoundf_by_zero:
- case compoundf_less_m1:
- {
- ERRNO_DOMAIN; break;
- }
case sqrtl_negative:
/* sqrtl(x < 0) */
{
@@ -1506,6 +1171,7 @@ else
break;
}
case logl_zero:
+ case log2l_zero:
/* logl(0) */
{
SINGL; NAMEL = (char *) "logl";
@@ -1527,6 +1193,7 @@ else
break;
}
case log_zero:
+ case log2_zero:
/* log(0) */
{
SINGD; NAMED = (char *) "log";
@@ -1548,6 +1215,7 @@ else
break;
}
case logf_zero:
+ case log2f_zero:
/* logf(0) */
{
SINGF; NAMEF = (char *) "logf";
@@ -1570,6 +1238,7 @@ else
}
case logl_negative:
+ case log2l_negative:
/* logl(x < 0) */
{
DOMAINL; NAMEL = (char *) "logl";
@@ -1591,6 +1260,7 @@ else
break;
}
case log_negative:
+ case log2_negative:
/* log(x < 0) */
{
DOMAIND; NAMED = (char *) "log";
@@ -1612,6 +1282,7 @@ else
break;
}
case logf_negative:
+ case log2f_negative:
/* logf(x < 0) */
{
DOMAINF; NAMEF = (char *) "logf";
@@ -1690,7 +1361,7 @@ else
else
{
RETVAL_NEG_HUGE_VALF;
- NOT_MATHERRF {ERRNO_DOMAIN;}
+ NOT_MATHERRF {}ERRNO_DOMAIN;
}
*(float *)retval = excf.retval;
break;
@@ -1884,132 +1555,6 @@ else
*(float *)retval = excf.retval;
break;
}
- case log2l_zero:
- /* log2l(0) */
- {
- SINGL; NAMEL = (char *) "log2l";
- ifSVID
- {
- RETVAL_NEG_HUGEL;
- NOT_MATHERRL
- {
- WRITEL_LOG2_ZERO;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_NEG_HUGE_VALL;
- NOT_MATHERRL {ERRNO_DOMAIN;}
- }
- *(long double *)retval = excl.retval;
- break;
- }
- case log2_zero:
- /* log2(0) */
- {
- SINGD; NAMED = (char *) "log2";
- ifSVID
- {
- RETVAL_NEG_HUGED;
- NOT_MATHERRD
- {
- WRITED_LOG2_ZERO;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_NEG_HUGE_VALD;
- NOT_MATHERRD {ERRNO_DOMAIN;}
- }
- *(double *)retval = exc.retval;
- break;
- }
- case log2f_zero:
- /* log2f(0) */
- {
- SINGF; NAMEF = (char *) "log2f";
- ifSVID
- {
- RETVAL_NEG_HUGEF;
- NOT_MATHERRF
- {
- WRITEF_LOG2_ZERO;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_NEG_HUGE_VALF;
- NOT_MATHERRF {ERRNO_DOMAIN;}
- }
- *(float *)retval = excf.retval;
- break;
- }
- case log2l_negative:
- /* log2l(x < 0) */
- {
- DOMAINL; NAMEL = (char *) "log2l";
- ifSVID
- {
- RETVAL_NEG_HUGEL;
- NOT_MATHERRL
- {
- WRITEL_LOG2_NEGATIVE;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_NEG_HUGE_VALL;
- NOT_MATHERRL {ERRNO_DOMAIN;}
- }
- *(long double *)retval = excl.retval;
- break;
- }
- case log2_negative:
- /* log2(x < 0) */
- {
- DOMAIND; NAMED = (char *) "log2";
- ifSVID
- {
- RETVAL_NEG_HUGED;
- NOT_MATHERRD
- {
- WRITED_LOG2_NEGATIVE;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_NEG_HUGE_VALD;
- NOT_MATHERRD {ERRNO_DOMAIN;}
- }
- *(double *)retval = exc.retval;
- break;
- }
- case log2f_negative:
- /* log2f(x < 0) */
- {
- DOMAINF; NAMEF = (char *) "log2f";
- ifSVID
- {
- RETVAL_NEG_HUGEF;
- NOT_MATHERRF
- {
- WRITEF_LOG2_NEGATIVE;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_NEG_HUGE_VALF;
- NOT_MATHERRF {ERRNO_DOMAIN;}
- }
- *(float *)retval = excf.retval;
- break;
- }
case expl_overflow:
/* expl overflow */
{
@@ -2092,7 +1637,7 @@ else
NOT_MATHERRL
{
WRITEL_POW_ZERO_TO_ZERO;
- ERRNO_DOMAIN;
+ ERRNO_RANGE;
}
*(long double *)retval = excl.retval;
}
@@ -2109,7 +1654,7 @@ else
NOT_MATHERRD
{
WRITED_POW_ZERO_TO_ZERO;
- ERRNO_DOMAIN;
+ ERRNO_RANGE;
}
*(double *)retval = exc.retval;
}
@@ -2126,7 +1671,7 @@ else
NOT_MATHERRF
{
WRITEF_POW_ZERO_TO_ZERO;
- ERRNO_DOMAIN;
+ ERRNO_RANGE;
}
*(float *)retval = excf.retval;
}
@@ -2139,12 +1684,12 @@ else
OVERFLOWL; NAMEL = (char *) "powl";
ifSVID
{
- if (INPUT_RESL < ZEROL_VALUE /*0*/) RETVAL_NEG_HUGEL;
+ if (INPUT_XL < 0) RETVAL_NEG_HUGEL;
else RETVAL_HUGEL;
}
else
{
- if (INPUT_RESL < ZEROL_VALUE /*0*/) RETVAL_NEG_HUGE_VALL;
+ if (INPUT_XL < 0) RETVAL_NEG_HUGE_VALL;
else RETVAL_HUGE_VALL;
}
NOT_MATHERRL {ERRNO_RANGE;}
@@ -2157,12 +1702,12 @@ else
OVERFLOWD; NAMED = (char *) "pow";
ifSVID
{
- if (INPUT_RESD < ZEROD_VALUE /*0*/) RETVAL_NEG_HUGED;
+ if (INPUT_XD < 0) RETVAL_NEG_HUGED;
else RETVAL_HUGED;
}
else
{
- if (INPUT_RESD < ZEROD_VALUE /*0*/) RETVAL_NEG_HUGE_VALD;
+ if (INPUT_XD < 0) RETVAL_NEG_HUGE_VALD;
else RETVAL_HUGE_VALD;
}
NOT_MATHERRD {ERRNO_RANGE;}
@@ -2175,12 +1720,12 @@ else
OVERFLOWF; NAMEF = (char *) "powf";
ifSVID
{
- if (INPUT_RESF < ZEROF_VALUE /*0*/) RETVAL_NEG_HUGEF;
+ if (INPUT_XF < 0) RETVAL_NEG_HUGEF;
else RETVAL_HUGEF;
}
else
{
- if (INPUT_RESF < ZEROF_VALUE /*0*/) RETVAL_NEG_HUGE_VALF;
+ if (INPUT_XF < 0) RETVAL_NEG_HUGE_VALF;
else RETVAL_HUGE_VALF;
}
NOT_MATHERRF {ERRNO_RANGE;}
@@ -2257,6 +1802,7 @@ else
/* 0**neg */
{
DOMAINF; NAMEF = (char *) "powf";
+ RETVAL_NEG_HUGE_VALF;
ifSVID
{
RETVAL_ZEROF;
@@ -2280,7 +1826,7 @@ else
DOMAINL; NAMEL = (char *) "powl";
ifSVID
{
- RETVAL_ZEROL;
+ RETVAL_ZEROF;
NOT_MATHERRL
{
WRITEL_POW_NEG_TO_NON_INTEGER;
@@ -2338,8 +1884,8 @@ else
/* pow(NaN,0.0) */
/* Special Error */
{
- DOMAINL; NAMEL = (char *) "powl";
- *(long double *)retval = *(long double *)arg1;
+ DOMAINL; NAMEL = (char *) "powl"; INPUT_XL; INPUT_YL;
+ excl.retval = *(long double *)arg1;
NOT_MATHERRL {ERRNO_DOMAIN;}
*(long double *)retval = excl.retval;
break;
@@ -2348,8 +1894,8 @@ else
/* pow(NaN,0.0) */
/* Special Error */
{
- DOMAIND; NAMED = (char *) "pow";
- *(double *)retval = *(double *)arg1;
+ DOMAIND; NAMED = (char *) "pow"; INPUT_XD; INPUT_YD;
+ exc.retval = *(double *)arg1;
NOT_MATHERRD {ERRNO_DOMAIN;}
*(double *)retval = exc.retval;
break;
@@ -2358,8 +1904,8 @@ else
/* powf(NaN,0.0) */
/* Special Error */
{
- DOMAINF; NAMEF = (char *) "powf";
- *(float *)retval = *(float *)arg1;
+ DOMAINF; NAMEF = (char *) "powf"; INPUT_XF; INPUT_YF;
+ excf.retval = *(float *)arg1;
NOT_MATHERRF {ERRNO_DOMAIN;}
*(float *)retval = excf.retval;
break;
@@ -2402,61 +1948,11 @@ else
DOMAINF; NAMEF = (char *) "atan2f";
RETVAL_ZEROF;
NOT_MATHERRF
- {
ifSVID
{
WRITEF_ATAN2_ZERO_BY_ZERO;
}
- ERRNO_DOMAIN;
- }
- *(float *)retval = excf.retval;
- break;
- }
- case atan2dl_zero:
- /* atan2dl(0.0,0.0) */
- {
- DOMAINL; NAMEL = (char *) "atan2dl";
- RETVAL_ZEROL;
- NOT_MATHERRL
- {
- ifSVID
- {
- WRITEL_ATAN2D_ZERO_BY_ZERO;
- }
- ERRNO_DOMAIN;
- }
- *(long double *)retval = excl.retval;
- break;
- }
- case atan2d_zero:
- /* atan2d(0.0,0.0) */
- {
- DOMAIND; NAMED = (char *) "atan2d";
- RETVAL_ZEROD;
- NOT_MATHERRD
- {
- ifSVID
- {
- WRITED_ATAN2D_ZERO_BY_ZERO;
- }
- ERRNO_DOMAIN;
- }
- *(double *)retval = exc.retval;
- break;
- }
- case atan2df_zero:
- /* atan2df(0.0,0.0) */
- {
- DOMAINF; NAMEF = (char *) "atan2df";
- RETVAL_ZEROF;
- NOT_MATHERRF
- {
- ifSVID
- {
- WRITEF_ATAN2D_ZERO_BY_ZERO;
- }
- ERRNO_DOMAIN;
- }
+ ERRNO_DOMAIN;
*(float *)retval = excf.retval;
break;
}
@@ -2492,17 +1988,17 @@ else
/* scalbl underflow */
{
UNDERFLOWL; NAMEL = (char *) "scalbl";
- if (INPUT_XL < ZEROL_VALUE /*0.0L*/) RETVAL_NEG_ZEROL;
+ if (INPUT_XL < 0.0L) RETVAL_NEG_ZEROL;
else RETVAL_ZEROL;
NOT_MATHERRL {ERRNO_RANGE;}
- *(long double *)retval = excl.retval;
+ *(long double *)retval = excf.retval;
break;
}
case scalb_underflow:
/* scalb underflow */
{
UNDERFLOWD; NAMED = (char *) "scalb";
- if (INPUT_XD < ZEROD_VALUE /*0.0*/) RETVAL_NEG_ZEROD;
+ if (INPUT_XD < 0.0) RETVAL_NEG_ZEROD;
else RETVAL_ZEROD;
NOT_MATHERRD {ERRNO_RANGE;}
*(double *)retval = exc.retval;
@@ -2512,7 +2008,7 @@ else
/* scalbf underflow */
{
UNDERFLOWF; NAMEF = (char *) "scalbf";
- if (INPUT_XF < ZEROF_VALUE /*0.0*/) RETVAL_NEG_ZEROF;
+ if (INPUT_XF < 0.0) RETVAL_NEG_ZEROF;
else RETVAL_ZEROF;
NOT_MATHERRF {ERRNO_RANGE;}
*(float *)retval = excf.retval;
@@ -2522,7 +2018,7 @@ else
/* scalbl overflow */
{
OVERFLOWL; NAMEL = (char *) "scalbl";
- if (INPUT_XL < ZEROL_VALUE /*0*/) RETVAL_NEG_HUGE_VALL;
+ if (INPUT_XL < 0) RETVAL_NEG_HUGE_VALL;
else RETVAL_HUGE_VALL;
NOT_MATHERRL {ERRNO_RANGE;}
*(long double *)retval = excl.retval;
@@ -2532,7 +2028,7 @@ else
/* scalb overflow */
{
OVERFLOWD; NAMED = (char *) "scalb";
- if (INPUT_XD < ZEROD_VALUE /*0*/) RETVAL_NEG_HUGE_VALD;
+ if (INPUT_XD < 0) RETVAL_NEG_HUGE_VALD;
else RETVAL_HUGE_VALD;
NOT_MATHERRD {ERRNO_RANGE;}
*(double *)retval = exc.retval;
@@ -2542,7 +2038,7 @@ else
/* scalbf overflow */
{
OVERFLOWF; NAMEF = (char *) "scalbf";
- if (INPUT_XF < ZEROF_VALUE /*0*/) RETVAL_NEG_HUGE_VALF;
+ if (INPUT_XF < 0) RETVAL_NEG_HUGE_VALF;
else RETVAL_HUGE_VALF;
NOT_MATHERRF {ERRNO_RANGE;}
*(float *)retval = excf.retval;
@@ -2716,126 +2212,6 @@ else
*(float *)retval = excf.retval;
break;
}
- case acosdl_gt_one:
- /* acosdl(x > 1) */
- {
- DOMAINL; NAMEL = (char *) "acosdl";
- RETVAL_ZEROL;
- ifSVID
- {
- NOT_MATHERRL
- {
- WRITEL_ACOSD;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- NOT_MATHERRL {ERRNO_DOMAIN;}
- }
- *(long double *)retval = excl.retval;
- break;
- }
- case acosd_gt_one:
- /* acosd(x > 1) */
- {
- DOMAIND; NAMED = (char *) "acosd";
- RETVAL_ZEROD;
- ifSVID
- {
- NOT_MATHERRD
- {
- WRITED_ACOSD;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- NOT_MATHERRD {ERRNO_DOMAIN;}
- }
- *(double *)retval = exc.retval;
- break;
- }
- case acosdf_gt_one:
- /* acosdf(x > 1) */
- {
- DOMAINF; NAMEF = (char *) "acosdf";
- RETVAL_ZEROF;
- ifSVID
- {
- NOT_MATHERRF
- {
- WRITEF_ACOSD;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- NOT_MATHERRF {ERRNO_DOMAIN;}
- }
- *(float *)retval = excf.retval;
- break;
- }
- case asindl_gt_one:
- /* asindl(x > 1) */
- {
- DOMAINL; NAMEL = (char *) "asindl";
- RETVAL_ZEROL;
- ifSVID
- {
- NOT_MATHERRL
- {
- WRITEL_ASIND;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- NOT_MATHERRL {ERRNO_DOMAIN;}
- }
- *(long double *)retval = excl.retval;
- break;
- }
- case asind_gt_one:
- /* asind(x > 1) */
- {
- DOMAIND; NAMED = (char *) "asind";
- RETVAL_ZEROD;
- ifSVID
- {
- NOT_MATHERRD
- {
- WRITED_ASIND;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- NOT_MATHERRD {ERRNO_DOMAIN;}
- }
- *(double *)retval = exc.retval;
- break;
- }
- case asindf_gt_one:
- /* asindf(x > 1) */
- {
- DOMAINF; NAMEF = (char *) "asindf";
- RETVAL_ZEROF;
- ifSVID
- {
- NOT_MATHERRF
- {
- WRITEF_ASIND;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- NOT_MATHERRF {ERRNO_DOMAIN;}
- }
- *(float *)retval = excf.retval;
- break;
- }
case coshl_overflow:
/* coshl overflow */
{
@@ -2890,12 +2266,12 @@ else
OVERFLOWL; NAMEL = (char *) "sinhl";
ifSVID
{
- if (INPUT_XL > ZEROL_VALUE /*0.0*/) RETVAL_HUGEL;
+ if (INPUT_XL > 0.0) RETVAL_HUGEL;
else RETVAL_NEG_HUGEL;
}
else
{
- if (INPUT_XL > ZEROL_VALUE /*0.0*/) RETVAL_HUGE_VALL;
+ if (INPUT_XL > 0.0) RETVAL_HUGE_VALL;
else RETVAL_NEG_HUGE_VALL;
}
NOT_MATHERRL {ERRNO_RANGE;}
@@ -2908,12 +2284,12 @@ else
OVERFLOWD; NAMED = (char *) "sinh";
ifSVID
{
- if (INPUT_XD > ZEROD_VALUE /*0.0*/) RETVAL_HUGED;
+ if (INPUT_XD > 0.0) RETVAL_HUGED;
else RETVAL_NEG_HUGED;
}
else
{
- if (INPUT_XD > ZEROD_VALUE /*0.0*/) RETVAL_HUGE_VALD;
+ if (INPUT_XD > 0.0) RETVAL_HUGE_VALD;
else RETVAL_NEG_HUGE_VALD;
}
NOT_MATHERRD {ERRNO_RANGE;}
@@ -2926,12 +2302,12 @@ else
OVERFLOWF; NAMEF = (char *) "sinhf";
ifSVID
{
- if (INPUT_XF > ZEROF_VALUE /*0.0*/) RETVAL_HUGEF;
+ if( INPUT_XF > 0.0) RETVAL_HUGEF;
else RETVAL_NEG_HUGEF;
}
else
{
- if (INPUT_XF > ZEROF_VALUE /*0.0*/) RETVAL_HUGE_VALF;
+ if (INPUT_XF > 0.0) RETVAL_HUGE_VALF;
else RETVAL_NEG_HUGE_VALF;
}
NOT_MATHERRF {ERRNO_RANGE;}
@@ -2950,10 +2326,7 @@ else
ERRNO_DOMAIN;
}
}
- else
- {
- NOT_MATHERRL {ERRNO_DOMAIN;}
- }
+ else NOT_MATHERRL {ERRNO_DOMAIN;}
*(long double *)retval = excl.retval;
break;
}
@@ -2965,14 +2338,11 @@ else
{
NOT_MATHERRD
{
- WRITED_ACOSH;
+ WRITEL_ACOSH;
ERRNO_DOMAIN;
}
}
- else
- {
- NOT_MATHERRD {ERRNO_DOMAIN;}
- }
+ else NOT_MATHERRD {ERRNO_DOMAIN;}
*(double *)retval = exc.retval;
break;
}
@@ -2993,7 +2363,7 @@ else
NOT_MATHERRF {ERRNO_DOMAIN;}
}
*(float *)retval = excf.retval;
- break;
+ ERRNO_DOMAIN; break;
}
case atanhl_gt_one:
/* atanhl(|x| > 1) */
@@ -3052,7 +2422,7 @@ else
case atanhl_eq_one:
/* atanhl(|x| == 1) */
{
- SINGL; NAMEL = (char *) "atanhl";
+ SINGL; NAMEL = (char *)"atanhl";
ifSVID
{
NOT_MATHERRL
@@ -3151,69 +2521,6 @@ else
*(float *)retval = excf.retval;
break;
}
- case gammal_negative:
- /* gammal -int or 0 */
- {
- SINGL; NAMEL = (char *) "gammal";
- ifSVID
- {
- RETVAL_HUGEL;
- NOT_MATHERRL
- {
- WRITEL_GAMMA_NEGATIVE;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_HUGE_VALL;
- NOT_MATHERRL {ERRNO_DOMAIN;}
- }
- *(long double *)retval = excl.retval;
- break;
- }
- case gamma_negative:
- /* gamma -int or 0 */
- {
- SINGD; NAMED = (char *) "gamma";
- ifSVID
- {
- RETVAL_HUGED;
- NOT_MATHERRD
- {
- WRITED_GAMMA_NEGATIVE;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_HUGE_VALD;
- NOT_MATHERRD {ERRNO_DOMAIN;}
- }
- *(double *)retval = exc.retval;
- break;
- }
- case gammaf_negative:
- /* gammaf -int or 0 */
- {
- SINGF; NAMEF = (char *) "gammaf";
- ifSVID
- {
- RETVAL_HUGEF;
- NOT_MATHERRF
- {
- WRITEF_GAMMA_NEGATIVE;
- ERRNO_DOMAIN;
- }
- }
- else
- {
- RETVAL_HUGE_VALF;
- NOT_MATHERRF {ERRNO_DOMAIN;}
- }
- *(float *)retval = excf.retval;
- break;
- }
case lgammal_overflow:
/* lgammal overflow */
{
@@ -3325,106 +2632,64 @@ else
*(float *)retval = excf.retval;
break;
}
- case tgammal_overflow:
- /* tgammal overflow */
+ case gammal_negative:
+ /* gammal -int or 0 */
{
- OVERFLOWL; NAMEL = (char *) "tgammal";
+ SINGL; NAMEL = (char *) "gammal";
ifSVID
{
RETVAL_HUGEL;
- }
- else
- {
- RETVAL_HUGE_VALL;
- }
- NOT_MATHERRL {ERRNO_RANGE;}
- *(long double *)retval = excl.retval;
- break;
- }
- case tgamma_overflow:
- /* tgamma overflow */
- {
- OVERFLOWD; NAMED = (char *) "tgamma";
- ifSVID
- {
- RETVAL_HUGED;
- }
- else
- {
- RETVAL_HUGE_VALD;
- }
- NOT_MATHERRD {ERRNO_RANGE;}
- *(double *)retval = exc.retval;
- break;
- }
- case tgammaf_overflow:
- /* tgammaf overflow */
- {
- OVERFLOWF; NAMEF = (char *) "tgammaf";
- ifSVID
- {
- RETVAL_HUGEF;
- }
- else
- {
- RETVAL_HUGE_VALF;
- }
- NOT_MATHERRF {ERRNO_RANGE;}
- *(float *)retval = excf.retval;
- break;
- }
- case tgammal_negative:
- /* tgammal -int or 0 */
- {
- SINGL; NAMEL = (char *) "tgammal";
- ifSVID
- {
NOT_MATHERRL
{
- WRITEL_TGAMMA_NEGATIVE;
- ERRNO_DOMAIN;
+ WRITEL_GAMMA_NEGATIVE;
+ ERRNO_DOMAIN;
}
}
else
{
+ RETVAL_HUGE_VALL;
NOT_MATHERRL {ERRNO_DOMAIN;}
}
*(long double *)retval = excl.retval;
break;
}
- case tgamma_negative:
- /* tgamma -int or 0 */
+ case gamma_negative:
+ /* gamma -int or 0 */
{
- SINGD; NAMED = (char *) "tgamma";
+ SINGD; NAMED = (char *) "gamma";
ifSVID
{
+ RETVAL_HUGED;
NOT_MATHERRD
{
- WRITED_TGAMMA_NEGATIVE;
- ERRNO_DOMAIN;
+ WRITED_GAMMA_NEGATIVE;
+ ERRNO_DOMAIN;
}
}
else
{
+ RETVAL_HUGE_VALD;
NOT_MATHERRD {ERRNO_DOMAIN;}
}
*(double *)retval = exc.retval;
break;
}
- case tgammaf_negative:
- /* tgammaf -int or 0 */
+ case gammaf_negative:
+ /* gammaf -int or 0 */
{
- SINGF; NAMEF = (char *) "tgammaf";
+ SINGF; NAMEF = (char *) "gammaf";
ifSVID
{
+ RETVAL_HUGEF;
NOT_MATHERRF
{
- WRITEF_TGAMMA_NEGATIVE;
- ERRNO_DOMAIN;
+ WRITEF_GAMMA_NEGATIVE;
+ ERRNO_DOMAIN;
}
}
else
{
+ RETVAL_HUGE_VALF;
NOT_MATHERRF {ERRNO_DOMAIN;}
}
*(float *)retval = excf.retval;
@@ -3847,8 +3112,7 @@ else
WRITEF_Y1_ZERO;
ERRNO_DOMAIN;
}
- }
- else
+ }else
{
RETVAL_NEG_HUGE_VALF;
NOT_MATHERRF {ERRNO_DOMAIN;}
@@ -4072,7 +3336,7 @@ else
RETVAL_NEG_HUGED;
NOT_MATHERRD
{
- WRITED_Y1_NEGATIVE;
+ WRITED_Y1_NEGATIUE;
ERRNO_DOMAIN;
}
}
@@ -4286,9 +3550,7 @@ else
break;
}
default:
- /* We don't want to abort () since SVID doesn't cover all math
- library functions. */
- break;
+ abort();
}
return;
}
diff --git a/sysdeps/ia64/fpu/libm_error_codes.h b/sysdeps/ia64/fpu/libm_error_codes.h
deleted file mode 100644
index 4f0945ea1c..0000000000
--- a/sysdeps/ia64/fpu/libm_error_codes.h
+++ /dev/null
@@ -1,211 +0,0 @@
-/* file: libm_error_codes.h */
-
-
-/*
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-
-// Abstract:
-// ========================================================================
-// This file contains the interface to the Intel exception dispatcher.
-//
-//
-// History:
-// ========================================================================
-// 12/15/2004 Initial version - extracted from libm_support.h
-//
-*/
-
-#if !defined(__LIBM_ERROR_CODES_H__)
-#define __LIBM_ERROR_CODES_H__
-
-typedef enum
-{
- logl_zero=0, logl_negative, /* 0, 1 */
- log_zero, log_negative, /* 2, 3 */
- logf_zero, logf_negative, /* 4, 5 */
- log10l_zero, log10l_negative, /* 6, 7 */
- log10_zero, log10_negative, /* 8, 9 */
- log10f_zero, log10f_negative, /* 10, 11 */
- expl_overflow, expl_underflow, /* 12, 13 */
- exp_overflow, exp_underflow, /* 14, 15 */
- expf_overflow, expf_underflow, /* 16, 17 */
- powl_overflow, powl_underflow, /* 18, 19 */
- powl_zero_to_zero, /* 20 */
- powl_zero_to_negative, /* 21 */
- powl_neg_to_non_integer, /* 22 */
- powl_nan_to_zero, /* 23 */
- pow_overflow, pow_underflow, /* 24, 25 */
- pow_zero_to_zero, /* 26 */
- pow_zero_to_negative, /* 27 */
- pow_neg_to_non_integer, /* 28 */
- pow_nan_to_zero, /* 29 */
- powf_overflow, powf_underflow, /* 30, 31 */
- powf_zero_to_zero, /* 32 */
- powf_zero_to_negative, /* 33 */
- powf_neg_to_non_integer, /* 34 */
- powf_nan_to_zero, /* 35 */
- atan2l_zero, /* 36 */
- atan2_zero, /* 37 */
- atan2f_zero, /* 38 */
- expm1l_overflow, /* 39 */
- expm1l_underflow, /* 40 */
- expm1_overflow, /* 41 */
- expm1_underflow, /* 42 */
- expm1f_overflow, /* 43 */
- expm1f_underflow, /* 44 */
- hypotl_overflow, /* 45 */
- hypot_overflow, /* 46 */
- hypotf_overflow, /* 47 */
- sqrtl_negative, /* 48 */
- sqrt_negative, /* 49 */
- sqrtf_negative, /* 50 */
- scalbl_overflow, scalbl_underflow, /* 51, 52 */
- scalb_overflow, scalb_underflow, /* 53, 54 */
- scalbf_overflow, scalbf_underflow, /* 55, 56 */
- acosl_gt_one, acos_gt_one, acosf_gt_one, /* 57, 58, 59 */
- asinl_gt_one, asin_gt_one, asinf_gt_one, /* 60, 61, 62 */
- coshl_overflow, cosh_overflow, coshf_overflow, /* 63, 64, 65 */
- y0l_zero, y0l_negative,y0l_gt_loss, /* 66, 67, 68 */
- y0_zero, y0_negative,y0_gt_loss, /* 69, 70, 71 */
- y0f_zero, y0f_negative,y0f_gt_loss, /* 72, 73, 74 */
- y1l_zero, y1l_negative,y1l_gt_loss, /* 75, 76, 77 */
- y1_zero, y1_negative,y1_gt_loss, /* 78, 79, 80 */
- y1f_zero, y1f_negative,y1f_gt_loss, /* 81, 82, 83 */
- ynl_zero, ynl_negative,ynl_gt_loss, /* 84, 85, 86 */
- yn_zero, yn_negative,yn_gt_loss, /* 87, 88, 89 */
- ynf_zero, ynf_negative,ynf_gt_loss, /* 90, 91, 92 */
- j0l_gt_loss, /* 93 */
- j0_gt_loss, /* 94 */
- j0f_gt_loss, /* 95 */
- j1l_gt_loss, /* 96 */
- j1_gt_loss, /* 97 */
- j1f_gt_loss, /* 98 */
- jnl_gt_loss, /* 99 */
- jn_gt_loss, /* 100 */
- jnf_gt_loss, /* 101 */
- lgammal_overflow, lgammal_negative,lgammal_reserve, /* 102, 103, 104 */
- lgamma_overflow, lgamma_negative,lgamma_reserve, /* 105, 106, 107 */
- lgammaf_overflow, lgammaf_negative, lgammaf_reserve,/* 108, 109, 110 */
- gammal_overflow,gammal_negative, gammal_reserve, /* 111, 112, 113 */
- gamma_overflow, gamma_negative, gamma_reserve, /* 114, 115, 116 */
- gammaf_overflow,gammaf_negative,gammaf_reserve, /* 117, 118, 119 */
- fmodl_by_zero, /* 120 */
- fmod_by_zero, /* 121 */
- fmodf_by_zero, /* 122 */
- remainderl_by_zero, /* 123 */
- remainder_by_zero, /* 124 */
- remainderf_by_zero, /* 125 */
- sinhl_overflow, sinh_overflow, sinhf_overflow, /* 126, 127, 128 */
- atanhl_gt_one, atanhl_eq_one, /* 129, 130 */
- atanh_gt_one, atanh_eq_one, /* 131, 132 */
- atanhf_gt_one, atanhf_eq_one, /* 133, 134 */
- acoshl_lt_one, /* 135 */
- acosh_lt_one, /* 136 */
- acoshf_lt_one, /* 137 */
- log1pl_zero, log1pl_negative, /* 138, 139 */
- log1p_zero, log1p_negative, /* 140, 141 */
- log1pf_zero, log1pf_negative, /* 142, 143 */
- ldexpl_overflow, ldexpl_underflow, /* 144, 145 */
- ldexp_overflow, ldexp_underflow, /* 146, 147 */
- ldexpf_overflow, ldexpf_underflow, /* 148, 149 */
- logbl_zero, logb_zero, logbf_zero, /* 150, 151, 152 */
- nextafterl_overflow, nextafter_overflow,
- nextafterf_overflow, /* 153, 154, 155 */
- ilogbl_zero, ilogb_zero, ilogbf_zero, /* 156, 157, 158 */
- exp2l_overflow, exp2l_underflow, /* 159, 160 */
- exp2_overflow, exp2_underflow, /* 161, 162 */
- exp2f_overflow, exp2f_underflow, /* 163, 164 */
- exp10l_overflow, exp10_overflow,
- exp10f_overflow, /* 165, 166, 167 */
- log2l_zero, log2l_negative, /* 168, 169 */
- log2_zero, log2_negative, /* 170, 171 */
- log2f_zero, log2f_negative, /* 172, 173 */
- scalbnl_overflow, scalbnl_underflow, /* 174, 175 */
- scalbn_overflow, scalbn_underflow, /* 176, 177 */
- scalbnf_overflow, scalbnf_underflow, /* 178, 179 */
- remquol_by_zero, /* 180 */
- remquo_by_zero, /* 181 */
- remquof_by_zero, /* 182 */
- lrintl_large, lrint_large, lrintf_large, /* 183, 184, 185 */
- llrintl_large, llrint_large, llrintf_large, /* 186, 187, 188 */
- lroundl_large, lround_large, lroundf_large, /* 189, 190, 191 */
- llroundl_large, llround_large, llroundf_large, /* 192, 193, 194 */
- fdiml_overflow, fdim_overflow, fdimf_overflow, /* 195, 196, 197 */
- nexttowardl_overflow, nexttoward_overflow,
- nexttowardf_overflow, /* 198, 199, 200 */
- scalblnl_overflow, scalblnl_underflow, /* 201, 202 */
- scalbln_overflow, scalbln_underflow, /* 203, 204 */
- scalblnf_overflow, scalblnf_underflow, /* 205, 206 */
- erfcl_underflow, erfc_underflow, erfcf_underflow, /* 207, 208, 209 */
- acosdl_gt_one, acosd_gt_one, acosdf_gt_one, /* 210, 211, 212 */
- asindl_gt_one, asind_gt_one, asindf_gt_one, /* 213, 214, 215 */
- atan2dl_zero, atan2d_zero, atan2df_zero, /* 216, 217, 218 */
- tandl_overflow, tand_overflow, tandf_overflow, /* 219, 220, 221 */
- cotdl_overflow, cotd_overflow, cotdf_overflow, /* 222, 223, 224 */
- cotl_overflow, cot_overflow, cotf_overflow, /* 225, 226, 227 */
- sinhcoshl_overflow, sinhcosh_overflow, sinhcoshf_overflow, /* 228, 229, 230 */
- annuityl_by_zero, annuity_by_zero, annuityf_by_zero, /* 231, 232, 233 */
- annuityl_less_m1, annuity_less_m1, annuityf_less_m1, /* 234, 235, 236 */
- annuityl_overflow, annuity_overflow, annuityf_overflow, /* 237, 238, 239 */
- annuityl_underflow, annuity_underflow, annuityf_underflow, /* 240, 241, 242 */
- compoundl_by_zero, compound_by_zero, compoundf_by_zero, /* 243, 244, 245 */
- compoundl_less_m1, compound_less_m1, compoundf_less_m1, /* 246, 247, 248 */
- compoundl_overflow, compound_overflow, compoundf_overflow, /* 249, 250, 251 */
- compoundl_underflow, compound_underflow, compoundf_underflow, /* 252, 253, 254 */
- tgammal_overflow, tgammal_negative, tgammal_reserve, /* 255, 256, 257 */
- tgamma_overflow, tgamma_negative, tgamma_reserve, /* 258, 259, 260 */
- tgammaf_overflow, tgammaf_negative, tgammaf_reserve, /* 261, 262, 263 */
- exp10l_underflow, exp10_underflow, exp10f_underflow, /* 264, 265, 266 */
- nextafterl_underflow, nextafter_underflow,
- nextafterf_underflow, /* 267, 268, 269 */
- nexttowardl_underflow, nexttoward_underflow,
- nexttowardf_underflow /* 270, 271, 272 */
-} error_types;
-
-#define LIBM_ERROR __libm_error_support
-
-extern void LIBM_ERROR(void*,void*,void*,error_types);
-#ifdef _LIBC
-libc_hidden_proto(LIBM_ERROR)
-#endif
-
-#define LIBM_ERROR1(x,r,e) LIBM_ERROR(&(x), (void *)0, &(r), e)
-#define LIBM_ERROR2(x,y,r,e) LIBM_ERROR(&(x), &(y), &(r), e)
-
-#endif // !defined(__LIBM_ERROR_CODES_H__)
diff --git a/sysdeps/ia64/fpu/libm_frexp.S b/sysdeps/ia64/fpu/libm_frexp.S
deleted file mode 100644
index c6bd676a40..0000000000
--- a/sysdeps/ia64/fpu/libm_frexp.S
+++ /dev/null
@@ -1,209 +0,0 @@
-.file "libm_frexp.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 03/20/00 Improved speed
-// 06/01/00 Fixed bug when x a double-extended denormal
-// 12/08/00 Corrected label on .endp
-// 01/23/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// double __libm_frexp(double x, int* y, int int_type)
-// input floating point f8, pointer to y (r33), int int_type (r34)
-// output floating point f8, returns the fraction of x, 0.5 <= fraction < 1.0
-// output int* y, returns the true exponent of x
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// int* y is returned as a 32 bit integer if int_type = 0
-// int* y is returned as a 64 bit integer if int_type = 1
-//
-// Overview of operation
-//==============================================================
-// break a floating point x number into fraction and an exponent
-// The fraction is returned as a double
-// The exponent is returned as an integer pointed to by y
-// This is a true (not a biased exponent) but 0fffe is subtracted
-// as a bias instead of 0xffff. This is because the fraction returned
-// is between 0.5 and 1.0, not the expected IEEE range.
-//
-// The fraction is 0.5 <= fraction < 1.0
-//
-// Registers used
-//==============================================================
-//
-// general registers:
-// r14 exponent bias for x negative
-// r15 exponent bias for x positive
-// r16 signexp of x
-// r17 exponent mask
-// r18 exponent of x
-// r19 exponent result
-// r20 signexp of 2^64
-// r32 on input contains the 64-bit IEEE double that is in f8
-// r33 on input pointer to 32-bit or 64-bit integer for exponent
-// r34 on input contains 0 if output int is 32 bits, else output int is 64 bits
-//
-// predicate registers:
-// p6 set if x is Nan, zero, or infinity
-// p7 set if x negative
-// p8 set if x positive
-// p9 set if x double-extended denormal
-// p10 set if int_type = 0, 32-bit integer
-// p11 set if int_type = 1, 64-bit integer
-//
-// floating-point registers:
-// f8 input, output
-// f9 normalized x
-// f10 signexp for significand result for x positive
-// f11 signexp for significand result for x negative
-// f12 2^64
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_frexp)
-
-// Set signexp for significand result for x>0
-// If x is a NaN, zero, or infinity, return it.
-// Put 0 in the int pointer.
-// x NAN, ZERO, INFINITY?
-// Set signexp for significand result for x<0
-{ .mfi
- mov r15 = 0x0fffe
- fclass.m p6,p7 = f8, 0xe7
- mov r14 = 0x2fffe
-}
-// Form signexp of 2^64 in case x double-extended denormal
-// Save the normalized value of input in f9
-// The normalization also sets fault flags and takes faults if necessary
-{ .mfi
- mov r20 = 0x1003f
- fnorm.s0 f9 = f8
- nop.i 999 ;;
-}
-
-// Move signexp for significand result for x>0 to FP reg
-// Form 2^64 in case x double-extended denormal
-{ .mmi
- setf.exp f10 = r15
- setf.exp f12 = r20
- nop.i 999 ;;
-}
-
-// Move signexp for significand result for x<0 to FP reg
-// p7 if x<0, else p8
-// If x=0,nan,inf, set p10 if output int to be 32 bits, or set p11 if 64 bits
-{ .mfi
- setf.exp f11 = r14
-(p7) fcmp.lt.s0 p7,p8 = f8,f0
-(p6) cmp.eq.unc p10,p11 = r34, r0 ;;
-}
-
-// If x NAN, ZERO, INFINITY, set *y=0 and exit
-{ .mmb
-(p10) st4 [r33] = r0 // Store *y=0 as 32-bit integer
-(p11) st8 [r33] = r0 // Store *y=0 as 64-bit integer
-(p6) br.ret.spnt b0 ;;
-}
-
-// Form exponent mask
-// Test for fnorm(x) denormal, means x double-extended denormal
-{ .mfi
- mov r17 = 0x1ffff
- fclass.m p9,p0 = f9, 0x0b
- nop.i 999 ;;
-}
-
-// If x double-extended denormal add 64 to exponent bias for scaling
-// If x double-extended denormal multiply x * 2^64 which is normal
-// Set p10 if output int to be 32 bits, or set p11 if 64 bits
-{ .mfi
-(p9) add r15 = 64, r15
-(p9) fmpy.s0 f9 = f9, f12
- cmp.eq p10,p11 = r34, r0 ;;
-}
-
-// true exponent stored to int pointer
-// the bias is treated as 0xfffe instead of
-// normal 0xffff because we want the significand
-// to be in the range <=0.5 sig < 1.0
-// Store the value of the exponent at the pointer in r33
-
-// If x>0 form significand result
-{ .mfi
- nop.m 999
-(p8) fmerge.se f8 = f10,f9
- nop.i 999 ;;
-}
-
-// Get signexp of normalized x
-// If x<0 form significand result
-{ .mfi
- getf.exp r16 = f9
-(p7) fmerge.se f8 = f11,f9
- nop.i 999 ;;
-}
-
-// Get exp of normalized x
-// Subtract off bias to get true exponent of x
-{ .mmi
- and r18 = r17,r16 ;;
- sub r19 = r18,r15
- nop.i 999 ;;
-}
-
-// Store int *y as a 32-bit integer
-// Make the value a double
-{ .mfi
-(p10) st4 [r33] = r19 // Store *y as 32-bit integer
- fnorm.d.s0 f8 = f8
- nop.i 999
-}
-{ .mfb
-(p11) st8 [r33] = r19 // Store *y as 64-bit integer
- nop.f 999
- br.ret.sptk b0 ;;
-}
-
-GLOBAL_LIBM_END(__libm_frexp)
diff --git a/sysdeps/ia64/fpu/libm_frexpf.S b/sysdeps/ia64/fpu/libm_frexpf.S
deleted file mode 100644
index dde2d09b4b..0000000000
--- a/sysdeps/ia64/fpu/libm_frexpf.S
+++ /dev/null
@@ -1,209 +0,0 @@
-.file "libm_frexpf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 03/20/00 Improved speed
-// 06/01/00 Fixed bug when x a double-extended denormal
-// 12/08/00 Corrected label on .endp
-// 01/23/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// float __libm_frexpf(float x, int* y, int int_type)
-// input floating point f8, pointer to y (r33), int int_type (r34)
-// output floating point f8, returns the fraction of x, 0.5 <= fraction < 1.0
-// output int* y, returns the true exponent of x
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// int* y is returned as a 32 bit integer if int_type = 0
-// int* y is returned as a 64 bit integer if int_type = 1
-//
-// Overview of operation
-//==============================================================
-// break a floating point x number into fraction and an exponent
-// The fraction is returned as a float
-// The exponent is returned as an integer pointed to by y
-// This is a true (not a biased exponent) but 0fffe is subtracted
-// as a bias instead of 0xffff. This is because the fraction returned
-// is between 0.5 and 1.0, not the expected IEEE range.
-//
-// The fraction is 0.5 <= fraction < 1.0
-//
-// Registers used
-//==============================================================
-//
-// general registers:
-// r14 exponent bias for x negative
-// r15 exponent bias for x positive
-// r16 signexp of x
-// r17 exponent mask
-// r18 exponent of x
-// r19 exponent result
-// r20 signexp of 2^64
-// r32 on input contains the 32-bit IEEE float that is in f8
-// r33 on input pointer to 32-bit or 64-bit integer for exponent
-// r34 on input contains 0 if output int is 32 bits, else output int is 64 bits
-//
-// predicate registers:
-// p6 set if x is Nan, zero, or infinity
-// p7 set if x negative
-// p8 set if x positive
-// p9 set if x double-extended denormal
-// p10 set if int_type = 0, 32-bit integer
-// p11 set if int_type = 1, 64-bit integer
-//
-// floating-point registers:
-// f8 input, output
-// f9 normalized x
-// f10 signexp for significand result for x positive
-// f11 signexp for significand result for x negative
-// f12 2^64
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_frexpf)
-
-// Set signexp for significand result for x>0
-// If x is a NaN, zero, or infinity, return it.
-// Put 0 in the int pointer.
-// x NAN, ZERO, INFINITY?
-// Set signexp for significand result for x<0
-{ .mfi
- mov r15 = 0x0fffe
- fclass.m p6,p7 = f8, 0xe7
- mov r14 = 0x2fffe
-}
-// Form signexp of 2^64 in case x double-extended denormal
-// Save the normalized value of input in f9
-// The normalization also sets fault flags and takes faults if necessary
-{ .mfi
- mov r20 = 0x1003f
- fnorm.s0 f9 = f8
- nop.i 999 ;;
-}
-
-// Move signexp for significand result for x>0 to FP reg
-// Form 2^64 in case x double-extended denormal
-{ .mmi
- setf.exp f10 = r15
- setf.exp f12 = r20
- nop.i 999 ;;
-}
-
-// Move signexp for significand result for x<0 to FP reg
-// p7 if x<0, else p8
-// If x=0,nan,inf, set p10 if output int to be 32 bits, or set p11 if 64 bits
-{ .mfi
- setf.exp f11 = r14
-(p7) fcmp.lt.s0 p7,p8 = f8,f0
-(p6) cmp.eq.unc p10,p11 = r34, r0 ;;
-}
-
-// If x NAN, ZERO, INFINITY, set *y=0 and exit
-{ .mmb
-(p10) st4 [r33] = r0 // Store *y=0 as 32-bit integer
-(p11) st8 [r33] = r0 // Store *y=0 as 64-bit integer
-(p6) br.ret.spnt b0 ;;
-}
-
-// Form exponent mask
-// Test for fnorm(x) denormal, means x double-extended denormal
-{ .mfi
- mov r17 = 0x1ffff
- fclass.m p9,p0 = f9, 0x0b
- nop.i 999 ;;
-}
-
-// If x double-extended denormal add 64 to exponent bias for scaling
-// If x double-extended denormal multiply x * 2^64 which is normal
-// Set p10 if output int to be 32 bits, or set p11 if 64 bits
-{ .mfi
-(p9) add r15 = 64, r15
-(p9) fmpy.s0 f9 = f9, f12
- cmp.eq p10,p11 = r34, r0 ;;
-}
-
-// true exponent stored to int pointer
-// the bias is treated as 0xfffe instead of
-// normal 0xffff because we want the significand
-// to be in the range <=0.5 sig < 1.0
-// Store the value of the exponent at the pointer in r33
-
-// If x>0 form significand result
-{ .mfi
- nop.m 999
-(p8) fmerge.se f8 = f10,f9
- nop.i 999 ;;
-}
-
-// Get signexp of normalized x
-// If x<0 form significand result
-{ .mfi
- getf.exp r16 = f9
-(p7) fmerge.se f8 = f11,f9
- nop.i 999 ;;
-}
-
-// Get exp of normalized x
-// Subtract off bias to get true exponent of x
-{ .mmi
- and r18 = r17,r16 ;;
- sub r19 = r18,r15
- nop.i 999 ;;
-}
-
-// Store int *y as a 32-bit integer
-// Make the value a float
-{ .mfi
-(p10) st4 [r33] = r19 // Store *y as 32-bit integer
- fnorm.s.s0 f8 = f8
- nop.i 999
-}
-{ .mfb
-(p11) st8 [r33] = r19 // Store *y as 64-bit integer
- nop.f 999
- br.ret.sptk b0 ;;
-}
-
-GLOBAL_LIBM_END(__libm_frexpf)
diff --git a/sysdeps/ia64/fpu/libm_frexpl.S b/sysdeps/ia64/fpu/libm_frexpl.S
deleted file mode 100644
index 64f30b6364..0000000000
--- a/sysdeps/ia64/fpu/libm_frexpl.S
+++ /dev/null
@@ -1,209 +0,0 @@
-.file "libm_frexpl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 03/20/00 Improved speed
-// 06/01/00 Fixed bug when x a double-extended denormal
-// 12/08/00 Corrected label on .endp
-// 01/23/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double __libm_frexpl(long double x, int* y, int int_type)
-// input floating point f8, pointer to y (r34), int int_type (r35)
-// output floating point f8, returns the fraction of x, 0.5 <= fraction < 1.0
-// output int* y, returns the true exponent of x
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// int* y is returned as a 32 bit integer if int_type = 0
-// int* y is returned as a 64 bit integer if int_type = 1
-//
-// Overview of operation
-//==============================================================
-// break a floating point x number into fraction and an exponent
-// The fraction is returned as a long double
-// The exponent is returned as an integer pointed to by y
-// This is a true (not a biased exponent) but 0fffe is subtracted
-// as a bias instead of 0xffff. This is because the fraction returned
-// is between 0.5 and 1.0, not the expected IEEE range.
-//
-// The fraction is 0.5 <= fraction < 1.0
-//
-// Registers used
-//==============================================================
-//
-// general registers:
-// r14 exponent bias for x negative
-// r15 exponent bias for x positive
-// r16 signexp of x
-// r17 exponent mask
-// r18 exponent of x
-// r19 exponent result
-// r20 signexp of 2^64
-// r32-33 on input contains the 80-bit IEEE long double that is in f8
-// r34 on input pointer to 32-bit or 64-bit integer for exponent
-// r35 on input contains 0 if output int is 32 bits, else output int is 64 bits
-//
-// predicate registers:
-// p6 set if x is Nan, zero, or infinity
-// p7 set if x negative
-// p8 set if x positive
-// p9 set if x double-extended denormal
-// p10 set if int_type = 0, 32-bit integer
-// p11 set if int_type = 1, 64-bit integer
-//
-// floating-point registers:
-// f8 input, output
-// f9 normalized x
-// f10 signexp for significand result for x positive
-// f11 signexp for significand result for x negative
-// f12 2^64
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_frexpl)
-
-// Set signexp for significand result for x>0
-// If x is a NaN, zero, or infinity, return it.
-// Put 0 in the int pointer.
-// x NAN, ZERO, INFINITY?
-// Set signexp for significand result for x<0
-{ .mfi
- mov r15 = 0x0fffe
- fclass.m p6,p7 = f8, 0xe7
- mov r14 = 0x2fffe
-}
-// Form signexp of 2^64 in case x double-extended denormal
-// Save the normalized value of input in f9
-// The normalization also sets fault flags and takes faults if necessary
-{ .mfi
- mov r20 = 0x1003f
- fnorm.s0 f9 = f8
- nop.i 999 ;;
-}
-
-// Move signexp for significand result for x>0 to FP reg
-// Form 2^64 in case x double-extended denormal
-{ .mmi
- setf.exp f10 = r15
- setf.exp f12 = r20
- nop.i 999 ;;
-}
-
-// Move signexp for significand result for x<0 to FP reg
-// p7 if x<0, else p8
-// If x=0,nan,inf, set p10 if output int to be 32 bits, or set p11 if 64 bits
-{ .mfi
- setf.exp f11 = r14
-(p7) fcmp.lt.s0 p7,p8 = f8,f0
-(p6) cmp.eq.unc p10,p11 = r35, r0 ;;
-}
-
-// If x NAN, ZERO, INFINITY, set *y=0 and exit
-{ .mmb
-(p10) st4 [r34] = r0 // Store *y=0 as 32-bit integer
-(p11) st8 [r34] = r0 // Store *y=0 as 64-bit integer
-(p6) br.ret.spnt b0 ;;
-}
-
-// Form exponent mask
-// Test for fnorm(x) denormal, means x double-extended denormal
-{ .mfi
- mov r17 = 0x1ffff
- fclass.m p9,p0 = f9, 0x0b
- nop.i 999 ;;
-}
-
-// If x double-extended denormal add 64 to exponent bias for scaling
-// If x double-extended denormal multiply x * 2^64 which is normal
-// Set p10 if output int to be 32 bits, or set p11 if 64 bits
-{ .mfi
-(p9) add r15 = 64, r15
-(p9) fmpy.s0 f9 = f9, f12
- cmp.eq p10,p11 = r35, r0 ;;
-}
-
-// true exponent stored to int pointer
-// the bias is treated as 0xfffe instead of
-// normal 0xffff because we want the significand
-// to be in the range <=0.5 sig < 1.0
-// Store the value of the exponent at the pointer in r34
-
-// If x>0 form significand result
-{ .mfi
- nop.m 999
-(p8) fmerge.se f8 = f10,f9
- nop.i 999 ;;
-}
-
-// Get signexp of normalized x
-// If x<0 form significand result
-{ .mfi
- getf.exp r16 = f9
-(p7) fmerge.se f8 = f11,f9
- nop.i 999 ;;
-}
-
-// Get exp of normalized x
-// Subtract off bias to get true exponent of x
-{ .mmi
- and r18 = r17,r16 ;;
- sub r19 = r18,r15
- nop.i 999 ;;
-}
-
-// Store int *y as a 32-bit integer
-// Make the value a long double
-{ .mfi
-(p10) st4 [r34] = r19 // Store *y as 32-bit integer
- fnorm.s0 f8 = f8
- nop.i 999
-}
-{ .mfb
-(p11) st8 [r34] = r19 // Store *y as 64-bit integer
- nop.f 999
- br.ret.sptk b0 ;;
-}
-
-GLOBAL_LIBM_END(__libm_frexpl)
diff --git a/sysdeps/ia64/fpu/libm_lgamma.S b/sysdeps/ia64/fpu/libm_lgamma.S
deleted file mode 100644
index 6096319ba5..0000000000
--- a/sysdeps/ia64/fpu/libm_lgamma.S
+++ /dev/null
@@ -1,3623 +0,0 @@
-.file "libm_lgamma.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
-// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
-// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code,and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 01/10/02 Initial version
-// 01/25/02 Corrected error tag numbers
-// 02/04/02 Added support of SIGN(GAMMA(x)) calculation
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/15/02 Fixed bug on the branch lgamma_negrecursion
-// 10/21/02 Now it returns SIGN(GAMMA(x))=-1 for negative zero
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 07/22/03 Reformatted some data tables
-// 03/31/05 Reformatted delimiters between data tables
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: __libm_lgamma(double x, int* signgam, int szsigngam)
-// computes the principle value of the logarithm of the GAMMA function
-// of x. Signum of GAMMA(x) is stored to memory starting at the address
-// specified by the signgam.
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f6-f15
-// f32-f122
-//
-// General Purpose Registers:
-// r8-r11
-// r14-r31
-// r32-r36
-// r37-r40 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// __libm_lgamma(+inf) = +inf
-// __libm_lgamma(-inf) = QNaN
-// __libm_lgamma(+/-0) = +inf
-// __libm_lgamma(x<0, x - integer) = +inf
-// __libm_lgamma(SNaN) = QNaN
-// __libm_lgamma(QNaN) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of three cases.
-//
-// If 512 <= x < OVERFLOW_BOUNDARY use case lgamma_pstirling;
-// else if 1 < x < 512 use case lgamma_regular;
-// else if -17 < x < 1 use case lgamma_negrecursion;
-// else if -512 < x < -17 use case lgamma_negpoly;
-// else if x < -512 use case lgamma_negstirling;
-// else if x is close to negative
-// roots of ln(GAMMA(x)) use case lgamma_negroots;
-//
-//
-// Case 512 <= x < OVERFLOW_BOUNDARY
-// ---------------------------------
-// Here we use algorithm based on the Stirling formula:
-// ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)ln(x) - x + (W2 + W4/x^2)/x
-//
-// Case 1 < x < 512
-// ----------------
-// To calculate GAMMA(x) on this interval we use polynomial approximation
-// on following intervals [0.875; 1.25), [1.25; 1.75), [1.75, 2.25),
-// [2.25; 4), [2^i; 2^(i+1)), i=2..8
-//
-// Following variants of approximation and argument reduction are used:
-// 1. [0.875; 1.25)
-// ln(GAMMA(x)) ~ (x-1.0)*P17(x-1.0)
-//
-// 2. [1.25; 1.75)
-// ln(GAMMA(x)) ~ (x-LocalMinimun)*P17(x-LocalMinimun)
-//
-// 3. [1.75, 2.25)
-// ln(GAMMA(x)) ~ (x-2.0)*P17(x-2.0)
-//
-// 4. [2.25; 4)
-// ln(GAMMA(x)) ~ P22(x)
-//
-// 5. [2^i; 2^(i+1)), i=2..8
-// ln(GAMMA(x)) ~ P22((x-2^i)/2^i)
-//
-// Case -17 < x < 1
-// ----------------
-// Here we use the recursive formula:
-// ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
-//
-// Using this formula we reduce argument to base interval [1.0; 2.0]
-//
-// Case -512 < x < -17
-// --------------------
-// Here we use the formula:
-// ln(GAMMA(-x)) = ln(Pi/(x*GAMMA(x)*sin(Pi*x))) =
-// = -ln(x) - ln((GAMMA(x)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
-// where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
-// ln(sin(Pi*r)/(Pi*r)) is approximated by 14-degree polynomial of r^2
-//
-//
-// Case x < -512
-// -------------
-// Here we use algorithm based on the Stirling formula:
-// ln(GAMMA(-x)) = -ln(sqrt(2*Pi)) + (-x-0.5)ln(x) + x - (W2 + W4/x^2)/x -
-// - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
-// where r = x - rounded_to_nearest(x).
-//
-// Neighbourhoods of negative roots
-// --------------------------------
-// Here we use polynomial approximation
-// ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
-// where x0 is a root of ln(GAMMA(x)) rounded to nearest double
-// precision number.
-//
-
-//*********************************************************************
-
-FR_X = f10
-FR_Y = f1 // __libm_lgamma is single argument function
-FR_RESULT = f8
-
-FR_B11 = f6
-FR_B10 = f7
-
-FR_int_N = f9
-FR_N = f10
-FR_P5 = f11
-FR_P4 = f12
-FR_P3 = f13
-FR_P2 = f14
-FR_NormX = f15
-
-FR_Ln2 = f32
-FR_C01 = f33
-FR_A17 = f33
-FR_C00 = f34
-FR_Xp2 = f34
-FR_A00 = f34
-FR_A16 = f34
-FR_C11 = f35
-FR_A15 = f35
-FR_C10 = f36
-FR_Xp3 = f36
-FR_A14 = f36
-FR_B1 = f36
-FR_C21 = f37
-FR_A13 = f37
-FR_PR01 = f37
-FR_C20 = f38
-FR_Xp6 = f38
-FR_A12 = f38
-FR_C31 = f39
-FR_Xp7 = f39
-FR_B0 = f39
-FR_A11 = f39
-FR_C30 = f40
-FR_Xp8 = f40
-FR_A10 = f40
-FR_PR00 = f40
-FR_C41 = f41
-FR_Xp9 = f41
-FR_A9 = f41
-FR_PR11 = f41
-FR_C40 = f42
-FR_A8 = f42
-FR_C51 = f43
-FR_Xp11 = f43
-FR_A7 = f43
-FR_C50 = f44
-FR_C = f44
-FR_Xp12 = f44
-FR_A6 = f44
-FR_Xm2 = f45
-FR_Xp13 = f45
-FR_A5 = f45
-FR_PR10 = f45
-FR_C61 = f46
-FR_Xp14 = f46
-FR_A4 = f46
-FR_PR21 = f46
-FR_C60 = f47
-FR_Xp15 = f47
-FR_A3 = f47
-FR_PR20 = f47
-FR_C71 = f48
-FR_Xp16 = f48
-FR_A2 = f48
-FR_PR31 = f48
-FR_C70 = f49
-FR_Xp17 = f49
-FR_A1 = f49
-FR_PR30 = f49
-FR_C81 = f50
-FR_B17 = f50
-FR_A0 = f50
-FR_C80 = f51
-FR_B16 = f51
-FR_C91 = f52
-FR_B15 = f52
-FR_C90 = f53
-FR_B14 = f53
-FR_CA1 = f54
-FR_B13 = f54
-FR_CA0 = f55
-FR_B12 = f55
-FR_CN = f56
-FR_Qlo = f56
-FR_PRN = f56
-FR_B7 = f57
-FR_B6 = f58
-FR_Qhi = f59
-FR_x = f60
-FR_x2 = f61
-FR_TpNxLn2 = f62
-FR_W2 = f63
-FR_x4 = f64
-FR_r4 = f64
-FR_x8 = f65
-FR_r8 = f65
-FR_r05 = f66
-FR_Xm05 = f66
-FR_B5 = f66
-FR_LnSqrt2Pi = f67
-FR_B4 = f67
-FR_InvX = f68
-FR_B3 = f68
-FR_InvX2 = f69
-FR_B2 = f69
-FR_W4 = f70
-FR_OvfBound = f71
-FR_05 = f72
-FR_LocalMin = f73
-FR_tmp = f73
-FR_LnX = f74
-FR_Xf = f75
-FR_InvXf = f76
-FR_rf = f77
-FR_rf2 = f78
-FR_P54f = f79
-FR_P32f = f80
-FR_rf3 = f81
-FR_P10f = f82
-FR_TpNxLn2f = f83
-FR_Nf = f84
-FR_LnXf = f85
-FR_int_Nf = f86
-FR_Tf = f87
-FR_Xf2 = f88
-FR_Xp10 = f89
-FR_w3 = f90
-FR_S28 = f90
-FR_w2 = f91
-FR_S26 = f91
-FR_w6 = f92
-FR_S24 = f92
-FR_w4 = f93
-FR_S22 = f93
-FR_w = f94
-FR_S20 = f94
-FR_Q8 = f95
-FR_S18 = f95
-FR_Q7 = f96
-FR_S16 = f96
-FR_Q4 = f97
-FR_S14 = f97
-FR_Q3 = f98
-FR_S12 = f98
-FR_Q6 = f99
-FR_S10 = f99
-FR_Q5 = f100
-FR_S8 = f100
-FR_Q2 = f101
-FR_S6 = f101
-FR_Root = f101
-FR_S4 = f102
-FR_Q1 = f102
-FR_S2 = f103
-FR_Xp1 = f104
-FR_Xf4 = f105
-FR_Xf8 = f106
-FR_Xfr = f107
-FR_Xf6 = f108
-FR_Ntrunc = f109
-FR_B9 = f110
-FR_2 = f110
-FR_B8 = f111
-FR_3 = f111
-FR_5 = f112
-FR_Xp4 = f113
-FR_Xp5 = f114
-FR_P54 = f115
-FR_P32 = f116
-FR_P10 = f117
-FR_r = f118
-FR_r2 = f119
-FR_r3 = f120
-FR_T = f121
-FR_int_Ntrunc = f122
-
-//===================================
-
-GR_TAG = r8
-GR_ExpMask = r8
-GR_ExpBias = r9
-GR_ad_Roots = r9
-GR_Expf = r10
-GR_Arg = r10
-GR_SignExp = r11
-GR_ArgXfr = r11
-
-GR_Exp = r14
-GR_Arg125 = r14
-GR_RootInd = r14
-GR_ArgAsIs = r15
-GR_Arg175 = r15
-GR_Sig = r16
-GR_Ind = r17
-GR_ad_Dx = r17
-GR_ad_1 = r18
-GR_SignExp_w = r19
-GR_2_25 = r19
-GR_Arg025 = r19
-GR_Arg15 = r19
-GR_Arg17 = r19
-GR_Exp_w = r19//21
-GR_ad_2 = r20
-GR_2xDx = r21
-GR_SignOfGamma = r21
-GR_fff9 = r22
-GR_Offs = r22
-GR_ad_Co7 = r23
-GR_Arg075 = r23
-GR_Arg0875 = r23
-GR_ad_T = r24
-GR_ad_Root = r24
-GR_Ind = r24
-GR_ad_Co = r25
-GR_ad_Ce = r26
-GR_ad_Ce7 = r27
-GR_Arg05 = r27
-GR_Offs7 = r28
-GR_ArgXfrAsIs = r28
-GR_ExpOf2 = r29
-GR_ad_LnT = r29
-GR_Dx = r29
-GR_ExpOf256 = r30
-GR_0x30033 = r30
-GR_Root = r30
-GR_PseudoRoot = r30
-GR_ad_Data = r31
-GR_ad_SignGam = r31
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-LOCAL_OBJECT_START(lgamma_data)
-// polynomial approximation of ln(GAMMA(x)), 2.25 <= x < 512
-// [2.25; 4)
-data8 0xF888E8D7892718A2,0xC001 // C01
-data8 0xF62F273BA12A4639,0x3FFD // C11
-data8 0xA93AC50A37EC8D38,0xBFFC // C21
-data8 0xB4CC43D2C161E057,0xBFFF // C31
-data8 0xC6AC672F0C1392C7,0xC000 // C41
-data8 0xA292B9AE3276942E,0xC001 // C51
-data8 0xE554E4CCCA6C7B7B,0xC001 // C61
-data8 0x92F0F55FBC87F860,0xC002 // C71
-data8 0xAF60D0112843F6C1,0xC002 // C81
-data8 0xC5956500FA3D92E7,0xC002 // C91
-data8 0xD3B22CCBD8587750,0xC002 // CA1
-data8 0xD888B6CF34159B54,0x4001 // C00
-data8 0xBCB79C8329FD9F44,0x3FFE // C10
-data8 0xCB8896FAD69C455D,0x4000 // C20
-data8 0xE510A424639EBF5E,0x4001 // C30
-data8 0xC65ED41B097486B3,0x4002 // C40
-// [4; 8)
-data8 0x9F1F3C822D03080E,0xC001 // C01
-data8 0x941CACFA9C0FA8A6,0xC001 // C11
-data8 0xFE34336391D99CB7,0xC000 // C21
-data8 0xC40BAEAA165F81A1,0xC000 // C31
-data8 0xFE3AE166E9B4DE8F,0xBFFF // C41
-data8 0xD744F91AF7DAF873,0xBFFE // C51
-data8 0x87871851E9C32D02,0x3FFD // C61
-data8 0x9C93C03C502E808F,0x3FFF // C71
-data8 0xF78BED07501D6A8E,0x3FFF // C81
-data8 0x92FE41BA8BEADF70,0x4000 // C91
-data8 0xA021878E1903A2C6,0x3FFF // CA1
-data8 0xC85EFAC379FAFEE2,0x4001 // C00
-data8 0xC10D7AAB7CEC7FF2,0x4001 // C10
-data8 0xB3537BDF603E454C,0x4001 // C20
-data8 0xA0D44E3D5BBE44C4,0x4001 // C30
-data8 0x8B9C229B6241E7B3,0x4001 // C40
-// [8; 16)
-data8 0xD16AB33AEC220DF6,0x3FFF // C01
-data8 0x987483646E150BCD,0x4000 // C11
-data8 0x80C10A24C863999B,0x4000 // C21
-data8 0xA39A8EB6F8AACE75,0x3FFF // C31
-data8 0x93E04A1379BEC764,0x3FFD // C41
-data8 0xD9F59C4BD3A69BD1,0xBFFE // C51
-data8 0x82094EC891179B1A,0xC000 // C61
-data8 0xC90CFE3A24F70659,0xC000 // C71
-data8 0x827984EA7C155184,0xC001 // C81
-data8 0x981BFDF79D1E0D80,0xC001 // C91
-data8 0xA37209A8B97D230D,0xC001 // CA1
-data8 0xAA1989737D6BA66D,0x3FFE // C00
-data8 0xDBC013A351630AF8,0x3FFF // C10
-data8 0x8B8D47698299389D,0x4000 // C20
-data8 0xACCDD1315DE06EB0,0x4000 // C30
-data8 0xD3414A5AC81BBB2D,0x4000 // C40
-// [16; 32)
-data8 0xECB2B0BE75C5F995,0x3FFF // C01
-data8 0x9DD28BD6DBC96500,0x4000 // C11
-data8 0x8521431B99C6244F,0x4000 // C21
-data8 0xA95F92612B8413C3,0x3FFF // C31
-data8 0x9C76E643B22D9544,0x3FFD // C41
-data8 0xDD90EA99417C8038,0xBFFE // C51
-data8 0x84EA6B6D32E5F906,0xC000 // C61
-data8 0xCDBFE499E05AA622,0xC000 // C71
-data8 0x8594A7DE35427100,0xC001 // C81
-data8 0x9BC1CB2C10DC702F,0xC001 // C91
-data8 0xA7602268762666B0,0xC001 // CA1
-data8 0xDA082BCC6BDB8F7B,0x3FFE // C00
-data8 0xEEBFE1C99322B85E,0x3FFF // C10
-data8 0x96FED4C785361946,0x4000 // C20
-data8 0xB9E3A7207C16B2FE,0x4000 // C30
-data8 0xE1E8170CED48E2C7,0x4000 // C40
-// [32; 64)
-data8 0xFD481EB9AEDD53E7,0x3FFF // C01
-data8 0xA216FB66AC8C53E1,0x4000 // C11
-data8 0x885FF935787553BA,0x4000 // C21
-data8 0xAD471CD89A313327,0x3FFF // C31
-data8 0x9FF13FBA139D21E0,0x3FFD // C41
-data8 0xE25E1663A6EE0266,0xBFFE // C51
-data8 0x87BE51DD5D262FA2,0xC000 // C61
-data8 0xD211A9D4CCE55696,0xC000 // C71
-data8 0x885BEFC29FDED3C9,0xC001 // C81
-data8 0x9EFA48E6367A67F6,0xC001 // C91
-data8 0xAAD3978FC0791297,0xC001 // CA1
-data8 0xF96D210DF37A0AEA,0x3FFE // C00
-data8 0xFE11DC6783917C82,0x3FFF // C10
-data8 0x9FFCD928291B7DDE,0x4000 // C20
-data8 0xC4518F4A80E09AE1,0x4000 // C30
-data8 0xEDDFE9E0FD297C63,0x4000 // C40
-// [64; 128)
-data8 0x840E2E62609B0AD3,0x4000 // C01
-data8 0xA5275A0DD0D3DDF8,0x4000 // C11
-data8 0x8AADC6ABFC441731,0x4000 // C21
-data8 0xB041C6696BE90E50,0x3FFF // C31
-data8 0xA4A8C9153F4B037E,0x3FFD // C41
-data8 0xE3C6A461A7B86736,0xBFFE // C51
-data8 0x89047681C6DE7673,0xC000 // C61
-data8 0xD42DF77A480092DF,0xC000 // C71
-data8 0x89C25D17F086FB20,0xC001 // C81
-data8 0xA09F907D02E34EC7,0xC001 // C91
-data8 0xAC998A9CB79805B7,0xC001 // CA1
-data8 0x875CC9B69AE964CC,0x3FFF // C00
-data8 0x847836BA85DD4C12,0x4000 // C10
-data8 0xA5F3CB2B32E74936,0x4000 // C20
-data8 0xCAE2197C96CB5A0F,0x4000 // C30
-data8 0xF50F7EB60DE5CD09,0x4000 // C40
-// [128; 256)
-data8 0x87D9065DD1876926,0x4000 // C01
-data8 0xA781C28FDAD7CC25,0x4000 // C11
-data8 0x8C6A4FCE35A7EC8D,0x4000 // C21
-data8 0xB27BA081728354F9,0x3FFF // C31
-data8 0xA82FEA7124B0EB2B,0x3FFD // C41
-data8 0xE4C996E42ECBF77A,0xBFFE // C51
-data8 0x89F1A92C84FA538F,0xC000 // C61
-data8 0xD5B6CFF7DB7F6070,0xC000 // C71
-data8 0x8AC6B561FAE38B66,0xC001 // C81
-data8 0xA1D1505C438D8F46,0xC001 // C91
-data8 0xADE2DC1C924FEC81,0xC001 // CA1
-data8 0x8EF6CC62A7E0EB5A,0x3FFF // C00
-data8 0x88A2FFC0ABCB00C0,0x4000 // C10
-data8 0xAA6EA8FCB75B065B,0x4000 // C20
-data8 0xCFC4B82B3D5C9363,0x4000 // C30
-data8 0xFA60FD85DE861771,0x4000 // C40
-// [256; 512)
-data8 0x8AAA7CE4ED5C1EFD,0x4000 // C01
-data8 0xA9679234FB56F1E1,0x4000 // C11
-data8 0x8DCE02287789D841,0x4000 // C21
-data8 0xB44328EF30A8DE7E,0x3FFF // C31
-data8 0xAB0DC564BFA1AB12,0x3FFD // C41
-data8 0xE5882B16FCF2D3CB,0xBFFE // C51
-data8 0x8AA7F48993006A86,0xC000 // C61
-data8 0xD6E63752D192750D,0xC000 // C71
-data8 0x8B90080B17853295,0xC001 // C81
-data8 0xA2BDD4253128D1AB,0xC001 // C91
-data8 0xAEE1A042F96B8121,0xC001 // CA1
-data8 0x94A9C37A42E43BA7,0x3FFF // C00
-data8 0x8BFA54E703878F5A,0x4000 // C10
-data8 0xADFA426DDF14647B,0x4000 // C20
-data8 0xD39C7F7B3958EAF0,0x4000 // C30
-data8 0xFE8C3987853C01E3,0x4000 // C40
-//
-// [2.25; 4)
-data8 0x943AF77763601441,0x4003 // C50
-data8 0xC8A93F9ECB06E891,0x4003 // C60
-data8 0xFC2E5A4AD33DE19D,0x4003 // C70
-data8 0x9526B75B38670119,0x4004 // C80
-data8 0xA7675879D68B587E,0x4004 // C90
-data8 0xB31DFA672D7FB8C0,0x4004 // CA0
-data8 0x83A27775D86F9A81,0xBFD7 // CN
-// [4; 8)
-data8 0xEB8049BA5E79ADA3,0x4000 // C50
-data8 0xC20C95EA99037228,0x4000 // C60
-data8 0x9D4A8C864053CEB8,0x4000 // C70
-data8 0xFC7716544AB0C5C9,0x3FFF // C80
-data8 0xC7EB985259EABA5F,0x3FFF // C90
-data8 0xC042FB3B4C95096D,0x3FFD // CA0
-data8 0xCC2A7F930856177B,0x3FEE // CN
-// [8; 16)
-data8 0xFE1903679D078C7A,0x4000 // C50
-data8 0x957C221AB90171F1,0x4001 // C60
-data8 0xAB2C53B2A78F4031,0x4001 // C70
-data8 0xBE080AE6063AE387,0x4001 // C80
-data8 0xCC019A0311605CB9,0x4001 // C90
-data8 0xD3739D85A12C8ADF,0x4001 // CA0
-data8 0x81FA4D2B7BD7A82D,0x3FEF // CN
-// [16; 32)
-data8 0x871F69E2DD221F02,0x4001 // C50
-data8 0x9E3EF2D477442A9C,0x4001 // C60
-data8 0xB48733582B3C82C5,0x4001 // C70
-data8 0xC7DB9B3C25854A2A,0x4001 // C80
-data8 0xD628B87975BE898F,0x4001 // C90
-data8 0xDDC569C321FF119C,0x4001 // CA0
-data8 0xB27B65560DF7ADA7,0x3FEF // CN
-// [32; 64)
-data8 0x8DE4127349719B22,0x4001 // C50
-data8 0xA5C30A7760F5FBB2,0x4001 // C60
-data8 0xBCB4096055AA2A4E,0x4001 // C70
-data8 0xD08F5F2FB4E7B899,0x4001 // C80
-data8 0xDF39ED39DC91F9CF,0x4001 // C90
-data8 0xE7063E45322F072E,0x4001 // CA0
-data8 0x85A9E11DDDDE67C8,0x3FF0 // CN
-// [64; 128)
-data8 0x91CA191EB80E8893,0x4001 // C50
-data8 0xA9F1D5A55397334A,0x4001 // C60
-data8 0xC1222710295094E3,0x4001 // C70
-data8 0xD52FFABBA6CBE5C6,0x4001 // C80
-data8 0xE3FD9D5282052E1D,0x4001 // C90
-data8 0xEBDBE47BB662F3EF,0x4001 // CA0
-data8 0xEF889F489D88FD31,0x3FF0 // CN
-// [128; 256)
-data8 0x94AA029C2286F8D2,0x4001 // C50
-data8 0xAD0549E55A72389F,0x4001 // C60
-data8 0xC4628899DAF94BA4,0x4001 // C70
-data8 0xD89432A4161C72CB,0x4001 // C80
-data8 0xE77ABA75E9C38F3A,0x4001 // C90
-data8 0xEF65BFFFF71347FF,0x4001 // CA0
-data8 0xE2627460064D918D,0x3FF1 // CN
-// [256; 512)
-data8 0x96E9890D722C2FC1,0x4001 // C50
-data8 0xAF6C2236F6A1CEC4,0x4001 // C60
-data8 0xC6EBB8C9F987D20D,0x4001 // C70
-data8 0xDB38CEFD5EF328CC,0x4001 // C80
-data8 0xEA3265DC66C9A0B4,0x4001 // C90
-data8 0xF2272D6B368C70B1,0x4001 // CA0
-data8 0xDBFF93ECEBCEF1F3,0x3FF2 // CN
-//
-data8 0x3FDD8B618D5AF8FE // point of local minimum on [1;2]
-data8 0x3FE0000000000000 // 0.5
-data8 0xBFC5555DA7212371 // P5
-data8 0x3FC999A19EEF5826 // P4
-data8 0xb17217f7d1cf79ac,0x3ffe // ln(2)
-data8 0xEB3F8E4325F5A535,0x3FFE // ln(sqrt(4*arcsin(1)))
-//
-data8 0xBFCFFFFFFFFEF009 // P3
-data8 0x3FD555555554ECB2 // P2
-data8 0xBF66C16C16C16C17 // W4=B4/12=-1/360
-data8 0x7F5754D9278B51A8 // overflow boundary (first inf result)
-data8 0xAAAAAAAAAAAAAAAB,0x3FFB // W2=B2/2=1/12
-//
-data8 0x3FBC756AC654273B // Q8
-data8 0xBFC001A42489AB4D // Q7
-data8 0x3FC99999999A169B // Q4
-data8 0xBFD00000000019AC // Q3
-data8 0x3FC2492479AA0DF8 // Q6
-data8 0xBFC5555544986F52 // Q5
-data8 0x3FD5555555555555 // Q2
-data8 0xBFE0000000000000 // Q1, P1 = -0.5
-//
-data8 0x80200aaeac44ef38,0x3ff6 // ln(1/frcpa(1+ 0/2^-8))
-data8 0xc09090a2c35aa070,0x3ff7 // ln(1/frcpa(1+ 1/2^-8))
-data8 0xa0c94fcb41977c75,0x3ff8 // ln(1/frcpa(1+ 2/2^-8))
-data8 0xe18b9c263af83301,0x3ff8 // ln(1/frcpa(1+ 3/2^-8))
-data8 0x8d35c8d6399c30ea,0x3ff9 // ln(1/frcpa(1+ 4/2^-8))
-data8 0xadd4d2ecd601cbb8,0x3ff9 // ln(1/frcpa(1+ 5/2^-8))
-data8 0xce95403a192f9f01,0x3ff9 // ln(1/frcpa(1+ 6/2^-8))
-data8 0xeb59392cbcc01096,0x3ff9 // ln(1/frcpa(1+ 7/2^-8))
-data8 0x862c7d0cefd54c5d,0x3ffa // ln(1/frcpa(1+ 8/2^-8))
-data8 0x94aa63c65e70d499,0x3ffa // ln(1/frcpa(1+ 9/2^-8))
-data8 0xa54a696d4b62b382,0x3ffa // ln(1/frcpa(1+ 10/2^-8))
-data8 0xb3e4a796a5dac208,0x3ffa // ln(1/frcpa(1+ 11/2^-8))
-data8 0xc28c45b1878340a9,0x3ffa // ln(1/frcpa(1+ 12/2^-8))
-data8 0xd35c55f39d7a6235,0x3ffa // ln(1/frcpa(1+ 13/2^-8))
-data8 0xe220f037b954f1f5,0x3ffa // ln(1/frcpa(1+ 14/2^-8))
-data8 0xf0f3389b036834f3,0x3ffa // ln(1/frcpa(1+ 15/2^-8))
-data8 0xffd3488d5c980465,0x3ffa // ln(1/frcpa(1+ 16/2^-8))
-data8 0x87609ce2ed300490,0x3ffb // ln(1/frcpa(1+ 17/2^-8))
-data8 0x8ede9321e8c85927,0x3ffb // ln(1/frcpa(1+ 18/2^-8))
-data8 0x96639427f2f8e2f4,0x3ffb // ln(1/frcpa(1+ 19/2^-8))
-data8 0x9defad3e8f73217b,0x3ffb // ln(1/frcpa(1+ 20/2^-8))
-data8 0xa582ebd50097029c,0x3ffb // ln(1/frcpa(1+ 21/2^-8))
-data8 0xac06dbe75ab80fee,0x3ffb // ln(1/frcpa(1+ 22/2^-8))
-data8 0xb3a78449b2d3ccca,0x3ffb // ln(1/frcpa(1+ 23/2^-8))
-data8 0xbb4f79635ab46bb2,0x3ffb // ln(1/frcpa(1+ 24/2^-8))
-data8 0xc2fec93a83523f3f,0x3ffb // ln(1/frcpa(1+ 25/2^-8))
-data8 0xc99af2eaca4c4571,0x3ffb // ln(1/frcpa(1+ 26/2^-8))
-data8 0xd1581106472fa653,0x3ffb // ln(1/frcpa(1+ 27/2^-8))
-data8 0xd8002560d4355f2e,0x3ffb // ln(1/frcpa(1+ 28/2^-8))
-data8 0xdfcb43b4fe508632,0x3ffb // ln(1/frcpa(1+ 29/2^-8))
-data8 0xe67f6dff709d4119,0x3ffb // ln(1/frcpa(1+ 30/2^-8))
-data8 0xed393b1c22351280,0x3ffb // ln(1/frcpa(1+ 31/2^-8))
-data8 0xf5192bff087bcc35,0x3ffb // ln(1/frcpa(1+ 32/2^-8))
-data8 0xfbdf4ff6dfef2fa3,0x3ffb // ln(1/frcpa(1+ 33/2^-8))
-data8 0x81559a97f92f9cc7,0x3ffc // ln(1/frcpa(1+ 34/2^-8))
-data8 0x84be72bce90266e8,0x3ffc // ln(1/frcpa(1+ 35/2^-8))
-data8 0x88bc74113f23def2,0x3ffc // ln(1/frcpa(1+ 36/2^-8))
-data8 0x8c2ba3edf6799d11,0x3ffc // ln(1/frcpa(1+ 37/2^-8))
-data8 0x8f9dc92f92ea08b1,0x3ffc // ln(1/frcpa(1+ 38/2^-8))
-data8 0x9312e8f36efab5a7,0x3ffc // ln(1/frcpa(1+ 39/2^-8))
-data8 0x968b08643409ceb6,0x3ffc // ln(1/frcpa(1+ 40/2^-8))
-data8 0x9a062cba08a1708c,0x3ffc // ln(1/frcpa(1+ 41/2^-8))
-data8 0x9d845b3abf95485c,0x3ffc // ln(1/frcpa(1+ 42/2^-8))
-data8 0xa06fd841bc001bb4,0x3ffc // ln(1/frcpa(1+ 43/2^-8))
-data8 0xa3f3a74652fbe0db,0x3ffc // ln(1/frcpa(1+ 44/2^-8))
-data8 0xa77a8fb2336f20f5,0x3ffc // ln(1/frcpa(1+ 45/2^-8))
-data8 0xab0497015d28b0a0,0x3ffc // ln(1/frcpa(1+ 46/2^-8))
-data8 0xae91c2be6ba6a615,0x3ffc // ln(1/frcpa(1+ 47/2^-8))
-data8 0xb189d1b99aebb20b,0x3ffc // ln(1/frcpa(1+ 48/2^-8))
-data8 0xb51cced5de9c1b2c,0x3ffc // ln(1/frcpa(1+ 49/2^-8))
-data8 0xb819bee9e720d42f,0x3ffc // ln(1/frcpa(1+ 50/2^-8))
-data8 0xbbb2a0947b093a5d,0x3ffc // ln(1/frcpa(1+ 51/2^-8))
-data8 0xbf4ec1505811684a,0x3ffc // ln(1/frcpa(1+ 52/2^-8))
-data8 0xc2535bacfa8975ff,0x3ffc // ln(1/frcpa(1+ 53/2^-8))
-data8 0xc55a3eafad187eb8,0x3ffc // ln(1/frcpa(1+ 54/2^-8))
-data8 0xc8ff2484b2c0da74,0x3ffc // ln(1/frcpa(1+ 55/2^-8))
-data8 0xcc0b1a008d53ab76,0x3ffc // ln(1/frcpa(1+ 56/2^-8))
-data8 0xcfb6203844b3209b,0x3ffc // ln(1/frcpa(1+ 57/2^-8))
-data8 0xd2c73949a47a19f5,0x3ffc // ln(1/frcpa(1+ 58/2^-8))
-data8 0xd5daae18b49d6695,0x3ffc // ln(1/frcpa(1+ 59/2^-8))
-data8 0xd8f08248cf7e8019,0x3ffc // ln(1/frcpa(1+ 60/2^-8))
-data8 0xdca7749f1b3e540e,0x3ffc // ln(1/frcpa(1+ 61/2^-8))
-data8 0xdfc28e033aaaf7c7,0x3ffc // ln(1/frcpa(1+ 62/2^-8))
-data8 0xe2e012a5f91d2f55,0x3ffc // ln(1/frcpa(1+ 63/2^-8))
-data8 0xe600064ed9e292a8,0x3ffc // ln(1/frcpa(1+ 64/2^-8))
-data8 0xe9226cce42b39f60,0x3ffc // ln(1/frcpa(1+ 65/2^-8))
-data8 0xec4749fd97a28360,0x3ffc // ln(1/frcpa(1+ 66/2^-8))
-data8 0xef6ea1bf57780495,0x3ffc // ln(1/frcpa(1+ 67/2^-8))
-data8 0xf29877ff38809091,0x3ffc // ln(1/frcpa(1+ 68/2^-8))
-data8 0xf5c4d0b245cb89be,0x3ffc // ln(1/frcpa(1+ 69/2^-8))
-data8 0xf8f3afd6fcdef3aa,0x3ffc // ln(1/frcpa(1+ 70/2^-8))
-data8 0xfc2519756be1abc7,0x3ffc // ln(1/frcpa(1+ 71/2^-8))
-data8 0xff59119f503e6832,0x3ffc // ln(1/frcpa(1+ 72/2^-8))
-data8 0x8147ce381ae0e146,0x3ffd // ln(1/frcpa(1+ 73/2^-8))
-data8 0x82e45f06cb1ad0f2,0x3ffd // ln(1/frcpa(1+ 74/2^-8))
-data8 0x842f5c7c573cbaa2,0x3ffd // ln(1/frcpa(1+ 75/2^-8))
-data8 0x85ce471968c8893a,0x3ffd // ln(1/frcpa(1+ 76/2^-8))
-data8 0x876e8305bc04066d,0x3ffd // ln(1/frcpa(1+ 77/2^-8))
-data8 0x891012678031fbb3,0x3ffd // ln(1/frcpa(1+ 78/2^-8))
-data8 0x8a5f1493d766a05f,0x3ffd // ln(1/frcpa(1+ 79/2^-8))
-data8 0x8c030c778c56fa00,0x3ffd // ln(1/frcpa(1+ 80/2^-8))
-data8 0x8da85df17e31d9ae,0x3ffd // ln(1/frcpa(1+ 81/2^-8))
-data8 0x8efa663e7921687e,0x3ffd // ln(1/frcpa(1+ 82/2^-8))
-data8 0x90a22b6875c6a1f8,0x3ffd // ln(1/frcpa(1+ 83/2^-8))
-data8 0x91f62cc8f5d24837,0x3ffd // ln(1/frcpa(1+ 84/2^-8))
-data8 0x93a06cfc3857d980,0x3ffd // ln(1/frcpa(1+ 85/2^-8))
-data8 0x94f66d5e6fd01ced,0x3ffd // ln(1/frcpa(1+ 86/2^-8))
-data8 0x96a330156e6772f2,0x3ffd // ln(1/frcpa(1+ 87/2^-8))
-data8 0x97fb3582754ea25b,0x3ffd // ln(1/frcpa(1+ 88/2^-8))
-data8 0x99aa8259aad1bbf2,0x3ffd // ln(1/frcpa(1+ 89/2^-8))
-data8 0x9b0492f6227ae4a8,0x3ffd // ln(1/frcpa(1+ 90/2^-8))
-data8 0x9c5f8e199bf3a7a5,0x3ffd // ln(1/frcpa(1+ 91/2^-8))
-data8 0x9e1293b9998c1daa,0x3ffd // ln(1/frcpa(1+ 92/2^-8))
-data8 0x9f6fa31e0b41f308,0x3ffd // ln(1/frcpa(1+ 93/2^-8))
-data8 0xa0cda11eaf46390e,0x3ffd // ln(1/frcpa(1+ 94/2^-8))
-data8 0xa22c8f029cfa45aa,0x3ffd // ln(1/frcpa(1+ 95/2^-8))
-data8 0xa3e48badb7856b34,0x3ffd // ln(1/frcpa(1+ 96/2^-8))
-data8 0xa5459a0aa95849f9,0x3ffd // ln(1/frcpa(1+ 97/2^-8))
-data8 0xa6a79c84480cfebd,0x3ffd // ln(1/frcpa(1+ 98/2^-8))
-data8 0xa80a946d0fcb3eb2,0x3ffd // ln(1/frcpa(1+ 99/2^-8))
-data8 0xa96e831a3ea7b314,0x3ffd // ln(1/frcpa(1+100/2^-8))
-data8 0xaad369e3dc544e3b,0x3ffd // ln(1/frcpa(1+101/2^-8))
-data8 0xac92e9588952c815,0x3ffd // ln(1/frcpa(1+102/2^-8))
-data8 0xadfa035aa1ed8fdc,0x3ffd // ln(1/frcpa(1+103/2^-8))
-data8 0xaf6219eae1ad6e34,0x3ffd // ln(1/frcpa(1+104/2^-8))
-data8 0xb0cb2e6d8160f753,0x3ffd // ln(1/frcpa(1+105/2^-8))
-data8 0xb2354249ad950f72,0x3ffd // ln(1/frcpa(1+106/2^-8))
-data8 0xb3a056e98ef4a3b4,0x3ffd // ln(1/frcpa(1+107/2^-8))
-data8 0xb50c6dba52c6292a,0x3ffd // ln(1/frcpa(1+108/2^-8))
-data8 0xb679882c33876165,0x3ffd // ln(1/frcpa(1+109/2^-8))
-data8 0xb78c07429785cedc,0x3ffd // ln(1/frcpa(1+110/2^-8))
-data8 0xb8faeb8dc4a77d24,0x3ffd // ln(1/frcpa(1+111/2^-8))
-data8 0xba6ad77eb36ae0d6,0x3ffd // ln(1/frcpa(1+112/2^-8))
-data8 0xbbdbcc915e9bee50,0x3ffd // ln(1/frcpa(1+113/2^-8))
-data8 0xbd4dcc44f8cf12ef,0x3ffd // ln(1/frcpa(1+114/2^-8))
-data8 0xbec0d81bf5b531fa,0x3ffd // ln(1/frcpa(1+115/2^-8))
-data8 0xc034f19c139186f4,0x3ffd // ln(1/frcpa(1+116/2^-8))
-data8 0xc14cb69f7c5e55ab,0x3ffd // ln(1/frcpa(1+117/2^-8))
-data8 0xc2c2abbb6e5fd56f,0x3ffd // ln(1/frcpa(1+118/2^-8))
-data8 0xc439b2c193e6771e,0x3ffd // ln(1/frcpa(1+119/2^-8))
-data8 0xc553acb9d5c67733,0x3ffd // ln(1/frcpa(1+120/2^-8))
-data8 0xc6cc96e441272441,0x3ffd // ln(1/frcpa(1+121/2^-8))
-data8 0xc8469753eca88c30,0x3ffd // ln(1/frcpa(1+122/2^-8))
-data8 0xc962cf3ce072b05c,0x3ffd // ln(1/frcpa(1+123/2^-8))
-data8 0xcadeba8771f694aa,0x3ffd // ln(1/frcpa(1+124/2^-8))
-data8 0xcc5bc08d1f72da94,0x3ffd // ln(1/frcpa(1+125/2^-8))
-data8 0xcd7a3f99ea035c29,0x3ffd // ln(1/frcpa(1+126/2^-8))
-data8 0xcef93860c8a53c35,0x3ffd // ln(1/frcpa(1+127/2^-8))
-data8 0xd0192f68a7ed23df,0x3ffd // ln(1/frcpa(1+128/2^-8))
-data8 0xd19a201127d3c645,0x3ffd // ln(1/frcpa(1+129/2^-8))
-data8 0xd2bb92f4061c172c,0x3ffd // ln(1/frcpa(1+130/2^-8))
-data8 0xd43e80b2ee8cc8fc,0x3ffd // ln(1/frcpa(1+131/2^-8))
-data8 0xd56173601fc4ade4,0x3ffd // ln(1/frcpa(1+132/2^-8))
-data8 0xd6e6637efb54086f,0x3ffd // ln(1/frcpa(1+133/2^-8))
-data8 0xd80ad9f58f3c8193,0x3ffd // ln(1/frcpa(1+134/2^-8))
-data8 0xd991d1d31aca41f8,0x3ffd // ln(1/frcpa(1+135/2^-8))
-data8 0xdab7d02231484a93,0x3ffd // ln(1/frcpa(1+136/2^-8))
-data8 0xdc40d532cde49a54,0x3ffd // ln(1/frcpa(1+137/2^-8))
-data8 0xdd685f79ed8b265e,0x3ffd // ln(1/frcpa(1+138/2^-8))
-data8 0xde9094bbc0e17b1d,0x3ffd // ln(1/frcpa(1+139/2^-8))
-data8 0xe01c91b78440c425,0x3ffd // ln(1/frcpa(1+140/2^-8))
-data8 0xe14658f26997e729,0x3ffd // ln(1/frcpa(1+141/2^-8))
-data8 0xe270cdc2391e0d23,0x3ffd // ln(1/frcpa(1+142/2^-8))
-data8 0xe3ffce3a2aa64922,0x3ffd // ln(1/frcpa(1+143/2^-8))
-data8 0xe52bdb274ed82887,0x3ffd // ln(1/frcpa(1+144/2^-8))
-data8 0xe6589852e75d7df6,0x3ffd // ln(1/frcpa(1+145/2^-8))
-data8 0xe786068c79937a7d,0x3ffd // ln(1/frcpa(1+146/2^-8))
-data8 0xe91903adad100911,0x3ffd // ln(1/frcpa(1+147/2^-8))
-data8 0xea481236f7d35bb0,0x3ffd // ln(1/frcpa(1+148/2^-8))
-data8 0xeb77d48c692e6b14,0x3ffd // ln(1/frcpa(1+149/2^-8))
-data8 0xeca84b83d7297b87,0x3ffd // ln(1/frcpa(1+150/2^-8))
-data8 0xedd977f4962aa158,0x3ffd // ln(1/frcpa(1+151/2^-8))
-data8 0xef7179a22f257754,0x3ffd // ln(1/frcpa(1+152/2^-8))
-data8 0xf0a450d139366ca7,0x3ffd // ln(1/frcpa(1+153/2^-8))
-data8 0xf1d7e0524ff9ffdb,0x3ffd // ln(1/frcpa(1+154/2^-8))
-data8 0xf30c29036a8b6cae,0x3ffd // ln(1/frcpa(1+155/2^-8))
-data8 0xf4412bc411ea8d92,0x3ffd // ln(1/frcpa(1+156/2^-8))
-data8 0xf576e97564c8619d,0x3ffd // ln(1/frcpa(1+157/2^-8))
-data8 0xf6ad62fa1b5f172f,0x3ffd // ln(1/frcpa(1+158/2^-8))
-data8 0xf7e499368b55c542,0x3ffd // ln(1/frcpa(1+159/2^-8))
-data8 0xf91c8d10abaffe22,0x3ffd // ln(1/frcpa(1+160/2^-8))
-data8 0xfa553f7018c966f3,0x3ffd // ln(1/frcpa(1+161/2^-8))
-data8 0xfb8eb13e185d802c,0x3ffd // ln(1/frcpa(1+162/2^-8))
-data8 0xfcc8e3659d9bcbed,0x3ffd // ln(1/frcpa(1+163/2^-8))
-data8 0xfe03d6d34d487fd2,0x3ffd // ln(1/frcpa(1+164/2^-8))
-data8 0xff3f8c7581e9f0ae,0x3ffd // ln(1/frcpa(1+165/2^-8))
-data8 0x803e029e280173ae,0x3ffe // ln(1/frcpa(1+166/2^-8))
-data8 0x80dca10cc52d0757,0x3ffe // ln(1/frcpa(1+167/2^-8))
-data8 0x817ba200632755a1,0x3ffe // ln(1/frcpa(1+168/2^-8))
-data8 0x821b05f3b01d6774,0x3ffe // ln(1/frcpa(1+169/2^-8))
-data8 0x82bacd623ff19d06,0x3ffe // ln(1/frcpa(1+170/2^-8))
-data8 0x835af8c88e7a8f47,0x3ffe // ln(1/frcpa(1+171/2^-8))
-data8 0x83c5f8299e2b4091,0x3ffe // ln(1/frcpa(1+172/2^-8))
-data8 0x8466cb43f3d87300,0x3ffe // ln(1/frcpa(1+173/2^-8))
-data8 0x850803a67c80ca4b,0x3ffe // ln(1/frcpa(1+174/2^-8))
-data8 0x85a9a1d11a23b461,0x3ffe // ln(1/frcpa(1+175/2^-8))
-data8 0x864ba644a18e6e05,0x3ffe // ln(1/frcpa(1+176/2^-8))
-data8 0x86ee1182dcc432f7,0x3ffe // ln(1/frcpa(1+177/2^-8))
-data8 0x875a925d7e48c316,0x3ffe // ln(1/frcpa(1+178/2^-8))
-data8 0x87fdaa109d23aef7,0x3ffe // ln(1/frcpa(1+179/2^-8))
-data8 0x88a129ed4becfaf2,0x3ffe // ln(1/frcpa(1+180/2^-8))
-data8 0x89451278ecd7f9cf,0x3ffe // ln(1/frcpa(1+181/2^-8))
-data8 0x89b29295f8432617,0x3ffe // ln(1/frcpa(1+182/2^-8))
-data8 0x8a572ac5a5496882,0x3ffe // ln(1/frcpa(1+183/2^-8))
-data8 0x8afc2d0ce3b2dadf,0x3ffe // ln(1/frcpa(1+184/2^-8))
-data8 0x8b6a69c608cfd3af,0x3ffe // ln(1/frcpa(1+185/2^-8))
-data8 0x8c101e106e899a83,0x3ffe // ln(1/frcpa(1+186/2^-8))
-data8 0x8cb63de258f9d626,0x3ffe // ln(1/frcpa(1+187/2^-8))
-data8 0x8d2539c5bd19e2b1,0x3ffe // ln(1/frcpa(1+188/2^-8))
-data8 0x8dcc0e064b29e6f1,0x3ffe // ln(1/frcpa(1+189/2^-8))
-data8 0x8e734f45d88357ae,0x3ffe // ln(1/frcpa(1+190/2^-8))
-data8 0x8ee30cef034a20db,0x3ffe // ln(1/frcpa(1+191/2^-8))
-data8 0x8f8b0515686d1d06,0x3ffe // ln(1/frcpa(1+192/2^-8))
-data8 0x90336bba039bf32f,0x3ffe // ln(1/frcpa(1+193/2^-8))
-data8 0x90a3edd23d1c9d58,0x3ffe // ln(1/frcpa(1+194/2^-8))
-data8 0x914d0de2f5d61b32,0x3ffe // ln(1/frcpa(1+195/2^-8))
-data8 0x91be0c20d28173b5,0x3ffe // ln(1/frcpa(1+196/2^-8))
-data8 0x9267e737c06cd34a,0x3ffe // ln(1/frcpa(1+197/2^-8))
-data8 0x92d962ae6abb1237,0x3ffe // ln(1/frcpa(1+198/2^-8))
-data8 0x9383fa6afbe2074c,0x3ffe // ln(1/frcpa(1+199/2^-8))
-data8 0x942f0421651c1c4e,0x3ffe // ln(1/frcpa(1+200/2^-8))
-data8 0x94a14a3845bb985e,0x3ffe // ln(1/frcpa(1+201/2^-8))
-data8 0x954d133857f861e7,0x3ffe // ln(1/frcpa(1+202/2^-8))
-data8 0x95bfd96468e604c4,0x3ffe // ln(1/frcpa(1+203/2^-8))
-data8 0x9632d31cafafa858,0x3ffe // ln(1/frcpa(1+204/2^-8))
-data8 0x96dfaabd86fa1647,0x3ffe // ln(1/frcpa(1+205/2^-8))
-data8 0x9753261fcbb2a594,0x3ffe // ln(1/frcpa(1+206/2^-8))
-data8 0x9800c11b426b996d,0x3ffe // ln(1/frcpa(1+207/2^-8))
-data8 0x9874bf4d45ae663c,0x3ffe // ln(1/frcpa(1+208/2^-8))
-data8 0x99231f5ee9a74f79,0x3ffe // ln(1/frcpa(1+209/2^-8))
-data8 0x9997a18a56bcad28,0x3ffe // ln(1/frcpa(1+210/2^-8))
-data8 0x9a46c873a3267e79,0x3ffe // ln(1/frcpa(1+211/2^-8))
-data8 0x9abbcfc621eb6cb6,0x3ffe // ln(1/frcpa(1+212/2^-8))
-data8 0x9b310cb0d354c990,0x3ffe // ln(1/frcpa(1+213/2^-8))
-data8 0x9be14cf9e1b3515c,0x3ffe // ln(1/frcpa(1+214/2^-8))
-data8 0x9c5710b8cbb73a43,0x3ffe // ln(1/frcpa(1+215/2^-8))
-data8 0x9ccd0abd301f399c,0x3ffe // ln(1/frcpa(1+216/2^-8))
-data8 0x9d7e67f3bdce8888,0x3ffe // ln(1/frcpa(1+217/2^-8))
-data8 0x9df4ea81a99daa01,0x3ffe // ln(1/frcpa(1+218/2^-8))
-data8 0x9e6ba405a54514ba,0x3ffe // ln(1/frcpa(1+219/2^-8))
-data8 0x9f1e21c8c7bb62b3,0x3ffe // ln(1/frcpa(1+220/2^-8))
-data8 0x9f956593f6b6355c,0x3ffe // ln(1/frcpa(1+221/2^-8))
-data8 0xa00ce1092e5498c3,0x3ffe // ln(1/frcpa(1+222/2^-8))
-data8 0xa0c08309c4b912c1,0x3ffe // ln(1/frcpa(1+223/2^-8))
-data8 0xa1388a8c6faa2afa,0x3ffe // ln(1/frcpa(1+224/2^-8))
-data8 0xa1b0ca7095b5f985,0x3ffe // ln(1/frcpa(1+225/2^-8))
-data8 0xa22942eb47534a00,0x3ffe // ln(1/frcpa(1+226/2^-8))
-data8 0xa2de62326449d0a3,0x3ffe // ln(1/frcpa(1+227/2^-8))
-data8 0xa357690f88bfe345,0x3ffe // ln(1/frcpa(1+228/2^-8))
-data8 0xa3d0a93f45169a4b,0x3ffe // ln(1/frcpa(1+229/2^-8))
-data8 0xa44a22f7ffe65f30,0x3ffe // ln(1/frcpa(1+230/2^-8))
-data8 0xa500c5e5b4c1aa36,0x3ffe // ln(1/frcpa(1+231/2^-8))
-data8 0xa57ad064eb2ebbc2,0x3ffe // ln(1/frcpa(1+232/2^-8))
-data8 0xa5f5152dedf4384e,0x3ffe // ln(1/frcpa(1+233/2^-8))
-data8 0xa66f9478856233ec,0x3ffe // ln(1/frcpa(1+234/2^-8))
-data8 0xa6ea4e7cca02c32e,0x3ffe // ln(1/frcpa(1+235/2^-8))
-data8 0xa765437325341ccf,0x3ffe // ln(1/frcpa(1+236/2^-8))
-data8 0xa81e21e6c75b4020,0x3ffe // ln(1/frcpa(1+237/2^-8))
-data8 0xa899ab333fe2b9ca,0x3ffe // ln(1/frcpa(1+238/2^-8))
-data8 0xa9157039c51ebe71,0x3ffe // ln(1/frcpa(1+239/2^-8))
-data8 0xa991713433c2b999,0x3ffe // ln(1/frcpa(1+240/2^-8))
-data8 0xaa0dae5cbcc048b3,0x3ffe // ln(1/frcpa(1+241/2^-8))
-data8 0xaa8a27ede5eb13ad,0x3ffe // ln(1/frcpa(1+242/2^-8))
-data8 0xab06de228a9e3499,0x3ffe // ln(1/frcpa(1+243/2^-8))
-data8 0xab83d135dc633301,0x3ffe // ln(1/frcpa(1+244/2^-8))
-data8 0xac3fb076adc7fe7a,0x3ffe // ln(1/frcpa(1+245/2^-8))
-data8 0xacbd3cbbe47988f1,0x3ffe // ln(1/frcpa(1+246/2^-8))
-data8 0xad3b06b1a5dc57c3,0x3ffe // ln(1/frcpa(1+247/2^-8))
-data8 0xadb90e94af887717,0x3ffe // ln(1/frcpa(1+248/2^-8))
-data8 0xae3754a218f7c816,0x3ffe // ln(1/frcpa(1+249/2^-8))
-data8 0xaeb5d9175437afa2,0x3ffe // ln(1/frcpa(1+250/2^-8))
-data8 0xaf349c322e9c7cee,0x3ffe // ln(1/frcpa(1+251/2^-8))
-data8 0xafb39e30d1768d1c,0x3ffe // ln(1/frcpa(1+252/2^-8))
-data8 0xb032df51c2c93116,0x3ffe // ln(1/frcpa(1+253/2^-8))
-data8 0xb0b25fd3e6035ad9,0x3ffe // ln(1/frcpa(1+254/2^-8))
-data8 0xb1321ff67cba178c,0x3ffe // ln(1/frcpa(1+255/2^-8))
-//
-data8 0xC7DC2985D3B44557,0x3FCA // A00
-//
-// polynomial approximation of ln(GAMMA(x)), 1 <= x < 2.25
-// [0.875,1.25)
-data8 0xBF9A04F7E40C8498,0x3FAB79D8D9380F03 // C17,C16
-data8 0xBFB3B63609CA0CBD,0x3FB5564EA1675539 // C13,C12
-data8 0xBFBC806766F48C41,0x3FC010B36CDA773A // C9,C8
-data8 0xD45CE0BD54BE3D67,0xBFFC // C5
-data8 0xCD26AADF559676D0,0xBFFD // C3
-data8 0x93C467E37DB0C7A7,0xBFFE // C1
-data8 0xBFB10C251723B123,0x3FB2669DAD69A12D // C15,C14
-data8 0xBFB748A3CFCE4717,0x3FB9A01DEE29966A // C11,C10
-data8 0xBFC2703A1D85497E,0x3FC5B40CB0FD353C // C7,C6
-data8 0x8A8991563ECBBA5D,0x3FFD // C4
-data8 0xD28D3312983E9844,0x3FFE // C2
-data8 0,0 // C0
-// [1.25,1.75)
-data8 0xBF12680486396DE6,0x3F23C51FC332CD9D // C17,C16
-data8 0xBF422633DA3A1496,0x3F4CC70680768857 // C13,C12
-data8 0xBF6E2F1A1F804B5D,0x3F78FCE02A032428 // C9,C8
-data8 0x864D46FA895985C1,0xBFFA // C5
-data8 0x97213C6E35E12043,0xBFFC // C3
-data8 0x8A8A42A401D979B7,0x3FC7 // C1
-data8 0xBF2E098A8A2332A8,0x3F370E61B73B205C // C15,C14
-data8 0xBF56F9849D3BC6CC,0x3F6283126F58D7F4 // C11,C10
-data8 0xBF851F9F9516A98F,0x3F9266E797A1433F // C7,C6
-data8 0x845A14A6A81B0638,0x3FFB // C4
-data8 0xF7B95E4771C55C99,0x3FFD // C2
-data8 0xF8CDCDE61C520E0F,0xBFFB // C0
-// [1.75,2.25)
-data8 0xBEA01D7AFA5D8F52,0x3EB1010986E60253 // C17,C16
-data8 0xBEE3CBEDB4C918AA,0x3EF580F6D9D0F72D // C13,C12
-data8 0xBF2D3FD4C7F68563,0x3F40B36AF884AE9A // C9,C8
-data8 0xF2027E10C7B051EC,0xBFF7 // C5
-data8 0x89F000D2ABB03401,0xBFFB // C3
-data8 0xD8773039049E70B6,0x3FFD // C1
-data8 0xBEC112CD07CFC31A,0x3ED2528A428D30E1 // C15,C14
-data8 0xBF078DE5618D8C9F,0x3F1A127AD811A53D // C11,C10
-data8 0xBF538AC5C2BF540D,0x3F67ADD6EADB5718 // C7,C6
-data8 0xA8991563EC243383,0x3FF9 // C4
-data8 0xA51A6625307D3230,0x3FFD // C2
-data8 0,0 // C0
-//
-// polynomial approximation of ln(sin(Pi*x)/(Pi*x)), 9 <= x <= 0.5
-data8 0xBFDC1BF0931AE591,0x3FD36D6D6CE263D7 //S28,S26
-data8 0xBFBD516F4FD9FB18,0xBFBBE1703F315086 //S20,S18
-data8 0xAAB5A3CCEFCD3628,0xBFFC //S12
-data8 0x80859B5C318E19A5,0xBFFD //S8
-data8 0x8A8991563EC7EB33,0xBFFE //S4
-data8 0xBFD23AB9E6CC88AC,0xBF9957F5146FC7AF //S24,S22
-data8 0xBFC007B324E23040,0xBFC248DEC29CAC4A //S16,S14
-data8 0xCD00EFF2F8F86899,0xBFFC //S10
-data8 0xADA06587FACD668B,0xBFFD //S6
-data8 0xD28D3312983E98A0,0xBFFF //S2
-//
-data8 0x8090F777D7942F73,0x4001 // PR01
-data8 0xE5B521193CF61E63,0x4000 // PR11
-data8 0xC02C000000001939 // (-15;-14)
-data8 0x0000000000000233 // (-15;-14)
-data8 0xC02A000000016124 // (-14;-13)
-data8 0x0000000000002BFB // (-14;-13)
-data8 0xC02800000011EED9 // (-13;-12)
-data8 0x0000000000025CBB // (-13;-12)
-data8 0xC026000000D7322A // (-12;-11)
-data8 0x00000000001E1095 // (-12;-11)
-data8 0xC0240000093F2777 // (-11;-10)
-data8 0x00000000013DD3DC // (-11;-10)
-data8 0xC02200005C7768FB // (-10;-9)
-data8 0x000000000C9539B9 // (-10;-9)
-data8 0xC02000034028B3F9 // (-9;-8)
-data8 0x000000007570C565 // (-9;-8)
-data8 0xC01C0033FDEDFE1F // (-8;-7)
-data8 0x00000007357E670E // (-8;-7)
-data8 0xC018016B25897C8D // (-7;-6)
-data8 0x000000346DC5D639 // (-7;-6)
-data8 0xC014086A57F0B6D9 // (-6;-5)
-data8 0x0000010624DD2F1B // (-6;-5)
-data8 0xC010284E78599581 // (-5;-4)
-data8 0x0000051EB851EB85 // (-5;-4)
-data8 0xC009260DBC9E59AF // (-4;-3)
-data8 0x000028F5C28F5C29 // (-4;-3)
-data8 0xC003A7FC9600F86C // (-3;-2)
-data8 0x0000666666666666 // (-3;-2)
-data8 0xCC15879606130890,0x4000 // PR21
-data8 0xB42FE3281465E1CC,0x4000 // PR31
-//
-data8 0x828185F0B95C9916,0x4001 // PR00
-//
-data8 0xD4D3C819E4E5654B,0x4000 // PR10
-data8 0xA82FBBA4FCC75298,0x4000 // PR20
-data8 0xC02DFFFFFFFFFE52 // (-15;-14)
-data8 0x000000000000001C // (-15;-14)
-data8 0xC02BFFFFFFFFE6C7 // (-14;-13)
-data8 0x00000000000001A6 // (-14;-13)
-data8 0xC029FFFFFFFE9EDC // (-13;-12)
-data8 0x0000000000002BFB // (-13;-12)
-data8 0xC027FFFFFFEE1127 // (-12;-11)
-data8 0x000000000001EEC8 // (-12;-11)
-data8 0xC025FFFFFF28CDD4 // (-11;-10)
-data8 0x00000000001E1095 // (-11;-10)
-data8 0xC023FFFFF6C0D7C0 // (-10;-9)
-data8 0x000000000101B2B3 // (-10;-9)
-data8 0xC021FFFFA3884BD0 // (-9;-8)
-data8 0x000000000D6BF94D // (-9;-8)
-data8 0xC01FFFF97F8159CF // (-8;-7)
-data8 0x00000000C9539B89 // (-8;-7)
-data8 0xC01BFFCBF76B86F0 // (-7;-6)
-data8 0x00000007357E670E // (-7;-6)
-data8 0xC017FE92F591F40D // (-6;-5)
-data8 0x000000346DC5D639 // (-6;-5)
-data8 0xC013F7577A6EEAFD // (-5;-4)
-data8 0x00000147AE147AE1 // (-5;-4)
-data8 0xC00FA471547C2FE5 // (-4;-3)
-data8 0x00000C49BA5E353F // (-4;-3)
-data8 0xC005FB410A1BD901 // (-3;-2)
-data8 0x000053F7CED91687 // (-3;-2)
-data8 0x80151BB918A293AA,0x4000 // PR30
-data8 0xB3C9F8F47422A314,0x400B // PRN
-//
-// right negative roots
-//(-3;-2)
-data8 0x40BFCF8B90BE7F6B,0x40B237623345EFC3 // A15,A14
-data8 0x407A92EFB03B281E,0x40728700C7819759 // A11,A10
-data8 0x403809F04EF4D0F2,0x4038D32F682D9593 // A7,A6
-data8 0xB4A5302C53C2F2D8,0x3FFF // A3
-data8 0xC1FF4B357A9B0383,0x3FFF // A1
-data8 0x409C46632EB4B2D3,0x4091A72AFA2148F5 // A13,A12
-data8 0x4059297AC79A88DB,0x40548EAA7BE7FA6B // A9,A8
-data8 0x4017339FE04B227F,0x4021718D7CA09E02 // A5,A4
-data8 0x9B775D8017AAE668,0x4001 // A2
-data8 0x8191DB68FF4366A1,0x3FC9 // A0
-//(-4;-3)
-data8 0x425260910D35307B,0x422668F5BE7983BB // A15,A14
-data8 0x41A4454DBE4BEE43,0x41799CA93F6EA817 // A11,A10
-data8 0x40FBB97AA1400F31,0x40D293C3F7ADAB15 // A7,A6
-data8 0xE089B8926AE4517B,0x4005 // A3
-data8 0xF90532F97D630C69,0x4001 // A1
-data8 0x41F9F0CF98C5F2EA,0x41D026336C6BF394 // A13,A12
-data8 0x415057F61156D5B8,0x41251EA3055CB754 // A9,A8
-data8 0x40A99A6337D9FC2B,0x408267203D776151 // A5,A4
-data8 0xCEA694BB8A8827A9,0x4003 // A2
-data8 0xF4B02F1D73D30EED,0x3FCD // A0
-//(-5;-4)
-data8 0x4412365489340979,0x43C86441BAFDEE39 // A15,A14
-data8 0x42ED68FCB19352DD,0x42A45FCE3905CD6F // A11,A10
-data8 0x41CD14FE49FD4FCA,0x41855E3DBFA89744 // A7,A6
-data8 0xAACD88D954E0EC16,0x400B // A3
-data8 0xD652E7A490B0DCDF,0x4003 // A1
-data8 0x437F52608E0E752A,0x433560E0633E33D5 // A13,A12
-data8 0x425C83998976DE3D,0x421433DCCD3B473B // A9,A8
-data8 0x4140261EB5732106,0x40F96D18E21AE6CC // A5,A4
-data8 0xA220AE6C09FA8A0E,0x4007 // A2
-data8 0xCC1682D17A2B5A58,0xBFCF // A0
-//(-6;-5)
-data8 0x4630E41D6386CF5A,0x45C2E7992C628C8C // A15,A14
-data8 0x447AABEC714F913A,0x440EDCAB45339F3A // A11,A10
-data8 0x42C9A8D00C97E3CE,0x425F7D8D5BEAB44D // A7,A6
-data8 0x929EC2B1FB95BB5B,0x4012 // A3
-data8 0xF6B970414D717D38,0x4005 // A1
-data8 0x45545E578976F6A2,0x44E738288DD52686 // A13,A12
-data8 0x43A20921FEC49492,0x433557FD7C6A41B3 // A9,A8
-data8 0x41F3E01773761DB4,0x418A225DF2DA6C47 // A5,A4
-data8 0xE7661976117F9312,0x400B // A2
-data8 0xC33C13FEE07494DE,0x3FCF // A0
-//(-7;-6)
-data8 0x4898F1E6133305AD,0x4802C5306FE4A850 // A15,A14
-data8 0x463FD37946B44094,0x45A8D489B784C2DD // A11,A10
-data8 0x43E9500995815F06,0x4354F21E2FEE6DF5 // A7,A6
-data8 0xEF281D1E1BBE10BD,0x4019 // A3
-data8 0xB4EF24F1D78C2029,0x4008 // A1
-data8 0x476AB1D5930011E5,0x46D4867E77BFB622 // A13,A12
-data8 0x45139151ECDEF7C5,0x447F3A2BC6BF466F // A9,A8
-data8 0x42C1D3D50713FA40,0x422F9C7B52556A1B // A5,A4
-data8 0xFE711A4267CEA83A,0x4010 // A2
-data8 0xD11E91B3FF8F4B94,0xBFD2 // A0
-//(-8;-7)
-data8 0x4B39E57569811B6E,0x4A7656073EB1FA21 // A15,A14
-data8 0x482C9B24A516B0BB,0x47698FF55139C62B // A11,A10
-data8 0x452393E2BC8E8D04,0x44628E1C710DA478 // A7,A6
-data8 0x9F2A95AF1B7A773F,0x4022 // A3
-data8 0x9DA03D51C303C918,0x400B // A1
-data8 0x49B24C241A3D5BCB,0x48F01CB936ECDA67 // A13,A12
-data8 0x46A712B3425C6797,0x45E5164114BD6DA1 // A9,A8
-data8 0x43A216A356069D01,0x42E25E42A45E2108 // A5,A4
-data8 0xC1F42ED57BBC2529,0x4016 // A2
-data8 0xB1C7B615A7DCA8A9,0xBFD7 // A0
-//(-9;-8)
-data8 0x4E09D478E5EE857D,0x4D1647782106E9AB // A15,A14
-data8 0x4A3C7F4D51927548,0x49497954796D743A // A11,A10
-data8 0x467387BD6AF0CBDF,0x4582843E134111D2 // A7,A6
-data8 0x9F003C6DE9666513,0x402B // A3
-data8 0x9D8447F6BF99950A,0x400E // A1
-data8 0x4C22364D238C61A9,0x4B300B18050AB940 // A13,A12
-data8 0x4857004D64215772,0x4765074E448C3C9A // A9,A8
-data8 0x44920E9EA07BF624,0x43A257BEC94BBF48 // A5,A4
-data8 0xC1D1C49AC5B2A4B4,0x401C // A2
-data8 0x9A749AF9F2D2E688,0x3FDB // A0
-//(-10;-9)
-data8 0x5102C7C43EA26C83,0x4FDCD174DEB0426B // A15,A14
-data8 0x4C6A036195CD5BAD,0x4B44ABB52B65628A // A11,A10
-data8 0x47D6439374B98FED,0x46B2C3903EF44D7D // A7,A6
-data8 0xE25BAF73AB8A7DB3,0x4034 // A3
-data8 0xB130901CA6D81B61,0x4011 // A1
-data8 0x4EB50BB0726AE206,0x4D907A96E6D2B6E2 // A13,A12
-data8 0x4A20975D78EAF01A,0x48FAF79C9C3E7908 // A9,A8
-data8 0x459044144129A247,0x446D6043FA3150A3 // A5,A4
-data8 0xF547997E083D9BA7,0x4022 // A2
-data8 0x977AF525A6ECA1BC,0x3FDC // A0
-//(-11;-10)
-data8 0x5420A5D5E90C6D73,0x52C4710A503DC67A // A15,A14
-data8 0x4EB2ED07BA88D2A8,0x4D581001ED9A5ECE // A11,A10
-data8 0x494A8A28E9E3DFEF,0x47F1E4E1E476793E // A7,A6
-data8 0xDD0C97E12D4A3378,0x403E // A3
-data8 0xDD7C12D5182FD543,0x4014 // A1
-data8 0x5167ED536877A072,0x500DF9AF21DDC0B6 // A13,A12
-data8 0x4BFEE6F04BC34FF8,0x4AA4175CEF736A5E // A9,A8
-data8 0x4698D1B4388FEC78,0x4541EDE7607A600D // A5,A4
-data8 0xBF9F645F282AC552,0x4029 // A2
-data8 0xAE1BBE4D3CDACCF4,0x3FE1 // A0
-//(-12;-11)
-data8 0x575F0EEF5FB7D4C0,0x55CBB7302B211A7C // A15,A14
-data8 0x5113A4F1825C7CB2,0x4F822A0D46E0605A // A11,A10
-data8 0x4ACED38FC8BE069A,0x493E3B56D2649F18 // A7,A6
-data8 0x8FA8FF5DF8B72D5E,0x4049 // A3
-data8 0x9845417E8598D642,0x4018 // A1
-data8 0x5437780541C3F2D3,0x52A56279B563C1B2 // A13,A12
-data8 0x4DF0F71A48C50188,0x4C600B358988DEBF // A9,A8
-data8 0x47AE7EE95BDA3DE9,0x46200599DC16B18F // A5,A4
-data8 0xB5249F914932E55D,0x4030 // A2
-data8 0xEAE760CD2C086094,0x3FE5 // A0
-//(-13;-12)
-data8 0x5ABA5848651F6D18,0x58EF60D8A817650B // A15,A14
-data8 0x538A8CA86E13EFB1,0x51C05DBD4D01076D // A11,A10
-data8 0x4C607594C339D259,0x4A9585BD5BF932BB // A7,A6
-data8 0xF26D282C36EC3611,0x4053 // A3
-data8 0xE467DF4810EE7EEE,0x401B // A1
-data8 0x5721D9BA485E8CC3,0x5555AF2CCFB2104D // A13,A12
-data8 0x4FF4619A17B14EA6,0x4E29B2F29EB9F8C4 // A9,A8
-data8 0x48CCF27629D46E79,0x47044715F991A63D // A5,A4
-data8 0xCBC92FB9BDAA95A9,0x4037 // A2
-data8 0xFB743A426163665B,0xBFE6 // A0
-//(-14;-13)
-data8 0x5E3295B24B353EAA,0x5C2B447E29796F20 // A15,A14
-data8 0x5615A35CB5EAFAE5,0x54106AB089C95CAF // A11,A10
-data8 0x4DFEC7D93501900A,0x4BF8C4C685F01B83 // A7,A6
-data8 0x820899603D9A74D5,0x405F // A3
-data8 0xB9949919933821CB,0x401F // A1
-data8 0x5A23373DB9A995AC,0x581CBA0AF7F53009 // A13,A12
-data8 0x520929836BB304CD,0x500386409A7076DA // A9,A8
-data8 0x49F480173FEAF90B,0x47F1ACB14B810793 // A5,A4
-data8 0x86881B8674DBF205,0x403F // A2
-data8 0x8CF3CC35AA2C5F90,0x3FED // A0
-//(-15;-14)
-data8 0x61C37D53BE0029D6,0x5F80667CD9D68354 // A15,A14
-data8 0x58B3F01898E6605B,0x567149652116DB6A // A11,A10
-data8 0x4FA82FA4F5D35B00,0x4D663DB00832DF8F // A7,A6
-data8 0xAE426731C9B94996,0x406A // A3
-data8 0xA264C84BE3708F3F,0x4023 // A1
-data8 0x5D3B254BC1C806A8,0x5AF72E736048B553 // A13,A12
-data8 0x542E476505104BB0,0x51EAD96CDC4FB48F // A9,A8
-data8 0x4B25095F498DB134,0x48E4B9FDEBFE24AB // A5,A4
-data8 0xCE076A5A116C1D34,0x4046 // A2
-data8 0x940013871A15050B,0x3FF1 // A0
-//
-// left negative roots
-//(-3;-2)
-data8 0x41AEB7998DBE2B2C,0xC19053D8FAC05DF7 // A16,A15
-data8 0x4133197BF1ADEAF9,0xC1150728B9B82072 // A12,A11
-data8 0x40BDBA65E74F4526,0xC0A12239BEEF8F72 // A8,A7
-data8 0xFA8256664F99E2AA,0x4004 // A4
-data8 0x9933F9E132D2A5DB,0x4002 // A2
-data8 0x416FFB167B85F77C,0xC15166AE0ACCF87C // A14,A13
-data8 0x40F75815106322C0,0xC0DA2D23C59C348D // A10,A9
-data8 0x4084373F7CC42043,0xC0685884581F8C61 // A6,A5
-data8 0xA0C2D6186460FF9D,0xC003 // A3
-data8 0xF5096D48258CA0AD,0xBFFF // A1
-//(-4;-3)
-data8 0xC3E5BD233016D4B9,0x43A084DAD2D94AB1 // A15,A14
-data8 0xC2CCFFF5E5AED722,0x4286D143AC7D29A6 // A11,A10
-data8 0xC1B7DBBE0680D07B,0x4173E8F3ABB79CED // A7,A6
-data8 0xE929ACEA59799BAF,0xC00A // A3
-data8 0xA5CCECB362B21E1C,0xC003 // A1
-data8 0xC357EED873871B81,0x43128E0B873204FC // A13,A12
-data8 0xC242225FA76E8450,0x41FD2F76AE7386CE // A9,A8
-data8 0xC13116F7806D0C7A,0x40EE8F829F141025 // A5,A4
-data8 0xFBB6F57021B5B397,0x4006 // A2
-data8 0xEEE019B4C05AC269,0xBFCB // A0
-//(-5;-4)
-data8 0xC626A52FE8AAA100,0x45B9FD1F4DDFE31E // A15,A14
-data8 0xC473812A5675F08B,0x440738530AECC254 // A11,A10
-data8 0xC2C5068B3F94AC27,0x425A8C5C539A500B // A7,A6
-data8 0x869FBFF732F20C3A,0xC012 // A3
-data8 0xE91251F7CF25A655,0xC005 // A1
-data8 0xC54C18CB48E5DA0F,0x44E07BD36FF561DF // A13,A12
-data8 0xC39BEC120D2FEBEA,0x4330FFA5388435BE // A9,A8
-data8 0xC1F13D5D163B7FB5,0x418752A6F5AC0F39 // A5,A4
-data8 0xDA99E33C51D360F0,0x400B // A2
-data8 0x9F47A66A2F53D9B9,0x3FD1 // A0
-//(-6;-5)
-data8 0xC8970DAC16B6D59E,0x480170728306FD76 // A15,A14
-data8 0xC63E0E5030604CF3,0x45A7924D74D57C65 // A11,A10
-data8 0xC3E8684E41730FC6,0x43544D54EA2E5B9A // A7,A6
-data8 0xEB7404450C47C5F4,0xC019 // A3
-data8 0xB30FB521D2C19F8B,0xC008 // A1
-data8 0xC768F34D35DF6320,0x46D348B3BB2E68B8 // A13,A12
-data8 0xC512AC2FE5EA638E,0x447DF44BC7FC5E17 // A9,A8
-data8 0xC2C15EA6B0AAFEF9,0x422EF5D308DBC420 // A5,A4
-data8 0xFBCEE5BCA70FD3A3,0x4010 // A2
-data8 0x8589A7CFFE0A3E86,0xBFD5 // A0
-//(-7;-6)
-data8 0xCB3995A0CC961E5A,0x4A7615C6C7116ADD // A15,A14
-data8 0xC82C5AFE0BF9C427,0x47695BD2F367668B // A11,A10
-data8 0xC52377E70BA14CF5,0x4462775E859E4392 // A7,A6
-data8 0x9EC8ED6E4C3D4DBE,0xC022 // A3
-data8 0x9D5FBD2E75520E65,0xC00B // A1
-data8 0xC9B21BB881A4DDF8,0x48EFEAB06FBA0207 // A13,A12
-data8 0xC6A6E8550CBC188F,0x45E4F3D26238B099 // A9,A8
-data8 0xC3A20427DF1B110A,0x42E24F3D636F2E4E // A5,A4
-data8 0xC1A4D12A82280CFB,0x4016 // A2
-data8 0xEF46D8DCCA9E8197,0x3FD2 // A0
-//(-8;-7)
-data8 0xCE0946982B27DE5B,0x4D15DBC6664E2DD2 // A15,A14
-data8 0xCA3C769F6B3B2B93,0x49497251CD0C4363 // A11,A10
-data8 0xC67384066C47F489,0x458281393433AB28 // A7,A6
-data8 0x9EF3459926D0F14F,0xC02B // A3
-data8 0x9D7BB7F2600DFF0B,0xC00E // A1
-data8 0xCC22351326C939A7,0x4B3009431C4F1D3F // A13,A12
-data8 0xC856FAADDD48815D,0x476502BC3ECA040C // A9,A8
-data8 0xC4920C2A84173810,0x43A255C052525F99 // A5,A4
-data8 0xC1C73B6554011EFA,0x401C // A2
-data8 0x954612700ADF8317,0xBFD8 // A0
-//(-9;-8)
-data8 0xD102F5CC7B590D3A,0x4FDD0F1C30E4EB22 // A15,A14
-data8 0xCC6A02912B0DF650,0x4B44AB18E4FCC159 // A11,A10
-data8 0xC7D64314B4A2FAAB,0x46B2C334AE5E2D34 // A7,A6
-data8 0xE2598724F7E28E99,0xC034 // A3
-data8 0xB12F6FE2E195452C,0xC011 // A1
-data8 0xCEB507747AF9356A,0x4D907802C08BA48F // A13,A12
-data8 0xCA2096E3DC29516F,0x48FAF6ED046A1DB7 // A9,A8
-data8 0xC59043D21BA5EE56,0x446D5FE468B30450 // A5,A4
-data8 0xF5460A8196B59C83,0x4022 // A2
-data8 0xB108F35A8EDA92D5,0xBFDD // A0
-//(-10;-9)
-data8 0xD420430D91F8265B,0x52C406CAAAC9E0EE // A15,A14
-data8 0xCEB2ECDDDAA3DAD1,0x4D580FDA97F92E3A // A11,A10
-data8 0xC94A8A192341B5D4,0x47F1E4D8C690D07B // A7,A6
-data8 0xDD0C5F920C2F0D2B,0xC03E // A3
-data8 0xDD7BED3631657B48,0xC014 // A1
-data8 0xD167F410E64E90A4,0x500DFFED20F714A7 // A13,A12
-data8 0xCBFEE6D9043169E9,0x4AA4174F64B40AA7 // A9,A8
-data8 0xC698D1A9AF0AB9C2,0x4541EDE14987A887 // A5,A4
-data8 0xBF9F43D461B3DE6E,0x4029 // A2
-data8 0xF3891A50642FAF26,0x3FE1 // A0
-//(-11;-10)
-data8 0xD75F0EEAF769D42A,0x55CBB72C8869183A // A15,A14
-data8 0xD113A4EF80394F77,0x4F822A0B96B3ECA9 // A11,A10
-data8 0xCACED38DC75763CB,0x493E3B5522D2D028 // A7,A6
-data8 0x8FA8FB5C92533701,0xC049 // A3
-data8 0x98453EDB9339C24E,0xC018 // A1
-data8 0xD43778026CCD4B20,0x52A5627753273B9B // A13,A12
-data8 0xCDF0F718DD7E1214,0x4C600B34582911EB // A9,A8
-data8 0xC7AE7EE7F112362C,0x46200599439C264F // A5,A4
-data8 0xB5249C335342B5BC,0x4030 // A2
-data8 0x881550711D143475,0x3FE4 // A0
-//(-12;-11)
-data8 0xDAB9C724EEEE2BBB,0x58EEC971340EDDBA // A15,A14
-data8 0xD38A8C8AE63BD8BF,0x51C05DB21CEE00D3 // A11,A10
-data8 0xCC607594C311C12D,0x4A9585BD5BE6AB57 // A7,A6
-data8 0xF26D282C36EC0E66,0xC053 // A3
-data8 0xE467DF1FA674BFAE,0xC01B // A1
-data8 0xD721DE506999AA9C,0x5555B34F71B45132 // A13,A12
-data8 0xCFF4619A476BF76F,0x4E29B2F2BBE7A67E // A9,A8
-data8 0xC8CCF27629D48EDC,0x47044715F991AB46 // A5,A4
-data8 0xCBC92FB9BDAA928D,0x4037 // A2
-data8 0xCE27C4F01CF53284,0xBFE6 // A0
-//(-13;-12)
-data8 0xDE3295B24355C5A1,0x5C2B447E298B562D // A15,A14
-data8 0xD615A35CB5E92103,0x54106AB089C95E8C // A11,A10
-data8 0xCDFEC7D935019005,0x4BF8C4C685F01B83 // A7,A6
-data8 0x820899603D9A74D5,0xC05F // A3
-data8 0xB9949916F8DF4AC4,0xC01F // A1
-data8 0xDA23373DBA0B7548,0x581CBA0AF7F45C01 // A13,A12
-data8 0xD20929836BB30934,0x500386409A7076D6 // A9,A8
-data8 0xC9F480173FEAF90B,0x47F1ACB14B810793 // A5,A4
-data8 0x86881B8674DBF205,0x403F // A2
-data8 0x8CFAFA9A142C1FF0,0x3FED // A0
-//(-14;-13)
-data8 0xE1C33F356FA2C630,0x5F8038B8AA919DD7 // A15,A14
-data8 0xD8B3F0167E14982D,0x5671496400BAE0DB // A11,A10
-data8 0xCFA82FA4F5D25C3E,0x4D663DB008328C58 // A7,A6
-data8 0xAE426731C9B94980,0xC06A // A3
-data8 0xA264C84BB8A66F86,0xC023 // A1
-data8 0xDD3B26E34762ED1E,0x5AF72F76E3C1B793 // A13,A12
-data8 0xD42E476507E3D06E,0x51EAD96CDD881DFA // A9,A8
-data8 0xCB25095F498DB15F,0x48E4B9FDEBFE24B5 // A5,A4
-data8 0xCE076A5A116C1D32,0x4046 // A2
-data8 0x94001BF5A24966F5,0x3FF1 // A0
-//(-15;-14)
-data8 0xE56DB8B72D7156FF,0x62EAB0CDB22539BE // A15,A14
-data8 0xDB63D76B0D3457E7,0x58E254823D0AE4FF // A11,A10
-data8 0xD15F060BF548404A,0x4EDE65C20CD4E961 // A7,A6
-data8 0x900DA565ED76C19D,0xC076 // A3
-data8 0x9868C809852DA712,0xC027 // A1
-data8 0xE067CCDA0408AAF0,0x5DE5A79C5C5C54AF // A13,A12
-data8 0xD6611ADBF5958ED0,0x53E0294092BE9677 // A9,A8
-data8 0xCC5EA28D90EE8C5D,0x49E014930EF336EE // A5,A4
-data8 0xB57930DCE7A61AE8,0x404E // A2
-data8 0x976BEC1F30DF151C,0x3FF5 // A0
-LOCAL_OBJECT_END(lgamma_data)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_lgamma)
-
-{ .mfi
- getf.exp GR_SignExp = f8
- frcpa.s1 FR_C,p9 = f1,f8
- mov GR_ExpMask = 0x1ffff
-}
-{ .mfi
- addl GR_ad_Data = @ltoff(lgamma_data),gp
- fcvt.fx.s1 FR_int_N = f8
- mov GR_2_25 = 0x4002 // 2.25
-};;
-{ .mfi
- getf.d GR_ArgAsIs = f8
- fclass.m p13,p0 = f8,0x1EF // is x NaTVal, NaN,
- // +/-0, +/-INF or +/-deno?
- mov GR_ExpBias = 0xFFFF
-}
-{ .mfi
- ld8 GR_ad_Data = [GR_ad_Data]
- fcvt.fx.trunc.s1 FR_int_Ntrunc = f8
- mov GR_ExpOf256 = 0x10007
-};;
-{ .mfi
- mov GR_ExpOf2 = 0x10000
- fcmp.lt.s1 p14,p15 = f8,f0 // p14 if x<0
- dep.z GR_Ind = GR_SignExp,8,4
-}
-{ .mfi
- and GR_Exp = GR_SignExp,GR_ExpMask
- fma.s1 FR_2 = f1,f1,f1
- cmp.lt p10,p0 = GR_SignExp,GR_ExpBias
-};;
-{ .mfi
- add GR_ad_1 = 0xB80,GR_ad_Data
- fnorm.s1 FR_NormX = f8
- shr.u GR_Arg = GR_ArgAsIs,48
-}
-{ .mib
- add GR_ad_Co = GR_Ind,GR_ad_Data
- add GR_ad_Ce = 0x10,GR_ad_Data
- // jump if the input argument is NaTVal, NaN, +/-0, +/-INF or +/-deno
-(p13) br.cond.spnt lgamma_spec
-};;
-lgamma_common:
-{ .mfi
- ldfpd FR_LocalMin,FR_05 = [GR_ad_1],16
- fmerge.se FR_x = f1,f8
- add GR_ad_2 = 0xBC0,GR_ad_Data
-}
-{ .mfb
- add GR_ad_Ce = GR_Ind,GR_ad_Ce
- fms.s1 FR_w = f8,f1,f1 // x-1
- // jump if the input argument is positive and less than 1.0
-(p10) br.cond.spnt lgamma_0_1
-};;
-{ .mfi
- ldfe FR_C01 = [GR_ad_Co],32
- fnma.s1 FR_InvX = FR_C,f8,f1 // NR iteration #1
-(p15) cmp.lt.unc p8,p0 = GR_ExpOf256,GR_SignExp
-}
-{ .mib
- ldfe FR_C11 = [GR_ad_Ce],32
-(p15) cmp.lt.unc p11,p0 = GR_Arg,GR_2_25
- // jump if the input argument isn't less than 512.0
-(p8) br.cond.spnt lgamma_pstirling
-};;
-{ .mfi
- ldfe FR_C21 = [GR_ad_Co],32
-(p14) fms.s1 FR_r = FR_C,f8,f1 // reduced arg for log(x)
-(p14) cmp.lt.unc p0,p9 = GR_Exp,GR_ExpOf256
-}
-{ .mib
- ldfe FR_C31 = [GR_ad_Ce],32
- add GR_ad_Co7 = 0x12C0,GR_ad_2
- // jump if the input argument is from range [1.0; 2.25)
-(p11) br.cond.spnt lgamma_1_2
-};;
-{ .mfi
- ldfe FR_C41 = [GR_ad_Co],32
- fcvt.xf FR_N = FR_int_N
- add GR_ad_Ce7 = 0x1310,GR_ad_2
-}
-{ .mfb
- ldfe FR_C51 = [GR_ad_Ce],32
-(p14) fma.s1 FR_5 = FR_2,FR_2,f1
- // jump if the input argument is less or equal to -512.0
-(p9) br.cond.spnt lgamma_negstirling
-};;
-{ .mfi
- ldfe FR_C61 = [GR_ad_Co],32
-(p14) fcvt.xf FR_Ntrunc = FR_int_Ntrunc
- shr GR_Ind = GR_Ind,4
-}
-{ .mfi
- ldfe FR_C71 = [GR_ad_Ce],32
-(p14) fma.s1 FR_Xp1 = f1,f1,FR_NormX // x+1
- cmp.eq p6,p7 = GR_ExpOf2,GR_SignExp
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- ldfe FR_C81 = [GR_ad_Co],32
-(p6) fma.s1 FR_x = f0,f0,FR_NormX
- shladd GR_Offs7 = GR_Ind,2,GR_Ind // (ind*16)*5
-}
-{ .mfi
- ldfe FR_C91 = [GR_ad_Ce],32
-(p7) fms.s1 FR_x = FR_x,f1,f1
- add GR_ad_Co7 = 0x800,GR_ad_Data
-};;
-{ .mfi
- ldfe FR_CA1 = [GR_ad_Co],32
-(p14) fma.s1 FR_3 = f1,f1,FR_2
- shladd GR_Offs7 = GR_Ind,1,GR_Offs7 // (ind*16)*7
-}
-{ .mfi
- ldfe FR_C00 = [GR_ad_Ce],32
-(p14) fma.s1 FR_Xp4 = FR_2,FR_2,FR_NormX
- add GR_ad_Ce7 = 0x810,GR_ad_Data
-};;
-{ .mfi
- ldfe FR_C10 = [GR_ad_Co],32
-(p6) fms.s1 FR_Xm2 = FR_w,f1,f1
- add GR_ad_Co7 = GR_ad_Co7,GR_Offs7
-}
-{ .mfi
- ldfe FR_C20 = [GR_ad_Ce],32
-(p14) fma.s1 FR_r2 = FR_r,FR_r,f0 // log(x)
- add GR_ad_Ce7 = GR_ad_Ce7,GR_Offs7
-};;
-{ .mfi
- ldfe FR_C30 = [GR_ad_Co],32
-(p14) fms.s1 FR_Xf = FR_NormX,f1,FR_N // xf = x - [x]
-(p14) mov GR_Arg17 = 0xC031 // -17
-}
-{ .mfi
- ldfe FR_C40 = [GR_ad_Ce],32
-(p14) fma.s1 FR_Xp5 = FR_5,f1,FR_NormX
-(p14) sub GR_Exp = GR_Exp,GR_ExpBias
-};;
-{ .mfi
- ldfe FR_C50 = [GR_ad_Co7],32
-(p14) fms.s1 FR_Xfr = FR_Xp1,f1,FR_Ntrunc // xfr = (x+1) - [x]
-(p14) cmp.lt.unc p13,p0 = GR_Arg,GR_Arg17
-}
-{ .mfb
- ldfe FR_C60 = [GR_ad_Ce7],32
-(p14) fma.s1 FR_Xp10 = FR_5,FR_2,FR_NormX
- // jump if the input argument is negative and great than -17.0
-(p13) br.cond.spnt lgamma_negrecursion
-};;
-{ .mfi
- ldfe FR_C70 = [GR_ad_Co7],32
- fma.s1 FR_C01 = FR_x,f1,FR_C01
-(p14) add GR_ad_Ce = 0x1310,GR_ad_2
-}
-{ .mfi
- ldfe FR_C80 = [GR_ad_Ce7],32
- fma.s1 FR_C11 = FR_x,f1,FR_C11
-(p14) add GR_ad_Co = 0x12C0,GR_ad_2
-};;
-{ .mfi
- ldfe FR_C90 = [GR_ad_Co7],32
- fma.s1 FR_C21 = FR_x,f1,FR_C21
- nop.i 0
-}
-{ .mfi
- ldfe FR_CA0 = [GR_ad_Ce7],32
- fma.s1 FR_C31 = FR_x,f1,FR_C31
- nop.i 0
-};;
-{ .mfi
- ldfe FR_CN = [GR_ad_Co7],32
- fma.s1 FR_C41 = FR_x,f1,FR_C41
- nop.i 0
-}
-{ .mfi
-(p14) ldfpd FR_P5,FR_P4 = [GR_ad_1],16
- fma.s1 FR_C51 = FR_x,f1,FR_C51
- nop.i 0
-};;
-{ .mfi
-(p14) ldfpd FR_P3,FR_P2 = [GR_ad_2],16
- fma.s1 FR_C61 = FR_x,f1,FR_C61
- nop.i 0
-}
-{ .mfi
-(p14) ldfe FR_Ln2 = [GR_ad_1]
- fma.s1 FR_C71 = FR_x,f1,FR_C71
- nop.i 0
-};;
-{ .mfi
-(p14) ldfpd FR_S28,FR_S26 = [GR_ad_Co],16
- fma.s1 FR_C81 = FR_x,f1,FR_C81
- add GR_ad_2 = 0x60,GR_ad_2
-}
-{ .mfi
-(p14) ldfpd FR_S24,FR_S22 = [GR_ad_Ce],16
- fma.s1 FR_C91 = FR_x,f1,FR_C91
- nop.i 0
-};;
-{ .mfi
-(p14) ldfpd FR_S20,FR_S18 = [GR_ad_Co],16
- fma.s1 FR_CA1 = FR_x,f1,FR_CA1
- nop.i 0
-}
-{ .mfi
-(p14) ldfpd FR_S16,FR_S14 = [GR_ad_Ce],16
- fma.s1 FR_C01 = FR_C01,FR_x,FR_C00
- nop.i 0
-};;
-{ .mfi
-(p14) getf.exp GR_SignExp = FR_Xf
- fma.s1 FR_C11 = FR_C11,FR_x,FR_C10
- nop.i 0
-}
-{ .mfi
-(p14) ldfe FR_S12 = [GR_ad_Co],16
- fma.s1 FR_C21 = FR_C21,FR_x,FR_C20
- nop.i 0
-};;
-{ .mfi
-(p14) getf.sig GR_Sig = FR_Xf
-(p14) frcpa.s1 FR_InvXf,p0 = f1,FR_Xf
- nop.i 0
-}
-{ .mfi
-(p14) ldfe FR_S10 = [GR_ad_Ce],16
- fma.s1 FR_C41 = FR_C41,FR_x,FR_C40
- nop.i 0
-};;
-{ .mfi
-(p14) ldfe FR_S8 = [GR_ad_Co],16
- fma.s1 FR_C51 = FR_C51,FR_x,FR_C50
- nop.i 0
-}
-{ .mfi
-(p14) ldfe FR_S6 = [GR_ad_Ce],16
- fma.s1 FR_C61 = FR_C61,FR_x,FR_C60
-(p14) and GR_Expf = GR_SignExp,GR_ExpMask
-};;
-{ .mfi
-(p14) sub GR_Expf = GR_Expf,GR_ExpBias
- fma.s1 FR_C71 = FR_C71,FR_x,FR_C70
-(p14) shl GR_Ind = GR_Sig,1
-}
-{ .mfi
-(p14) ldfe FR_S4 = [GR_ad_Co],16
- fma.s1 FR_C81 = FR_C81,FR_x,FR_C80
-(p14) cmp.eq.unc p8,p0 = 0,GR_Sig
-};;
-{ .mfi
-(p14) setf.sig FR_int_Nf = GR_Expf
- fma.s1 FR_C91 = FR_C91,FR_x,FR_C90
-(p14) shr.u GR_Ind = GR_Ind,56
-}
-{ .mfb
-(p14) ldfe FR_S2 = [GR_ad_Ce],16
- fma.s1 FR_CA1 = FR_CA1,FR_x,FR_CA0
- // jump if the input argument is integer number from range (-512.0;-17.0]
-(p8) br.cond.spnt lgamma_singularity
-};;
-{ .mfi
-(p14) getf.sig GR_Sig = FR_int_Ntrunc
- fma.s1 FR_C01 = FR_C01,FR_C11,f0
- nop.i 0
-}
-{ .mfi
-(p14) shladd GR_ad_T = GR_Ind,4,GR_ad_2
- fma.s1 FR_C31 = FR_C31,FR_x,FR_C30
- nop.i 0
-};;
-{ .mfi
-(p14) ldfe FR_Tf = [GR_ad_T]
-(p14) fms.s1 FR_rf = FR_InvXf,FR_Xf,f1 // reduced arg for log({x})
-(p14) extr.u GR_Ind = GR_ArgAsIs,44,8
-}
-{ .mfi
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
- fma.s1 FR_C21 = FR_C21,FR_C41,f0
- mov GR_SignOfGamma = 1
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C51 = FR_C51,FR_C61,f0
-(p14) tbit.z.unc p8,p0 = GR_Sig,0
-}
-{ .mfi
-(p14) shladd GR_ad_T = GR_Ind,4,GR_ad_2
-(p6) fma.s1 FR_CN = FR_CN,FR_Xm2,f0
- nop.i 0
-};;
-{ .mfi
-(p14) setf.sig FR_int_N = GR_Exp
- fma.s1 FR_C71 = FR_C71,FR_C81,f0
-(p8) sub GR_SignOfGamma = r0,GR_SignOfGamma
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_Xf2 = FR_Xf,FR_Xf,f0
- nop.i 0
-};;
-{ .mfi
-(p14) ldfe FR_T = [GR_ad_T]
- fma.s1 FR_C91 = FR_C91,FR_CA1,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_r2 = FR_r,FR_r,f0
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_C01 = FR_C01,FR_C31,f0
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
-(p14) fma.s1 FR_P54 = FR_P5,FR_r,FR_P4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p14) fma.s1 FR_P54f = FR_P5,FR_rf,FR_P4
- // jump if the input argument is non-integer from range (-512.0;-17.0]
-(p14) br.cond.spnt lgamma_negpoly
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_C51,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C71 = FR_C71,FR_C91,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_CN = FR_C01,FR_CN,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_C71,f0
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = FR_C21,FR_CN,f0
- br.ret.sptk b0 // exit for arguments from range [2.25; 512.0)
-};;
-// branch for calculating of ln(GAMMA(x)) for -512 < x < -17
-//---------------------------------------------------------------------
-.align 32
-lgamma_negpoly:
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf4 = FR_Xf2,FR_Xf2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf2,FR_S26
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S24 = FR_S24,FR_Xf2,FR_S22
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S20 = FR_S20,FR_Xf2,FR_S18
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S16 = FR_S16,FR_Xf2,FR_S14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S12 = FR_S12,FR_Xf2,FR_S10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S8 = FR_S8,FR_Xf2,FR_S6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S4 = FR_S4,FR_Xf2,FR_S2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_rf2 = FR_rf,FR_rf,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P32f = FR_P3,FR_rf,FR_P2 // log(x)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_r3 = FR_r2,FR_r,f0 // log(x)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcvt.xf FR_Nf = FR_int_Nf // log({x})
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf4,FR_S24
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf8 = FR_Xf4,FR_Xf4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S20 = FR_S20,FR_Xf4,FR_S16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_C51,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S12 = FR_S12,FR_Xf4,FR_S8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C71 = FR_C71,FR_C91,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_P10 = FR_r2,FR_05,FR_r // log(x)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P54 = FR_P54,FR_r2,FR_P32 // log(x)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_P10f = FR_rf2,FR_05,FR_rf // log({x})
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcvt.xf FR_N = FR_int_N // log(x)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_rf3 = FR_rf2,FR_rf,f0 // log({x})
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P54f = FR_P54f,FR_rf2,FR_P32f // log({x})
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf8,FR_S20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_TpNxLn2f = FR_Nf,FR_Ln2,FR_Tf // log({x})
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_CN = FR_C01,FR_CN,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_C71,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P54 = FR_P54,FR_r3,FR_P10 // log(x)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_TpNxLn2 = FR_N,FR_Ln2,FR_T // log(x)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P54f = FR_P54f,FR_rf3,FR_P10f // log({x})
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf8,FR_S12
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_C21 = FR_C21,FR_CN,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnX = FR_TpNxLn2,f1,FR_P54 // log(x)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnXf = FR_TpNxLn2f,f1,FR_P54f // log({x})
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf4,FR_S4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnX = FR_LnX,f1,FR_LnXf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_S28 = FR_S28,FR_Xf2,FR_C21
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fms.d.s0 f8 = FR_S28,f1,FR_LnX
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for x >= 512
-//---------------------------------------------------------------------
-.align 32
-lgamma_pstirling:
-{ .mfi
- ldfpd FR_P5,FR_P4 = [GR_ad_1],16
- nop.f 0
- and GR_Exp = GR_SignExp,GR_ExpMask
-}
-{ .mfi
- ldfpd FR_P3,FR_P2 = [GR_ad_2],16
- fma.s1 FR_InvX = FR_C,FR_InvX,FR_C // NR iteration #1
- mov GR_ExpBias = 0xffff
-};;
-{ .mfi
- ldfe FR_Ln2 = [GR_ad_1],16
- nop.f 0
- sub GR_Exp = GR_Exp,GR_ExpBias
-};;
-{ .mfi
- ldfpd FR_W4,FR_OvfBound = [GR_ad_2],16
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- setf.sig FR_int_N = GR_Exp
- fms.s1 FR_r = FR_C,f8,f1
- nop.i 0
-};;
-{ .mmf
- getf.sig GR_Sig = FR_NormX
- ldfe FR_LnSqrt2Pi = [GR_ad_1],16
- nop.f 0
-};;
-{ .mmf
- ldfe FR_W2 = [GR_ad_2],16
- nop.m 0
- fnma.s1 FR_InvX2 = FR_InvX,FR_NormX,f1 // NR iteration #2
-};;
-{ .mfi
- add GR_ad_2 = 0x40,GR_ad_2
- nop.f 0
- shl GR_Ind = GR_Sig,1
-};;
-{ .mfi
- mov GR_SignOfGamma = 1
- nop.f 0
- shr.u GR_Ind = GR_Ind,56
-};;
-{ .mfi
- shladd GR_ad_2 = GR_Ind,4,GR_ad_2
- fma.s1 FR_r2 = FR_r,FR_r,f0
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-};;
-{ .mfi
- ldfe FR_T = [GR_ad_2]
- fma.s1 FR_P54 = FR_P5,FR_r,FR_P4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fcmp.le.s1 p6,p0 = FR_OvfBound,FR_NormX
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_InvX2 = FR_InvX,FR_InvX2,FR_InvX // NR iteration #2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_N = FR_int_N
- nop.i 0
-}
-{ .mfb
- nop.m 0
- nop.f 0
- // jump if x is great than OVERFLOW_BOUNDARY
-(p6) br.cond.spnt lgamma_overflow
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_r3 = FR_r2,FR_r,f0
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
- fnma.s1 FR_P10 = FR_r2,FR_05,FR_r
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P54 = FR_P54,FR_r2,FR_P32
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_InvX = FR_InvX2,FR_NormX,f1 // NR iteration #3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_Xm05 = FR_NormX,f1,FR_05 // (x-1/2)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P54 = FR_P54,FR_r3,FR_P10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_InvX = FR_InvX2,FR_InvX,FR_InvX2 // NR iteration #3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX // ln(sqrt(2*Pi))-x
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnX = FR_TpNxLn2,f1,FR_P54
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_InvX2 = FR_InvX,FR_InvX,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // (x-1/2)*ln(x)+ln(sqrt(2*Pi))-x
- fma.s1 FR_LnX = FR_LnX,FR_Xm05,FR_LnSqrt2Pi
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_W2 = FR_W4,FR_InvX2,FR_W2 // W2 + W4/x^2
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = FR_InvX,FR_W2,FR_LnX
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for x < -512
-//---------------------------------------------------------------------
-.align 32
-lgamma_negstirling:
-{ .mfi
- ldfpd FR_P5,FR_P4 = [GR_ad_1],16
- fms.s1 FR_Xf = FR_NormX,f1,FR_N // xf = x - [x]
- and GR_Exp = GR_SignExp,GR_ExpMask
-}
-{ .mfi
- ldfpd FR_P3,FR_P2 = [GR_ad_2],16
- fma.s1 FR_InvX = FR_C,FR_InvX,FR_C // NR iteration #1
- mov GR_0x30033 = 0x30033
-};;
-{ .mfi
- ldfe FR_Ln2 = [GR_ad_1],16
- nop.f 0
- extr.u GR_Ind = GR_ArgAsIs,44,8
-}
-{ .mib
- ldfd FR_W4 = [GR_ad_2],16
- // jump if x is less or equal to -2^52, i.e. x is big negative integer
- cmp.leu.unc p7,p0 = GR_0x30033,GR_SignExp
-(p7) br.cond.spnt lgamma_singularity
-};;
-{ .mfi
- ldfpd FR_S28,FR_S26 = [GR_ad_Co7],16
- nop.f 0
- add GR_ad_LnT = 0x50,GR_ad_2
-}
-{ .mfi
- ldfpd FR_S24,FR_S22 = [GR_ad_Ce7],16
- nop.f 0
- mov GR_ExpBias = 0xffff
-};;
-{ .mfi
- ldfpd FR_S20,FR_S18 = [GR_ad_Co7],16
- nop.f 0
- shladd GR_ad_T = GR_Ind,4,GR_ad_LnT
-}
-{ .mfi
- ldfpd FR_S16,FR_S14 = [GR_ad_Ce7],16
- nop.f 0
- sub GR_Exp = GR_Exp,GR_ExpBias
-};;
-{ .mfi
- ldfe FR_S12 = [GR_ad_Co7],16
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_S10 = [GR_ad_Ce7],16
- fms.s1 FR_r = FR_C,f8,f1
- nop.i 0
-};;
-{ .mmf
- ldfe FR_S8 = [GR_ad_Co7],16
- ldfe FR_S6 = [GR_ad_Ce7],16
- nop.f 0
-};;
-{ .mfi
- ldfe FR_S4 = [GR_ad_Co7],16
- fma.s1 FR_Xf2 = FR_Xf,FR_Xf,f0
- nop.i 0
-}
-{ .mfi
- ldfe FR_S2 = [GR_ad_Ce7],16
- fnma.s1 FR_InvX2 = FR_InvX,FR_NormX,f1 // NR iteration #2
- nop.i 0
-};;
-{ .mfi
- setf.sig FR_int_N = GR_Exp
- frcpa.s1 FR_InvXf,p9 = f1,FR_Xf // 1/xf
- nop.i 0
-}
-{ .mfi
- ldfe FR_LnSqrt2Pi = [GR_ad_1],16
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- getf.exp GR_SignExp = FR_Xf
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_W2 = [GR_ad_2],16
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- getf.sig GR_Sig = FR_Xf
- fma.s1 FR_P54 = FR_P5,FR_r,FR_P4
- nop.i 0
-}
-{ .mfi
- ldfe FR_T = [GR_ad_T]
- fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-};;
-{ .mfi
- and GR_Exp = GR_SignExp,GR_ExpMask
- fma.s1 FR_r2 = FR_r,FR_r,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_Xm05 = FR_NormX,f1,FR_05 // (x-1/2)
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_InvX2 = FR_InvX,FR_InvX2,FR_InvX // NR iteration #2
- extr.u GR_Ind = GR_Sig,55,8
-}
-{ .mfi
- sub GR_Exp = GR_Exp,GR_ExpBias
- fma.s1 FR_Xf4 = FR_Xf2,FR_Xf2,f0
- cmp.eq p6,p0 = 0,GR_Sig
-};;
-{ .mfi
- setf.sig FR_int_Nf = GR_Exp
- fma.s1 FR_S28 = FR_S28,FR_Xf2,FR_S26
- shladd GR_ad_T = GR_Ind,4,GR_ad_LnT
-}
-{ .mfb
- nop.m 0
- fma.s1 FR_S24 = FR_S24,FR_Xf2,FR_S22
- // jump if the input argument is integer number from range (-512.0;-17.0]
-(p6) br.cond.spnt lgamma_singularity
-};;
-{ .mfi
- getf.sig GR_Sig = FR_int_Ntrunc
- fma.s1 FR_S20 = FR_S20,FR_Xf2,FR_S18
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S16 = FR_S16,FR_Xf2,FR_S14
- nop.i 0
-};;
-{ .mfi
- ldfe FR_Tf = [GR_ad_T]
- fma.s1 FR_S12 = FR_S12,FR_Xf2,FR_S10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S8 = FR_S8,FR_Xf2,FR_S6
- mov GR_SignOfGamma = 1
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_rf = FR_InvXf,FR_Xf,f1 // reduced arg rf
- tbit.z p8,p0 = GR_Sig,0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r3 = FR_r2,FR_r,f0
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_N = FR_int_N
-(p8) sub GR_SignOfGamma = r0,GR_SignOfGamma
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_InvX = FR_InvX2,FR_NormX,f1 // NR iteration #3
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_P54 = FR_P54,FR_r2,FR_P32
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
- fnma.s1 FR_P10 = FR_r2,FR_05,FR_r
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf8 = FR_Xf4,FR_Xf4,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf4,FR_S24
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S20 = FR_S20,FR_Xf4,FR_S16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S12 = FR_S12,FR_Xf4,FR_S8
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_rf2 = FR_rf,FR_rf,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P54f = FR_P5,FR_rf,FR_P4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P32f = FR_P3,FR_rf,FR_P2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_InvX = FR_InvX2,FR_InvX,FR_InvX2 // NR iteration #3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_Nf = FR_int_Nf
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_LnSqrt2Pi = FR_NormX,f1,FR_LnSqrt2Pi // x+ln(sqrt(2*Pi))
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P54 = FR_P54,FR_r3,FR_P10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf8,FR_S20
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_rf3 = FR_rf2,FR_rf,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_P10f = FR_rf2,FR_05,FR_rf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P54f = FR_P54f,FR_rf2,FR_P32f
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_InvX2 = FR_InvX,FR_InvX,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf8,FR_S12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S4 = FR_S4,FR_Xf2,FR_S2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P54f = FR_P54f,FR_rf3,FR_P10f
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_TpNxLn2f = FR_Nf,FR_Ln2,FR_Tf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnX = FR_TpNxLn2,f1,FR_P54
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_W2 = FR_W4,FR_InvX2,FR_W2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S28 = FR_S28,FR_Xf4,FR_S4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnXf = FR_TpNxLn2f,f1,FR_P54f
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_LnX = FR_LnX,FR_Xm05,FR_LnSqrt2Pi
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_LnX = FR_InvX,FR_W2,FR_LnX
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_LnX = FR_S28,FR_Xf2,FR_LnX
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fms.d.s0 f8 = FR_LnX,f1,FR_LnXf
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for 0 <= x < 1
-//---------------------------------------------------------------------
-.align 32
-lgamma_0_1:
-{ .mfi
- ldfpd FR_P5,FR_P4 = [GR_ad_1],16
- fms.s1 FR_x = FR_NormX,f1,f0 // x
- mov GR_Arg025 = 0x3FD0
-}
-{ .mfi
- ldfpd FR_P3,FR_P2 = [GR_ad_2],16
- nop.f 0
- add GR_ad_Co = 0x1C40,GR_ad_Data
-};;
-{ .mfi
- ldfe FR_Ln2 = [GR_ad_1],0x50
- nop.f 0
- // p6 if arg < 0.25
- cmp.lt p6,p9 = GR_Arg,GR_Arg025
-}
-{ .mfi
- add GR_ad_2 = 0x40,GR_ad_2
- nop.f 0
- mov GR_Arg075 = 0x3FE8
-};;
-{ .mfi
- ldfpd FR_Q8,FR_Q7 = [GR_ad_1],16
- fma.s1 FR_w2 = FR_w,FR_w,f0
- // p7 if 0.25 <= arg < 0.75
- // p8 if 0.75 <= arg < 1.0
-(p9) cmp.lt.unc p7,p8 = GR_Arg,GR_Arg075
-}
-{ .mfi
- mov GR_Arg0875 = 0x3FEC
- nop.f 0
- sub GR_Exp = GR_Exp,GR_ExpBias
-};;
-{ .mfi
- ldfpd FR_Q6,FR_Q5 = [GR_ad_2],16
- nop.f 0
-(p8) cmp.lt p9,p0 = GR_Arg,GR_Arg0875
-}
-{ .mfi
- ldfpd FR_Q4,FR_Q3 = [GR_ad_1],16
- nop.f 0
- add GR_ad_Ce = 0x60,GR_ad_Co
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
- ldfd FR_Q2 = [GR_ad_2],16
- fms.s1 FR_r = FR_C,f8,f1
-(p7) mov GR_Offs = 0xC0
-}
-{ .mfi
- setf.sig FR_int_N = GR_Exp
- nop.f 0
-(p8) mov GR_Offs = 0x180
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
-(p9) add GR_ad_Co = GR_Offs,GR_ad_Co
-(p8) fms.s1 FR_x = FR_NormX,f1,f1 // x-1
- nop.i 0
-}
-{ .mfi
-(p9) add GR_ad_Ce = GR_Offs,GR_ad_Ce
-(p7) fms.s1 FR_x = FR_NormX,f1,FR_LocalMin // x-LocalMin
- cmp.lt p10,p0 = GR_Arg,GR_Arg0875
-};;
-lgamma_common_0_2:
-{ .mfi
- ldfpd FR_A17,FR_A16 = [GR_ad_Co],16
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd FR_A15,FR_A14 = [GR_ad_Ce],16
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfpd FR_A13,FR_A12 = [GR_ad_Co],16
- nop.f 0
-(p10) extr.u GR_Ind = GR_ArgAsIs,44,8
-}
-{ .mfi
- ldfpd FR_A11,FR_A10 = [GR_ad_Ce],16
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfpd FR_A9,FR_A8 = [GR_ad_Co],16
-(p10) fnma.s1 FR_Q1 = FR_05,FR_w2,FR_w
- nop.i 0
-}
-{ .mfi
- ldfpd FR_A7,FR_A6 = [GR_ad_Ce],16
-(p10) fma.s1 FR_w3 = FR_w2,FR_w,f0
- nop.i 0
-};;
-{ .mfi
-(p10) getf.exp GR_SignExp_w = FR_w
-(p10) fma.s1 FR_w4 = FR_w2,FR_w2,f0
- nop.i 0
-}
-{ .mfi
-(p10) shladd GR_ad_2 = GR_Ind,4,GR_ad_2
-(p10) fma.s1 FR_r2 = FR_r,FR_r,f0
- nop.i 0
-};;
-{ .mfi
-(p10) ldfe FR_T = [GR_ad_2]
-(p10) fma.s1 FR_P54 = FR_P5,FR_r,FR_P4
- nop.i 0
-}
-{ .mfi
- ldfe FR_A5 = [GR_ad_Co],16
-(p10) fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A4 = [GR_ad_Ce],16
- fma.s1 FR_x2 = FR_x,FR_x,f0
-(p10) and GR_Exp_w = GR_ExpMask, GR_SignExp_w
-}
-{ .mfi
- ldfe FR_A3 = [GR_ad_Co],16
- nop.f 0
-(p10) mov GR_fff9 = 0xfff9
-};;
-// p13 <== large w __libm_lgamma
-// p14 <== small w __libm_lgamma
-{ .mfi
- ldfe FR_A2 = [GR_ad_Ce],16
-(p10) fma.s1 FR_Q8 = FR_Q8,FR_w,FR_Q7
-(p10) cmp.ge.unc p13,p14 = GR_Exp_w,GR_fff9
-}
-{ .mfi
- ldfe FR_A1 = [GR_ad_Co],16
-(p10) fma.s1 FR_Q6 = FR_Q6,FR_w,FR_Q5
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A0 = [GR_ad_Ce],16
-(p10) fma.s1 FR_Q4 = FR_Q4,FR_w,FR_Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_Q2 = FR_Q2,FR_w3,FR_Q1
- nop.i 0
-};;
-{ .mfi
- // set p11 if signgum is 32-bit int
- // set p12 if signgum is 64-bit int
- cmp.eq p12,p11 = 8,r34
-(p10) fma.s1 FR_r3 = FR_r2,FR_r,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fnma.s1 FR_P10 = FR_r2,FR_05,FR_r
- mov GR_SignOfGamma = 1
-};;
-.pred.rel "mutex",p11,p12
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p11) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_A17 = FR_A17,FR_x,FR_A16
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p12) st8 [r33] = GR_SignOfGamma
- fma.s1 FR_A15 = FR_A15,FR_x,FR_A14
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fcvt.xf FR_N = FR_int_N
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_P54 = FR_P54,FR_r2,FR_P32
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A13 = FR_A13,FR_x,FR_A12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A11 = FR_A11,FR_x,FR_A10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A9 = FR_A9,FR_x,FR_A8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_x,FR_A6
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_Qlo = FR_Q8,FR_w2,FR_Q6
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_w6 = FR_w3,FR_w3,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_Qhi = FR_Q4,FR_w4,FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A5,FR_x,FR_A4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_x,FR_A2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_P54 = FR_P54,FR_r3,FR_P10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A1,FR_x,FR_A0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A17 = FR_A17,FR_x2,FR_A15
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A13 = FR_A13,FR_x2,FR_A11
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A9 = FR_A9,FR_x2,FR_A7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_LnX = FR_Qlo,FR_w6,FR_Qhi
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A5,FR_x2,FR_A3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_LnX = FR_TpNxLn2,f1,FR_P54
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A17 = FR_A17,FR_x4,FR_A13
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x8 = FR_x4,FR_x4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A9 = FR_A9,FR_x4,FR_A5
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A17 = FR_A17,FR_x8,FR_A9
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fms.s1 FR_A1 = FR_A1,f1,FR_LnX
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = FR_A17,FR_x2,FR_A1
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for 1.0 <= x < 2.25
-//---------------------------------------------------------------------
-.align 32
-lgamma_1_2:
-{ .mfi
- add GR_ad_Co = 0x10B0,GR_ad_1
- fcmp.eq.s1 p12,p0 = f1,FR_w
- mov GR_Arg125 = 0x3FF4
-}
-{ .mfi
- add GR_ad_Ce = 0x1110,GR_ad_1
- nop.f 0
- mov GR_Arg175 = 0x3FFC
-};;
-{ .mfi
- mov GR_SignOfGamma = 1
- fcmp.eq.s1 p13,p0 = f1,FR_NormX
- cmp.lt p6,p9 = GR_Arg,GR_Arg125 // 1.0 <= x < 1.25
-}
-{ .mfi
- // set p10 if signgum is 32-bit int
- // set p11 if signgum is 64-bit int
- cmp.eq p11,p10 = 8,r34
- nop.f 0
- cmp.ge p8,p0 = GR_Arg,GR_Arg175 // x >= 1.75
-};;
-.pred.rel "mutex",p10,p11
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p10) st4 [r33] = GR_SignOfGamma
-(p12) fma.d.s0 f8 = f0,f0,f0
-(p9) cmp.lt.unc p7,p0 = GR_Arg,GR_Arg175 // 1.25 <= x < 1.75
-}
-{ .mib
- // store sign of gamma(x) as 64-bit int
-(p11) st8 [r33] = GR_SignOfGamma
- mov GR_Offs = 0
-(p12) br.ret.spnt b0 // fast exit for 2.0
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
-(p7) mov GR_Offs = 0xC0
-(p7) fms.s1 FR_x = FR_w,f1,FR_LocalMin
- nop.i 0
-}
-{ .mfb
-(p8) mov GR_Offs = 0x180
-(p13) fma.d.s0 f8 = f0,f0,f0
-(p13) br.ret.spnt b0 // fast exit for 1.0
-};;
-.pred.rel "mutex",p6,p8
-{ .mfi
- add GR_ad_Co = GR_ad_Co,GR_Offs
-(p8) fms.s1 FR_x = FR_w,f1,f1
- cmp.eq p0,p10 = r0,r0
-}
-{ .mfb
- add GR_ad_Ce = GR_ad_Ce,GR_Offs
-(p6) fma.s1 FR_x = f0,f0,FR_w
- br.cond.sptk lgamma_common_0_2
-};;
-// branch for calculating of ln(GAMMA(x)) for -17 < x < 0
-//---------------------------------------------------------------------
-.align 32
-lgamma_negrecursion:
-{ .mfi
- getf.d GR_ArgXfrAsIs = FR_Xfr
- fma.s1 FR_Xp2 = FR_2,f1,FR_NormX
- mov GR_Arg05 = 0x3FE
-}
-{ .mfi
- add GR_ad_Roots = 0x1390,GR_ad_1
- fma.s1 FR_NormX = FR_NormX,FR_Xfr,f0
- mov GR_Arg075 = 0x3FE8
-};;
-{ .mfi
- getf.sig GR_Sig = FR_int_Ntrunc
- fma.s1 FR_Xp3 = FR_2,f1,FR_Xp1
- shl GR_Arg05 = GR_Arg05,52
-}
-{ .mfi
- mov GR_Arg025 = 0x3FD0
- fma.s1 FR_Xp6 = FR_5,f1,FR_Xp1
- add GR_ad_Co = 0x1C40,GR_ad_Data
-};;
-{ .mfi
- add GR_ad_Dx = 8,GR_ad_Roots
- fma.s1 FR_Xp7 = FR_2,f1,FR_Xp5
- shr.u GR_ArgXfr = GR_ArgXfrAsIs,48
-}
-{ .mfi
- add GR_ad_Ce = 0x60,GR_ad_Co
- fma.s1 FR_Xp8 = FR_3,f1,FR_Xp5
- cmp.lt p6,p0 = GR_ArgXfrAsIs,GR_Arg05
-};;
-{ .mfi
- and GR_RootInd = 0xF,GR_Sig
- fma.s1 FR_Xp9 = FR_2,FR_2,FR_Xp5
- // p10 if arg < 0.25
- cmp.lt p10,p14 = GR_ArgXfr,GR_Arg025
-}
-{ .mfi
-(p6) add GR_ad_Roots = 0x120,GR_ad_Roots
- fma.s1 FR_Xp11 = f1,f1,FR_Xp10
-(p6) add GR_ad_Dx = 0x120,GR_ad_Dx
-};;
-{ .mfi
- shladd GR_ad_Root = GR_RootInd,4,GR_ad_Roots
- fma.s1 FR_Xp12 = FR_2,f1,FR_Xp10
- // p11 if 0.25 <= arg < 0.75
- // p12 if 0.75 <= arg < 1.0
-(p14) cmp.lt.unc p11,p12 = GR_ArgXfr,GR_Arg075
-}
-{ .mfi
- shladd GR_ad_Dx = GR_RootInd,4,GR_ad_Dx
- fma.s1 FR_Xp13 = FR_3,f1,FR_Xp10
- cmp.eq p0,p13 = 0,GR_Sig
-};;
-{ .mfi
- ld8 GR_Root = [GR_ad_Root]
- fma.s1 FR_Xp14 = FR_2,FR_2,FR_Xp10
-(p12) mov GR_Offs = 0x180
-}
-{ .mfi
- ldfd FR_Root = [GR_ad_Root]
- fma.s1 FR_Xp15 = FR_5,f1,FR_Xp10
- and GR_Sig = 0xF,GR_Sig
-};;
-{ .mfi
- ld8 GR_Dx = [GR_ad_Dx]
- fma.s1 FR_Xp16 = FR_3,FR_2,FR_Xp10
-(p13) cmp.ge.unc p6,p0 = 0xD,GR_Sig
-}
-{ .mfi
-(p11) mov GR_Offs = 0xC0
-(p13) fma.s1 FR_NormX = FR_NormX,FR_Xp1,f0
-(p13) cmp.ge.unc p7,p0 = 0xB,GR_Sig
-};;
-{ .mfi
-(p14) add GR_ad_Co = GR_Offs,GR_ad_Co
-(p6) fma.s1 FR_Xp2 = FR_Xp2,FR_Xp3,f0
-(p13) cmp.ge.unc p8,p0 = 0x9,GR_Sig
-}
-{ .mfi
-(p14) add GR_ad_Ce = GR_Offs,GR_ad_Ce
-(p7) fma.s1 FR_Xp4 = FR_Xp4,FR_Xp5,f0
-(p13) cmp.ge.unc p9,p0 = 0x7,GR_Sig
-};;
-{ .mfi
- ldfpd FR_B17,FR_B16 = [GR_ad_Co],16
-(p8) fma.s1 FR_Xp6 = FR_Xp6,FR_Xp7,f0
-(p13) cmp.ge.unc p6,p0 = 0x5,GR_Sig
-}
-{ .mfi
- ldfpd FR_B15,FR_B14 = [GR_ad_Ce],16
-(p9) fma.s1 FR_Xp8 = FR_Xp8,FR_Xp9,f0
-(p13) cmp.ge.unc p7,p0 = 0x3,GR_Sig
-};;
-{ .mfi
- ldfpd FR_B13,FR_B12 = [GR_ad_Co],16
-(p6) fma.s1 FR_Xp10 = FR_Xp10,FR_Xp11,f0
-(p13) cmp.ge.unc p8,p0 = 0x1,GR_Sig
-}
-{ .mfi
- ldfpd FR_B11,FR_B10 = [GR_ad_Ce],16
-(p7) fma.s1 FR_Xp12 = FR_Xp12,FR_Xp13,f0
-(p13) cmp.eq.unc p9,p0 = 0,GR_Sig
-};;
-{ .mfi
- ldfpd FR_B9,FR_B8 = [GR_ad_Co],16
-(p8) fma.s1 FR_Xp14 = FR_Xp14,FR_Xp15,f0
- mov GR_Arg15 = 0xC02E // -15
-}
-{ .mfi
- ldfpd FR_B7,FR_B6 = [GR_ad_Ce],16
- fcmp.eq.s1 p15,p0 = f0,FR_Xf
-(p13) cmp.ge.unc p6,p0 = 0xC,GR_Sig
-};;
-{ .mfi
- ldfe FR_B5 = [GR_ad_Co],16
-(p9) fma.s1 FR_NormX = FR_NormX,FR_Xp16,f0
- sub GR_Root = GR_ArgAsIs,GR_Root
-}
-{ .mfi
- sub GR_RootInd = 0xE,GR_RootInd
-(p11) fms.s1 FR_x = FR_Xfr,f1,FR_LocalMin // x-LocalMin
-(p13) cmp.ge.unc p7,p0 = 0x8,GR_Sig
-};;
-.pred.rel "mutex",p10,p12
-{ .mfi
- ldfe FR_B4 = [GR_ad_Ce],16
-(p10) fms.s1 FR_x = FR_Xfr,f1,f0 // x
- add GR_Root = GR_Root,GR_Dx
-}
-{ .mfb
- cmp.gtu p14,p0 = 0xE,GR_RootInd
-(p12) fms.s1 FR_x = FR_Xfr,f1,f1 // x-1
-(p15) br.cond.spnt lgamma_singularity
-};;
-{ .mfi
- ldfe FR_B3 = [GR_ad_Co],16
-(p6) fma.s1 FR_Xp2 = FR_Xp2,FR_Xp4,f0
-(p14) cmp.lt.unc p11,p0 = GR_Arg,GR_Arg15
-}
-{ .mfi
- ldfe FR_B2 = [GR_ad_Ce],16
-(p7) fma.s1 FR_Xp6 = FR_Xp6,FR_Xp8,f0
- add GR_2xDx = GR_Dx,GR_Dx
-};;
-{ .mfi
- ldfe FR_B1 = [GR_ad_Co],16
- fms.s1 FR_r = f8,f1,FR_Root
-(p13) cmp.ge.unc p6,p0 = 0x4,GR_Sig
-}
-{ .mib
- ldfe FR_B0 = [GR_ad_Ce],16
-(p11) cmp.leu.unc p10,p0 = GR_Root,GR_2xDx
-(p10) br.cond.spnt lgamma_negroots
-};;
-{ .mfi
- ldfpd FR_P5,FR_P4 = [GR_ad_1],16
-(p6) fma.s1 FR_Xp10 = FR_Xp10,FR_Xp12,f0
- tbit.z p14,p15 = GR_Sig,0
-}
-{ .mfi
- ldfpd FR_P3,FR_P2 = [GR_ad_2],16
- fnma.d.s0 FR_T = f1,f1,f8 // nop.f 0
-
-(p13) cmp.ge.unc p7,p0 = 0x2,GR_Sig
-};;
-{ .mfi
- ldfe FR_Ln2 = [GR_ad_1],0x50
-(p7) fma.s1 FR_NormX = FR_NormX,FR_Xp14,f0
- mov GR_PseudoRoot = 0xBFFBC
-}
-{ .mlx
- add GR_ad_2 = 0x40,GR_ad_2
- movl GR_2xDx = 0x00002346DC5D6389
-};;
-{ .mfi
- ldfpd FR_Q8,FR_Q7 = [GR_ad_1],16
- fma.s1 FR_x2 = FR_x,FR_x,f0
- shl GR_PseudoRoot = GR_PseudoRoot,44
-}
-{ .mfi
- ldfpd FR_Q6,FR_Q5 = [GR_ad_2],16
- fma.s1 FR_B17 = FR_B17,FR_x,FR_B16
-(p13) cmp.ge.unc p6,p0 = 0xA,GR_Sig
-};;
-{ .mfi
- ldfpd FR_Q4,FR_Q3 = [GR_ad_1],16
-(p6) fma.s1 FR_Xp2 = FR_Xp2,FR_Xp6,f0
- sub GR_PseudoRoot = GR_ArgAsIs,GR_PseudoRoot
-}
-{ .mfi
- ldfpd FR_Q2,FR_Q1 = [GR_ad_2],16
- fma.s1 FR_B15 = FR_B15,FR_x,FR_B14
-(p13) cmp.ge.unc p7,p0 = 0x6,GR_Sig
-};;
-{ .mfi
- add GR_ad_Co = 0x12F0,GR_ad_2
- fma.s1 FR_B13 = FR_B13,FR_x,FR_B12
- cmp.leu.unc p10,p0 = GR_PseudoRoot,GR_2xDx
-}
-{ .mfi
- add GR_ad_Ce = 0x1300,GR_ad_2
- fma.s1 FR_B11 = FR_B11,FR_x,FR_B10
- mov GR_ExpMask = 0x1ffff
-};;
-{ .mfi
-(p10) ldfe FR_PR01 = [GR_ad_Co],0xF0
- fma.s1 FR_B9 = FR_B9,FR_x,FR_B8
- mov GR_ExpBias = 0xFFFF
-}
-{ .mfb
-(p10) ldfe FR_PR11 = [GR_ad_Ce],0xF0
- fma.s1 FR_B7 = FR_B7,FR_x,FR_B6
-(p10) br.cond.spnt lgamma_pseudoroot
-};;
-{ .mfi
-(p13) cmp.ge.unc p6,p0 = 0xE,GR_Sig
-(p7) fma.s1 FR_NormX = FR_NormX,FR_Xp10,f0
- tbit.z.unc p8,p0 = GR_Sig,0
-}
-{ .mfi
- mov GR_SignOfGamma = 1
- fma.s1 FR_B5 = FR_B5,FR_x,FR_B4
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_B3 = FR_B3,FR_x,FR_B2
-(p8) sub GR_SignOfGamma = r0,GR_SignOfGamma
-}
-{ .mfi
- nop.m 0
-(p14) fms.s1 FR_w = f0,f0,f1
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_B1 = FR_B1,FR_x,FR_B0
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
- fma.s1 FR_B17 = FR_B17,FR_x2,FR_B15
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_B13 = FR_B13,FR_x2,FR_B11
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_B9 = FR_B9,FR_x2,FR_B7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_NormX = FR_NormX,FR_Xp2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_B5 = FR_B5,FR_x2,FR_B3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_B17 = FR_B17,FR_x4,FR_B13
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x8 = FR_x4,FR_x4,f0
- nop.i 0
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_w = FR_NormX,f1,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fnma.s1 FR_w = FR_NormX,f1,FR_w
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_B9 = FR_B9,FR_x4,FR_B5
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- frcpa.s1 FR_C,p0 = f1,FR_NormX
- nop.i 0
-};;
-{ .mfi
- getf.exp GR_Exp = FR_NormX
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- getf.d GR_ArgAsIs = FR_NormX
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_w2 = FR_w,FR_w,f0
- nop.i 0
-}
-{ .mfi
- and GR_Exp = GR_Exp,GR_ExpMask
- fma.s1 FR_Q8 = FR_Q8,FR_w,FR_Q7
- nop.i 0
-};;
-{ .mfi
- sub GR_Exp = GR_Exp,GR_ExpBias
- fma.s1 FR_B17 = FR_B17,FR_x8,FR_B9
- extr.u GR_Ind = GR_ArgAsIs,44,8
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Q6 = FR_Q6,FR_w,FR_Q5
- nop.i 0
-};;
-{ .mfi
- setf.sig FR_int_N = GR_Exp
- fms.s1 FR_r = FR_C,FR_NormX,f1
- nop.i 0
-}
-{ .mfi
- shladd GR_ad_2 = GR_Ind,4,GR_ad_2
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- getf.exp GR_SignExp_w = FR_w
- fma.s1 FR_Q4 = FR_Q4,FR_w,FR_Q3
- nop.i 0
-}
-{ .mfi
- ldfe FR_T = [GR_ad_2]
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- and GR_Exp_w = GR_ExpMask, GR_SignExp_w
- fnma.s1 FR_Q1 = FR_05,FR_w2,FR_w
- mov GR_fff9 = 0xfff9
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_w3 = FR_w2,FR_w,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_w4 = FR_w2,FR_w2,f0
-// p13 <== large w __libm_lgamma
-// p14 <== small w __libm_lgamma
- cmp.ge p13,p14 = GR_Exp_w,GR_fff9
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Qlo = FR_Q8,FR_w2,FR_Q6
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_r2 = FR_r,FR_r,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_B17 = FR_B17,FR_x2,FR_B1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_P54 = FR_P5,FR_r,FR_P4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_Q2 = FR_Q2,FR_w3,FR_Q1
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_w6 = FR_w3,FR_w3,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fcvt.xf FR_N = FR_int_N
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_r3 = FR_r2,FR_r,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fnma.s1 FR_P10 = FR_r2,FR_05,FR_r
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_P54 = FR_P54,FR_r2,FR_P32
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_Qhi = FR_Q4,FR_w4,FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fnma.s1 FR_Qlo = FR_Qlo,FR_w6,FR_B17
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_P54 = FR_P54,FR_r3,FR_P10
- nop.i 0
-};;
-.pred.rel "mutex",p13,p14
-{ .mfi
- nop.m 0
-(p14) fms.d.s0 f8 = FR_Qlo,f1,FR_Qhi
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_LnX = FR_TpNxLn2,f1,FR_P54
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p13) fms.d.s0 f8 = FR_B17,f1,FR_LnX
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) near negative roots
-//---------------------------------------------------------------------
-.align 32
-lgamma_negroots:
-{ .mfi
- shladd GR_Offs = GR_RootInd,3,r0 //GR_RootInd*8
- fma.s1 FR_r2 = FR_r,FR_r,f0
- add GR_ad_Co = 0x15C0,GR_ad_1//0x1590,GR_ad_1
-}
-{ .mfi
- add GR_ad_Ce = 0x1610,GR_ad_1//0x15E0,GR_ad_1
- nop.f 0
- cmp.lt p6,p0 = GR_ArgXfrAsIs,GR_Arg05
-};;
-{ .mfi
- add GR_ad_Roots = 0x10A0,GR_ad_1
- nop.f 0
-(p6) add GR_ad_Co = 0x820,GR_ad_Co
-}
-{ .mfi
-(p6) add GR_ad_Ce = 0x820,GR_ad_Ce
- nop.f 0
- shladd GR_Offs = GR_RootInd,1,GR_Offs //GR_RootInd*10
-};;
-{ .mmi
- shladd GR_ad_Co = GR_Offs,4,GR_ad_Co
- shladd GR_ad_Ce = GR_Offs,4,GR_ad_Ce
- cmp.eq p8,p7 = r0,r0
-};;
-{ .mmi
- ldfpd FR_A15,FR_A14 = [GR_ad_Co],16
- ldfpd FR_A13,FR_A12 = [GR_ad_Ce],16
- mov GR_SignOfGamma = 1
-};;
-{ .mmi
- ldfpd FR_A11,FR_A10 = [GR_ad_Co],16
- ldfpd FR_A9,FR_A8 = [GR_ad_Ce],16
-(p6) cmp.eq p7,p8 = r0,GR_RootInd
-};;
-{ .mmi
- ldfpd FR_A7,FR_A6 = [GR_ad_Co],16
- ldfpd FR_A5,FR_A4 = [GR_ad_Ce],16
- tbit.z p11,p0 = GR_Sig,0
-};;
-{ .mmi
- ldfe FR_A3 = [GR_ad_Co],16
- ldfe FR_A2 = [GR_ad_Ce],16
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-};;
-{ .mmi
- ldfe FR_A1 = [GR_ad_Co],16
- ldfe FR_A0 = [GR_ad_Ce],16
-(p11) sub GR_SignOfGamma = r0,GR_SignOfGamma
-};;
-{ .mfi
- ldfe FR_A00 = [GR_ad_Roots]
- fma.s1 FR_r4 = FR_r2,FR_r2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r,FR_A14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A13 = FR_A13,FR_r,FR_A12
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_A11 = FR_A11,FR_r,FR_A10
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
- fma.s1 FR_A9 = FR_A9,FR_r,FR_A8
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r,FR_A6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A5,FR_r,FR_A4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r,FR_A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r8 = FR_r4,FR_r4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A1,FR_r,FR_A0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r2,FR_A13
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A11 = FR_A11,FR_r2,FR_A9
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r2,FR_A5
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r2,FR_A1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r4,FR_A11
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r4,FR_A3
- nop.i 0
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_A1 = FR_A15,FR_r8,FR_A7
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fma.d.s0 f8 = FR_A15,FR_r8,FR_A7
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p7) fma.d.s0 f8 = FR_A1,FR_r,FR_A00
- br.ret.sptk b0
-};;
-// branch for handling pseudo root on (-2;-1)
-//---------------------------------------------------------------------
-.align 32
-lgamma_pseudoroot:
-{ .mmi
- ldfe FR_PR21 = [GR_ad_Co],32
- ldfe FR_PR31 = [GR_ad_Ce],32
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-};;
-{ .mmi
- ldfe FR_PR00 = [GR_ad_Co],32
- ldfe FR_PR10 = [GR_ad_Ce],0xF0
- mov GR_SignOfGamma = 1
-};;
-{ .mmi
- ldfe FR_PR20 = [GR_ad_Co],0xF0
- ldfe FR_PR30 = [GR_ad_Ce]
- tbit.z p8,p0 = GR_Sig,0
-};;
-{ .mfi
- ldfe FR_PRN = [GR_ad_Co]
- fma.s1 FR_PR01 = f8,f1,FR_PR01
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_PR11 = f8,f1,FR_PR11
-(p8) sub GR_SignOfGamma = r0,GR_SignOfGamma
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
- fma.s1 FR_PR21 = f8,f1,FR_PR21
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
- fma.s1 FR_PR31 = f8,f1,FR_PR31
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_PR01 = f8,FR_PR01,FR_PR00
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_PR11 = f8,FR_PR11,FR_PR10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_PR21 = f8,FR_PR21,FR_PR20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_PR31 = f8,FR_PR31,FR_PR30
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_PR01 = FR_PR11,FR_PR01,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_PR21 = FR_PR31,FR_PR21,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_PR01 = FR_PR21,FR_PR01,f0
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = FR_PR01,FR_PRN,f0
- br.ret.sptk b0
-};;
-// branch for handling +/-0, NaT, QNaN, +/-INF and denormalised numbers
-//---------------------------------------------------------------------
-.align 32
-lgamma_spec:
-{ .mfi
- getf.exp GR_SignExp = FR_NormX
- fclass.m p6,p0 = f8,0x21 // is arg +INF?
- mov GR_SignOfGamma = 1
-};;
-{ .mfi
- getf.sig GR_ArgAsIs = FR_NormX
- fclass.m p7,p0 = f8,0xB // is x deno?
- // set p11 if signgum is 32-bit int
- // set p12 if signgum is 64-bit int
- cmp.eq p12,p11 = 8,r34
-};;
-.pred.rel "mutex",p11,p12
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p11) st4 [r33] = GR_SignOfGamma
- fclass.m p8,p0 = f8,0x1C0 // is arg NaT or NaN?
- dep.z GR_Ind = GR_SignExp,8,4
-}
-{ .mib
- // store sign of gamma(x) as 64-bit int
-(p12) st8 [r33] = GR_SignOfGamma
- cmp.lt p10,p0 = GR_SignExp,GR_ExpBias
-(p6) br.ret.spnt b0 // exit for +INF
-};;
-{ .mfi
- and GR_Exp = GR_SignExp,GR_ExpMask
- fclass.m p9,p0 = f8,0x22 // is arg -INF?
- nop.i 0
-};;
-{ .mfi
- add GR_ad_Co = GR_Ind,GR_ad_Data
-(p7) fma.s0 FR_tmp = f8,f8,f8
- extr.u GR_ArgAsIs = GR_ArgAsIs,11,52
-}
-{ .mfb
- nop.m 0
-(p8) fms.d.s0 f8 = f8,f1,f8
-(p8) br.ret.spnt b0 // exit for NaT and NaN
-};;
-{ .mib
- nop.m 0
- shr.u GR_Arg = GR_ArgAsIs,48
-(p7) br.cond.sptk lgamma_common
-};;
-{ .mfb
- nop.m 0
-(p9) fmerge.s f8 = f1,f8
-(p9) br.ret.spnt b0 // exit -INF
-};;
-// branch for handling negative integers and +/-0
-//---------------------------------------------------------------------
-.align 32
-lgamma_singularity:
-{ .mfi
- mov GR_ad_SignGam = r33
- fclass.m p6,p0 = f8, 0x6 // is x -0?
- mov GR_SignOfGamma = 1
-}
-{ .mfi
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
- fma.s1 FR_X = f0,f0,f8
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- frcpa.s0 f8,p0 = f1,f0
- mov GR_TAG = 106 // negative
-}
-{ .mib
- nop.m 0
-(p6) sub GR_SignOfGamma = r0,GR_SignOfGamma
- br.cond.sptk lgamma_libm_err
-};;
-// overflow (x > OVERFLOV_BOUNDARY)
-//---------------------------------------------------------------------
-.align 32
-lgamma_overflow:
-{ .mfi
- mov GR_SignOfGamma = 1
- nop.f 0
- mov r8 = 0x1FFFE
-};;
-{ .mfi
- setf.exp f9 = r8
- fmerge.s FR_X = f8,f8
- mov GR_TAG = 105 // overflow
-};;
-{ .mfi
- mov GR_ad_SignGam = r33
- nop.f 0
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-}
-{ .mfi
- nop.m 0
- fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result
- nop.i 0
-};;
-//
-//---------------------------------------------------------------------
-.align 32
-lgamma_libm_err:
-{ .mmi
- alloc r32 = ar.pfs,1,4,4,0
- mov GR_Parameter_TAG = GR_TAG
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mmi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [GR_ad_SignGam] = GR_SignOfGamma
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [GR_ad_SignGam] = GR_SignOfGamma
- nop.i 0
-};;
-GLOBAL_LIBM_END(__libm_lgamma)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1
- // on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3
- // on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling
- // function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/libm_lgammaf.S b/sysdeps/ia64/fpu/libm_lgammaf.S
deleted file mode 100644
index 4bd92c3b26..0000000000
--- a/sysdeps/ia64/fpu/libm_lgammaf.S
+++ /dev/null
@@ -1,2199 +0,0 @@
-.file "libm_lgammaf.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
-// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
-// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code,and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 01/10/02 Initial version
-// 01/25/02 Corrected parameter store, load, and tag for __libm_error_support
-// 02/01/02 Added support of SIGN(GAMMA(x)) calculation
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/16/02 Improved accuracy on intervals reduced to [1;1.25]
-// 10/21/02 Now it returns SIGN(GAMMA(x))=-1 for negative zero
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 07/22/03 Reformatted some data tables
-// 03/31/05 Reformatted delimiters between data tables
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: __libm_lgammaf(float x, int* signgam, int szsigngam)
-// computes the principle value of the logarithm of the GAMMA function
-// of x. Signum of GAMMA(x) is stored to memory starting at the address
-// specified by the signgam.
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f6-f15
-// f32-f97
-//
-// General Purpose Registers:
-// r8-r11
-// r14-r30
-// r32-r36
-// r37-r40 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// lgamma(+inf) = +inf
-// lgamma(-inf) = +inf
-// lgamma(+/-0) = +inf
-// lgamma(x<0, x - integer) = +inf
-// lgamma(SNaN) = QNaN
-// lgamma(QNaN) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of three cases.
-//
-// If 2^13 <= x < OVERFLOW_BOUNDARY use case lgammaf_pstirling;
-// else if 1 < x < 2^13 use case lgammaf_regular;
-// else if -9 < x < 1 use case lgammaf_negrecursion;
-// else if -2^13 < x < -9 use case lgammaf_negpoly;
-// else if x < -2^13 use case lgammaf_negstirling;
-// else if x is close to negative
-// roots of ln(GAMMA(x)) use case lgammaf_negroots;
-//
-//
-// Case 2^13 <= x < OVERFLOW_BOUNDARY
-// ----------------------------------
-// Here we use algorithm based on the Stirling formula:
-// ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)*ln(x) - x
-//
-// Case 1 < x < 2^13
-// -----------------
-// To calculate ln(GAMMA(x)) for such arguments we use polynomial
-// approximation on following intervals: [1.0; 1.25), [1.25; 1.5),
-// [1.5, 1.75), [1.75; 2), [2; 4), [2^i; 2^(i+1)), i=1..8
-//
-// Following variants of approximation and argument reduction are used:
-// 1. [1.0; 1.25)
-// ln(GAMMA(x)) ~ (x-1.0)*P7(x)
-//
-// 2. [1.25; 1.5)
-// ln(GAMMA(x)) ~ ln(GAMMA(x0))+(x-x0)*P8(x-x0),
-// where x0 - point of local minimum on [1;2] rounded to nearest double
-// precision number.
-//
-// 3. [1.5; 1.75)
-// ln(GAMMA(x)) ~ P8(x)
-//
-// 4. [1.75; 2.0)
-// ln(GAMMA(x)) ~ (x-2)*P7(x)
-//
-// 5. [2; 4)
-// ln(GAMMA(x)) ~ (x-2)*P10(x)
-//
-// 6. [2^i; 2^(i+1)), i=2..8
-// ln(GAMMA(x)) ~ P10((x-2^i)/2^i)
-//
-// Case -9 < x < 1
-// ---------------
-// Here we use the recursive formula:
-// ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
-//
-// Using this formula we reduce argument to base interval [1.0; 2.0]
-//
-// Case -2^13 < x < -9
-// --------------------
-// Here we use the formula:
-// ln(GAMMA(x)) = ln(Pi/(|x|*GAMMA(|x|)*sin(Pi*|x|))) =
-// = -ln(|x|) - ln((GAMMA(|x|)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
-// where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
-// ln(sin(Pi*r)/(Pi*r)) is approximated by 8-degree polynomial of r^2
-//
-// Case x < -2^13
-// --------------
-// Here we use algorithm based on the Stirling formula:
-// ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (|x|-0.5)ln(x) - |x| -
-// - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
-// where r = x - rounded_to_nearest(x).
-//
-// Neighbourhoods of negative roots
-// --------------------------------
-// Here we use polynomial approximation
-// ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
-// where x0 is a root of ln(GAMMA(x)) rounded to nearest double
-// precision number.
-//
-//
-// Claculation of logarithm
-// ------------------------
-// Consider x = 2^N * xf so
-// ln(x) = ln(frcpa(x)*x/frcpa(x))
-// = ln(1/frcpa(x)) + ln(frcpa(x)*x)
-//
-// frcpa(x) = 2^(-N) * frcpa(xf)
-//
-// ln(1/frcpa(x)) = -ln(2^(-N)) - ln(frcpa(xf))
-// = N*ln(2) - ln(frcpa(xf))
-// = N*ln(2) + ln(1/frcpa(xf))
-//
-// ln(x) = ln(1/frcpa(x)) + ln(frcpa(x)*x) =
-// = N*ln(2) + ln(1/frcpa(xf)) + ln(frcpa(x)*x)
-// = N*ln(2) + T + ln(frcpa(x)*x)
-//
-// Let r = 1 - frcpa(x)*x, note that r is quite small by
-// absolute value so
-//
-// ln(x) = N*ln(2) + T + ln(1+r) ~ N*ln(2) + T + Series(r),
-// where T - is precomputed tabular value,
-// Series(r) = (P3*r + P2)*r^2 + (P1*r + 1)
-//
-//*********************************************************************
-
-GR_TAG = r8
-GR_ad_Data = r8
-GR_ad_Co = r9
-GR_ad_SignGam = r10
-GR_ad_Ce = r10
-GR_SignExp = r11
-
-GR_ad_C650 = r14
-GR_ad_RootCo = r14
-GR_ad_C0 = r15
-GR_Dx = r15
-GR_Ind = r16
-GR_Offs = r17
-GR_IntNum = r17
-GR_ExpBias = r18
-GR_ExpMask = r19
-GR_Ind4T = r20
-GR_RootInd = r20
-GR_Sig = r21
-GR_Exp = r22
-GR_PureExp = r23
-GR_ad_C43 = r24
-GR_StirlBound = r25
-GR_ad_T = r25
-GR_IndX8 = r25
-GR_Neg2 = r25
-GR_2xDx = r25
-GR_SingBound = r26
-GR_IndX2 = r26
-GR_Neg4 = r26
-GR_ad_RootCe = r26
-GR_Arg = r27
-GR_ExpOf2 = r28
-GR_fff7 = r28
-GR_Root = r28
-GR_ReqBound = r28
-GR_N = r29
-GR_ad_Root = r30
-GR_ad_OvfBound = r30
-GR_SignOfGamma = r31
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-//*********************************************************************
-
-FR_X = f10
-FR_Y = f1 // lgammaf is single argument function
-FR_RESULT = f8
-
-FR_x = f6
-FR_x2 = f7
-
-FR_x3 = f9
-FR_x4 = f10
-FR_xm2 = f11
-FR_w = f11
-FR_w2 = f12
-FR_Q32 = f13
-FR_Q10 = f14
-FR_InvX = f15
-
-FR_NormX = f32
-
-FR_A0 = f33
-FR_A1 = f34
-FR_A2 = f35
-FR_A3 = f36
-FR_A4 = f37
-FR_A5 = f38
-FR_A6 = f39
-FR_A7 = f40
-FR_A8 = f41
-FR_A9 = f42
-FR_A10 = f43
-
-FR_int_N = f44
-FR_P3 = f45
-FR_P2 = f46
-FR_P1 = f47
-FR_LocalMin = f48
-FR_Ln2 = f49
-FR_05 = f50
-FR_LnSqrt2Pi = f51
-FR_3 = f52
-FR_r = f53
-FR_r2 = f54
-FR_T = f55
-FR_N = f56
-FR_xm05 = f57
-FR_int_Ln = f58
-FR_P32 = f59
-FR_P10 = f60
-
-FR_Xf = f61
-FR_InvXf = f62
-FR_rf = f63
-FR_rf2 = f64
-FR_Tf = f65
-FR_Nf = f66
-FR_xm05f = f67
-FR_P32f = f68
-FR_P10f = f69
-FR_Lnf = f70
-FR_Xf2 = f71
-FR_Xf4 = f72
-FR_Xf8 = f73
-FR_Ln = f74
-FR_xx = f75
-FR_Root = f75
-FR_Req = f76
-FR_1pXf = f77
-
-FR_S16 = f78
-FR_R3 = f78
-FR_S14 = f79
-FR_R2 = f79
-FR_S12 = f80
-FR_R1 = f80
-FR_S10 = f81
-FR_R0 = f81
-FR_S8 = f82
-FR_rx = f82
-FR_S6 = f83
-FR_rx2 = f84
-FR_S4 = f84
-FR_S2 = f85
-
-FR_Xp1 = f86
-FR_Xp2 = f87
-FR_Xp3 = f88
-FR_Xp4 = f89
-FR_Xp5 = f90
-FR_Xp6 = f91
-FR_Xp7 = f92
-FR_Xp8 = f93
-FR_OverflowBound = f93
-
-FR_2 = f94
-FR_tmp = f95
-FR_int_Ntrunc = f96
-FR_Ntrunc = f97
-
-//*********************************************************************
-
-RODATA
-.align 32
-LOCAL_OBJECT_START(lgammaf_data)
-log_table_1:
-data8 0xbfd0001008f39d59 // P3
-data8 0x3fd5556073e0c45a // P2
-data8 0x3fe62e42fefa39ef // ln(2)
-data8 0x3fe0000000000000 // 0.5
-//
-data8 0x3F60040155D5889E //ln(1/frcpa(1+ 0/256)
-data8 0x3F78121214586B54 //ln(1/frcpa(1+ 1/256)
-data8 0x3F841929F96832F0 //ln(1/frcpa(1+ 2/256)
-data8 0x3F8C317384C75F06 //ln(1/frcpa(1+ 3/256)
-data8 0x3F91A6B91AC73386 //ln(1/frcpa(1+ 4/256)
-data8 0x3F95BA9A5D9AC039 //ln(1/frcpa(1+ 5/256)
-data8 0x3F99D2A8074325F4 //ln(1/frcpa(1+ 6/256)
-data8 0x3F9D6B2725979802 //ln(1/frcpa(1+ 7/256)
-data8 0x3FA0C58FA19DFAAA //ln(1/frcpa(1+ 8/256)
-data8 0x3FA2954C78CBCE1B //ln(1/frcpa(1+ 9/256)
-data8 0x3FA4A94D2DA96C56 //ln(1/frcpa(1+ 10/256)
-data8 0x3FA67C94F2D4BB58 //ln(1/frcpa(1+ 11/256)
-data8 0x3FA85188B630F068 //ln(1/frcpa(1+ 12/256)
-data8 0x3FAA6B8ABE73AF4C //ln(1/frcpa(1+ 13/256)
-data8 0x3FAC441E06F72A9E //ln(1/frcpa(1+ 14/256)
-data8 0x3FAE1E6713606D07 //ln(1/frcpa(1+ 15/256)
-data8 0x3FAFFA6911AB9301 //ln(1/frcpa(1+ 16/256)
-data8 0x3FB0EC139C5DA601 //ln(1/frcpa(1+ 17/256)
-data8 0x3FB1DBD2643D190B //ln(1/frcpa(1+ 18/256)
-data8 0x3FB2CC7284FE5F1C //ln(1/frcpa(1+ 19/256)
-data8 0x3FB3BDF5A7D1EE64 //ln(1/frcpa(1+ 20/256)
-data8 0x3FB4B05D7AA012E0 //ln(1/frcpa(1+ 21/256)
-data8 0x3FB580DB7CEB5702 //ln(1/frcpa(1+ 22/256)
-data8 0x3FB674F089365A7A //ln(1/frcpa(1+ 23/256)
-data8 0x3FB769EF2C6B568D //ln(1/frcpa(1+ 24/256)
-data8 0x3FB85FD927506A48 //ln(1/frcpa(1+ 25/256)
-data8 0x3FB9335E5D594989 //ln(1/frcpa(1+ 26/256)
-data8 0x3FBA2B0220C8E5F5 //ln(1/frcpa(1+ 27/256)
-data8 0x3FBB0004AC1A86AC //ln(1/frcpa(1+ 28/256)
-data8 0x3FBBF968769FCA11 //ln(1/frcpa(1+ 29/256)
-data8 0x3FBCCFEDBFEE13A8 //ln(1/frcpa(1+ 30/256)
-data8 0x3FBDA727638446A2 //ln(1/frcpa(1+ 31/256)
-data8 0x3FBEA3257FE10F7A //ln(1/frcpa(1+ 32/256)
-data8 0x3FBF7BE9FEDBFDE6 //ln(1/frcpa(1+ 33/256)
-data8 0x3FC02AB352FF25F4 //ln(1/frcpa(1+ 34/256)
-data8 0x3FC097CE579D204D //ln(1/frcpa(1+ 35/256)
-data8 0x3FC1178E8227E47C //ln(1/frcpa(1+ 36/256)
-data8 0x3FC185747DBECF34 //ln(1/frcpa(1+ 37/256)
-data8 0x3FC1F3B925F25D41 //ln(1/frcpa(1+ 38/256)
-data8 0x3FC2625D1E6DDF57 //ln(1/frcpa(1+ 39/256)
-data8 0x3FC2D1610C86813A //ln(1/frcpa(1+ 40/256)
-data8 0x3FC340C59741142E //ln(1/frcpa(1+ 41/256)
-data8 0x3FC3B08B6757F2A9 //ln(1/frcpa(1+ 42/256)
-data8 0x3FC40DFB08378003 //ln(1/frcpa(1+ 43/256)
-data8 0x3FC47E74E8CA5F7C //ln(1/frcpa(1+ 44/256)
-data8 0x3FC4EF51F6466DE4 //ln(1/frcpa(1+ 45/256)
-data8 0x3FC56092E02BA516 //ln(1/frcpa(1+ 46/256)
-data8 0x3FC5D23857CD74D5 //ln(1/frcpa(1+ 47/256)
-data8 0x3FC6313A37335D76 //ln(1/frcpa(1+ 48/256)
-data8 0x3FC6A399DABBD383 //ln(1/frcpa(1+ 49/256)
-data8 0x3FC70337DD3CE41B //ln(1/frcpa(1+ 50/256)
-data8 0x3FC77654128F6127 //ln(1/frcpa(1+ 51/256)
-data8 0x3FC7E9D82A0B022D //ln(1/frcpa(1+ 52/256)
-data8 0x3FC84A6B759F512F //ln(1/frcpa(1+ 53/256)
-data8 0x3FC8AB47D5F5A310 //ln(1/frcpa(1+ 54/256)
-data8 0x3FC91FE49096581B //ln(1/frcpa(1+ 55/256)
-data8 0x3FC981634011AA75 //ln(1/frcpa(1+ 56/256)
-data8 0x3FC9F6C407089664 //ln(1/frcpa(1+ 57/256)
-data8 0x3FCA58E729348F43 //ln(1/frcpa(1+ 58/256)
-data8 0x3FCABB55C31693AD //ln(1/frcpa(1+ 59/256)
-data8 0x3FCB1E104919EFD0 //ln(1/frcpa(1+ 60/256)
-data8 0x3FCB94EE93E367CB //ln(1/frcpa(1+ 61/256)
-data8 0x3FCBF851C067555F //ln(1/frcpa(1+ 62/256)
-data8 0x3FCC5C0254BF23A6 //ln(1/frcpa(1+ 63/256)
-data8 0x3FCCC000C9DB3C52 //ln(1/frcpa(1+ 64/256)
-data8 0x3FCD244D99C85674 //ln(1/frcpa(1+ 65/256)
-data8 0x3FCD88E93FB2F450 //ln(1/frcpa(1+ 66/256)
-data8 0x3FCDEDD437EAEF01 //ln(1/frcpa(1+ 67/256)
-data8 0x3FCE530EFFE71012 //ln(1/frcpa(1+ 68/256)
-data8 0x3FCEB89A1648B971 //ln(1/frcpa(1+ 69/256)
-data8 0x3FCF1E75FADF9BDE //ln(1/frcpa(1+ 70/256)
-data8 0x3FCF84A32EAD7C35 //ln(1/frcpa(1+ 71/256)
-data8 0x3FCFEB2233EA07CD //ln(1/frcpa(1+ 72/256)
-data8 0x3FD028F9C7035C1C //ln(1/frcpa(1+ 73/256)
-data8 0x3FD05C8BE0D9635A //ln(1/frcpa(1+ 74/256)
-data8 0x3FD085EB8F8AE797 //ln(1/frcpa(1+ 75/256)
-data8 0x3FD0B9C8E32D1911 //ln(1/frcpa(1+ 76/256)
-data8 0x3FD0EDD060B78081 //ln(1/frcpa(1+ 77/256)
-data8 0x3FD122024CF0063F //ln(1/frcpa(1+ 78/256)
-data8 0x3FD14BE2927AECD4 //ln(1/frcpa(1+ 79/256)
-data8 0x3FD180618EF18ADF //ln(1/frcpa(1+ 80/256)
-data8 0x3FD1B50BBE2FC63B //ln(1/frcpa(1+ 81/256)
-data8 0x3FD1DF4CC7CF242D //ln(1/frcpa(1+ 82/256)
-data8 0x3FD214456D0EB8D4 //ln(1/frcpa(1+ 83/256)
-data8 0x3FD23EC5991EBA49 //ln(1/frcpa(1+ 84/256)
-data8 0x3FD2740D9F870AFB //ln(1/frcpa(1+ 85/256)
-data8 0x3FD29ECDABCDFA04 //ln(1/frcpa(1+ 86/256)
-data8 0x3FD2D46602ADCCEE //ln(1/frcpa(1+ 87/256)
-data8 0x3FD2FF66B04EA9D4 //ln(1/frcpa(1+ 88/256)
-data8 0x3FD335504B355A37 //ln(1/frcpa(1+ 89/256)
-data8 0x3FD360925EC44F5D //ln(1/frcpa(1+ 90/256)
-data8 0x3FD38BF1C3337E75 //ln(1/frcpa(1+ 91/256)
-data8 0x3FD3C25277333184 //ln(1/frcpa(1+ 92/256)
-data8 0x3FD3EDF463C1683E //ln(1/frcpa(1+ 93/256)
-data8 0x3FD419B423D5E8C7 //ln(1/frcpa(1+ 94/256)
-data8 0x3FD44591E0539F49 //ln(1/frcpa(1+ 95/256)
-data8 0x3FD47C9175B6F0AD //ln(1/frcpa(1+ 96/256)
-data8 0x3FD4A8B341552B09 //ln(1/frcpa(1+ 97/256)
-data8 0x3FD4D4F3908901A0 //ln(1/frcpa(1+ 98/256)
-data8 0x3FD501528DA1F968 //ln(1/frcpa(1+ 99/256)
-data8 0x3FD52DD06347D4F6 //ln(1/frcpa(1+ 100/256)
-data8 0x3FD55A6D3C7B8A8A //ln(1/frcpa(1+ 101/256)
-data8 0x3FD5925D2B112A59 //ln(1/frcpa(1+ 102/256)
-data8 0x3FD5BF406B543DB2 //ln(1/frcpa(1+ 103/256)
-data8 0x3FD5EC433D5C35AE //ln(1/frcpa(1+ 104/256)
-data8 0x3FD61965CDB02C1F //ln(1/frcpa(1+ 105/256)
-data8 0x3FD646A84935B2A2 //ln(1/frcpa(1+ 106/256)
-data8 0x3FD6740ADD31DE94 //ln(1/frcpa(1+ 107/256)
-data8 0x3FD6A18DB74A58C5 //ln(1/frcpa(1+ 108/256)
-data8 0x3FD6CF31058670EC //ln(1/frcpa(1+ 109/256)
-data8 0x3FD6F180E852F0BA //ln(1/frcpa(1+ 110/256)
-data8 0x3FD71F5D71B894F0 //ln(1/frcpa(1+ 111/256)
-data8 0x3FD74D5AEFD66D5C //ln(1/frcpa(1+ 112/256)
-data8 0x3FD77B79922BD37E //ln(1/frcpa(1+ 113/256)
-data8 0x3FD7A9B9889F19E2 //ln(1/frcpa(1+ 114/256)
-data8 0x3FD7D81B037EB6A6 //ln(1/frcpa(1+ 115/256)
-data8 0x3FD8069E33827231 //ln(1/frcpa(1+ 116/256)
-data8 0x3FD82996D3EF8BCB //ln(1/frcpa(1+ 117/256)
-data8 0x3FD85855776DCBFB //ln(1/frcpa(1+ 118/256)
-data8 0x3FD8873658327CCF //ln(1/frcpa(1+ 119/256)
-data8 0x3FD8AA75973AB8CF //ln(1/frcpa(1+ 120/256)
-data8 0x3FD8D992DC8824E5 //ln(1/frcpa(1+ 121/256)
-data8 0x3FD908D2EA7D9512 //ln(1/frcpa(1+ 122/256)
-data8 0x3FD92C59E79C0E56 //ln(1/frcpa(1+ 123/256)
-data8 0x3FD95BD750EE3ED3 //ln(1/frcpa(1+ 124/256)
-data8 0x3FD98B7811A3EE5B //ln(1/frcpa(1+ 125/256)
-data8 0x3FD9AF47F33D406C //ln(1/frcpa(1+ 126/256)
-data8 0x3FD9DF270C1914A8 //ln(1/frcpa(1+ 127/256)
-data8 0x3FDA0325ED14FDA4 //ln(1/frcpa(1+ 128/256)
-data8 0x3FDA33440224FA79 //ln(1/frcpa(1+ 129/256)
-data8 0x3FDA57725E80C383 //ln(1/frcpa(1+ 130/256)
-data8 0x3FDA87D0165DD199 //ln(1/frcpa(1+ 131/256)
-data8 0x3FDAAC2E6C03F896 //ln(1/frcpa(1+ 132/256)
-data8 0x3FDADCCC6FDF6A81 //ln(1/frcpa(1+ 133/256)
-data8 0x3FDB015B3EB1E790 //ln(1/frcpa(1+ 134/256)
-data8 0x3FDB323A3A635948 //ln(1/frcpa(1+ 135/256)
-data8 0x3FDB56FA04462909 //ln(1/frcpa(1+ 136/256)
-data8 0x3FDB881AA659BC93 //ln(1/frcpa(1+ 137/256)
-data8 0x3FDBAD0BEF3DB165 //ln(1/frcpa(1+ 138/256)
-data8 0x3FDBD21297781C2F //ln(1/frcpa(1+ 139/256)
-data8 0x3FDC039236F08819 //ln(1/frcpa(1+ 140/256)
-data8 0x3FDC28CB1E4D32FD //ln(1/frcpa(1+ 141/256)
-data8 0x3FDC4E19B84723C2 //ln(1/frcpa(1+ 142/256)
-data8 0x3FDC7FF9C74554C9 //ln(1/frcpa(1+ 143/256)
-data8 0x3FDCA57B64E9DB05 //ln(1/frcpa(1+ 144/256)
-data8 0x3FDCCB130A5CEBB0 //ln(1/frcpa(1+ 145/256)
-data8 0x3FDCF0C0D18F326F //ln(1/frcpa(1+ 146/256)
-data8 0x3FDD232075B5A201 //ln(1/frcpa(1+ 147/256)
-data8 0x3FDD490246DEFA6B //ln(1/frcpa(1+ 148/256)
-data8 0x3FDD6EFA918D25CD //ln(1/frcpa(1+ 149/256)
-data8 0x3FDD9509707AE52F //ln(1/frcpa(1+ 150/256)
-data8 0x3FDDBB2EFE92C554 //ln(1/frcpa(1+ 151/256)
-data8 0x3FDDEE2F3445E4AF //ln(1/frcpa(1+ 152/256)
-data8 0x3FDE148A1A2726CE //ln(1/frcpa(1+ 153/256)
-data8 0x3FDE3AFC0A49FF40 //ln(1/frcpa(1+ 154/256)
-data8 0x3FDE6185206D516E //ln(1/frcpa(1+ 155/256)
-data8 0x3FDE882578823D52 //ln(1/frcpa(1+ 156/256)
-data8 0x3FDEAEDD2EAC990C //ln(1/frcpa(1+ 157/256)
-data8 0x3FDED5AC5F436BE3 //ln(1/frcpa(1+ 158/256)
-data8 0x3FDEFC9326D16AB9 //ln(1/frcpa(1+ 159/256)
-data8 0x3FDF2391A2157600 //ln(1/frcpa(1+ 160/256)
-data8 0x3FDF4AA7EE03192D //ln(1/frcpa(1+ 161/256)
-data8 0x3FDF71D627C30BB0 //ln(1/frcpa(1+ 162/256)
-data8 0x3FDF991C6CB3B379 //ln(1/frcpa(1+ 163/256)
-data8 0x3FDFC07ADA69A910 //ln(1/frcpa(1+ 164/256)
-data8 0x3FDFE7F18EB03D3E //ln(1/frcpa(1+ 165/256)
-data8 0x3FE007C053C5002E //ln(1/frcpa(1+ 166/256)
-data8 0x3FE01B942198A5A1 //ln(1/frcpa(1+ 167/256)
-data8 0x3FE02F74400C64EB //ln(1/frcpa(1+ 168/256)
-data8 0x3FE04360BE7603AD //ln(1/frcpa(1+ 169/256)
-data8 0x3FE05759AC47FE34 //ln(1/frcpa(1+ 170/256)
-data8 0x3FE06B5F1911CF52 //ln(1/frcpa(1+ 171/256)
-data8 0x3FE078BF0533C568 //ln(1/frcpa(1+ 172/256)
-data8 0x3FE08CD9687E7B0E //ln(1/frcpa(1+ 173/256)
-data8 0x3FE0A10074CF9019 //ln(1/frcpa(1+ 174/256)
-data8 0x3FE0B5343A234477 //ln(1/frcpa(1+ 175/256)
-data8 0x3FE0C974C89431CE //ln(1/frcpa(1+ 176/256)
-data8 0x3FE0DDC2305B9886 //ln(1/frcpa(1+ 177/256)
-data8 0x3FE0EB524BAFC918 //ln(1/frcpa(1+ 178/256)
-data8 0x3FE0FFB54213A476 //ln(1/frcpa(1+ 179/256)
-data8 0x3FE114253DA97D9F //ln(1/frcpa(1+ 180/256)
-data8 0x3FE128A24F1D9AFF //ln(1/frcpa(1+ 181/256)
-data8 0x3FE1365252BF0865 //ln(1/frcpa(1+ 182/256)
-data8 0x3FE14AE558B4A92D //ln(1/frcpa(1+ 183/256)
-data8 0x3FE15F85A19C765B //ln(1/frcpa(1+ 184/256)
-data8 0x3FE16D4D38C119FA //ln(1/frcpa(1+ 185/256)
-data8 0x3FE18203C20DD133 //ln(1/frcpa(1+ 186/256)
-data8 0x3FE196C7BC4B1F3B //ln(1/frcpa(1+ 187/256)
-data8 0x3FE1A4A738B7A33C //ln(1/frcpa(1+ 188/256)
-data8 0x3FE1B981C0C9653D //ln(1/frcpa(1+ 189/256)
-data8 0x3FE1CE69E8BB106B //ln(1/frcpa(1+ 190/256)
-data8 0x3FE1DC619DE06944 //ln(1/frcpa(1+ 191/256)
-data8 0x3FE1F160A2AD0DA4 //ln(1/frcpa(1+ 192/256)
-data8 0x3FE2066D7740737E //ln(1/frcpa(1+ 193/256)
-data8 0x3FE2147DBA47A394 //ln(1/frcpa(1+ 194/256)
-data8 0x3FE229A1BC5EBAC3 //ln(1/frcpa(1+ 195/256)
-data8 0x3FE237C1841A502E //ln(1/frcpa(1+ 196/256)
-data8 0x3FE24CFCE6F80D9A //ln(1/frcpa(1+ 197/256)
-data8 0x3FE25B2C55CD5762 //ln(1/frcpa(1+ 198/256)
-data8 0x3FE2707F4D5F7C41 //ln(1/frcpa(1+ 199/256)
-data8 0x3FE285E0842CA384 //ln(1/frcpa(1+ 200/256)
-data8 0x3FE294294708B773 //ln(1/frcpa(1+ 201/256)
-data8 0x3FE2A9A2670AFF0C //ln(1/frcpa(1+ 202/256)
-data8 0x3FE2B7FB2C8D1CC1 //ln(1/frcpa(1+ 203/256)
-data8 0x3FE2C65A6395F5F5 //ln(1/frcpa(1+ 204/256)
-data8 0x3FE2DBF557B0DF43 //ln(1/frcpa(1+ 205/256)
-data8 0x3FE2EA64C3F97655 //ln(1/frcpa(1+ 206/256)
-data8 0x3FE3001823684D73 //ln(1/frcpa(1+ 207/256)
-data8 0x3FE30E97E9A8B5CD //ln(1/frcpa(1+ 208/256)
-data8 0x3FE32463EBDD34EA //ln(1/frcpa(1+ 209/256)
-data8 0x3FE332F4314AD796 //ln(1/frcpa(1+ 210/256)
-data8 0x3FE348D90E7464D0 //ln(1/frcpa(1+ 211/256)
-data8 0x3FE35779F8C43D6E //ln(1/frcpa(1+ 212/256)
-data8 0x3FE36621961A6A99 //ln(1/frcpa(1+ 213/256)
-data8 0x3FE37C299F3C366A //ln(1/frcpa(1+ 214/256)
-data8 0x3FE38AE2171976E7 //ln(1/frcpa(1+ 215/256)
-data8 0x3FE399A157A603E7 //ln(1/frcpa(1+ 216/256)
-data8 0x3FE3AFCCFE77B9D1 //ln(1/frcpa(1+ 217/256)
-data8 0x3FE3BE9D503533B5 //ln(1/frcpa(1+ 218/256)
-data8 0x3FE3CD7480B4A8A3 //ln(1/frcpa(1+ 219/256)
-data8 0x3FE3E3C43918F76C //ln(1/frcpa(1+ 220/256)
-data8 0x3FE3F2ACB27ED6C7 //ln(1/frcpa(1+ 221/256)
-data8 0x3FE4019C2125CA93 //ln(1/frcpa(1+ 222/256)
-data8 0x3FE4181061389722 //ln(1/frcpa(1+ 223/256)
-data8 0x3FE42711518DF545 //ln(1/frcpa(1+ 224/256)
-data8 0x3FE436194E12B6BF //ln(1/frcpa(1+ 225/256)
-data8 0x3FE445285D68EA69 //ln(1/frcpa(1+ 226/256)
-data8 0x3FE45BCC464C893A //ln(1/frcpa(1+ 227/256)
-data8 0x3FE46AED21F117FC //ln(1/frcpa(1+ 228/256)
-data8 0x3FE47A1527E8A2D3 //ln(1/frcpa(1+ 229/256)
-data8 0x3FE489445EFFFCCC //ln(1/frcpa(1+ 230/256)
-data8 0x3FE4A018BCB69835 //ln(1/frcpa(1+ 231/256)
-data8 0x3FE4AF5A0C9D65D7 //ln(1/frcpa(1+ 232/256)
-data8 0x3FE4BEA2A5BDBE87 //ln(1/frcpa(1+ 233/256)
-data8 0x3FE4CDF28F10AC46 //ln(1/frcpa(1+ 234/256)
-data8 0x3FE4DD49CF994058 //ln(1/frcpa(1+ 235/256)
-data8 0x3FE4ECA86E64A684 //ln(1/frcpa(1+ 236/256)
-data8 0x3FE503C43CD8EB68 //ln(1/frcpa(1+ 237/256)
-data8 0x3FE513356667FC57 //ln(1/frcpa(1+ 238/256)
-data8 0x3FE522AE0738A3D8 //ln(1/frcpa(1+ 239/256)
-data8 0x3FE5322E26867857 //ln(1/frcpa(1+ 240/256)
-data8 0x3FE541B5CB979809 //ln(1/frcpa(1+ 241/256)
-data8 0x3FE55144FDBCBD62 //ln(1/frcpa(1+ 242/256)
-data8 0x3FE560DBC45153C7 //ln(1/frcpa(1+ 243/256)
-data8 0x3FE5707A26BB8C66 //ln(1/frcpa(1+ 244/256)
-data8 0x3FE587F60ED5B900 //ln(1/frcpa(1+ 245/256)
-data8 0x3FE597A7977C8F31 //ln(1/frcpa(1+ 246/256)
-data8 0x3FE5A760D634BB8B //ln(1/frcpa(1+ 247/256)
-data8 0x3FE5B721D295F10F //ln(1/frcpa(1+ 248/256)
-data8 0x3FE5C6EA94431EF9 //ln(1/frcpa(1+ 249/256)
-data8 0x3FE5D6BB22EA86F6 //ln(1/frcpa(1+ 250/256)
-data8 0x3FE5E6938645D390 //ln(1/frcpa(1+ 251/256)
-data8 0x3FE5F673C61A2ED2 //ln(1/frcpa(1+ 252/256)
-data8 0x3FE6065BEA385926 //ln(1/frcpa(1+ 253/256)
-data8 0x3FE6164BFA7CC06B //ln(1/frcpa(1+ 254/256)
-data8 0x3FE62643FECF9743 //ln(1/frcpa(1+ 255/256)
-//
-// [2;4)
-data8 0xBEB2CC7A38B9355F,0x3F035F2D1833BF4C // A10,A9
-data8 0xBFF51BAA7FD27785,0x3FFC9D5D5B6CDEFF // A2,A1
-data8 0xBF421676F9CB46C7,0x3F7437F2FA1436C6 // A8,A7
-data8 0xBFD7A7041DE592FE,0x3FE9F107FEE8BD29 // A4,A3
-// [4;8)
-data8 0x3F6BBBD68451C0CD,0xBF966EC3272A16F7 // A10,A9
-data8 0x40022A24A39AD769,0x4014190EDF49C8C5 // A2,A1
-data8 0x3FB130FD016EE241,0xBFC151B46E635248 // A8,A7
-data8 0x3FDE8F611965B5FE,0xBFEB5110EB265E3D // A4,A3
-// [8;16)
-data8 0x3F736EF93508626A,0xBF9FE5DBADF58AF1 // A10,A9
-data8 0x40110A9FC5192058,0x40302008A6F96B29 // A2,A1
-data8 0x3FB8E74E0CE1E4B5,0xBFC9B5DA78873656 // A8,A7
-data8 0x3FE99D0DF10022DC,0xBFF829C0388F9484 // A4,A3
-// [16;32)
-data8 0x3F7FFF9D6D7E9269,0xBFAA780A249AEDB1 // A10,A9
-data8 0x402082A807AEA080,0x4045ED9868408013 // A2,A1
-data8 0x3FC4E1E54C2F99B7,0xBFD5DE2D6FFF1490 // A8,A7
-data8 0x3FF75FC89584AE87,0xC006B4BADD886CAE // A4,A3
-// [32;64)
-data8 0x3F8CE54375841A5F,0xBFB801ABCFFA1BE2 // A10,A9
-data8 0x403040A8B1815BDA,0x405B99A917D24B7A // A2,A1
-data8 0x3FD30CAB81BFFA03,0xBFE41AEF61ECF48B // A8,A7
-data8 0x400650CC136BEC43,0xC016022046E8292B // A4,A3
-// [64;128)
-data8 0x3F9B69BD22CAA8B8,0xBFC6D48875B7A213 // A10,A9
-data8 0x40402028CCAA2F6D,0x40709AACEB3CBE0F // A2,A1
-data8 0x3FE22C6A5924761E,0xBFF342F5F224523D // A8,A7
-data8 0x4015CD405CCA331F,0xC025AAD10482C769 // A4,A3
-// [128;256)
-data8 0x3FAAAD9CD0E40D06,0xBFD63FC8505D80CB // A10,A9
-data8 0x40501008D56C2648,0x408364794B0F4376 // A2,A1
-data8 0x3FF1BE0126E00284,0xC002D8E3F6F7F7CA // A8,A7
-data8 0x40258C757E95D860,0xC0357FA8FD398011 // A4,A3
-// [256;512)
-data8 0x3FBA4DAC59D49FEB,0xBFE5F476D1C43A77 // A10,A9
-data8 0x40600800D890C7C6,0x40962C42AAEC8EF0 // A2,A1
-data8 0x40018680ECF19B89,0xC012A3EB96FB7BA4 // A8,A7
-data8 0x40356C4CDD3B60F9,0xC0456A34BF18F440 // A4,A3
-// [512;1024)
-data8 0x3FCA1B54F6225A5A,0xBFF5CD67BA10E048 // A10,A9
-data8 0x407003FED94C58C2,0x40A8F30B4ACBCD22 // A2,A1
-data8 0x40116A135EB66D8C,0xC022891B1CED527E // A8,A7
-data8 0x40455C4617FDD8BC,0xC0555F82729E59C4 // A4,A3
-// [1024;2048)
-data8 0x3FD9FFF9095C6EC9,0xC005B88CB25D76C9 // A10,A9
-data8 0x408001FE58FA734D,0x40BBB953BAABB0F3 // A2,A1
-data8 0x40215B2F9FEB5D87,0xC0327B539DEA5058 // A8,A7
-data8 0x40555444B3E8D64D,0xC0655A2B26F9FC8A // A4,A3
-// [2048;4096)
-data8 0x3FE9F065A1C3D6B1,0xC015ACF6FAE8D78D // A10,A9
-data8 0x409000FE383DD2B7,0x40CE7F5C1E8BCB8B // A2,A1
-data8 0x40315324E5DB2EBE,0xC04274194EF70D18 // A8,A7
-data8 0x4065504353FF2207,0xC075577FE1BFE7B6 // A4,A3
-// [4096;8192)
-data8 0x3FF9E6FBC6B1C70D,0xC025A62DAF76F85D // A10,A9
-data8 0x40A0007E2F61EBE8,0x40E0A2A23FB5F6C3 // A2,A1
-data8 0x40414E9BC0A0141A,0xC0527030F2B69D43 // A8,A7
-data8 0x40754E417717B45B,0xC085562A447258E5 // A4,A3
-//
-data8 0xbfdffffffffaea15 // P1
-data8 0x3FDD8B618D5AF8FE // point of local minimum on [1;2]
-data8 0x3FED67F1C864BEB5 // ln(sqrt(2*Pi))
-data8 0x4008000000000000 // 3.0
-//
-data8 0xBF9E1C289FB224AB,0x3FBF7422445C9460 // A6,A5
-data8 0xBFF01E76D66F8D8A // A0
-data8 0xBFE2788CFC6F91DA // A1 [1.0;1.25)
-data8 0x3FCB8CC69000EB5C,0xBFD41997A0C2C641 // A6,A5
-data8 0x3FFCAB0BFA0EA462 // A0
-data8 0xBFBF19B9BCC38A42 // A0 [1.25;1.5)
-data8 0x3FD51EE4DE0A364C,0xBFE00D7F98A16E4B // A6,A5
-data8 0x40210CE1F327E9E4 // A0
-data8 0x4001DB08F9DFA0CC // A0 [1.5;1.75)
-data8 0x3FE24F606742D252,0xBFEC81D7D12574EC // A6,A5
-data8 0x403BE636A63A9C27 // A0
-data8 0x4000A0CB38D6CF0A // A0 [1.75;2.0)
-data8 0x3FF1029A9DD542B4,0xBFFAD37C209D3B25 // A6,A5
-data8 0x405385E6FD9BE7EA // A0
-data8 0x478895F1C0000000 // Overflow boundary
-data8 0x400062D97D26B523,0xC00A03E1529FF023 // A6,A5
-data8 0x4069204C51E566CE // A0
-data8 0x0000000000000000 // pad
-data8 0x40101476B38FD501,0xC0199DE7B387C0FC // A6,A5
-data8 0x407EB8DAEC83D759 // A0
-data8 0x0000000000000000 // pad
-data8 0x401FDB008D65125A,0xC0296B506E665581 // A6,A5
-data8 0x409226D93107EF66 // A0
-data8 0x0000000000000000 // pad
-data8 0x402FB3EAAF3E7B2D,0xC039521142AD8E0D // A6,A5
-data8 0x40A4EFA4F072792E // A0
-data8 0x0000000000000000 // pad
-data8 0x403FA024C66B2563,0xC0494569F250E691 // A6,A5
-data8 0x40B7B747C9235BB8 // A0
-data8 0x0000000000000000 // pad
-data8 0x404F9607D6DA512C,0xC0593F0B2EDDB4BC // A6,A5
-data8 0x40CA7E29C5F16DE2 // A0
-data8 0x0000000000000000 // pad
-data8 0x405F90C5F613D98D,0xC0693BD130E50AAF // A6,A5
-data8 0x40DD4495238B190C // A0
-data8 0x0000000000000000 // pad
-//
-// polynomial approximation of ln(sin(Pi*x)/(Pi*x)), |x| <= 0.5
-data8 0xBFD58731A486E820,0xBFA4452CC28E15A9 // S16,S14
-data8 0xBFD013F6E1B86C4F,0xBFD5B3F19F7A341F // S8,S6
-data8 0xBFC86A0D5252E778,0xBFC93E08C9EE284B // S12,S10
-data8 0xBFE15132555C9EDD,0xBFFA51A662480E35 // S4,S2
-//
-// [1.0;1.25)
-data8 0xBFA697D6775F48EA,0x3FB9894B682A98E7 // A9,A8
-data8 0xBFCA8969253CFF55,0x3FD15124EFB35D9D // A5,A4
-data8 0xBFC1B00158AB719D,0x3FC5997D04E7F1C1 // A7,A6
-data8 0xBFD9A4D50BAFF989,0x3FEA51A661F5176A // A3,A2
-// [1.25;1.5)
-data8 0x3F838E0D35A6171A,0xBF831BBBD61313B7 // A8,A7
-data8 0x3FB08B40196425D0,0xBFC2E427A53EB830 // A4,A3
-data8 0x3F9285DDDC20D6C3,0xBFA0C90C9C223044 // A6,A5
-data8 0x3FDEF72BC8F5287C,0x3D890B3DAEBC1DFC // A2,A1
-// [1.5;1.75)
-data8 0x3F65D5A7EB31047F,0xBFA44EAC9BFA7FDE // A8,A7
-data8 0x40051FEFE7A663D8,0xC012A5CFE00A2522 // A4,A3
-data8 0x3FD0E1583AB00E08,0xBFF084AF95883BA5 // A6,A5
-data8 0x40185982877AE0A2,0xC015F83DB73B57B7 // A2,A1
-// [1.75;2.0)
-data8 0x3F4A9222032EB39A,0xBF8CBC9587EEA5A3 // A8,A7
-data8 0x3FF795400783BE49,0xC00851BC418B8A25 // A4,A3
-data8 0x3FBBC992783E8C5B,0xBFDFA67E65E89B29 // A6,A5
-data8 0x4012B408F02FAF88,0xC013284CE7CB0C39 // A2,A1
-//
-// roots
-data8 0xC003A7FC9600F86C // -2.4570247382208005860
-data8 0xC009260DBC9E59AF // -3.1435808883499798405
-data8 0xC005FB410A1BD901 // -2.7476826467274126919
-data8 0xC00FA471547C2FE5 // -3.9552942848585979085
-//
-// polynomial approximation of ln(GAMMA(x)) near roots
-// near -2.4570247382208005860
-data8 0x3FF694A6058D9592,0x40136EEBB003A92B // R3,R2
-data8 0x3FF83FE966AF5360,0x3C90323B6D1FE86D // R1,R0
-// near -3.1435808883499798405
-data8 0x405C11371268DA38,0x4039D4D2977D2C23 // R3,R2
-data8 0x401F20A65F2FAC62,0x3CDE9605E3AE7A62 // R1,R0
-// near -2.7476826467274126919
-data8 0xC034185AC31314FF,0x4023267F3C28DFE3 // R3,R2
-data8 0xBFFEA12DA904B194,0x3CA8FB8530BA7689 // R1,R0
-// near -2.7476826467274126919
-data8 0xC0AD25359E70C888,0x406F76DEAEA1B8C6 // R3,R2
-data8 0xC034B99D966C5644,0xBCBDDC0336980B58 // R1,R0
-LOCAL_OBJECT_END(lgammaf_data)
-
-//*********************************************************************
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_lgammaf)
-{ .mfi
- getf.exp GR_SignExp = f8
- frcpa.s1 FR_InvX,p0 = f1,f8
- mov GR_ExpOf2 = 0x10000
-}
-{ .mfi
- addl GR_ad_Data = @ltoff(lgammaf_data),gp
- fcvt.fx.s1 FR_int_N = f8
- mov GR_ExpMask = 0x1ffff
-};;
-{ .mfi
- getf.sig GR_Sig = f8
- fclass.m p13,p0 = f8,0x1EF // is x NaTVal, NaN,
- // +/-0, +/-INF or +/-deno?
- mov GR_ExpBias = 0xffff
-}
-{ .mfi
- ld8 GR_ad_Data = [GR_ad_Data]
- fma.s1 FR_Xp1 = f8,f1,f1
- mov GR_StirlBound = 0x1000C
-};;
-{ .mfi
- setf.exp FR_2 = GR_ExpOf2
- fmerge.se FR_x = f1,f8
- dep.z GR_Ind = GR_SignExp,3,4
-}
-{ .mfi
- cmp.eq p8,p0 = GR_SignExp,GR_ExpBias
- fcvt.fx.trunc.s1 FR_int_Ntrunc = f8
- and GR_Exp = GR_ExpMask,GR_SignExp
-};;
-{ .mfi
- add GR_ad_C650 = 0xB20,GR_ad_Data
- fcmp.lt.s1 p14,p15 = f8,f0
- extr.u GR_Ind4T = GR_Sig,55,8
-}
-{ .mfb
- sub GR_PureExp = GR_Exp,GR_ExpBias
- fnorm.s1 FR_NormX = f8
- // jump if x is NaTVal, NaN, +/-0, +/-INF or +/-deno
-(p13) br.cond.spnt lgammaf_spec
-};;
-lgammaf_core:
-{ .mfi
- ldfpd FR_P1,FR_LocalMin = [GR_ad_C650],16
- fms.s1 FR_xm2 = f8,f1,f1
- add GR_ad_Co = 0x820,GR_ad_Data
-}
-{ .mib
- ldfpd FR_P3,FR_P2 = [GR_ad_Data],16
- cmp.ltu p9,p0 = GR_SignExp,GR_ExpBias
- // jump if x is from the interval [1; 2)
-(p8) br.cond.spnt lgammaf_1_2
-};;
-{ .mfi
- setf.sig FR_int_Ln = GR_PureExp
- fms.s1 FR_r = FR_InvX,f8,f1
- shladd GR_ad_Co = GR_Ind,3,GR_ad_Co
-}
-{ .mib
- ldfpd FR_LnSqrt2Pi,FR_3 = [GR_ad_C650],16
- cmp.lt p13,p12 = GR_Exp,GR_StirlBound
- // jump if x is from the interval (0; 1)
-(p9) br.cond.spnt lgammaf_0_1
-};;
-{ .mfi
- ldfpd FR_Ln2,FR_05 = [GR_ad_Data],16
- fma.s1 FR_Xp2 = f1,f1,FR_Xp1 // (x+2)
- shladd GR_ad_C650 = GR_Ind,2,GR_ad_C650
-}
-{ .mfi
- add GR_ad_Ce = 0x20,GR_ad_Co
- nop.f 0
- add GR_ad_C43 = 0x30,GR_ad_Co
-};;
-{ .mfi
- // load coefficients of polynomial approximation
- // of ln(GAMMA(x)), 2 <= x < 2^13
-(p13) ldfpd FR_A10,FR_A9 = [GR_ad_Co],16
- fcvt.xf FR_N = FR_int_N
- cmp.eq.unc p6,p7 = GR_ExpOf2,GR_SignExp
-}
-{ .mib
-(p13) ldfpd FR_A8,FR_A7 = [GR_ad_Ce]
-(p14) cmp.le.unc p9,p0 = GR_StirlBound,GR_Exp
- // jump if x is less or equal to -2^13
-(p9) br.cond.spnt lgammaf_negstirling
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
-(p13) ldfpd FR_A6,FR_A5 = [GR_ad_C650],16
-(p6) fma.s1 FR_x = f0,f0,FR_NormX
- shladd GR_ad_T = GR_Ind4T,3,GR_ad_Data
-}
-{ .mfi
-(p13) ldfpd FR_A4,FR_A3 = [GR_ad_C43]
-(p7) fms.s1 FR_x = FR_x,f1,f1
-(p14) mov GR_ReqBound = 0x20005
-};;
-{ .mfi
-(p13) ldfpd FR_A2,FR_A1 = [GR_ad_Co],16
- fms.s1 FR_xm2 = FR_xm2,f1,f1
-(p14) extr.u GR_Arg = GR_Sig,60,4
-}
-{ .mfi
- mov GR_SignOfGamma = 1 // set sign of gamma(x) to 1
- fcvt.xf FR_Ntrunc = FR_int_Ntrunc
- nop.i 0
-};;
-{ .mfi
- ldfd FR_T = [GR_ad_T]
- fma.s1 FR_r2 = FR_r,FR_r,f0
- shl GR_ReqBound = GR_ReqBound,3
-}
-{ .mfi
- add GR_ad_Co = 0xCA0,GR_ad_Data
- fnma.s1 FR_Req = FR_Xp1,FR_NormX,f0 // -x*(x+1)
-(p14) shladd GR_Arg = GR_Exp,4,GR_Arg
-};;
-{ .mfi
-(p13) ldfd FR_A0 = [GR_ad_C650]
- fma.s1 FR_Xp3 = FR_2,f1,FR_Xp1 // (x+3)
-(p14) cmp.le.unc p9,p0 = GR_Arg,GR_ReqBound
-}
-{ .mfi
-(p14) add GR_ad_Ce = 0x20,GR_ad_Co
- fma.s1 FR_Xp4 = FR_2,FR_2,FR_NormX // (x+4)
-(p15) add GR_ad_OvfBound = 0xBB8,GR_ad_Data
-};;
-{ .mfi
- // load coefficients of polynomial approximation
- // of ln(sin(Pi*xf)/(Pi*xf)), |xf| <= 0.5
-(p14) ldfpd FR_S16,FR_S14 = [GR_ad_Co],16
-(p14) fms.s1 FR_Xf = FR_NormX,f1,FR_N // xf = x - [x]
-(p14) sub GR_SignOfGamma = r0,GR_SignOfGamma // set sign of
- // gamma(x) to -1
-}
-{ .mfb
-(p14) ldfpd FR_S12,FR_S10 = [GR_ad_Ce],16
- fma.s1 FR_Xp5 = FR_2,FR_2,FR_Xp1 // (x+5)
- // jump if x is from the interval (-9; 0)
-(p9) br.cond.spnt lgammaf_negrecursion
-};;
-{ .mfi
-(p14) ldfpd FR_S8,FR_S6 = [GR_ad_Co],16
- fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-}
-{ .mfb
-(p14) ldfpd FR_S4,FR_S2 = [GR_ad_Ce],16
- fma.s1 FR_x2 = FR_x,FR_x,f0
- // jump if x is from the interval (-2^13; -9)
-(p14) br.cond.spnt lgammaf_negpoly
-};;
-{ .mfi
- ldfd FR_OverflowBound = [GR_ad_OvfBound]
-(p12) fcvt.xf FR_N = FR_int_Ln
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-}
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_P10 = FR_P1,FR_r,f1
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-.pred.rel "mutex",p9,p10
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [r33] = GR_SignOfGamma
-(p6) fma.s1 FR_xx = FR_x,FR_xm2,f0
- nop.i 0
-}
-{ .mfi
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [r33] = GR_SignOfGamma
-(p7) fma.s1 FR_xx = f0,f0,FR_x
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A9 = FR_A10,FR_x,FR_A9
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A7 = FR_A8,FR_x,FR_A7
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A5 = FR_A6,FR_x,FR_A5
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A3 = FR_A4,FR_x,FR_A3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p15) fcmp.eq.unc.s1 p8,p0 = FR_NormX,FR_2 // is input argument 2.0?
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A1 = FR_A2,FR_x,FR_A1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_T = FR_N,FR_Ln2,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_P32 = FR_P32,FR_r2,FR_P10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_x3 = FR_x2,FR_xx,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A7 = FR_A9,FR_x2,FR_A7
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p8) fma.s.s0 f8 = f0,f0,f0
-(p8) br.ret.spnt b0 // fast exit for 2.0
-};;
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_A0 = FR_A0,FR_xm2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A3 = FR_A5,FR_x2,FR_A3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p15) fcmp.le.unc.s1 p8,p0 = FR_OverflowBound,FR_NormX // overflow test
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fms.s1 FR_xm05 = FR_NormX,f1,FR_05
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_Ln = FR_P32,FR_r,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fms.s1 FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_A0 = FR_A1,FR_xx,FR_A0
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p13) fma.s1 FR_A3 = FR_A7,FR_x4,FR_A3
- // jump if result overflows
-(p8) br.cond.spnt lgammaf_overflow
-};;
-.pred.rel "mutex",p12,p13
-{ .mfi
- nop.m 0
-(p12) fma.s.s0 f8 = FR_Ln,FR_xm05,FR_LnSqrt2Pi
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p13) fma.s.s0 f8 = FR_A3,FR_x3,FR_A0
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for 0 < x < 1
-//---------------------------------------------------------------------
-.align 32
-lgammaf_0_1:
-{ .mfi
- getf.sig GR_Ind = FR_Xp1
- fma.s1 FR_r2 = FR_r,FR_r,f0
- mov GR_fff7 = 0xFFF7
-}
-{ .mfi
- ldfpd FR_Ln2,FR_05 = [GR_ad_Data],16
- fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- // input argument cann't be equal to 1.0
- cmp.eq p0,p14 = r0,r0
-};;
-{ .mfi
- getf.exp GR_Exp = FR_w
- fcvt.xf FR_N = FR_int_Ln
- add GR_ad_Co = 0xCE0,GR_ad_Data
-}
-{ .mfi
- shladd GR_ad_T = GR_Ind4T,3,GR_ad_Data
- fma.s1 FR_P10 = FR_P1,FR_r,f1
- add GR_ad_Ce = 0xD00,GR_ad_Data
-};;
-{ .mfi
- ldfd FR_T = [GR_ad_T]
- fma.s1 FR_w2 = FR_w,FR_w,f0
- extr.u GR_Ind = GR_Ind,61,2
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Q32 = FR_P3,FR_w,FR_P2
-//// add GR_ad_C0 = 0xB30,GR_ad_Data
- add GR_ad_C0 = 0xB38,GR_ad_Data
-};;
-{ .mfi
- and GR_Exp = GR_Exp,GR_ExpMask
- nop.f 0
- shladd GR_IndX8 = GR_Ind,3,r0
-}
-{ .mfi
- shladd GR_IndX2 = GR_Ind,1,r0
- fma.s1 FR_Q10 = FR_P1,FR_w,f1
- cmp.eq p6,p15 = 0,GR_Ind
-};;
-{ .mfi
- shladd GR_ad_Co = GR_IndX8,3,GR_ad_Co
-(p6) fma.s1 FR_x = f0,f0,FR_NormX
- shladd GR_ad_C0 = GR_IndX2,4,GR_ad_C0
-}
-{ .mfi
- shladd GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
- nop.f 0
-(p15) cmp.eq.unc p7,p8 = 1,GR_Ind
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
- ldfpd FR_A8,FR_A7 = [GR_ad_Co],16
-(p7) fms.s1 FR_x = FR_NormX,f1,FR_LocalMin
- cmp.ge p10,p11 = GR_Exp,GR_fff7
-}
-{ .mfb
- ldfpd FR_A6,FR_A5 = [GR_ad_Ce],16
-(p8) fma.s1 FR_x = f1,f1,FR_NormX
- br.cond.sptk lgamma_0_2_core
-};;
-// branch for calculating of ln(GAMMA(x)) for 1 <= x < 2
-//---------------------------------------------------------------------
-.align 32
-lgammaf_1_2:
-{ .mfi
- add GR_ad_Co = 0xCF0,GR_ad_Data
- fcmp.eq.s1 p14,p0 = f1,FR_NormX // is input argument 1.0?
- extr.u GR_Ind = GR_Sig,61,2
-}
-{ .mfi
- add GR_ad_Ce = 0xD10,GR_ad_Data
- nop.f 0
-//// add GR_ad_C0 = 0xB40,GR_ad_Data
- add GR_ad_C0 = 0xB48,GR_ad_Data
-};;
-{ .mfi
- shladd GR_IndX8 = GR_Ind,3,r0
- nop.f 0
- shladd GR_IndX2 = GR_Ind,1,r0
-}
-{ .mfi
- cmp.eq p6,p15 = 0,GR_Ind // p6 <- x from [1;1.25)
- nop.f 0
- cmp.ne p9,p0 = r0,r0
-};;
-{ .mfi
- shladd GR_ad_Co = GR_IndX8,3,GR_ad_Co
-(p6) fms.s1 FR_x = FR_NormX,f1,f1 // reduced x for [1;1.25)
- shladd GR_ad_C0 = GR_IndX2,4,GR_ad_C0
-}
-{ .mfi
- shladd GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
-(p14) fma.s.s0 f8 = f0,f0,f0
-(p15) cmp.eq.unc p7,p8 = 1,GR_Ind // p7 <- x from [1.25;1.5)
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
- ldfpd FR_A8,FR_A7 = [GR_ad_Co],16
-(p7) fms.s1 FR_x = FR_xm2,f1,FR_LocalMin
- nop.i 0
-}
-{ .mfi
- ldfpd FR_A6,FR_A5 = [GR_ad_Ce],16
-(p8) fma.s1 FR_x = f0,f0,FR_NormX
-(p9) cmp.eq.unc p10,p11 = r0,r0
-};;
-lgamma_0_2_core:
-{ .mmi
- ldfpd FR_A4,FR_A3 = [GR_ad_Co],16
- ldfpd FR_A2,FR_A1 = [GR_ad_Ce],16
- mov GR_SignOfGamma = 1 // set sign of gamma(x) to 1
-};;
-{ .mfi
-// add GR_ad_C0 = 8,GR_ad_C0
- ldfd FR_A0 = [GR_ad_C0]
- nop.f 0
- // set p13 if signgum is 32-bit int
- // set p15 if signgum is 64-bit int
- cmp.eq p15,p13 = 8,r34
-};;
-.pred.rel "mutex",p13,p15
-{ .mmf
- // store sign of gamma(x)
-(p13) st4 [r33] = GR_SignOfGamma // as 32-bit int
-(p15) st8 [r33] = GR_SignOfGamma // as 64-bit int
-(p11) fma.s1 FR_Q32 = FR_Q32,FR_w2,FR_Q10
-};;
-{ .mfb
- nop.m 0
-(p10) fma.s1 FR_P32 = FR_P32,FR_r2,FR_P10
-(p14) br.ret.spnt b0 // fast exit for 1.0
-};;
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_T = FR_N,FR_Ln2,FR_T
- cmp.eq p6,p7 = 0,GR_Ind // p6 <- x from [1;1.25)
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x2 = FR_x,FR_x,f0
- cmp.eq p8,p0 = r0,r0 // set p8 to 1 that means we on [1;2]
-};;
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Ln = FR_Q32,FR_w,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_xx = f0,f0,FR_x
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_xx = f0,f0,f1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A8,FR_x,FR_A7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A6,FR_x,FR_A5
-(p9) cmp.ne p8,p0 = r0,r0 // set p8 to 0 that means we on [0;1]
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A4,FR_x,FR_A3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A2,FR_x,FR_A1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_Ln = FR_P32,FR_r,FR_T
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A7,FR_x2,FR_A5
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A3,FR_x2,FR_A1
- nop.i 0
-};;
-.pred.rel "mutex",p9,p8
-{ .mfi
- nop.m 0
-(p9) fms.d.s1 FR_A0 = FR_A0,FR_xx,FR_Ln
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fms.s1 FR_A0 = FR_A0,FR_xx,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.d.s1 FR_A1 = FR_A5,FR_x4,FR_A1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.s.s0 f8 = FR_A1,FR_x2,FR_A0
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fma.s.s0 f8 = FR_A1,FR_x,FR_A0
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for -9 < x < 1
-//---------------------------------------------------------------------
-.align 32
-lgammaf_negrecursion:
-{ .mfi
- getf.sig GR_N = FR_int_Ntrunc
- fms.s1 FR_1pXf = FR_Xp2,f1,FR_Ntrunc // 1 + (x+1) - [x]
- mov GR_Neg2 = 2
-}
-{ .mfi
- add GR_ad_Co = 0xCE0,GR_ad_Data
- fms.s1 FR_Xf = FR_Xp1,f1,FR_Ntrunc // (x+1) - [x]
- mov GR_Neg4 = 4
-};;
-{ .mfi
- add GR_ad_Ce = 0xD00,GR_ad_Data
- fma.s1 FR_Xp6 = FR_2,FR_2,FR_Xp2 // (x+6)
- add GR_ad_C0 = 0xB30,GR_ad_Data
-}
-{ .mfi
- sub GR_Neg2 = r0,GR_Neg2
- fma.s1 FR_Xp7 = FR_2,FR_3,FR_Xp1 // (x+7)
- sub GR_Neg4 = r0,GR_Neg4
-};;
-{ .mfi
- cmp.ne p8,p0 = r0,GR_N
- fcmp.eq.s1 p13,p0 = FR_NormX,FR_Ntrunc
- and GR_IntNum = 0xF,GR_N
-}
-{ .mfi
- cmp.lt p6,p0 = GR_N,GR_Neg2
- fma.s1 FR_Xp8 = FR_2,FR_3,FR_Xp2 // (x+8)
- cmp.lt p7,p0 = GR_N,GR_Neg4
-};;
-{ .mfi
- getf.d GR_Arg = FR_NormX
-(p6) fma.s1 FR_Xp2 = FR_Xp2,FR_Xp3,f0
-(p8) tbit.z.unc p14,p15 = GR_IntNum,0
-}
-{ .mfi
- sub GR_RootInd = 0xE,GR_IntNum
-(p7) fma.s1 FR_Xp4 = FR_Xp4,FR_Xp5,f0
- add GR_ad_Root = 0xDE0,GR_ad_Data
-};;
-{ .mfi
- shladd GR_ad_Root = GR_RootInd,3,GR_ad_Root
- fms.s1 FR_x = FR_Xp1,f1,FR_Ntrunc // (x+1) - [x]
- nop.i 0
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p13) br.cond.spnt lgammaf_singularity
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- cmp.gt p6,p0 = 0xA,GR_IntNum
-(p14) fma.s1 FR_Req = FR_Req,FR_Xf,f0
- cmp.gt p7,p0 = 0xD,GR_IntNum
-}
-{ .mfi
-(p15) mov GR_SignOfGamma = 1 // set sign of gamma(x) to 1
-(p15) fnma.s1 FR_Req = FR_Req,FR_Xf,f0
- cmp.leu p0,p13 = 2,GR_RootInd
-};;
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_Xp6 = FR_Xp6,FR_Xp7,f0
-(p13) add GR_ad_RootCo = 0xE00,GR_ad_Data
-};;
-{ .mfi
- nop.m 0
- fcmp.eq.s1 p12,p11 = FR_1pXf,FR_2
- nop.i 0
-};;
-{ .mfi
- getf.sig GR_Sig = FR_1pXf
- fcmp.le.s1 p9,p0 = FR_05,FR_Xf
- nop.i 0
-}
-{ .mfi
-(p13) shladd GR_RootInd = GR_RootInd,4,r0
-(p7) fma.s1 FR_Xp2 = FR_Xp2,FR_Xp4,f0
-(p8) cmp.gt.unc p10,p0 = 0x9,GR_IntNum
-};;
-.pred.rel "mutex",p11,p12
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_Req = FR_Req,FR_Xp8,f0
-(p11) extr.u GR_Ind = GR_Sig,61,2
-}
-{ .mfi
-(p13) add GR_RootInd = GR_RootInd,GR_RootInd
- nop.f 0
-(p12) mov GR_Ind = 3
-};;
-{ .mfi
- shladd GR_IndX2 = GR_Ind,1,r0
- nop.f 0
- cmp.gt p14,p0 = 2,GR_Ind
-}
-{ .mfi
- shladd GR_IndX8 = GR_Ind,3,r0
- nop.f 0
- cmp.eq p6,p0 = 1,GR_Ind
-};;
-.pred.rel "mutex",p6,p9
-{ .mfi
- shladd GR_ad_Co = GR_IndX8,3,GR_ad_Co
-(p6) fms.s1 FR_x = FR_Xf,f1,FR_LocalMin
- cmp.gt p10,p0 = 0xB,GR_IntNum
-}
-{ .mfi
- shladd GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
-(p9) fma.s1 FR_x = f0,f0,FR_1pXf
- shladd GR_ad_C0 = GR_IndX2,4,GR_ad_C0
-};;
-{ .mfi
- // load coefficients of polynomial approximation
- // of ln(GAMMA(x)), 1 <= x < 2
- ldfpd FR_A8,FR_A7 = [GR_ad_Co],16
-(p10) fma.s1 FR_Xp2 = FR_Xp2,FR_Xp6,f0
- add GR_ad_C0 = 8,GR_ad_C0
-}
-{ .mfi
- ldfpd FR_A6,FR_A5 = [GR_ad_Ce],16
- nop.f 0
-(p14) add GR_ad_Root = 0x10,GR_ad_Root
-};;
-{ .mfi
- ldfpd FR_A4,FR_A3 = [GR_ad_Co],16
- nop.f 0
- add GR_ad_RootCe = 0xE10,GR_ad_Data
-}
-{ .mfi
- ldfpd FR_A2,FR_A1 = [GR_ad_Ce],16
- nop.f 0
-(p14) add GR_RootInd = 0x40,GR_RootInd
-};;
-{ .mmi
- ldfd FR_A0 = [GR_ad_C0]
-(p13) add GR_ad_RootCo = GR_ad_RootCo,GR_RootInd
-(p13) add GR_ad_RootCe = GR_ad_RootCe,GR_RootInd
-};;
-{ .mmi
-(p13) ld8 GR_Root = [GR_ad_Root]
-(p13) ldfd FR_Root = [GR_ad_Root]
- mov GR_ExpBias = 0xffff
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_x2 = FR_x,FR_x,f0
- nop.i 0
-}
-{ .mlx
-(p8) cmp.gt.unc p10,p0 = 0xF,GR_IntNum
- movl GR_Dx = 0x000000014F8B588E
-};;
-{ .mfi
- // load coefficients of polynomial approximation
- // of ln(GAMMA(x)), x is close to one of negative roots
-(p13) ldfpd FR_R3,FR_R2 = [GR_ad_RootCo]
- // argumenth for logarithm
-(p10) fma.s1 FR_Req = FR_Req,FR_Xp2,f0
- mov GR_ExpMask = 0x1ffff
-}
-{ .mfi
-(p13) ldfpd FR_R1,FR_R0 = [GR_ad_RootCe]
- nop.f 0
- // set p9 if signgum is 32-bit int
- // set p8 if signgum is 64-bit int
- cmp.eq p8,p9 = 8,r34
-};;
-.pred.rel "mutex",p9,p8
-{ .mfi
-(p9) st4 [r33] = GR_SignOfGamma // as 32-bit int
- fma.s1 FR_A7 = FR_A8,FR_x,FR_A7
-(p13) sub GR_Root = GR_Arg,GR_Root
-}
-{ .mfi
-(p8) st8 [r33] = GR_SignOfGamma // as 64-bit int
- fma.s1 FR_A5 = FR_A6,FR_x,FR_A5
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_w = FR_Req,f1,f1
-(p13) add GR_Root = GR_Root,GR_Dx
-}
-{ .mfi
- nop.m 0
- nop.f 0
-(p13) add GR_2xDx = GR_Dx,GR_Dx
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A4,FR_x,FR_A3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A2,FR_x,FR_A1
-(p13) cmp.leu.unc p10,p0 = GR_Root,GR_2xDx
-};;
-{ .mfi
- nop.m 0
- frcpa.s1 FR_InvX,p0 = f1,FR_Req
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fms.s1 FR_rx = FR_NormX,f1,FR_Root
- nop.i 0
-};;
-{ .mfi
- getf.exp GR_SignExp = FR_Req
- fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-};;
-{ .mfi
- getf.sig GR_Sig = FR_Req
- fma.s1 FR_A5 = FR_A7,FR_x2,FR_A5
- nop.i 0
-};;
-{ .mfi
- sub GR_PureExp = GR_SignExp,GR_ExpBias
- fma.s1 FR_w2 = FR_w,FR_w,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Q32 = FR_P3,FR_w,FR_P2
- nop.i 0
-};;
-{ .mfi
- setf.sig FR_int_Ln = GR_PureExp
- fma.s1 FR_A1 = FR_A3,FR_x2,FR_A1
- extr.u GR_Ind4T = GR_Sig,55,8
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Q10 = FR_P1,FR_w,f1
- nop.i 0
-};;
-{ .mfi
- shladd GR_ad_T = GR_Ind4T,3,GR_ad_Data
- fms.s1 FR_r = FR_InvX,FR_Req,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fms.s1 FR_rx2 = FR_rx,FR_rx,f0
- nop.i 0
-};;
-{ .mfi
- ldfd FR_T = [GR_ad_T]
-(p10) fma.s1 FR_R2 = FR_R3,FR_rx,FR_R2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_R0 = FR_R1,FR_rx,FR_R0
- nop.i 0
-};;
-{ .mfi
- getf.exp GR_Exp = FR_w
- fma.s1 FR_A1 = FR_A5,FR_x4,FR_A1
- mov GR_ExpMask = 0x1ffff
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Q32 = FR_Q32, FR_w2,FR_Q10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_r2 = FR_r,FR_r,f0
- mov GR_fff7 = 0xFFF7
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P10 = FR_P1,FR_r,f1
- and GR_Exp = GR_ExpMask,GR_Exp
-}
-{ .mfb
- nop.m 0
-(p10) fma.s.s0 f8 = FR_R2,FR_rx2,FR_R0
-(p10) br.ret.spnt b0 // exit for arguments close to negative roots
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_N = FR_int_Ln
- nop.i 0
-}
-{ .mfi
- cmp.ge p14,p15 = GR_Exp,GR_fff7
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A0 = FR_A1,FR_x,FR_A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_Ln = FR_Q32,FR_w,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_P32 = FR_P32,FR_r2,FR_P10
- cmp.eq p6,p7 = 0,GR_Ind
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_T = FR_N,FR_Ln2,FR_T
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_Ln = FR_P32,FR_r,FR_T
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fms.s.s0 f8 = FR_A0,FR_x,FR_Ln
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fms.s.s0 f8 = FR_A0,f1,FR_Ln
- br.ret.sptk b0
-};;
-
-// branch for calculating of ln(GAMMA(x)) for x < -2^13
-//---------------------------------------------------------------------
-.align 32
-lgammaf_negstirling:
-{ .mfi
- shladd GR_ad_T = GR_Ind4T,3,GR_ad_Data
- fms.s1 FR_Xf = FR_NormX,f1,FR_N // xf = x - [x]
- mov GR_SingBound = 0x10016
-}
-{ .mfi
- add GR_ad_Co = 0xCA0,GR_ad_Data
- fma.s1 FR_P32 = FR_P3,FR_r,FR_P2
- nop.i 0
-};;
-{ .mfi
- ldfd FR_T = [GR_ad_T]
- fcvt.xf FR_int_Ln = FR_int_Ln
- cmp.le p6,p0 = GR_SingBound,GR_Exp
-}
-{ .mfb
- add GR_ad_Ce = 0x20,GR_ad_Co
- fma.s1 FR_r2 = FR_r,FR_r,f0
-(p6) br.cond.spnt lgammaf_singularity
-};;
-{ .mfi
- // load coefficients of polynomial approximation
- // of ln(sin(Pi*xf)/(Pi*xf)), |xf| <= 0.5
- ldfpd FR_S16,FR_S14 = [GR_ad_Co],16
- fma.s1 FR_P10 = FR_P1,FR_r,f1
- nop.i 0
-}
-{ .mfi
- ldfpd FR_S12,FR_S10 = [GR_ad_Ce],16
- fms.s1 FR_xm05 = FR_NormX,f1,FR_05
- nop.i 0
-};;
-{ .mmi
- ldfpd FR_S8,FR_S6 = [GR_ad_Co],16
- ldfpd FR_S4,FR_S2 = [GR_ad_Ce],16
- nop.i 0
-};;
-{ .mfi
- getf.sig GR_N = FR_int_Ntrunc // signgam calculation
- fma.s1 FR_Xf2 = FR_Xf,FR_Xf,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- frcpa.s1 FR_InvXf,p0 = f1,FR_Xf
- nop.i 0
-};;
-{ .mfi
- getf.d GR_Arg = FR_Xf
- fcmp.eq.s1 p6,p0 = FR_NormX,FR_N
- mov GR_ExpBias = 0x3FF
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_T = FR_int_Ln,FR_Ln2,FR_T
- extr.u GR_Exp = GR_Arg,52,11
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P32 = FR_P32,FR_r2,FR_P10
- nop.i 0
-};;
-{ .mfi
- sub GR_PureExp = GR_Exp,GR_ExpBias
- fma.s1 FR_S14 = FR_S16,FR_Xf2,FR_S14
- extr.u GR_Ind4T = GR_Arg,44,8
-}
-{ .mfb
- mov GR_SignOfGamma = 1 // set signgam to -1
- fma.s1 FR_S10 = FR_S12,FR_Xf2,FR_S10
-(p6) br.cond.spnt lgammaf_singularity
-};;
-{ .mfi
- setf.sig FR_int_Ln = GR_PureExp
- fms.s1 FR_rf = FR_InvXf,FR_Xf,f1
- // set p14 if GR_N is even
- tbit.z p14,p0 = GR_N,0
-}
-{ .mfi
- shladd GR_ad_T = GR_Ind4T,3,GR_ad_Data
- fma.s1 FR_Xf4 = FR_Xf2,FR_Xf2,f0
- nop.i 0
-};;
-{ .mfi
-(p14) sub GR_SignOfGamma = r0,GR_SignOfGamma // set signgam to -1
- fma.s1 FR_S6 = FR_S8,FR_Xf2,FR_S6
- nop.i 0
-}
-{ .mfi
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
- fma.s1 FR_S2 = FR_S4,FR_Xf2,FR_S2
- nop.i 0
-};;
-{ .mfi
- ldfd FR_Tf = [GR_ad_T]
- fma.s1 FR_Ln = FR_P32,FR_r,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
-(p9) st4 [r33] = GR_SignOfGamma // as 32-bit int
- fma.s1 FR_rf2 = FR_rf,FR_rf,f0
- nop.i 0
-}
-{ .mfi
-(p10) st8 [r33] = GR_SignOfGamma // as 64-bit int
- fma.s1 FR_S10 = FR_S14,FR_Xf4,FR_S10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P32f = FR_P3,FR_rf,FR_P2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf8 = FR_Xf4,FR_Xf4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P10f = FR_P1,FR_rf,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S2 = FR_S6,FR_Xf4,FR_S2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_Ln = FR_Ln,FR_xm05,FR_LnSqrt2Pi
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_Nf = FR_int_Ln
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S2 = FR_S10,FR_Xf8,FR_S2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Tf = FR_Nf,FR_Ln2,FR_Tf
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P32f = FR_P32f,FR_rf2,FR_P10f // ??????
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fnma.s1 FR_Ln = FR_S2,FR_Xf2,FR_Ln
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Lnf = FR_P32f,FR_rf,FR_Tf
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fms.s.s0 f8 = FR_Ln,f1,FR_Lnf
- br.ret.sptk b0
-};;
-// branch for calculating of ln(GAMMA(x)) for -2^13 < x < -9
-//---------------------------------------------------------------------
-.align 32
-lgammaf_negpoly:
-{ .mfi
- getf.d GR_Arg = FR_Xf
- frcpa.s1 FR_InvXf,p0 = f1,FR_Xf
- mov GR_ExpBias = 0x3FF
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf2 = FR_Xf,FR_Xf,f0
- nop.i 0
-};;
-{ .mfi
- getf.sig GR_N = FR_int_Ntrunc
- fcvt.xf FR_N = FR_int_Ln
- mov GR_SignOfGamma = 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A9 = FR_A10,FR_x,FR_A9
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P10 = FR_P1,FR_r,f1
- extr.u GR_Exp = GR_Arg,52,11
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_x4 = FR_x2,FR_x2,f0
- nop.i 0
-};;
-{ .mfi
- sub GR_PureExp = GR_Exp,GR_ExpBias
- fma.s1 FR_A7 = FR_A8,FR_x,FR_A7
- tbit.z p14,p0 = GR_N,0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A6,FR_x,FR_A5
- nop.i 0
-};;
-{ .mfi
- setf.sig FR_int_Ln = GR_PureExp
- fma.s1 FR_A3 = FR_A4,FR_x,FR_A3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A2,FR_x,FR_A1
-(p14) sub GR_SignOfGamma = r0,GR_SignOfGamma
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_rf = FR_InvXf,FR_Xf,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf4 = FR_Xf2,FR_Xf2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S14 = FR_S16,FR_Xf2,FR_S14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S10 = FR_S12,FR_Xf2,FR_S10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_T = FR_N,FR_Ln2,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P32 = FR_P32,FR_r2,FR_P10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S6 = FR_S8,FR_Xf2,FR_S6
- extr.u GR_Ind4T = GR_Arg,44,8
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S2 = FR_S4,FR_Xf2,FR_S2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A9,FR_x2,FR_A7
- nop.i 0
-}
-{ .mfi
- shladd GR_ad_T = GR_Ind4T,3,GR_ad_Data
- fma.s1 FR_A3 = FR_A5,FR_x2,FR_A3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Xf8 = FR_Xf4,FR_Xf4,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rf2 = FR_rf,FR_rf,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P32f = FR_P3,FR_rf,FR_P2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P10f = FR_P1,FR_rf,f1
- nop.i 0
-};;
-{ .mfi
- ldfd FR_Tf = [GR_ad_T]
- fma.s1 FR_Ln = FR_P32,FR_r,FR_T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A0 = FR_A1,FR_x,FR_A0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S10 = FR_S14,FR_Xf4,FR_S10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S2 = FR_S6,FR_Xf4,FR_S2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_Nf = FR_int_Ln
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A7,FR_x4,FR_A3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fcmp.eq.s1 p13,p0 = FR_NormX,FR_Ntrunc
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_x3 = FR_x2,FR_x,f0 // -x^3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_P32f = FR_P32f,FR_rf2,FR_P10f
- nop.i 0
-};;
-{ .mfb
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
- fma.s1 FR_S2 = FR_S10,FR_Xf8,FR_S2
-(p13) br.cond.spnt lgammaf_singularity
-};;
-.pred.rel "mutex",p9,p10
-{ .mmf
-(p9) st4 [r33] = GR_SignOfGamma // as 32-bit int
-(p10) st8 [r33] = GR_SignOfGamma // as 64-bit int
- fms.s1 FR_A0 = FR_A3,FR_x3,FR_A0 // -A3*x^3-A0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Tf = FR_Nf,FR_Ln2,FR_Tf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Ln = FR_S2,FR_Xf2,FR_Ln // S2*Xf^2+Ln
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Lnf = FR_P32f,FR_rf,FR_Tf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_Ln = FR_A0,f1,FR_Ln
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fms.s.s0 f8 = FR_Ln,f1,FR_Lnf
- br.ret.sptk b0
-};;
-// branch for handling +/-0, NaT, QNaN, +/-INF and denormalised numbers
-//---------------------------------------------------------------------
-.align 32
-lgammaf_spec:
-{ .mfi
- getf.exp GR_SignExp = FR_NormX
- fclass.m p6,p0 = f8,0x21 // is arg +INF?
- mov GR_SignOfGamma = 1 // set signgam to 1
-};;
-{ .mfi
- getf.sig GR_Sig = FR_NormX
- fclass.m p7,p0 = f8,0xB // is x deno?
- // set p11 if signgum is 32-bit int
- // set p12 if signgum is 64-bit int
- cmp.eq p12,p11 = 8,r34
-};;
-.pred.rel "mutex",p11,p12
-{ .mfi
- // store sign of gamma(x) as 32-bit int
-(p11) st4 [r33] = GR_SignOfGamma
- fclass.m p8,p0 = f8,0x1C0 // is arg NaT or NaN?
- dep.z GR_Ind = GR_SignExp,3,4
-}
-{ .mib
- // store sign of gamma(x) as 64-bit int
-(p12) st8 [r33] = GR_SignOfGamma
- and GR_Exp = GR_ExpMask,GR_SignExp
-(p6) br.ret.spnt b0 // exit for +INF
-};;
-{ .mfi
- sub GR_PureExp = GR_Exp,GR_ExpBias
- fclass.m p9,p0 = f8,0x22 // is arg -INF?
- extr.u GR_Ind4T = GR_Sig,55,8
-}
-{ .mfb
- nop.m 0
-(p7) fma.s0 FR_tmp = f1,f1,f8
-(p7) br.cond.sptk lgammaf_core
-};;
-{ .mfb
- nop.m 0
-(p8) fms.s.s0 f8 = f8,f1,f8
-(p8) br.ret.spnt b0 // exit for NaT and NaN
-};;
-{ .mfb
- nop.m 0
-(p9) fmerge.s f8 = f1,f8
-(p9) br.ret.spnt b0 // exit -INF
-};;
-// branch for handling negative integers and +/-0
-//---------------------------------------------------------------------
-.align 32
-lgammaf_singularity:
-{ .mfi
- mov GR_SignOfGamma = 1 // set signgam to 1
- fclass.m p6,p0 = f8,0x6 // is x -0?
- mov GR_TAG = 109 // negative
-}
-{ .mfi
- mov GR_ad_SignGam = r33
- fma.s1 FR_X = f0,f0,f8
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- frcpa.s0 f8,p0 = f1,f0
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-}
-{ .mib
- nop.m 0
-(p6) sub GR_SignOfGamma = r0,GR_SignOfGamma
- br.cond.sptk lgammaf_libm_err
-};;
-// overflow (x > OVERFLOV_BOUNDARY)
-//---------------------------------------------------------------------
-.align 32
-lgammaf_overflow:
-{ .mfi
- nop.m 0
- nop.f 0
- mov r8 = 0x1FFFE
-};;
-{ .mfi
- setf.exp f9 = r8
- fmerge.s FR_X = f8,f8
- mov GR_TAG = 108 // overflow
-};;
-{ .mfi
- mov GR_ad_SignGam = r33
- nop.f 0
- // set p9 if signgum is 32-bit int
- // set p10 if signgum is 64-bit int
- cmp.eq p10,p9 = 8,r34
-}
-{ .mfi
- nop.m 0
- fma.s.s0 f8 = f9,f9,f0 // Set I,O and +INF result
- nop.i 0
-};;
-// gate to __libm_error_support#
-//---------------------------------------------------------------------
-.align 32
-lgammaf_libm_err:
-{ .mmi
- alloc r32 = ar.pfs,1,4,4,0
- mov GR_Parameter_TAG = GR_TAG
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mmi
- // store sign of gamma(x) as 32-bit int
-(p9) st4 [GR_ad_SignGam] = GR_SignOfGamma
- // store sign of gamma(x) as 64-bit int
-(p10) st8 [GR_ad_SignGam] = GR_SignOfGamma
- nop.i 0
-};;
-GLOBAL_LIBM_END(__libm_lgammaf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_X // STORE Parameter 1
- // on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3
- // on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling
- // function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/libm_lgammal.S b/sysdeps/ia64/fpu/libm_lgammal.S
deleted file mode 100644
index 407b3452cd..0000000000
--- a/sysdeps/ia64/fpu/libm_lgammal.S
+++ /dev/null
@@ -1,7678 +0,0 @@
-.file "libm_lgammal.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
-// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
-// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code,and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 03/28/02 Original version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/21/02 Added support of SIGN(GAMMA(x)) calculation
-// 09/26/02 Algorithm description improved
-// 10/21/02 Now it returns SIGN(GAMMA(x))=-1 for negative zero
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-//*********************************************************************
-//
-// Function: __libm_lgammal(long double x, int* signgam, int szsigngam)
-// computes the principal value of the logarithm of the GAMMA function
-// of x. Signum of GAMMA(x) is stored to memory starting at the address
-// specified by the signgam.
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 (Input and Return Value)
-// f9-f15
-// f32-f127
-//
-// General Purpose Registers:
-// r2, r3, r8-r11, r14-r31
-// r32-r65
-// r66-r69 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// __libm_lgammal(+inf) = +inf
-// __libm_lgammal(-inf) = QNaN
-// __libm_lgammal(+/-0) = +inf
-// __libm_lgammal(x<0, x - integer) = QNaN
-// __libm_lgammal(SNaN) = QNaN
-// __libm_lgammal(QNaN) = QNaN
-//
-//*********************************************************************
-//
-// ALGORITHM DESCRIPTION
-//
-// Below we suppose that there is log(z) function which takes an long
-// double argument and returns result as a pair of long double numbers
-// lnHi and lnLo (such that sum lnHi + lnLo provides ~80 correct bits
-// of significand). Algorithm description for such log(z) function
-// see below.
-// Also, it this algorithm description we use the following notational
-// conventions:
-// a) pair A = (Ahi, Alo) means number A represented as sum of Ahi and Alo
-// b) C = A + B = (Ahi, Alo) + (Bhi, Blo) means multi-precision addition.
-// The result would be C = (Chi, Clo). Notice, that Clo shouldn't be
-// equal to Alo + Blo
-// c) D = A*B = (Ahi, Alo)*(Bhi, Blo) = (Dhi, Dlo) multi-precisiion
-// multiplication.
-//
-// So, lgammal has the following computational paths:
-// 1) |x| < 0.5
-// P = A1*|x| + A2*|x|^2 + ... + A22*|x|^22
-// A1, A2, A3 represented as a sum of two double precision
-// numbers and multi-precision computations are used for 3 higher
-// terms of the polynomial. We get polynomial as a sum of two
-// double extended numbers: P = (Phi, Plo)
-// 1.1) x > 0
-// lgammal(x) = P - log(|x|) = (Phi, Plo) - (lnHi(|x|), lnLo(|x|))
-// 1.2) x < 0
-// lgammal(x) = -P - log(|x|) - log(sin(Pi*x)/(Pi*x))
-// P and log(|x|) are computed by the same way as in 1.1;
-// - log(sin(Pi*x)/(Pi*x)) is approximated by a polynomial Plnsin.
-// Plnsin:= fLnSin2*|x|^2 + fLnSin4*|x|^4 + ... + fLnSin36*|x|^36
-// The first coefficient of Plnsin is represented as sum of two
-// double precision numbers (fLnSin2, fLnSin2L). Multi-precision
-// computations for higher two terms of Plnsin are used.
-// So, the final result is reconstructed by the following formula
-// lgammal(x) = (-(Phi, Plo) - (lnHi(|x|), lnLo(|x|))) -
-// - (PlnsinHi,PlnsinLo)
-//
-// 2) 0.5 <= x < 0.75 -> t = x - 0.625
-// -0.75 < x <= -0.5 -> t = x + 0.625
-// 2.25 <= x < 4.0 -> t = x/2 - 1.5
-// 4.0 <= x < 8.0 -> t = x/4 - 1.5
-// -0.5 < x <= -0.40625 -> t = x + 0.5
-// -2.6005859375 < x <= -2.5 -> t = x + 2.5
-// 1.3125 <= x < 1.5625 -> t = x - LOC_MIN, where LOC_MIN is point in
-// which lgammal has local minimum. Exact
-// value can be found in the table below,
-// approximate value is ~1.46
-//
-// lgammal(x) is approximated by the polynomial of 25th degree: P25(t)
-// P25(t) = A0 + A1*t + ... + A25*t^25 = (Phi, Plo) + t^4*P21(t),
-// where
-// (Phi, Plo) is sum of four highest terms of the polynomial P25(t):
-// (Phi, Plo) = ((A0, A0L) + (A1, A1L)*t) + t^2 *((A2, A2L) + (A3, A3L)*t),
-// (Ai, AiL) - coefficients represented as pairs of DP numbers.
-//
-// P21(t) = (PolC(t)*t^8 + PolD(t))*t^8 + PolE(t),
-// where
-// PolC(t) = C21*t^5 + C20*t^4 + ... + C16,
-// C21 = A25, C20 = A24, ..., C16 = A20
-//
-// PolD(t) = D7*t^7 + D6*t^6 + ... + D0,
-// D7 = A19, D6 = A18, ..., D0 = A12
-//
-// PolE(t) = E7*t^7 + E6*t^6 + ... + E0,
-// E7 = A11, E6 = A10, ..., E0 = A4
-//
-// Cis and Dis are represented as double precision numbers,
-// Eis are represented as double extended numbers.
-//
-// 3) 0.75 <= x < 1.3125 -> t = x - 1.0
-// 1.5625 <= x < 2.25 -> t = x - 2.0
-// lgammal(x) is approximated by the polynomial of 25th degree: P25(t)
-// P25(t) = A1*t + ... + A25*t^25, and computations are carried out
-// by similar way as in the previous case
-//
-// 4) 10.0 < x <= Overflow Bound ("positive Sterling" range)
-// lgammal(x) is approximated using Sterling's formula:
-// lgammal(x) ~ ((x*(lnHi(x) - 1, lnLo(x))) - 0.5*(lnHi(x), lnLo(x))) +
-// + ((Chi, Clo) + S(1/x))
-// where
-// C = (Chi, Clo) - pair of double precision numbers representing constant
-// 0.5*ln(2*Pi);
-// S(1/x) = 1/x * (B2 + B4*(1/x)^2 + ... + B20*(1/x)^18), B2, ..., B20 are
-// Bernulli numbers. S is computed in native precision and then added to
-// Clo;
-// lnHi(x) - 1 is computed in native precision and the multiprecision
-// multiplication (x, 0) *(lnHi(x) - 1, lnLo(x)) is used.
-//
-// 5) -INF < x <= -2^63, any negative integer < 0
-// All numbers in this range are integers -> error handler is called
-//
-// 6) -2^63 < x <= -0.75 ("negative Sterling" range), x is "far" from root,
-// lgammal(-t) for positive t is approximated using the following formula:
-// lgammal(-t) = -lgammal(t)-log(t)-log(|dT|)+log(sin(Pi*|dT|)/(Pi*|dT|))
-// where dT = -t -round_to_nearest_integer(-t)
-// Last item is approximated by the same polynomial as described in 1.2.
-// We split the whole range into three subranges due to different ways of
-// approximation of the first terms.
-// 6.1) -2^63 < x < -6.0 ("negative Sterling" range)
-// lgammal(t) is approximated exactly as in #4. The only difference that
-// for -13.0 < x < -6.0 subrange instead of Bernulli numbers we use their
-// minimax approximation on this range.
-// log(t), log(|dT|) are approximated by the log routine mentioned above.
-// 6.2) -6.0 < x <= -0.75, |x + 1|> 2^(-7)
-// log(t), log(|dT|) are approximated by the log routine mentioned above,
-// lgammal(t) is approximated by polynomials of the 25th degree similar
-// to ones from #2. Arguments z of the polynomials are as follows
-// a) 0.75 <= t < 1.0 - 2^(-7), z = 2*t - 1.5
-// b) 1.0 - 2^(-7) < t < 2.0, z = t - 1.5
-// c) 2.0 < t < 3.0, z = t/2 - 1.5
-// d) 3.0 < t < 4.0, z = t/2 - 1.5. Notice, that range reduction is
-// the same as in case c) but the set of coefficients is different
-// e) 4.0 < t < 6.0, z = t/4 - 1.5
-// 6.3) |x + 1| <= 2^(-7)
-// log(1 + (x-1)) is approximated by Taylor series,
-// log(sin(Pi*|dT|)/(Pi*|dT|)) is still approximated by polynomial but
-// it has just 4th degree.
-// log(|dT|) is approximated by the log routine mentioned above.
-// lgammal(-x) is approximated by polynomial of 8th degree from (-x + 1).
-//
-// 7) -20.0 < x < -2.0, x falls in root "neighbourhood".
-// "Neighbourhood" means that |lgammal(x)| < epsilon, where epsilon is
-// different for every root (and it is stored in the table), but typically
-// it is ~ 0.15. There are 35 roots significant from "double extended"
-// point of view. We split all the roots into two subsets: "left" and "right"
-// roots. Considering [-(N+1), -N] range we call root as "left" one if it
-// lies closer to -(N+1) and "right" otherwise. There is no "left" root in
-// the [-20, -19] range (it exists, but is insignificant for double extended
-// precision). To determine if x falls in root "neighbourhood" we store
-// significands of all the 35 roots as well as epsilon values (expressed
-// by the left and right bound).
-// In these ranges we approximate lgammal(x) by polynomial series of 19th
-// degree:
-// lgammal(x) = P19(t) = A0 + A1*t + ...+ A19*t^19, where t = x - EDP_Root,
-// EDP_Root is the exact value of the corresponding root rounded to double
-// extended precision. So, we have 35 different polynomials which make our
-// table rather big. We may hope that x falls in root "neighbourhood"
-// quite rarely -> ther might be no need in frequent use of different
-// polynomials.
-// A0, A1, A2, A3 are represented as pairs of double precision numbers,
-// A4, A5 are long doubles, and to decrease the size of the table we
-// keep the rest of coefficients in just double precision
-//
-//*********************************************************************
-// Algorithm for log(X) = (lnHi(X), lnLo(X))
-//
-// ALGORITHM
-//
-// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) for an argument Arg in [1,2), we
-// construct a value G such that G*Arg is close to 1 and that
-// logl(1/G) is obtainable easily from a table of values calculated
-// beforehand. Thus
-//
-// logl(Arg) = logl(1/G) + logl(G*Arg)
-// = logl(1/G) + logl(1 + (G*Arg - 1))
-//
-// Because |G*Arg - 1| is small, the second term on the right hand
-// side can be approximated by a short polynomial. We elaborate
-// this method in four steps.
-//
-// Step 0: Initialization
-//
-// We need to calculate logl( X ). Obtain N, S_hi such that
-//
-// X = 2^N * S_hi exactly
-//
-// where S_hi in [1,2)
-//
-// Step 1: Argument Reduction
-//
-// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1)
-//
-// These G_j's have the property that the product is exactly
-// representable and that |r| < 2^(-12) as a result.
-//
-// Step 2: Approximation
-//
-//
-// logl(1 + r) is approximated by a short polynomial poly(r).
-//
-// Step 3: Reconstruction
-//
-//
-// Finally, logl( X ) is given by
-//
-// logl( X ) = logl( 2^N * S_hi )
-// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
-// ~=~ N*logl(2) + logl(1/G) + poly(r).
-//
-// IMPLEMENTATION
-//
-// Step 0. Initialization
-// ----------------------
-//
-// Z := X
-// N := unbaised exponent of Z
-// S_hi := 2^(-N) * Z
-//
-// Step 1. Argument Reduction
-// --------------------------
-//
-// Let
-//
-// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
-//
-// We obtain G_1, G_2, G_3 by the following steps.
-//
-//
-// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
-// from S_hi.
-//
-// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
-// to lsb = 2^(-4).
-//
-// Define index_1 := [ d_1 d_2 d_3 d_4 ].
-//
-// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
-// fixed point lsb = 2^(-15).
-// Z_1 looks like z_0.z_1 z_2 ... z_15
-// Note that the fetching is done using index_1.
-// A_1 is actually not needed in the implementation
-// and is used here only to explain how is the value
-// Z_1 defined.
-//
-// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
-// floating pt. Again, fetching is done using index_1. A_1
-// explains how G_1 is defined.
-//
-// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 d_5 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_1 indeed always begin
-// with 1.0000 in fixed point.
-//
-//
-// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
-// truncated to lsb = 2^(-8). Similar to A_1,
-// A_2 is not needed in actual implementation. It
-// helps explain how some of the values are defined.
-//
-// Define index_2 := [ d_5 d_6 d_7 d_8 ].
-//
-// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
-// fixed point lsb = 2^(-15). Fetch done using index_2.
-// Z_2 looks like z_0.z_1 z_2 ... z_15
-//
-// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
-// floating pt.
-//
-// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_2 indeed always begin
-// with 1.00000000 in fixed point.
-//
-//
-// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
-// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
-//
-// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
-//
-// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
-// floating pt. Fetch is done using index_3.
-//
-// Compute G := G_1 * G_2 * G_3.
-//
-// This is done exactly since each of G_j only has 21 sig. bits.
-//
-// Compute
-//
-// r := (G*S_hi - 1)
-//
-//
-// Step 2. Approximation
-// ---------------------
-//
-// This step computes an approximation to logl( 1 + r ) where r is the
-// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
-// thus logl(1+r) can be approximated by a short polynomial:
-//
-// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
-//
-//
-// Step 3. Reconstruction
-// ----------------------
-//
-// This step computes the desired result of logl(X):
-//
-// logl(X) = logl( 2^N * S_hi )
-// = N*logl(2) + logl( S_hi )
-// = N*logl(2) + logl(1/G) +
-// logl(1 + G*S_hi - 1 )
-//
-// logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
-// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
-// single-precision numbers and the low parts are double precision
-// numbers. These have the property that
-//
-// N*log2_hi + SUM ( log1byGj_hi )
-//
-// is computable exactly in double-extended precision (64 sig. bits).
-// Finally
-//
-// lnHi(X) := N*log2_hi + SUM ( log1byGj_hi )
-// lnLo(X) := poly_hi + [ poly_lo +
-// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
-//
-//
-//*********************************************************************
-// General Purpose Registers
-// scratch registers
-rPolDataPtr = r2
-rLnSinDataPtr = r3
-rExpX = r8
-rSignifX = r9
-rDelta = r10
-rSignExpX = r11
-GR_ad_z_1 = r14
-r17Ones = r15
-GR_Index1 = r16
-rSignif1andQ = r17
-GR_X_0 = r18
-GR_X_1 = r19
-GR_X_2 = r20
-GR_Z_1 = r21
-GR_Z_2 = r22
-GR_N = r23
-rExpHalf = r24
-rExp8 = r25
-rX0Dx = r25
-GR_ad_tbl_1 = r26
-GR_ad_tbl_2 = r27
-GR_ad_tbl_3 = r28
-GR_ad_q = r29
-GR_ad_z_1 = r30
-GR_ad_z_2 = r31
-// stacked registers
-rPFS_SAVED = r32
-GR_ad_z_3 = r33
-rSgnGamAddr = r34
-rSgnGamSize = r35
-rLogDataPtr = r36
-rZ1offsett = r37
-rTmpPtr = r38
-rTmpPtr2 = r39
-rTmpPtr3 = r40
-rExp2 = r41
-rExp2tom7 = r42
-rZ625 = r42
-rExpOne = r43
-rNegSingularity = r44
-rXint = r45
-rTbl1Addr = r46
-rTbl2Addr = r47
-rTbl3Addr = r48
-rZ2Addr = r49
-rRootsAddr = r50
-rRootsBndAddr = r51
-rRoot = r52
-rRightBound = r53
-rLeftBound = r54
-rSignifDx = r55
-rBernulliPtr = r56
-rLnSinTmpPtr = r56
-rIndex1Dx = r57
-rIndexPol = r58
-GR_Index3 = r59
-GR_Index2 = r60
-rSgnGam = r61
-rXRnd = r62
-
-GR_SAVE_B0 = r63
-GR_SAVE_GP = r64
-GR_SAVE_PFS = r65
-// output parameters when calling error handling routine
-GR_Parameter_X = r66
-GR_Parameter_Y = r67
-GR_Parameter_RESULT = r68
-GR_Parameter_TAG = r69
-
-//********************************************************************
-// Floating Point Registers
-// CAUTION: due to the lack of registers there exist (below in the code)
-// sometimes "unconventional" use of declared registers
-//
-fAbsX = f6
-fDelX4 = f6
-fSignifX = f7
-// macros for error handling routine
-FR_X = f10 // first argument
-FR_Y = f1 // second argument (lgammal has just one)
-FR_RESULT = f8 // result
-
-// First 7 Bernulli numbers
-fB2 = f9
-fLnDeltaL = f9
-fXSqr = f9
-fB4 = f10
-fX4 = f10
-fB6 = f11
-fX6 = f11
-fB8 = f12
-fXSqrL = f12
-fB10 = f13
-fRes7H = f13
-fB12 = f14
-fRes7L = f14
-fB14 = f15
-
-// stack registers
-// Polynomial coefficients: A0, ..., A25
-fA0 = f32
-fA0L = f33
-fInvXL = f33
-fA1 = f34
-fA1L = f35
-fA2 = f36
-fA2L = f37
-fA3 = f38
-fA3L = f39
-fA4 = f40
-fA4L = f41
-fRes6H = f41
-fA5 = f42
-fB2L = f42
-fA5L = f43
-fMinNegStir = f43
-fRes6L = f43
-fA6 = f44
-fMaxNegStir = f44
-fA7 = f45
-fLnDeltaH = f45
-fA8 = f46
-fBrnL = f46
-fA9 = f47
-fBrnH = f47
-fA10 = f48
-fRes5L = f48
-fA11 = f49
-fRes5H = f49
-fA12 = f50
-fDx6 = f50
-fA13 = f51
-fDx8 = f51
-fA14 = f52
-fDx4 = f52
-fA15 = f53
-fYL = f53
-fh3Dx = f53
-fA16 = f54
-fYH = f54
-fH3Dx = f54
-fA17 = f55
-fResLnDxL = f55
-fG3Dx = f55
-fA18 = f56
-fResLnDxH = f56
-fh2Dx = f56
-fA19 = f57
-fFloatNDx = f57
-fA20 = f58
-fPolyHiDx = f58
-fhDx = f58
-fA21 = f59
-fRDxCub = f59
-fHDx = f59
-fA22 = f60
-fRDxSq = f60
-fGDx = f60
-fA23 = f61
-fPolyLoDx = f61
-fInvX3 = f61
-fA24 = f62
-fRDx = f62
-fInvX8 = f62
-fA25 = f63
-fInvX4 = f63
-fPol = f64
-fPolL = f65
-// Coefficients of ln(sin(Pi*x)/Pi*x)
-fLnSin2 = f66
-fLnSin2L = f67
-fLnSin4 = f68
-fLnSin6 = f69
-fLnSin8 = f70
-fLnSin10 = f71
-fLnSin12 = f72
-fLnSin14 = f73
-fLnSin16 = f74
-fLnSin18 = f75
-fDelX8 = f75
-fLnSin20 = f76
-fLnSin22 = f77
-fDelX6 = f77
-fLnSin24 = f78
-fLnSin26 = f79
-fLnSin28 = f80
-fLnSin30 = f81
-fhDelX = f81
-fLnSin32 = f82
-fLnSin34 = f83
-fLnSin36 = f84
-fXint = f85
-fDxSqr = f85
-fRes3L = f86
-fRes3H = f87
-fRes4H = f88
-fRes4L = f89
-fResH = f90
-fResL = f91
-fDx = f92
-FR_MHalf = f93
-fRes1H = f94
-fRes1L = f95
-fRes2H = f96
-fRes2L = f97
-FR_FracX = f98
-fRcpX = f99
-fLnSinH = f99
-fTwo = f100
-fMOne = f100
-FR_G = f101
-FR_H = f102
-FR_h = f103
-FR_G2 = f104
-FR_H2 = f105
-FR_poly_lo = f106
-FR_poly_hi = f107
-FR_h2 = f108
-FR_rsq = f109
-FR_r = f110
-FR_log2_hi = f111
-FR_log2_lo = f112
-fFloatN = f113
-FR_Q4 = f114
-FR_G3 = f115
-FR_H3 = f116
-FR_h3 = f117
-FR_Q3 = f118
-FR_Q2 = f119
-FR_Q1 = f120
-fThirteen = f121
-fSix = f121
-FR_rcub = f121
-// Last three Bernulli numbers
-fB16 = f122
-fB18 = f123
-fB20 = f124
-fInvX = f125
-fLnSinL = f125
-fDxSqrL = f126
-fFltIntX = f126
-fRoot = f127
-fNormDx = f127
-
-// Data tables
-//==============================================================
-RODATA
-// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
-.align 16
-LOCAL_OBJECT_START(lgammal_right_roots_data)
-// List of all right roots themselves
-data8 0x9D3FE4B007C360AB, 0x0000C000 // Range [-3, -2]
-data8 0xC9306DE4F2CD7BEE, 0x0000C000 // Range [-4, -3]
-data8 0x814273C2CCAC0618, 0x0000C001 // Range [-5, -4]
-data8 0xA04352BF85B6C865, 0x0000C001 // Range [-6, -5]
-data8 0xC00B592C4BE4676C, 0x0000C001 // Range [-7, -6]
-data8 0xE0019FEF6FF0F5BF, 0x0000C001 // Range [-8, -7]
-data8 0x80001A01459FC9F6, 0x0000C002 // Range [-9, -8]
-data8 0x900002E3BB47D86D, 0x0000C002 // Range [-10, -9]
-data8 0xA0000049F93BB992, 0x0000C002 // Range [-11, -10]
-data8 0xB0000006B9915316, 0x0000C002 // Range [-12, -11]
-data8 0xC00000008F76C773, 0x0000C002 // Range [-13, -12]
-data8 0xD00000000B09230A, 0x0000C002 // Range [-14, -13]
-data8 0xE000000000C9CBA5, 0x0000C002 // Range [-15, -14]
-data8 0xF0000000000D73FA, 0x0000C002 // Range [-16, -15]
-data8 0x8000000000006BA0, 0x0000C003 // Range [-17, -16]
-data8 0x8800000000000655, 0x0000C003 // Range [-18, -17]
-data8 0x900000000000005A, 0x0000C003 // Range [-19, -18]
-data8 0x9800000000000005, 0x0000C003 // Range [-20, -19]
-// List of bounds of ranges with special polynomial approximation near root
-// Only significands of bounds are actually stored
-data8 0xA000000000000000, 0x9800000000000000 // Bounds for root on [-3, -2]
-data8 0xCAB88035C5EFBB41, 0xC7E05E31F4B02115 // Bounds for root on [-4, -3]
-data8 0x817831B899735C72, 0x8114633941B8053A // Bounds for root on [-5, -4]
-data8 0xA04E8B34C6AA9476, 0xA039B4A42978197B // Bounds for root on [-6, -5]
-data8 0xC00D3D5E588A78A9, 0xC009BA25F7E858A6 // Bounds for root on [-7, -6]
-data8 0xE001E54202991EB4, 0xE001648416CE897F // Bounds for root on [-8, -7]
-data8 0x80001E56D13A6B9F, 0x8000164A3BAD888A // Bounds for root on [-9, -8]
-data8 0x9000035F0529272A, 0x9000027A0E3D94F0 // Bounds for root on [-10, -9]
-data8 0xA00000564D705880, 0xA000003F67EA0CC7 // Bounds for root on [-11, -10]
-data8 0xB0000007D87EE0EF, 0xB0000005C3A122A5 // Bounds for root on [-12, -11]
-data8 0xC0000000A75FE8B1, 0xC00000007AF818AC // Bounds for root on [-13, -12]
-data8 0xD00000000CDFFE36, 0xD000000009758BBF // Bounds for root on [-14, -13]
-data8 0xE000000000EB6D96, 0xE000000000ACF7B2 // Bounds for root on [-15, -14]
-data8 0xF0000000000FB1F9, 0xF0000000000B87FB // Bounds for root on [-16, -15]
-data8 0x8000000000007D90, 0x8000000000005C40 // Bounds for root on [-17, -16]
-data8 0x8800000000000763, 0x880000000000056D // Bounds for root on [-18, -17]
-data8 0x9000000000000069, 0x900000000000004D // Bounds for root on [-19, -18]
-data8 0x9800000000000006, 0x9800000000000005 // Bounds for root on [-20, -19]
-// List of all left roots themselves
-data8 0xAFDA0850DEC8065E, 0x0000C000 // Range [-3, -2]
-data8 0xFD238AA3E17F285C, 0x0000C000 // Range [-4, -3]
-data8 0x9FBABBD37757E6A2, 0x0000C001 // Range [-5, -4]
-data8 0xBFF497AC8FA06AFC, 0x0000C001 // Range [-6, -5]
-data8 0xDFFE5FBB5C377FE8, 0x0000C001 // Range [-7, -6]
-data8 0xFFFFCBFC0ACE7879, 0x0000C001 // Range [-8, -7]
-data8 0x8FFFFD1C425E8100, 0x0000C002 // Range [-9, -8]
-data8 0x9FFFFFB606BDFDCD, 0x0000C002 // Range [-10, -9]
-data8 0xAFFFFFF9466E9F1B, 0x0000C002 // Range [-11, -10]
-data8 0xBFFFFFFF70893874, 0x0000C002 // Range [-12, -11]
-data8 0xCFFFFFFFF4F6DCF6, 0x0000C002 // Range [-13, -12]
-data8 0xDFFFFFFFFF36345B, 0x0000C002 // Range [-14, -13]
-data8 0xEFFFFFFFFFF28C06, 0x0000C002 // Range [-15, -14]
-data8 0xFFFFFFFFFFFF28C0, 0x0000C002 // Range [-16, -15]
-data8 0x87FFFFFFFFFFF9AB, 0x0000C003 // Range [-17, -16]
-data8 0x8FFFFFFFFFFFFFA6, 0x0000C003 // Range [-18, -17]
-data8 0x97FFFFFFFFFFFFFB, 0x0000C003 // Range [-19, -18]
-data8 0x0000000000000000, 0x00000000 // pad to keep logic in the main path
-// List of bounds of ranges with special polynomial approximation near root
-// Only significands of bounds are actually stored
-data8 0xB235880944CC758E, 0xADD2F1A9FBE76C8B // Bounds for root on [-3, -2]
-data8 0xFD8E7844F307B07C, 0xFCA655C2152BDE4D // Bounds for root on [-4, -3]
-data8 0x9FC4D876EE546967, 0x9FAEE4AF68BC4292 // Bounds for root on [-5, -4]
-data8 0xBFF641FFBFCC44F1, 0xBFF2A47919F4BA89 // Bounds for root on [-6, -5]
-data8 0xDFFE9C803DEFDD59, 0xDFFE18932EB723FE // Bounds for root on [-7, -6]
-data8 0xFFFFD393FA47AFC3, 0xFFFFC317CF638AE1 // Bounds for root on [-8, -7]
-data8 0x8FFFFD8840279925, 0x8FFFFC9DCECEEE92 // Bounds for root on [-9, -8]
-data8 0x9FFFFFC0D34E2AF8, 0x9FFFFFA9619AA3B7 // Bounds for root on [-10, -9]
-data8 0xAFFFFFFA41C18246, 0xAFFFFFF82025A23C // Bounds for root on [-11, -10]
-data8 0xBFFFFFFF857ACB4E, 0xBFFFFFFF58032378 // Bounds for root on [-12, -11]
-data8 0xCFFFFFFFF6934AB8, 0xCFFFFFFFF313EF0A // Bounds for root on [-13, -12]
-data8 0xDFFFFFFFFF53A9E9, 0xDFFFFFFFFF13B5A5 // Bounds for root on [-14, -13]
-data8 0xEFFFFFFFFFF482CB, 0xEFFFFFFFFFF03F4F // Bounds for root on [-15, -14]
-data8 0xFFFFFFFFFFFF482D, 0xFFFFFFFFFFFF03F5 // Bounds for root on [-16, -15]
-data8 0x87FFFFFFFFFFFA98, 0x87FFFFFFFFFFF896 // Bounds for root on [-17, -16]
-data8 0x8FFFFFFFFFFFFFB3, 0x8FFFFFFFFFFFFF97 // Bounds for root on [-18, -17]
-data8 0x97FFFFFFFFFFFFFC, 0x97FFFFFFFFFFFFFB // Bounds for root on [-19, -18]
-LOCAL_OBJECT_END(lgammal_right_roots_data)
-
-LOCAL_OBJECT_START(lgammal_0_Half_data)
-// Polynomial coefficients for the lgammal(x), 0.0 < |x| < 0.5
-data8 0xBFD9A4D55BEAB2D6, 0xBC8AA3C097746D1F //A3
-data8 0x3FEA51A6625307D3, 0x3C7180E7BD2D0DCC //A2
-data8 0xBFE2788CFC6FB618, 0xBC9E9346C4692BCC //A1
-data8 0x8A8991563EC1BD13, 0x00003FFD //A4
-data8 0xD45CE0BD52C27EF2, 0x0000BFFC //A5
-data8 0xADA06587FA2BBD47, 0x00003FFC //A6
-data8 0x9381D0ED2194902A, 0x0000BFFC //A7
-data8 0x80859B3CF92D4192, 0x00003FFC //A8
-data8 0xE4033517C622A946, 0x0000BFFB //A9
-data8 0xCD00CE67A51FC82A, 0x00003FFB //A10
-data8 0xBA44E2A96C3B5700, 0x0000BFFB //A11
-data8 0xAAAD008FA46DBD99, 0x00003FFB //A12
-data8 0x9D604AC65A41153D, 0x0000BFFB //A13
-data8 0x917CECB864B5A861, 0x00003FFB //A14
-data8 0x85A4810EB730FDE4, 0x0000BFFB //A15
-data8 0xEF2761C38BD21F77, 0x00003FFA //A16
-data8 0xC913043A128367DA, 0x0000BFFA //A17
-data8 0x96A29B71FF7AFFAA, 0x00003FFA //A18
-data8 0xBB9FFA1A5FE649BB, 0x0000BFF9 //A19
-data8 0xB17982CD2DAA0EE3, 0x00003FF8 //A20
-data8 0xDE1DDCBFFB9453F0, 0x0000BFF6 //A21
-data8 0x87FBF5D7ACD9FA9D, 0x00003FF4 //A22
-LOCAL_OBJECT_END(lgammal_0_Half_data)
-
-LOCAL_OBJECT_START(Constants_Q)
-// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
-data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
-data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
-data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
-data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
-data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
-LOCAL_OBJECT_END(Constants_Q)
-
-LOCAL_OBJECT_START(Constants_Z_1)
-// Z1 - 16 bit fixed
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-LOCAL_OBJECT_START(Constants_G_H_h1)
-// G1 and H1 - IEEE single and h1 - IEEE double
-data4 0x3F800000,0x00000000,0x00000000,0x00000000
-data4 0x3F70F0F0,0x3D785196,0x617D741C,0x3DA163A6
-data4 0x3F638E38,0x3DF13843,0xCBD3D5BB,0x3E2C55E6
-data4 0x3F579430,0x3E2FF9A0,0xD86EA5E7,0xBE3EB0BF
-data4 0x3F4CCCC8,0x3E647FD6,0x86B12760,0x3E2E6A8C
-data4 0x3F430C30,0x3E8B3AE7,0x5C0739BA,0x3E47574C
-data4 0x3F3A2E88,0x3EA30C68,0x13E8AF2F,0x3E20E30F
-data4 0x3F321640,0x3EB9CEC8,0xF2C630BD,0xBE42885B
-data4 0x3F2AAAA8,0x3ECF9927,0x97E577C6,0x3E497F34
-data4 0x3F23D708,0x3EE47FC5,0xA6B0A5AB,0x3E3E6A6E
-data4 0x3F1D89D8,0x3EF8947D,0xD328D9BE,0xBDF43E3C
-data4 0x3F17B420,0x3F05F3A1,0x0ADB090A,0x3E4094C3
-data4 0x3F124920,0x3F0F4303,0xFC1FE510,0xBE28FBB2
-data4 0x3F0D3DC8,0x3F183EBF,0x10FDE3FA,0x3E3A7895
-data4 0x3F088888,0x3F20EC80,0x7CC8C98F,0x3E508CE5
-data4 0x3F042108,0x3F29516A,0xA223106C,0xBE534874
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-LOCAL_OBJECT_START(Constants_Z_2)
-// Z2 - 16 bit fixed
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-LOCAL_OBJECT_START(Constants_G_H_h2)
-// G2 and H2 - IEEE single and h2 - IEEE double
-data4 0x3F800000,0x00000000,0x00000000,0x00000000
-data4 0x3F7F00F8,0x3B7F875D,0x22C42273,0x3DB5A116
-data4 0x3F7E03F8,0x3BFF015B,0x21F86ED3,0x3DE620CF
-data4 0x3F7D08E0,0x3C3EE393,0x484F34ED,0xBDAFA07E
-data4 0x3F7C0FC0,0x3C7E0586,0x3860BCF6,0xBDFE07F0
-data4 0x3F7B1880,0x3C9E75D2,0xA78093D6,0x3DEA370F
-data4 0x3F7A2328,0x3CBDC97A,0x72A753D0,0x3DFF5791
-data4 0x3F792FB0,0x3CDCFE47,0xA7EF896B,0x3DFEBE6C
-data4 0x3F783E08,0x3CFC15D0,0x409ECB43,0x3E0CF156
-data4 0x3F774E38,0x3D0D874D,0xFFEF71DF,0xBE0B6F97
-data4 0x3F766038,0x3D1CF49B,0x5D59EEE8,0xBE080483
-data4 0x3F757400,0x3D2C531D,0xA9192A74,0x3E1F91E9
-data4 0x3F748988,0x3D3BA322,0xBF72A8CD,0xBE139A06
-data4 0x3F73A0D0,0x3D4AE46F,0xF8FBA6CF,0x3E1D9202
-data4 0x3F72B9D0,0x3D5A1756,0xBA796223,0xBE1DCCC4
-data4 0x3F71D488,0x3D693B9D,0xB6B7C239,0xBE049391
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-LOCAL_OBJECT_START(Constants_G_H_h3)
-// G3 and H3 - IEEE single and h3 - IEEE double
-data4 0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
-data4 0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
-data4 0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
-data4 0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
-data4 0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
-data4 0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
-data4 0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
-data4 0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
-data4 0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
-data4 0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
-data4 0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
-data4 0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
-data4 0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
-data4 0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
-data4 0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
-data4 0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
-data4 0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
-data4 0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
-data4 0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
-data4 0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
-data4 0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
-data4 0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
-data4 0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
-data4 0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
-data4 0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
-data4 0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
-data4 0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
-data4 0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
-data4 0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
-data4 0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
-data4 0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
-data4 0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-LOCAL_OBJECT_START(lgammal_data)
-// Positive overflow value
-data8 0xB8D54C8BFFFDEBF4, 0x00007FF1
-LOCAL_OBJECT_END(lgammal_data)
-
-LOCAL_OBJECT_START(lgammal_Stirling)
-// Coefficients needed for Strirling's formula
-data8 0x3FED67F1C864BEB4 // High part of 0.5*ln(2*Pi)
-data8 0x3C94D252F2400510 // Low part of 0.5*ln(2*Pi)
-//
-// Bernulli numbers used in Striling's formula for -2^63 < |x| < -13.0
-//(B1H, B1L) = 8.3333333333333333333262747254e-02
-data8 0x3FB5555555555555, 0x3C55555555555555
-data8 0xB60B60B60B60B60B, 0x0000BFF6 //B2 = -2.7777777777777777777777777778e-03
-data8 0xD00D00D00D00D00D, 0x00003FF4 //B3 = 7.9365079365079365079365079365e-04
-data8 0x9C09C09C09C09C0A, 0x0000BFF4 //B4 = -5.9523809523809523809523809524e-04
-data8 0xDCA8F158C7F91AB8, 0x00003FF4 //B5 = 8.4175084175084175084175084175e-04
-data8 0xFB5586CCC9E3E410, 0x0000BFF5 //B6 = -1.9175269175269175269175269175e-03
-data8 0xD20D20D20D20D20D, 0x00003FF7 //B7 = 6.4102564102564102564102564103e-03
-data8 0xF21436587A9CBEE1, 0x0000BFF9 //B8 = -2.9550653594771241830065359477e-02
-data8 0xB7F4B1C0F033FFD1, 0x00003FFC //B9 = 1.7964437236883057316493849002e-01
-data8 0xB23B3808C0F9CF6E, 0x0000BFFF //B10 = -1.3924322169059011164274322169e+00
-// Polynomial coefficients for Stirling's formula, -13.0 < x < -6.0
-data8 0x3FB5555555555555, 0x3C4D75060289C58B //A0
-data8 0xB60B60B60B0F0876, 0x0000BFF6 //A1
-data8 0xD00D00CE54B1256C, 0x00003FF4 //A2
-data8 0x9C09BF46B58F75E1, 0x0000BFF4 //A3
-data8 0xDCA8483BC91ACC6D, 0x00003FF4 //A4
-data8 0xFB3965C939CC9FEE, 0x0000BFF5 //A5
-data8 0xD0723ADE3F0BC401, 0x00003FF7 //A6
-data8 0xE1ED7434E81F0B73, 0x0000BFF9 //A7
-data8 0x8069C6982F993283, 0x00003FFC //A8
-data8 0xC271F65BFA5BEE3F, 0x0000BFFD //A9
-LOCAL_OBJECT_END(lgammal_Stirling)
-
-LOCAL_OBJECT_START(lgammal_lnsin_data)
-// polynomial approximation of -ln(sin(Pi*x)/(Pi*x)), 0 < x <= 0.5
-data8 0x3FFA51A6625307D3, 0x3C81873332FAF94C //A2
-data8 0x8A8991563EC241C3, 0x00003FFE //A4
-data8 0xADA06588061805DF, 0x00003FFD //A6
-data8 0x80859B57C338D0F7, 0x00003FFD //A8
-data8 0xCD00F1C2D78754BD, 0x00003FFC //A10
-data8 0xAAB56B1D3A1F4655, 0x00003FFC //A12
-data8 0x924B6F2FBBED12B1, 0x00003FFC //A14
-data8 0x80008E58765F43FC, 0x00003FFC //A16
-data8 0x3FBC718EC115E429//A18
-data8 0x3FB99CE544FE183E//A20
-data8 0x3FB7251C09EAAD89//A22
-data8 0x3FB64A970733628C//A24
-data8 0x3FAC92D6802A3498//A26
-data8 0x3FC47E1165261586//A28
-data8 0xBFCA1BAA434750D4//A30
-data8 0x3FE460001C4D5961//A32
-data8 0xBFE6F06A3E4908AD//A34
-data8 0x3FE300889EBB203A//A36
-LOCAL_OBJECT_END(lgammal_lnsin_data)
-
-LOCAL_OBJECT_START(lgammal_half_3Q_data)
-// Polynomial coefficients for the lgammal(x), 0.5 <= x < 0.75
-data8 0xBFF7A648EE90C62E, 0x3C713F326857E066 // A3, A0L
-data8 0xBFF73E4B8BA780AE, 0xBCA953BC788877EF // A1, A1L
-data8 0x403774DCD58D0291, 0xC0415254D5AE6623 // D0, D1
-data8 0x40B07213855CBFB0, 0xC0B8855E25D2D229 // C20, C21
-data8 0x3FFB359F85FF5000, 0x3C9BAECE6EF9EF3A // A2, A2L
-data8 0x3FD717D498A3A8CC, 0xBC9088E101CFEDFA // A0, A3L
-data8 0xAFEF36CC5AEC3FF0, 0x00004002 // E6
-data8 0xABE2054E1C34E791, 0x00004001 // E4
-data8 0xB39343637B2900D1, 0x00004000 // E2
-data8 0xD74FB710D53F58F6, 0x00003FFF // E0
-data8 0x4070655963BA4256, 0xC078DA9D263C4EA3 // D6, D7
-data8 0x405CD2B6A9B90978, 0xC065B3B9F4F4F171 // D4, D5
-data8 0x4049BC2204CF61FF, 0xC05337227E0BA152 // D2, D3
-data8 0x4095509A50C07A96, 0xC0A0747949D2FB45 // C18, C19
-data8 0x4082ECCBAD709414, 0xC08CD02FB088A702 // C16, C17
-data8 0xFFE4B2A61B508DD5, 0x0000C002 // E7
-data8 0xF461ADB8AE17E0A5, 0x0000C001 // E5
-data8 0xF5BE8B0B90325F20, 0x0000C000 // E3
-data8 0x877B275F3FB78DCA, 0x0000C000 // E1
-LOCAL_OBJECT_END(lgammal_half_3Q_data)
-
-LOCAL_OBJECT_START(lgammal_half_3Q_neg_data)
-// Polynomial coefficients for the lgammal(x), -0.75 < x <= -0.5
-data8 0xC014836EFD94899C, 0x3C9835679663B44F // A3, A0L
-data8 0xBFF276C7B4FB1875, 0xBC92D3D9FA29A1C0 // A1, A1L
-data8 0x40C5178F24E1A435, 0xC0D9DE84FBC5D76A // D0, D1
-data8 0x41D4D1B236BF6E93, 0xC1EBB0445CE58550 // C20, C21
-data8 0x4015718CD67F63D3, 0x3CC5354B6F04B59C // A2, A2L
-data8 0x3FF554493087E1ED, 0xBCB72715E37B02B9 // A0, A3L
-data8 0xE4AC7E915FA72229, 0x00004009 // E6
-data8 0xA28244206395FCC6, 0x00004007 // E4
-data8 0xFB045F19C07B2544, 0x00004004 // E2
-data8 0xE5C8A6E6A9BA7D7B, 0x00004002 // E0
-data8 0x4143943B55BF5118, 0xC158AC05EA675406 // D6, D7
-data8 0x4118F6833D19717C, 0xC12F51A6F375CC80 // D4, D5
-data8 0x40F00C209483481C, 0xC103F1DABF750259 // D2, D3
-data8 0x4191038F2D8F9E40, 0xC1A413066DA8AE4A // C18, C19
-data8 0x4170B537EDD833DE, 0xC1857E79424C61CE // C16, C17
-data8 0x8941D8AB4855DB73, 0x0000C00B // E7
-data8 0xBB822B131BD2E813, 0x0000C008 // E5
-data8 0x852B4C03B83D2D4F, 0x0000C006 // E3
-data8 0xC754CA7E2DDC0F1F, 0x0000C003 // E1
-LOCAL_OBJECT_END(lgammal_half_3Q_neg_data)
-
-LOCAL_OBJECT_START(lgammal_2Q_4_data)
-// Polynomial coefficients for the lgammal(x), 2.25 <= |x| < 4.0
-data8 0xBFCA4D55BEAB2D6F, 0x3C7ABC9DA14141F5 // A3, A0L
-data8 0x3FFD8773039049E7, 0x3C66CB7957A95BA4 // A1, A1L
-data8 0x3F45C3CC79E91E7D, 0xBF3A8E5005937E97 // D0, D1
-data8 0x3EC951E35E1C9203, 0xBEB030A90026C5DF // C20, C21
-data8 0x3FE94699894C1F4C, 0x3C91884D21D123F1 // A2, A2L
-data8 0x3FE62E42FEFA39EF, 0xBC66480CEB70870F // A0, A3L
-data8 0xF1C2EAFF0B3A7579, 0x00003FF5 // E6
-data8 0xB36AF863926B55A3, 0x00003FF7 // E4
-data8 0x9620656185BB44CA, 0x00003FF9 // E2
-data8 0xA264558FB0906AFF, 0x00003FFB // E0
-data8 0x3F03D59E9666C961, 0xBEF91115893D84A6 // D6, D7
-data8 0x3F19333611C46225, 0xBF0F89EB7D029870 // D4, D5
-data8 0x3F3055A96B347AFE, 0xBF243B5153E178A8 // D2, D3
-data8 0x3ED9A4AEF30C4BB2, 0xBED388138B1CEFF2 // C18, C19
-data8 0x3EEF7945A3C3A254, 0xBEE36F32A938EF11 // C16, C17
-data8 0x9028923F47C82118, 0x0000BFF5 // E7
-data8 0xCE0DAAFB6DC93B22, 0x0000BFF6 // E5
-data8 0xA0D0983B34AC4C8D, 0x0000BFF8 // E3
-data8 0x94D6C50FEB8B0CE7, 0x0000BFFA // E1
-LOCAL_OBJECT_END(lgammal_2Q_4_data)
-
-LOCAL_OBJECT_START(lgammal_4_8_data)
-// Polynomial coefficients for the lgammal(x), 4.0 <= |x| < 8.0
-data8 0xBFD6626BC9B31B54, 0x3CAA53C82493A92B // A3, A0L
-data8 0x401B4C420A50AD7C, 0x3C8C6E9929F789A3 // A1, A1L
-data8 0x3F49410427E928C2, 0xBF3E312678F8C146 // D0, D1
-data8 0x3ED51065F7CD5848, 0xBED052782A03312F // C20, C21
-data8 0x3FF735973273D5EC, 0x3C831DFC65BF8CCF // A2, A2L
-data8 0x401326643C4479C9, 0xBC6FA0498C5548A6 // A0, A3L
-data8 0x9382D8B3CD4EB7E3, 0x00003FF6 // E6
-data8 0xE9F92CAD8A85CBCD, 0x00003FF7 // E4
-data8 0xD58389FE38258CEC, 0x00003FF9 // E2
-data8 0x81310136363AE8AA, 0x00003FFC // E0
-data8 0x3F04F0AE38E78570, 0xBEF9E2144BB8F03C // D6, D7
-data8 0x3F1B5E992A6CBC2A, 0xBF10F3F400113911 // D4, D5
-data8 0x3F323EE00AAB7DEE, 0xBF2640FDFA9FB637 // D2, D3
-data8 0x3ED2143EBAFF067A, 0xBEBBDEB92D6FF35D // C18, C19
-data8 0x3EF173A42B69AAA4, 0xBEE78B9951A2EAA5 // C16, C17
-data8 0xAB3CCAC6344E52AA, 0x0000BFF5 // E7
-data8 0x81ACCB8915B16508, 0x0000BFF7 // E5
-data8 0xDA62C7221102C426, 0x0000BFF8 // E3
-data8 0xDF1BD44C4083580A, 0x0000BFFA // E1
-LOCAL_OBJECT_END(lgammal_4_8_data)
-
-LOCAL_OBJECT_START(lgammal_loc_min_data)
-// Polynomial coefficients for the lgammal(x), 1.3125 <= x < 1.5625
-data8 0xBB16C31AB5F1FB71, 0x00003FFF // xMin - point of local minimum
-data8 0xBFC2E4278DC6BC23, 0xBC683DA8DDCA9650 // A3, A0L
-data8 0x3BD4DB7D0CA61D5F, 0x386E719EDD01D801 // A1, A1L
-data8 0x3F4CC72638E1D93F, 0xBF4228EC9953CCB9 // D0, D1
-data8 0x3ED222F97A04613E,0xBED3DDD58095CB6C // C20, C21
-data8 0x3FDEF72BC8EE38AB, 0x3C863AFF3FC48940 // A2, A2L
-data8 0xBFBF19B9BCC38A41, 0xBC7425F1BFFC1442// A0, A3L
-data8 0x941890032BEB34C3, 0x00003FF6 // E6
-data8 0xC7E701591CE534BC, 0x00003FF7 // E4
-data8 0x93373CBD05138DD4, 0x00003FF9 // E2
-data8 0x845A14A6A81C05D6, 0x00003FFB // E0
-data8 0x3F0F6C4DF6D47A13, 0xBF045DCDB5B49E19 // D6, D7
-data8 0x3F22E23345DDE59C, 0xBF1851159AFB1735 // D4, D5
-data8 0x3F37101EA4022B78, 0xBF2D721E6323AF13 // D2, D3
-data8 0x3EE691EBE82DF09D, 0xBEDD42550961F730 // C18, C19
-data8 0x3EFA793EDE99AD85, 0xBEF14000108E70BE // C16, C17
-data8 0xB7CBC033ACE0C99C, 0x0000BFF5 // E7
-data8 0xF178D1F7B1A45E27, 0x0000BFF6 // E5
-data8 0xA8FCFCA8106F471C, 0x0000BFF8 // E3
-data8 0x864D46FA898A9AD2, 0x0000BFFA // E1
-LOCAL_OBJECT_END(lgammal_loc_min_data)
-
-LOCAL_OBJECT_START(lgammal_03Q_1Q_data)
-// Polynomial coefficients for the lgammal(x), 0.75 <= |x| < 1.3125
-data8 0x3FD151322AC7D848, 0x3C7184DE0DB7B4EE // A4, A2L
-data8 0x3FD9A4D55BEAB2D6, 0x3C9E934AAB10845F // A3, A1L
-data8 0x3FB111289C381259, 0x3FAFFFCFB32AE18D // D2, D3
-data8 0x3FB3B1D9E0E3E00D, 0x3FB2496F0D3768DF // D0, D1
-data8 0xBA461972C057D439, 0x00003FFB // E6
-data8 0x3FEA51A6625307D3, 0x3C76ABC886A72DA2 // A2, A4L
-data8 0x3FA8EFE46B32A70E, 0x3F8F31B3559576B6 // C17, C20
-data8 0xE403383700387D85, 0x00003FFB // E4
-data8 0x9381D0EE74BF7251, 0x00003FFC // E2
-data8 0x3FAA2177A6D28177, 0x3FA4895E65FBD995 // C18, C19
-data8 0x3FAAED2C77DBEE5D, 0x3FA94CA59385512C // D6, D7
-data8 0x3FAE1F522E8A5941, 0x3FAC785EF56DD87E // D4, D5
-data8 0x3FB556AD5FA56F0A, 0x3FA81F416E87C783 // E7, C16
-data8 0xCD00F1C2DC2C9F1E, 0x00003FFB // E5
-data8 0x3FE2788CFC6FB618, 0x3C8E52519B5B17CB // A1, A3L
-data8 0x80859B57C3E7F241, 0x00003FFC // E3
-data8 0xADA065880615F401, 0x00003FFC // E1
-data8 0xD45CE0BD530AB50E, 0x00003FFC // E0
-LOCAL_OBJECT_END(lgammal_03Q_1Q_data)
-
-LOCAL_OBJECT_START(lgammal_13Q_2Q_data)
-// Polynomial coefficients for the lgammal(x), 1.5625 <= |x| < 2.25
-data8 0x3F951322AC7D8483, 0x3C71873D88C6539D // A4, A2L
-data8 0xBFB13E001A557606, 0x3C56CB907018A101 // A3, A1L
-data8 0xBEC11B2EC1E7F6FC, 0x3EB0064ED9824CC7 // D2, D3
-data8 0xBEE3CBC963EC103A, 0x3ED2597A330C107D // D0, D1
-data8 0xBC6F2DEBDFE66F38, 0x0000BFF0 // E6
-data8 0x3FD4A34CC4A60FA6, 0x3C3AFC9BF775E8A0 // A2, A4L
-data8 0x3E48B0C542F85B32, 0xBE347F12EAF787AB // C17, C20
-data8 0xE9FEA63B6984FA1E, 0x0000BFF2 // E4
-data8 0x9C562E15FC703BBF, 0x0000BFF5 // E2
-data8 0xBE3C12A50AB0355E, 0xBE1C941626AE4717 // C18, C19
-data8 0xBE7AFA8714342BC4,0x3E69A12D2B7761CB // D6, D7
-data8 0xBE9E25EF1D526730, 0x3E8C762291889B99 // D4, D5
-data8 0x3EF580DCEE754733, 0xBE57C811D070549C // E7, C16
-data8 0xD093D878BE209C98, 0x00003FF1 // E5
-data8 0x3FDB0EE6072093CE, 0xBC6024B9E81281C4 // A1, A3L
-data8 0x859B57C31CB77D96, 0x00003FF4 // E3
-data8 0xBD6EB756DB617E8D, 0x00003FF6 // E1
-data8 0xF2027E10C7AF8C38, 0x0000BFF7 // E0
-LOCAL_OBJECT_END(lgammal_13Q_2Q_data)
-
-LOCAL_OBJECT_START(lgammal_8_10_data)
-// Polynomial coefficients for the lgammal(x), 8.0 <= |x| < 10.0
-// Multi Precision terms
-data8 0x40312008A3A23E5C, 0x3CE020B4F2E4083A //A1
-data8 0x4025358E82FCB70C, 0x3CD4A5A74AF7B99C //A0
-// Native precision terms
-data8 0xF0AA239FFBC616D2, 0x00004000 //A2
-data8 0x96A8EA798FE57D66, 0x0000BFFF //A3
-data8 0x8D501B7E3B9B9BDB, 0x00003FFE //A4
-data8 0x9EE062401F4B1DC2, 0x0000BFFD //A5
-data8 0xC63FD8CD31E93431, 0x00003FFC //A6
-data8 0x8461101709C23C30, 0x0000BFFC //A7
-data8 0xB96D7EA7EF3648B2, 0x00003FFB //A8
-data8 0x86886759D2ACC906, 0x0000BFFB //A9
-data8 0xC894B6E28265B183, 0x00003FFA //A10
-data8 0x98C4348CAD821662, 0x0000BFFA //A11
-data8 0xEC9B092226A94DF2, 0x00003FF9 //A12
-data8 0xB9F169FF9B98CDDC, 0x0000BFF9 //A13
-data8 0x9A3A32BB040894D3, 0x00003FF9 //A14
-data8 0xF9504CCC1003B3C3, 0x0000BFF8 //A15
-LOCAL_OBJECT_END(lgammal_8_10_data)
-
-LOCAL_OBJECT_START(lgammal_03Q_6_data)
-// Polynomial coefficients for the lgammal(x), 0.75 <= |x| < 1.0
-data8 0xBFBC47DCA479E295, 0xBC607E6C1A379D55 //A3
-data8 0x3FCA051C372609ED, 0x3C7B02D73EB7D831 //A0
-data8 0xBFE15FAFA86B04DB, 0xBC3F52EE4A8945B5 //A1
-data8 0x3FD455C4FF28F0BF, 0x3C75F8C6C99F30BB //A2
-data8 0xD2CF04CD934F03E1, 0x00003FFA //A4
-data8 0xDB4ED667E29256E1, 0x0000BFF9 //A5
-data8 0xF155A33A5B6021BF, 0x00003FF8 //A6
-data8 0x895E9B9D386E0338, 0x0000BFF8 //A7
-data8 0xA001BE94B937112E, 0x00003FF7 //A8
-data8 0xBD82846E490ED048, 0x0000BFF6 //A9
-data8 0xE358D24EC30DBB5D, 0x00003FF5 //A10
-data8 0x89C4F3652446B78B, 0x0000BFF5 //A11
-data8 0xA86043E10280193D, 0x00003FF4 //A12
-data8 0xCF3A2FBA61EB7682, 0x0000BFF3 //A13
-data8 0x3F300900CC9200EC //A14
-data8 0xBF23F42264B94AE8 //A15
-data8 0x3F18EEF29895FE73 //A16
-data8 0xBF0F3C4563E3EDFB //A17
-data8 0x3F0387DBBC385056 //A18
-data8 0xBEF81B4004F92900 //A19
-data8 0x3EECA6692A9A5B81 //A20
-data8 0xBEDF61A0059C15D3 //A21
-data8 0x3ECDA9F40DCA0111 //A22
-data8 0xBEB60FE788217BAF //A23
-data8 0x3E9661D795DFC8C6 //A24
-data8 0xBE66C7756A4EDEE5 //A25
-// Polynomial coefficients for the lgammal(x), 1.0 <= |x| < 2.0
-data8 0xBFC1AE55B180726B, 0xBC7DE1BC478453F5 //A3
-data8 0xBFBEEB95B094C191, 0xBC53456FF6F1C9D9 //A0
-data8 0x3FA2AED059BD608A, 0x3C0B65CC647D557F //A1
-data8 0x3FDDE9E64DF22EF2, 0x3C8993939A8BA8E4 //A2
-data8 0xF07C206D6B100CFF, 0x00003FFA //A4
-data8 0xED2CEA9BA52FE7FB, 0x0000BFF9 //A5
-data8 0xFCE51CED52DF3602, 0x00003FF8 //A6
-data8 0x8D45D27872326619, 0x0000BFF8 //A7
-data8 0xA2B78D6BCEBE27F7, 0x00003FF7 //A8
-data8 0xBF6DC0996A895B6F, 0x0000BFF6 //A9
-data8 0xE4B9AD335AF82D79, 0x00003FF5 //A10
-data8 0x8A451880195362A1, 0x0000BFF5 //A11
-data8 0xA8BE35E63089A7A9, 0x00003FF4 //A12
-data8 0xCF7FA175FA11C40C, 0x0000BFF3 //A13
-data8 0x3F300C282FAA3B02 //A14
-data8 0xBF23F6AEBDA68B80 //A15
-data8 0x3F18F6860E2224DD //A16
-data8 0xBF0F542B3CE32F28 //A17
-data8 0x3F039436218C9BF8 //A18
-data8 0xBEF8AE6307677AEC //A19
-data8 0x3EF0B55527B3A211 //A20
-data8 0xBEE576AC995E7605 //A21
-data8 0x3ED102DDC1365D2D //A22
-data8 0xBEC442184F97EA54 //A23
-data8 0x3ED4D2283DFE5FC6 //A24
-data8 0xBECB9219A9B46787 //A25
-// Polynomial coefficients for the lgammal(x), 2.0 <= |x| < 3.0
-data8 0xBFCA4D55BEAB2D6F, 0xBC66F80E5BFD5AF5 //A3
-data8 0x3FE62E42FEFA39EF, 0x3C7ABC9E3B347E3D //A0
-data8 0x3FFD8773039049E7, 0x3C66CB9007C426EA //A1
-data8 0x3FE94699894C1F4C, 0x3C918726EB111663 //A2
-data8 0xA264558FB0906209, 0x00003FFB //A4
-data8 0x94D6C50FEB902ADC, 0x0000BFFA //A5
-data8 0x9620656184243D17, 0x00003FF9 //A6
-data8 0xA0D0983B8BCA910B, 0x0000BFF8 //A7
-data8 0xB36AF8559B222BD3, 0x00003FF7 //A8
-data8 0xCE0DACB3260AE6E5, 0x0000BFF6 //A9
-data8 0xF1C2C0BF0437C7DB, 0x00003FF5 //A10
-data8 0x902A2F2F3AB74A92, 0x0000BFF5 //A11
-data8 0xAE05009B1B2C6E4C, 0x00003FF4 //A12
-data8 0xD5B71F6456D7D4CB, 0x0000BFF3 //A13
-data8 0x3F2F0351D71BC9C6 //A14
-data8 0xBF2B53BC56A3B793 //A15
-data8 0xBF18B12DC6F6B861 //A16
-data8 0xBF43EE6EB5215C2F //A17
-data8 0xBF5474787CDD455E //A18
-data8 0xBF642B503C9C060A //A19
-data8 0xBF6E07D1AA254AA3 //A20
-data8 0xBF71C785443AAEE8 //A21
-data8 0xBF6F67BF81B71052 //A22
-data8 0xBF63E4BCCF4FFABF //A23
-data8 0xBF50067F8C671D5A //A24
-data8 0xBF29C770D680A5AC //A25
-// Polynomial coefficients for the lgammal(x), 4.0 <= |x| < 6.0
-data8 0xBFD6626BC9B31B54, 0xBC85AABE08680902 //A3
-data8 0x401326643C4479C9, 0x3CAA53C26F31E364 //A0
-data8 0x401B4C420A50AD7C, 0x3C8C76D55E57DD8D //A1
-data8 0x3FF735973273D5EC, 0x3C83A0B78E09188A //A2
-data8 0x81310136363AAB6D, 0x00003FFC //A4
-data8 0xDF1BD44C4075C0E6, 0x0000BFFA //A5
-data8 0xD58389FE38D8D664, 0x00003FF9 //A6
-data8 0xDA62C7221D5B5F87, 0x0000BFF8 //A7
-data8 0xE9F92CAD0263E157, 0x00003FF7 //A8
-data8 0x81ACCB8606C165FE, 0x0000BFF7 //A9
-data8 0x9382D8D263D1C2A3, 0x00003FF6 //A10
-data8 0xAB3CCBA4C853B12C, 0x0000BFF5 //A11
-data8 0xCA0818BBCCC59296, 0x00003FF4 //A12
-data8 0xF18912691CBB5BD0, 0x0000BFF3 //A13
-data8 0x3F323EF5D8330339 //A14
-data8 0xBF2641132EA571F7 //A15
-data8 0x3F1B5D9576175CA9 //A16
-data8 0xBF10F56A689C623D //A17
-data8 0x3F04CACA9141A18D //A18
-data8 0xBEFA307AC9B4E85D //A19
-data8 0x3EF4B625939FBE32 //A20
-data8 0xBECEE6AC1420F86F //A21
-data8 0xBE9A95AE2E485964 //A22
-data8 0xBF039EF47F8C09BB //A23
-data8 0xBF05345957F7B7A9 //A24
-data8 0xBEF85AE6385D4CCC //A25
-// Polynomial coefficients for the lgammal(x), 3.0 <= |x| < 4.0
-data8 0xBFCA4D55BEAB2D6F, 0xBC667B20FF46C6A8 //A3
-data8 0x3FE62E42FEFA39EF, 0x3C7ABC9E3B398012 //A0
-data8 0x3FFD8773039049E7, 0x3C66CB9070238D77 //A1
-data8 0x3FE94699894C1F4C, 0x3C91873D8839B1CD //A2
-data8 0xA264558FB0906D7E, 0x00003FFB //A4
-data8 0x94D6C50FEB8AFD72, 0x0000BFFA //A5
-data8 0x9620656185B68F14, 0x00003FF9 //A6
-data8 0xA0D0983B34B7088A, 0x0000BFF8 //A7
-data8 0xB36AF863964AA440, 0x00003FF7 //A8
-data8 0xCE0DAAFB5497AFB8, 0x0000BFF6 //A9
-data8 0xF1C2EAFA79CC2864, 0x00003FF5 //A10
-data8 0x9028922A839572B8, 0x0000BFF5 //A11
-data8 0xAE1E62F870BA0278, 0x00003FF4 //A12
-data8 0xD4726F681E2ABA29, 0x0000BFF3 //A13
-data8 0x3F30559B9A02FADF //A14
-data8 0xBF243ADEB1266CAE //A15
-data8 0x3F19303B6F552603 //A16
-data8 0xBF0F768C288EC643 //A17
-data8 0x3F039D5356C21DE1 //A18
-data8 0xBEF81BCA8168E6BE //A19
-data8 0x3EEC74A53A06AD54 //A20
-data8 0xBEDED52D1A5DACDF //A21
-data8 0x3ECCB4C2C7087342 //A22
-data8 0xBEB4F1FAFDFF5C2F //A23
-data8 0x3E94C80B52D58904 //A24
-data8 0xBE64A328CBE92A27 //A25
-LOCAL_OBJECT_END(lgammal_03Q_6_data)
-
-LOCAL_OBJECT_START(lgammal_1pEps_data)
-// Polynomial coefficients for the lgammal(x), 1 - 2^(-7) <= |x| < 1 + 2^(-7)
-data8 0x93C467E37DB0C7A5, 0x00003FFE //A1
-data8 0xD28D3312983E9919, 0x00003FFE //A2
-data8 0xCD26AADF559A47E3, 0x00003FFD //A3
-data8 0x8A8991563EC22E81, 0x00003FFD //A4
-data8 0x3FCA8B9C168D52FE //A5
-data8 0x3FC5B40CB0696370 //A6
-data8 0x3FC270AC2229A65D //A7
-data8 0x3FC0110AF10FCBFC //A8
-// Polynomial coefficients for the log1p(x), - 2^(-7) <= |x| < 2^(-7)
-data8 0x3FBC71C71C71C71C //P8
-data8 0xBFC0000000000000 //P7
-data8 0x3FC2492492492492 //P6
-data8 0xBFC5555555555555 //P5
-data8 0x3FC999999999999A //P4
-data8 0xBFD0000000000000 //P3
-data8 0x3FD5555555555555 //P2
-data8 0xBFE0000000000000 //P1
-// short version of "lnsin" polynomial
-data8 0xD28D3312983E9918, 0x00003FFF //A2
-data8 0x8A8991563EC241B6, 0x00003FFE //A4
-data8 0xADA06588061830A5, 0x00003FFD //A6
-data8 0x80859B57C31CB746, 0x00003FFD //A8
-LOCAL_OBJECT_END(lgammal_1pEps_data)
-
-LOCAL_OBJECT_START(lgammal_neg2andHalf_data)
-// Polynomial coefficients for the lgammal(x), -2.005859375 <= x < -2.5
-data8 0xBF927781D4BB093A, 0xBC511D86D85B7045 // A3, A0L
-data8 0x3FF1A68793DEFC15, 0x3C9852AE2DA7DEEF // A1, A1L
-data8 0x408555562D45FAFD, 0xBF972CDAFE5FEFAD // D0, D1
-data8 0xC18682331EF492A5, 0xC1845E3E0D29606B // C20, C21
-data8 0x4013141822E16979, 0x3CCF8718B6E75F6C // A2, A2L
-data8 0xBFACCBF9F5ED0F15, 0xBBDD1AEB73297401 // A0, A3L
-data8 0xCCCDB17423046445, 0x00004006 // E6
-data8 0x800514E230A3A452, 0x00004005 // E4
-data8 0xAAE9A48EC162E76F, 0x00004003 // E2
-data8 0x81D4F88B3F3EA0FC, 0x00004002 // E0
-data8 0x40CF3F3E35238DA0, 0xC0F8B340945F1A7E // D6, D7
-data8 0x40BF89EC0BD609C6, 0xC095897242AEFEE2 // D4, D5
-data8 0x40A2482FF01DBC5C, 0xC02095E275FDCF62 // D2, D3
-data8 0xC1641354F2312A6A, 0xC17B3657F85258E9 // C18, C19
-data8 0xC11F964E9ECBE2C9, 0xC146D7A90F70696C // C16, C17
-data8 0xE7AECDE6AF8EA816, 0x0000BFEF // E7
-data8 0xD711252FEBBE1091, 0x0000BFEB // E5
-data8 0xE648BD10F8C43391, 0x0000BFEF // E3
-data8 0x948A1E78AA00A98D, 0x0000BFF4 // E1
-LOCAL_OBJECT_END(lgammal_neg2andHalf_data)
-
-LOCAL_OBJECT_START(lgammal_near_neg_half_data)
-// Polynomial coefficients for the lgammal(x), -0.5 < x < -0.40625
-data8 0xBFC1AE55B180726C, 0x3C8053CD734E6A1D // A3, A0L
-data8 0x3FA2AED059BD608A, 0x3C0CD3D2CDBA17F4 // A1, A1L
-data8 0x40855554DBCD1E1E, 0x3F96C51AC2BEE9E1 // D0, D1
-data8 0xC18682331EF4927D, 0x41845E3E0D295DFC // C20, C21
-data8 0x4011DE9E64DF22EF, 0x3CA692B70DAD6B7B // A2, A2L
-data8 0x3FF43F89A3F0EDD6, 0xBC4955AED0FA087D // A0, A3L
-data8 0xCCCD3F1DF4A2C1DD, 0x00004006 // E6
-data8 0x80028ADE33C7FCD9, 0x00004005 // E4
-data8 0xAACA474E485507EF, 0x00004003 // E2
-data8 0x80F07C206D6B0ECD, 0x00004002 // E0
-data8 0x40CF3F3E33E83056, 0x40F8B340944633D9 // D6, D7
-data8 0x40BF89EC059931F0, 0x409589723307AD20 // D4, D5
-data8 0x40A2482FD0054824, 0x402095CE7F19D011 // D2, D3
-data8 0xC1641354F2313614, 0x417B3657F8525354 // C18, C19
-data8 0xC11F964E9ECFD21C, 0x4146D7A90F701836 // C16, C17
-data8 0x86A9C01F0EA11E5A, 0x0000BFF5 // E7
-data8 0xBF6D8469142881C0, 0x0000BFF6 // E5
-data8 0x8D45D277BA8255F1, 0x0000BFF8 // E3
-data8 0xED2CEA9BA528BCC3, 0x0000BFF9 // E1
-LOCAL_OBJECT_END(lgammal_near_neg_half_data)
-
-//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-////////////// POLYNOMIAL COEFFICIENTS FOR "NEAR ROOTS" RANGES /////////////
-////////////// THIS PART OF TABLE SHOULD BE ADDRESSED REALLY RARE /////////////
-//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-LOCAL_OBJECT_START(lgammal_right_roots_polynomial_data)
-// Polynomial coefficients for right root on [-3, -2]
-// Lgammal is aproximated by polynomial within [-.056244 ; .158208 ] range
-data8 0xBBBD5E9DCD11030B, 0xB867411D9FF87DD4 //A0
-data8 0x3FF83FE966AF535E, 0x3CAA21235B8A769A //A1
-data8 0x40136EEBB002F55C, 0x3CC3959A6029838E //A2
-data8 0xB4A5302C53C2BEDD, 0x00003FFF //A3
-data8 0x8B8C6BE504F2DA1C, 0x00004002 //A4
-data8 0xB99CFF02593B4D98, 0x00004001 //A5
-data8 0x4038D32F682AA1CF //A6
-data8 0x403809F04EE6C5B5 //A7
-data8 0x40548EAA81634CEE //A8
-data8 0x4059297ADB6BC03D //A9
-data8 0x407286FB8EC5C9DA //A10
-data8 0x407A92E05B744CFB //A11
-data8 0x4091A9D4144258CD //A12
-data8 0x409C4D01D24F367E //A13
-data8 0x40B1871B9A426A83 //A14
-data8 0x40BE51C48BD9A583 //A15
-data8 0x40D2140D0C6153E7 //A16
-data8 0x40E0FB2C989CE4A3 //A17
-data8 0x40E52739AB005641 //A18
-data8 0x41161E3E6DDF503A //A19
-// Polynomial coefficients for right root on [-4, -3]
-// Lgammal is aproximated by polynomial within [-.172797 ; .171573 ] range
-data8 0x3C172712B248E42E, 0x38CB8D17801A5D67 //A0
-data8 0x401F20A65F2FAC54, 0x3CCB9EA1817A824E //A1
-data8 0x4039D4D2977150EF, 0x3CDA42E149B6276A //A2
-data8 0xE089B8926AE2D9CB, 0x00004005 //A3
-data8 0x933901EBBB586C37, 0x00004008 //A4
-data8 0xCCD319BED1CFA1CD, 0x0000400A //A5
-data8 0x40D293C3F78D3C37 //A6
-data8 0x40FBB97AA0B6DD02 //A7
-data8 0x41251EA3345E5EB9 //A8
-data8 0x415057F65C92E7B0 //A9
-data8 0x41799C865241B505 //A10
-data8 0x41A445209EFE896B //A11
-data8 0x41D02D21880C953B //A12
-data8 0x41F9FFDE8C63E16D //A13
-data8 0x422504DC8302D2BE //A14
-data8 0x425111BF18C95414 //A15
-data8 0x427BCBE74A2B8EF7 //A16
-data8 0x42A7256F59B286F7 //A17
-data8 0x42D462D1586DE61F //A18
-data8 0x42FBB1228D6C5118 //A19
-// Polynomial coefficients for right root on [-5, -4]
-// Lgammal is aproximated by polynomial within [-.163171 ; .161988 ] range
-data8 0x3C5840FBAFDEE5BB, 0x38CAC0336E8C490A //A0
-data8 0x403ACA5CF4921642, 0x3CCEDCDDA5491E56 //A1
-data8 0x40744415CD813F8E, 0x3CFBFEBC17E39146 //A2
-data8 0xAACD88D954E3E1BD, 0x0000400B //A3
-data8 0xCB68C710D75ED802, 0x0000400F //A4
-data8 0x8130F5AB997277AC, 0x00004014 //A5
-data8 0x41855E3DBF99EBA7 //A6
-data8 0x41CD14FE49C49FC2 //A7
-data8 0x421433DCE281F07D //A8
-data8 0x425C8399C7A92B6F //A9
-data8 0x42A45FBE67840F1A //A10
-data8 0x42ED68D75F9E6C98 //A11
-data8 0x433567291C27E5BE //A12
-data8 0x437F5ED7A9D9FD28 //A13
-data8 0x43C720A65C8AB711 //A14
-data8 0x441120A6C1D40B9B //A15
-data8 0x44596F561F2D1CBE //A16
-data8 0x44A3507DA81D5C01 //A17
-data8 0x44EF06A31E39EEDF //A18
-data8 0x45333774C99F523F //A19
-// Polynomial coefficients for right root on [-6, -5]
-// Lgammal is aproximated by polynomial within [-.156450 ; .156126 ] range
-data8 0x3C71B82D6B2B3304, 0x3917186E3C0DC231 //A0
-data8 0x405ED72E0829AE02, 0x3C960C25157980EB //A1
-data8 0x40BCECC32EC22F9B, 0x3D5D8335A32F019C //A2
-data8 0x929EC2B1FB931F17, 0x00004012 //A3
-data8 0xD112EF96D37316DE, 0x00004018 //A4
-data8 0x9F00BB9BB13416AB, 0x0000401F //A5
-data8 0x425F7D8D5BDCB223 //A6
-data8 0x42C9A8D00C776CC6 //A7
-data8 0x433557FD8C481424 //A8
-data8 0x43A209221A953EF0 //A9
-data8 0x440EDC98D5618AB7 //A10
-data8 0x447AABD25E367378 //A11
-data8 0x44E73DE20CC3B288 //A12
-data8 0x455465257B4E0BD8 //A13
-data8 0x45C2011532085353 //A14
-data8 0x462FEE4CC191945B //A15
-data8 0x469C63AEEFEF0A7F //A16
-data8 0x4709D045390A3810 //A17
-data8 0x4778D360873C9F64 //A18
-data8 0x47E26965BE9A682A //A19
-// Polynomial coefficients for right root on [-7, -6]
-// Lgammal is aproximated by polynomial within [-.154582 ; .154521 ] range
-data8 0x3C75F103A1B00A48, 0x391C041C190C726D //A0
-data8 0x40869DE49E3AF2AA, 0x3D1C17E1F813063B //A1
-data8 0x410FCE23484CFD10, 0x3DB6F38C2F11DAB9 //A2
-data8 0xEF281D1E1BE2055A, 0x00004019 //A3
-data8 0xFCE3DA92AC55DFF8, 0x00004022 //A4
-data8 0x8E9EA838A20BD58E, 0x0000402C //A5
-data8 0x4354F21E2FB9E0C9 //A6
-data8 0x43E9500994CD4F09 //A7
-data8 0x447F3A2C23C033DF //A8
-data8 0x45139152656606D8 //A9
-data8 0x45A8D45F8D3BF2E8 //A10
-data8 0x463FD32110E5BFE5 //A11
-data8 0x46D490B3BDBAE0BE //A12
-data8 0x476AC3CAD905DD23 //A13
-data8 0x48018558217AD473 //A14
-data8 0x48970AF371D30585 //A15
-data8 0x492E6273A8BEFFE3 //A16
-data8 0x49C47CC9AE3F1073 //A17
-data8 0x4A5D38E8C35EFF45 //A18
-data8 0x4AF0123E89694CD8 //A19
-// Polynomial coefficients for right root on [-8, -7]
-// Lgammal is aproximated by polynomial within [-.154217 ; .154208 ] range
-data8 0xBCD2507D818DDD68, 0xB97F6940EA2871A0 //A0
-data8 0x40B3B407AA387BCB, 0x3D6320238F2C43D1 //A1
-data8 0x41683E85DAAFBAC7, 0x3E148D085958EA3A //A2
-data8 0x9F2A95AF1E10A548, 0x00004022 //A3
-data8 0x92F21522F482300E, 0x0000402E //A4
-data8 0x90B51AB03A1F244D, 0x0000403A //A5
-data8 0x44628E1C70EF534F //A6
-data8 0x452393E2BC32D244 //A7
-data8 0x45E5164141F4BA0B //A8
-data8 0x46A712B3A8AF5808 //A9
-data8 0x47698FD36CEDD0F2 //A10
-data8 0x482C9AE6BBAA3637 //A11
-data8 0x48F023821857C8E9 //A12
-data8 0x49B2569053FC106F //A13
-data8 0x4A74F646D5C1604B //A14
-data8 0x4B3811CF5ABA4934 //A15
-data8 0x4BFBB5DD6C84E233 //A16
-data8 0x4CC05021086F637B //A17
-data8 0x4D8450A345B0FB49 //A18
-data8 0x4E43825848865DB2 //A19
-// Polynomial coefficients for right root on [-9, -8]
-// Lgammal is aproximated by polynomial within [-.154160 ; .154158 ] range
-data8 0x3CDF4358564F2B46, 0x397969BEE6042F81 //A0
-data8 0x40E3B088FED67721, 0x3D82787BA937EE85 //A1
-data8 0x41C83A3893550EF4, 0x3E542ED57E244DA8 //A2
-data8 0x9F003C6DC56E0B8E, 0x0000402B //A3
-data8 0x92BDF64A3213A699, 0x0000403A //A4
-data8 0x9074F503AAD417AF, 0x00004049 //A5
-data8 0x4582843E1313C8CD //A6
-data8 0x467387BD6A7826C1 //A7
-data8 0x4765074E788CF440 //A8
-data8 0x4857004DD9D1E09D //A9
-data8 0x4949792ED7530EAF //A10
-data8 0x4A3C7F089A292ED3 //A11
-data8 0x4B30125BF0AABB86 //A12
-data8 0x4C224175195E307E //A13
-data8 0x4D14DC4C8B32C08D //A14
-data8 0x4E07F1DB2786197E //A15
-data8 0x4EFB8EA1C336DACB //A16
-data8 0x4FF03797EACD0F23 //A17
-data8 0x50E4304A8E68A730 //A18
-data8 0x51D3618FB2EC9F93 //A19
-// Polynomial coefficients for right root on [-10, -9]
-// Lgammal is aproximated by polynomial within [-.154152 ; .154152 ] range
-data8 0x3D42F34DA97ECF0C, 0x39FD1256F345B0D0 //A0
-data8 0x4116261203919787, 0x3DC12D44055588EB //A1
-data8 0x422EA8F32FB7FE99, 0x3ED849CE4E7B2D77 //A2
-data8 0xE25BAF73477A57B5, 0x00004034 //A3
-data8 0xEB021FD10060504A, 0x00004046 //A4
-data8 0x8220A208EE206C5F, 0x00004059 //A5
-data8 0x46B2C3903EC9DA14 //A6
-data8 0x47D64393744B9C67 //A7
-data8 0x48FAF79CCDC604DD //A8
-data8 0x4A20975DB8061EBA //A9
-data8 0x4B44AB9CBB38DB21 //A10
-data8 0x4C6A032F60094FE9 //A11
-data8 0x4D908103927634B4 //A12
-data8 0x4EB516CA21D30861 //A13
-data8 0x4FDB1BF12C58D318 //A14
-data8 0x510180AAE094A553 //A15
-data8 0x5226A8F2A2D45D57 //A16
-data8 0x534E00B6B0C8B809 //A17
-data8 0x5475022FE21215B2 //A18
-data8 0x5596B02BF6C5E19B //A19
-// Polynomial coefficients for right root on [-11, -10]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0x3D7AA9C2E2B1029C, 0x3A15FB37578544DB //A0
-data8 0x414BAF825A0C91D4, 0x3DFB9DA2CE398747 //A1
-data8 0x4297F3EC8AE0AF03, 0x3F34208B55FB8781 //A2
-data8 0xDD0C97D3197F56DE, 0x0000403E //A3
-data8 0x8F6F3AF7A5499674, 0x00004054 //A4
-data8 0xC68DA1AF6D878EEB, 0x00004069 //A5
-data8 0x47F1E4E1E2197CE0 //A6
-data8 0x494A8A28E597C3EB //A7
-data8 0x4AA4175D0D35D705 //A8
-data8 0x4BFEE6F0AF69E814 //A9
-data8 0x4D580FE7B3DBB3C6 //A10
-data8 0x4EB2ECE60E4608AF //A11
-data8 0x500E04BE3E2B4F24 //A12
-data8 0x5167F9450F0FB8FD //A13
-data8 0x52C342BDE747603F //A14
-data8 0x541F1699D557268C //A15
-data8 0x557927C5F079864E //A16
-data8 0x56D4D10FEEDB030C //A17
-data8 0x5832385DF86AD28A //A18
-data8 0x598898914B4D6523 //A19
-// Polynomial coefficients for right root on [-12, -11]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0xBD96F61647C58B03, 0xBA3ABB0C2A6C755B //A0
-data8 0x418308A82714B70D, 0x3E1088FC6A104C39 //A1
-data8 0x4306A493DD613C39, 0x3FB2341ECBF85741 //A2
-data8 0x8FA8FE98339474AB, 0x00004049 //A3
-data8 0x802CCDF570BA7942, 0x00004062 //A4
-data8 0xF3F748AF11A32890, 0x0000407A //A5
-data8 0x493E3B567EF178CF //A6
-data8 0x4ACED38F651BA362 //A7
-data8 0x4C600B357337F946 //A8
-data8 0x4DF0F71A52B54CCF //A9
-data8 0x4F8229F3B9FA2C70 //A10
-data8 0x5113A4C4979B770E //A11
-data8 0x52A56BC367F298D5 //A12
-data8 0x543785CF31842DC0 //A13
-data8 0x55C9FC37E3E40896 //A14
-data8 0x575CD5D1BA556C82 //A15
-data8 0x58F00A7AD99A9E08 //A16
-data8 0x5A824088688B008D //A17
-data8 0x5C15F75EF7E08EBD //A18
-data8 0x5DA462EA902F0C90 //A19
-// Polynomial coefficients for right root on [-13, -12]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0x3DC3191752ACFC9D, 0x3A26CB6629532DBF //A0
-data8 0x41BC8CFC051191BD, 0x3E68A84DA4E62AF2 //A1
-data8 0x43797926294A0148, 0x400F345FF3723CFF //A2
-data8 0xF26D2AF700B82625, 0x00004053 //A3
-data8 0xA238B24A4B1F7B15, 0x00004070 //A4
-data8 0xE793B5C0A41A264F, 0x0000408C //A5
-data8 0x4A9585BDDACE863D //A6
-data8 0x4C6075953448088A //A7
-data8 0x4E29B2F38D1FC670 //A8
-data8 0x4FF4619B079C440F //A9
-data8 0x51C05DAE118D8AD9 //A10
-data8 0x538A8C7F87326AD4 //A11
-data8 0x5555B6937588DAB3 //A12
-data8 0x5721E1F8B6E6A7DB //A13
-data8 0x58EDA1D7A77DD6E5 //A14
-data8 0x5AB8A9616B7DC9ED //A15
-data8 0x5C84942AA209ED17 //A16
-data8 0x5E518FC34C6F54EF //A17
-data8 0x601FB3F17BCCD9A0 //A18
-data8 0x61E61128D512FE97 //A1
-// Polynomial coefficients for right root on [-14, -13]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0xBE170D646421B3F5, 0xBAAD95F79FCB5097 //A0
-data8 0x41F7328CBFCD9AC7, 0x3E743B8B1E8AEDB1 //A1
-data8 0x43F0D0FA2DBDA237, 0x40A0422D6A227B55 //A2
-data8 0x82082DF2D32686CC, 0x0000405F //A3
-data8 0x8D64EE9B42E68B43, 0x0000407F //A4
-data8 0xA3FFD82E08C5F1F1, 0x0000409F //A5
-data8 0x4BF8C49D99123454 //A6
-data8 0x4DFEC79DDF11342F //A7
-data8 0x50038615A892F6BD //A8
-data8 0x520929453DB32EF1 //A9
-data8 0x54106A7808189A7F //A10
-data8 0x5615A302D03C207B //A11
-data8 0x581CC175AA736F5E //A12
-data8 0x5A233E071147C017 //A13
-data8 0x5C29E81917243F22 //A14
-data8 0x5E3184B0B5AC4707 //A15
-data8 0x6037C11DE62D8388 //A16
-data8 0x6240787C4B1C9D6C //A17
-data8 0x6448289235E80977 //A18
-data8 0x664B5352C6C3449E //A19
-// Polynomial coefficients for right root on [-15, -14]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0x3E562C2E34A9207D, 0x3ADC00DA3DFF7A83 //A0
-data8 0x42344C3B2F0D90AB, 0x3EB8A2E979F24536 //A1
-data8 0x4469BFFF28B50D07, 0x41181E3D05C1C294 //A2
-data8 0xAE38F64DCB24D9F8, 0x0000406A //A3
-data8 0xA5C3F52C1B350702, 0x0000408E //A4
-data8 0xA83BC857BCD67A1B, 0x000040B2 //A5
-data8 0x4D663B4727B4D80A //A6
-data8 0x4FA82C965B0F7788 //A7
-data8 0x51EAD58C02908D95 //A8
-data8 0x542E427970E073D8 //A9
-data8 0x56714644C558A818 //A10
-data8 0x58B3EC2040C77BAE //A11
-data8 0x5AF72AE6A83D45B1 //A12
-data8 0x5D3B214F611F5D12 //A13
-data8 0x5F7FF5E49C54E92A //A14
-data8 0x61C2E917AB765FB2 //A15
-data8 0x64066FD70907B4C1 //A16
-data8 0x664B3998D60D0F9B //A17
-data8 0x689178710782FA8B //A18
-data8 0x6AD14A66C1C7BEC3 //A19
-// Polynomial coefficients for right root on [-16, -15]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0xBE6D7E7192615BAE, 0xBB0137677D7CC719 //A0
-data8 0x4273077763F6628C, 0x3F09250FB8FC8EC9 //A1
-data8 0x44E6A1BF095B1AB3, 0x4178D5A74F6CB3B3 //A2
-data8 0x8F8E0D5060FCC76E, 0x00004076 //A3
-data8 0x800CC1DCFF092A63, 0x0000409E //A4
-data8 0xF3AB0BA9D14CDA72, 0x000040C5 //A5
-data8 0x4EDE3000A2F6D54F //A6
-data8 0x515EC613B9C8E241 //A7
-data8 0x53E003309FEEEA96 //A8
-data8 0x5660ED908D7C9A90 //A9
-data8 0x58E21E9B517B1A50 //A10
-data8 0x5B639745E4374EE2 //A11
-data8 0x5DE55BB626B2075D //A12
-data8 0x606772B7506BA747 //A13
-data8 0x62E9E581AB2E057B //A14
-data8 0x656CBAD1CF85D396 //A15
-data8 0x67EFF4EBD7989872 //A16
-data8 0x6A722D2B19B7E2F9 //A17
-data8 0x6CF5DEB3073B0743 //A18
-data8 0x6F744AC11550B93A //A19
-// Polynomial coefficients for right root on [-17, -16]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0xBEDCC6291188207E, 0xBB872E3FDD48F5B7 //A0
-data8 0x42B3076EE7525EF9, 0x3F6687A5038CA81C //A1
-data8 0x4566A1AAD96EBCB5, 0x421F0FEDFBF548D2 //A2
-data8 0x8F8D4D3DE9850DBA, 0x00004082 //A3
-data8 0x800BDD6DA2CE1859, 0x000040AE //A4
-data8 0xF3A8EC4C9CDC1CE5, 0x000040D9 //A5
-data8 0x505E2FAFDB812628 //A6
-data8 0x531EC5B3A7508719 //A7
-data8 0x55E002F77E99B628 //A8
-data8 0x58A0ED4C9B4DAE54 //A9
-data8 0x5B621E4A8240F90C //A10
-data8 0x5E2396E5C8849814 //A11
-data8 0x60E55B43D8C5CE71 //A12
-data8 0x63A7722F5D45D01D //A13
-data8 0x6669E4E010DCE45A //A14
-data8 0x692CBA120D5E78F6 //A15
-data8 0x6BEFF4045350B22E //A16
-data8 0x6EB22C9807C21819 //A17
-data8 0x7175DE20D04617C4 //A18
-data8 0x74344AB87C6D655F //A19
-// Polynomial coefficients for right root on [-18, -17]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0xBF28AEEE7B61D77C, 0xBBDBBB5FC57ABF79 //A0
-data8 0x42F436F56B3B8A0C, 0x3FA43EE3C5C576E9 //A1
-data8 0x45E98A22535D115D, 0x42984678BE78CC48 //A2
-data8 0xAC176F3775E6FCFC, 0x0000408E //A3
-data8 0xA3114F53A9FEB922, 0x000040BE //A4
-data8 0xA4D168A8334ABF41, 0x000040EE //A5
-data8 0x51E5B0E7EC7182BB //A6
-data8 0x54E77D67B876EAB6 //A7
-data8 0x57E9F7C30C09C4B6 //A8
-data8 0x5AED29B0488614CA //A9
-data8 0x5DF09486F87E79F9 //A10
-data8 0x60F30B199979654E //A11
-data8 0x63F60E02C7DCCC5F //A12
-data8 0x66F9B8A00EB01684 //A13
-data8 0x69FE2D3ED0700044 //A14
-data8 0x6D01C8363C7DCC84 //A15
-data8 0x700502B29C2F06E3 //A16
-data8 0x730962B4500F4A61 //A17
-data8 0x76103C6ED099192A //A18
-data8 0x79100C7132CFD6E3 //A19
-// Polynomial coefficients for right root on [-19, -18]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0x3F3C19A53328A0C3, 0x3BE04ADC3FBE1458 //A0
-data8 0x4336C16C16C16C19, 0x3FE58CE3AC4A7C28 //A1
-data8 0x46702E85C0898B70, 0x432C922E412CEC6E //A2
-data8 0xF57B99A1C034335D, 0x0000409A //A3
-data8 0x82EC9634223DF909, 0x000040CF //A4
-data8 0x94F66D7557E2EA60, 0x00004103 //A5
-data8 0x5376118B79AE34D0 //A6
-data8 0x56BAE7106D52E548 //A7
-data8 0x5A00BD48CC8E25AB //A8
-data8 0x5D4529722821B493 //A9
-data8 0x608B1654AF31BBC1 //A10
-data8 0x63D182CC98AEA859 //A11
-data8 0x6716D43D5EEB05E8 //A12
-data8 0x6A5DF884FC172E1C //A13
-data8 0x6DA3CA7EBB97976B //A14
-data8 0x70EA416D0BE6D2EF //A15
-data8 0x743176C31EBB65F2 //A16
-data8 0x7777C401A8715CF9 //A17
-data8 0x7AC1110C6D350440 //A18
-data8 0x7E02D0971CF84865 //A19
-// Polynomial coefficients for right root on [-20, -19]
-// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] range
-data8 0xBFAB767F9BE21803, 0xBC5ACEF5BB1BD8B5 //A0
-data8 0x4379999999999999, 0x4029241C7F5914C8 //A1
-data8 0x46F47AE147AE147A, 0x43AC2979B64B9D7E //A2
-data8 0xAEC33E1F67152993, 0x000040A7 //A3
-data8 0xD1B71758E219616F, 0x000040DF //A4
-data8 0x8637BD05AF6CF468, 0x00004118 //A5
-data8 0x55065E9F80F293DE //A6
-data8 0x588EADA78C44EE66 //A7
-data8 0x5C15798EE22DEF09 //A8
-data8 0x5F9E8ABFD644FA63 //A9
-data8 0x6325FD7FE29BD7CD //A10
-data8 0x66AFFC5C57E1F802 //A11
-data8 0x6A3774CD7D5C0181 //A12
-data8 0x6DC152724DE2A6FE //A13
-data8 0x7149BB138EB3D0C2 //A14
-data8 0x74D32FF8A70896C2 //A15
-data8 0x785D3749F9C72BD7 //A16
-data8 0x7BE5CCF65EBC4E40 //A17
-data8 0x7F641A891B5FC652 //A18
-data8 0x7FEFFFFFFFFFFFFF //A19
-LOCAL_OBJECT_END(lgammal_right_roots_polynomial_data)
-
-LOCAL_OBJECT_START(lgammal_left_roots_polynomial_data)
-// Polynomial coefficients for left root on [-3, -2]
-// Lgammal is aproximated by polynomial within [.084641 ; -.059553 ] range
-data8 0xBC0844590979B82E, 0xB8BC7CE8CE2ECC3B //A0
-data8 0xBFFEA12DA904B18C, 0xBC91A6B2BAD5EF6E //A1
-data8 0x4023267F3C265A51, 0x3CD7055481D03AED //A2
-data8 0xA0C2D618645F8E00, 0x0000C003 //A3
-data8 0xFA8256664F8CD2BE, 0x00004004 //A4
-data8 0xC2C422C103F57158, 0x0000C006 //A5
-data8 0x4084373F7CC70AF5 //A6
-data8 0xC0A12239BDD6BB95 //A7
-data8 0x40BDBA65E2709397 //A8
-data8 0xC0DA2D2504DFB085 //A9
-data8 0x40F758173CA5BF3C //A10
-data8 0xC11506C65C267E72 //A11
-data8 0x413318EE3A6B05FC //A12
-data8 0xC1517767F247DA98 //A13
-data8 0x41701237B4754D73 //A14
-data8 0xC18DB8A03BC5C3D8 //A15
-data8 0x41AB80953AC14A07 //A16
-data8 0xC1C9B7B76638D0A4 //A17
-data8 0x41EA727E3033E2D9 //A18
-data8 0xC20812C297729142 //A19
-//
-// Polynomial coefficients for left root on [-4, -3]
-// Lgammal is aproximated by polynomial within [.147147 ; -.145158 ] range
-data8 0xBC3130AE5C4F54DB, 0xB8ED23294C13398A //A0
-data8 0xC034B99D966C5646, 0xBCE2E5FE3BC3DBB9 //A1
-data8 0x406F76DEAE0436BD, 0x3D14974DDEC057BD //A2
-data8 0xE929ACEA5979BE96, 0x0000C00A //A3
-data8 0xF47C14F8A0D52771, 0x0000400E //A4
-data8 0x88B7BC036937481C, 0x0000C013 //A5
-data8 0x4173E8F3AB9FC266 //A6
-data8 0xC1B7DBBE062FB11B //A7
-data8 0x41FD2F76DE7A47A7 //A8
-data8 0xC242225FE53B124D //A9
-data8 0x4286D12AE2FBFA30 //A10
-data8 0xC2CCFFC267A3C4C0 //A11
-data8 0x431294E10008E014 //A12
-data8 0xC357FAC8C9A2DF6A //A13
-data8 0x439F2190AB9FAE01 //A14
-data8 0xC3E44C1D8E8C67C3 //A15
-data8 0x442A8901105D5A38 //A16
-data8 0xC471C4421E908C3A //A17
-data8 0x44B92CD4D59D6D17 //A18
-data8 0xC4FB3A078B5247FA //A19
-// Polynomial coefficients for left root on [-5, -4]
-// Lgammal is aproximated by polynomial within [.155671 ; -.155300 ] range
-data8 0xBC57BF3C6E8A94C1, 0xB902FB666934AC9E //A0
-data8 0xC05D224A3EF9E41F, 0xBCF6F5713913E440 //A1
-data8 0x40BB533C678A3955, 0x3D688E53E3C72538 //A2
-data8 0x869FBFF732E99B84, 0x0000C012 //A3
-data8 0xBA9537AD61392DEC, 0x00004018 //A4
-data8 0x89EAE8B1DEA06B05, 0x0000C01F //A5
-data8 0x425A8C5C53458D3C //A6
-data8 0xC2C5068B3ED6509B //A7
-data8 0x4330FFA575E99B4E //A8
-data8 0xC39BEC12DDDF7669 //A9
-data8 0x44073825725F74F9 //A10
-data8 0xC47380EBCA299047 //A11
-data8 0x44E084DD9B666437 //A12
-data8 0xC54C2DA6BF787ACF //A13
-data8 0x45B82D65C8D6FA42 //A14
-data8 0xC624D62113FE950A //A15
-data8 0x469200CC19B45016 //A16
-data8 0xC6FFDDC6DD938E2E //A17
-data8 0x476DD7C07184B9F9 //A18
-data8 0xC7D554A30085C052 //A19
-// Polynomial coefficients for left root on [-6, -5]
-// Lgammal is aproximated by polynomial within [.157425 ; -.157360 ] range
-data8 0x3C9E20A87C8B79F1, 0x39488BE34B2427DB //A0
-data8 0xC08661F6A43A5E12, 0xBD3D912526D759CC //A1
-data8 0x410F79DCB794F270, 0x3DB9BEE7CD3C1BF5 //A2
-data8 0xEB7404450D0005DB, 0x0000C019 //A3
-data8 0xF7AE9846DFE4D4AB, 0x00004022 //A4
-data8 0x8AF535855A95B6DA, 0x0000C02C //A5
-data8 0x43544D54E9FE240E //A6
-data8 0xC3E8684E40CE6CFC //A7
-data8 0x447DF44C1D803454 //A8
-data8 0xC512AC305439B2BA //A9
-data8 0x45A79226AF79211A //A10
-data8 0xC63E0DFF7244893A //A11
-data8 0x46D35216C3A83AF3 //A12
-data8 0xC76903BE0C390E28 //A13
-data8 0x48004A4DECFA4FD5 //A14
-data8 0xC8954FBD243DB8BE //A15
-data8 0x492BF3A31EB18DDA //A16
-data8 0xC9C2C6A864521F3A //A17
-data8 0x4A5AB127C62E8DA1 //A18
-data8 0xCAECF60EF3183C57 //A19
-// Polynomial coefficients for left root on [-7, -6]
-// Lgammal is aproximated by polynomial within [.157749 ; -.157739 ] range
-data8 0x3CC9B9E8B8D551D6, 0x3961813C8E1E10DB //A0
-data8 0xC0B3ABF7A5CEA91F, 0xBD55638D4BCB4CC4 //A1
-data8 0x4168349A25504236, 0x3E0287ECE50CCF76 //A2
-data8 0x9EC8ED6E4C219E67, 0x0000C022 //A3
-data8 0x9279EB1B799A3FF3, 0x0000402E //A4
-data8 0x90213EF8D9A5DBCF, 0x0000C03A //A5
-data8 0x4462775E857FB71C //A6
-data8 0xC52377E70B45FDBF //A7
-data8 0x45E4F3D28EDA8C28 //A8
-data8 0xC6A6E85571BD2D0B //A9
-data8 0x47695BB17E74DF74 //A10
-data8 0xC82C5AC0ED6A662F //A11
-data8 0x48EFF8159441C2E3 //A12
-data8 0xC9B22602C1B68AE5 //A13
-data8 0x4A74BA8CE7B34100 //A14
-data8 0xCB37C7E208482E4B //A15
-data8 0x4BFB5A1D57352265 //A16
-data8 0xCCC01CB3021212FF //A17
-data8 0x4D841613AC3431D1 //A18
-data8 0xCE431C9E9EE43AD9 //A19
-// Polynomial coefficients for left root on [-8, -7]
-// Lgammal is aproximated by polynomial within [.157799 ; -.157798 ] range
-data8 0xBCF9C7A33AD9478C, 0xB995B0470F11E5ED //A0
-data8 0xC0E3AF76FE4C2F8B, 0xBD8DBCD503250511 //A1
-data8 0x41C838E76CAAF0D5, 0x3E5D79F5E2E069C3 //A2
-data8 0x9EF345992B262CE0, 0x0000C02B //A3
-data8 0x92AE0292985FD559, 0x0000403A //A4
-data8 0x90615420C08F7D8C, 0x0000C049 //A5
-data8 0x45828139342CEEB7 //A6
-data8 0xC67384066C31E2D3 //A7
-data8 0x476502BC4DAC2C35 //A8
-data8 0xC856FAADFF22ADC6 //A9
-data8 0x49497243255AB3CE //A10
-data8 0xCA3C768489520F6B //A11
-data8 0x4B300D1EA47AF838 //A12
-data8 0xCC223B0508AC620E //A13
-data8 0x4D14D46583338CD8 //A14
-data8 0xCE07E7A87AA068E4 //A15
-data8 0x4EFB811AD2F8BEAB //A16
-data8 0xCFF0351B51508523 //A17
-data8 0x50E4364CCBF53100 //A18
-data8 0xD1D33CFD0BF96FA6 //A19
-// Polynomial coefficients for left root on [-9, -8]
-// Lgammal is aproximated by polynomial within [.157806 ; -.157806 ] range
-data8 0x3D333E4438B1B9D4, 0x39E7B956B83964C1 //A0
-data8 0xC11625EDFC63DCD8, 0xBDCF39625709EFAC //A1
-data8 0x422EA8C150480F16, 0x3EC16ED908AB7EDD //A2
-data8 0xE2598725E2E11646, 0x0000C034 //A3
-data8 0xEAFF2346DE3EBC98, 0x00004046 //A4
-data8 0x821E90DE12A0F05F, 0x0000C059 //A5
-data8 0x46B2C334AE5366FE //A6
-data8 0xC7D64314B43191B6 //A7
-data8 0x48FAF6ED5899E01B //A8
-data8 0xCA2096E4472AF37D //A9
-data8 0x4B44AAF49FB7E4C8 //A10
-data8 0xCC6A02469F2BD920 //A11
-data8 0x4D9080626D2EFC07 //A12
-data8 0xCEB515EDCF0695F7 //A13
-data8 0x4FDB1AC69BF36960 //A14
-data8 0xD1017F8274339270 //A15
-data8 0x5226A684961BAE2F //A16
-data8 0xD34E085C088404A5 //A17
-data8 0x547511892FF8960E //A18
-data8 0xD5968FA3B1ED67A9 //A19
-// Polynomial coefficients for left root on [-10, -9]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBD355818A2B42BA2, 0xB9B7320B6A0D61EA //A0
-data8 0xC14BAF7DA5F3770E, 0xBDE64AF9A868F719 //A1
-data8 0x4297F3E8791F9CD3, 0x3F2A553E59B4835E //A2
-data8 0xDD0C5F7E551BD13C, 0x0000C03E //A3
-data8 0x8F6F0A3B2EB08BBB, 0x00004054 //A4
-data8 0xC68D4D5AD230BA08, 0x0000C069 //A5
-data8 0x47F1E4D8C35D1A3E //A6
-data8 0xC94A8A191DB0A466 //A7
-data8 0x4AA4174F65FE6AE8 //A8
-data8 0xCBFEE6D90F94E9DD //A9
-data8 0x4D580FD3438BE16C //A10
-data8 0xCEB2ECD456D50224 //A11
-data8 0x500E049F7FE64546 //A12
-data8 0xD167F92D9600F378 //A13
-data8 0x52C342AE2B43261A //A14
-data8 0xD41F15DEEDA4B67E //A15
-data8 0x55792638748AFB7D //A16
-data8 0xD6D4D760074F6E6B //A17
-data8 0x5832469D58ED3FA9 //A18
-data8 0xD988769F3DC76642 //A19
-// Polynomial coefficients for left root on [-11, -10]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBDA050601F39778A, 0xBA0D4D1CE53E8241 //A0
-data8 0xC18308A7D8EA4039, 0xBE370C379D3EAD41 //A1
-data8 0x4306A49380644E6C, 0x3FBBB143C0E7B5C8 //A2
-data8 0x8FA8FB233E4AA6D2, 0x0000C049 //A3
-data8 0x802CC9D8AEAC207D, 0x00004062 //A4
-data8 0xF3F73EE651A37A13, 0x0000C07A //A5
-data8 0x493E3B550A7B9568 //A6
-data8 0xCACED38DAA060929 //A7
-data8 0x4C600B346BAB3BC6 //A8
-data8 0xCDF0F719193E3D26 //A9
-data8 0x4F8229F24528B151 //A10
-data8 0xD113A4C2D32FBBE2 //A11
-data8 0x52A56BC13DC4474D //A12
-data8 0xD43785CFAF5E3CE3 //A13
-data8 0x55C9FC3EA5941202 //A14
-data8 0xD75CD545A3341AF5 //A15
-data8 0x58F009911F77C282 //A16
-data8 0xDA8246294D210BEC //A17
-data8 0x5C1608AAC32C3A8E //A18
-data8 0xDDA446E570A397D5 //A19
-// Polynomial coefficients for left root on [-12, -11]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0x3DEACBB3081C502E, 0x3A8AA6F01DEDF745 //A0
-data8 0xC1BC8CFBFB0A9912, 0xBE6556B6504A2AE6 //A1
-data8 0x43797926206941D7, 0x40289A9644C2A216 //A2
-data8 0xF26D2A78446D0839, 0x0000C053 //A3
-data8 0xA238B1D937FFED38, 0x00004070 //A4
-data8 0xE793B4F6DE470538, 0x0000C08C //A5
-data8 0x4A9585BDC44DC45D //A6
-data8 0xCC60759520342C47 //A7
-data8 0x4E29B2F3694C0404 //A8
-data8 0xCFF4619AE7B6BBAB //A9
-data8 0x51C05DADF52B89E8 //A10
-data8 0xD38A8C7F48819A4A //A11
-data8 0x5555B6932D687860 //A12
-data8 0xD721E1FACB6C1B5B //A13
-data8 0x58EDA1E2677C8F91 //A14
-data8 0xDAB8A8EC523C1F71 //A15
-data8 0x5C84930133F30411 //A16
-data8 0xDE51952FDFD1EC49 //A17
-data8 0x601FCCEC1BBD25F1 //A18
-data8 0xE1E5F2D76B610920 //A19
-// Polynomial coefficients for left root on [-13, -12]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBE01612F373268ED, 0xBA97B7A18CDF103B //A0
-data8 0xC1F7328CBF7A4FAC, 0xBE89A25A6952F481 //A1
-data8 0x43F0D0FA2DBDA237, 0x40A0422EC1CE6084 //A2
-data8 0x82082DF2D32686C5, 0x0000C05F //A3
-data8 0x8D64EE9B42E68B36, 0x0000407F //A4
-data8 0xA3FFD82E08C630C9, 0x0000C09F //A5
-data8 0x4BF8C49D99123466 //A6
-data8 0xCDFEC79DDF1119ED //A7
-data8 0x50038615A892D242 //A8
-data8 0xD20929453DC8B537 //A9
-data8 0x54106A78083BA1EE //A10
-data8 0xD615A302C69E27B2 //A11
-data8 0x581CC175870FF16F //A12
-data8 0xDA233E0979E12B74 //A13
-data8 0x5C29E822BC568C80 //A14
-data8 0xDE31845DB5340FBC //A15
-data8 0x6037BFC6D498D5F9 //A16
-data8 0xE2407D92CD613E82 //A17
-data8 0x64483B9B62367EB7 //A18
-data8 0xE64B2DC830E8A799 //A1
-// Polynomial coefficients for left root on [-14, -13]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0x3E563D0B930B371F, 0x3AE779957E14F012 //A0
-data8 0xC2344C3B2F083767, 0xBEC0B7769AA3DD66 //A1
-data8 0x4469BFFF28B50D07, 0x41181E3F13ED2401 //A2
-data8 0xAE38F64DCB24D9EE, 0x0000C06A //A3
-data8 0xA5C3F52C1B3506F2, 0x0000408E //A4
-data8 0xA83BC857BCD6BA92, 0x0000C0B2 //A5
-data8 0x4D663B4727B4D81A //A6
-data8 0xCFA82C965B0F62E9 //A7
-data8 0x51EAD58C02905B71 //A8
-data8 0xD42E427970FA56AD //A9
-data8 0x56714644C57D8476 //A10
-data8 0xD8B3EC2037EC95F2 //A11
-data8 0x5AF72AE68BBA5B3D //A12
-data8 0xDD3B2152C67AA6B7 //A13
-data8 0x5F7FF5F082861B8B //A14
-data8 0xE1C2E8BE125A5B7A //A15
-data8 0x64066E92FE9EBE7D //A16
-data8 0xE64B4201CDF9F138 //A17
-data8 0x689186351E58AA88 //A18
-data8 0xEAD132A585DFC60A //A19
-// Polynomial coefficients for left root on [-15, -14]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBE6D7DDE12700AC1, 0xBB1E025BF1667FB5 //A0
-data8 0xC273077763F60AD5, 0xBF2A1698184C7A9A //A1
-data8 0x44E6A1BF095B1AB3, 0x4178D5AE8A4A2874 //A2
-data8 0x8F8E0D5060FCC767, 0x0000C076 //A3
-data8 0x800CC1DCFF092A57, 0x0000409E //A4
-data8 0xF3AB0BA9D14D37D1, 0x0000C0C5 //A5
-data8 0x4EDE3000A2F6D565 //A6
-data8 0xD15EC613B9C8C800 //A7
-data8 0x53E003309FEECCAA //A8
-data8 0xD660ED908D8B15C4 //A9
-data8 0x58E21E9B51A1C4AE //A10
-data8 0xDB639745DB82210D //A11
-data8 0x5DE55BB60C68FCF6 //A12
-data8 0xE06772BA3FCA23C6 //A13
-data8 0x62E9E58B4F702C31 //A14
-data8 0xE56CBA49B071ABE2 //A15
-data8 0x67EFF31E4F2BA36A //A16
-data8 0xEA7232C8804F32C3 //A17
-data8 0x6CF5EFEE929A0928 //A18
-data8 0xEF742EE03EC3E8FF //A19
-// Polynomial coefficients for left root on [-16, -15]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBEDCC628FEAC7A1B, 0xBB80582C8BEBB198 //A0
-data8 0xC2B3076EE752595E, 0xBF5388F55AFAE53E //A1
-data8 0x4566A1AAD96EBCB5, 0x421F0FEFE2444293 //A2
-data8 0x8F8D4D3DE9850DB2, 0x0000C082 //A3
-data8 0x800BDD6DA2CE184C, 0x000040AE //A4
-data8 0xF3A8EC4C9CDC7A43, 0x0000C0D9 //A5
-data8 0x505E2FAFDB81263F //A6
-data8 0xD31EC5B3A7506CD9 //A7
-data8 0x55E002F77E999810 //A8
-data8 0xD8A0ED4C9B5C2900 //A9
-data8 0x5B621E4A8267C401 //A10
-data8 0xDE2396E5BFCFDA7A //A11
-data8 0x60E55B43BE6F9A79 //A12
-data8 0xE3A772324C7405FA //A13
-data8 0x6669E4E9B7E57A2D //A14
-data8 0xE92CB989F8A8FB37 //A15
-data8 0x6BEFF2368849A36E //A16
-data8 0xEEB23234FE191D55 //A17
-data8 0x7175EF5D1080B105 //A18
-data8 0xF4342ED7B1B7BE31 //A19
-// Polynomial coefficients for left root on [-17, -16]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBF28AEEE7B58C790, 0xBBC4448DE371FA0A //A0
-data8 0xC2F436F56B3B89B1, 0xBF636755245AC63A //A1
-data8 0x45E98A22535D115D, 0x4298467DA93DB784 //A2
-data8 0xAC176F3775E6FCF2, 0x0000C08E //A3
-data8 0xA3114F53A9FEB908, 0x000040BE //A4
-data8 0xA4D168A8334AFE5A, 0x0000C0EE //A5
-data8 0x51E5B0E7EC7182CF //A6
-data8 0xD4E77D67B876D6B4 //A7
-data8 0x57E9F7C30C098C83 //A8
-data8 0xDAED29B0489EF7A7 //A9
-data8 0x5DF09486F8A524B8 //A10
-data8 0xE0F30B19910A2393 //A11
-data8 0x63F60E02AB3109F4 //A12
-data8 0xE6F9B8A3431854D5 //A13
-data8 0x69FE2D4A6D94218E //A14
-data8 0xED01C7E272A73560 //A15
-data8 0x7005017D82B186B6 //A16
-data8 0xF3096A81A69BD8AE //A17
-data8 0x76104951BAD67D5C //A18
-data8 0xF90FECC99786FD5B //A19
-// Polynomial coefficients for left root on [-18, -17]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0x3F3C19A53328E26A, 0x3BE238D7BA036B3B //A0
-data8 0xC336C16C16C16C13, 0xBFEACE245DEC56F3 //A1
-data8 0x46702E85C0898B70, 0x432C922B64FD1DA4 //A2
-data8 0xF57B99A1C0343350, 0x0000C09A //A3
-data8 0x82EC9634223DF90D, 0x000040CF //A4
-data8 0x94F66D7557E3237D, 0x0000C103 //A5
-data8 0x5376118B79AE34D6 //A6
-data8 0xD6BAE7106D52CE49 //A7
-data8 0x5A00BD48CC8E11AB //A8
-data8 0xDD4529722833E2DF //A9
-data8 0x608B1654AF5F46AF //A10
-data8 0xE3D182CC90D8723F //A11
-data8 0x6716D43D46706AA0 //A12
-data8 0xEA5DF888C5B428D3 //A13
-data8 0x6DA3CA85888931A6 //A14
-data8 0xF0EA40EF2AC7E070 //A15
-data8 0x743175D1A251AFCD //A16
-data8 0xF777CB6E2B550D73 //A17
-data8 0x7AC11E468A134A51 //A18
-data8 0xFE02B6BDD0FC40AA //A19
-// Polynomial coefficients for left root on [-19, -18]
-// Lgammal is aproximated by polynomial within [.157807 ; -.157807 ] range
-data8 0xBFAB767F9BE217FC, 0xBC4A5541CE0D8D0D //A0
-data8 0xC379999999999999, 0xC01A84981B490BE8 //A1
-data8 0x46F47AE147AE147A, 0x43AC2987BBC466EB //A2
-data8 0xAEC33E1F67152987, 0x0000C0A7 //A3
-data8 0xD1B71758E2196153, 0x000040DF //A4
-data8 0x8637BD05AF6D420E, 0x0000C118 //A5
-data8 0x55065E9F80F293B2 //A6
-data8 0xD88EADA78C44BFA7 //A7
-data8 0x5C15798EE22EC6CD //A8
-data8 0xDF9E8ABFD67895CF //A9
-data8 0x6325FD7FE13B0DE0 //A10
-data8 0xE6AFFC5C3DE70858 //A11
-data8 0x6A3774CE81C70D43 //A12
-data8 0xEDC1527412D8129F //A13
-data8 0x7149BABCDA8B7A72 //A14
-data8 0xF4D330AD49071BB5 //A15
-data8 0x785D4046F4C5F1FD //A16
-data8 0xFBE59BFEDBA73FAF //A17
-data8 0x7F64BEF2B2EC8DA1 //A18
-data8 0xFFEFFFFFFFFFFFFF //A19
-LOCAL_OBJECT_END(lgammal_left_roots_polynomial_data)
-
-
-//==============================================================
-// Code
-//==============================================================
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_lgammal)
-{ .mfi
- getf.exp rSignExpX = f8
- // Test x for NaTVal, NaN, +/-0, +/-INF, denormals
- fclass.m p6,p0 = f8,0x1EF
- addl r17Ones = 0x1FFFF, r0 // exponent mask
-}
-{ .mfi
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- fcvt.fx.s1 fXint = f8 // Convert arg to int (int repres. in FR)
- adds rDelta = 0x3FC, r0
-}
-;;
-{ .mfi
- getf.sig rSignifX = f8
- fcmp.lt.s1 p15, p14 = f8, f0
- shl rDelta = rDelta, 20 // single precision 1.5
-}
-{ .mfi
- ld8 GR_ad_z_1 = [GR_ad_z_1]// get pointer to Constants_Z_1
- fma.s1 fTwo = f1, f1, f1 // 2.0
- addl rExp8 = 0x10002, r0 // exponent of 8.0
-}
-;;
-{ .mfi
- alloc rPFS_SAVED = ar.pfs, 0, 34, 4, 0 // get some registers
- fmerge.s fAbsX = f1, f8 // |x|
- and rExpX = rSignExpX, r17Ones // mask sign bit
-}
-{ .mib
- addl rExpHalf = 0xFFFE, r0 // exponent of 0.5
- addl rExp2 = 0x10000, r0 // exponent of 2.0
- // branch out if x is NaTVal, NaN, +/-0, +/-INF, or denormalized number
-(p6) br.cond.spnt lgammal_spec
-}
-;;
-_deno_back_to_main_path:
-{ .mfi
- // Point to Constants_G_H_h1
- add rTbl1Addr = 0x040, GR_ad_z_1
- frcpa.s1 fRcpX, p0 = f1, f8 // initial approximation of 1/x
- extr.u GR_Index1 = rSignifX, 59, 4
-}
-{ .mib
-(p14) cmp.ge.unc p8, p0 = rExpX, rExp8 // p8 = 1 if x >= 8.0
- adds rZ625 = 0x3F2, r0
-(p8) br.cond.spnt lgammal_big_positive // branch out if x >= 8.0
-}
-;;
-{ .mfi
- shladd rZ1offsett = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- fmerge.se fSignifX = f1, f8 // sifnificand of x
- // Get high 15 bits of significand
- extr.u GR_X_0 = rSignifX, 49, 15
-}
-{ .mib
- cmp.lt.unc p9, p0 = rExpX, rExpHalf // p9 = 1 if |x| < 0.5
- // set p11 if 2 <= x < 4
-(p14) cmp.eq.unc p11, p0 = rExpX, rExp2
-(p9) br.cond.spnt lgammal_0_half // branch out if |x| < 0.5
-}
-;;
-{ .mfi
- ld4 GR_Z_1 = [rZ1offsett] // Load Z_1
- fms.s1 fA5L = f1, f1, f8 // for 0.75 <= x < 1.3125 path
- shl rZ625 = rZ625, 20 // sinfle precision 0.625
-}
-{ .mib
- setf.s FR_MHalf = rDelta
- // set p10 if x >= 4.0
-(p14) cmp.gt.unc p10, p0 = rExpX, rExp2
- // branch to special path for 4.0 <= x < 8
-(p10) br.cond.spnt lgammal_4_8
-}
-;;
-{ .mfi
- // for 1.3125 <= x < 1.5625 path
- addl rPolDataPtr= @ltoff(lgammal_loc_min_data),gp
- // argument of polynomial approximation for 1.5625 <= x < 2.25
- fms.s1 fB4 = f8, f1, fTwo
- cmp.eq p12, p0 = rExpX, rExpHalf
-}
-{ .mib
- addl rExpOne = 0xFFFF, r0 // exponent of 1.0
- // set p10 if significand of x >= 1.125
-(p11) cmp.le p11, p0 = 2, GR_Index1
-(p11) br.cond.spnt lgammal_2Q_4
-}
-;;
-{ .mfi
- // point to xMin for 1.3125 <= x < 1.5625 path
- ld8 rPolDataPtr = [rPolDataPtr]
- fcvt.xf fFltIntX = fXint // RTN(x)
-(p14) cmp.eq.unc p13, p7 = rExpX, rExpOne // p13 set if 1.0 <= x < 2.0
-}
-{ .mib
- setf.s FR_FracX = rZ625
- // set p12 if |x| < 0.75
-(p12) cmp.gt.unc p12, p0 = 8, GR_Index1
- // branch out to special path for |x| < 0.75
-(p12) br.cond.spnt lgammal_half_3Q
-}
-;;
-.pred.rel "mutex", p7, p13
-{ .mfi
- getf.sig rXRnd = fXint // integer part of the input value
- fnma.s1 fInvX = f8, fRcpX, f1 // start of 1st NR iteration
- // Get bits 30-15 of X_0 * Z_1
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
-}
-{ .mib
-(p7) cmp.eq p6, p0 = rExpX, rExp2 // p6 set if 2.0 <= x < 2.25
-(p13) cmp.le p6, p0 = 9, GR_Index1
- // branch to special path 1.5625 <= x < 2.25
-(p6) br.cond.spnt lgammal_13Q_2Q
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- shladd GR_ad_tbl_1 = GR_Index1, 4, rTbl1Addr // Point to G_1
- fma.s1 fSix = fTwo, fTwo, fTwo // 6.0
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_Q
-}
-{ .mib
- add rTmpPtr3 = -0x50, GR_ad_z_1
-(p13) cmp.gt p7, p0 = 5, GR_Index1
- // branch to special path 0.75 <= x < 1.3125
-(p7) br.cond.spnt lgammal_03Q_1Q
-}
-;;
-{ .mfi
- add rTmpPtr = 8, GR_ad_tbl_1
- fma.s1 fRoot = f8, f1, f1 // x + 1
- // Absolute value of int arg. Will be used as index in table with roots
- sub rXRnd = r0, rXRnd
-}
-{ .mib
- ldfe fA5L = [rPolDataPtr], 16 // xMin
- addl rNegSingularity = 0x3003E, r0
-(p14) br.cond.spnt lgammal_loc_min
-}
-;;
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1], 8 // Load G_1, H_1
- nop.f 0
- add rZ2Addr = 0x140, GR_ad_z_1 // Point to Constants_Z_2
-}
-{ .mib
- ldfd FR_h = [rTmpPtr] // Load h_1
- // If arg is less or equal to -2^63
- cmp.geu.unc p8,p0 = rSignExpX, rNegSingularity
- // Singularity for x < -2^63 since all such arguments are integers
- // branch to special code which deals with singularity
-(p8) br.cond.spnt lgammal_singularity
-}
-;;
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q], 32 // Load log2_hi
- nop.f 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-{ .mfi
- ldfe FR_log2_lo = [rTmpPtr3], 32 // Load log2_lo
- fms.s1 fDx = f8, f1, fFltIntX // x - RTN(x)
- // index in table with roots and bounds
- adds rXint = -2, rXRnd
-}
-;;
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q], 32 // Load Q4
- nop.f 0
- // set p12 if x may be close to negative root: -19.5 < x < -2.0
- cmp.gtu p12, p0 = 18, rXint
-}
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, rZ2Addr // Point to Z_2
- fma.s1 fRcpX = fInvX, fRcpX, fRcpX // end of 1st NR iteration
- // Point to Constants_G_H_h2
- add rTbl2Addr = 0x180, GR_ad_z_1
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_2 = GR_Index2, 4, rTbl2Addr // Point to G_2
- // set p9 if x is integer and negative
- fcmp.eq.s1 p9, p0 = f8,fFltIntX
- // Point to Constants_G_H_h3
- add rTbl3Addr = 0x280, GR_ad_z_1
-}
-{ .mfi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- nop.f 0
- sub GR_N = rExpX, rExpHalf, 1
-}
-;;
-{ .mfi
- ldfe FR_Q3 = [rTmpPtr3], 32 // Load Q3
- nop.f 0
- // Point to lnsin polynomial coefficients
- adds rLnSinDataPtr = 864, rTbl3Addr
-}
-{ .mfi
- ldfe FR_Q2 = [GR_ad_q],32 // Load Q2
- nop.f 0
- add rTmpPtr = 8, GR_ad_tbl_2
-}
-;;
-{ .mfi
- ldfe FR_Q1 = [rTmpPtr3] // Load Q1
- fcmp.lt.s1 p0, p15 = fAbsX, fSix // p15 is set when x < -6.0
- // point to table with roots and bounds
- adds rRootsBndAddr = -1296, GR_ad_z_1
-}
-{ .mfb
- // Put integer N into rightmost significand
- setf.sig fFloatN = GR_N
- fma.s1 fThirteen = fSix, fTwo, f1 // 13.0
- // Singularity if -2^63 < x < 0 and x is integer
- // branch to special code which deals with singularity
-(p9) br.cond.spnt lgammal_singularity
-}
-;;
-{ .mfi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2] // Load G_2, H_2
- // y = |x|/2^(exponent(x)) - 1.5
- fms.s1 FR_FracX = fSignifX, f1, FR_MHalf
- // Get bits 30-15 of X_1 * Z_2
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15
-}
-{ .mfi
- ldfd FR_h2 = [rTmpPtr] // Load h_2
- fma.s1 fDxSqr = fDx, fDx, f0 // deltaX^2
- adds rTmpPtr3 = 128, rLnSinDataPtr
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- getf.exp rRoot = fRoot // sign and biased exponent of (x + 1)
- nop.f 0
- // set p6 if -4 < x <= -2
- cmp.eq p6, p0 = rExpX, rExp2
-}
-{ .mfi
- ldfpd fLnSin2, fLnSin2L = [rLnSinDataPtr], 16
- fnma.s1 fInvX = f8, fRcpX, f1 // start of 2nd NR iteration
- sub rIndexPol = rExpX, rExpHalf // index of polynom
-}
-;;
-{ .mfi
- ldfe fLnSin4 = [rLnSinDataPtr], 96
- // p10 is set if x is potential "right" root
- // p11 set for possible "left" root
- fcmp.lt.s1 p10, p11 = fDx, f0
- shl rIndexPol = rIndexPol, 6 // (i*16)*4
-}
-{ .mfi
- ldfpd fLnSin18, fLnSin20 = [rTmpPtr3], 16
- nop.f 0
- mov rExp2tom7 = 0x0fff8 // Exponent of 2^-7
-}
-;;
-{ .mfi
- getf.sig rSignifDx = fDx // Get significand of RTN(x)
- nop.f 0
- // set p6 if -4 < x <= -3.0
-(p6) cmp.le.unc p6, p0 = 0x8, GR_Index1
-}
-{ .mfi
- ldfpd fLnSin22, fLnSin24 = [rTmpPtr3], 16
- nop.f 0
- // mask sign bit in the exponent of (x + 1)
- and rRoot = rRoot, r17Ones
-}
-;;
-{ .mfi
- ldfe fLnSin16 = [rLnSinDataPtr], -80
- nop.f 0
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-{ .mfi
- ldfpd fLnSin26, fLnSin28 = [rTmpPtr3], 16
- nop.f 0
- and rXRnd = 1, rXRnd
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, rTbl3Addr // Point to G_3
- fms.s1 fDxSqrL = fDx, fDx, fDxSqr // low part of deltaX^2
- // potential "left" root
-(p11) adds rRootsBndAddr = 560, rRootsBndAddr
-}
-{ .mib
- ldfpd fLnSin30, fLnSin32 = [rTmpPtr3], 16
- // set p7 if |x+1| < 2^-7
- cmp.lt p7, p0 = rRoot, rExp2tom7
- // branch to special path for |x+1| < 2^-7
-(p7) br.cond.spnt _closeToNegOne
-}
-;;
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3], 8 // Load G_3, H_3
- fcmp.lt.s1 p14, p0 = fAbsX, fThirteen // set p14 if x > -13.0
- // base address of polynomial on range [-6.0, -0.75]
- adds rPolDataPtr = 3440, rTbl3Addr
-}
-{ .mfi
- // (i*16)*4 + (i*16)*8 - offsett of polynomial on range [-6.0, -0.75]
- shladd rTmpPtr = rIndexPol, 2, rIndexPol
- fma.s1 fXSqr = FR_FracX, FR_FracX, f0 // y^2
- // point to left "near root" bound
-(p12) shladd rRootsBndAddr = rXint, 4, rRootsBndAddr
-}
-;;
-{ .mfi
- ldfpd fLnSin34, fLnSin36 = [rTmpPtr3], 16
- fma.s1 fRcpX = fInvX, fRcpX, fRcpX // end of 2nd NR iteration
- // add special offsett if -4 < x <= -3.0
-(p6) adds rPolDataPtr = 640, rPolDataPtr
-}
-{ .mfi
- // point to right "near root" bound
- adds rTmpPtr2 = 8, rRootsBndAddr
- fnma.s1 fMOne = f1, f1, f0 // -1.0
- // Point to Bernulli numbers
- adds rBernulliPtr = 544, rTbl3Addr
-}
-;;
-{ .mfi
- // left bound of "near root" range
-(p12) ld8 rLeftBound = [rRootsBndAddr]
- fmerge.se fNormDx = f1, fDx // significand of DeltaX
- // base address + offsett for polynomial coeff. on range [-6.0, -0.75]
- add rPolDataPtr = rPolDataPtr, rTmpPtr
-}
-{ .mfi
- // right bound of "near root" range
-(p12) ld8 rRightBound = [rTmpPtr2]
- fcvt.xf fFloatN = fFloatN
- // special "Bernulli" numbers for Stirling's formula for -13 < x < -6
-(p14) adds rBernulliPtr = 160, rBernulliPtr
-}
-;;
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- adds rTmpPtr3 = -160, rTmpPtr3
-}
-{ .mfb
- adds rTmpPtr = 80, rPolDataPtr
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- // p15 is set if -2^63 < x < 6.0 and x is not an integer
- // branch to path with implementation using Stirling's formula for neg. x
-(p15) br.cond.spnt _negStirling
-}
-;;
-{ .mfi
- ldfpd fA3, fA3L = [rPolDataPtr], 16 // A3
- fma.s1 fDelX4 = fDxSqr, fDxSqr, f0 // deltaX^4
- // Get high 4 bits of signif
- extr.u rIndex1Dx = rSignifDx, 59, 4
-}
-{ .mfi
- ldfe fA5 = [rTmpPtr], -16 // A5
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
- adds rLnSinTmpPtr = 16, rLnSinDataPtr
-}
-;;
-{ .mfi
- ldfpd fA0, fA0L = [rPolDataPtr], 16 // A0
- fma.s1 fLnSin20 = fLnSin20, fDxSqr, fLnSin18
- // Get high 15 bits of significand
- extr.u rX0Dx = rSignifDx, 49, 15
-}
-{ .mfi
- ldfe fA4 = [rTmpPtr], 192 // A4
- fms.s1 fXSqrL = FR_FracX, FR_FracX, fXSqr // low part of y^2
- shladd GR_ad_z_1 = rIndex1Dx, 2, GR_ad_z_1 // Point to Z_1
-}
-;;
-{ .mfi
- ldfpd fA1, fA1L = [rPolDataPtr], 16 // A1
- fma.s1 fX4 = fXSqr, fXSqr, f0 // y^4
- adds rTmpPtr2 = 32, rTmpPtr
-}
-{ .mfi
- ldfpd fA18, fA19 = [rTmpPtr], 16 // A18, A19
- fma.s1 fLnSin24 = fLnSin24, fDxSqr, fLnSin22
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fLnSin6 = [rLnSinDataPtr], 32
- fma.s1 fLnSin28 = fLnSin28, fDxSqr, fLnSin26
- nop.i 0
-}
-{ .mfi
- ldfe fLnSin8 = [rLnSinTmpPtr], 32
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA20, fA21 = [rTmpPtr], 16 // A20, A21
- fma.s1 fLnSin32 = fLnSin32, fDxSqr, fLnSin30
- nop.i 0
-}
-{ .mfi
- ldfpd fA22, fA23 = [rTmpPtr2], 16 // A22, A23
- fma.s1 fB20 = f1, f1, FR_MHalf // 2.5
-(p12) cmp.ltu.unc p6, p0 = rSignifX, rLeftBound
-}
-;;
-{ .mfi
- ldfpd fA2, fA2L = [rPolDataPtr], 16 // A2
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- // set p6 if x falls in "near root" range
-(p6) cmp.geu.unc p6, p0 = rSignifX, rRightBound
-}
-{ .mfb
- adds rTmpPtr3 = -64, rTmpPtr
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- // branch to special path if x falls in "near root" range
-(p6) br.cond.spnt _negRoots
-}
-;;
-{ .mfi
- ldfpd fA24, fA25 = [rTmpPtr2], 16 // A24, A25
- fma.s1 fLnSin36 = fLnSin36, fDxSqr, fLnSin34
-(p11) cmp.eq.unc p7, p0 = 1,rXint // p7 set if -3.0 < x < -2.5
-}
-{ .mfi
- adds rTmpPtr = -48, rTmpPtr
- fma.s1 fLnSin20 = fLnSin20, fDxSqr, fLnSin16
- addl rDelta = 0x5338, r0 // significand of -2.605859375
-}
-;;
-{ .mfi
- getf.exp GR_N = fDx // Get N = exponent of DeltaX
- fma.s1 fX6 = fX4, fXSqr, f0 // y^6
- // p7 set if -2.605859375 <= x < -2.5
-(p7) cmp.gt.unc p7, p0 = rDelta, GR_X_0
-}
-{ .mfb
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- fma.s1 fDelX8 = fDelX4, fDelX4, f0 // deltaX^8
- // branch to special path for -2.605859375 <= x < -2.5
-(p7) br.cond.spnt _neg2andHalf
-}
-;;
-{ .mfi
- ldfpd fA14, fA15 = [rTmpPtr3], 16 // A14, A15
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- adds rTmpPtr2 = 128 , rPolDataPtr
-}
-{ .mfi
- ldfpd fA16, fA17 = [rTmpPtr], 16 // A16, A17
- fma.s1 fLnSin28 = fLnSin28, fDelX4, fLnSin24
- adds rPolDataPtr = 144 , rPolDataPtr
-}
-;;
-{ .mfi
- ldfe fLnSin10 = [rLnSinDataPtr], 32
- fma.s1 fRes1H = fA3, FR_FracX, f0 // (A3*y)hi
- and GR_N = GR_N, r17Ones // mask sign bit
-}
-{ .mfi
- ldfe fLnSin12 = [rLnSinTmpPtr]
- fma.s1 fDelX6 = fDxSqr, fDelX4, f0 // DeltaX^6
- shladd GR_ad_tbl_1 = rIndex1Dx, 4, rTbl1Addr // Point to G_1
-}
-;;
-{ .mfi
- ldfe fA13 = [rPolDataPtr], -32 // A13
- fma.s1 fA4 = fA5, FR_FracX, fA4 // A5*y + A4
- // Get bits 30-15 of X_0 * Z_1
- pmpyshr2.u GR_X_1 = rX0Dx, GR_Z_1, 15
-}
-{ .mfi
- ldfe fA12 = [rTmpPtr2], -32 // A12
- fms.s1 FR_r = FR_G, fSignifX, f1 // r = G * S_hi - 1
- sub GR_N = GR_N, rExpHalf, 1 // unbisaed exponent of DeltaX
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-.pred.rel "mutex",p10,p11
-{ .mfi
- ldfe fA11 = [rPolDataPtr], -32 // A11
- // High part of log(|x|) = Y_hi = N * log2_hi + H
- fma.s1 fResH = fFloatN, FR_log2_hi, FR_H
-(p10) cmp.eq p8, p9 = rXRnd, r0
-}
-{ .mfi
- ldfe fA10 = [rTmpPtr2], -32 // A10
- fma.s1 fRes6H = fA1, FR_FracX, f0 // (A1*y)hi
-(p11) cmp.eq p9, p8 = rXRnd, r0
-}
-;;
-{ .mfi
- ldfe fA9 = [rPolDataPtr], -32 // A9
- fma.s1 fB14 = fLnSin6, fDxSqr, f0 // (LnSin6*deltaX^2)hi
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-{ .mfi
- ldfe fA8 = [rTmpPtr2], -32 // A8
- fma.s1 fA18 = fA19, FR_FracX, fA18
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA7 = [rPolDataPtr] // A7
- fma.s1 fA23 = fA23, FR_FracX, fA22
- nop.i 0
-}
-{ .mfi
- ldfe fA6 = [rTmpPtr2] // A6
- fma.s1 fA21 = fA21, FR_FracX, fA20
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fLnSin14 = [rLnSinDataPtr]
- fms.s1 fRes1L = fA3, FR_FracX, fRes1H // delta((A3*y)hi)
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-{ .mfi
- setf.sig fFloatNDx = GR_N
- fadd.s1 fPol = fRes1H, fA2 // (A3*y + A2)hi
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1], 8 // Load G_1, H_1
- fma.s1 fRes2H = fA4, fXSqr, f0 // ((A5 + A4*y)*y^2)hi
- nop.i 0
-}
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, rZ2Addr // Point to Z_2
- fma.s1 fA25 = fA25, FR_FracX, fA24
- shladd GR_ad_tbl_2 = GR_Index2, 4, rTbl2Addr // Point to G_2
-}
-;;
-.pred.rel "mutex",p8,p9
-{ .mfi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- fms.s1 fRes6L = fA1, FR_FracX, fRes6H // delta((A1*y)hi)
- // sign of GAMMA(x) is negative
-(p8) adds rSgnGam = -1, r0
-}
-{ .mfi
- adds rTmpPtr = 8, GR_ad_tbl_2
- fadd.s1 fRes3H = fRes6H, fA0 // (A1*y + A0)hi
- // sign of GAMMA(x) is positive
-(p9) adds rSgnGam = 1, r0
-}
-;;
-{ .mfi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2] // Load G_2, H_2
- // (LnSin6*deltaX^2 + LnSin4)hi
- fadd.s1 fLnSinH = fB14, fLnSin4
- nop.i 0
-}
-{ .mfi
- ldfd FR_h2 = [rTmpPtr] // Load h_2
- fms.s1 fB16 = fLnSin6, fDxSqr, fB14 // delta(LnSin6*deltaX^2)
- nop.i 0
-}
-;;
-{ .mfi
- ldfd fhDelX = [GR_ad_tbl_1] // Load h_1
- fma.s1 fA21 = fA21, fXSqr, fA18
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDelX4, fLnSin32
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fA3L, FR_FracX, fRes1L // (A3*y)lo
- // Get bits 30-15 of X_1 * Z_
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15
-}
-{ .mfi
- nop.m 0
- fsub.s1 fPolL = fA2, fPol
- nop.i 0
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- nop.m 0
- // delta(((A5 + A4*y)*y^2)hi)
- fms.s1 fRes2L = fA4, fXSqr, fRes2H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (((A5 + A4*y)*y^2) + A3*y + A2)hi
- fadd.s1 fRes4H = fRes2H, fPol
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s1 fRes6L = fA1L, FR_FracX, fRes6L // (A1*y)lo
- nop.i 0
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fsub.s1 fRes3L = fA0, fRes3H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fLnSinL = fLnSin4, fLnSinH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((LnSin6*deltaX^2 + LnSin4)*deltaX^2)hi
- fma.s1 fB18 = fLnSinH, fDxSqr, f0
- nop.i 0
-}
-;;
-{ .mfi
- adds rTmpPtr = 8, rTbl3Addr
- fma.s1 fB16 = fLnSin6, fDxSqrL, fB16 // (LnSin6*deltaX^2)lo
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fXSqr, fA23
- nop.i 0
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, rTbl3Addr // Point to G_3
- fadd.s1 fPolL = fPolL, fRes1H
- nop.i 0
-}
-{ .mfi
- shladd rTmpPtr = GR_Index3, 4, rTmpPtr // Point to G_3
- fadd.s1 fRes1L = fRes1L, fA2L // (A3*y)lo + A2lo
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3] // Load G_3, H_3
- fma.s1 fRes2L = fA4, fXSqrL, fRes2L // ((A5 + A4*y)*y^2)lo
- nop.i 0
-}
-{ .mfi
- ldfd FR_h3 = [rTmpPtr] // Load h_3
- fsub.s1 fRes4L = fPol, fRes4H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ((((A5 + A4*y)*y^2) + A3*y + A2)*y^2)hi
- fma.s1 fRes7H = fRes4H, fXSqr, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, FR_FracX, fA14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fRes6H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes6L = fRes6L, fA0L // (A1*y)lo + A0lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fLnSinL = fLnSinL, fB14
-
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // delta((LnSin6*deltaX^2 + LnSin4)*deltaX^2)
- fms.s1 fB20 = fLnSinH, fDxSqr, fB18
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fPolL = fPolL, fRes1L // (A3*y + A2)lo
-
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((LnSin6*deltaX^2 + LnSin4)*deltaX^2 + LnSin2)hi
- fadd.s1 fLnSin6 = fB18, fLnSin2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fRes2H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, FR_FracX, fA16
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // delta(((((A5 + A4*y)*y^2) + A3*y + A2)*y^2)
- fms.s1 fRes7L = fRes4H, fXSqr, fRes7H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fPol = fRes7H, fRes3H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fRes6L // (A1*y + A0)lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fX4, fA21
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (LnSin6*deltaX^2 + LnSin4)lo
- fadd.s1 fLnSinL = fLnSinL, fB16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB20 = fLnSinH, fDxSqrL, fB20
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fLnSin4 = fLnSin2, fLnSin6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (((LnSin6*deltaX^2 + LnSin4)*deltaX^2 + LnSin2)*DeltaX^2)hi
- fma.s1 fLnSinH = fLnSin6, fDxSqr, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ((A5 + A4*y)*y^2)lo + (A3*y + A2)lo
- fadd.s1 fRes2L = fRes2L, fPolL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fXSqr, fA15
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ((((A5 + A4*y)*y^2) + A3*y + A2)*y^2)lo
- fma.s1 fRes7L = fRes4H, fXSqrL, fRes7L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fPolL = fRes3H, fPol
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, FR_FracX, fA12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, FR_FracX, fA10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ((LnSin6*deltaX^2 + LnSin4)*deltaX^2)lo
- fma.s1 fB20 = fLnSinL, fDxSqr, fB20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fLnSin4 = fLnSin4, fB18
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fLnSinL = fLnSin6, fDxSqr, fLnSinH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (((A5 + A4*y)*y^2) + A3*y + A2)lo
- fadd.s1 fRes4L = fRes4L, fRes2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fhDelX = fhDelX, FR_h2 // h = h_1 + h_2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes7L = fRes7L, fRes3L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fPolL = fPolL, fRes7H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fcvt.xf fFloatNDx = fFloatNDx
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((LnSin6*deltaX^2 + LnSin4)*deltaX^2)lo + (LnSin2)lo
- fadd.s1 fLnSin2L = fLnSin2L, fB20
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fX4, fA17
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, fXSqr, fA11
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, FR_FracX, fA8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, FR_FracX, fA6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDelX8, fLnSin28
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin14 = fLnSin14, fDxSqr, fLnSin12
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin10 = fLnSin10, fDxSqr, fLnSin8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRDx = FR_G, fNormDx, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // poly_lo = r * Q4 + Q3
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((((A5 + A4*y)*y^2) + A3*y + A2)*y^2)lo + (A1*y + A0)lo
- fma.s1 fRes7L = fRes4L, fXSqr, fRes7L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fX4, fA13
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fXSqr, fA7
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // h = N * log2_lo + h
- fma.s1 FR_h = fFloatN, FR_log2_lo, FR_h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fhDelX = fhDelX, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDelX6, fLnSin20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin14 = fLnSin14, fDelX4, fLnSin10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = r * Q4 + Q3
- fma.s1 fPolyLoDx = fRDx, FR_Q4, FR_Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 fRDxSq = fRDx, fRDx // rsq = r * r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Y_hi = N * log2_hi + H
- fma.s1 fResLnDxH = fFloatNDx, FR_log2_hi, FR_H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA25, fX4, fA9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fPolL = fPolL, fRes7L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fLnSin4 = fLnSin4, fLnSin2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // h = N * log2_lo + h
- fma.s1 fhDelX = fFloatNDx, FR_log2_lo, fhDelX
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDelX8, fLnSin14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // ((LnSin6*deltaX^2 + LnSin4)*deltaX^2 + LnSin2)lo
- fma.s1 fLnSinL = fLnSin6, fDxSqrL, fLnSinL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 fPolyLoDx = fPolyLoDx, fRDx, FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fRDxCub = fRDxSq, fRDx, f0 // rcub = r^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- famax.s0 fRes5H = fPol, fResH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // High part of (lgammal(|x|) + log(|x|))
- fadd.s1 fRes1H = fPol, fResH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fA9, fX6, fPolL // P25lo
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- famin.s0 fRes5L = fPol, fResH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // High part of -(LnSin + log(|DeltaX|))
- fnma.s1 fRes2H = fResLnDxH, f1, fLnSinH
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // (((LnSin6*deltaX^2 + LnSin4)*deltaX^2 + LnSin2)*DeltaX^2)lo
- fma.s1 fLnSinL = fLnSin4, fDxSqr, fLnSinL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDelX6, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 fPolyHiDx = FR_Q1, fRDxSq, fRDx
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 fPolyLoDx = fPolyLoDx, fRDxCub, fhDelX
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes1L = fRes5H, fRes1H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // -(lgammal(|x|) + log(|x|))hi
- fnma.s1 fRes1H = fRes1H, f1, f0
-
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes2L = fResLnDxH, fMOne, fRes2H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSinL = fLnSin36, fDxSqr, fLnSinL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // Y_lo = poly_hi + poly_lo
- fadd.s1 fResLnDxL = fPolyHiDx, fPolyLoDx
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fRes5L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // high part of the final result
- fadd.s1 fYH = fRes2H, fRes1H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Y_lo = poly_hi + poly_lo
- fadd.s1 fResL = FR_poly_hi, FR_poly_lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- famax.s0 fRes4H = fRes2H, fRes1H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- famin.s0 fRes4L = fRes2H, fRes1H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (LnSin)lo + (log(|DeltaX|))lo
- fsub.s1 fLnSinL = fLnSinL, fResLnDxL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fLnSinH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- //(lgammal(|x|))lo + (log(|x|))lo
- fadd.s1 fPolL = fResL, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fYL = fRes4H, fYH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Low part of -(LnSin + log(|DeltaX|))
- fadd.s1 fRes2L = fRes2L, fLnSinL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // High part of (lgammal(|x|) + log(|x|))
- fadd.s1 fRes1L = fRes1L, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fYL = fYL, fRes4L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes2L = fRes2L, fRes1L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // low part of the final result
- fadd.s1 fYL = fYL, fRes2L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- // final result for -6.0 < x <= -0.75, non-integer, "far" from roots
- fma.s0 f8 = fYH, f1, fYL
- // exit here for -6.0 < x <= -0.75, non-integer, "far" from roots
- br.ret.sptk b0
-}
-;;
-
-// here if |x+1| < 2^(-7)
-.align 32
-_closeToNegOne:
-{ .mfi
- getf.exp GR_N = fDx // Get N = exponent of x
- fmerge.se fAbsX = f1, fDx // Form |deltaX|
- // Get high 4 bits of significand of deltaX
- extr.u rIndex1Dx = rSignifDx, 59, 4
-}
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_1pEps_data),gp
- fma.s1 fA0L = fDxSqr, fDxSqr, f0 // deltaX^4
- // sign of GAMMA is positive if p10 is set to 1
-(p10) adds rSgnGam = 1, r0
-}
-;;
-{ .mfi
- shladd GR_ad_z_1 = rIndex1Dx, 2, GR_ad_z_1 // Point to Z_1
- fnma.s1 fResL = fDx, f1, f0 // -(x+1)
- // Get high 15 bits of significand
- extr.u GR_X_0 = rSignifDx, 49, 15
-}
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- shladd GR_ad_tbl_1 = rIndex1Dx, 4, rTbl1Addr // Point to G_1
-}
-;;
-{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.f 0
- and GR_N = GR_N, r17Ones // mask sign bit
-}
-{ .mfi
- adds rTmpPtr = 8, GR_ad_tbl_1
- nop.f 0
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-;;
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- nop.f 0
- adds rTmpPtr2 = 96, rPolDataPtr
-}
-{ .mfi
- ldfd FR_h = [rTmpPtr] // Load h_1
- nop.f 0
- // unbiased exponent of deltaX
- sub GR_N = GR_N, rExpHalf, 1
-}
-;;
-{ .mfi
- adds rTmpPtr3 = 192, rPolDataPtr
- nop.f 0
- // sign of GAMMA is negative if p11 is set to 1
-(p11) adds rSgnGam = -1, r0
-}
-{ .mfi
- ldfe fA1 = [rPolDataPtr], 16 // A1
- nop.f 0
- nop.i 0
-}
-;;
-{.mfi
- ldfe fA2 = [rPolDataPtr], 16 // A2
- nop.f 0
- // Get bits 30-15 of X_0 * Z_1
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
-}
-{ .mfi
- ldfpd fA20, fA19 = [rTmpPtr2], 16 // P8, P7
- nop.f 0
- nop.i 0
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe fA3 = [rPolDataPtr], 16 // A3
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA18, fA17 = [rTmpPtr2], 16 // P6, P5
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA4 = [rPolDataPtr], 16 // A4
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA16, fA15 = [rTmpPtr2], 16 // P4, p3
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA5L, fA6 = [rPolDataPtr], 16 // A5, A6
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA14, fA13 = [rTmpPtr2], 16 // P2, P1
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA7, fA8 = [rPolDataPtr], 16 // A7, A8
- nop.f 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-{ .mfi
- ldfe fLnSin2 = [rTmpPtr2], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, rZ2Addr // Point to Z_2
- nop.f 0
- shladd GR_ad_tbl_2 = GR_Index2, 4, rTbl2Addr // Point to G_2
-}
-{ .mfi
- ldfe fLnSin4 = [rTmpPtr2], 32
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- nop.f 0
- adds rTmpPtr = 8, GR_ad_tbl_2
-}
-{ .mfi
- // Put integer N into rightmost significand
- setf.sig fFloatN = GR_N
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fLnSin6 = [rTmpPtr3]
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fLnSin8 = [rTmpPtr2]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfd FR_h2 = [rTmpPtr] // Load h_2
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s1 fResH = fA20, fResL, fA19 //polynomial for log(|x|)
- // Get bits 30-15 of X_1 * Z_2
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s1 fA2 = fA2, fDx, fA1 // polynomial for lgammal(|x|)
- nop.i 0
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- nop.m 0
- fma.s1 fA18 = fA18, fResL, fA17 //polynomial for log(|x|)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA16 = fA16, fResL, fA15 //polynomial for log(|x|)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA4, fDx, fA3 // polynomial for lgammal(|x|)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA14 = fA14, fResL, fA13 //polynomial for log(|x|)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA6 = fA6, fDx, fA5L // polynomial for lgammal(|x|)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPol = fA8, fDx, fA7 // polynomial for lgammal(|x|)
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, rTbl3Addr // Point to G_3
- // loqw part of lnsin polynomial
- fma.s1 fRes3L = fLnSin4, fDxSqr, fLnSin2
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3], 8 // Load G_3, H_3
- fcvt.xf fFloatN = fFloatN // N as FP number
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fResH = fResH, fDxSqr, fA18 // High part of log(|x|)
- nop.i 0
-}
-;;
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fma.s1 fA4 = fA4, fDxSqr, fA2 // Low part of lgammal(|x|)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // high part of lnsin polynomial
- fma.s1 fRes3H = fLnSin8, fDxSqr, fLnSin6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA16 = fA16, fDxSqr, fA14 // Low part of log(|x|)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, fDxSqr, fA6 // High part of lgammal(|x|)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResH = fResH, fA0L, fA16 // log(|x|)/deltaX^2 - deltaX
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResH = fResH, fDxSqr, fResL // log(|x|)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, fA0L, fA4 // lgammal(|x|)/|x|
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G, fAbsX, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // high part of log(deltaX)= Y_hi = N * log2_hi + H
- fma.s1 fRes4H = fFloatN, FR_log2_hi, FR_H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // h = N * log2_lo + h
- fma.s1 FR_h = fFloatN, FR_log2_lo, FR_h
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResH = fPol, fDx, fResH // lgammal(|x|) + log(|x|)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // lnsin/deltaX^2
- fma.s1 fRes3H = fRes3H, fA0L, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = r * Q4 + Q3
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // lnSin - log(|x|) - lgammal(|x|)
- fms.s1 fResH = fRes3H, fDxSqr, fResH
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // low part of log(|deltaX|) = Y_lo = poly_hi + poly_lo
- fadd.s1 fRes4L = FR_poly_hi, FR_poly_lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fResH = fResH, fRes4L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- // final result for |x+1|< 2^(-7) path
- fsub.s0 f8 = fResH, fRes4H
- // exit for |x+1|< 2^(-7) path
- br.ret.sptk b0
-}
-;;
-
-
-// here if -2^63 < x < -6.0 and x is not an integer
-// Also we are going to filter out cases when x falls in
-// range which is "close enough" to negative root. Rhis case
-// may occur only for -19.5 < x since other roots of lgamma are
-// insignificant from double extended point of view (they are closer
-// to RTN(x) than one ulp(x).
-.align 32
-_negStirling:
-{ .mfi
- ldfe fLnSin6 = [rLnSinDataPtr], 32
- fnma.s1 fInvX = f8, fRcpX, f1 // start of 3rd NR iteration
- // Get high 4 bits of significand of deltaX
- extr.u rIndex1Dx = rSignifDx, 59, 4
-}
-{ .mfi
- ldfe fLnSin8 = [rTmpPtr3], 32
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
-(p12) cmp.ltu.unc p6, p0 = rSignifX, rLeftBound
-}
-;;
-{ .mfi
- ldfe fLnSin10 = [rLnSinDataPtr], 32
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- // Get high 15 bits of significand
- extr.u GR_X_0 = rSignifDx, 49, 15
-}
-{ .mfi
- shladd GR_ad_z_1 = rIndex1Dx, 2, GR_ad_z_1 // Point to Z_1
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- // set p6 if x falls in "near root" range
-(p6) cmp.geu.unc p6, p0 = rSignifX, rRightBound
-}
-;;
-{ .mfi
- getf.exp GR_N = fDx // Get N = exponent of x
- fma.s1 fDx4 = fDxSqr, fDxSqr, f0 // deltaX^4
- adds rTmpPtr = 96, rBernulliPtr
-}
-{ .mfb
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- fma.s1 fLnSin34 = fLnSin34, fDxSqr, fLnSin32
- // branch to special path if x falls in "near root" range
-(p6) br.cond.spnt _negRoots
-}
-;;
-.pred.rel "mutex",p10,p11
-{ .mfi
- ldfe fLnSin12 = [rTmpPtr3]
- fma.s1 fLnSin26 = fLnSin26, fDxSqr, fLnSin24
-(p10) cmp.eq p8, p9 = rXRnd, r0
-}
-{ .mfi
- ldfe fLnSin14 = [rLnSinDataPtr]
- fma.s1 fLnSin30 = fLnSin30, fDxSqr, fLnSin28
-(p11) cmp.eq p9, p8 = rXRnd, r0
-}
-;;
-{ .mfi
- ldfpd fB2, fB2L = [rBernulliPtr], 16
- fma.s1 fLnSin18 = fLnSin18, fDxSqr, fLnSin16
- shladd GR_ad_tbl_1 = rIndex1Dx, 4, rTbl1Addr // Point to G_1
-
-}
-{ .mfi
- ldfe fB14 = [rTmpPtr], 16
- fma.s1 fLnSin22 = fLnSin22, fDxSqr, fLnSin20
- and GR_N = GR_N, r17Ones // mask sign bit
-}
-;;
-{ .mfi
- ldfe fB4 = [rBernulliPtr], 16
- fma.s1 fInvX = fInvX, fRcpX, fRcpX // end of 3rd NR iteration
- // Get bits 30-15 of X_0 * Z_1
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
-}
-{ .mfi
- ldfe fB16 = [rTmpPtr], 16
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- adds rTmpPtr2 = 8, GR_ad_tbl_1
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe fB6 = [rBernulliPtr], 16
- fms.s1 FR_r = FR_G, fSignifX, f1 // r = G * S_hi - 1
- adds rTmpPtr3 = -48, rTmpPtr
-}
-{ .mfi
- ldfe fB18 = [rTmpPtr], 16
- // High part of the log(|x|) = Y_hi = N * log2_hi + H
- fma.s1 fResH = fFloatN, FR_log2_hi, FR_H
- sub GR_N = GR_N, rExpHalf, 1 // unbiased exponent of deltaX
-}
-;;
-.pred.rel "mutex",p8,p9
-{ .mfi
- ldfe fB8 = [rBernulliPtr], 16
- fma.s1 fLnSin36 = fLnSin36, fDx4, fLnSin34
- // sign of GAMMA(x) is negative
-(p8) adds rSgnGam = -1, r0
-}
-{ .mfi
- ldfe fB20 = [rTmpPtr], -160
- fma.s1 fRes5H = fLnSin4, fDxSqr, f0
- // sign of GAMMA(x) is positive
-(p9) adds rSgnGam = 1, r0
-
-}
-;;
-{ .mfi
- ldfe fB10 = [rBernulliPtr], 16
- fma.s1 fLnSin30 = fLnSin30, fDx4, fLnSin26
-(p14) adds rTmpPtr = -160, rTmpPtr
-}
-{ .mfi
- ldfe fB12 = [rTmpPtr3], 16
- fma.s1 fDx8 = fDx4, fDx4, f0 // deltaX^8
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-;;
-{ .mfi
- ldfps fGDx, fHDx = [GR_ad_tbl_1], 8 // Load G_1, H_1
- fma.s1 fDx6 = fDx4, fDxSqr, f0 // deltaX^6
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-{ .mfi
- ldfd fhDx = [rTmpPtr2] // Load h_1
- fma.s1 fLnSin22 = fLnSin22, fDx4, fLnSin18
- nop.i 0
-}
-;;
-{ .mfi
- // Load two parts of C
- ldfpd fRes1H, fRes1L = [rTmpPtr], 16
- fma.s1 fRcpX = fInvX, fInvX, f0 // (1/x)^2
- shladd GR_ad_tbl_2 = GR_Index2, 4, rTbl2Addr // Point to G_2
-}
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, rZ2Addr // Point to Z_2
- fma.s1 FR_h = fFloatN, FR_log2_lo, FR_h// h = N * log2_lo + h
- nop.i 0
-}
-;;
-{ .mfi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- fnma.s1 fInvXL = f8, fInvX, f1 // relative error of 1/x
- nop.i 0
-}
-{ .mfi
- adds rTmpPtr2 = 8, GR_ad_tbl_2
- fma.s1 fLnSin8 = fLnSin8, fDxSqr, fLnSin6
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- // poly_lo = r * Q4 + Q3
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
- nop.i 0
-}
-{ .mfi
- ldfd fh2Dx = [rTmpPtr2] // Load h_2
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA1L = fB2, fInvX, f0 // (B2*(1/x))hi
- nop.i 0
-}
-{ .mfi
- // Put integer N into rightmost significand
- setf.sig fFloatNDx = GR_N
- fms.s1 fRes4H = fResH, f1, f1 // ln(|x|)hi - 1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2H = fRes5H, fLnSin2//(lnSin4*DeltaX^2 + lnSin2)hi
- // Get bits 30-15 of X_1 * Z_2
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes5L = fLnSin4, fDxSqr, fRes5H
- nop.i 0
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- nop.m 0
- fma.s1 fInvX4 = fRcpX, fRcpX, f0 // (1/x)^4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB6 = fB6, fRcpX, fB4
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s1 fB18 = fB18, fRcpX, fB16
- nop.i 0
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s1 fInvXL = fInvXL, fInvX, f0 // low part of 1/x
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes3H = fRes4H, f8, f0 // (-|x|*(ln(|x|)-1))hi
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, rTbl3Addr // Point to G_3
- fms.s1 fA2L = fB2, fInvX, fA1L // delta(B2*(1/x))
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fBrnH = fRes1H, f1, fA1L // (-C - S(1/x))hi
- nop.i 0
-}
-;;
-{ .mfi
- ldfps fG3Dx, fH3Dx = [GR_ad_tbl_3],8 // Load G_3, H_3
- fma.s1 fInvX8 = fInvX4, fInvX4, f0 // (1/x)^8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB10 = fB10, fRcpX, fB8
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfd fh3Dx = [GR_ad_tbl_3] // Load h_3
- fma.s1 fB20 = fB20, fInvX4, fB18
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB14 = fB14, fRcpX, fB12
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDx8, fLnSin30
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin12 = fLnSin12, fDxSqr, fLnSin10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes2L = fLnSin2, fRes2H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fRes2H, fDxSqr, f0 // high part of LnSin
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fnma.s1 fResH = fResH, FR_MHalf, fResH // -0.5*ln(|x|)hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 fGDx = fGDx, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // B2lo*(1/x)hi+ delta(B2*(1/x))
- fma.s1 fA2L = fB2L, fInvX, fA2L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB20 = fB20, fInvX4, fB14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB10 = fB10, fInvX4, fB6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fcvt.xf fFloatNDx = fFloatNDx
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin14 = fLnSin14, fDx4, fLnSin12
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDx8, fLnSin22
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes3L = fRes4H, f8, fRes3H // delta(-|x|*(ln(|x|)-1))
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fmpy.s1 fGDx = fGDx, fG3Dx // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (-|x|*(ln(|x|)-1) - 0.5ln(|x|))hi
- fadd.s1 fRes4H = fRes3H, fResH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA2L = fInvXL, fB2, fA2L //(B2*(1/x))lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // low part of log(|x|) = Y_lo = poly_hi + poly_lo
- fadd.s1 fResL = FR_poly_hi, FR_poly_lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB20 = fB20, fInvX8, fB10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fInvX3 = fInvX, fRcpX, f0 // (1/x)^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fHDx = fHDx, FR_H2 // H = H_1 + H_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes5L = fRes5L, fLnSin2L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fRes5H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fhDx = fhDx, fh2Dx // h = h_1 + h_2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fBrnL = fRes1H, fMOne, fBrnH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_r = fGDx, fNormDx, f1 // r = G * S_hi - 1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fResL, f8 , fRes3L // (-|x|*(ln(|x|)-1))lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes4L = fRes3H, fRes4H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // low part of "Bernulli" polynomial
- fma.s1 fB20 = fB20, fInvX3, fA2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fResL = fResL, FR_MHalf, fResL // -0.5*ln(|x|)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fHDx = fHDx, fH3Dx // H = (H_1 + H_2) + H_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fPolL = fRes2H, fDxSqr, fPol
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fhDx = fhDx, fh3Dx // h = (h_1 + h_2) + h_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (-|x|*(ln(|x|)-1) - 0.5ln(|x|) - C - S(1/x))hi
- fadd.s1 fB14 = fRes4H, fBrnH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = r * Q4 + Q3
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fResH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fBrnL = fBrnL, fA1L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (-|x|*(ln(|x|)-1))lo + (-0.5ln(|x|))lo
- fadd.s1 fRes3L = fRes3L, fResL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fB20 = fRes1L, f1, fB20 // -Clo - S(1/x)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fRes5L // (lnSin4*DeltaX^2 + lnSin2)lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fDxSqrL, fRes2H, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin14 = fLnSin14, fDx4, fLnSin8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin36, fDx8, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fB12 = fRes4H, fB14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (-|x|*(ln(|x|)-1) - 0.5ln(|x|))lo
- fadd.s1 fRes4L = fRes4L, fRes3L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fBrnL = fBrnL, fB20 // (-C - S(1/x))lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // high part of log(|DeltaX|) = Y_hi = N * log2_hi + H
- fma.s1 fLnDeltaH = fFloatNDx, FR_log2_hi, fHDx
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // h = N * log2_lo + h
- fma.s1 fhDx = fFloatNDx, FR_log2_lo, fhDx
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fRes2L, fDxSqr, fPolL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin14 = fLnSin36, fDxSqr, fLnSin14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (-|x|*(ln(|x|)-1) - 0.5ln(|x|))lo + (- C - S(1/x))lo
- fadd.s1 fBrnL = fBrnL, fRes4L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fB12 = fB12, fBrnH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, fhDx
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fRes1H = fLnDeltaH, f1, fPol//(-ln(|DeltaX|) + LnSin)hi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fDxSqrL, fRes2L, fPolL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin36 = fLnSin14, fDx6, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (-|x|*(ln(|x|)-1) - 0.5ln(|x|) - C - S(1/x))lo
- fadd.s1 fB12 = fB12, fBrnL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // low part of log(|DeltaX|) = Y_lo = poly_hi + poly_lo
- fadd.s1 fLnDeltaL= FR_poly_hi, FR_poly_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = fLnDeltaH, fMOne, fRes1H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fPolL = fPolL, fLnSin36
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //(-|x|*(ln(|x|)-1)-0.5ln(|x|) - C - S(1/x))hi + (-ln(|DeltaX|) + LnSin)hi
- fadd.s1 f8 = fRes1H, fB14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- //max((-|x|*(ln(|x|)-1)-0.5ln(|x|) - C - S(1/x))hi,
- // (-ln(|DeltaX|) + LnSin)hi)
- famax.s1 fMaxNegStir = fRes1H, fB14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //min((-|x|*(ln(|x|)-1)-0.5ln(|x|) - C - S(1/x))hi,
- // (-ln(|DeltaX|) + LnSin)hi)
- famin.s1 fMinNegStir = fRes1H, fB14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fPol
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (-ln(|DeltaX|))lo + (LnSin)lo
- fnma.s1 fPolL = fLnDeltaL, f1, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 f9 = fMaxNegStir, f8 // delta1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fPolL // (-ln(|DeltaX|) + LnSin)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 f9 = f9, fMinNegStir
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fB12
- nop.i 0
-}
-;;
-{ .mfi
- // low part of the result
- fadd.s1 f9 = f9, fRes1L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- // final result for -2^63 < x < -6.0 path
- fma.s0 f8 = f8, f1, f9
- // exit here for -2^63 < x < -6.0 path
- br.ret.sptk b0
-}
-;;
-
-// here if x falls in neighbourhood of any negative root
-// "neighbourhood" typically means that |lgammal(x)| < 0.17
-// on the [-3.0,-2.0] range |lgammal(x)| has even less
-// magnitude
-// rXint contains index of the root
-// p10 is set if root belongs to "right" ones
-// p11 is set if root belongs to "left" ones
-// lgammal(x) is approximated by polynomial of
-// 19th degree from (x - root) argument
-.align 32
-_negRoots:
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_right_roots_polynomial_data),gp
- nop.f 0
- shl rTmpPtr2 = rXint, 7 // (i*16)*8
-}
-{ .mfi
- adds rRootsAddr = -288, rRootsBndAddr
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fRoot = [rRootsAddr] // FP representation of root
- nop.f 0
- shl rTmpPtr = rXint, 6 // (i*16)*4
-}
-{ .mfi
-(p11) adds rTmpPtr2 = 3536, rTmpPtr2
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- shladd rTmpPtr = rXint, 4, rTmpPtr // (i*16) + (i*16)*4
-}
-{ .mfi
- adds rTmpPtr3 = 32, rTmpPtr2
- nop.f 0
- nop.i 0
-}
-;;
-.pred.rel "mutex",p10,p11
-{ .mfi
- add rTmpPtr3 = rTmpPtr, rTmpPtr3
- nop.f 0
-(p10) cmp.eq p8, p9 = rXRnd, r0
-}
-{ .mfi
- // (i*16) + (i*16)*4 + (i*16)*8
- add rTmpPtr = rTmpPtr, rTmpPtr2
- nop.f 0
-(p11) cmp.eq p9, p8 = rXRnd, r0
-}
-;;
-{ .mfi
- add rTmpPtr2 = rPolDataPtr, rTmpPtr3
- nop.f 0
- nop.i 0
-}
-{ .mfi
- add rPolDataPtr = rPolDataPtr, rTmpPtr // begin + offsett
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA0, fA0L = [rPolDataPtr], 16 // A0
- nop.f 0
- adds rTmpPtr = 112, rTmpPtr2
-}
-{ .mfi
- ldfpd fA2, fA2L = [rTmpPtr2], 16 // A2
- nop.f 0
- cmp.eq p12, p13 = 4, rSgnGamSize
-}
-;;
-{ .mfi
- ldfpd fA1, fA1L = [rPolDataPtr], 16 // A1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fA3 = [rTmpPtr2], 128 // A4
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA12, fA13 = [rTmpPtr], 16 // A12, A13
- nop.f 0
- adds rTmpPtr3 = 64, rPolDataPtr
-}
-{ .mfi
- ldfpd fA16, fA17 = [rTmpPtr2], 16 // A16, A17
- nop.f 0
- adds rPolDataPtr = 32, rPolDataPtr
-}
-;;
-.pred.rel "mutex",p8,p9
-{ .mfi
- ldfpd fA14, fA15 = [rTmpPtr], 16 // A14, A15
- nop.f 0
- // sign of GAMMA(x) is negative
-(p8) adds rSgnGam = -1, r0
-}
-{ .mfi
- ldfpd fA18, fA19 = [rTmpPtr2], 16 // A18, A19
- nop.f 0
- // sign of GAMMA(x) is positive
-(p9) adds rSgnGam = 1, r0
-}
-;;
-{ .mfi
- ldfe fA4 = [rPolDataPtr], 16 // A4
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA6, fA7 = [rTmpPtr3], 16 // A6, A7
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA5 = [rPolDataPtr], 16 // A5
- // if x equals to (rounded) root exactly
- fcmp.eq.s1 p6, p0 = f8, fRoot
- nop.i 0
-}
-{ .mfi
- ldfpd fA8, fA9 = [rTmpPtr3], 16 // A8, A9
- fms.s1 FR_FracX = f8, f1, fRoot
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p12) st4 [rSgnGamAddr] = rSgnGam
- nop.f 0
- nop.i 0
-}
-{ .mfb
- // store signgam if size of variable is 8 bytes
-(p13) st8 [rSgnGamAddr] = rSgnGam
- // answer if x equals to (rounded) root exactly
-(p6) fadd.s0 f8 = fA0, fA0L
- // exit if x equals to (rounded) root exactly
-(p6) br.ret.spnt b0
-}
-;;
-{ .mmf
- ldfpd fA10, fA11 = [rTmpPtr3], 16 // A10, A11
- nop.m 0
- nop.f 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResH = fA2, FR_FracX, f0 // (A2*x)hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4L = FR_FracX, FR_FracX, f0 // x^2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, FR_FracX, fA16
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fA13 = fA13, FR_FracX, fA12
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA19, FR_FracX, fA18
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fA15 = fA15, FR_FracX, fA14
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fPol = fA7, FR_FracX, fA6
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fA9 = fA9, FR_FracX, fA8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fResL = fA2, FR_FracX, fResH // delta(A2*x)
- nop.i 0
-}
-{.mfi
- nop.m 0
- fadd.s1 fRes1H = fResH, fA1 // (A2*x + A1)hi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, FR_FracX, fA10
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fA5L = fA4L, fA4L, f0 // x^4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA19, fA4L, fA17
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fA15 = fA15, fA4L, fA13
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, FR_FracX, fA5
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fA3L = fA4L, FR_FracX, f0 // x^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // delta(A2*x) + A2L*x = (A2*x)lo
- fma.s1 fResL = fA2L, FR_FracX, fResL
- nop.i 0
-}
-{.mfi
- nop.m 0
- fsub.s1 fRes1L = fA1, fRes1H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fA4L, fA9
- nop.i 0
-}
-{.mfi
- nop.m 0
- fma.s1 fA19 = fA19, fA5L, fA15
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fPol = fPol, FR_FracX, fA4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fResL = fResL, fA1L // (A2*x)lo + A1
- nop.i 0
-}
-{.mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fResH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes2H = fRes1H, FR_FracX, f0 // ((A2*x + A1)*x)hi
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fA19 = fA19, fA5L, fA11
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fPol = fPol, FR_FracX, fA3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fResL // (A2*x + A1)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // delta((A2*x + A1)*x)
- fms.s1 fRes2L = fRes1H, FR_FracX, fRes2H
- nop.i 0
-}
-{.mfi
- nop.m 0
- fadd.s1 fRes3H = fRes2H, fA0 // ((A2*x + A1)*x + A0)hi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA19, fA5L, f0
- nop.i 0
-}
-
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes2L = fRes1L, FR_FracX, fRes2L // ((A2*x + A1)*x)lo
- nop.i 0
-}
-{.mfi
- nop.m 0
- fsub.s1 fRes3L = fRes2H, fRes3H
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fPol = fA19, FR_FracX, fPol
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fA0
- nop.i 0
-}
-{.mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fA0L // ((A2*x + A1)*x)lo + A0L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fRes2L // (((A2*x + A1)*x) + A0)lo
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fRes3L = fPol, fA3L, fRes3L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- // final result for arguments which are close to negative roots
- fma.s0 f8 = fRes3H, f1, fRes3L
- // exit here for arguments which are close to negative roots
- br.ret.sptk b0
-}
-;;
-
-// here if |x| < 0.5
-.align 32
-lgammal_0_half:
-{ .mfi
- ld4 GR_Z_1 = [rZ1offsett] // Load Z_1
- fma.s1 fA4L = f8, f8, f0 // x^2
- addl rPolDataPtr = @ltoff(lgammal_0_Half_data), gp
-}
-{ .mfi
- shladd GR_ad_tbl_1 = GR_Index1, 4, rTbl1Addr// Point to G_1
- nop.f 0
- addl rLnSinDataPtr = @ltoff(lgammal_lnsin_data), gp
-}
-;;
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- nop.f 0
- // Point to Constants_Z_2
- add GR_ad_z_2 = 0x140, GR_ad_z_1
-}
-{ .mfi
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_Q
- nop.f 0
- // Point to Constants_G_H_h2
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- // Point to Constants_G_H_h3
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1
-}
-{ .mfi
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
- nop.f 0
- sub GR_N = rExpX, rExpHalf, 1
-}
-;;
-{ .mfi
- ld8 rLnSinDataPtr = [rLnSinDataPtr]
- nop.f 0
- // Get bits 30-15 of X_0 * Z_1
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
-}
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- nop.f 0
- sub GR_N = r0, GR_N
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe FR_log2_lo = [GR_ad_q], 16 // Load log2_lo
- nop.f 0
- add rTmpPtr2 = 320, rPolDataPtr
-}
-{ .mfi
- add rTmpPtr = 32, rPolDataPtr
- nop.f 0
- // exponent of 0.25
- adds rExp2 = -1, rExpHalf
-}
-;;
-{ .mfi
- ldfpd fA3, fA3L = [rPolDataPtr], 16 // A3
- fma.s1 fA5L = fA4L, fA4L, f0 // x^4
- nop.i 0
-}
-{ .mfi
- ldfpd fA1, fA1L = [rTmpPtr], 16 // A1
- fms.s1 fB8 = f8, f8, fA4L // x^2 - <x^2>
- // set p6 if -0.5 < x <= -0.25
-(p15) cmp.eq.unc p6, p0 = rExpX, rExp2
-}
-;;
-{ .mfi
- ldfpd fA2, fA2L = [rPolDataPtr], 16 // A2
- nop.f 0
- // set p6 if -0.5 < x <= -0.40625
-(p6) cmp.le.unc p6, p0 = 10, GR_Index1
-}
-{ .mfi
- ldfe fA21 = [rTmpPtr2], -16 // A21
- // Put integer N into rightmost significand
- nop.f 0
- adds rTmpPtr = 240, rTmpPtr
-}
-;;
-{ .mfi
- setf.sig fFloatN = GR_N
- nop.f 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q], 16 // Load Q4
- nop.f 0
- adds rPolDataPtr = 304, rPolDataPtr
-}
-;;
-{ .mfi
- ldfe fA20 = [rTmpPtr2], -32 // A20
- nop.f 0
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
-}
-{ .mfi
- ldfe fA19 = [rTmpPtr], -32 // A19
- nop.f 0
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2// Point to G_2
-}
-;;
-{ .mfi
- ldfe fA17 = [rTmpPtr], -32 // A17
- nop.f 0
- adds rTmpPtr3 = 8, GR_ad_tbl_2
-}
-{ .mfb
- ldfe fA18 = [rTmpPtr2], -32 // A18
- nop.f 0
- // branch to special path for -0.5 < x <= 0.40625
-(p6) br.cond.spnt lgammal_near_neg_half
-}
-;;
-{ .mmf
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- ldfe fA15 = [rTmpPtr], -32 // A15
- fma.s1 fB20 = fA5L, fA5L, f0 // x^8
-}
-;;
-{ .mmf
- ldfe fA16 = [rTmpPtr2], -32 // A16
- ldfe fA13 = [rTmpPtr], -32 // A13
- fms.s1 fB16 = fA4L, fA4L, fA5L
-}
-;;
-{ .mmf
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2], 8 // Load G_2, H_2
- ldfd FR_h2 = [rTmpPtr3] // Load h_2
- fmerge.s fB10 = f8, fA5L // sign(x) * x^4
-}
-;;
-{ .mmi
- ldfe fA14 = [rTmpPtr2], -32 // A14
- ldfe fA11 = [rTmpPtr], -32 // A11
- // Get bits 30-15 of X_1 * Z_2
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe fA12 = [rTmpPtr2], -32 // A12
- fma.s1 fRes4H = fA3, fAbsX, f0
- adds rTmpPtr3 = 16, GR_ad_q
-}
-{ .mfi
- ldfe fA9 = [rTmpPtr], -32 // A9
- nop.f 0
- nop.i 0
-}
-;;
-{ .mmf
- ldfe fA10 = [rTmpPtr2], -32 // A10
- ldfe fA7 = [rTmpPtr], -32 // A7
- fma.s1 fB18 = fB20, fB20, f0 // x^16
-}
-;;
-{ .mmf
- ldfe fA8 = [rTmpPtr2], -32 // A8
- ldfe fA22 = [rPolDataPtr], 16 // A22
- fcvt.xf fFloatN = fFloatN
-}
-;;
-{ .mfi
- ldfe fA5 = [rTmpPtr], -32 // A5
- fma.s1 fA21 = fA21, fAbsX, fA20 // v16
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-{ .mfi
- ldfe fA6 = [rTmpPtr2], -32 // A6
- nop.f 0
- nop.i 0
-}
-;;
-{ .mmf
- // Point to G_3
- shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3
- ldfe fA4 = [rTmpPtr2], -32 // A4
- fma.s1 fA19 = fA19, fAbsX, fA18 // v13
-}
-;;
-.pred.rel "mutex",p14,p15
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- fms.s1 fRes4L = fA3, fAbsX, fRes4H
-(p14) adds rSgnGam = 1, r0
-}
-{ .mfi
- cmp.eq p6, p7 = 4, rSgnGamSize
- fadd.s1 fRes2H = fRes4H, fA2
-(p15) adds rSgnGam = -1, r0
-}
-;;
-
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fma.s1 fA17 = fA17, fAbsX, fA16 // v12
- nop.i 0
-}
-;;
-{ .mfi
- ldfe FR_Q3 = [GR_ad_q], 32 // Load Q3
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- ldfe FR_Q2 = [rTmpPtr3], 16 // Load Q2
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-}
-;;
-{ .mfi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- fma.s1 fA15 = fA15, fAbsX, fA14 // v8
- nop.i 0
-}
-{ .mfi
- adds rTmpPtr3 = 32, rLnSinDataPtr
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
- nop.i 0
-}
-;;
-{ .mmf
- ldfpd fLnSin2, fLnSin2L = [rLnSinDataPtr], 16
- ldfe fLnSin6 = [rTmpPtr3], 32
- fma.s1 fA13 = fA13, fAbsX, fA12 // v7
-
-}
-;;
-{ .mfi
- ldfe fLnSin4 = [rLnSinDataPtr], 32
- fma.s1 fRes4L = fA3L, fAbsX, fRes4L
- nop.i 0
-}
-{ .mfi
- ldfe fLnSin10 = [rTmpPtr3], 32
- fsub.s1 fRes2L = fA2, fRes2H
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fLnSin8 = [rLnSinDataPtr], 32
- fma.s1 fResH = fRes2H, fAbsX, f0
- nop.i 0
-}
-{ .mfi
- ldfe fLnSin14 = [rTmpPtr3], 32
- fma.s1 fA22 = fA22, fA4L, fA21 // v15
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fLnSin12 = [rLnSinDataPtr], 32
- fma.s1 fA9 = fA9, fAbsX, fA8 // v4
- nop.i 0
-}
-{ .mfi
- ldfd fLnSin18 = [rTmpPtr3], 16
- fma.s1 fA11 = fA11, fAbsX, fA10 // v5
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fLnSin16 = [rLnSinDataPtr], 24
- fma.s1 fA19 = fA19, fA4L, fA17 // v11
- nop.i 0
-}
-{ .mfi
- ldfd fLnSin22 = [rTmpPtr3], 16
- fma.s1 fPolL = fA7, fAbsX, fA6
- nop.i 0
-}
-;;
-{ .mfi
- ldfd fLnSin20 = [rLnSinDataPtr], 16
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- ldfd fLnSin26 = [rTmpPtr3], 16
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-}
-;;
-{ .mfi
- ldfd fLnSin24 = [rLnSinDataPtr], 16
- fadd.s1 fRes2L = fRes2L, fRes4H
- nop.i 0
-}
-{ .mfi
- ldfd fLnSin30 = [rTmpPtr3], 16
- fadd.s1 fA2L = fA2L, fRes4L
- nop.i 0
-}
-;;
-{ .mfi
- ldfd fLnSin28 = [rLnSinDataPtr], 16
- fms.s1 fResL = fRes2H, fAbsX, fResH
- nop.i 0
-}
-{ .mfi
- ldfd fLnSin34 = [rTmpPtr3], 8
- fadd.s1 fRes2H = fResH, fA1
- nop.i 0
-}
-;;
-{ .mfi
- ldfd fLnSin32 = [rLnSinDataPtr]
- fma.s1 fA11 = fA11, fA4L, fA9 // v3
- nop.i 0
-}
-{ .mfi
- ldfd fLnSin36 = [rTmpPtr3]
- fma.s1 fA15 = fA15, fA4L, fA13 // v6
- nop.i 0
-}
-;;
-
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s1 fA5 = fA5, fAbsX, fA4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G, fSignifX, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // High part of the log(|x|): Y_hi = N * log2_hi + H
- fms.s1 FR_log2_hi = fFloatN, FR_log2_hi, FR_H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fA3L = fRes2L, fA2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA22 = fA22, fA5L, fA19
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes2L = fA1, fRes2H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fRes3H = fRes2H, f8, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fA5L, fA11 // v2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin18 = fLnSin18, fA4L, fLnSin16
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // h = N * log2_lo + h
- fms.s1 FR_h = fFloatN, FR_log2_lo, FR_h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fPolL, fA4L, fA5
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = r * Q4 + Q3
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResL = fA3L, fAbsX, fResL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin30 = fLnSin30, fA4L, fLnSin28
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fResH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes3L = fRes2H, f8, fRes3H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1H = fRes3H, FR_log2_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fB20, fA22, fA15
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin34 = fLnSin34, fA4L, fLnSin32
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin14 = fLnSin14, fA4L, fLnSin12
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fA1L = fA1L, fResL
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fLnSin22 = fLnSin22, fA4L, fLnSin20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin26 = fLnSin26, fA4L, fLnSin24
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fsub.s1 fRes1L = FR_log2_hi, fRes1H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, fA5L, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin34 = fLnSin36, fA5L, fLnSin34
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin18 = fLnSin18, fA5L, fLnSin14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin6 = fLnSin6, fA4L, fLnSin4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin10 = fLnSin10, fA4L, fLnSin8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fA1L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB2 = fLnSin2, fA4L, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fRes3H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, fB10, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin26 = fLnSin26, fA5L, fLnSin22
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin34 = fLnSin34, fA5L, fLnSin30
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin10 = fLnSin10, fA5L, fLnSin6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin2L = fLnSin2L, fA4L, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes2L, f8, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Y_lo = poly_hi + poly_lo
- fsub.s1 FR_log2_lo = FR_poly_lo, FR_poly_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fB4 = fLnSin2, fA4L, fB2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2H = fRes1H, fPol
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin34 = fLnSin34, fB20, fLnSin26
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fLnSin18 = fLnSin18, fB20, fLnSin10
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fLnSin2L = fB8, fLnSin2, fLnSin2L
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_log2_lo = FR_log2_lo, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes2L = fRes1H, fRes2H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB6 = fLnSin34, fB18, fLnSin18
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fB4 = fLnSin2L, fB4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, FR_log2_lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fPol
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fB12 = fB6, fA5L, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fRes1L
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fms.s1 fB14 = fB6, fA5L, fB12
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fadd.s1 fLnSin30 = fB2, fB12
- // branch out if x is negative
-(p15) br.cond.spnt _O_Half_neg
-}
-;;
-{ .mfb
- nop.m 0
- // sign(x)*Pol(|x|) - log(|x|)
- fma.s0 f8 = fRes2H, f1, fRes2L
- // it's an answer already for positive x
- // exit if 0 < x < 0.5
- br.ret.sptk b0
-}
-;;
-
-// here if x is negative and |x| < 0.5
-.align 32
-_O_Half_neg:
-{ .mfi
- nop.m 0
- fma.s1 fB14 = fB16, fB6, fB14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fLnSin16 = fB2, fLnSin30
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fResH = fLnSin30, fRes2H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fLnSin16 = fLnSin16, fB12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fB4 = fB14, fB4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fLnSin16 = fB4, fLnSin16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fResL = fRes2H, fResH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fResL = fResL, fLnSin30
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fLnSin16 = fLnSin16, fRes2L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fResL = fResL, fLnSin16
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- // final result for -0.5 < x < 0
- fma.s0 f8 = fResH, f1, fResL
- // exit for -0.5 < x < 0
- br.ret.sptk b0
-}
-;;
-
-// here if x >= 8.0
-// there are two computational paths:
-// 1) For x >10.0 Stirling's formula is used
-// 2) Polynomial approximation for 8.0 <= x <= 10.0
-.align 32
-lgammal_big_positive:
-{ .mfi
- addl rPolDataPtr = @ltoff(lgammal_data), gp
- fmerge.se fSignifX = f1, f8
- // Get high 15 bits of significand
- extr.u GR_X_0 = rSignifX, 49, 15
-}
-{.mfi
- shladd rZ1offsett = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- fnma.s1 fInvX = f8, fRcpX, f1 // start of 1st NR iteration
- adds rSignif1andQ = 0x5, r0
-}
-;;
-{.mfi
- ld4 GR_Z_1 = [rZ1offsett] // Load Z_1
- nop.f 0
- shl rSignif1andQ = rSignif1andQ, 61 // significand of 1.25
-}
-{ .mfi
- cmp.eq p8, p0 = rExpX, rExp8 // p8 = 1 if 8.0 <= x < 16
- nop.f 0
- adds rSgnGam = 1, r0 // gamma is positive at this range
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_1 = GR_Index1, 4, rTbl1Addr// Point to G_1
- nop.f 0
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_Q
-}
-{ .mlx
- ld8 rPolDataPtr = [rPolDataPtr]
- movl rDelta = 0x3FF2000000000000
-}
-;;
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- nop.f 0
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
-}
-{ .mfi
- // Point to Constants_G_H_h2
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1
- nop.f 0
- // p8 = 1 if 8.0 <= x <= 10.0
-(p8) cmp.leu.unc p8, p0 = rSignifX, rSignif1andQ
-}
-;;
-{ .mfi
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
- nop.f 0
- // Get bits 30-15 of X_0 * Z_1
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
-}
-{ .mfb
-(p8) setf.d FR_MHalf = rDelta
- nop.f 0
-(p8) br.cond.spnt lgammal_8_10 // branch out if 8.0 <= x <= 10.0
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe fA1 = [rPolDataPtr], 16 // Load overflow threshold
- fma.s1 fRcpX = fInvX, fRcpX, fRcpX // end of 1st NR iteration
- // Point to Constants_G_H_h3
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1
-}
-{ .mlx
- nop.m 0
- movl rDelta = 0xBFE0000000000000 // -0.5 in DP
-}
-;;
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- nop.f 0
- sub GR_N = rExpX, rExpHalf, 1 // unbiased exponent of x
-}
-;;
-{ .mfi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
- nop.f 0
- nop.i 0
-}
-{ .mfi
- setf.d FR_MHalf = rDelta
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- // Put integer N into rightmost significand
- setf.sig fFloatN = GR_N
- nop.f 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q], 16 // Load Q4
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- nop.f 0
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2// Point to G_2
-}
-{ .mfi
- ldfe FR_Q3 = [GR_ad_q], 16 // Load Q3
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- fnma.s1 fInvX = f8, fRcpX, f1 // start of 2nd NR iteration
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2], 8 // Load G_2, H_2
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- nop.f 0
- // Get bits 30-15 of X_1 * Z_2
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15
-}
-;;
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mfi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- fcmp.gt.s1 p7,p0 = f8, fA1 // check if x > overflow threshold
- nop.i 0
-}
-;;
-{.mfi
- ldfpd fA0, fA0L = [rPolDataPtr], 16 // Load two parts of C
- fma.s1 fRcpX = fInvX, fRcpX, fRcpX // end of 2nd NR iteration
- nop.i 0
-}
-;;
-{ .mfb
- ldfpd fB2, fA1 = [rPolDataPtr], 16
- nop.f 0
-(p7) br.cond.spnt lgammal_overflow // branch if x > overflow threshold
-}
-;;
-{.mfi
- ldfe fB4 = [rPolDataPtr], 16
- fcvt.xf fFloatN = fFloatN
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-;;
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3// Point to G_3
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fB6 = [rPolDataPtr], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3], 8 // Load G_3, H_3
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fB8 = [rPolDataPtr], 16
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fInvX = f8, fRcpX, f1 // start of 3rd NR iteration
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fB10 = [rPolDataPtr], 16
- nop.f 0
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-;;
-{ .mfi
- ldfe fB12 = [rPolDataPtr], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fB14 = [rPolDataPtr], 16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe fB16 = [rPolDataPtr], 16
- // get double extended coefficients from two doubles
- // two doubles are needed in Stitling's formula for negative x
- fadd.s1 fB2 = fB2, fA1
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fB18 = [rPolDataPtr], 16
- fma.s1 fInvX = fInvX, fRcpX, fRcpX // end of 3rd NR iteration
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fB20 = [rPolDataPtr], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRcpX = fInvX, fInvX, f0 // 1/x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA0L = fB2, fInvX, fA0L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 FR_r = fSignifX, FR_G, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // High part of the log(x): Y_hi = N * log2_hi + H
- fma.s1 fRes2H = fFloatN, FR_log2_hi, FR_H
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // h = N * log2_lo + h
- fma.s1 FR_h = fFloatN, FR_log2_lo, FR_h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // High part of the log(x): Y_hi = N * log2_hi + H
- fma.s1 fRes1H = fFloatN, FR_log2_hi, FR_H
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fPol = fB18, fRcpX, fB16 // v9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA2L = fRcpX, fRcpX, f0 // v10
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fA3 = fB6, fRcpX, fB4 // v3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fB10, fRcpX, fB8 // v4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes2H =fRes2H, f1, f1 // log_Hi(x) -1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // poly_lo = r * Q4 + Q3
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes1H = fRes1H, FR_MHalf, f0 // -0.5*log_Hi(x)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fB14, fRcpX, fB12 // v7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA2L, fB20, fPol // v8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA2 = fA4, fA2L, fA3 // v2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4L = fA2L, fA2L, f0 // v5
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResH = fRes2H, f8, f0 // (x*(ln(x)-1))hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo * r + Q2
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // poly_hi = Q1 * rsq + r
- fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fRcpX, fInvX, f0 // 1/x^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA6 = fA8, fA2L, fA7 // v6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fResL = fRes2H, f8, fResH // d(x*(ln(x)-1))
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes3H = fResH, fRes1H // (x*(ln(x)-1) -0.5ln(x))hi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // poly_lo = poly_lo*r^3 + h
- fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPol = fA4L, fA6, fA2 // v1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // raise inexact exception
- fma.s0 FR_log2_lo = FR_log2_lo, FR_log2_lo, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4H = fRes3H, fA0 // (x*(ln(x)-1) -0.5ln(x))hi + Chi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes3L = fResH, fRes3H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Y_lo = poly_hi + poly_lo
- fadd.s1 fRes2L = FR_poly_hi, FR_poly_lo
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fA0L = fPol, fA11, fA0L // S(1/x) + Clo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fRes1H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes4L = fRes3H, fRes4H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResL = fRes2L, f8 , fResL // lo part of x*(ln(x)-1)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Clo + S(1/x) - 0.5*logLo(x)
- fma.s1 fA0L = fRes2L, FR_MHalf, fA0L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fA0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Clo + S(1/x) - 0.5*logLo(x) + (x*(ln(x)-1))lo
- fadd.s1 fA0L = fA0L, fResL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fA0L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- fma.s0 f8 = fRes4H, f1, fRes4L
- // exit for x > 10.0
- br.ret.sptk b0
-}
-;;
-// here if 8.0 <= x <= 10.0
-// Result = P15(y), where y = x/8.0 - 1.5
-.align 32
-lgammal_8_10:
-{ .mfi
- addl rPolDataPtr = @ltoff(lgammal_8_10_data), gp
- fms.s1 FR_FracX = fSignifX, f1, FR_MHalf // y = x/8.0 - 1.5
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-;;
-{ .mfi
- ld8 rLnSinDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- adds rZ1offsett = 32, rLnSinDataPtr
- nop.f 0
- nop.i 0
-}
-{ .mfi
- adds rLnSinDataPtr = 48, rLnSinDataPtr
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA1, fA1L = [rPolDataPtr], 16 // A1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fA2 = [rZ1offsett], 32 // A5
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA0, fA0L = [rPolDataPtr], 16 // A0
- fma.s1 FR_rsq = FR_FracX, FR_FracX, f0 // y^2
- nop.i 0
-}
-{ .mfi
- ldfe fA3 = [rLnSinDataPtr],32 // A5
- nop.f 0
- nop.i 0
-}
-;;
-{ .mmf
- ldfe fA4 = [rZ1offsett], 32 // A4
- ldfe fA5 = [rLnSinDataPtr], 32 // A5
- nop.f 0
-}
-;;
-{ .mmf
- ldfe fA6 = [rZ1offsett], 32 // A6
- ldfe fA7 = [rLnSinDataPtr], 32 // A7
- nop.f 0
-}
-;;
-{ .mmf
- ldfe fA8 = [rZ1offsett], 32 // A8
- ldfe fA9 = [rLnSinDataPtr], 32 // A9
- nop.f 0
-}
-;;
-{ .mmf
- ldfe fA10 = [rZ1offsett], 32 // A10
- ldfe fA11 = [rLnSinDataPtr], 32 // A11
- nop.f 0
-}
-;;
-{ .mmf
- ldfe fA12 = [rZ1offsett], 32 // A12
- ldfe fA13 = [rLnSinDataPtr], 32 // A13
- fma.s1 FR_Q4 = FR_rsq, FR_rsq, f0 // y^4
-}
-;;
-{ .mmf
- ldfe fA14 = [rZ1offsett], 32 // A14
- ldfe fA15 = [rLnSinDataPtr], 32 // A15
- nop.f 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes1H = FR_FracX, fA1, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA3, FR_FracX, fA2 // v4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, FR_FracX, fA4 // v5
- nop.i 0
-}
-;;
-{ .mfi
- // store sign of GAMMA(x) if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s1 fA3L = FR_Q4, FR_Q4, f0 // v9 = y^8
- nop.i 0
-}
-{ .mfi
- // store sign of GAMMA(x) if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s1 fA7 = fA7, FR_FracX, fA6 // v7
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, FR_FracX, fA8 // v8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = FR_FracX, fA1, fRes1H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, FR_FracX, fA10 // v12
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, FR_FracX, fA12 // v13
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fRes2H = fRes1H, f1, fA0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, FR_FracX, fA14 // v16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, FR_rsq, fA3 // v3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, FR_rsq, fA7 // v6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = FR_FracX, fA1L, fRes1L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes2L = fA0, f1, fRes2H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, FR_rsq, fA11 // v11
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, FR_Q4, fA5 // v2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fA0L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes2L = fRes2L, f1, fRes1H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, FR_Q4, fA13 // v10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes2L = fRes1L, f1, fRes2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fA3L, fA15, fA9
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 f8 = FR_rsq , fPol, fRes2H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, FR_rsq, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = fRes2H, f1, f8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fPol
- nop.i 0
-}
-;;
-{.mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fRes2L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- fma.s0 f8 = f8, f1, fRes1L
- // exit for 8.0 <= x <= 10.0
- br.ret.sptk b0
-}
-;;
-
-// here if 4.0 <=x < 8.0
-.align 32
-lgammal_4_8:
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_4_8_data),gp
- fms.s1 FR_FracX = fSignifX, f1, FR_MHalf
- adds rSgnGam = 1, r0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfb
- adds rTmpPtr = 160, rPolDataPtr
- nop.f 0
- // branch to special path which computes polynomial of 25th degree
- br.sptk lgamma_polynom25
-}
-;;
-
-// here if 2.25 <=x < 4.0
-.align 32
-lgammal_2Q_4:
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_2Q_4_data),gp
- fms.s1 FR_FracX = fSignifX, f1, FR_MHalf
- adds rSgnGam = 1, r0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfb
- adds rTmpPtr = 160, rPolDataPtr
- nop.f 0
- // branch to special path which computes polynomial of 25th degree
- br.sptk lgamma_polynom25
-}
-;;
-
-// here if 0.5 <= |x| < 0.75
-.align 32
-lgammal_half_3Q:
-.pred.rel "mutex", p14, p15
-{ .mfi
-(p14) addl rPolDataPtr= @ltoff(lgammal_half_3Q_data),gp
- // FR_FracX = x - 0.625 for positive x
-(p14) fms.s1 FR_FracX = f8, f1, FR_FracX
-(p14) adds rSgnGam = 1, r0
-}
-{ .mfi
-(p15) addl rPolDataPtr= @ltoff(lgammal_half_3Q_neg_data),gp
- // FR_FracX = x + 0.625 for negative x
-(p15) fma.s1 FR_FracX = f8, f1, FR_FracX
-(p15) adds rSgnGam = -1, r0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfb
- adds rTmpPtr = 160, rPolDataPtr
- nop.f 0
- // branch to special path which computes polynomial of 25th degree
- br.sptk lgamma_polynom25
-}
-;;
-// here if 1.3125 <= x < 1.5625
-.align 32
-lgammal_loc_min:
-{ .mfi
- adds rSgnGam = 1, r0
- nop.f 0
- nop.i 0
-}
-{ .mfb
- adds rTmpPtr = 160, rPolDataPtr
- fms.s1 FR_FracX = f8, f1, fA5L
- br.sptk lgamma_polynom25
-}
-;;
-// here if -2.605859375 <= x < -2.5
-// special polynomial approximation used since neither "near root"
-// approximation nor reflection formula give satisfactory accuracy on
-// this range
-.align 32
-_neg2andHalf:
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_neg2andHalf_data),gp
- fma.s1 FR_FracX = fB20, f1, f8 // 2.5 + x
- adds rSgnGam = -1, r0
-}
-;;
-{.mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfb
- adds rTmpPtr = 160, rPolDataPtr
- nop.f 0
- // branch to special path which computes polynomial of 25th degree
- br.sptk lgamma_polynom25
-}
-;;
-
-// here if -0.5 < x <= -0.40625
-.align 32
-lgammal_near_neg_half:
-{ .mmf
- addl rPolDataPtr= @ltoff(lgammal_near_neg_half_data),gp
- setf.exp FR_FracX = rExpHalf
- nop.f 0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- adds rSgnGam = -1, r0
-}
-;;
-{ .mfb
- adds rTmpPtr = 160, rPolDataPtr
- fma.s1 FR_FracX = FR_FracX, f1, f8
- // branch to special path which computes polynomial of 25th degree
- br.sptk lgamma_polynom25
-}
-;;
-
-// here if there an answer is P25(x)
-// rPolDataPtr, rTmpPtr point to coefficients
-// x is in FR_FracX register
-.align 32
-lgamma_polynom25:
-{ .mfi
- ldfpd fA3, fA0L = [rPolDataPtr], 16 // A3
- nop.f 0
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-{ .mfi
- ldfpd fA18, fA19 = [rTmpPtr], 16 // D7, D6
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA1, fA1L = [rPolDataPtr], 16 // A1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA16, fA17 = [rTmpPtr], 16 // D4, D5
- nop.f 0
-}
-;;
-{ .mfi
- ldfpd fA12, fA13 = [rPolDataPtr], 16 // D0, D1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA14, fA15 = [rTmpPtr], 16 // D2, D3
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA24, fA25 = [rPolDataPtr], 16 // C21, C20
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA22, fA23 = [rTmpPtr], 16 // C19, C18
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA2, fA2L = [rPolDataPtr], 16 // A2
- fma.s1 fA4L = FR_FracX, FR_FracX, f0 // x^2
- nop.i 0
-}
-{ .mfi
- ldfpd fA20, fA21 = [rTmpPtr], 16 // C17, C16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA11 = [rTmpPtr], 16 // E7
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA0, fA3L = [rPolDataPtr], 16 // A0
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfe fA10 = [rPolDataPtr], 16 // E6
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fA9 = [rTmpPtr], 16 // E5
- nop.f 0
- nop.i 0
-}
-;;
-{ .mmf
- ldfe fA8 = [rPolDataPtr], 16 // E4
- ldfe fA7 = [rTmpPtr], 16 // E3
- nop.f 0
-}
-;;
-{ .mmf
- ldfe fA6 = [rPolDataPtr], 16 // E2
- ldfe fA5 = [rTmpPtr], 16 // E1
- nop.f 0
-}
-;;
-{ .mfi
- ldfe fA4 = [rPolDataPtr], 16 // E0
- fma.s1 fA5L = fA4L, fA4L, f0 // x^4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fB2 = FR_FracX, FR_FracX, fA4L // x^2 - <x^2>
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s1 fRes4H = fA3, FR_FracX, f0 // (A3*x)hi
- nop.i 0
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s1 fA19 = fA19, FR_FracX, fA18 // D7*x + D6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResH = fA1, FR_FracX, f0 // (A1*x)hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB6 = fA1L, FR_FracX, fA0L // A1L*x + A0L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, FR_FracX, fA16 // D5*x + D4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, FR_FracX, fA14 // D3*x + D2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, FR_FracX, fA24 // C21*x + C20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, FR_FracX, fA12 // D1*x + D0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA23 = fA23, FR_FracX, fA22 // C19*x + C18
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA21 = fA21, FR_FracX, fA20 // C17*x + C16
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes4L = fA3, FR_FracX, fRes4H // delta((A3*x)hi)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes2H = fRes4H, fA2 // (A3*x + A2)hi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fResL = fA1, FR_FracX, fResH // d(A1*x)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes1H = fResH, fA0 // (A1*x + A0)hi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA19, fA4L, fA17 // Dhi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, FR_FracX, fA10 // E7*x + E6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // Doing this to raise inexact flag
- fma.s0 fA10 = fA0, fA0, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fA4L, fA13 // Dlo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (C21*x + C20)*x^2 + C19*x + C18
- fma.s1 fA25 = fA25, fA4L, fA23
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, FR_FracX, fA8 // E5*x + E4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, FR_FracX, fA6 // E3*x + E2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes4L = fA3L, FR_FracX, fRes4L // (A3*x)lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes2L = fA2, fRes2H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fResL = fResL, fB6 // (A1L*x + A0L) + d(A1*x)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes1L = fA0, fRes1H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, FR_FracX, fA4 // E1*x + E0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB8 = fA5L, fA5L, f0 // x^8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ((C21*x + C20)*x^2 + C19*x + C18)*x^2 + C17*x + C16
- fma.s1 fA25 = fA25, fA4L, fA21
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA19, fA5L, fA15 // D
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fA4L, fA9 // Ehi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fRes4H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fA2L // (A3*x)lo + A2L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes3H = fRes2H, fA4L, f0 // ((A3*x + A2)*x^2)hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fResH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes2H, fB2, f0 // (A3*x + A2)hi*d(x^2)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fA4L, fA5 // Elo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA25 = fA25, fB8, fA19 // C*x^8 + D
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fRes4L // (A3*x + A2)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fB4 = fRes2H, fA4L, fRes3H // d((A3*x + A2)*x^2))
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fResL // (A1*x + A0)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fB20 = fRes3H, fRes1H // Phi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fA5L, fA7 // E
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ( (A3*x + A2)lo*<x^2> + (A3*x + A2)hi*d(x^2))
- fma.s1 fRes3L = fRes2L, fA4L, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // d((A3*x + A2)*x^2)) + (A1*x + A0)lo
- fadd.s1 fRes1L = fRes1L, fB4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fB18 = fRes1H, fB20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fA25, fB8, fA11
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fB18 = fB18, fRes3H
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fRes4H = fPol, fA5L, fB20
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fPol, fA5L, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fB18 = fB18, fRes1L // Plo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 fRes4L = fB20, fRes4H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fB18 = fB18, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fB18
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- fma.s0 f8 = fRes4H, f1, fRes4L
- // P25(x) computed, exit here
- br.ret.sptk b0
-}
-;;
-
-
-// here if 0.75 <= x < 1.3125
-.align 32
-lgammal_03Q_1Q:
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_03Q_1Q_data),gp
- fma.s1 FR_FracX = fA5L, f1, f0 // x
- adds rSgnGam = 1, r0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB4 = fA5L, fA5L, f0 // x^2
- nop.i 0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfb
- adds rTmpPtr = 144, rPolDataPtr
- nop.f 0
- br.sptk lgamma_polynom24x
-}
-;;
-
-// here if 1.5625 <= x < 2.25
-.align 32
-lgammal_13Q_2Q:
-{ .mfi
- addl rPolDataPtr= @ltoff(lgammal_13Q_2Q_data),gp
- fma.s1 FR_FracX = fB4, f1, f0 // x
- adds rSgnGam = 1, r0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB4 = fB4, fB4, f0 // x^2
- nop.i 0
-}
-;;
-{ .mfi
- ld8 rPolDataPtr = [rPolDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfb
- adds rTmpPtr = 144, rPolDataPtr
- nop.f 0
- br.sptk lgamma_polynom24x
-}
-;;
-
-// here if result is Pol24(x)
-// x is in FR_FracX,
-// rPolDataPtr, rTmpPtr point to coefficients
-.align 32
-lgamma_polynom24x:
-{ .mfi
- ldfpd fA4, fA2L = [rPolDataPtr], 16
- nop.f 0
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-{ .mfi
- ldfpd fA23, fA24 = [rTmpPtr], 16 // C18, C19
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA3, fA1L = [rPolDataPtr], 16
- fma.s1 fA5L = fB4, fB4, f0 // x^4
- nop.i 0
-}
-{ .mfi
- ldfpd fA19, fA20 = [rTmpPtr], 16 // D6, D7
- fms.s1 fB2 = FR_FracX, FR_FracX, fB4 // x^2 - <x^2>
- nop.i 0
-}
-;;
-{ .mmf
- ldfpd fA15, fA16 = [rPolDataPtr], 16 // D2, D3
- ldfpd fA17, fA18 = [rTmpPtr], 16 // D4, D5
- nop.f 0
-}
-;;
-{ .mmf
- ldfpd fA13, fA14 = [rPolDataPtr], 16 // D0, D1
- ldfpd fA12, fA21 = [rTmpPtr], 16 // E7, C16
- nop.f 0
-}
-;;
-{ .mfi
- ldfe fA11 = [rPolDataPtr], 16 // E6
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fA10 = [rTmpPtr], 16 // E5
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA2, fA4L = [rPolDataPtr], 16
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA1, fA3L = [rTmpPtr], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA22, fA25 = [rPolDataPtr], 16 // C17, C20
- fma.s1 fA0 = fA5L, fA5L, f0 // x^8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA0L = fA5L, FR_FracX, f0 // x^5
- nop.i 0
-}
-;;
-{ .mmf
- ldfe fA9 = [rPolDataPtr], 16 // E4
- ldfe fA8 = [rTmpPtr], 16 // E3
- nop.f 0
-}
-;;
-{ .mmf
- ldfe fA7 = [rPolDataPtr], 16 // E2
- ldfe fA6 = [rTmpPtr], 16 // E1
- nop.f 0
-}
-;;
-{ .mfi
- ldfe fA5 = [rTmpPtr], 16 // E0
- fma.s1 fRes4H = fA4, fB4, f0 // A4*<x^2>
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fA24, FR_FracX, fA23 // C19*x + C18
- nop.i 0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s1 fRes1H = fA3, fB4, f0 // A3*<x^2>
- nop.i 0
-}
-{ .mfi
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s1 fA1L = fA3, fB2,fA1L // A3*d(x^2) + A1L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA20 = fA20, FR_FracX, fA19 // D7*x + D6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA18 = fA18, FR_FracX, fA17 // D5*x + D4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA16 = fA16, FR_FracX, fA15 // D3*x + D2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA14 = fA14, FR_FracX, fA13 // D1*x + D0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA2L = fA4, fB2,fA2L // A4*d(x^2) + A2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA12 = fA12, FR_FracX, fA11 // E7*x + E6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes2L = fA4, fB4, fRes4H // delta(A4*<x^2>)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes2H = fRes4H, fA2 // A4*<x^2> + A2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fms.s1 fRes3L = fA3, fB4, fRes1H // delta(A3*<x^2>)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 fRes3H = fRes1H, fA1 // A3*<x^2> + A1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA20 = fA20, fB4, fA18 // (D7*x + D6)*x^2 + D5*x + D4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA22 = fA22, FR_FracX, fA21 // C17*x + C16
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA16 = fA16, fB4, fA14 // (D3*x + D2)*x^2 + D1*x + D0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPol = fA25, fB4, fPol // C20*x^2 + C19*x + C18
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA2L = fA4L, fB4, fA2L // A4L*<x^2> + A4*d(x^2) + A2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA1L = fA3L, fB4, fA1L // A3L*<x^2> + A3*d(x^2) + A1L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes4L = fA2, fRes2H // d1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fResH = fRes2H, fB4, f0 // (A4*<x^2> + A2)*x^2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes1L = fA1, fRes3H // d1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB6 = fRes3H, FR_FracX, f0 // (A3*<x^2> + A1)*x
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA10 = fA10, FR_FracX, fA9 // E5*x + E4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA8, FR_FracX, fA7 // E3*x + E2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // (C20*x^2 + C19*x + C18)*x^2 + C17*x + C16
- fma.s1 fPol = fPol, fB4, fA22
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA6 = fA6, FR_FracX, fA5 // E1*x + E0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // A4L*<x^2> + A4*d(x^2) + A2L + delta(A4*<x^2>)
- fadd.s1 fRes2L = fA2L, fRes2L
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // A3L*<x^2> + A3*d(x^2) + A1L + delta(A3*<x^2>)
- fadd.s1 fRes3L = fA1L, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fRes4H // d2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fResL = fRes2H, fB4, fResH // d(A4*<x^2> + A2)*x^2)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes1L = fRes1L, fRes1H // d2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fB8 = fRes3H, FR_FracX, fB6 // d((A3*<x^2> + A1)*x)
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fB10 = fResH, fB6 // (A4*x^4 + .. + A1*x)hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA12 = fA12, fB4, fA10 // Ehi
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // ((D7*x + D6)*x^2 + D5*x + D4)*x^4 + (D3*x + D2)*x^2 + D1*x + D0
- fma.s1 fA20 = fA20, fA5L, fA16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA8, fB4, fA6 // Elo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes2L = fRes2L, fRes4L // (A4*<x^2> + A2)lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // d(A4*<x^2> + A2)*x^2) + A4*<x^2> + A2)*d(x^2)
- fma.s1 fResL = fRes2H, fB2, fResL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fRes1L // (A4*<x^2> + A2)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fB12 = fB6, fB10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, fA0, fA20 // PolC*x^8 + PolD
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolL = fA12, fA5L, fA8 // E
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fResL = fB4, fRes2L, fResL // ((A4*<x^2> + A2)*x^2)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes3L, FR_FracX, fB8 // ((A3*<x^2> + A1)*x)lo
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fB12 = fB12, fResH
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fPol = fPol, fA0, fPolL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fRes3L, fResL
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes2H = fPol, fA0L, fB10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes3L = fB12, fRes3L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fsub.s1 fRes4L = fB10, fRes2H
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes4L = fPol, fA0L, fRes4L
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fadd.s1 fRes4L = fRes4L, fRes3L
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- // final result for all paths for which the result is Pol24(x)
- fma.s0 f8 = fRes2H, f1, fRes4L
- // here is the exit for all paths for which the result is Pol24(x)
- br.ret.sptk b0
-}
-;;
-
-
-// here if x is natval, nan, +/-inf, +/-0, or denormal
-.align 32
-lgammal_spec:
-{ .mfi
- nop.m 0
- fclass.m p9, p0 = f8, 0xB // +/-denormals
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = f8, 0x1E1 // Test x for natval, nan, +inf
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fclass.m p7, p0 = f8, 0x7 // +/-0
-(p9) br.cond.sptk lgammal_denormal_input
-};;
-{ .mfb
- nop.m 0
- nop.f 0
- // branch out if if x is natval, nan, +inf
-(p6) br.cond.spnt lgammal_nan_pinf
-};;
-{ .mfb
- nop.m 0
- nop.f 0
-(p7) br.cond.spnt lgammal_singularity
-};;
-// if we are still here then x = -inf
-{ .mfi
- cmp.eq p6, p7 = 4, rSgnGamSize
- nop.f 0
- adds rSgnGam = 1, r0
-};;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- nop.f 0
- nop.i 0
-}
-{ .mfb
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s0 f8 = f8,f8,f0 // return +inf, no call to error support
- br.ret.spnt b0
-};;
-
-// here if x is NaN, NatVal or +INF
-.align 32
-lgammal_nan_pinf:
-{ .mfi
- cmp.eq p6, p7 = 4, rSgnGamSize
- nop.f 0
- adds rSgnGam = 1, r0
-}
-;;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- fma.s0 f8 = f8,f1,f8 // return x+x if x is natval, nan, +inf
- nop.i 0
-}
-{ .mfb
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- nop.f 0
- br.ret.sptk b0
-}
-;;
-
-// here if x denormal or unnormal
-.align 32
-lgammal_denormal_input:
-{ .mfi
- nop.m 0
- fma.s0 fResH = f1, f1, f8 // raise denormal exception
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnorm.s1 f8 = f8 // normalize input value
- nop.i 0
-}
-;;
-{ .mfi
- getf.sig rSignifX = f8
- fmerge.se fSignifX = f1, f8
- nop.i 0
-}
-{ .mfi
- getf.exp rSignExpX = f8
- fcvt.fx.s1 fXint = f8 // Convert arg to int (int repres. in FR)
- nop.i 0
-}
-;;
-{ .mfi
- getf.exp rSignExpX = f8
- fcmp.lt.s1 p15, p14 = f8, f0
- nop.i 0
-}
-;;
-{ .mfb
- and rExpX = rSignExpX, r17Ones
- fmerge.s fAbsX = f1, f8 // |x|
- br.cond.sptk _deno_back_to_main_path
-}
-;;
-
-
-// here if overflow (x > overflow_bound)
-.align 32
-lgammal_overflow:
-{ .mfi
- addl r8 = 0x1FFFE, r0
- nop.f 0
- cmp.eq p6, p7 = 4, rSgnGamSize
-}
-{ .mfi
- adds rSgnGam = 1, r0
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- setf.exp f9 = r8
- fmerge.s FR_X = f8,f8
- mov GR_Parameter_TAG = 102 // overflow
-};;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- nop.f 0
- nop.i 0
-}
-{ .mfb
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- fma.s0 FR_RESULT = f9,f9,f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
-};;
-
-// here if x is negative integer or +/-0 (SINGULARITY)
-.align 32
-lgammal_singularity:
-{ .mfi
- adds rSgnGam = 1, r0
- fclass.m p8,p0 = f8,0x6 // is x -0?
- mov GR_Parameter_TAG = 103 // negative
-}
-{ .mfi
- cmp.eq p6, p7 = 4, rSgnGamSize
- fma.s1 FR_X = f0,f0,f8
- nop.i 0
-};;
-{ .mfi
-(p8) sub rSgnGam = r0, rSgnGam
- nop.f 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- // store signgam if size of variable is 4 bytes
-(p6) st4 [rSgnGamAddr] = rSgnGam
- nop.f 0
- nop.i 0
-}
-{ .mfb
- // store signgam if size of variable is 8 bytes
-(p7) st8 [rSgnGamAddr] = rSgnGam
- frcpa.s0 FR_RESULT, p0 = f1, f0
- br.cond.sptk __libm_error_region
-};;
-
-GLOBAL_LIBM_END(__libm_lgammal)
-
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 999
- nop.i 999
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/libm_reduce.S b/sysdeps/ia64/fpu/libm_reduce.S
index 8bdf91d6de..1c7f4e1e88 100644
--- a/sysdeps/ia64/fpu/libm_reduce.S
+++ b/sysdeps/ia64/fpu/libm_reduce.S
@@ -1,10 +1,10 @@
.file "libm_reduce.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,310 +20,304 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
-// History:
-// 02/02/00 Initial Version
-// 05/13/02 Rescheduled for speed, changed interface to pass
-// parameters in fp registers
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double data storage
+// History: 02/02/00 Initial Version
//
-//*********************************************************************
-//*********************************************************************
+// *********************************************************************
+// *********************************************************************
//
// Function: __libm_pi_by_two_reduce(x) return r, c, and N where
// x = N * pi/4 + (r+c) , where |r+c| <= pi/4.
// This function is not designed to be used by the
// general user.
//
-//*********************************************************************
+// *********************************************************************
//
// Accuracy: Returns double-precision values
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
-// Floating-Point Registers:
-// f8 = Input x, return value r
-// f9 = return value c
-// f32-f70
+// Floating-Point Registers: f32-f70
//
// General Purpose Registers:
// r8 = return value N
+// r32 = Address of x
+// r33 = Address of where to place r and then c
// r34-r64
//
// Predicate Registers: p6-p14
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
-// No condions should be raised.
+// No condions should be raised.
//
-//*********************************************************************
+// *********************************************************************
//
// I. Introduction
// ===============
//
// For the forward trigonometric functions sin, cos, sincos, and
-// tan, the original algorithms for IA 64 handle arguments up to
+// tan, the original algorithms for IA 64 handle arguments up to
// 1 ulp less than 2^63 in magnitude. For double-extended arguments x,
-// |x| >= 2^63, this routine returns N and r_hi, r_lo where
-//
+// |x| >= 2^63, this routine returns CASE, N and r_hi, r_lo where
+//
// x is accurately approximated by
// 2*K*pi + N * pi/2 + r_hi + r_lo, |r_hi+r_lo| <= pi/4.
// CASE = 1 or 2.
// CASE is 1 unless |r_hi + r_lo| < 2^(-33).
-//
+//
// The exact value of K is not determined, but that information is
// not required in trigonometric function computations.
-//
-// We first assume the argument x in question satisfies x >= 2^(63).
+//
+// We first assume the argument x in question satisfies x >= 2^(63).
// In particular, it is positive. Negative x can be handled by symmetry:
-//
+//
// -x is accurately approximated by
// -2*K*pi + (-N) * pi/2 - (r_hi + r_lo), |r_hi+r_lo| <= pi/4.
-//
+//
// The idea of the reduction is that
-//
-// x * 2/pi = N_big + N + f, |f| <= 1/2
-//
+//
+// x * 2/pi = N_big + N + f, |f| <= 1/2
+//
// Moreover, for double extended x, |f| >= 2^(-75). (This is an
// non-obvious fact found by enumeration using a special algorithm
-// involving continued fraction.) The algorithm described below
+// involving continued fraction.) The algorithm described below
// calculates N and an accurate approximation of f.
-//
-// Roughly speaking, an appropriate 256-bit (4 X 64) portion of
+//
+// Roughly speaking, an appropriate 256-bit (4 X 64) portion of
// 2/pi is multiplied with x to give the desired information.
-//
+//
// II. Representation of 2/PI
// ==========================
-//
+//
// The value of 2/pi in binary fixed-point is
-//
+//
// .101000101111100110......
-//
+//
// We store 2/pi in a table, starting at the position corresponding
-// to bit position 63
-//
+// to bit position 63
+//
// bit position 63 62 ... 0 -1 -2 -3 -4 -5 -6 -7 .... -16576
-//
-// 0 0 ... 0 . 1 0 1 0 1 0 1 .... X
-//
+//
+// 0 0 ... 0 . 1 0 1 0 1 0 1 .... X
+//
// ^
-// |__ implied binary pt
-//
+// |__ implied binary pt
+//
// III. Algorithm
// ==============
-//
+//
// This describes the algorithm in the most natural way using
-// unsigned interger multiplication. The implementation section
+// unsigned interger multiplication. The implementation section
// describes how the integer arithmetic is simulated.
-//
+//
// STEP 0. Initialization
// ----------------------
-//
-// Let the input argument x be
-//
+//
+// Let the input argument x be
+//
// x = 2^m * ( 1. b_1 b_2 b_3 ... b_63 ), 63 <= m <= 16383.
-//
-// The first crucial step is to fetch four 64-bit portions of 2/pi.
+//
+// The first crucial step is to fetch four 64-bit portions of 2/pi.
// To fulfill this goal, we calculate the bit position L of the
// beginning of these 256-bit quantity by
-//
+//
// L := 62 - m.
-//
-// Note that -16321 <= L <= -1 because 63 <= m <= 16383; and that
+//
+// Note that -16321 <= L <= -1 because 63 <= m <= 16383; and that
// the storage of 2/pi is adequate.
-//
+//
// Fetch P_1, P_2, P_3, P_4 beginning at bit position L thus:
-//
+//
// bit position L L-1 L-2 ... L-63
-//
+//
// P_1 = b b b ... b
-//
+//
// each b can be 0 or 1. Also, let P_0 be the two bits correspoding to
// bit positions L+2 and L+1. So, when each of the P_j is interpreted
// with appropriate scaling, we have
//
// 2/pi = P_big + P_0 + (P_1 + P_2 + P_3 + P_4) + P_small
-//
+//
// Note that P_big and P_small can be ignored. The reasons are as follow.
// First, consider P_big. If P_big = 0, we can certainly ignore it.
-// Otherwise, P_big >= 2^(L+3). Now,
-//
+// Otherwise, P_big >= 2^(L+3). Now,
+//
// P_big * ulp(x) >= 2^(L+3) * 2^(m-63)
-// >= 2^(65-m + m-63 )
-// >= 2^2
-//
+// >= 2^(65-m + m-63 )
+// >= 2^2
+//
// Thus, P_big * x is an integer of the form 4*K. So
-//
-// x = 4*K * (pi/2) + x*(P_0 + P_1 + P_2 + P_3 + P_4)*(pi/2)
+//
+// x = 4*K * (pi/2) + x*(P_0 + P_1 + P_2 + P_3 + P_4)*(pi/2)
// + x*P_small*(pi/2).
-//
+//
// Hence, P_big*x corresponds to information that can be ignored for
// trigonometic function evaluation.
-//
+//
// Next, we must estimate the effect of ignoring P_small. The absolute
// error made by ignoring P_small is bounded by
-//
+//
// |P_small * x| <= ulp(P_4) * x
-// <= 2^(L-255) * 2^(m+1)
-// <= 2^(62-m-255 + m + 1)
-// <= 2^(-192)
-//
-// Since for double-extended precision, x * 2/pi = integer + f,
+// <= 2^(L-255) * 2^(m+1)
+// <= 2^(62-m-255 + m + 1)
+// <= 2^(-192)
+//
+// Since for double-extended precision, x * 2/pi = integer + f,
// 0.5 >= |f| >= 2^(-75), the relative error introduced by ignoring
// P_small is bounded by 2^(-192+75) <= 2^(-117), which is acceptable.
-//
+//
// Further note that if x is split into x_hi + x_lo where x_lo is the
// two bits corresponding to bit positions 2^(m-62) and 2^(m-63); then
-//
-// P_0 * x_hi
-//
+//
+// P_0 * x_hi
+//
// is also an integer of the form 4*K; and thus can also be ignored.
// Let M := P_0 * x_lo which is a small integer. The main part of the
// calculation is really the multiplication of x with the four pieces
// P_1, P_2, P_3, and P_4.
-//
+//
// Unless the reduced argument is extremely small in magnitude, it
// suffices to carry out the multiplication of x with P_1, P_2, and
-// P_3. x*P_4 will be carried out and added on as a correction only
+// P_3. x*P_4 will be carried out and added on as a correction only
// when it is found to be needed. Note also that x*P_4 need not be
// computed exactly. A straightforward multiplication suffices since
// the rounding error thus produced would be bounded by 2^(-3*64),
// that is 2^(-192) which is small enough as the reduced argument
// is bounded from below by 2^(-75).
-//
+//
// Now that we have four 64-bit data representing 2/pi and a
// 64-bit x. We first need to calculate a highly accurate product
// of x and P_1, P_2, P_3. This is best understood as integer
// multiplication.
-//
-//
+//
+//
// STEP 1. Multiplication
// ----------------------
-//
-//
+//
+//
// --------- --------- ---------
-// | P_1 | | P_2 | | P_3 |
-// --------- --------- ---------
-//
-// ---------
-// X | X |
+// | P_1 | | P_2 | | P_3 |
+// --------- --------- ---------
+//
// ---------
+// X | X |
+// ---------
// ----------------------------------------------------
//
// --------- ---------
-// | A_hi | | A_lo |
-// --------- ---------
+// | A_hi | | A_lo |
+// --------- ---------
//
//
// --------- ---------
-// | B_hi | | B_lo |
-// --------- ---------
+// | B_hi | | B_lo |
+// --------- ---------
//
//
-// --------- ---------
-// | C_hi | | C_lo |
-// --------- ---------
+// --------- ---------
+// | C_hi | | C_lo |
+// --------- ---------
//
// ====================================================
// --------- --------- --------- ---------
-// | S_0 | | S_1 | | S_2 | | S_3 |
-// --------- --------- --------- ---------
+// | S_0 | | S_1 | | S_2 | | S_3 |
+// --------- --------- --------- ---------
//
//
//
// STEP 2. Get N and f
// -------------------
-//
+//
// Conceptually, after the individual pieces S_0, S_1, ..., are obtained,
// we have to sum them and obtain an integer part, N, and a fraction, f.
// Here, |f| <= 1/2, and N is an integer. Note also that N need only to
// be known to module 2^k, k >= 2. In the case when |f| is small enough,
// we would need to add in the value x*P_4.
-//
-//
+//
+//
// STEP 3. Get reduced argument
// ----------------------------
-//
+//
// The value f is not yet the reduced argument that we seek. The
// equation
-//
-// x * 2/pi = 4K + N + f
-//
+//
+// x * 2/pi = 4K + N + f
+//
// says that
-//
+//
// x = 2*K*pi + N * pi/2 + f * (pi/2).
-//
+//
// Thus, the reduced argument is given by
-//
-// reduced argument = f * pi/2.
-//
+//
+// reduced argument = f * pi/2.
+//
// This multiplication must be performed to extra precision.
-//
+//
// IV. Implementation
// ==================
-//
+//
// Step 0. Initialization
// ----------------------
-//
+//
// Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
-//
+//
// In memory, 2/pi is stored contigously as
-//
+//
// 0x00000000 0x00000000 0xA2F....
// ^
// |__ implied binary bit
-//
+//
// Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m. Thus
// -1 <= L <= -16321. We fetch from memory 5 integer pieces of data.
-//
+//
// P_0 is the two bits corresponding to bit positions L+2 and L+1
// P_1 is the 64-bit starting at bit position L
// P_2 is the 64-bit starting at bit position L-64
// P_3 is the 64-bit starting at bit position L-128
// P_4 is the 64-bit starting at bit position L-192
-//
+//
// For example, if m = 63, P_0 would be 0 and P_1 would look like
// 0xA2F...
-//
+//
// If m = 65, P_0 would be the two msb of 0xA, thus, P_0 is 10 in binary.
-// P_1 in binary would be 1 0 0 0 1 0 1 1 1 1 ....
-//
+// P_1 in binary would be 1 0 0 0 1 0 1 1 1 1 ....
+//
// Step 1. Multiplication
// ----------------------
-//
+//
// At this point, P_1, P_2, P_3, P_4 are integers. They are
// supposed to be interpreted as
-//
+//
// 2^(L-63) * P_1;
// 2^(L-63-64) * P_2;
// 2^(L-63-128) * P_3;
// 2^(L-63-192) * P_4;
-//
+//
// Since each of them need to be multiplied to x, we would scale
// both x and the P_j's by some convenient factors: scale each
// of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
-//
+//
// p_1 := fcvt.xf ( P_1 )
// p_2 := fcvt.xf ( P_2 ) * 2^(-64)
// p_3 := fcvt.xf ( P_3 ) * 2^(-128)
@@ -331,30 +325,30 @@
// x := replace exponent of x by -1
// because 2^m * 1.xxxx...xxx * 2^(L-63)
// is 2^(-1) * 1.xxxx...xxx
-//
+//
// We are now faced with the task of computing the following
-//
+//
// --------- --------- ---------
-// | P_1 | | P_2 | | P_3 |
-// --------- --------- ---------
-//
+// | P_1 | | P_2 | | P_3 |
+// --------- --------- ---------
+//
// ---------
-// X | X |
-// ---------
+// X | X |
+// ---------
// ----------------------------------------------------
-//
+//
// --------- ---------
-// | A_hi | | A_lo |
-// --------- ---------
-//
+// | A_hi | | A_lo |
+// --------- ---------
+//
// --------- ---------
-// | B_hi | | B_lo |
-// --------- ---------
-//
-// --------- ---------
-// | C_hi | | C_lo |
-// --------- ---------
-//
+// | B_hi | | B_lo |
+// --------- ---------
+//
+// --------- ---------
+// | C_hi | | C_lo |
+// --------- ---------
+//
// ====================================================
// ----------- --------- --------- ---------
// | S_0 | | S_1 | | S_2 | | S_3 |
@@ -363,108 +357,108 @@
// | |___ binary point
// |
// |___ possibly one more bit
-//
+//
// Let FPSR3 be set to round towards zero with widest precision
-// and exponent range. Unless an explicit FPSR is given,
+// and exponent range. Unless an explicit FPSR is given,
// round-to-nearest with widest precision and exponent range is
// used.
-//
+//
// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_C := 2^(-65).
-//
+//
// Tmp_C := fmpy.fpsr3( x, p_1 );
// If Tmp_C >= sigma_C then
// C_hi := Tmp_C;
// C_lo := x*p_1 - C_hi ...fma, exact
// Else
// C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
-// ...subtraction is exact, regardless
-// ...of rounding direction
+// ...subtraction is exact, regardless
+// ...of rounding direction
// C_lo := x*p_1 - C_hi ...fma, exact
// End If
-//
+//
// Tmp_B := fmpy.fpsr3( x, p_2 );
// If Tmp_B >= sigma_B then
// B_hi := Tmp_B;
// B_lo := x*p_2 - B_hi ...fma, exact
// Else
// B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
-// ...subtraction is exact, regardless
-// ...of rounding direction
+// ...subtraction is exact, regardless
+// ...of rounding direction
// B_lo := x*p_2 - B_hi ...fma, exact
// End If
-//
+//
// Tmp_A := fmpy.fpsr3( x, p_3 );
// If Tmp_A >= sigma_A then
// A_hi := Tmp_A;
// A_lo := x*p_3 - A_hi ...fma, exact
// Else
// A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
-// ...subtraction is exact, regardless
-// ...of rounding direction
+// ...subtraction is exact, regardless
+// ...of rounding direction
// A_lo := x*p_3 - A_hi ...fma, exact
// End If
-//
+//
// ...Note that C_hi is of integer value. We need only the
-// ...last few bits. Thus we can ensure C_hi is never a big
+// ...last few bits. Thus we can ensure C_hi is never a big
// ...integer, freeing us from overflow worry.
-//
+//
// Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
// ...Tmp_C is the upper portion of C_hi
// C_hi := C_hi - Tmp_C
// ...0 <= C_hi < 2^7
-//
+//
// Step 2. Get N and f
// -------------------
-//
-// At this point, we have all the components to obtain
+//
+// At this point, we have all the components to obtain
// S_0, S_1, S_2, S_3 and thus N and f. We start by adding
// C_lo and B_hi. This sum together with C_hi gives a good
-// estimation of N and f.
-//
+// estimation of N and f.
+//
// A := fadd.fpsr3( B_hi, C_lo )
// B := max( B_hi, C_lo )
// b := min( B_hi, C_lo )
-//
-// a := (B - A) + b ...exact. Note that a is either 0
-// ...or 2^(-64).
-//
+//
+// a := (B - A) + b ...exact. Note that a is either 0
+// ...or 2^(-64).
+//
// N := round_to_nearest_integer_value( A );
-// f := A - N; ...exact because lsb(A) >= 2^(-64)
-// ...and |f| <= 1/2.
-//
-// f := f + a ...exact because a is 0 or 2^(-64);
-// ...the msb of the sum is <= 1/2
-// ...lsb >= 2^(-64).
-//
+// f := A - N; ...exact because lsb(A) >= 2^(-64)
+// ...and |f| <= 1/2.
+//
+// f := f + a ...exact because a is 0 or 2^(-64);
+// ...the msb of the sum is <= 1/2
+// ...lsb >= 2^(-64).
+//
// N := convert to integer format( C_hi + N );
// M := P_0 * x_lo;
// N := N + M;
-//
+//
// If sgn_x == 1 (that is original x was negative)
// N := 2^10 - N
// ...this maintains N to be non-negative, but still
// ...equivalent to the (negated N) mod 4.
// End If
-//
+//
// If |f| >= 2^(-33)
-//
+//
// ...Case 1
// CASE := 1
// g := A_hi + B_lo;
// s_hi := f + g;
// s_lo := (f - s_hi) + g;
-//
+//
// Else
-//
+//
// ...Case 2
// CASE := 2
// A := fadd.fpsr3( A_hi, B_lo )
// B := max( A_hi, B_lo )
// b := min( A_hi, B_lo )
-//
-// a := (B - A) + b ...exact. Note that a is either 0
-// ...or 2^(-128).
-//
+//
+// a := (B - A) + b ...exact. Note that a is either 0
+// ...or 2^(-128).
+//
// f_hi := A + f;
// f_lo := (f - f_hi) + A;
// ...this is exact.
@@ -474,9 +468,9 @@
// ...If f = 2^(-64), f-f_hi involves cancellation and is
// ...exact. If f = -2^(-64), then A + f is exact. Hence
// ...f-f_hi is -A exactly, giving f_lo = 0.
-//
+//
// f_lo := f_lo + a;
-//
+//
// If |f| >= 2^(-50) then
// s_hi := f_hi;
// s_lo := f_lo;
@@ -485,111 +479,117 @@
// s_hi := f_hi + f_lo
// s_lo := (f_hi - s_hi) + f_lo
// End If
-//
+//
// End If
-//
+//
// Step 3. Get reduced argument
// ----------------------------
-//
+//
// If sgn_x == 0 (that is original x is positive)
-//
+//
// D_hi := Pi_by_2_hi
// D_lo := Pi_by_2_lo
// ...load from table
-//
+//
// Else
-//
+//
// D_hi := neg_Pi_by_2_hi
// D_lo := neg_Pi_by_2_lo
// ...load from table
// End If
-//
+//
// r_hi := s_hi*D_hi
-// r_lo := s_hi*D_hi - r_hi ...fma
+// r_lo := s_hi*D_hi - r_hi ...fma
// r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
-//
-// Return N, r_hi, r_lo
-//
-FR_input_X = f8
-FR_r_hi = f8
-FR_r_lo = f9
-
-FR_X = f32
-FR_N = f33
-FR_p_1 = f34
-FR_TWOM33 = f35
-FR_TWOM50 = f36
-FR_g = f37
-FR_p_2 = f38
-FR_f = f39
-FR_s_lo = f40
-FR_p_3 = f41
-FR_f_abs = f42
-FR_D_lo = f43
-FR_p_4 = f44
-FR_D_hi = f45
-FR_Tmp2_C = f46
-FR_s_hi = f47
-FR_sigma_A = f48
-FR_A = f49
-FR_sigma_B = f50
-FR_B = f51
-FR_sigma_C = f52
-FR_b = f53
-FR_ScaleP2 = f54
-FR_ScaleP3 = f55
-FR_ScaleP4 = f56
-FR_Tmp_A = f57
-FR_Tmp_B = f58
-FR_Tmp_C = f59
-FR_A_hi = f60
-FR_f_hi = f61
-FR_RSHF = f62
-FR_A_lo = f63
-FR_B_hi = f64
-FR_a = f65
-FR_B_lo = f66
+//
+// Return CASE, N, r_hi, r_lo
+//
+
+#include "libm_support.h"
+
+FR_X = f32
+FR_N = f33
+FR_p_1 = f34
+FR_TWOM33 = f35
+FR_TWOM50 = f36
+FR_g = f37
+FR_p_2 = f38
+FR_f = f39
+FR_s_lo = f40
+FR_p_3 = f41
+FR_f_abs = f42
+FR_D_lo = f43
+FR_p_4 = f44
+FR_D_hi = f45
+FR_Tmp2_C = f46
+FR_s_hi = f47
+FR_sigma_A = f48
+FR_A = f49
+FR_sigma_B = f50
+FR_B = f51
+FR_sigma_C = f52
+FR_b = f53
+FR_ScaleP2 = f54
+FR_ScaleP3 = f55
+FR_ScaleP4 = f56
+FR_Tmp_A = f57
+FR_Tmp_B = f58
+FR_Tmp_C = f59
+FR_A_hi = f60
+FR_f_hi = f61
+FR_r_hi = f62
+FR_A_lo = f63
+FR_B_hi = f64
+FR_a = f65
+FR_B_lo = f66
FR_f_lo = f67
-FR_N_fix = f68
-FR_C_hi = f69
-FR_C_lo = f70
+FR_r_lo = f68
+FR_C_hi = f69
+FR_C_lo = f70
GR_N = r8
-GR_Exp_x = r36
-GR_Temp = r37
-GR_BIASL63 = r38
+GR_Address_of_Input = r32
+GR_Address_of_Outputs = r33
+GR_Exp_x = r36
+GR_Temp = r37
+GR_BIASL63 = r38
GR_CASE = r39
-GR_x_lo = r40
-GR_sgn_x = r41
+GR_x_lo = r40
+GR_sgn_x = r41
GR_M = r42
GR_BASE = r43
GR_LENGTH1 = r44
GR_LENGTH2 = r45
GR_ASUB = r46
GR_P_0 = r47
-GR_P_1 = r48
-GR_P_2 = r49
-GR_P_3 = r50
-GR_P_4 = r51
+GR_P_1 = r48
+GR_P_2 = r49
+GR_P_3 = r50
+GR_P_4 = r51
GR_START = r52
GR_SEGMENT = r53
GR_A = r54
-GR_B = r55
+GR_B = r55
GR_C = r56
GR_D = r57
GR_E = r58
-GR_TEMP1 = r59
-GR_TEMP2 = r60
-GR_TEMP3 = r61
-GR_TEMP4 = r62
+GR_TEMP1 = r59
+GR_TEMP2 = r60
+GR_TEMP3 = r61
+GR_TEMP4 = r62
GR_TEMP5 = r63
GR_TEMP6 = r64
-GR_rshf = r64
-RODATA
.align 64
-LOCAL_OBJECT_START(Constants_Bits_of_2_by_pi)
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+Constants_Bits_of_2_by_pi:
+ASM_TYPE_DIRECTIVE(Constants_Bits_of_2_by_pi,@object)
data8 0x0000000000000000,0xA2F9836E4E441529
data8 0xFC2757D1F534DDC0,0xDB6295993C439041
data8 0xFE5163ABDEBBC561,0xB7246E3A424DD2E0
@@ -721,33 +721,34 @@ data8 0xB5D6DF8261DD9602,0x36169F3AC4A1A283
data8 0x6DED727A8D39A9B8,0x825C326B5B2746ED
data8 0x34007700D255F4FC,0x4D59018071E0E13F
data8 0x89B295F364A8F1AE,0xA74B38FC4CEAB2BB
-LOCAL_OBJECT_END(Constants_Bits_of_2_by_pi)
+ASM_SIZE_DIRECTIVE(Constants_Bits_of_2_by_pi)
-LOCAL_OBJECT_START(Constants_Bits_of_pi_by_2)
-data8 0xC90FDAA22168C234,0x00003FFF
-data8 0xC4C6628B80DC1CD1,0x00003FBF
-LOCAL_OBJECT_END(Constants_Bits_of_pi_by_2)
+Constants_Bits_of_pi_by_2:
+ASM_TYPE_DIRECTIVE(Constants_Bits_of_pi_by_2,@object)
+data4 0x2168C234,0xC90FDAA2,0x00003FFF,0x00000000
+data4 0x80DC1CD1,0xC4C6628B,0x00003FBF,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Bits_of_pi_by_2)
.section .text
-.global __libm_pi_by_2_reduce#
.proc __libm_pi_by_2_reduce#
-.align 32
+.global __libm_pi_by_2_reduce#
+.align 64
-__libm_pi_by_2_reduce:
+__libm_pi_by_2_reduce:
-// X is in f8
-// Place the two-piece result r (r_hi) in f8 and c (r_lo) in f9
-// N is returned in r8
+// X is at the address in Address_of_Input
+// Place the two-piece result at the address in Address_of_Outputs
+// r followed by c
+// N is returned
-{ .mfi
- alloc r34 = ar.pfs,2,34,0,0
- fsetc.s3 0x00,0x7F // Set sf3 to round to zero, 82-bit prec, td, ftz
- nop.i 999
+{ .mmf
+alloc r34 = ar.pfs,2,34,0,0
+(p0) ldfe FR_X = [GR_Address_of_Input]
+(p0) fsetc.s3 0x00,0x7F ;;
}
-{ .mfi
- addl GR_BASE = @ltoff(Constants_Bits_of_2_by_pi#), gp
- nop.f 999
- mov GR_BIASL63 = 0x1003E
+{ .mlx
+ nop.m 999
+(p0) movl GR_BIASL63 = 0x1003E
}
;;
@@ -764,61 +765,73 @@ __libm_pi_by_2_reduce:
// Address_BASE = shladd(SEGMENT,3) + BASE
+
{ .mmi
- getf.exp GR_Exp_x = FR_input_X
- ld8 GR_BASE = [GR_BASE]
- mov GR_TEMP5 = 0x0FFFE
+ nop.m 999
+(p0) addl GR_BASE = @ltoff(Constants_Bits_of_2_by_pi#), gp
+ nop.i 999
}
;;
-// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_A := 2^(-65).
{ .mmi
- getf.sig GR_x_lo = FR_input_X
- mov GR_TEMP6 = 0x0FFBE
+ ld8 GR_BASE = [GR_BASE]
+ nop.m 999
nop.i 999
}
;;
-// Special Code for testing DE arguments
-// movl GR_BIASL63 = 0x0000000000013FFE
-// movl GR_x_lo = 0xFFFFFFFFFFFFFFFF
-// setf.exp FR_X = GR_BIASL63
-// setf.sig FR_ScaleP3 = GR_x_lo
-// fmerge.se FR_X = FR_X,FR_ScaleP3
+
+{ .mlx
+ nop.m 999
+(p0) movl GR_TEMP5 = 0x000000000000FFFE
+}
+{ .mmi
+ nop.m 999 ;;
+(p0) setf.exp FR_sigma_B = GR_TEMP5
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_TEMP6 = 0x000000000000FFBE ;;
+}
+// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_A := 2^(-65).
+{ .mfi
+(p0) setf.exp FR_sigma_A = GR_TEMP6
+ nop.f 999
+ nop.i 999 ;;
+}
+// Special Code for testing DE arguments
+// (p0) movl GR_BIASL63 = 0x0000000000013FFE
+// (p0) movl GR_x_lo = 0xFFFFFFFFFFFFFFFF
+// (p0) setf.exp FR_X = GR_BIASL63
+// (p0) setf.sig FR_ScaleP3 = GR_x_lo
+// (p0) fmerge.se FR_X = FR_X,FR_ScaleP3
// Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
// 2/pi is stored contigously as
// 0x00000000 0x00000000.0xA2F....
// M = EXP - BIAS ( M >= 63)
// Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m.
// Thus -1 <= L <= -16321.
-{ .mmi
- setf.exp FR_sigma_B = GR_TEMP5
- setf.exp FR_sigma_A = GR_TEMP6
- extr.u GR_M = GR_Exp_x,0,17
+{ .mmf
+(p0) getf.exp GR_Exp_x = FR_X
+(p0) getf.sig GR_x_lo = FR_X
+(p0) fabs FR_X = FR_X ;;
}
-;;
-
{ .mii
- and GR_x_lo = 0x03,GR_x_lo
- sub GR_START = GR_M,GR_BIASL63
- add GR_BASE = 8,GR_BASE // To effectively add 1 to SEGMENT
+(p0) and GR_x_lo = 0x03,GR_x_lo
+(p0) extr.u GR_M = GR_Exp_x,0,17 ;;
+(p0) sub GR_START = GR_M,GR_BIASL63
}
-;;
-
-{ .mii
- and GR_LENGTH1 = 0x3F,GR_START
- shr.u GR_SEGMENT = GR_START,6
- nop.i 999
+{ .mmi
+ nop.m 999 ;;
+(p0) and GR_LENGTH1 = 0x3F,GR_START
+(p0) shr.u GR_SEGMENT = GR_START,6
}
-;;
-
{ .mmi
- shladd GR_BASE = GR_SEGMENT,3,GR_BASE
- sub GR_LENGTH2 = 0x40,GR_LENGTH1
- cmp.le p6,p7 = 0x2,GR_LENGTH1
+ nop.m 999 ;;
+(p0) add GR_SEGMENT = 0x1,GR_SEGMENT
+(p0) sub GR_LENGTH2 = 0x40,GR_LENGTH1
}
-;;
-
// P_0 is the two bits corresponding to bit positions L+2 and L+1
// P_1 is the 64-bit starting at bit position L
// P_2 is the 64-bit starting at bit position L-64
@@ -836,13 +849,13 @@ __libm_pi_by_2_reduce:
// P_4 is made up of Clo and Dhi
// P_4 = deposit Dlo, position 0, length2 into P_4, position length1
// deposit Ehi, position length2, length1 into P_4, position 0
-{ .mfi
- ld8 GR_A = [GR_BASE],8
- fabs FR_X = FR_input_X
-(p7) cmp.eq.unc p8,p9 = 0x1,GR_LENGTH1
+{ .mmi
+(p0) cmp.le.unc p6,p7 = 0x2,GR_LENGTH1 ;;
+(p0) shladd GR_BASE = GR_SEGMENT,3,GR_BASE
+(p7) cmp.eq.unc p8,p9 = 0x1,GR_LENGTH1 ;;
}
-;;
-
+{ .mmi
+ nop.m 999
// ld_64 A at Base and increment Base by 8
// ld_64 B at Base and increment Base by 8
// ld_64 C at Base and increment Base by 8
@@ -853,35 +866,31 @@ __libm_pi_by_2_reduce:
// A, B, C, D, and E look like | length1 | length2 |
// ---------------------
// hi lo
-{ .mlx
- ld8 GR_B = [GR_BASE],8
- movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift N_fix
+(p0) ld8 GR_A = [GR_BASE],8
+(p0) extr.u GR_sgn_x = GR_Exp_x,17,1 ;;
}
-;;
-
-{ .mmi
- ld8 GR_C = [GR_BASE],8
- nop.m 999
-(p8) extr.u GR_Temp = GR_A,63,1
+{ .mmf
+ nop.m 999
+(p0) ld8 GR_B = [GR_BASE],8
+(p0) fmerge.se FR_X = FR_sigma_B,FR_X ;;
}
-;;
-
+{ .mii
+(p0) ld8 GR_C = [GR_BASE],8
+(p8) extr.u GR_Temp = GR_A,63,1 ;;
+(p0) shl GR_TEMP1 = GR_A,GR_LENGTH1
+}
+{ .mii
+(p0) ld8 GR_D = [GR_BASE],8
// If length1 >= 2,
// P_0 = deposit Ahi, position length2, 2 bit into P_0 at position 0.
-{ .mii
- ld8 GR_D = [GR_BASE],8
- shl GR_TEMP1 = GR_A,GR_LENGTH1 // MM instruction
-(p6) shr.u GR_P_0 = GR_A,GR_LENGTH2 // MM instruction
+(p6) shr.u GR_P_0 = GR_A,GR_LENGTH2 ;;
+(p0) shl GR_TEMP2 = GR_B,GR_LENGTH1
}
-;;
-
{ .mii
- ld8 GR_E = [GR_BASE],-40
- shl GR_TEMP2 = GR_B,GR_LENGTH1 // MM instruction
- shr.u GR_P_1 = GR_B,GR_LENGTH2 // MM instruction
+(p0) ld8 GR_E = [GR_BASE],-40
+(p0) shr.u GR_P_1 = GR_B,GR_LENGTH2 ;;
+(p0) shr.u GR_P_2 = GR_C,GR_LENGTH2
}
-;;
-
// Else
// Load 16 bit of ASUB from (Base_Address_of_A - 2)
// P_0 = ASUB & 0x3
@@ -891,56 +900,43 @@ __libm_pi_by_2_reduce:
// Deposit element 63 from Ahi and place in element 0 of P_0.
// Endif
// Endif
-
{ .mii
(p7) ld2 GR_ASUB = [GR_BASE],8
- shl GR_TEMP3 = GR_C,GR_LENGTH1 // MM instruction
- shr.u GR_P_2 = GR_C,GR_LENGTH2 // MM instruction
+(p0) shl GR_TEMP3 = GR_C,GR_LENGTH1 ;;
+(p0) shl GR_TEMP4 = GR_D,GR_LENGTH1
}
-;;
-
{ .mii
- setf.d FR_RSHF = GR_rshf // Form right shift const 1.100 * 2^63
- shl GR_TEMP4 = GR_D,GR_LENGTH1 // MM instruction
- shr.u GR_P_3 = GR_D,GR_LENGTH2 // MM instruction
+ nop.m 999
+(p0) shr.u GR_P_3 = GR_D,GR_LENGTH2 ;;
+(p0) shr.u GR_P_4 = GR_E,GR_LENGTH2
}
-;;
-
-{ .mmi
+{ .mii
(p7) and GR_P_0 = 0x03,GR_ASUB
-(p6) and GR_P_0 = 0x03,GR_P_0
- shr.u GR_P_4 = GR_E,GR_LENGTH2 // MM instruction
+(p6) and GR_P_0 = 0x03,GR_P_0 ;;
+(p0) or GR_P_1 = GR_P_1,GR_TEMP1
}
-;;
-
{ .mmi
- nop.m 999
- or GR_P_1 = GR_P_1,GR_TEMP1
-(p8) and GR_P_0 = 0x1,GR_P_0
+(p8) and GR_P_0 = 0x1,GR_P_0 ;;
+(p0) or GR_P_2 = GR_P_2,GR_TEMP2
+(p8) shl GR_P_0 = GR_P_0,0x1 ;;
}
-;;
-
-{ .mmi
- setf.sig FR_p_1 = GR_P_1
- or GR_P_2 = GR_P_2,GR_TEMP2
-(p8) shladd GR_P_0 = GR_P_0,1,GR_Temp
+{ .mii
+ nop.m 999
+(p0) or GR_P_3 = GR_P_3,GR_TEMP3
+(p8) or GR_P_0 = GR_P_0,GR_Temp
}
-;;
-
-{ .mmf
- setf.sig FR_p_2 = GR_P_2
- or GR_P_3 = GR_P_3,GR_TEMP3
- fmerge.se FR_X = FR_sigma_B,FR_X
+{ .mmi
+(p0) setf.sig FR_p_1 = GR_P_1 ;;
+(p0) setf.sig FR_p_2 = GR_P_2
+(p0) or GR_P_4 = GR_P_4,GR_TEMP4 ;;
}
-;;
-
{ .mmi
- setf.sig FR_p_3 = GR_P_3
- or GR_P_4 = GR_P_4,GR_TEMP4
- pmpy2.r GR_M = GR_P_0,GR_x_lo
+ nop.m 999 ;;
+(p0) setf.sig FR_p_3 = GR_P_3
+(p0) pmpy2.r GR_M = GR_P_0,GR_x_lo
}
-;;
-
+{ .mlx
+(p0) setf.sig FR_p_4 = GR_P_4
// P_1, P_2, P_3, P_4 are integers. They should be
// 2^(L-63) * P_1;
// 2^(L-63-64) * P_2;
@@ -958,18 +954,18 @@ __libm_pi_by_2_reduce:
// | P_1 | | P_2 | | P_3 |
// --------- --------- ---------
// ---------
-// X | X |
-// ---------
+// X | X |
+// ---------
// ----------------------------------------------------
// --------- ---------
-// | A_hi | | A_lo |
-// --------- ---------
+// | A_hi | | A_lo |
+// --------- ---------
// --------- ---------
-// | B_hi | | B_lo |
-// --------- ---------
-// --------- ---------
-// | C_hi | | C_lo |
+// | B_hi | | B_lo |
+// --------- ---------
// --------- ---------
+// | C_hi | | C_lo |
+// --------- ---------
// ====================================================
// ----------- --------- --------- ---------
// | S_0 | | S_1 | | S_2 | | S_3 |
@@ -981,55 +977,52 @@ __libm_pi_by_2_reduce:
// and exponent range. Unless an explicit FPSR is given,
// round-to-nearest with widest precision and exponent range is
// used.
-{ .mmi
- setf.sig FR_p_4 = GR_P_4
- mov GR_TEMP1 = 0x0FFBF
- nop.i 999
+(p0) movl GR_TEMP1 = 0x000000000000FFBF
}
-;;
-
{ .mmi
- setf.exp FR_ScaleP2 = GR_TEMP1
- mov GR_TEMP2 = 0x0FF7F
- nop.i 999
+ nop.m 999 ;;
+(p0) setf.exp FR_ScaleP2 = GR_TEMP1
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_TEMP4 = 0x000000000001003E
}
-;;
-
{ .mmi
- setf.exp FR_ScaleP3 = GR_TEMP2
- mov GR_TEMP4 = 0x1003E
- nop.i 999
+ nop.m 999 ;;
+(p0) setf.exp FR_sigma_C = GR_TEMP4
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_TEMP2 = 0x000000000000FF7F ;;
}
-;;
-
{ .mmf
- setf.exp FR_sigma_C = GR_TEMP4
- mov GR_Temp = 0x0FFDE
- fcvt.xuf.s1 FR_p_1 = FR_p_1
+ nop.m 999
+(p0) setf.exp FR_ScaleP3 = GR_TEMP2
+(p0) fcvt.xuf.s1 FR_p_1 = FR_p_1 ;;
}
-;;
-
{ .mfi
- setf.exp FR_TWOM33 = GR_Temp
- fcvt.xuf.s1 FR_p_2 = FR_p_2
- nop.i 999
+ nop.m 999
+(p0) fcvt.xuf.s1 FR_p_2 = FR_p_2
+ nop.i 999
}
-;;
-
-{ .mfi
- nop.m 999
- fcvt.xuf.s1 FR_p_3 = FR_p_3
- nop.i 999
+{ .mlx
+ nop.m 999
+(p0) movl GR_Temp = 0x000000000000FFDE ;;
+}
+{ .mmf
+ nop.m 999
+(p0) setf.exp FR_TWOM33 = GR_Temp
+(p0) fcvt.xuf.s1 FR_p_3 = FR_p_3 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fcvt.xuf.s1 FR_p_4 = FR_p_4
- nop.i 999
+ nop.m 999
+(p0) fcvt.xuf.s1 FR_p_4 = FR_p_4
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
// Tmp_C := fmpy.fpsr3( x, p_1 );
// Tmp_B := fmpy.fpsr3( x, p_2 );
// Tmp_A := fmpy.fpsr3( x, p_3 );
@@ -1055,62 +1048,55 @@ __libm_pi_by_2_reduce:
// Exact, regardless ...of rounding direction
// A_lo := x*p_3 - A_hi ...fma, exact
// Endif
-{ .mfi
- nop.m 999
- fmpy.s3 FR_Tmp_C = FR_X,FR_p_1
- nop.i 999
+(p0) fmpy.s3 FR_Tmp_C = FR_X,FR_p_1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- mov GR_TEMP3 = 0x0FF3F
- fmpy.s1 FR_p_2 = FR_p_2,FR_ScaleP2
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 FR_p_2 = FR_p_2,FR_ScaleP2
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Temp = 0x0000000000000400
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_TEMP3 = 0x000000000000FF3F ;;
}
-;;
-
{ .mmf
- setf.exp FR_ScaleP4 = GR_TEMP3
- mov GR_TEMP4 = 0x10045
- fmpy.s1 FR_p_3 = FR_p_3,FR_ScaleP3
+ nop.m 999
+(p0) setf.exp FR_ScaleP4 = GR_TEMP3
+(p0) fmpy.s1 FR_p_3 = FR_p_3,FR_ScaleP3 ;;
}
-;;
-
-{ .mfi
- nop.m 999
- fadd.s3 FR_C_hi = FR_sigma_C,FR_Tmp_C // For Tmp_C < sigma_C case
- nop.i 999
+{ .mlx
+ nop.m 999
+(p0) movl GR_TEMP4 = 0x0000000000010045 ;;
}
-;;
-
{ .mmf
- setf.exp FR_Tmp2_C = GR_TEMP4
- nop.m 999
- fmpy.s3 FR_Tmp_B = FR_X,FR_p_2
+ nop.m 999
+(p0) setf.exp FR_Tmp2_C = GR_TEMP4
+(p0) fmpy.s3 FR_Tmp_B = FR_X,FR_p_2 ;;
}
-;;
-
{ .mfi
- addl GR_BASE = @ltoff(Constants_Bits_of_pi_by_2#), gp
- fcmp.ge.s1 p12, p9 = FR_Tmp_C,FR_sigma_C
- nop.i 999
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p12, p9 = FR_Tmp_C,FR_sigma_C
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s3 FR_Tmp_A = FR_X,FR_p_3
- nop.i 99
+ nop.m 999
+(p0) fmpy.s3 FR_Tmp_A = FR_X,FR_p_3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- ld8 GR_BASE = [GR_BASE]
+ nop.m 999
(p12) mov FR_C_hi = FR_Tmp_C
- nop.i 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p9) fsub.s1 FR_C_hi = FR_C_hi,FR_sigma_C
- nop.i 999
+(p0) addl GR_BASE = @ltoff(Constants_Bits_of_pi_by_2#), gp
+(p9) fadd.s3 FR_C_hi = FR_sigma_C,FR_Tmp_C
+ nop.i 999
}
;;
@@ -1128,106 +1114,97 @@ __libm_pi_by_2_reduce:
// Load from table
// End If
-{ .mfi
- nop.m 999
- fmpy.s1 FR_p_4 = FR_p_4,FR_ScaleP4
- nop.i 999
-}
-{ .mfi
+
+{ .mmi
+ ld8 GR_BASE = [GR_BASE]
nop.m 999
- fadd.s3 FR_B_hi = FR_sigma_B,FR_Tmp_B // For Tmp_B < sigma_B case
nop.i 999
}
;;
+
{ .mfi
- nop.m 999
- fadd.s3 FR_A_hi = FR_sigma_A,FR_Tmp_A // For Tmp_A < sigma_A case
- nop.i 999
+(p0) ldfe FR_D_hi = [GR_BASE],16
+(p0) fmpy.s1 FR_p_4 = FR_p_4,FR_ScaleP4
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fcmp.ge.s1 p13, p10 = FR_Tmp_B,FR_sigma_B
- nop.i 999
+(p0) ldfe FR_D_lo = [GR_BASE],0
+(p0) fcmp.ge.unc.s1 p13, p10 = FR_Tmp_B,FR_sigma_B
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
- nop.i 999
+ nop.m 999
+(p13) mov FR_B_hi = FR_Tmp_B
+ nop.i 999
}
-;;
-
{ .mfi
- ldfe FR_D_hi = [GR_BASE],16
- fcmp.ge.s1 p14, p11 = FR_Tmp_A,FR_sigma_A
- nop.i 999
+ nop.m 999
+(p12) fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- ldfe FR_D_lo = [GR_BASE]
-(p13) mov FR_B_hi = FR_Tmp_B
- nop.i 999
+ nop.m 999
+(p10) fadd.s3 FR_B_hi = FR_sigma_B,FR_Tmp_B
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fsub.s1 FR_B_hi = FR_B_hi,FR_sigma_B
- nop.i 999
+ nop.m 999
+(p9) fsub.s1 FR_C_hi = FR_C_hi,FR_sigma_C
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p14, p11 = FR_Tmp_A,FR_sigma_A
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
(p14) mov FR_A_hi = FR_Tmp_A
- nop.i 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p11) fsub.s1 FR_A_hi = FR_A_hi,FR_sigma_A
- nop.i 999
+ nop.m 999
+(p11) fadd.s3 FR_A_hi = FR_sigma_A,FR_Tmp_A
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
+(p9) fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
+(p0) cmp.eq.unc p12,p9 = 0x1,GR_sgn_x
+}
+{ .mfi
+ nop.m 999
+(p13) fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p10) fsub.s1 FR_B_hi = FR_B_hi,FR_sigma_B
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
// Note that C_hi is of integer value. We need only the
// last few bits. Thus we can ensure C_hi is never a big
// integer, freeing us from overflow worry.
// Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
// Tmp_C is the upper portion of C_hi
-{ .mfi
- nop.m 999
- fadd.s3 FR_Tmp_C = FR_C_hi,FR_Tmp2_C
- tbit.z p12,p9 = GR_Exp_x, 17
-}
-;;
-
-{ .mfi
- nop.m 999
- fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
- nop.i 999
+(p0) fadd.s3 FR_Tmp_C = FR_C_hi,FR_Tmp2_C
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fadd.s3 FR_A = FR_B_hi,FR_C_lo
- nop.i 999
+ nop.m 999
+(p14) fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
- nop.i 999
+ nop.m 999
+(p11) fsub.s1 FR_A_hi = FR_A_hi,FR_sigma_A
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 FR_Tmp_C = FR_Tmp_C,FR_Tmp2_C
- nop.i 999
-}
-;;
-
+ nop.m 999
// *******************
// Step 2. Get N and f
// *******************
@@ -1238,213 +1215,168 @@ __libm_pi_by_2_reduce:
// A := fadd.fpsr3( B_hi, C_lo )
// B := max( B_hi, C_lo )
// b := min( B_hi, C_lo )
-{ .mfi
- nop.m 999
- fmax.s1 FR_B = FR_B_hi,FR_C_lo
- nop.i 999
+(p0) fadd.s3 FR_A = FR_B_hi,FR_C_lo
+ nop.i 999
}
-;;
-
-// We use a right-shift trick to get the integer part of A into the rightmost
-// bits of the significand by adding 1.1000..00 * 2^63. This operation is good
-// if |A| < 2^61, which it is in this case. We are doing this to save a few
-// cycles over using fcvt.fx followed by fnorm. The second step of the trick
-// is to subtract the same constant to float the rounded integer into a fp reg.
-
{ .mfi
- nop.m 999
-// N := round_to_nearest_integer_value( A );
- fma.s1 FR_N_fix = FR_A, f1, FR_RSHF
- nop.i 999
+ nop.m 999
+(p10) fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmin.s1 FR_b = FR_B_hi,FR_C_lo
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 FR_Tmp_C = FR_Tmp_C,FR_Tmp2_C
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-// C_hi := C_hi - Tmp_C ...0 <= C_hi < 2^7
- fsub.s1 FR_C_hi = FR_C_hi,FR_Tmp_C
- nop.i 999
+ nop.m 999
+(p0) fmax.s1 FR_B = FR_B_hi,FR_C_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-// a := (B - A) + b: Exact - note that a is either 0 or 2^(-64).
- fsub.s1 FR_a = FR_B,FR_A
- nop.i 999
+ nop.m 999
+(p0) fmin.s1 FR_b = FR_B_hi,FR_C_lo
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fms.s1 FR_N = FR_N_fix, f1, FR_RSHF
- nop.i 999
+ nop.m 999
+(p11) fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 FR_a = FR_a,FR_b
- nop.i 999
+ nop.m 999
+// N := round_to_nearest_integer_value( A );
+(p0) fcvt.fx.s1 FR_N = FR_A
+ nop.i 999 ;;
}
-;;
-
-// f := A - N; Exact because lsb(A) >= 2^(-64) and |f| <= 1/2.
-// N := convert to integer format( C_hi + N );
-// M := P_0 * x_lo;
-// N := N + M;
{ .mfi
- nop.m 999
- fsub.s1 FR_f = FR_A,FR_N
- nop.i 999
+ nop.m 999
+// C_hi := C_hi - Tmp_C ...0 <= C_hi < 2^7
+(p0) fsub.s1 FR_C_hi = FR_C_hi,FR_Tmp_C
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fadd.s1 FR_N = FR_N,FR_C_hi
- nop.i 999
+ nop.m 999
+// a := (B - A) + b: Exact - note that a is either 0 or 2^(-64).
+(p0) fsub.s1 FR_a = FR_B,FR_A
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fsub.s1 FR_D_hi = f0, FR_D_hi
- nop.i 999
+ nop.m 999
+// f := A - N; Exact because lsb(A) >= 2^(-64) and |f| <= 1/2.
+(p0) fnorm.s1 FR_N = FR_N
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p9) fsub.s1 FR_D_lo = f0, FR_D_lo
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 FR_a = FR_a,FR_b
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 FR_g = FR_A_hi,FR_B_lo // For Case 1, g=A_hi+B_lo
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 FR_f = FR_A,FR_N
+ nop.i 999
}
{ .mfi
- nop.m 999
- fadd.s3 FR_A = FR_A_hi,FR_B_lo // For Case 2, A=A_hi+B_lo w/ sf3
- nop.i 999
+ nop.m 999
+// N := convert to integer format( C_hi + N );
+// M := P_0 * x_lo;
+// N := N + M;
+(p0) fadd.s1 FR_N = FR_N,FR_C_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- mov GR_Temp = 0x0FFCD // For Case 2, exponent of 2^-50
- fmax.s1 FR_B = FR_A_hi,FR_B_lo // For Case 2, B=max(A_hi,B_lo)
- nop.i 999
-}
-;;
-
-// f = f + a Exact because a is 0 or 2^(-64);
+ nop.m 999
+// f = f + a Exact because a is 0 or 2^(-64);
// the msb of the sum is <= 1/2 and lsb >= 2^(-64).
-{ .mfi
- setf.exp FR_TWOM50 = GR_Temp // For Case 2, form 2^-50
- fcvt.fx.s1 FR_N = FR_N
- nop.i 999
+(p0) fadd.s1 FR_f = FR_f,FR_a
+ nop.i 999
}
{ .mfi
- nop.m 999
- fadd.s1 FR_f = FR_f,FR_a
- nop.i 999
+ nop.m 999
+//
+// Create 2**(-33)
+//
+(p0) fcvt.fx.s1 FR_N = FR_N
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmin.s1 FR_b = FR_A_hi,FR_B_lo // For Case 2, b=min(A_hi,B_lo)
- nop.i 999
+ nop.m 999
+(p0) fabs FR_f_abs = FR_f
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 FR_a = FR_B,FR_A // For Case 2, a=B-A
- nop.i 999
+(p0) getf.sig GR_N = FR_N
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
-{ .mfi
- nop.m 999
- fadd.s1 FR_s_hi = FR_f,FR_g // For Case 1, s_hi=f+g
- nop.i 999
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p0) add GR_N = GR_N,GR_M ;;
}
-{ .mfi
- nop.m 999
- fadd.s1 FR_f_hi = FR_A,FR_f // For Case 2, f_hi=A+f
- nop.i 999
+// If sgn_x == 1 (that is original x was negative)
+// N := 2^10 - N
+// this maintains N to be non-negative, but still
+// equivalent to the (negated N) mod 4.
+// End If
+{ .mii
+(p12) sub GR_N = GR_Temp,GR_N
+(p0) cmp.eq.unc p12,p9 = 0x0,GR_sgn_x ;;
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fabs FR_f_abs = FR_f
- nop.i 999
+ nop.m 999
+(p0) fcmp.ge.unc.s1 p13, p10 = FR_f_abs,FR_TWOM33
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- getf.sig GR_N = FR_N
- fsetc.s3 0x7F,0x40 // Reset sf3 to user settings + td
- nop.i 999
+ nop.m 999
+(p9) fsub.s1 FR_D_hi = f0, FR_D_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 FR_s_lo = FR_f,FR_s_hi // For Case 1, s_lo=f-s_hi
- nop.i 999
+ nop.m 999
+(p10) fadd.s3 FR_A = FR_A_hi,FR_B_lo
+ nop.i 999
}
{ .mfi
- nop.m 999
- fsub.s1 FR_f_lo = FR_f,FR_f_hi // For Case 2, f_lo=f-f_hi
- nop.i 999
+ nop.m 999
+(p13) fadd.s1 FR_g = FR_A_hi,FR_B_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi // For Case 1, r_hi=s_hi*D_hi
- nop.i 999
+ nop.m 999
+(p10) fmax.s1 FR_B = FR_A_hi,FR_B_lo
+ nop.i 999
}
{ .mfi
- nop.m 999
- fadd.s1 FR_a = FR_a,FR_b // For Case 2, a=a+b
- nop.i 999
+ nop.m 999
+(p9) fsub.s1 FR_D_lo = f0, FR_D_lo
+ nop.i 999 ;;
}
-;;
-
-
-// If sgn_x == 1 (that is original x was negative)
-// N := 2^10 - N
-// this maintains N to be non-negative, but still
-// equivalent to the (negated N) mod 4.
-// End If
{ .mfi
- add GR_N = GR_N,GR_M
- fcmp.ge.s1 p13, p10 = FR_f_abs,FR_TWOM33
- mov GR_Temp = 0x00400
+ nop.m 999
+(p10) fmin.s1 FR_b = FR_A_hi,FR_B_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p9) sub GR_N = GR_Temp,GR_N
- fadd.s1 FR_s_lo = FR_s_lo,FR_g // For Case 1, s_lo=s_lo+g
- nop.i 999
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x40
+ nop.i 999
}
-{ .mfi
- nop.m 999
- fadd.s1 FR_f_lo = FR_f_lo,FR_A // For Case 2, f_lo=f_lo+A
- nop.i 999
+{ .mlx
+ nop.m 999
+(p10) movl GR_Temp = 0x000000000000FFCD ;;
}
-;;
-
-// a := (B - A) + b Exact.
+{ .mmf
+ nop.m 999
+(p10) setf.exp FR_TWOM50 = GR_Temp
+(p10) fadd.s1 FR_f_hi = FR_A,FR_f ;;
+}
+{ .mfi
+ nop.m 999
+// a := (B - A) + b Exact.
// Note that a is either 0 or 2^(-128).
// f_hi := A + f;
// f_lo := (f - f_hi) + A
@@ -1455,32 +1387,68 @@ __libm_pi_by_2_reduce:
// exact. If f = -2^(-64), then A + f is exact. Hence
// f-f_hi is -A exactly, giving f_lo = 0.
// f_lo := f_lo + a;
-
+(p10) fsub.s1 FR_a = FR_B,FR_A
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p13) fadd.s1 FR_s_hi = FR_f,FR_g
+ nop.i 999 ;;
+}
+{ .mlx
+ nop.m 999
// If |f| >= 2^(-33)
// Case 1
// CASE := 1
// g := A_hi + B_lo;
// s_hi := f + g;
// s_lo := (f - s_hi) + g;
+(p13) movl GR_CASE = 0x1 ;;
+}
+{ .mlx
+ nop.m 999
// Else
// Case 2
// CASE := 2
// A := fadd.fpsr3( A_hi, B_lo )
// B := max( A_hi, B_lo )
// b := min( A_hi, B_lo )
-
+(p10) movl GR_CASE = 0x2
+}
{ .mfi
- nop.m 999
-(p10) fcmp.ge.unc.s1 p14, p11 = FR_f_abs,FR_TWOM50
- nop.i 999
+ nop.m 999
+(p10) fsub.s1 FR_f_lo = FR_f,FR_f_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p13) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi //For Case 1, r_lo=s_hi*D_hi+r_hi
- nop.i 999
+ nop.m 999
+(p10) fadd.s1 FR_a = FR_a,FR_b
+ nop.i 999
}
-;;
-
+{ .mfi
+ nop.m 999
+(p13) fsub.s1 FR_s_lo = FR_f,FR_s_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p13) fadd.s1 FR_s_lo = FR_s_lo,FR_g
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p10) fcmp.ge.unc.s1 p14, p11 = FR_f_abs,FR_TWOM50
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Create 2**(-50)
+(p10) fadd.s1 FR_f_lo = FR_f_lo,FR_A
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
// If |f| >= 2^(-50) then
// s_hi := f_hi;
// s_lo := f_lo;
@@ -1489,90 +1457,84 @@ __libm_pi_by_2_reduce:
// s_hi := f_hi + f_lo
// s_lo := (f_hi - s_hi) + f_lo
// End If
-{ .mfi
- nop.m 999
-(p14) mov FR_s_hi = FR_f_hi
- nop.i 999
+(p14) mov FR_s_hi = FR_f_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fadd.s1 FR_f_lo = FR_f_lo,FR_a
- nop.i 999
+ nop.m 999
+(p10) fadd.s1 FR_f_lo = FR_f_lo,FR_a
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p14) mov FR_s_lo = FR_f_lo
- nop.i 999
+ nop.m 999
+(p14) mov FR_s_lo = FR_f_lo
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p11) fadd.s1 FR_f_lo = FR_f_lo,FR_A_lo
- nop.i 999
+ nop.m 999
+(p11) fadd.s1 FR_f_lo = FR_f_lo,FR_A_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p11) fma.s1 FR_f_lo = FR_X,FR_p_4,FR_f_lo
- nop.i 999
+ nop.m 999
+(p11) fma.s1 FR_f_lo = FR_X,FR_p_4,FR_f_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p13) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo //For Case 1, r_lo=s_hi*D_lo+r_lo
- nop.i 999
+ nop.m 999
+(p11) fadd.s1 FR_s_hi = FR_f_hi,FR_f_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p11) fadd.s1 FR_s_hi = FR_f_hi,FR_f_lo
- nop.i 999
-}
-;;
-
+ nop.m 999
// r_hi := s_hi*D_hi
// r_lo := s_hi*D_hi - r_hi with fma
// r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
+(p0) fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi
+ nop.i 999
+}
{ .mfi
- nop.m 999
-(p10) fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi
- nop.i 999
+ nop.m 999
+(p11) fsub.s1 FR_s_lo = FR_f_hi,FR_s_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p11) fsub.s1 FR_s_lo = FR_f_hi,FR_s_hi
- nop.i 999
+ nop.m 999
+(p0) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p10) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi
- nop.i 999
+ nop.m 999
+(p11) fadd.s1 FR_s_lo = FR_s_lo,FR_f_lo
+ nop.i 999 ;;
+}
+{ .mmi
+ nop.m 999 ;;
+// Return N, r_hi, r_lo
+// We do not return CASE
+(p0) stfe [GR_Address_of_Outputs] = FR_r_hi,16
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p11) fadd.s1 FR_s_lo = FR_s_lo,FR_f_lo
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_r_lo = FR_s_lo,FR_D_hi,FR_r_lo
+ nop.i 999 ;;
}
-;;
-
-// Return N, r_hi, r_lo
-// We do not return CASE
-{ .mfb
- nop.m 999
- fma.s1 FR_r_lo = FR_s_lo,FR_D_hi,FR_r_lo
- br.ret.sptk b0
+{ .mmi
+ nop.m 999 ;;
+(p0) stfe [GR_Address_of_Outputs] = FR_r_lo,-16
+ nop.i 999
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p0) br.ret.sptk b0 ;;
}
-;;
-.endp __libm_pi_by_2_reduce#
+.endp __libm_pi_by_2_reduce
+ASM_SIZE_DIRECTIVE(__libm_pi_by_2_reduce)
diff --git a/sysdeps/ia64/fpu/libm_scalblnf.S b/sysdeps/ia64/fpu/libm_scalblnf.S
deleted file mode 100644
index af620d45f8..0000000000
--- a/sysdeps/ia64/fpu/libm_scalblnf.S
+++ /dev/null
@@ -1,450 +0,0 @@
-.file "libm_scalblnf.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/03/01 Initial version
-// 08/23/01 Corrected error tag number
-// 02/06/02 Corrected to handle 32- or 64-bit integers
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/25/03 Improved performance
-//
-// API
-//==============================================================
-// float __libm_scalblnf (float x, long int n, int long_int_type)
-// input floating point f8 and long int n (r33)
-// input long_int_type = 0 if long int defined as 32 bits, = 1 if 64 bits
-// output floating point f8
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x1007e -> Certain overflow
-// exp_Result = 0x1007e -> Possible overflow
-// 0x0ff81 <= exp_Result < 0x1007e -> No over/underflow (main path)
-// 0x0ff81 - 23 <= exp_Result < 0x0ff81 -> Possible underflow
-// exp_Result < 0x0ff81 - 23 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_scalblnf)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is long integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r34,r0
-}
-;;
-
-// Sign extend N if long int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r33 // Copy N if long int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r33 // Sign extend N if long int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x1007e // Exponent of maximum float
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0ff81 // Exponent of minimum float
-(p9) br.cond.spnt SCALBNF_UNORM // Branch if x=unorm
-}
-;;
-
-SCALBNF_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r33,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x1007f // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0ff81 - 23 // Exponent of min denorm float
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.s.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x3007f // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt SCALBNF_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt SCALBNF_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALBNF_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALBNF_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0ff81-23 <= exp_Result < 0x0ff81
-SCALBNF_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x1007e = exp_Result
-SCALBNF_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALBNF_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt SCALBNF_OVERFLOW
-(p9) br.cond.spnt SCALBNF_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALBNF_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 205, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-SCALBNF_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 206, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-SCALBNF_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALBNF_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_scalblnf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfs FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/libm_sincos.S b/sysdeps/ia64/fpu/libm_sincos.S
deleted file mode 100644
index 7fda2afac4..0000000000
--- a/sysdeps/ia64/fpu/libm_sincos.S
+++ /dev/null
@@ -1,783 +0,0 @@
-.file "libm_sincos.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/01/02 Initial version
-// 02/18/02 Large arguments processing routine is excluded.
-// External interface entry points are added
-// 03/13/02 Corrected restore of predicate registers
-// 03/19/02 Added stack unwind around call to __libm_cis_large
-// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/08/03 Improved performance
-// 02/11/04 cis is moved to the separate file.
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// 1) void sincos(double, double*s, double*c)
-// 2) __libm_sincos - internal LIBM function, that accepts
-// argument in f8 and returns cosine through f8, sine through f9
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
-// divide x by pi/2^k.
-// Multiply by 2^k/pi.
-// nfloat = Round result to integer (round-to-nearest)
-//
-// r = x - nfloat * pi/2^k
-// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
-// nfloat * LOW(pi/2^k)) -
-// nfloat * LOWEST(pi/2^k) for increased accuracy.
-// pi/2^k is stored as two numbers that when added make pi/2^k.
-// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-// HIGH and LOW parts are rounded to zero values,
-// and LOWEST is rounded to nearest one.
-//
-// x = (nfloat * pi/2^k) + r
-// r is small enough that we can use a polynomial approximation
-// and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-// N * 2^(k+1)
-// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-// = Sin(Mpi/2^k)
-//
-// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-// = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos
-// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin
-//
-// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-// rsq = r*r
-//
-//
-// P = p1 + r^2p2 + r^4p3 + r^6p4
-// Q = q1 + r^2q2 + r^4q3 + r^6q4
-//
-// rcub = r * rsq
-// Sin(r) = r + rcub * P
-// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
-//
-// The coefficients are not exactly these values, but almost.
-//
-// p1 = -1/6 = -1/3!
-// p2 = 1/120 = 1/5!
-// p3 = -1/5040 = -1/7!
-// p4 = 1/362889 = 1/9!
-//
-// P = r + rcub * P
-//
-// Answer = S[m] Cos(r) + C[m] P
-//
-// Cos(r) = 1 + rsq Q
-// Cos(r) = 1 + r^2 Q
-// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
-// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
-//
-// S[m] Cos(r) = S[m](1 + rsq Q)
-// S[m] Cos(r) = S[m] + S[m] rsq Q
-// S[m] Cos(r) = S[m] + s_rsq Q
-// Q = S[m] + s_rsq Q
-//
-// Then,
-//
-// Answer = Q + C[m] P
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r39
-
-// predicate registers used:
-// p6 -> p14
-//
-// floating-point registers used
-// f9 -> f15
-// f32 -> f67
-
-// Assembly macros
-//==============================================================
-
-cis_Arg = f8
-
-cis_Sin_res = f9
-cis_Cos_res = f8
-
-cis_NORM_f8 = f10
-cis_W = f11
-cis_int_Nfloat = f12
-cis_Nfloat = f13
-
-cis_r = f14
-cis_rsq = f15
-cis_rcub = f32
-
-cis_Inv_Pi_by_16 = f33
-cis_Pi_by_16_hi = f34
-cis_Pi_by_16_lo = f35
-
-cis_Inv_Pi_by_64 = f36
-cis_Pi_by_16_lowest = f37
-cis_r_exact = f38
-
-
-cis_P1 = f39
-cis_Q1 = f40
-cis_P2 = f41
-cis_Q2 = f42
-cis_P3 = f43
-cis_Q3 = f44
-cis_P4 = f45
-cis_Q4 = f46
-
-cis_P_temp1 = f47
-cis_P_temp2 = f48
-
-cis_Q_temp1 = f49
-cis_Q_temp2 = f50
-
-cis_P = f51
-
-cis_SIG_INV_PI_BY_16_2TO61 = f52
-cis_RSHF_2TO61 = f53
-cis_RSHF = f54
-cis_2TOM61 = f55
-cis_NFLOAT = f56
-cis_W_2TO61_RSH = f57
-
-cis_tmp = f58
-
-cis_Sm_sin = f59
-cis_Cm_sin = f60
-
-cis_Sm_cos = f61
-cis_Cm_cos = f62
-
-cis_srsq_sin = f63
-cis_srsq_cos = f64
-
-cis_Q_sin = f65
-cis_Q_cos = f66
-cis_Q = f67
-
-/////////////////////////////////////////////////////////////
-
-cis_pResSin = r33
-cis_pResCos = r34
-
-cis_GR_sig_inv_pi_by_16 = r14
-cis_GR_rshf_2to61 = r15
-cis_GR_rshf = r16
-cis_GR_exp_2tom61 = r17
-cis_GR_n = r18
-cis_GR_n_sin = r19
-cis_exp_limit = r20
-cis_r_signexp = r21
-cis_AD_1 = r22
-cis_r_sincos = r23
-cis_r_exp = r24
-cis_r_17_ones = r25
-cis_GR_m_sin = r26
-cis_GR_32m_sin = r26
-cis_GR_n_cos = r27
-cis_GR_m_cos = r28
-cis_GR_32m_cos = r28
-cis_AD_2_sin = r29
-cis_AD_2_cos = r30
-cis_gr_tmp = r31
-
-GR_SAVE_B0 = r35
-GR_SAVE_GP = r36
-rB0_SAVED = r37
-GR_SAVE_PFS = r38
-GR_SAVE_PR = r39
-
-RODATA
-
-.align 16
-// Pi/16 parts
-LOCAL_OBJECT_START(double_cis_pi)
- data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
- data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
- data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
-LOCAL_OBJECT_END(double_cis_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_cis_pq_k4)
- data8 0x3EC71C963717C63A // P4
- data8 0x3EF9FFBA8F191AE6 // Q4
- data8 0xBF2A01A00F4E11A8 // P3
- data8 0xBF56C16C05AC77BF // Q3
- data8 0x3F8111111110F167 // P2
- data8 0x3FA555555554DD45 // Q2
- data8 0xBFC5555555555555 // P1
- data8 0xBFDFFFFFFFFFFFFC // Q1
-LOCAL_OBJECT_END(double_cis_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
-data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
-data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
-//
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
-data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
-//
-data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
-data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
-//
-data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
-data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
-//
-data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
-data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
-//
-data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
-data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
-//
-data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
-data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
-//
-data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
-//
-data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
-data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
-//
-data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
-//
-data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
-data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
-//
-data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
-data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
-//
-data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
-data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
-//
-data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
-data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
-//
-data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
-data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
-//
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
-data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
-//
-data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
-data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
-//
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
-data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
-//
-data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
-data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
-//
-data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
-data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
-//
-data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
-data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
-//
-data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
-data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
-//
-data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
-data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
-//
-data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
-//
-data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
-data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
-//
-data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
-//
-data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
-data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
-//
-data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
-data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
-//
-data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
-data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
-//
-data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
-data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
-//
-data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
-data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
-//
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
-data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
-//
-data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
-data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincos)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
- getf.exp cis_r_signexp = cis_Arg
- movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
- addl cis_AD_1 = @ltoff(double_cis_pi), gp
- movl cis_GR_rshf_2to61 = 0x47b8000000000000
-};;
-
-{ .mfi
- ld8 cis_AD_1 = [cis_AD_1]
- fnorm.s1 cis_NORM_f8 = cis_Arg
- cmp.eq p13, p14 = r0, r0 // p13 set for sincos
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
- mov cis_GR_exp_2tom61 = 0xffff-61
- nop.i 0
- br.cond.sptk _CIS_COMMON
-};;
-GLOBAL_IEEE754_END(sincos)
-
-GLOBAL_LIBM_ENTRY(__libm_sincos)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
- getf.exp cis_r_signexp = cis_Arg
- movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
- addl cis_AD_1 = @ltoff(double_cis_pi), gp
- movl cis_GR_rshf_2to61 = 0x47b8000000000000
-};;
-
-// p14 set for __libm_sincos and cis
-{ .mfi
- ld8 cis_AD_1 = [cis_AD_1]
- fnorm.s1 cis_NORM_f8 = cis_Arg
- cmp.eq p14, p13 = r0, r0
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
- mov cis_GR_exp_2tom61 = 0xffff-61
- nop.i 0
- nop.b 0
-};;
-
-_CIS_COMMON:
-// Form two constants we need
-// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-// fcmp used to set denormal, and invalid on snans
-{ .mfi
- setf.sig cis_SIG_INV_PI_BY_16_2TO61 = cis_GR_sig_inv_pi_by_16
- fclass.m p6,p0 = cis_Arg, 0xe7 // if x=0,inf,nan
- addl cis_gr_tmp = -1, r0
-}
-// 1.1000 2^63 for right shift
-{ .mlx
- setf.d cis_RSHF_2TO61 = cis_GR_rshf_2to61
- movl cis_GR_rshf = 0x43e8000000000000
-};;
-
-// Form another constant
-// 2^-61 for scaling Nfloat
-// 0x1001a is register_bias + 27.
-// So if f8 >= 2^27, go to large arguments routine
-{ .mfi
- alloc GR_SAVE_PFS = ar.pfs, 3, 5, 0, 0
- fclass.m p11,p0 = cis_Arg, 0x0b // Test for x=unorm
- mov cis_exp_limit = 0x1001a
-}
-{ .mib
- setf.exp cis_2TOM61 = cis_GR_exp_2tom61
- nop.i 0
-(p6) br.cond.spnt _CIS_SPECIAL_ARGS
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-// 1.1000...000 * 2^63, the right shift constant
-{ .mmb
- ldfe cis_Pi_by_16_hi = [cis_AD_1],16
- setf.d cis_RSHF = cis_GR_rshf
-(p11) br.cond.spnt _CIS_UNORM // Branch if x=unorm
-};;
-
-_CIS_COMMON2:
-// Return here if x=unorm
-// Create constant inexact set
-{ .mmi
- ldfe cis_Pi_by_16_lo = [cis_AD_1],16
- setf.sig cis_tmp = cis_gr_tmp
- nop.i 0
-};;
-
-// Select exponent (17 lsb)
-{ .mfi
- ldfe cis_Pi_by_16_lowest = [cis_AD_1],16
- nop.f 0
- dep.z cis_r_exp = cis_r_signexp, 0, 17
-};;
-
-// Start loading P, Q coefficients
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is > 0x1001a
-{ .mmb
- ldfpd cis_P4,cis_Q4 = [cis_AD_1],16
- cmp.ge p10, p0 = cis_r_exp, cis_exp_limit
-(p10) br.cond.spnt _CIS_LARGE_ARGS // go to |x| >= 2^27 path
-};;
-
-// cis_W = x * cis_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-// rightmost bits of significand
-{ .mfi
- ldfpd cis_P3,cis_Q3 = [cis_AD_1],16
- fma.s1 cis_W_2TO61_RSH = cis_NORM_f8,cis_SIG_INV_PI_BY_16_2TO61,cis_RSHF_2TO61
- nop.i 0
-};;
-
-// get N = (int)cis_int_Nfloat
-// cis_NFLOAT = Round_Int_Nearest(cis_W)
-{ .mmf
- getf.sig cis_GR_n = cis_W_2TO61_RSH
- ldfpd cis_P2,cis_Q2 = [cis_AD_1],16
- fms.s1 cis_NFLOAT = cis_W_2TO61_RSH,cis_2TOM61,cis_RSHF
-};;
-
-// cis_r = -cis_Nfloat * cis_Pi_by_16_hi + x
-{ .mfi
- ldfpd cis_P1,cis_Q1 = [cis_AD_1], 16
- fnma.s1 cis_r = cis_NFLOAT,cis_Pi_by_16_hi,cis_NORM_f8
- nop.i 0
-};;
-
-// Add 2^(k-1) (which is in cis_r_sincos) to N
-{ .mmi
- add cis_GR_n_cos = 0x8, cis_GR_n
-;;
-//Get M (least k+1 bits of N)
- and cis_GR_m_sin = 0x1f,cis_GR_n
- and cis_GR_m_cos = 0x1f,cis_GR_n_cos
-};;
-
-{ .mmi
- nop.m 0
- nop.m 0
- shl cis_GR_32m_sin = cis_GR_m_sin,5
-};;
-
-// Add 32*M to address of sin_cos_beta table
-// cis_r = cis_r -cis_Nfloat * cis_Pi_by_16_lo
-{ .mfi
- add cis_AD_2_sin = cis_GR_32m_sin, cis_AD_1
- fnma.s1 cis_r = cis_NFLOAT, cis_Pi_by_16_lo, cis_r
- shl cis_GR_32m_cos = cis_GR_m_cos,5
-};;
-
-// Add 32*M to address of sin_cos_beta table
-{ .mmf
- ldfe cis_Sm_sin = [cis_AD_2_sin],16
- add cis_AD_2_cos = cis_GR_32m_cos, cis_AD_1
- fclass.m.unc p10,p0 = cis_Arg,0x0b // den. input - uflow
-};;
-
-{ .mfi
- ldfe cis_Sm_cos = [cis_AD_2_cos], 16
- nop.i 0
-};;
-
-{ .mfi
- ldfe cis_Cm_sin = [cis_AD_2_sin]
- fma.s1 cis_rsq = cis_r, cis_r, f0 // get r^2
- nop.i 0
-}
-// fmpy forces inexact flag
-{ .mfi
- nop.m 0
- fmpy.s0 cis_tmp = cis_tmp,cis_tmp
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 cis_r_exact = cis_NFLOAT, cis_Pi_by_16_lowest, cis_r
- nop.i 0
-};;
-
-{ .mfi
- ldfe cis_Cm_cos = [cis_AD_2_cos]
- fma.s1 cis_P_temp1 = cis_rsq, cis_P4, cis_P3
- nop.i 0
-}
-
-{ .mfi
- nop.m 0
- fma.s1 cis_Q_temp1 = cis_rsq, cis_Q4, cis_Q3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 cis_srsq_sin = cis_Sm_sin, cis_rsq
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 cis_srsq_cos = cis_Sm_cos,cis_rsq
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cis_Q_temp2 = cis_rsq, cis_Q_temp1, cis_Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cis_P_temp2 = cis_rsq, cis_P_temp1, cis_P2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 cis_rcub = cis_r_exact, cis_rsq // get r^3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cis_Q = cis_rsq, cis_Q_temp2, cis_Q1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cis_P = cis_rsq, cis_P_temp2, cis_P1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cis_Q_sin = cis_srsq_sin,cis_Q, cis_Sm_sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cis_Q_cos = cis_srsq_cos,cis_Q, cis_Sm_cos
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cis_P = cis_rcub,cis_P, cis_r_exact // final P
- nop.i 0
-};;
-
-// If den. arg, force underflow to be set
-{ .mfi
- nop.m 0
-(p10) fmpy.d.s0 cis_tmp = cis_Arg,cis_Arg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.d.s0 cis_Sin_res = cis_Cm_sin,cis_P,cis_Q_sin//Final sin
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.d.s0 cis_Cos_res = cis_Cm_cos,cis_P,cis_Q_cos//Final cos
-(p14) br.ret.sptk b0 // common exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
- stfd [cis_pResSin] = cis_Sin_res
- stfd [cis_pResCos] = cis_Cos_res
- br.ret.sptk b0 // common exit for sincos main path
-};;
-
-_CIS_SPECIAL_ARGS:
-// sin(+/-0) = +/-0
-// sin(Inf) = NaN
-// sin(NaN) = NaN
-{ .mfi
- nop.m 999
- fma.d.s0 cis_Sin_res = cis_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
- nop.i 999
-};;
-// cos(+/-0) = 1.0
-// cos(Inf) = NaN
-// cos(NaN) = NaN
-{ .mfb
- nop.m 999
- fma.d.s0 cis_Cos_res = cis_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
-(p14) br.ret.sptk b0 //spec exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
- stfd [cis_pResSin] = cis_Sin_res
- stfd [cis_pResCos] = cis_Cos_res
- br.ret.sptk b0 // common exit for sincos main path
-};;
-
-_CIS_UNORM:
-// Here if x=unorm
-{ .mfb
- getf.exp cis_r_signexp = cis_NORM_f8 // Get signexp of x
- fcmp.eq.s0 p11,p0 = cis_Arg, f0 // Dummy op to set denorm
- br.cond.sptk _CIS_COMMON2 // Return to main path
-};;
-
-GLOBAL_LIBM_END(__libm_sincos)
-
-//// |x| > 2^27 path ///////
-.proc _CIS_LARGE_ARGS
-_CIS_LARGE_ARGS:
-.prologue
-{ .mfi
- nop.m 0
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs
-}
-;;
-
-{ .mfi
- mov GR_SAVE_GP = gp
- nop.f 0
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0
-};;
-
-.body
-// Call of huge arguments sincos
-{ .mib
- nop.m 0
- mov GR_SAVE_PR = pr
- br.call.sptk b0 = __libm_sincos_large
-};;
-
-{ .mfi
- mov gp = GR_SAVE_GP
- nop.f 0
- mov pr = GR_SAVE_PR, 0x1fffe
-}
-;;
-
-{ .mfi
- nop.m 0
- nop.f 0
- mov b0 = GR_SAVE_B0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.d.s0 cis_Cos_res = cis_Cos_res, f1, f0
- mov ar.pfs = GR_SAVE_PFS
-}
-{ .mfb
- nop.m 0
- fma.d.s0 cis_Sin_res = cis_Sin_res, f1, f0
-(p14) br.ret.sptk b0 // exit for |x| > 2^27 path (__libm_sincos and cis)
-};;
-
-{ .mmb
- stfd [cis_pResSin] = cis_Sin_res
- stfd [cis_pResCos] = cis_Cos_res
- br.ret.sptk b0 // exit for sincos |x| > 2^27 path
-};;
-.endp _CIS_LARGE_ARGS
-
-.type __libm_sincos_large#,@function
-.global __libm_sincos_large#
-
diff --git a/sysdeps/ia64/fpu/libm_sincos_large.S b/sysdeps/ia64/fpu/libm_sincos_large.S
deleted file mode 100644
index b09d3693a6..0000000000
--- a/sysdeps/ia64/fpu/libm_sincos_large.S
+++ /dev/null
@@ -1,2757 +0,0 @@
-.file "libm_sincos_large.s"
-
-
-// Copyright (c) 2002 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/15/02 Initial version
-// 05/13/02 Changed interface to __libm_pi_by_2_reduce
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 05/15/03 Reformatted data tables
-//
-//
-// Overview of operation
-//==============================================================
-//
-// These functions calculate the sin and cos for inputs
-// greater than 2^10
-//
-// __libm_sin_large#
-// __libm_cos_large#
-// They accept argument in f8
-// and return result in f8 without final rounding
-//
-// __libm_sincos_large#
-// It accepts argument in f8
-// and returns cos in f8 and sin in f9 without final rounding
-//
-//
-//*********************************************************************
-//
-// Accuracy: Within .7 ulps for 80-bit floating point values
-// Very accurate for double precision values
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 as Input Value, f8 and f9 as Return Values
-// f32-f103
-//
-// General Purpose Registers:
-// r32-r43
-// r44-r45 (Used to pass arguments to pi_by_2 reduce routine)
-//
-// Predicate Registers: p6-p13
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// Denormal fault raised on denormal inputs
-// Overflow exceptions do not occur
-// Underflow exceptions raised when appropriate for sin
-// (No specialized error handling for this routine)
-// Inexact raised when appropriate by algorithm
-//
-// sin(SNaN) = QNaN
-// sin(QNaN) = QNaN
-// sin(inf) = QNaN
-// sin(+/-0) = +/-0
-// cos(inf) = QNaN
-// cos(SNaN) = QNaN
-// cos(QNaN) = QNaN
-// cos(0) = 1
-//
-//*********************************************************************
-//
-// Mathematical Description
-// ========================
-//
-// The computation of FSIN and FCOS is best handled in one piece of
-// code. The main reason is that given any argument Arg, computation
-// of trigonometric functions first calculate N and an approximation
-// to alpha where
-//
-// Arg = N pi/2 + alpha, |alpha| <= pi/4.
-//
-// Since
-//
-// cos( Arg ) = sin( (N+1) pi/2 + alpha ),
-//
-// therefore, the code for computing sine will produce cosine as long
-// as 1 is added to N immediately after the argument reduction
-// process.
-//
-// Let M = N if sine
-// N+1 if cosine.
-//
-// Now, given
-//
-// Arg = M pi/2 + alpha, |alpha| <= pi/4,
-//
-// let I = M mod 4, or I be the two lsb of M when M is represented
-// as 2's complement. I = [i_0 i_1]. Then
-//
-// sin( Arg ) = (-1)^i_0 sin( alpha ) if i_1 = 0,
-// = (-1)^i_0 cos( alpha ) if i_1 = 1.
-//
-// For example:
-// if M = -1, I = 11
-// sin ((-pi/2 + alpha) = (-1) cos (alpha)
-// if M = 0, I = 00
-// sin (alpha) = sin (alpha)
-// if M = 1, I = 01
-// sin (pi/2 + alpha) = cos (alpha)
-// if M = 2, I = 10
-// sin (pi + alpha) = (-1) sin (alpha)
-// if M = 3, I = 11
-// sin ((3/2)pi + alpha) = (-1) cos (alpha)
-//
-// The value of alpha is obtained by argument reduction and
-// represented by two working precision numbers r and c where
-//
-// alpha = r + c accurately.
-//
-// The reduction method is described in a previous write up.
-// The argument reduction scheme identifies 4 cases. For Cases 2
-// and 4, because |alpha| is small, sin(r+c) and cos(r+c) can be
-// computed very easily by 2 or 3 terms of the Taylor series
-// expansion as follows:
-//
-// Case 2:
-// -------
-//
-// sin(r + c) = r + c - r^3/6 accurately
-// cos(r + c) = 1 - 2^(-67) accurately
-//
-// Case 4:
-// -------
-//
-// sin(r + c) = r + c - r^3/6 + r^5/120 accurately
-// cos(r + c) = 1 - r^2/2 + r^4/24 accurately
-//
-// The only cases left are Cases 1 and 3 of the argument reduction
-// procedure. These two cases will be merged since after the
-// argument is reduced in either cases, we have the reduced argument
-// represented as r + c and that the magnitude |r + c| is not small
-// enough to allow the usage of a very short approximation.
-//
-// The required calculation is either
-//
-// sin(r + c) = sin(r) + correction, or
-// cos(r + c) = cos(r) + correction.
-//
-// Specifically,
-//
-// sin(r + c) = sin(r) + c sin'(r) + O(c^2)
-// = sin(r) + c cos (r) + O(c^2)
-// = sin(r) + c(1 - r^2/2) accurately.
-// Similarly,
-//
-// cos(r + c) = cos(r) - c sin(r) + O(c^2)
-// = cos(r) - c(r - r^3/6) accurately.
-//
-// We therefore concentrate on accurately calculating sin(r) and
-// cos(r) for a working-precision number r, |r| <= pi/4 to within
-// 0.1% or so.
-//
-// The greatest challenge of this task is that the second terms of
-// the Taylor series
-//
-// r - r^3/3! + r^r/5! - ...
-//
-// and
-//
-// 1 - r^2/2! + r^4/4! - ...
-//
-// are not very small when |r| is close to pi/4 and the rounding
-// errors will be a concern if simple polynomial accumulation is
-// used. When |r| < 2^-3, however, the second terms will be small
-// enough (6 bits or so of right shift) that a normal Horner
-// recurrence suffices. Hence there are two cases that we consider
-// in the accurate computation of sin(r) and cos(r), |r| <= pi/4.
-//
-// Case small_r: |r| < 2^(-3)
-// --------------------------
-//
-// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
-// we have
-//
-// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
-// = (-1)^i_0 * cos(r + c) if i_1 = 1
-//
-// can be accurately approximated by
-//
-// sin(Arg) = (-1)^i_0 * [sin(r) + c] if i_1 = 0
-// = (-1)^i_0 * [cos(r) - c*r] if i_1 = 1
-//
-// because |r| is small and thus the second terms in the correction
-// are unneccessary.
-//
-// Finally, sin(r) and cos(r) are approximated by polynomials of
-// moderate lengths.
-//
-// sin(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
-// cos(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
-//
-// We can make use of predicates to selectively calculate
-// sin(r) or cos(r) based on i_1.
-//
-// Case normal_r: 2^(-3) <= |r| <= pi/4
-// ------------------------------------
-//
-// This case is more likely than the previous one if one considers
-// r to be uniformly distributed in [-pi/4 pi/4]. Again,
-//
-// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
-// = (-1)^i_0 * cos(r + c) if i_1 = 1.
-//
-// Because |r| is now larger, we need one extra term in the
-// correction. sin(Arg) can be accurately approximated by
-//
-// sin(Arg) = (-1)^i_0 * [sin(r) + c(1-r^2/2)] if i_1 = 0
-// = (-1)^i_0 * [cos(r) - c*r*(1 - r^2/6)] i_1 = 1.
-//
-// Finally, sin(r) and cos(r) are approximated by polynomials of
-// moderate lengths.
-//
-// sin(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
-// PP_2 r^5 + ... + PP_8 r^17
-//
-// cos(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
-//
-// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
-// The crux in accurate computation is to calculate
-//
-// r + PP_1_hi r^3 or 1 + QQ_1 r^2
-//
-// accurately as two pieces: U_hi and U_lo. The way to achieve this
-// is to obtain r_hi as a 10 sig. bit number that approximates r to
-// roughly 8 bits or so of accuracy. (One convenient way is
-//
-// r_hi := frcpa( frcpa( r ) ).)
-//
-// This way,
-//
-// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
-// PP_1_hi (r^3 - r_hi^3)
-// = [r + PP_1_hi r_hi^3] +
-// [PP_1_hi (r - r_hi)
-// (r^2 + r_hi r + r_hi^2) ]
-// = U_hi + U_lo
-//
-// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
-// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
-// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
-// and that there is no more than 8 bit shift off between r and
-// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
-// calculated without any error. Finally, the fact that
-//
-// |U_lo| <= 2^(-8) |U_hi|
-//
-// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
-// 8 extra bits of accuracy.
-//
-// Similarly,
-//
-// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
-// [QQ_1 (r - r_hi)(r + r_hi)]
-// = U_hi + U_lo.
-//
-// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
-//
-// If i_1 = 0, then
-//
-// U_hi := r + PP_1_hi * r_hi^3
-// U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
-// poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
-// correction := c * ( 1 + C_1 r^2 )
-//
-// Else ...i_1 = 1
-//
-// U_hi := 1 + QQ_1 * r_hi * r_hi
-// U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
-// poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
-// correction := -c * r * (1 + S_1 * r^2)
-//
-// End
-//
-// Finally,
-//
-// V := poly + ( U_lo + correction )
-//
-// / U_hi + V if i_0 = 0
-// result := |
-// \ (-U_hi) - V if i_0 = 1
-//
-// It is important that in the last step, negation of U_hi is
-// performed prior to the subtraction which is to be performed in
-// the user-set rounding mode.
-//
-//
-// Algorithmic Description
-// =======================
-//
-// The argument reduction algorithm is tightly integrated into FSIN
-// and FCOS which share the same code. The following is complete and
-// self-contained. The argument reduction description given
-// previously is repeated below.
-//
-//
-// Step 0. Initialization.
-//
-// If FSIN is invoked, set N_inc := 0; else if FCOS is invoked,
-// set N_inc := 1.
-//
-// Step 1. Check for exceptional and special cases.
-//
-// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
-// handling.
-// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
-// arguments. This is the most likely case.
-// * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
-// arguments.
-// * If |Arg| >= 2^63, go to Step 10 for special handling.
-//
-// Step 2. Reduction of moderate arguments.
-//
-// If |Arg| < pi/4 ...quick branch
-// N_fix := N_inc (integer)
-// r := Arg
-// c := 0.0
-// Branch to Step 4, Case_1_complete
-// Else ...cf. argument reduction
-// N := Arg * two_by_PI (fp)
-// N_fix := fcvt.fx( N ) (int)
-// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
-// s := Arg - N * P_1 (first piece of pi/2)
-// w := -N * P_2 (second piece of pi/2)
-//
-// If |s| >= 2^(-33)
-// go to Step 3, Case_1_reduce
-// Else
-// go to Step 7, Case_2_reduce
-// Endif
-// Endif
-//
-// Step 3. Case_1_reduce.
-//
-// r := s + w
-// c := (s - r) + w ...observe order
-//
-// Step 4. Case_1_complete
-//
-// ...At this point, the reduced argument alpha is
-// ...accurately represented as r + c.
-// If |r| < 2^(-3), go to Step 6, small_r.
-//
-// Step 5. Normal_r.
-//
-// Let [i_0 i_1] by the 2 lsb of N_fix.
-// FR_rsq := r * r
-// r_hi := frcpa( frcpa( r ) )
-// r_lo := r - r_hi
-//
-// If i_1 = 0, then
-// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
-// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
-// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
-// correction := c + c*C_1*FR_rsq ...any order
-// Else
-// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
-// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
-// U_lo := QQ_1 * r_lo * (r + r_hi)
-// correction := -c*(r + S_1*FR_rsq*r) ...any order
-// Endif
-//
-// V := poly + (U_lo + correction) ...observe order
-//
-// result := (i_0 == 0? 1.0 : -1.0)
-//
-// Last instruction in user-set rounding mode
-//
-// result := (i_0 == 0? result*U_hi + V :
-// result*U_hi - V)
-//
-// Return
-//
-// Step 6. Small_r.
-//
-// ...Use flush to zero mode without causing exception
-// Let [i_0 i_1] be the two lsb of N_fix.
-//
-// FR_rsq := r * r
-//
-// If i_1 = 0 then
-// z := FR_rsq*FR_rsq; z := FR_rsq*z *r
-// poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
-// poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
-// correction := c
-// result := r
-// Else
-// z := FR_rsq*FR_rsq; z := FR_rsq*z
-// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
-// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
-// correction := -c*r
-// result := 1
-// Endif
-//
-// poly := poly_hi + (z * poly_lo + correction)
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-// Return
-//
-// Step 7. Case_2_reduce.
-//
-// ...Refer to the write up for argument reduction for
-// ...rationale. The reduction algorithm below is taken from
-// ...argument reduction description and integrated this.
-//
-// w := N*P_3
-// U_1 := N*P_2 + w ...FMA
-// U_2 := (N*P_2 - U_1) + w ...2 FMA
-// ...U_1 + U_2 is N*(P_2+P_3) accurately
-//
-// r := s - U_1
-// c := ( (s - r) - U_1 ) - U_2
-//
-// ...The mathematical sum r + c approximates the reduced
-// ...argument accurately. Note that although compared to
-// ...Case 1, this case requires much more work to reduce
-// ...the argument, the subsequent calculation needed for
-// ...any of the trigonometric function is very little because
-// ...|alpha| < 1.01*2^(-33) and thus two terms of the
-// ...Taylor series expansion suffices.
-//
-// If i_1 = 0 then
-// poly := c + S_1 * r * r * r ...any order
-// result := r
-// Else
-// poly := -2^(-67)
-// result := 1.0
-// Endif
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-//
-// Return
-//
-//
-// Step 8. Pre-reduction of large arguments.
-//
-// ...Again, the following reduction procedure was described
-// ...in the separate write up for argument reduction, which
-// ...is tightly integrated here.
-
-// N_0 := Arg * Inv_P_0
-// N_0_fix := fcvt.fx( N_0 )
-// N_0 := fcvt.xf( N_0_fix)
-
-// Arg' := Arg - N_0 * P_0
-// w := N_0 * d_1
-// N := Arg' * two_by_PI
-// N_fix := fcvt.fx( N )
-// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
-//
-// s := Arg' - N * P_1
-// w := w - N * P_2
-//
-// If |s| >= 2^(-14)
-// go to Step 3
-// Else
-// go to Step 9
-// Endif
-//
-// Step 9. Case_4_reduce.
-//
-// ...first obtain N_0*d_1 and -N*P_2 accurately
-// U_hi := N_0 * d_1 V_hi := -N*P_2
-// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
-//
-// ...compute the contribution from N_0*d_1 and -N*P_3
-// w := -N*P_3
-// w := w + N_0*d_2
-// t := U_lo + V_lo + w ...any order
-//
-// ...at this point, the mathematical value
-// ...s + U_hi + V_hi + t approximates the true reduced argument
-// ...accurately. Just need to compute this accurately.
-//
-// ...Calculate U_hi + V_hi accurately:
-// A := U_hi + V_hi
-// if |U_hi| >= |V_hi| then
-// a := (U_hi - A) + V_hi
-// else
-// a := (V_hi - A) + U_hi
-// endif
-// ...order in computing "a" must be observed. This branch is
-// ...best implemented by predicates.
-// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
-// ...much smaller than A: |a| <= (1/2)ulp(A).
-//
-// ...Just need to calculate s + A + a + t
-// C_hi := s + A t := t + a
-// C_lo := (s - C_hi) + A
-// C_lo := C_lo + t
-//
-// ...Final steps for reduction
-// r := C_hi + C_lo
-// c := (C_hi - r) + C_lo
-//
-// ...At this point, we have r and c
-// ...And all we need is a couple of terms of the corresponding
-// ...Taylor series.
-//
-// If i_1 = 0
-// poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
-// result := r
-// Else
-// poly := FR_rsq*(C_1 + FR_rsq*C_2)
-// result := 1
-// Endif
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-// Return
-//
-// Large Arguments: For arguments above 2**63, a Payne-Hanek
-// style argument reduction is used and pi_by_2 reduce is called.
-//
-
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(FSINCOS_CONSTANTS)
-
-data4 0x4B800000 // two**24
-data4 0xCB800000 // -two**24
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
-data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
-data8 0xC90FDAA22168C235, 0x00003FFF // P_1
-data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
-data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
-data4 0x5F000000 // two**63
-data4 0xDF000000 // -two**63
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
-data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
-data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
-data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
-data8 0xC90FDAA22168C234, 0x0000BFFE // neg_pi_by_4
-data4 0x3E000000 // two**-3
-data4 0xBE000000 // -two**-3
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-data4 0x2F000000 // two**-33
-data4 0xAF000000 // -two**-33
-data4 0x9E000000 // -two**-67
-data4 0x00000000 // pad
-data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
-data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
-data8 0xB092382F640AD517, 0x00003FDE // PP_6
-data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
-data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
-data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
-data8 0x8888888888888962, 0x00003FF8 // PP_2
-data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
-data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
-data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
-data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
-data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x8000000000000000, 0x0000BFFE // QQ_1
-data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
-data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
-data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
-data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
-data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
-data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x88888888888868DB, 0x00003FF8 // S_2
-data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
-data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
-data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
-data4 0x38800000 // two**-14
-data4 0xB8800000 // -two**-14
-LOCAL_OBJECT_END(FSINCOS_CONSTANTS)
-
-// sin and cos registers
-
-// FR
-FR_Input_X = f8
-
-FR_r = f8
-FR_c = f9
-
-FR_Two_to_63 = f32
-FR_Two_to_24 = f33
-FR_Pi_by_4 = f33
-FR_Two_to_M14 = f34
-FR_Two_to_M33 = f35
-FR_Neg_Two_to_24 = f36
-FR_Neg_Pi_by_4 = f36
-FR_Neg_Two_to_M14 = f37
-FR_Neg_Two_to_M33 = f38
-FR_Neg_Two_to_M67 = f39
-FR_Inv_pi_by_2 = f40
-FR_N_float = f41
-FR_N_fix = f42
-FR_P_1 = f43
-FR_P_2 = f44
-FR_P_3 = f45
-FR_s = f46
-FR_w = f47
-FR_d_2 = f48
-FR_prelim = f49
-FR_Z = f50
-FR_A = f51
-FR_a = f52
-FR_t = f53
-FR_U_1 = f54
-FR_U_2 = f55
-FR_C_1 = f56
-FR_C_2 = f57
-FR_C_3 = f58
-FR_C_4 = f59
-FR_C_5 = f60
-FR_S_1 = f61
-FR_S_2 = f62
-FR_S_3 = f63
-FR_S_4 = f64
-FR_S_5 = f65
-FR_poly_hi = f66
-FR_poly_lo = f67
-FR_r_hi = f68
-FR_r_lo = f69
-FR_rsq = f70
-FR_r_cubed = f71
-FR_C_hi = f72
-FR_N_0 = f73
-FR_d_1 = f74
-FR_V = f75
-FR_V_hi = f75
-FR_V_lo = f76
-FR_U_hi = f77
-FR_U_lo = f78
-FR_U_hiabs = f79
-FR_V_hiabs = f80
-FR_PP_8 = f81
-FR_QQ_8 = f81
-FR_PP_7 = f82
-FR_QQ_7 = f82
-FR_PP_6 = f83
-FR_QQ_6 = f83
-FR_PP_5 = f84
-FR_QQ_5 = f84
-FR_PP_4 = f85
-FR_QQ_4 = f85
-FR_PP_3 = f86
-FR_QQ_3 = f86
-FR_PP_2 = f87
-FR_QQ_2 = f87
-FR_QQ_1 = f88
-FR_N_0_fix = f89
-FR_Inv_P_0 = f90
-FR_corr = f91
-FR_poly = f92
-FR_Neg_Two_to_M3 = f93
-FR_Two_to_M3 = f94
-FR_Neg_Two_to_63 = f94
-FR_P_0 = f95
-FR_C_lo = f96
-FR_PP_1 = f97
-FR_PP_1_lo = f98
-FR_ArgPrime = f99
-
-// GR
-GR_Table_Base = r32
-GR_Table_Base1 = r33
-GR_i_0 = r34
-GR_i_1 = r35
-GR_N_Inc = r36
-GR_Sin_or_Cos = r37
-
-GR_SAVE_B0 = r39
-GR_SAVE_GP = r40
-GR_SAVE_PFS = r41
-
-// sincos combined routine registers
-
-// GR
-GR_SINCOS_SAVE_PFS = r32
-GR_SINCOS_SAVE_B0 = r33
-GR_SINCOS_SAVE_GP = r34
-
-// FR
-FR_SINCOS_ARG = f100
-FR_SINCOS_RES_SIN = f101
-
-
-.section .text
-
-
-GLOBAL_LIBM_ENTRY(__libm_sincos_large)
-
-{ .mfi
- alloc GR_SINCOS_SAVE_PFS = ar.pfs,0,3,0,0
- fma.s1 FR_SINCOS_ARG = f8, f1, f0 // Save argument for sin and cos
- mov GR_SINCOS_SAVE_B0 = b0
-};;
-
-{ .mfb
- mov GR_SINCOS_SAVE_GP = gp
- nop.f 0
- br.call.sptk b0 = __libm_sin_large // Call sin
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_SINCOS_RES_SIN = f8, f1, f0 // Save sin result
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s1 f8 = FR_SINCOS_ARG, f1, f0 // Arg for cos
- br.call.sptk b0 = __libm_cos_large // Call cos
-};;
-
-{ .mfi
- mov gp = GR_SINCOS_SAVE_GP
- fma.s1 f9 = FR_SINCOS_RES_SIN, f1, f0 // Out sin result
- mov b0 = GR_SINCOS_SAVE_B0
-};;
-
-{ .mib
- nop.m 0
- mov ar.pfs = GR_SINCOS_SAVE_PFS
- br.ret.sptk b0 // sincos_large exit
-};;
-
-GLOBAL_LIBM_END(__libm_sincos_large)
-
-
-
-
-GLOBAL_LIBM_ENTRY(__libm_sin_large)
-
-{ .mlx
-alloc GR_Table_Base = ar.pfs,0,12,2,0
- movl GR_Sin_or_Cos = 0x0 ;;
-}
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-{ .mib
- nop.m 999
- nop.i 999
- br.cond.sptk SINCOS_CONTINUE ;;
-}
-
-GLOBAL_LIBM_END(__libm_sin_large)
-
-GLOBAL_LIBM_ENTRY(__libm_cos_large)
-
-{ .mlx
-alloc GR_Table_Base= ar.pfs,0,12,2,0
- movl GR_Sin_or_Cos = 0x1 ;;
-}
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-//
-// Load Table Address
-//
-SINCOS_CONTINUE:
-
-{ .mmi
- add GR_Table_Base1 = 96, GR_Table_Base
- ldfs FR_Two_to_24 = [GR_Table_Base], 4
- nop.i 999
-}
-;;
-
-{ .mmi
- nop.m 999
-//
-// Load 2**24, load 2**63.
-//
- ldfs FR_Neg_Two_to_24 = [GR_Table_Base], 12
- mov r41 = ar.pfs ;;
-}
-
-{ .mfi
- ldfs FR_Two_to_63 = [GR_Table_Base1], 4
-//
-// Check for unnormals - unsupported operands. We do not want
-// to generate denormal exception
-// Check for NatVals, QNaNs, SNaNs, +/-Infs
-// Check for EM unsupporteds
-// Check for Zero
-//
- fclass.m.unc p6, p8 = FR_Input_X, 0x1E3
- mov r40 = gp ;;
-}
-
-{ .mfi
- nop.m 999
- fclass.nm.unc p8, p0 = FR_Input_X, 0x1FF
-// GR_Sin_or_Cos denotes
- mov r39 = b0
-}
-
-{ .mfb
- ldfs FR_Neg_Two_to_63 = [GR_Table_Base1], 12
- fclass.m.unc p10, p0 = FR_Input_X, 0x007
-(p6) br.cond.spnt SINCOS_SPECIAL ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p8) br.cond.spnt SINCOS_SPECIAL ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-//
-// Branch if +/- NaN, Inf.
-// Load -2**24, load -2**63.
-//
-(p10) br.cond.spnt SINCOS_ZERO ;;
-}
-
-{ .mmb
- ldfe FR_Inv_pi_by_2 = [GR_Table_Base], 16
- ldfe FR_Inv_P_0 = [GR_Table_Base1], 16
- nop.b 999 ;;
-}
-
-{ .mmb
- nop.m 999
- ldfe FR_d_1 = [GR_Table_Base1], 16
- nop.b 999 ;;
-}
-//
-// Raise possible denormal operand flag with useful fcmp
-// Is x <= -2**63
-// Load Inv_P_0 for pre-reduction
-// Load Inv_pi_by_2
-//
-
-{ .mmb
- ldfe FR_P_0 = [GR_Table_Base], 16
- ldfe FR_d_2 = [GR_Table_Base1], 16
- nop.b 999 ;;
-}
-//
-// Load P_0
-// Load d_1
-// Is x >= 2**63
-// Is x <= -2**24?
-//
-
-{ .mmi
- ldfe FR_P_1 = [GR_Table_Base], 16 ;;
-//
-// Load P_1
-// Load d_2
-// Is x >= 2**24?
-//
- ldfe FR_P_2 = [GR_Table_Base], 16
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
- ldfe FR_P_3 = [GR_Table_Base], 16
- fcmp.le.unc.s1 p7, p8 = FR_Input_X, FR_Neg_Two_to_24
-}
-
-{ .mfi
- nop.m 999
-//
-// Branch if +/- zero.
-// Decide about the paths to take:
-// If -2**24 < FR_Input_X < 2**24 - CASE 1 OR 2
-// OTHERWISE - CASE 3 OR 4
-//
- fcmp.le.unc.s1 p10, p11 = FR_Input_X, FR_Neg_Two_to_63
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p8) fcmp.ge.s1 p7, p0 = FR_Input_X, FR_Two_to_24
- nop.i 999
-}
-
-{ .mfi
- ldfe FR_Pi_by_4 = [GR_Table_Base1], 16
-(p11) fcmp.ge.s1 p10, p0 = FR_Input_X, FR_Two_to_63
- nop.i 999 ;;
-}
-
-{ .mmi
- ldfe FR_Neg_Pi_by_4 = [GR_Table_Base1], 16 ;;
- ldfs FR_Two_to_M3 = [GR_Table_Base1], 4
- nop.i 999 ;;
-}
-
-{ .mib
- ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1], 12
- nop.i 999
-//
-// Load P_2
-// Load P_3
-// Load pi_by_4
-// Load neg_pi_by_4
-// Load 2**(-3)
-// Load -2**(-3).
-//
-(p10) br.cond.spnt SINCOS_ARG_TOO_LARGE ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-//
-// Branch out if x >= 2**63. Use Payne-Hanek Reduction
-//
-(p7) br.cond.spnt SINCOS_LARGER_ARG ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Branch if Arg <= -2**24 or Arg >= 2**24 and use pre-reduction.
-//
- fma.s1 FR_N_float = FR_Input_X, FR_Inv_pi_by_2, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- fcmp.lt.unc.s1 p6, p7 = FR_Input_X, FR_Pi_by_4
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Select the case when |Arg| < pi/4
-// Else Select the case when |Arg| >= pi/4
-//
- fcvt.fx.s1 FR_N_fix = FR_N_float
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N = Arg * 2/pi
-// Check if Arg < pi/4
-//
-(p6) fcmp.gt.s1 p6, p7 = FR_Input_X, FR_Neg_Pi_by_4
- nop.i 999 ;;
-}
-//
-// Case 2: Convert integer N_fix back to normalized floating-point value.
-// Case 1: p8 is only affected when p6 is set
-//
-
-{ .mfi
-(p7) ldfs FR_Two_to_M33 = [GR_Table_Base1], 4
-//
-// Grab the integer part of N and call it N_fix
-//
-(p6) fmerge.se FR_r = FR_Input_X, FR_Input_X
-// If |x| < pi/4, r = x and c = 0
-// lf |x| < pi/4, is x < 2**(-3).
-// r = Arg
-// c = 0
-(p6) mov GR_N_Inc = GR_Sin_or_Cos ;;
-}
-
-{ .mmf
- nop.m 999
-(p7) ldfs FR_Neg_Two_to_M33 = [GR_Table_Base1], 4
-(p6) fmerge.se FR_c = f0, f0
-}
-
-{ .mfi
- nop.m 999
-(p6) fcmp.lt.unc.s1 p8, p9 = FR_Input_X, FR_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
-// If |x| >= pi/4,
-// Create the right N for |x| < pi/4 and otherwise
-// Case 2: Place integer part of N in GP register
-//
-(p7) fcvt.xf FR_N_float = FR_N_fix
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
-(p7) getf.sig GR_N_Inc = FR_N_fix
-(p8) fcmp.gt.s1 p8, p0 = FR_Input_X, FR_Neg_Two_to_M3 ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-//
-// Load 2**(-33), -2**(-33)
-//
-(p8) br.cond.spnt SINCOS_SMALL_R ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p6) br.cond.sptk SINCOS_NORMAL_R ;;
-}
-//
-// if |x| < pi/4, branch based on |x| < 2**(-3) or otherwise.
-//
-//
-// In this branch, |x| >= pi/4.
-//
-
-{ .mfi
- ldfs FR_Neg_Two_to_M67 = [GR_Table_Base1], 8
-//
-// Load -2**(-67)
-//
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X
-//
-// w = N * P_2
-// s = -N * P_1 + Arg
-//
- add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_w = FR_N_float, FR_P_2, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Adjust N_fix by N_inc to determine whether sine or
-// cosine is being calculated
-//
- fcmp.lt.unc.s1 p7, p6 = FR_s, FR_Two_to_M33
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-// Remember x >= pi/4.
-// Is s <= -2**(-33) or s >= 2**(-33) (p6)
-// or -2**(-33) < s < 2**(-33) (p7)
-(p6) fms.s1 FR_r = FR_s, f1, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p6) fms.s1 FR_c = FR_s, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// For big s: r = s - w: No futher reduction is necessary
-// For small s: w = N * P_3 (change sign) More reduction
-//
-(p6) fcmp.lt.unc.s1 p8, p9 = FR_r, FR_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p8) fcmp.gt.s1 p8, p9 = FR_r, FR_Neg_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-//
-// For big s: Is |r| < 2**(-3)?
-// For big s: c = S - r
-// For small s: U_1 = N * P_2 + w
-//
-// If p8 is set, prepare to branch to Small_R.
-// If p9 is set, prepare to branch to Normal_R.
-// For big s, r is complete here.
-//
-(p6) fms.s1 FR_c = FR_c, f1, FR_w
-//
-// For big s: c = c + w (w has not been negated.)
-// For small s: r = S - U_1
-//
-(p8) br.cond.spnt SINCOS_SMALL_R ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p9) br.cond.sptk SINCOS_NORMAL_R ;;
-}
-
-{ .mfi
-(p7) add GR_Table_Base1 = 224, GR_Table_Base1
-//
-// Branch to SINCOS_SMALL_R or SINCOS_NORMAL_R
-//
-(p7) fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
-//
-// c = S - U_1
-// r = S_1 * r
-//
-//
-(p7) extr.u GR_i_1 = GR_N_Inc, 0, 1
-}
-
-{ .mmi
- nop.m 999 ;;
-//
-// Get [i_0,i_1] - two lsb of N_fix_gr.
-// Do dummy fmpy so inexact is always set.
-//
-(p7) cmp.eq.unc p9, p10 = 0x0, GR_i_1
-(p7) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-//
-// For small s: U_2 = N * P_2 - U_1
-// S_1 stored constant - grab the one stored with the
-// coefficients.
-//
-
-{ .mfi
-(p7) ldfe FR_S_1 = [GR_Table_Base1], 16
-//
-// Check if i_1 and i_0 != 0
-//
-(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67
-(p7) cmp.eq.unc p11, p12 = 0x0, GR_i_0 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fms.s1 FR_s = FR_s, f1, FR_r
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// S = S - r
-// U_2 = U_2 + w
-// load S_1
-//
-(p7) fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_U_2 = FR_U_2, f1, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//(p7) fmerge.se FR_Input_X = FR_r, FR_r
-(p7) fmerge.se FR_prelim = FR_r, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//(p10) fma.s1 FR_Input_X = f0, f1, f1
-(p10) fma.s1 FR_prelim = f0, f1, f1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// FR_rsq = r * r
-// Save r as the result.
-//
-(p7) fms.s1 FR_c = FR_s, f1, FR_U_1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if ( i_1 ==0) poly = c + S_1*r*r*r
-// else Result = 1
-//
-//(p12) fnma.s1 FR_Input_X = FR_Input_X, f1, f0
-(p12) fnma.s1 FR_prelim = FR_prelim, f1, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_r = FR_S_1, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.d.s1 FR_S_1 = FR_S_1, FR_S_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// If i_1 != 0, poly = 2**(-67)
-//
-(p7) fms.s1 FR_c = FR_c, f1, FR_U_2
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// c = c - U_2
-//
-(p9) fma.s1 FR_poly = FR_r, FR_rsq, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// i_0 != 0, so Result = -Result
-//
-(p11) fma.s1 FR_Input_X = FR_prelim, f1, FR_poly
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
-(p12) fms.s1 FR_Input_X = FR_prelim, f1, FR_poly
-//
-// if (i_0 == 0), Result = Result + poly
-// else Result = Result - poly
-//
- br.ret.sptk b0 ;;
-}
-SINCOS_LARGER_ARG:
-
-{ .mfi
- nop.m 999
- fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0
- nop.i 999
-}
-;;
-
-// This path for argument > 2*24
-// Adjust table_ptr1 to beginning of table.
-//
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-//
-// Point to 2*-14
-// N_0 = Arg * Inv_P_0
-//
-
-{ .mmi
- add GR_Table_Base = 688, GR_Table_Base ;;
- ldfs FR_Two_to_M14 = [GR_Table_Base], 4
- nop.i 999 ;;
-}
-
-{ .mfi
- ldfs FR_Neg_Two_to_M14 = [GR_Table_Base], 0
- nop.f 999
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load values 2**(-14) and -2**(-14)
-//
- fcvt.fx.s1 FR_N_0_fix = FR_N_0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N_0_fix = integer part of N_0
-//
- fcvt.xf FR_N_0 = FR_N_0_fix
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Make N_0 the integer part
-//
- fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_w = FR_N_0, FR_d_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Arg' = -N_0 * P_0 + Arg
-// w = N_0 * d_1
-//
- fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N = A' * 2/pi
-//
- fcvt.fx.s1 FR_N_fix = FR_N_float
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N_fix is the integer part
-//
- fcvt.xf FR_N_float = FR_N_fix
- nop.i 999 ;;
-}
-
-{ .mfi
- getf.sig GR_N_Inc = FR_N_fix
- nop.f 999
- nop.i 999 ;;
-}
-
-{ .mii
- nop.m 999
- nop.i 999 ;;
- add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N is the integer part of the reduced-reduced argument.
-// Put the integer in a GP register
-//
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
- fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// s = -N*P_1 + Arg'
-// w = -N*P_2 + w
-// N_fix_gr = N_fix_gr + N_inc
-//
- fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// For |s| > 2**(-14) r = S + w (r complete)
-// Else U_hi = N_0 * d_1
-//
-(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Either S <= -2**(-14) or S >= 2**(-14)
-// or -2**(-14) < s < 2**(-14)
-//
-(p8) fma.s1 FR_r = FR_s, f1, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// We need abs of both U_hi and V_hi - don't
-// worry about switched sign of V_hi.
-//
-(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// Big s: finish up c = (S - r) + w (c complete)
-// Case 4: A = U_hi + V_hi
-// Note: Worry about switched sign of V_hi, so subtract instead of add.
-//
-(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-// For big s: c = S - r
-// For small s do more work: U_lo = N_0 * d_1 - U_hi
-//
-(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// For big s: Is |r| < 2**(-3)
-// For big s: if p12 set, prepare to branch to Small_R.
-// For big s: If p13 set, prepare to branch to Normal_R.
-//
-(p8) fms.s1 FR_c = FR_s, f1, FR_r
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// For small S: V_hi = N * P_2
-// w = N * P_3
-// Note the product does not include the (-) as in the writeup
-// so (-) missing for V_hi and w.
-//
-(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_c = FR_c, f1, FR_w
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
-(p12) br.cond.spnt SINCOS_SMALL_R ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p13) br.cond.sptk SINCOS_NORMAL_R ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
-// The remaining stuff is for Case 4.
-// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
-// Note: the (-) is still missing for V_lo.
-// Small s: w = w + N_0 * d_2
-// Note: the (-) is now incorporated in w.
-//
-(p9) fcmp.ge.unc.s1 p10, p11 = FR_U_hiabs, FR_V_hiabs
- extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// C_hi = S + A
-//
-(p9) fma.s1 FR_t = FR_U_lo, f1, FR_V_lo
- extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// t = U_lo + V_lo
-//
-//
-(p10) fms.s1 FR_a = FR_U_hi, f1, FR_A
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p11) fma.s1 FR_a = FR_V_hi, f1, FR_A
- nop.i 999
-}
-;;
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-{ .mfi
- add GR_Table_Base = 528, GR_Table_Base
-//
-// Is U_hiabs >= V_hiabs?
-//
-(p9) fma.s1 FR_C_hi = FR_s, f1, FR_A
- nop.i 999 ;;
-}
-
-{ .mmi
- ldfe FR_C_1 = [GR_Table_Base], 16 ;;
- ldfe FR_C_2 = [GR_Table_Base], 64
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
-//
-// c = c + C_lo finished.
-// Load C_2
-//
- ldfe FR_S_1 = [GR_Table_Base], 16
-//
-// C_lo = S - C_hi
-//
- fma.s1 FR_t = FR_t, f1, FR_w ;;
-}
-//
-// r and c have been computed.
-// Make sure ftz mode is set - should be automatic when using wre
-// |r| < 2**(-3)
-// Get [i_0,i_1] - two lsb of N_fix.
-// Load S_1
-//
-
-{ .mfi
- ldfe FR_S_2 = [GR_Table_Base], 64
-//
-// t = t + w
-//
-(p10) fms.s1 FR_a = FR_a, f1, FR_V_hi
- cmp.eq.unc p9, p10 = 0x0, GR_i_0
-}
-
-{ .mfi
- nop.m 999
-//
-// For larger u than v: a = U_hi - A
-// Else a = V_hi - A (do an add to account for missing (-) on V_hi
-//
- fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p11) fms.s1 FR_a = FR_U_hi, f1, FR_a
- cmp.eq.unc p11, p12 = 0x0, GR_i_1
-}
-
-{ .mfi
- nop.m 999
-//
-// If u > v: a = (U_hi - A) + V_hi
-// Else a = (V_hi - A) + U_hi
-// In each case account for negative missing from V_hi.
-//
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_A
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// C_lo = (S - C_hi) + A
-//
- fma.s1 FR_t = FR_t, f1, FR_a
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// t = t + a
-//
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_t
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// C_lo = C_lo + t
-// Adjust Table_Base to beginning of table
-//
- fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load S_2
-//
- fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// Table_Base points to C_1
-// r = C_hi + C_lo
-//
- fms.s1 FR_c = FR_C_hi, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_1 ==0: poly = S_2 * FR_rsq + S_1
-// else poly = C_2 * FR_rsq + C_1
-//
-//(p11) fma.s1 FR_Input_X = f0, f1, FR_r
-(p11) fma.s1 FR_prelim = f0, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//(p12) fma.s1 FR_Input_X = f0, f1, f1
-(p12) fma.s1 FR_prelim = f0, f1, f1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Compute r_cube = FR_rsq * r
-//
-(p11) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// Compute FR_rsq = r * r
-// Is i_1 == 0 ?
-//
- fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// c = C_hi - r
-// Load C_1
-//
- fma.s1 FR_c = FR_c, f1, FR_C_lo
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_1 ==0: poly = r_cube * poly + c
-// else poly = FR_rsq * poly
-//
-//(p10) fms.s1 FR_Input_X = f0, f1, FR_Input_X
-(p10) fms.s1 FR_prelim = f0, f1, FR_prelim
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_1 ==0: Result = r
-// else Result = 1.0
-//
-(p11) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_0 !=0: Result = -Result
-//
-(p9) fma.s1 FR_Input_X = FR_prelim, f1, FR_poly
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
-(p10) fms.s1 FR_Input_X = FR_prelim, f1, FR_poly
-//
-// if i_0 == 0: Result = Result + poly
-// else Result = Result - poly
-//
- br.ret.sptk b0 ;;
-}
-SINCOS_SMALL_R:
-
-{ .mii
- nop.m 999
- extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
-//
-//
-// Compare both i_1 and i_0 with 0.
-// if i_1 == 0, set p9.
-// if i_0 == 0, set p11.
-//
- cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_rsq = FR_r, FR_r, f0
- extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Z = Z * FR_rsq
-//
-(p10) fnma.s1 FR_c = FR_c, FR_r, f0
- cmp.eq.unc p11, p12 = 0x0, GR_i_0
-}
-;;
-
-// ******************************************************************
-// ******************************************************************
-// ******************************************************************
-// r and c have been computed.
-// We know whether this is the sine or cosine routine.
-// Make sure ftz mode is set - should be automatic when using wre
-// |r| < 2**(-3)
-//
-// Set table_ptr1 to beginning of constant table.
-// Get [i_0,i_1] - two lsb of N_fix_gr.
-//
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-//
-// Set table_ptr1 to point to S_5.
-// Set table_ptr1 to point to C_5.
-// Compute FR_rsq = r * r
-//
-
-{ .mfi
-(p9) add GR_Table_Base = 672, GR_Table_Base
-(p10) fmerge.s FR_r = f1, f1
-(p10) add GR_Table_Base = 592, GR_Table_Base ;;
-}
-//
-// Set table_ptr1 to point to S_5.
-// Set table_ptr1 to point to C_5.
-//
-
-{ .mmi
-(p9) ldfe FR_S_5 = [GR_Table_Base], -16 ;;
-//
-// if (i_1 == 0) load S_5
-// if (i_1 != 0) load C_5
-//
-(p9) ldfe FR_S_4 = [GR_Table_Base], -16
- nop.i 999 ;;
-}
-
-{ .mmf
-(p10) ldfe FR_C_5 = [GR_Table_Base], -16
-//
-// Z = FR_rsq * FR_rsq
-//
-(p9) ldfe FR_S_3 = [GR_Table_Base], -16
-//
-// Compute FR_rsq = r * r
-// if (i_1 == 0) load S_4
-// if (i_1 != 0) load C_4
-//
- fma.s1 FR_Z = FR_rsq, FR_rsq, f0 ;;
-}
-//
-// if (i_1 == 0) load S_3
-// if (i_1 != 0) load C_3
-//
-
-{ .mmi
-(p9) ldfe FR_S_2 = [GR_Table_Base], -16 ;;
-//
-// if (i_1 == 0) load S_2
-// if (i_1 != 0) load C_2
-//
-(p9) ldfe FR_S_1 = [GR_Table_Base], -16
- nop.i 999
-}
-
-{ .mmi
-(p10) ldfe FR_C_4 = [GR_Table_Base], -16 ;;
-(p10) ldfe FR_C_3 = [GR_Table_Base], -16
- nop.i 999 ;;
-}
-
-{ .mmi
-(p10) ldfe FR_C_2 = [GR_Table_Base], -16 ;;
-(p10) ldfe FR_C_1 = [GR_Table_Base], -16
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 != 0):
-// poly_lo = FR_rsq * C_5 + C_4
-// poly_hi = FR_rsq * C_2 + C_1
-//
-(p9) fma.s1 FR_Z = FR_Z, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0) load S_1
-// if (i_1 != 0) load C_1
-//
-(p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// c = -c * r
-// dummy fmpy's to flag inexact.
-//
-(p9) fma.d.s1 FR_S_4 = FR_S_4, FR_S_4, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_lo = FR_rsq * poly_lo + C_3
-// poly_hi = FR_rsq * poly_hi
-//
- fma.s1 FR_Z = FR_Z, FR_rsq, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0):
-// poly_lo = FR_rsq * S_5 + S_4
-// poly_hi = FR_rsq * S_2 + S_1
-//
-(p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0):
-// Z = Z * r for only one of the small r cases - not there
-// in original implementation notes.
-//
-(p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.d.s1 FR_C_1 = FR_C_1, FR_C_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_lo = FR_rsq * poly_lo + S_3
-// poly_hi = FR_rsq * poly_hi
-//
-(p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0): dummy fmpy's to flag inexact
-// r = 1
-//
-(p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_hi = r * poly_hi
-//
- fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fms.s1 FR_r = f0, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_hi = Z * poly_lo + c
-// if i_0 == 1: r = -r
-//
- fma.s1 FR_poly = FR_poly, f1, FR_poly_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fms.s1 FR_Input_X = FR_r, f1, FR_poly
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-//
-// poly = poly + poly_hi
-//
-(p11) fma.s1 FR_Input_X = FR_r, f1, FR_poly
-//
-// if (i_0 == 0) Result = r + poly
-// if (i_0 != 0) Result = r - poly
-//
- br.ret.sptk b0 ;;
-}
-SINCOS_NORMAL_R:
-
-{ .mii
- nop.m 999
- extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
-//
-// Set table_ptr1 and table_ptr2 to base address of
-// constant table.
- cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_rsq = FR_r, FR_r, f0
- extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-
-{ .mfi
- nop.m 999
- frcpa.s1 FR_r_hi, p6 = f1, FR_r
- cmp.eq.unc p11, p12 = 0x0, GR_i_0
-}
-;;
-
-// ******************************************************************
-// ******************************************************************
-// ******************************************************************
-//
-// r and c have been computed.
-// We known whether this is the sine or cosine routine.
-// Make sure ftz mode is set - should be automatic when using wre
-// Get [i_0,i_1] - two lsb of N_fix_gr alone.
-//
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-{ .mfi
-(p10) add GR_Table_Base = 384, GR_Table_Base
-//(p12) fms.s1 FR_Input_X = f0, f1, f1
-(p12) fms.s1 FR_prelim = f0, f1, f1
-(p9) add GR_Table_Base = 224, GR_Table_Base ;;
-}
-
-{ .mmf
- nop.m 999
-(p10) ldfe FR_QQ_8 = [GR_Table_Base], 16
-//
-// if (i_1==0) poly = poly * FR_rsq + PP_1_lo
-// else poly = FR_rsq * poly
-//
-//(p11) fma.s1 FR_Input_X = f0, f1, f1 ;;
-(p11) fma.s1 FR_prelim = f0, f1, f1 ;;
-}
-
-{ .mmf
-(p10) ldfe FR_QQ_7 = [GR_Table_Base], 16
-//
-// Adjust table pointers based on i_0
-// Compute rsq = r * r
-//
-(p9) ldfe FR_PP_8 = [GR_Table_Base], 16
- fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 ;;
-}
-
-{ .mmf
-(p9) ldfe FR_PP_7 = [GR_Table_Base], 16
-(p10) ldfe FR_QQ_6 = [GR_Table_Base], 16
-//
-// Load PP_8 and QQ_8; PP_7 and QQ_7
-//
- frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi ;;
-}
-//
-// if (i_1==0) poly = PP_7 + FR_rsq * PP_8.
-// else poly = QQ_7 + FR_rsq * QQ_8.
-//
-
-{ .mmb
-(p9) ldfe FR_PP_6 = [GR_Table_Base], 16
-(p10) ldfe FR_QQ_5 = [GR_Table_Base], 16
- nop.b 999 ;;
-}
-
-{ .mmb
-(p9) ldfe FR_PP_5 = [GR_Table_Base], 16
-(p10) ldfe FR_S_1 = [GR_Table_Base], 16
- nop.b 999 ;;
-}
-
-{ .mmb
-(p10) ldfe FR_QQ_1 = [GR_Table_Base], 16
-(p9) ldfe FR_C_1 = [GR_Table_Base], 16
- nop.b 999 ;;
-}
-
-{ .mmi
-(p10) ldfe FR_QQ_4 = [GR_Table_Base], 16 ;;
-(p9) ldfe FR_PP_1 = [GR_Table_Base], 16
- nop.i 999 ;;
-}
-
-{ .mmf
-(p10) ldfe FR_QQ_3 = [GR_Table_Base], 16
-//
-// if (i_1=0) corr = corr + c*c
-// else corr = corr * c
-//
-(p9) ldfe FR_PP_4 = [GR_Table_Base], 16
-(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 ;;
-}
-//
-// if (i_1=0) poly = rsq * poly + PP_5
-// else poly = rsq * poly + QQ_5
-// Load PP_4 or QQ_4
-//
-
-{ .mmf
-(p9) ldfe FR_PP_3 = [GR_Table_Base], 16
-(p10) ldfe FR_QQ_2 = [GR_Table_Base], 16
-//
-// r_hi = frcpa(frcpa(r)).
-// r_cube = r * FR_rsq.
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 ;;
-}
-//
-// Do dummy multiplies so inexact is always set.
-//
-
-{ .mfi
-(p9) ldfe FR_PP_2 = [GR_Table_Base], 16
-//
-// r_lo = r - r_hi
-//
-(p9) fma.s1 FR_U_lo = FR_r_hi, FR_r_hi, f0
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
-(p9) ldfe FR_PP_1_lo = [GR_Table_Base], 16
-(p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) U_lo = r_hi * r_hi
-// else U_lo = r_hi + r
-//
-(p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) corr = C_1 * rsq
-// else corr = S_1 * r_cubed + r
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) U_hi = r_hi + U_hi
-// else U_hi = QQ_1 * U_hi + 1
-//
-(p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_U_lo
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// U_hi = r_hi * r_hi
-//
- fms.s1 FR_r_lo = FR_r, f1, FR_r_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load PP_1, PP_6, PP_5, and C_1
-// Load QQ_1, QQ_6, QQ_5, and S_1
-//
- fma.s1 FR_U_hi = FR_r_hi, FR_r_hi, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fnma.s1 FR_corr = FR_corr, FR_c, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) U_lo = r * r_hi + U_lo
-// else U_lo = r_lo * U_lo
-//
-(p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 =0) U_hi = r + U_hi
-// if (i_1 =0) U_lo = r_lo * U_lo
-//
-//
-(p9) fma.d.s1 FR_PP_5 = FR_PP_5, FR_PP_4, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) poly = poly * rsq + PP_6
-// else poly = poly * rsq + QQ_6
-//
-(p9) fma.s1 FR_U_hi = FR_r_hi, FR_U_hi, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_hi = FR_QQ_1, FR_U_hi, f1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.d.s1 FR_QQ_5 = FR_QQ_5, FR_QQ_5, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1!=0) U_hi = PP_1 * U_hi
-// if (i_1!=0) U_lo = r * r + U_lo
-// Load PP_3 or QQ_3
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load PP_2, QQ_2
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) poly = FR_rsq * poly + PP_3
-// else poly = FR_rsq * poly + QQ_3
-// Load PP_1_lo
-//
-(p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 =0) poly = poly * rsq + pp_r4
-// else poly = poly * rsq + qq_r4
-//
-(p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) U_lo = PP_1_hi * U_lo
-// else U_lo = QQ_1 * U_lo
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_0==0) Result = 1
-// else Result = -1
-//
- fma.s1 FR_V = FR_U_lo, f1, FR_corr
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) poly = FR_rsq * poly + PP_2
-// else poly = FR_rsq * poly + QQ_2
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// V = U_lo + corr
-//
-(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) poly = r_cube * poly
-// else poly = FR_rsq * poly
-//
- fma.s1 FR_V = FR_poly, f1, FR_V
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//(p12) fms.s1 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
-(p12) fms.s1 FR_Input_X = FR_prelim, FR_U_hi, FR_V
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-//
-// V = V + poly
-//
-//(p11) fma.s1 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
-(p11) fma.s1 FR_Input_X = FR_prelim, FR_U_hi, FR_V
-//
-// if (i_0==0) Result = Result * U_hi + V
-// else Result = Result * U_hi - V
-//
- br.ret.sptk b0 ;;
-}
-
-//
-// If cosine, FR_Input_X = 1
-// If sine, FR_Input_X = +/-Zero (Input FR_Input_X)
-// Results are exact, no exceptions
-//
-SINCOS_ZERO:
-
-{ .mmb
- cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos
- nop.m 999
- nop.b 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fmerge.s FR_Input_X = FR_Input_X, FR_Input_X
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-(p6) fmerge.s FR_Input_X = f1, f1
- br.ret.sptk b0 ;;
-}
-
-SINCOS_SPECIAL:
-
-//
-// Path for Arg = +/- QNaN, SNaN, Inf
-// Invalid can be raised. SNaNs
-// become QNaNs
-//
-
-{ .mfb
- nop.m 999
- fmpy.s1 FR_Input_X = FR_Input_X, f0
- br.ret.sptk b0 ;;
-}
-GLOBAL_LIBM_END(__libm_cos_large)
-
-
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-//
-// Special Code to handle very large argument case.
-// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
-// The interface is custom:
-// On input:
-// (Arg or x) is in f8
-// On output:
-// r is in f8
-// c is in f9
-// N is in r8
-// Be sure to allocate at least 2 GP registers as output registers for
-// __libm_pi_by_2_reduce. This routine uses r49-50. These are used as
-// scratch registers within the __libm_pi_by_2_reduce routine (for speed).
-//
-// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
-// use this to eliminate save/restore of key fp registers in this calling
-// function.
-//
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-
-LOCAL_LIBM_ENTRY(__libm_callout_2)
-SINCOS_ARG_TOO_LARGE:
-
-.prologue
-// Readjust Table ptr
-{ .mfi
- adds GR_Table_Base1 = -16, GR_Table_Base1
- nop.f 999
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-};;
-
-{ .mmi
- ldfs FR_Two_to_M3 = [GR_Table_Base1],4
- mov GR_SAVE_GP=gp // Save gp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-//
-// Call argument reduction with x in f8
-// Returns with N in r8, r in f8, c in f9
-// Assumes f71-127 are preserved across the call
-//
-{ .mib
- ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1],0
- nop.i 0
- br.call.sptk b0=__libm_pi_by_2_reduce#
-};;
-
-{ .mfi
- add GR_N_Inc = GR_Sin_or_Cos,r8
- fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mfi
- mov gp = GR_SAVE_GP // Restore gp
-(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
-};;
-
-{ .mbb
- nop.m 999
-(p6) br.cond.spnt SINCOS_SMALL_R // Branch if |r| < 1/4
- br.cond.sptk SINCOS_NORMAL_R ;; // Branch if 1/4 <= |r| < pi/4
-}
-
-LOCAL_LIBM_END(__libm_callout_2)
-
-.type __libm_pi_by_2_reduce#,@function
-.global __libm_pi_by_2_reduce#
-
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S
deleted file mode 100644
index cf23356ef4..0000000000
--- a/sysdeps/ia64/fpu/libm_sincosf.S
+++ /dev/null
@@ -1,745 +0,0 @@
-.file "libm_sincosf.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/01/02 Initial version
-// 02/18/02 Large arguments processing routine is excluded.
-// External interface entry points are added
-// 02/26/02 Added temporary return of results in r8, r9
-// 03/13/02 Corrected restore of predicate registers
-// 03/19/02 Added stack unwind around call to __libm_cisf_large
-// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 02/11/04 cisf is moved to the separate file.
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// 1) void sincosf(float, float*s, float*c)
-// 2) __libm_sincosf - internal LIBM function, that accepts
-// argument in f8 and returns cosine through f8, sine through f9
-
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
-// divide x by pi/2^k.
-// Multiply by 2^k/pi.
-// nfloat = Round result to integer (round-to-nearest)
-//
-// r = x - nfloat * pi/2^k
-// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
-// pi/2^k is stored as two numbers that when added make pi/2^k.
-// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-// HIGH part is rounded to zero, LOW - to nearest
-//
-// x = (nfloat * pi/2^k) + r
-// r is small enough that we can use a polynomial approximation
-// and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-// N * 2^(k+1)
-// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-// = Sin(Mpi/2^k)
-//
-// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-// = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
-// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
-//
-// and the coefficients q1, q2 and p1, p2 are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-// rsq = r*r
-//
-//
-// P = p1 + r^2p2
-// Q = q1 + r^2q2
-//
-// rcub = r * rsq
-// Sin(r) = r + rcub * P
-// = r + r^3p1 + r^5p2 = Sin(r)
-//
-// P = r + rcub * P
-//
-// Answer = S[m] Cos(r) + C[m] P
-//
-// Cos(r) = 1 + rsq Q
-// Cos(r) = 1 + r^2 Q
-// Cos(r) = 1 + r^2 (q1 + r^2q2)
-// Cos(r) = 1 + r^2q1 + r^4q2
-//
-// S[m] Cos(r) = S[m](1 + rsq Q)
-// S[m] Cos(r) = S[m] + S[m] rsq Q
-// S[m] Cos(r) = S[m] + s_rsq Q
-// Q = S[m] + s_rsq Q
-//
-// Then,
-//
-// Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r19
-// r32 -> r49
-
-// predicate registers used:
-// p6 -> p14
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f100
-
-// Assembly macros
-//==============================================================
-
-cisf_Arg = f8
-
-cisf_Sin_res = f9
-cisf_Cos_res = f8
-
-
-cisf_NORM_f8 = f10
-cisf_W = f11
-cisf_int_Nfloat = f12
-cisf_Nfloat = f13
-
-cisf_r = f14
-cisf_r_exact = f68
-cisf_rsq = f15
-cisf_rcub = f32
-
-cisf_Inv_Pi_by_16 = f33
-cisf_Pi_by_16_hi = f34
-cisf_Pi_by_16_lo = f35
-
-cisf_Inv_Pi_by_64 = f36
-cisf_Pi_by_64_hi = f37
-cisf_Pi_by_64_lo = f38
-
-
-cisf_P1 = f39
-cisf_Q1 = f40
-cisf_P2 = f41
-cisf_Q2 = f42
-cisf_P3 = f43
-cisf_Q3 = f44
-cisf_P4 = f45
-cisf_Q4 = f46
-
-cisf_P_temp1 = f47
-cisf_P_temp2 = f48
-
-cisf_Q_temp1 = f49
-cisf_Q_temp2 = f50
-
-cisf_P = f51
-
-cisf_SIG_INV_PI_BY_16_2TO61 = f52
-cisf_RSHF_2TO61 = f53
-cisf_RSHF = f54
-cisf_2TOM61 = f55
-cisf_NFLOAT = f56
-cisf_W_2TO61_RSH = f57
-
-cisf_tmp = f58
-
-cisf_Sm_sin = f59
-cisf_Cm_sin = f60
-
-cisf_Sm_cos = f61
-cisf_Cm_cos = f62
-
-cisf_srsq_sin = f63
-cisf_srsq_cos = f64
-
-cisf_Q_sin = f65
-cisf_Q_cos = f66
-cisf_Q = f67
-
-/////////////////////////////////////////////////////////////
-
-cisf_pResSin = r33
-cisf_pResCos = r34
-
-cisf_exp_limit = r35
-cisf_r_signexp = r36
-cisf_AD_beta_table = r37
-cisf_r_sincos = r38
-
-cisf_r_exp = r39
-cisf_r_17_ones = r40
-
-cisf_GR_sig_inv_pi_by_16 = r14
-cisf_GR_rshf_2to61 = r15
-cisf_GR_rshf = r16
-cisf_GR_exp_2tom61 = r17
-cisf_GR_n = r18
-
-cisf_GR_n_sin = r19
-cisf_GR_m_sin = r41
-cisf_GR_32m_sin = r41
-
-cisf_GR_n_cos = r42
-cisf_GR_m_cos = r43
-cisf_GR_32m_cos = r43
-
-cisf_AD_2_sin = r44
-cisf_AD_2_cos = r45
-
-cisf_gr_tmp = r46
-GR_SAVE_B0 = r47
-GR_SAVE_GP = r48
-rB0_SAVED = r49
-GR_SAVE_PFS = r50
-GR_SAVE_PR = r51
-cisf_AD_1 = r52
-
-RODATA
-
-.align 16
-// Pi/16 parts
-LOCAL_OBJECT_START(double_cisf_pi)
- data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
- data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-LOCAL_OBJECT_END(double_cisf_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_cisf_pq_k4)
- data8 0x3F810FABB668E9A2 // P2
- data8 0x3FA552E3D6DE75C9 // Q2
- data8 0xBFC555554447BC7F // P1
- data8 0xBFDFFFFFC447610A // Q1
-LOCAL_OBJECT_END(double_cisf_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
- data8 0x0000000000000000 // sin ( 0 Pi / 16 )
- data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
-//
- data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
- data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
-//
- data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
- data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
-//
- data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
- data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
-//
- data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
- data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
-//
- data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
- data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
-//
- data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
- data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
-//
- data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
- data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
-//
- data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
- data8 0x0000000000000000 // cos ( 8 Pi / 16 )
-//
- data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
- data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
-//
- data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
- data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
-//
- data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
- data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
-//
- data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
- data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
-//
- data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
- data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
-//
- data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
- data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
-//
- data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
- data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
-//
- data8 0x0000000000000000 // sin ( 16 Pi / 16 )
- data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
-//
- data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
- data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
-//
- data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
- data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
-//
- data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
- data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
-//
- data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
- data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
-//
- data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
- data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
-//
- data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
- data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
-//
- data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
- data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
-//
- data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
- data8 0x0000000000000000 // cos ( 24 Pi / 16 )
-//
- data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
- data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
-//
- data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
- data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
-//
- data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
- data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
-//
- data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
- data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
-//
- data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
- data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
-//
- data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
- data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
-//
- data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
- data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
-//
- data8 0x0000000000000000 // sin ( 32 Pi / 16 )
- data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincosf)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
- alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
- movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
-
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
- addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
- movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
-
-{ .mfi
- ld8 cisf_AD_1 = [cisf_AD_1]
- fnorm.s1 cisf_NORM_f8 = cisf_Arg
- cmp.eq p13, p14 = r0, r0 // p13 set for sincos
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
- mov cisf_GR_exp_2tom61 = 0xffff-61
- nop.i 0
- br.cond.sptk _CISF_COMMON
-};;
-GLOBAL_IEEE754_END(sincosf)
-
-GLOBAL_LIBM_ENTRY(__libm_sincosf)
-{ .mlx
-// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
- alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
- movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-}
-// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
- addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
- movl cisf_GR_rshf_2to61 = 0x47b8000000000000
-};;
-
-// p14 set for __libm_sincos and cis
-{ .mfi
- ld8 cisf_AD_1 = [cisf_AD_1]
- fnorm.s1 cisf_NORM_f8 = cisf_Arg
- cmp.eq p14, p13 = r0, r0
-}
-// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
- mov cisf_GR_exp_2tom61 = 0xffff-61
- nop.i 0
- nop.b 0
-};;
-
-_CISF_COMMON:
-// Form two constants we need
-// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-// fcmp used to set denormal, and invalid on snans
-{ .mfi
- setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
- fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
- addl cisf_gr_tmp = -1, r0
-}
-// cisf_GR_rshf = 1.1000 2^63 for right shift
-{ .mlx
- setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
- movl cisf_GR_rshf = 0x43e8000000000000
-};;
-
-// Form another constant
-// 2^-61 for scaling Nfloat
-// 0x10017 is register_bias + 24.
-// So if f8 >= 2^24, go to large args routine
-{ .mmi
- getf.exp cisf_r_signexp = cisf_Arg
- setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
- mov cisf_exp_limit = 0x10017
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-// 1.1000...000 * 2^63, the right shift constant
-{ .mmb
- ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
- setf.d cisf_RSHF = cisf_GR_rshf
-(p6) br.cond.spnt _CISF_SPECIAL_ARGS
-};;
-
-{ .mmi
- ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
- setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
- nop.i 0
-};;
-
-// Start loading P, Q coefficients
-{ .mmi
- ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
- nop.m 0
- dep.z cisf_r_exp = cisf_r_signexp, 0, 17
-};;
-
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x10017
-{ .mmb
- ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
- cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
-(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
-};;
-
-// cisf_W = x * cisf_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-// rightmost bits of significand
-{ .mfi
- nop.m 0
- fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
- nop.i 0
-};;
-
-// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
-{ .mfi
- nop.m 0
- fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
- nop.i 0
-};;
-
-// N = (int)cisf_int_Nfloat
-{ .mfi
- getf.sig cisf_GR_n = cisf_W_2TO61_RSH
- nop.f 0
- nop.i 0
-};;
-
-// Add 2^(k-1) (which is in cisf_r_sincos) to N
-// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
-// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
-{ .mfi
- add cisf_GR_n_cos = 0x8, cisf_GR_n
- fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
- nop.i 0
-};;
-
-//Get M (least k+1 bits of N)
-{ .mmi
- and cisf_GR_m_sin = 0x1f,cisf_GR_n
- and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
- nop.i 0
-};;
-
-{ .mmi
- shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
- shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
- nop.i 0
-};;
-
-// den. input to set uflow
-{ .mmf
- ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
- ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
- fclass.m.unc p10,p0 = cisf_Arg,0x0b
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
- nop.i 0
-};;
-
-{ .mmf
- nop.m 0
- nop.m 0
- fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
- nop.i 0
-};;
-
-// If den. arg, force underflow to be set
-{ .mfi
- nop.m 0
-(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
- nop.i 0
-};;
-
-//Final sin
-{ .mfi
- nop.m 0
- fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
- nop.i 0
-}
-//Final cos
-{ .mfb
- nop.m 0
- fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
-(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
- stfs [cisf_pResSin] = cisf_Sin_res
- stfs [cisf_pResCos] = cisf_Cos_res
- br.ret.sptk b0 // common exit for sincos main path
-};;
-
-_CISF_SPECIAL_ARGS:
-// sinf(+/-0) = +/-0
-// sinf(Inf) = NaN
-// sinf(NaN) = NaN
-{ .mfi
- nop.m 999
- fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
- nop.i 999
-};;
-
-// cosf(+/-0) = 1.0
-// cosf(Inf) = NaN
-// cosf(NaN) = NaN
-{ .mfb
- nop.m 999
- fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
-(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
- stfs [cisf_pResSin] = cisf_Sin_res
- stfs [cisf_pResCos] = cisf_Cos_res
- br.ret.sptk b0 // special exit for sincos main path
-};;
-
- // exit for sincos
- // NOTE! r8 and r9 used only because of compiler issue
- // connected with float point complex function arguments pass
- // After fix of this issue this operations can be deleted
-_CISF_RETURN:
-{ .mmb
- getf.s r8 = cisf_Cos_res
- getf.s r9 = cisf_Sin_res
- br.ret.sptk b0 // exit for sincos
-};;
-GLOBAL_LIBM_END(__libm_sincosf)
-
-//// |x| > 2^24 path ///////
-.proc _CISF_LARGE_ARGS
-_CISF_LARGE_ARGS:
-.prologue
-{ .mfi
- nop.m 0
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs
-};;
-
-{ .mfi
- mov GR_SAVE_GP = gp
- nop.f 0
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0
-};;
-
-.body
-// Call of huge arguments sincos
-{ .mib
- nop.m 0
- mov GR_SAVE_PR = pr
- br.call.sptk b0 = __libm_sincos_large
-};;
-
-{ .mfi
- mov gp = GR_SAVE_GP
- nop.f 0
- mov pr = GR_SAVE_PR, 0x1fffe
-}
-;;
-
-{ .mfi
- nop.m 0
- nop.f 0
- mov b0 = GR_SAVE_B0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
- mov ar.pfs = GR_SAVE_PFS
-}
-// exit for |x| > 2^24 path (__libm_sincos and cis)
-{ .mfb
- nop.m 0
- fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
-(p14) br.cond.sptk _CISF_RETURN
-};;
-
-{ .mmb
- stfs [cisf_pResSin] = cisf_Sin_res
- stfs [cisf_pResCos] = cisf_Cos_res
- br.ret.sptk b0 // exit for sincos |x| > 2^24 path
-};;
-
-.endp _CISF_LARGE_ARGS
-
-.type __libm_sincos_large#,@function
-.global __libm_sincos_large#
-
diff --git a/sysdeps/ia64/fpu/libm_sincosl.S b/sysdeps/ia64/fpu/libm_sincosl.S
deleted file mode 100644
index 1d89ff4bd1..0000000000
--- a/sysdeps/ia64/fpu/libm_sincosl.S
+++ /dev/null
@@ -1,2528 +0,0 @@
-.file "libm_sincosl.s"
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 05/13/02 Initial version of sincosl (based on libm's sinl and cosl)
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 10/13/03 Corrected .file name
-// 02/11/04 cisl is moved to the separate file.
-// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
-//
-//*********************************************************************
-//
-// Function: Combined sincosl routine with 3 different API's
-//
-// API's
-//==============================================================
-// 1) void sincosl(long double, long double*s, long double*c)
-// 2) __libm_sincosl - internal LIBM function, that accepts
-// argument in f8 and returns cosine through f8, sine through f9
-//
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 (Input x and cosl return value),
-// f9 (sinl returned)
-// f32-f121
-//
-// General Purpose Registers:
-// r32-r61
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// Denormal fault raised on denormal inputs
-// Overflow exceptions do not occur
-// Underflow exceptions raised when appropriate for sincosl
-// (No specialized error handling for this routine)
-// Inexact raised when appropriate by algorithm
-//
-// sincosl(SNaN) = QNaN, QNaN
-// sincosl(QNaN) = QNaN, QNaN
-// sincosl(inf) = QNaN, QNaN
-// sincosl(+/-0) = +/-0, 1
-//
-//*********************************************************************
-//
-// Mathematical Description
-// ========================
-//
-// The computation of FSIN and FCOS performed in parallel.
-//
-// Arg = N pi/2 + alpha, |alpha| <= pi/4.
-//
-// cosl( Arg ) = sinl( (N+1) pi/2 + alpha ),
-//
-// therefore, the code for computing sine will produce cosine as long
-// as 1 is added to N immediately after the argument reduction
-// process.
-//
-// Let M = N if sine
-// N+1 if cosine.
-//
-// Now, given
-//
-// Arg = M pi/2 + alpha, |alpha| <= pi/4,
-//
-// let I = M mod 4, or I be the two lsb of M when M is represented
-// as 2's complement. I = [i_0 i_1]. Then
-//
-// sinl( Arg ) = (-1)^i_0 sinl( alpha ) if i_1 = 0,
-// = (-1)^i_0 cosl( alpha ) if i_1 = 1.
-//
-// For example:
-// if M = -1, I = 11
-// sin ((-pi/2 + alpha) = (-1) cos (alpha)
-// if M = 0, I = 00
-// sin (alpha) = sin (alpha)
-// if M = 1, I = 01
-// sin (pi/2 + alpha) = cos (alpha)
-// if M = 2, I = 10
-// sin (pi + alpha) = (-1) sin (alpha)
-// if M = 3, I = 11
-// sin ((3/2)pi + alpha) = (-1) cos (alpha)
-//
-// The value of alpha is obtained by argument reduction and
-// represented by two working precision numbers r and c where
-//
-// alpha = r + c accurately.
-//
-// The reduction method is described in a previous write up.
-// The argument reduction scheme identifies 4 cases. For Cases 2
-// and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
-// computed very easily by 2 or 3 terms of the Taylor series
-// expansion as follows:
-//
-// Case 2:
-// -------
-//
-// sinl(r + c) = r + c - r^3/6 accurately
-// cosl(r + c) = 1 - 2^(-67) accurately
-//
-// Case 4:
-// -------
-//
-// sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
-// cosl(r + c) = 1 - r^2/2 + r^4/24 accurately
-//
-// The only cases left are Cases 1 and 3 of the argument reduction
-// procedure. These two cases will be merged since after the
-// argument is reduced in either cases, we have the reduced argument
-// represented as r + c and that the magnitude |r + c| is not small
-// enough to allow the usage of a very short approximation.
-//
-// The required calculation is either
-//
-// sinl(r + c) = sinl(r) + correction, or
-// cosl(r + c) = cosl(r) + correction.
-//
-// Specifically,
-//
-// sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
-// = sinl(r) + c cos (r) + O(c^2)
-// = sinl(r) + c(1 - r^2/2) accurately.
-// Similarly,
-//
-// cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
-// = cosl(r) - c(r - r^3/6) accurately.
-//
-// We therefore concentrate on accurately calculating sinl(r) and
-// cosl(r) for a working-precision number r, |r| <= pi/4 to within
-// 0.1% or so.
-//
-// The greatest challenge of this task is that the second terms of
-// the Taylor series
-//
-// r - r^3/3! + r^r/5! - ...
-//
-// and
-//
-// 1 - r^2/2! + r^4/4! - ...
-//
-// are not very small when |r| is close to pi/4 and the rounding
-// errors will be a concern if simple polynomial accumulation is
-// used. When |r| < 2^-3, however, the second terms will be small
-// enough (6 bits or so of right shift) that a normal Horner
-// recurrence suffices. Hence there are two cases that we consider
-// in the accurate computation of sinl(r) and cosl(r), |r| <= pi/4.
-//
-// Case small_r: |r| < 2^(-3)
-// --------------------------
-//
-// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
-// we have
-//
-// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
-// = (-1)^i_0 * cosl(r + c) if i_1 = 1
-//
-// can be accurately approximated by
-//
-// sinl(Arg) = (-1)^i_0 * [sinl(r) + c] if i_1 = 0
-// = (-1)^i_0 * [cosl(r) - c*r] if i_1 = 1
-//
-// because |r| is small and thus the second terms in the correction
-// are unneccessary.
-//
-// Finally, sinl(r) and cosl(r) are approximated by polynomials of
-// moderate lengths.
-//
-// sinl(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
-// cosl(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
-//
-// We can make use of predicates to selectively calculate
-// sinl(r) or cosl(r) based on i_1.
-//
-// Case normal_r: 2^(-3) <= |r| <= pi/4
-// ------------------------------------
-//
-// This case is more likely than the previous one if one considers
-// r to be uniformly distributed in [-pi/4 pi/4]. Again,
-//
-// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
-// = (-1)^i_0 * cosl(r + c) if i_1 = 1.
-//
-// Because |r| is now larger, we need one extra term in the
-// correction. sinl(Arg) can be accurately approximated by
-//
-// sinl(Arg) = (-1)^i_0 * [sinl(r) + c(1-r^2/2)] if i_1 = 0
-// = (-1)^i_0 * [cosl(r) - c*r*(1 - r^2/6)] i_1 = 1.
-//
-// Finally, sinl(r) and cosl(r) are approximated by polynomials of
-// moderate lengths.
-//
-// sinl(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
-// PP_2 r^5 + ... + PP_8 r^17
-//
-// cosl(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
-//
-// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
-// The crux in accurate computation is to calculate
-//
-// r + PP_1_hi r^3 or 1 + QQ_1 r^2
-//
-// accurately as two pieces: U_hi and U_lo. The way to achieve this
-// is to obtain r_hi as a 10 sig. bit number that approximates r to
-// roughly 8 bits or so of accuracy. (One convenient way is
-//
-// r_hi := frcpa( frcpa( r ) ).)
-//
-// This way,
-//
-// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
-// PP_1_hi (r^3 - r_hi^3)
-// = [r + PP_1_hi r_hi^3] +
-// [PP_1_hi (r - r_hi)
-// (r^2 + r_hi r + r_hi^2) ]
-// = U_hi + U_lo
-//
-// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
-// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
-// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
-// and that there is no more than 8 bit shift off between r and
-// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
-// calculated without any error. Finally, the fact that
-//
-// |U_lo| <= 2^(-8) |U_hi|
-//
-// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
-// 8 extra bits of accuracy.
-//
-// Similarly,
-//
-// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
-// [QQ_1 (r - r_hi)(r + r_hi)]
-// = U_hi + U_lo.
-//
-// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
-//
-// If i_1 = 0, then
-//
-// U_hi := r + PP_1_hi * r_hi^3
-// U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
-// poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
-// correction := c * ( 1 + C_1 r^2 )
-//
-// Else ...i_1 = 1
-//
-// U_hi := 1 + QQ_1 * r_hi * r_hi
-// U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
-// poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
-// correction := -c * r * (1 + S_1 * r^2)
-//
-// End
-//
-// Finally,
-//
-// V := poly + ( U_lo + correction )
-//
-// / U_hi + V if i_0 = 0
-// result := |
-// \ (-U_hi) - V if i_0 = 1
-//
-// It is important that in the last step, negation of U_hi is
-// performed prior to the subtraction which is to be performed in
-// the user-set rounding mode.
-//
-//
-// Algorithmic Description
-// =======================
-//
-// The argument reduction algorithm shares the same code between FSIN and FCOS.
-// The argument reduction description given
-// previously is repeated below.
-//
-//
-// Step 0. Initialization.
-//
-// Step 1. Check for exceptional and special cases.
-//
-// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
-// handling.
-// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
-// arguments. This is the most likely case.
-// * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
-// arguments.
-// * If |Arg| >= 2^63, go to Step 10 for special handling.
-//
-// Step 2. Reduction of moderate arguments.
-//
-// If |Arg| < pi/4 ...quick branch
-// N_fix := N_inc (integer)
-// r := Arg
-// c := 0.0
-// Branch to Step 4, Case_1_complete
-// Else ...cf. argument reduction
-// N := Arg * two_by_PI (fp)
-// N_fix := fcvt.fx( N ) (int)
-// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
-// s := Arg - N * P_1 (first piece of pi/2)
-// w := -N * P_2 (second piece of pi/2)
-//
-// If |s| >= 2^(-33)
-// go to Step 3, Case_1_reduce
-// Else
-// go to Step 7, Case_2_reduce
-// Endif
-// Endif
-//
-// Step 3. Case_1_reduce.
-//
-// r := s + w
-// c := (s - r) + w ...observe order
-//
-// Step 4. Case_1_complete
-//
-// ...At this point, the reduced argument alpha is
-// ...accurately represented as r + c.
-// If |r| < 2^(-3), go to Step 6, small_r.
-//
-// Step 5. Normal_r.
-//
-// Let [i_0 i_1] by the 2 lsb of N_fix.
-// FR_rsq := r * r
-// r_hi := frcpa( frcpa( r ) )
-// r_lo := r - r_hi
-//
-// If i_1 = 0, then
-// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
-// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
-// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
-// correction := c + c*C_1*FR_rsq ...any order
-// Else
-// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
-// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
-// U_lo := QQ_1 * r_lo * (r + r_hi)
-// correction := -c*(r + S_1*FR_rsq*r) ...any order
-// Endif
-//
-// V := poly + (U_lo + correction) ...observe order
-//
-// result := (i_0 == 0? 1.0 : -1.0)
-//
-// Last instruction in user-set rounding mode
-//
-// result := (i_0 == 0? result*U_hi + V :
-// result*U_hi - V)
-//
-// Return
-//
-// Step 6. Small_r.
-//
-// ...Use flush to zero mode without causing exception
-// Let [i_0 i_1] be the two lsb of N_fix.
-//
-// FR_rsq := r * r
-//
-// If i_1 = 0 then
-// z := FR_rsq*FR_rsq; z := FR_rsq*z *r
-// poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
-// poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
-// correction := c
-// result := r
-// Else
-// z := FR_rsq*FR_rsq; z := FR_rsq*z
-// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
-// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
-// correction := -c*r
-// result := 1
-// Endif
-//
-// poly := poly_hi + (z * poly_lo + correction)
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-// Return
-//
-// Step 7. Case_2_reduce.
-//
-// ...Refer to the write up for argument reduction for
-// ...rationale. The reduction algorithm below is taken from
-// ...argument reduction description and integrated this.
-//
-// w := N*P_3
-// U_1 := N*P_2 + w ...FMA
-// U_2 := (N*P_2 - U_1) + w ...2 FMA
-// ...U_1 + U_2 is N*(P_2+P_3) accurately
-//
-// r := s - U_1
-// c := ( (s - r) - U_1 ) - U_2
-//
-// ...The mathematical sum r + c approximates the reduced
-// ...argument accurately. Note that although compared to
-// ...Case 1, this case requires much more work to reduce
-// ...the argument, the subsequent calculation needed for
-// ...any of the trigonometric function is very little because
-// ...|alpha| < 1.01*2^(-33) and thus two terms of the
-// ...Taylor series expansion suffices.
-//
-// If i_1 = 0 then
-// poly := c + S_1 * r * r * r ...any order
-// result := r
-// Else
-// poly := -2^(-67)
-// result := 1.0
-// Endif
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-//
-// Return
-//
-//
-// Step 8. Pre-reduction of large arguments.
-//
-// ...Again, the following reduction procedure was described
-// ...in the separate write up for argument reduction, which
-// ...is tightly integrated here.
-
-// N_0 := Arg * Inv_P_0
-// N_0_fix := fcvt.fx( N_0 )
-// N_0 := fcvt.xf( N_0_fix)
-
-// Arg' := Arg - N_0 * P_0
-// w := N_0 * d_1
-// N := Arg' * two_by_PI
-// N_fix := fcvt.fx( N )
-// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
-//
-// s := Arg' - N * P_1
-// w := w - N * P_2
-//
-// If |s| >= 2^(-14)
-// go to Step 3
-// Else
-// go to Step 9
-// Endif
-//
-// Step 9. Case_4_reduce.
-//
-// ...first obtain N_0*d_1 and -N*P_2 accurately
-// U_hi := N_0 * d_1 V_hi := -N*P_2
-// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
-//
-// ...compute the contribution from N_0*d_1 and -N*P_3
-// w := -N*P_3
-// w := w + N_0*d_2
-// t := U_lo + V_lo + w ...any order
-//
-// ...at this point, the mathematical value
-// ...s + U_hi + V_hi + t approximates the true reduced argument
-// ...accurately. Just need to compute this accurately.
-//
-// ...Calculate U_hi + V_hi accurately:
-// A := U_hi + V_hi
-// if |U_hi| >= |V_hi| then
-// a := (U_hi - A) + V_hi
-// else
-// a := (V_hi - A) + U_hi
-// endif
-// ...order in computing "a" must be observed. This branch is
-// ...best implemented by predicates.
-// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
-// ...much smaller than A: |a| <= (1/2)ulp(A).
-//
-// ...Just need to calculate s + A + a + t
-// C_hi := s + A t := t + a
-// C_lo := (s - C_hi) + A
-// C_lo := C_lo + t
-//
-// ...Final steps for reduction
-// r := C_hi + C_lo
-// c := (C_hi - r) + C_lo
-//
-// ...At this point, we have r and c
-// ...And all we need is a couple of terms of the corresponding
-// ...Taylor series.
-//
-// If i_1 = 0
-// poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
-// result := r
-// Else
-// poly := FR_rsq*(C_1 + FR_rsq*C_2)
-// result := 1
-// Endif
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-// Return
-//
-// Large Arguments: For arguments above 2**63, a Payne-Hanek
-// style argument reduction is used and pi_by_2 reduce is called.
-//
-
-
-RODATA
-.align 64
-
-LOCAL_OBJECT_START(FSINCOSL_CONSTANTS)
-
-sincosl_table_p:
-//data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
-//data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
-//data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
-//data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
-//data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
-//data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
-//data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
-data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
-data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
-data8 0xC90FDAA22168C235, 0x00003FFF // P_1
-data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
-data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
-data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
-data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
-LOCAL_OBJECT_END(FSINCOSL_CONSTANTS)
-
-LOCAL_OBJECT_START(sincosl_table_d)
-//data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
-//data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
-data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
-data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
-data4 0x3E000000, 0xBE000000 // 2^-3 and -2^-3
-data4 0x2F000000, 0xAF000000 // 2^-33 and -2^-33
-data4 0x9E000000, 0x00000000 // -2^-67
-data4 0x00000000, 0x00000000 // pad
-LOCAL_OBJECT_END(sincosl_table_d)
-
-LOCAL_OBJECT_START(sincosl_table_pp)
-//data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
-//data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
-//data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
-//data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
-//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
-//data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
-//data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
-//data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
-//data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
-//data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
-data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
-data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
-data8 0xB092382F640AD517, 0x00003FDE // PP_6
-data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
-data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
-data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
-data8 0x8888888888888962, 0x00003FF8 // PP_2
-data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
-LOCAL_OBJECT_END(sincosl_table_pp)
-
-LOCAL_OBJECT_START(sincosl_table_qq)
-//data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2 // QQ_8
-//data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA // QQ_7
-//data4 0x9C716658, 0x8F76C650, 0x00003FE2 // QQ_6
-//data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9 // QQ_5
-//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC // S_1
-//data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
-//data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
-//data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
-//data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
-data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
-data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
-data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
-data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x8000000000000000, 0x0000BFFE // QQ_1
-data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
-data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
-data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
-LOCAL_OBJECT_END(sincosl_table_qq)
-
-LOCAL_OBJECT_START(sincosl_table_c)
-//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
-//data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
-//data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
-//data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
-//data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
-data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
-data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
-data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
-LOCAL_OBJECT_END(sincosl_table_c)
-
-LOCAL_OBJECT_START(sincosl_table_s)
-//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
-//data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
-//data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
-//data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
-//data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x88888888888868DB, 0x00003FF8 // S_2
-data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
-data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
-data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
-data4 0x38800000, 0xB8800000 // two**-14 and -two**-14
-LOCAL_OBJECT_END(sincosl_table_s)
-
-FR_Input_X = f8
-FR_Result = f8
-FR_ResultS = f9
-FR_ResultC = f8
-FR_r = f8
-FR_c = f9
-
-FR_norm_x = f9
-FR_inv_pi_2to63 = f10
-FR_rshf_2to64 = f11
-FR_2tom64 = f12
-FR_rshf = f13
-FR_N_float_signif = f14
-FR_abs_x = f15
-
-FR_r6 = f32
-FR_r7 = f33
-FR_Pi_by_4 = f34
-FR_Two_to_M14 = f35
-FR_Neg_Two_to_M14 = f36
-FR_Two_to_M33 = f37
-FR_Neg_Two_to_M33 = f38
-FR_Neg_Two_to_M67 = f39
-FR_Inv_pi_by_2 = f40
-FR_N_float = f41
-FR_N_fix = f42
-FR_P_1 = f43
-FR_P_2 = f44
-FR_P_3 = f45
-FR_s = f46
-FR_w = f47
-FR_Z = f50
-FR_A = f51
-FR_a = f52
-FR_t = f53
-FR_U_1 = f54
-FR_U_2 = f55
-FR_C_1 = f56
-FR_C_2 = f57
-FR_C_3 = f58
-FR_C_4 = f59
-FR_C_5 = f60
-FR_S_1 = f61
-FR_S_2 = f62
-FR_S_3 = f63
-FR_S_4 = f64
-FR_S_5 = f65
-FR_r_hi = f68
-FR_r_lo = f69
-FR_rsq = f70
-FR_r_cubed = f71
-FR_C_hi = f72
-FR_N_0 = f73
-FR_d_1 = f74
-FR_V_hi = f75
-FR_V_lo = f76
-FR_U_hi = f77
-FR_U_lo = f78
-FR_U_hiabs = f79
-FR_V_hiabs = f80
-FR_PP_8 = f81
-FR_QQ_8 = f101
-FR_PP_7 = f82
-FR_QQ_7 = f102
-FR_PP_6 = f83
-FR_QQ_6 = f103
-FR_PP_5 = f84
-FR_QQ_5 = f104
-FR_PP_4 = f85
-FR_QQ_4 = f105
-FR_PP_3 = f86
-FR_QQ_3 = f106
-FR_PP_2 = f87
-FR_QQ_2 = f107
-FR_QQ_1 = f108
-FR_r_hi_sq = f88
-FR_N_0_fix = f89
-FR_Inv_P_0 = f90
-FR_d_2 = f93
-FR_P_0 = f95
-FR_C_lo = f96
-FR_PP_1 = f97
-FR_PP_1_lo = f98
-FR_ArgPrime = f99
-FR_inexact = f100
-
-FR_Neg_Two_to_M3 = f109
-FR_Two_to_M3 = f110
-
-FR_poly_hiS = f66
-FR_poly_hiC = f112
-
-FR_poly_loS = f67
-FR_poly_loC = f113
-
-FR_polyS = f92
-FR_polyC = f114
-
-FR_cS = FR_c
-FR_cC = f115
-
-FR_corrS = f91
-FR_corrC = f116
-
-FR_U_hiC = f117
-FR_U_loC = f118
-
-FR_VS = f75
-FR_VC = f119
-
-FR_FirstS = f120
-FR_FirstC = f121
-
-FR_U_hiS = FR_U_hi
-FR_U_loS = FR_U_lo
-
-FR_Tmp = f94
-
-
-
-
-sincos_pResSin = r34
-sincos_pResCos = r35
-
-GR_exp_m2_to_m3= r36
-GR_N_Inc = r37
-GR_Cis = r38
-GR_signexp_x = r40
-GR_exp_x = r40
-GR_exp_mask = r41
-GR_exp_2_to_63 = r42
-GR_exp_2_to_m3 = r43
-GR_exp_2_to_24 = r44
-
-GR_N_SignS = r45
-GR_N_SignC = r46
-GR_N_SinCos = r47
-
-GR_sig_inv_pi = r48
-GR_rshf_2to64 = r49
-GR_exp_2tom64 = r50
-GR_rshf = r51
-GR_ad_p = r52
-GR_ad_d = r53
-GR_ad_pp = r54
-GR_ad_qq = r55
-GR_ad_c = r56
-GR_ad_s = r57
-GR_ad_ce = r58
-GR_ad_se = r59
-GR_ad_m14 = r60
-GR_ad_s1 = r61
-
-// For unwind support
-GR_SAVE_B0 = r39
-GR_SAVE_GP = r40
-GR_SAVE_PFS = r41
-
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincosl)
-{ .mlx ///////////////////////////// 1 /////////////////
- alloc r32 = ar.pfs,3,27,2,0
- movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
-{ .mlx
- mov GR_N_Inc = 0x0
- movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
-};;
-
-{ .mfi ///////////////////////////// 2 /////////////////
- addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf
- mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3
-}
-{ .mfb
- mov GR_Cis = 0x0
- fnorm.s1 FR_norm_x = FR_Input_X // Normalize x
- br.cond.sptk _COMMON_SINCOSL
-};;
-GLOBAL_IEEE754_END(sincosl)
-
-GLOBAL_LIBM_ENTRY(__libm_sincosl)
-{ .mlx ///////////////////////////// 1 /////////////////
- alloc r32 = ar.pfs,3,27,2,0
- movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
-{ .mlx
- mov GR_N_Inc = 0x0
- movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
-};;
-
-{ .mfi ///////////////////////////// 2 /////////////////
- addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf
- mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3
-}
-{ .mfb
- mov GR_Cis = 0x1
- fnorm.s1 FR_norm_x = FR_Input_X // Normalize x
- nop.b 0
-};;
-
-_COMMON_SINCOSL:
-{ .mfi ///////////////////////////// 3 /////////////////
- setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
- nop.f 0
- mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
-}
-{ .mlx
- setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
- movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
-};;
-
-{ .mfi ///////////////////////////// 4 /////////////////
- ld8 GR_ad_p = [GR_ad_p] // Point to Inv_pi_by_2
- fclass.m p7, p0 = FR_Input_X, 0x0b // Test x denormal
- nop.i 0
-};;
-
-{ .mfi ///////////////////////////// 5 /////////////////
- getf.exp GR_signexp_x = FR_Input_X // Get sign and exponent of x
- fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero
- nop.i 0
-}
-{ .mib
- mov GR_exp_mask = 0x1ffff // Exponent mask
- nop.i 0
-(p6) br.cond.spnt SINCOSL_SPECIAL // Branch if x natval, nan, inf
-};;
-
-{ .mfi ///////////////////////////// 6 /////////////////
- setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
- nop.f 0
- add GR_ad_d = 0x70, GR_ad_p // Point to constant table d
-}
-{ .mib
- setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
- mov GR_exp_m2_to_m3 = 0x2fffc // Form -(2^-3)
-(p7) br.cond.spnt SINCOSL_DENORMAL // Branch if x denormal
-};;
-
-SINCOSL_COMMON2:
-{ .mfi ///////////////////////////// 7 /////////////////
- and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
- fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type
- mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
-}
-{ .mib
- add GR_ad_pp = 0x40, GR_ad_d // Point to constant table pp
- mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
-(p10) br.cond.spnt SINCOSL_ZERO // Branch if x zero
-};;
-
-{ .mfi ///////////////////////////// 8 /////////////////
- ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16 // Load 2/pi
- fcmp.eq.s0 p15, p0 = FR_Input_X, f0 // Dummy to set denormal
- add GR_ad_qq = 0xa0, GR_ad_pp // Point to constant table qq
-}
-{ .mfi
- ldfe FR_Pi_by_4 = [GR_ad_d], 16 // Load pi/4 for range test
- nop.f 0
- cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
-};;
-
-{ .mfi ///////////////////////////// 9 /////////////////
- ldfe FR_P_0 = [GR_ad_p], 16 // Load P_0 for pi/4 <= |x| < 2^63
- fmerge.s FR_abs_x = f1, FR_norm_x // |x|
- add GR_ad_c = 0x90, GR_ad_qq // Point to constant table c
-}
-{ .mfi
- ldfe FR_Inv_P_0 = [GR_ad_d], 16 // Load 1/P_0 for pi/4 <= |x| < 2^63
- nop.f 0
- cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
-};;
-
-{ .mfi ///////////////////////////// 10 /////////////////
- ldfe FR_P_1 = [GR_ad_p], 16 // Load P_1 for pi/4 <= |x| < 2^63
- nop.f 0
- add GR_ad_s = 0x50, GR_ad_c // Point to constant table s
-}
-{ .mfi
- ldfe FR_PP_8 = [GR_ad_pp], 16 // Load PP_8 for 2^-3 < |r| < pi/4
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi ///////////////////////////// 11 /////////////////
- ldfe FR_P_2 = [GR_ad_p], 16 // Load P_2 for pi/4 <= |x| < 2^63
- nop.f 0
- add GR_ad_ce = 0x40, GR_ad_c // Point to end of constant table c
-}
-{ .mfi
- ldfe FR_QQ_8 = [GR_ad_qq], 16 // Load QQ_8 for 2^-3 < |r| < pi/4
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi ///////////////////////////// 12 /////////////////
- ldfe FR_QQ_7 = [GR_ad_qq], 16 // Load QQ_7 for 2^-3 < |r| < pi/4
- fma.s1 FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64
- add GR_ad_se = 0x40, GR_ad_s // Point to end of constant table s
-}
-{ .mib
- ldfe FR_PP_7 = [GR_ad_pp], 16 // Load PP_7 for 2^-3 < |r| < pi/4
- mov GR_ad_s1 = GR_ad_s // Save pointer to S_1
-(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE // Branch if |x| >= 2^63
- // Use Payne-Hanek Reduction
-};;
-
-{ .mfi ///////////////////////////// 13 /////////////////
- ldfe FR_P_3 = [GR_ad_p], 16 // Load P_3 for pi/4 <= |x| < 2^63
- fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4
- add GR_ad_m14 = 0x50, GR_ad_s // Point to constant table m14
-}
-{ .mfb
- ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8
- fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4
-(p7) br.cond.spnt SINCOSL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
- // Use pre-reduction
-};;
-
-{ .mmf ///////////////////////////// 14 /////////////////
- ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6 for normal path
- ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6 for normal path
- fmerge.se FR_c = f0, f0 // c = 0 in case |x| < pi/4
-};;
-
-{ .mmf ///////////////////////////// 15 /////////////////
- ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5 for normal path
- ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5 for normal path
- nop.f 0
-};;
-
-// Here if 0 < |x| < 2^24
-{ .mfi ///////////////////////////// 17 /////////////////
- ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5 if i_1=0
- fcmp.lt.s1 p6, p7 = FR_abs_x, FR_Pi_by_4 // Test |x| < pi/4
- nop.i 0
-}
-{ .mfi
- ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5 if i_1=1
- fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf
- nop.i 0
-};;
-
-{ .mmi ///////////////////////////// 18 /////////////////
- ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4 if i_1=0
- ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4 if i_1=1
- nop.i 0
-};;
-
-//
-// N = Arg * 2/pi
-// Check if Arg < pi/4
-//
-//
-// Case 2: Convert integer N_fix back to normalized floating-point value.
-// Case 1: p8 is only affected when p6 is set
-//
-//
-// Grab the integer part of N and call it N_fix
-//
-{ .mfi ///////////////////////////// 19 /////////////////
-(p7) ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8
-(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // r^3 if |x| < pi/4
-(p6) mov GR_N_Inc = 0x0 // N_IncS if |x| < pi/4
-};;
-
-// If |x| < pi/4, r = x and c = 0
-// lf |x| < pi/4, is x < 2**(-3).
-// r = Arg
-// c = 0
-{ .mmi ///////////////////////////// 20 /////////////////
-(p7) getf.sig GR_N_Inc = FR_N_float_signif
- nop.m 0
-(p6) cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3 // Is |x| < 2^-3
-};;
-
-//
-// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
-// If |x| >= pi/4,
-// Create the right N for |x| < pi/4 and otherwise
-// Case 2: Place integer part of N in GP register
-//
-
-{ .mbb ///////////////////////////// 21 /////////////////
- nop.m 0
-(p8) br.cond.spnt SINCOSL_SMALL_R_0 // Branch if 0 < |x| < 2^-3
-(p6) br.cond.spnt SINCOSL_NORMAL_R_0 // Branch if 2^-3 <= |x| < pi/4
-};;
-
-// Here if pi/4 <= |x| < 2^24
-{ .mfi
- ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8 // Load -2^-67
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1 + Arg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_w = FR_N_float, FR_P_2, f0 // w = N * P_2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_s, f1, FR_w // r = s - w, assume |s| >= 2^-33
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_c = FR_s, f1, FR_r // c = s - r, for |s| >= 2^-33
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r, for |s| >= 2^-33
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 0
-};;
-
-{ .mmf
- ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1 if i_1=0
- ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1 if i_1=1
- frcpa.s1 FR_r_hi, p15 = f1, FR_r // r_hi = frcpa(r)
-};;
-
-{ .mfi
- nop.m 0
-(p6) fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
- nop.i 0
-};;
-
-//
-// For big s: r = s - w: No futher reduction is necessary
-// For small s: w = N * P_3 (change sign) More reduction
-//
-{ .mfi
- nop.m 0
-(p8) fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq
- nop.i 0
-};;
-
-{ .mfi
-//
-// For big s: Is |r| < 2**(-3)?
-// For big s: c = S - r
-// For small s: U_1 = N * P_2 + w
-//
-// If p8 is set, prepare to branch to Small_R.
-// If p9 is set, prepare to branch to Normal_R.
-// For big s, r is complete here.
-//
-//
-// For big s: c = c + w (w has not been negated.)
-// For small s: r = S - U_1
-//
- nop.m 0
-(p6) fms.s1 FR_c = FR_c, f1, FR_w
- nop.i 0
-}
-{ .mbb
- nop.m 0
-(p8) br.cond.spnt SINCOSL_SMALL_R_1 // Branch if |s|>=2^-33, |r| < 2^-3,
- // and pi/4 <= |x| < 2^24
-(p13) br.cond.sptk SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3,
- // and pi/4 <= |x| < 2^24
-};;
-
-SINCOSL_S_TINY:
-//
-// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24
-//
-{ .mfi
- and GR_N_SinCos = 0x1, GR_N_Inc
- fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
- tbit.z p8,p12 = GR_N_Inc, 0
-};;
-
-
-//
-// For small s: U_2 = N * P_2 - U_1
-// S_1 stored constant - grab the one stored with the
-// coefficients.
-//
-{ .mfi
- ldfe FR_S_1 = [GR_ad_s1], 16
- fma.s1 FR_polyC = f0, f1, FR_Neg_Two_to_M67
- sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
- add GR_N_SignC = GR_N_Inc, GR_N_SinCos
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_s = FR_s, f1, FR_r
-(p8) tbit.z.unc p10,p11 = GR_N_SignC, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_2 = FR_U_2, f1, FR_w
-(p8) tbit.z.unc p8,p9 = GR_N_SignS, 1
-};;
-
-{ .mfi
- nop.m 0
- fmerge.se FR_FirstS = FR_r, FR_r
-(p12) tbit.z.unc p14,p15 = GR_N_SignC, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_FirstC = f0, f1, f1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_c = FR_s, f1, FR_U_1
-(p12) tbit.z.unc p12,p13 = GR_N_SignS, 1
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r = FR_S_1, FR_r, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s0 FR_S_1 = FR_S_1, FR_S_1, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_c = FR_c, f1, FR_U_2
- nop.i 0
-};;
-
-.pred.rel "mutex",p9,p15
-{ .mfi
- nop.m 0
-(p9) fms.s0 FR_FirstS = f1, f0, FR_FirstS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s0 FR_FirstS = f1, f0, FR_FirstS
- nop.i 0
-};;
-
-.pred.rel "mutex",p11,p13
-{ .mfi
- nop.m 0
-(p11) fms.s0 FR_FirstC = f1, f0, FR_FirstC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fms.s0 FR_FirstC = f1, f0, FR_FirstC
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_r, FR_rsq, FR_c
- nop.i 0
-};;
-
-
-.pred.rel "mutex",p8,p9
-{ .mfi
- nop.m 0
-(p8) fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
- nop.i 0
-};;
-
-.pred.rel "mutex",p10,p11
-{ .mfi
- nop.m 0
-(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
- nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- nop.m 0
-(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
- nop.i 0
-}
-{ .mfb
- cmp.eq p10, p0 = 0x1, GR_Cis
-(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-(p10) br.ret.sptk b0
-};;
-
-{ .mmb // exit for sincosl
- stfe [sincos_pResSin] = FR_ResultS
- stfe [sincos_pResCos] = FR_ResultC
- br.ret.sptk b0
-};;
-
-
-
-
-
-
-SINCOSL_LARGER_ARG:
-//
-// Here if 2^24 <= |x| < 2^63
-//
-{ .mfi
- ldfe FR_d_1 = [GR_ad_p], 16 // Load d_1 for |x| >= 2^24 path
- fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0 // N_0 = Arg * Inv_P_0
- nop.i 0
-};;
-
-{ .mmi
- ldfps FR_Two_to_M14, FR_Neg_Two_to_M14 = [GR_ad_m14]
- nop.m 0
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_d_2 = [GR_ad_p], 16 // Load d_2 for |x| >= 2^24 path
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fcvt.fx.s1 FR_N_0_fix = FR_N_0 // N_0_fix = integer part of N_0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fcvt.xf FR_N_0 = FR_N_0_fix // Make N_0 the integer part
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X // Arg'=-N_0*P_0+Arg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_w = FR_N_0, FR_d_1, f0 // w = N_0 * d_1
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0 // N = A' * 2/pi
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fcvt.fx.s1 FR_N_fix = FR_N_float // N_fix is the integer part
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fcvt.xf FR_N_float = FR_N_fix
- nop.i 0
-};;
-
-{ .mfi
- getf.sig GR_N_Inc = FR_N_fix // N is the integer part of
- // the reduced-reduced argument
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime // s = -N*P_1 + Arg'
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w // w = -N*P_2 + w
- nop.i 0
-};;
-
-//
-// For |s| > 2**(-14) r = S + w (r complete)
-// Else U_hi = N_0 * d_1
-//
-{ .mfi
- nop.m 0
- fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14 // p9 if |s| < 2^-14
- nop.i 0
-};;
-
-//
-// Either S <= -2**(-14) or S >= 2**(-14)
-// or -2**(-14) < s < 2**(-14)
-//
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p8) fma.s1 FR_r = FR_s, f1, FR_w
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 0
-};;
-
-//
-// We need abs of both U_hi and V_hi - don't
-// worry about switched sign of V_hi.
-//
-// Big s: finish up c = (S - r) + w (c complete)
-// Case 4: A = U_hi + V_hi
-// Note: Worry about switched sign of V_hi, so subtract instead of add.
-//
-{ .mfi
- nop.m 0
-(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi // For small s: U_lo=N_0*d_1-U_hi
- nop.i 0
-};;
-
-//
-// For big s: Is |r| < 2**(-3)
-// For big s: if p12 set, prepare to branch to Small_R.
-// For big s: If p13 set, prepare to branch to Normal_R.
-//
-{ .mfi
- nop.m 0
-(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fms.s1 FR_c = FR_s, f1, FR_r // For big s: c = S - r
- nop.i 0
-};;
-
-//
-// For small S: V_hi = N * P_2
-// w = N * P_3
-// Note the product does not include the (-) as in the writeup
-// so (-) missing for V_hi and w.
-//
-{ .mfi
- nop.m 0
-(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p8) fma.s1 FR_c = FR_c, f1, FR_w
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
-(p12) br.cond.spnt SINCOSL_SMALL_R // Branch if |r| < 2^-3
- // and 2^24 <= |x| < 2^63
-};;
-
-{ .mib
- nop.m 0
- nop.i 0
-(p13) br.cond.sptk SINCOSL_NORMAL_R // Branch if |r| >= 2^-3
- // and 2^24 <= |x| < 2^63
-};;
-
-SINCOSL_LARGER_S_TINY:
-// Here if |s| < 2^-14, and 2^24 <= |x| < 2^63
-//
-// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
-// The remaining stuff is for Case 4.
-// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
-// Note: the (-) is still missing for V_lo.
-// Small s: w = w + N_0 * d_2
-// Note: the (-) is now incorporated in w.
-//
-{ .mfi
- and GR_N_SinCos = 0x1, GR_N_Inc
- fcmp.ge.unc.s1 p6, p7 = FR_U_hiabs, FR_V_hiabs
- tbit.z p8,p12 = GR_N_Inc, 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_t = FR_U_lo, f1, FR_V_lo // C_hi = S + A
- nop.i 0
-};;
-
-{ .mfi
- sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
-(p6) fms.s1 FR_a = FR_U_hi, f1, FR_A
- add GR_N_SignC = GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_a = FR_V_hi, f1, FR_A
- nop.i 0
-};;
-
-{ .mmf
- ldfe FR_C_1 = [GR_ad_c], 16
- ldfe FR_S_1 = [GR_ad_s], 16
- fma.s1 FR_C_hi = FR_s, f1, FR_A
-};;
-
-{ .mmi
- ldfe FR_C_2 = [GR_ad_c], 64
- ldfe FR_S_2 = [GR_ad_s], 64
-(p8) tbit.z.unc p10,p11 = GR_N_SignC, 1
-};;
-
-//
-// r and c have been computed.
-// Make sure ftz mode is set - should be automatic when using wre
-// |r| < 2**(-3)
-// Get [i_0,i_1] - two lsb of N_fix.
-//
-// For larger u than v: a = U_hi - A
-// Else a = V_hi - A (do an add to account for missing (-) on V_hi
-//
-{ .mfi
- nop.m 0
- fma.s1 FR_t = FR_t, f1, FR_w // t = t + w
-(p8) tbit.z.unc p8,p9 = GR_N_SignS, 1
-}
-{ .mfi
- nop.m 0
-(p6) fms.s1 FR_a = FR_a, f1, FR_V_hi
- nop.i 0
-};;
-
-//
-// If u > v: a = (U_hi - A) + V_hi
-// Else a = (V_hi - A) + U_hi
-// In each case account for negative missing from V_hi.
-//
-{ .mfi
- nop.m 0
- fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
-(p12) tbit.z.unc p14,p15 = GR_N_SignC, 1
-}
-{ .mfi
- nop.m 0
-(p7) fms.s1 FR_a = FR_U_hi, f1, FR_a
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_A // C_lo = (S - C_hi) + A
-(p12) tbit.z.unc p12,p13 = GR_N_SignS, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_t = FR_t, f1, FR_a // t = t + a
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_t // C_lo = C_lo + t
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_c = FR_C_hi, f1, FR_r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_FirstS = f0, f1, FR_r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_FirstC = f0, f1, f1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_S_2, FR_S_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_C_2, FR_C_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_c = FR_c, f1, FR_C_lo
- nop.i 0
-};;
-
-.pred.rel "mutex",p9,p15
-{ .mfi
- nop.m 0
-(p9) fms.s0 FR_FirstS = f1, f0, FR_FirstS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s0 FR_FirstS = f1, f0, FR_FirstS
- nop.i 0
-};;
-
-.pred.rel "mutex",p11,p13
-{ .mfi
- nop.m 0
-(p11) fms.s0 FR_FirstC = f1, f0, FR_FirstC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fms.s0 FR_FirstC = f1, f0, FR_FirstC
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_r_cubed, FR_polyS, FR_c
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_polyC, f0
- nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p8,p9
-{ .mfi
- nop.m 0
-(p8) fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
- nop.i 0
-};;
-
-.pred.rel "mutex",p10,p11
-{ .mfi
- nop.m 0
-(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
- nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- nop.m 0
-(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
- nop.i 0
-}
-{ .mfb
- cmp.eq p10, p0 = 0x1, GR_Cis
-(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-(p10) br.ret.sptk b0
-};;
-
-
-{ .mmb // exit for sincosl
- stfe [sincos_pResSin] = FR_ResultS
- stfe [sincos_pResCos] = FR_ResultC
- br.ret.sptk b0
-};;
-
-
-
-SINCOSL_SMALL_R:
-//
-// Here if |r| < 2^-3
-//
-// Enter with r, c, and N_Inc computed
-//
-{ .mfi
- nop.m 0
- fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5
- ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4
- ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4
- nop.i 0
-};;
-
-SINCOSL_SMALL_R_0:
-// Entry point for 2^-3 < |x| < pi/4
-SINCOSL_SMALL_R_1:
-// Entry point for pi/4 < |x| < 2^24 and |r| < 2^-3
-{ .mfi
- ldfe FR_S_3 = [GR_ad_se], -16 // Load S_3
- fma.s1 FR_r6 = FR_rsq, FR_rsq, f0 // Z = rsq * rsq
- tbit.z p7,p11 = GR_N_Inc, 0
-}
-{ .mfi
- ldfe FR_C_3 = [GR_ad_ce], -16 // Load C_3
- nop.f 0
- and GR_N_SinCos = 0x1, GR_N_Inc
-};;
-
-{ .mfi
- ldfe FR_S_2 = [GR_ad_se], -16 // Load S_2
- fnma.s1 FR_cC = FR_c, FR_r, f0 // c = -c * r
- sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
- ldfe FR_C_2 = [GR_ad_ce], -16 // Load C_2
- nop.f 0
- add GR_N_SignC = GR_N_Inc, GR_N_SinCos
-};;
-
-{ .mmi
- ldfe FR_S_1 = [GR_ad_se], -16 // Load S_1
- ldfe FR_C_1 = [GR_ad_ce], -16 // Load C_1
-(p7) tbit.z.unc p9,p10 = GR_N_SignC, 1
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r7 = FR_r6, FR_r, f0 // Z = Z * r
-(p7) tbit.z.unc p7,p8 = GR_N_SignS, 1
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_loS = FR_rsq, FR_S_5, FR_S_4 // poly_lo=rsq*S_5+S_4
-(p11) tbit.z.unc p13,p14 = GR_N_SignC, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_loC = FR_rsq, FR_C_5, FR_C_4 // poly_lo=rsq*C_5+C_4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hiS = FR_rsq, FR_S_2, FR_S_1 // poly_hi=rsq*S_2+S_1
-(p11) tbit.z.unc p11,p12 = GR_N_SignS, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hiC = FR_rsq, FR_C_2, FR_C_1 // poly_hi=rsq*C_2+C_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s0 FR_FirstS = FR_r, f1, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s0 FR_FirstC = f1, f1, f0
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r6 = FR_r6, FR_rsq, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r7 = FR_r7, FR_rsq, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_loS = FR_rsq, FR_poly_loS, FR_S_3 // p_lo=p_lo*rsq+S_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_loC = FR_rsq, FR_poly_loC, FR_C_3 // p_lo=p_lo*rsq+C_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s0 FR_inexact = FR_S_4, FR_S_4, f0 // Dummy op to set inexact
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hiS = FR_poly_hiS, FR_rsq, f0 // p_hi=p_hi*rsq
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hiC = FR_poly_hiC, FR_rsq, f0 // p_hi=p_hi*rsq
- nop.i 0
-};;
-
-.pred.rel "mutex",p8,p14
-{ .mfi
- nop.m 0
-(p8) fms.s0 FR_FirstS = f1, f0, FR_FirstS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fms.s0 FR_FirstS = f1, f0, FR_FirstS
- nop.i 0
-};;
-
-.pred.rel "mutex",p10,p12
-{ .mfi
- nop.m 0
-(p10) fms.s0 FR_FirstC = f1, f0, FR_FirstC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fms.s0 FR_FirstC = f1, f0, FR_FirstC
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_r7, FR_poly_loS, FR_cS // poly=Z*poly_lo+c
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_r6, FR_poly_loC, FR_cC // poly=Z*poly_lo+c
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_hiS = FR_r, FR_poly_hiS, f0 // p_hi=r*p_hi
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_polyS, f1, FR_poly_hiS
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_polyC, f1, FR_poly_hiC
- nop.i 0
-};;
-
-.pred.rel "mutex",p7,p8
-{ .mfi
- nop.m 0
-(p7) fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
- nop.i 0
-};;
-
-.pred.rel "mutex",p9,p10
-{ .mfi
- nop.m 0
-(p9) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
- nop.i 0
-};;
-
-.pred.rel "mutex",p11,p12
-{ .mfi
- nop.m 0
-(p11) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
- nop.i 0
-};;
-
-.pred.rel "mutex",p13,p14
-{ .mfi
- nop.m 0
-(p13) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
- nop.i 0
-}
-{ .mfb
- cmp.eq p15, p0 = 0x1, GR_Cis
-(p14) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-(p15) br.ret.sptk b0
-};;
-
-
-{ .mmb // exit for sincosl
- stfe [sincos_pResSin] = FR_ResultS
- stfe [sincos_pResCos] = FR_ResultC
- br.ret.sptk b0
-};;
-
-
-
-
-
-
-SINCOSL_NORMAL_R:
-//
-// Here if 2^-3 <= |r| < pi/4
-// THIS IS THE MAIN PATH
-//
-// Enter with r, c, and N_Inc having been computed
-//
-{ .mfi
- ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6
- fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r
- nop.i 0
-}
-{ .mfi
- ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6
- nop.f 0
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5
- ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5
- nop.i 0
-};;
-
-
-
-SINCOSL_NORMAL_R_0:
-// Entry for 2^-3 < |x| < pi/4
-.pred.rel "mutex",p9,p10
-{ .mmf
- ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1
- ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1
- frcpa.s1 FR_r_hi, p6 = f1, FR_r // r_hi = frcpa(r)
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq
- nop.i 0
-};;
-
-
-SINCOSL_NORMAL_R_1:
-// Entry for pi/4 <= |x| < 2^24
-.pred.rel "mutex",p9,p10
-{ .mmf
- ldfe FR_PP_1 = [GR_ad_pp], 16 // Load PP_1_hi
- ldfe FR_QQ_1 = [GR_ad_qq], 16 // Load QQ_1
- frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi // r_hi = frpca(frcpa(r))
-};;
-
-{ .mfi
- ldfe FR_PP_4 = [GR_ad_pp], 16 // Load PP_4
- fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_6 // poly = rsq*poly+PP_6
- and GR_N_SinCos = 0x1, GR_N_Inc
-}
-{ .mfi
- ldfe FR_QQ_4 = [GR_ad_qq], 16 // Load QQ_4
- fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_6 // poly = rsq*poly+QQ_6
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_corrS = FR_C_1, FR_rsq, f0 // corr = C_1 * rsq
- sub GR_N_SignS = GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_corrC = FR_S_1, FR_r_cubed, FR_r // corr = S_1 * r^3 + r
- add GR_N_SignC = GR_N_Inc, GR_N_SinCos
-};;
-
-{ .mfi
- ldfe FR_PP_3 = [GR_ad_pp], 16 // Load PP_3
- fma.s1 FR_r_hi_sq = FR_r_hi, FR_r_hi, f0 // r_hi_sq = r_hi * r_hi
- tbit.z p7,p11 = GR_N_Inc, 0
-}
-{ .mfi
- ldfe FR_QQ_3 = [GR_ad_qq], 16 // Load QQ_3
- fms.s1 FR_r_lo = FR_r, f1, FR_r_hi // r_lo = r - r_hi
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_PP_2 = [GR_ad_pp], 16 // Load PP_2
- fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_5 // poly = rsq*poly+PP_5
-(p7) tbit.z.unc p9,p10 = GR_N_SignC, 1
-}
-{ .mfi
- ldfe FR_QQ_2 = [GR_ad_qq], 16 // Load QQ_2
- fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_5 // poly = rsq*poly+QQ_5
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_PP_1_lo = [GR_ad_pp], 16 // Load PP_1_lo
- fma.s1 FR_corrS = FR_corrS, FR_c, FR_c // corr = corr * c + c
-(p7) tbit.z.unc p7,p8 = GR_N_SignS, 1
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_corrC = FR_corrC, FR_c, f0 // corr = -corr * c
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loS = FR_r, FR_r_hi, FR_r_hi_sq // U_lo = r*r_hi+r_hi_sq
-(p11) tbit.z.unc p13,p14 = GR_N_SignC, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loC = FR_r_hi, f1, FR_r // U_lo = r_hi + r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_hiS = FR_r_hi, FR_r_hi_sq, f0 // U_hi = r_hi*r_hi_sq
-(p11) tbit.z.unc p11,p12 = GR_N_SignS, 1
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_U_hiC = FR_QQ_1, FR_r_hi_sq, f1 // U_hi = QQ_1*r_hi_sq+1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_4 // poly = poly*rsq+PP_4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_4 // poly = poly*rsq+QQ_4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loS = FR_r, FR_r, FR_U_loS // U_lo = r * r + U_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loC = FR_r_lo, FR_U_loC, f0 // U_lo = r_lo * U_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_hiS = FR_PP_1, FR_U_hiS, f0 // U_hi = PP_1 * U_hi
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_3 // poly = poly*rsq+PP_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_3 // poly = poly*rsq+QQ_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loS = FR_r_lo, FR_U_loS, f0 // U_lo = r_lo * U_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loC = FR_QQ_1,FR_U_loC, f0 // U_lo = QQ_1 * U_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_hiS = FR_r, f1, FR_U_hiS // U_hi = r + U_hi
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_2 // poly = poly*rsq+PP_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_2 // poly = poly*rsq+QQ_2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U_loS = FR_PP_1, FR_U_loS, f0 // U_lo = PP_1 * U_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_1_lo // poly =poly*rsq+PP1lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_polyC, f0 // poly = poly*rsq
- nop.i 0
-};;
-
-
-.pred.rel "mutex",p8,p14
-{ .mfi
- nop.m 0
-(p8) fms.s0 FR_U_hiS = f1, f0, FR_U_hiS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fms.s0 FR_U_hiS = f1, f0, FR_U_hiS
- nop.i 0
-};;
-
-.pred.rel "mutex",p10,p12
-{ .mfi
- nop.m 0
-(p10) fms.s0 FR_U_hiC = f1, f0, FR_U_hiC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fms.s0 FR_U_hiC = f1, f0, FR_U_hiC
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_VS = FR_U_loS, f1, FR_corrS // V = U_lo + corr
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_VC = FR_U_loC, f1, FR_corrC // V = U_lo + corr
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s0 FR_inexact = FR_PP_5, FR_PP_4, f0 // Dummy op to set inexact
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_polyS = FR_r_cubed, FR_polyS, f0 // poly = poly*r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_polyC = FR_rsq, FR_polyC, f0 // poly = poly*rsq
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_VS = FR_polyS, f1, FR_VS // V = poly + V
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_VC = FR_polyC, f1, FR_VC // V = poly + V
- nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p7,p8
-{ .mfi
- nop.m 0
-(p7) fma.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fms.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
- nop.i 0
-};;
-
-.pred.rel "mutex",p9,p10
-{ .mfi
- nop.m 0
-(p9) fma.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fms.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
- nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p11,p12
-{ .mfi
- nop.m 0
-(p11) fma.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fms.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
- nop.i 0
-};;
-
-.pred.rel "mutex",p13,p14
-{ .mfi
- nop.m 0
-(p13) fma.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
- nop.i 0
-}
-{ .mfb
- cmp.eq p15, p0 = 0x1, GR_Cis
-(p14) fms.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
-(p15) br.ret.sptk b0
-};;
-
-{ .mmb // exit for sincosl
- stfe [sincos_pResSin] = FR_ResultS
- stfe [sincos_pResCos] = FR_ResultC
- br.ret.sptk b0
-};;
-
-
-
-
-
-SINCOSL_ZERO:
-
-{ .mfi
- nop.m 0
- fmerge.s FR_ResultS = FR_Input_X, FR_Input_X // If sin, result = input
- nop.i 0
-}
-{ .mfb
- cmp.eq p15, p0 = 0x1, GR_Cis
- fma.s0 FR_ResultC = f1, f1, f0 // If cos, result=1.0
-(p15) br.ret.sptk b0
-};;
-
-{ .mmb // exit for sincosl
- stfe [sincos_pResSin] = FR_ResultS
- stfe [sincos_pResCos] = FR_ResultC
- br.ret.sptk b0
-};;
-
-
-SINCOSL_DENORMAL:
-{ .mmb
- getf.exp GR_signexp_x = FR_norm_x // Get sign and exponent of x
- nop.m 999
- br.cond.sptk SINCOSL_COMMON2 // Return to common code
-}
-;;
-
-
-SINCOSL_SPECIAL:
-//
-// Path for Arg = +/- QNaN, SNaN, Inf
-// Invalid can be raised. SNaNs
-// become QNaNs
-//
-{ .mfi
- cmp.eq p15, p0 = 0x1, GR_Cis
- fmpy.s0 FR_ResultS = FR_Input_X, f0
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fmpy.s0 FR_ResultC = FR_Input_X, f0
-(p15) br.ret.sptk b0
-};;
-
-{ .mmb // exit for sincosl
- stfe [sincos_pResSin] = FR_ResultS
- stfe [sincos_pResCos] = FR_ResultC
- br.ret.sptk b0
-};;
-
-GLOBAL_LIBM_END(__libm_sincosl)
-
-
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-//
-// Special Code to handle very large argument case.
-// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
-// The interface is custom:
-// On input:
-// (Arg or x) is in f8
-// On output:
-// r is in f8
-// c is in f9
-// N is in r8
-// Be sure to allocate at least 2 GP registers as output registers for
-// __libm_pi_by_2_reduce. This routine uses r62-63. These are used as
-// scratch registers within the __libm_pi_by_2_reduce routine (for speed).
-//
-// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
-// use this to eliminate save/restore of key fp registers in this calling
-// function.
-//
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-
-LOCAL_LIBM_ENTRY(__libm_callout)
-SINCOSL_ARG_TOO_LARGE:
-.prologue
-{ .mfi
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-};;
-
-{ .mmi
- setf.exp FR_Two_to_M3 = GR_exp_2_to_m3 // Form 2^-3
- mov GR_SAVE_GP=gp // Save gp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-//
-// Call argument reduction with x in f8
-// Returns with N in r8, r in f8, c in f9
-// Assumes f71-127 are preserved across the call
-//
-{ .mib
- setf.exp FR_Neg_Two_to_M3 = GR_exp_m2_to_m3 // Form -(2^-3)
- nop.i 0
- br.call.sptk b0=__libm_pi_by_2_reduce#
-};;
-
-{ .mfi
- mov GR_N_Inc = r8
- fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mfi
- mov gp = GR_SAVE_GP // Restore gp
-(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
-};;
-
-{ .mbb
- nop.m 0
-(p6) br.cond.spnt SINCOSL_SMALL_R // Branch if |r|< 2^-3 for |x| >= 2^63
- br.cond.sptk SINCOSL_NORMAL_R // Branch if |r|>=2^-3 for |x| >= 2^63
-};;
-
-LOCAL_LIBM_END(__libm_callout)
-
-.type __libm_pi_by_2_reduce#,@function
-.global __libm_pi_by_2_reduce#
-
-
-
diff --git a/sysdeps/ia64/fpu/libm_support.h b/sysdeps/ia64/fpu/libm_support.h
index dc9c0a2648..5d3498dfc9 100644
--- a/sysdeps/ia64/fpu/libm_support.h
+++ b/sysdeps/ia64/fpu/libm_support.h
@@ -1,11 +1,9 @@
-/* file: libm_support.h */
-
-
-/*
-// Copyright (c) 2000 - 2004, Intel Corporation
+//
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -21,7 +19,6 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
@@ -37,76 +34,236 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History: 02/02/2000 Initial version
// 2/28/2000 added tags for logb and nextafter
-// 3/22/2000 Changes to support _LIB_VERSIONIMF variable
+// 3/22/2000 Changes to support _LIB_VERSION variable
// and filled some enum gaps. Added support for C99.
// 5/31/2000 added prototypes for __libm_frexp_4l/8l
-// 8/10/2000 Changed declaration of _LIB_VERSIONIMF to work for library
+// 8/10/2000 Changed declaration of _LIB_VERSION to work for library
// builds and other application builds (precompiler directives).
// 8/11/2000 Added pointers-to-matherr-functions declarations to allow
// for user-defined matherr functions in the dll build.
// 12/07/2000 Added scalbn error_types values.
-// 5/01/2001 Added error_types values for C99 nearest integer
-// functions.
-// 6/07/2001 Added error_types values for fdim.
-// 6/18/2001 Added include of complex_support.h.
-// 8/03/2001 Added error_types values for nexttoward, scalbln.
-// 8/23/2001 Corrected tag numbers from 186 and higher.
-// 8/27/2001 Added check for long int and long long int definitions.
-// 12/10/2001 Added error_types for erfc.
-// 12/27/2001 Added error_types for degree argument functions.
-// 01/02/2002 Added error_types for tand, cotd.
-// 01/04/2002 Delete include of complex_support.h
-// 01/23/2002 Deleted prototypes for __libm_frexp*. Added check for
-// multiple int, long int, and long long int definitions.
-// 05/20/2002 Added error_types for cot.
-// 06/27/2002 Added error_types for sinhcosh.
-// 12/05/2002 Added error_types for annuity and compound
-// 04/10/2003 Added error_types for tgammal/tgamma/tgammaf
-// 05/16/2003 FP-treatment macros copied here from IA32 libm_support.h
-// 06/02/2003 Added pad into struct fp80 (12/16 bytes).
-// 08/01/2003 Added struct ker80 and macros for multiprecision addition,
-// subtraction, multiplication, division, square root.
-// 08/07/2003 History section updated.
-// 09/03/2003 ALIGN(n) macro added.
-// 10/01/2003 LDOUBLE_ALIGN and fp80 corrected on linux to 16 bytes.
-// 11/24/2004 Added ifdef around definitions of INT32/64
-// 12/15/2004 Added error_types for exp10, nextafter, nexttoward
-// underflow. Moved error codes into libm_error_codes.h.
//
-*/
-#ifndef __LIBM_SUPPORT_H_INCLUDED__
-#define __LIBM_SUPPORT_H_INCLUDED__
+#ifndef __ASSEMBLER__
+#include <math.h>
+
+float __libm_frexp_4f( float x, int* exp);
+float _GI___libm_frexp_4f( float x, int* exp);
+float __libm_frexp_8f( float x, int* exp);
+double __libm_frexp_4( double x, int* exp);
+double _GI___libm_frexp_4( double x, int* exp);
+double __libm_frexp_8( double x, int* exp);
+long double __libm_frexp_4l( long double x, int* exp);
+long double _GI___libm_frexp_4l( long double x, int* exp);
+long double __libm_frexp_8l( long double x, int* exp);
+void __libm_sincos_pi4(double,double*,double*,int);
+void __libm_y0y1(double , double *, double *);
+void __libm_j0j1(double , double *, double *);
+double __libm_lgamma_kernel(double,int*,int,int);
+double __libm_j0(double);
+double __libm_j1(double);
+double __libm_jn(int,double);
+double __libm_y0(double);
+double __libm_y1(double);
+double __libm_yn(int,double);
+
+extern double rint(double);
+extern double sqrt(double);
+extern double fabs(double);
+extern double log(double);
+extern double log1p(double);
+extern double sqrt(double);
+extern double sin(double);
+extern double exp(double);
+extern double modf(double, double *);
+extern double asinh(double);
+extern double acosh(double);
+extern double atanh(double);
+extern double tanh(double);
+extern double erf(double);
+extern double erfc(double);
+extern double j0(double);
+extern double j1(double);
+extern double jn(int, double);
+extern double y0(double);
+extern double y1(double);
+extern double yn(int, double);
+
+extern float fabsf(float);
+extern float asinhf(float);
+extern float acoshf(float);
+extern float atanhf(float);
+extern float tanhf(float);
+extern float erff(float);
+extern float erfcf(float);
+extern float j0f(float);
+extern float j1f(float);
+extern float jnf(int, float);
+extern float y0f(float);
+extern float y1f(float);
+extern float ynf(int, float);
+
+extern long double log1pl(long double);
+extern long double logl(long double);
+extern long double sqrtl(long double);
+extern long double expl(long double);
+
+extern long lround(double);
+extern long lroundf(float);
+extern long lroundl(long double);
-#ifndef _LIBC
-#if !(defined(_WIN32) || defined(_WIN64))
-# pragma const_seg(".rodata") /* place constant data in text (code) section */
+#if !(defined(SIZE_INT_32) || defined(SIZE_INT_64))
+ #error integer size not established; define SIZE_INT_32 or SIZE_INT_64
#endif
-#if defined(__ICC) || defined(__ICL) || defined(__ECC) || defined(__ECL)
-# pragma warning( disable : 1682 ) /* #1682: ixplicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) */
-# pragma warning( disable : 1683 ) /* #1683: explicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) */
-#endif
-#endif
+struct fp64 { /*/ sign:1 exponent:11 significand:52 (implied leading 1)*/
+ unsigned lo_significand:32;
+ unsigned hi_significand:20;
+ unsigned exponent:11;
+ unsigned sign:1;
+};
-/* macros to form a double value in hex representation (unsigned int type) */
+#define HI_SIGNIFICAND_LESS(X, HI) ((X)->hi_significand < 0x ## HI)
+#define f64abs(x) ((x) < 0.0 ? -(x) : (x))
-#define DOUBLE_HEX(hi,lo) 0x##lo,0x##hi /*LITTLE_ENDIAN*/
+typedef enum
+{
+ logl_zero=0, logl_negative, /* 0, 1 */
+ log_zero, log_negative, /* 2, 3 */
+ logf_zero, logf_negative, /* 4, 5 */
+ log10l_zero, log10l_negative, /* 6, 7 */
+ log10_zero, log10_negative, /* 8, 9 */
+ log10f_zero, log10f_negative, /* 10, 11 */
+ expl_overflow, expl_underflow, /* 12, 13 */
+ exp_overflow, exp_underflow, /* 14, 15 */
+ expf_overflow, expf_underflow, /* 16, 17 */
+ powl_overflow, powl_underflow, /* 18, 19 */
+ powl_zero_to_zero, /* 20 */
+ powl_zero_to_negative, /* 21 */
+ powl_neg_to_non_integer, /* 22 */
+ powl_nan_to_zero, /* 23 */
+ pow_overflow, pow_underflow, /* 24, 25 */
+ pow_zero_to_zero, /* 26 */
+ pow_zero_to_negative, /* 27 */
+ pow_neg_to_non_integer, /* 28 */
+ pow_nan_to_zero, /* 29 */
+ powf_overflow, powf_underflow, /* 30, 31 */
+ powf_zero_to_zero, /* 32 */
+ powf_zero_to_negative, /* 33 */
+ powf_neg_to_non_integer, /* 34 */
+ powf_nan_to_zero, /* 35 */
+ atan2l_zero, /* 36 */
+ atan2_zero, /* 37 */
+ atan2f_zero, /* 38 */
+ expm1l_overflow, /* 39 */
+ expm1l_underflow, /* 40 */
+ expm1_overflow, /* 41 */
+ expm1_underflow, /* 42 */
+ expm1f_overflow, /* 43 */
+ expm1f_underflow, /* 44 */
+ hypotl_overflow, /* 45 */
+ hypot_overflow, /* 46 */
+ hypotf_overflow, /* 47 */
+ sqrtl_negative, /* 48 */
+ sqrt_negative, /* 49 */
+ sqrtf_negative, /* 50 */
+ scalbl_overflow, scalbl_underflow, /* 51, 52 */
+ scalb_overflow, scalb_underflow, /* 53, 54 */
+ scalbf_overflow, scalbf_underflow, /* 55, 56 */
+ acosl_gt_one, acos_gt_one, acosf_gt_one, /* 57, 58, 59 */
+ asinl_gt_one, asin_gt_one, asinf_gt_one, /* 60, 61, 62 */
+ coshl_overflow, cosh_overflow, coshf_overflow, /* 63, 64, 65 */
+ y0l_zero, y0l_negative,y0l_gt_loss, /* 66, 67, 68 */
+ y0_zero, y0_negative,y0_gt_loss, /* 69, 70, 71 */
+ y0f_zero, y0f_negative,y0f_gt_loss, /* 72, 73, 74 */
+ y1l_zero, y1l_negative,y1l_gt_loss, /* 75, 76, 77 */
+ y1_zero, y1_negative,y1_gt_loss, /* 78, 79, 80 */
+ y1f_zero, y1f_negative,y1f_gt_loss, /* 81, 82, 83 */
+ ynl_zero, ynl_negative,ynl_gt_loss, /* 84, 85, 86 */
+ yn_zero, yn_negative,yn_gt_loss, /* 87, 88, 89 */
+ ynf_zero, ynf_negative,ynf_gt_loss, /* 90, 91, 92 */
+ j0l_gt_loss, /* 93 */
+ j0_gt_loss, /* 94 */
+ j0f_gt_loss, /* 95 */
+ j1l_gt_loss, /* 96 */
+ j1_gt_loss, /* 97 */
+ j1f_gt_loss, /* 98 */
+ jnl_gt_loss, /* 99 */
+ jn_gt_loss, /* 100 */
+ jnf_gt_loss, /* 101 */
+ lgammal_overflow, lgammal_negative,lgammal_reserve, /* 102, 103, 104 */
+ lgamma_overflow, lgamma_negative,lgamma_reserve, /* 105, 106, 107 */
+ lgammaf_overflow, lgammaf_negative, lgammaf_reserve,/* 108, 109, 110 */
+ gammal_overflow,gammal_negative, gammal_reserve, /* 111, 112, 113 */
+ gamma_overflow, gamma_negative, gamma_reserve, /* 114, 115, 116 */
+ gammaf_overflow,gammaf_negative,gammaf_reserve, /* 117, 118, 119 */
+ fmodl_by_zero, /* 120 */
+ fmod_by_zero, /* 121 */
+ fmodf_by_zero, /* 122 */
+ remainderl_by_zero, /* 123 */
+ remainder_by_zero, /* 124 */
+ remainderf_by_zero, /* 125 */
+ sinhl_overflow, sinh_overflow, sinhf_overflow, /* 126, 127, 128 */
+ atanhl_gt_one, atanhl_eq_one, /* 129, 130 */
+ atanh_gt_one, atanh_eq_one, /* 131, 132 */
+ atanhf_gt_one, atanhf_eq_one, /* 133, 134 */
+ acoshl_lt_one, /* 135 */
+ acosh_lt_one, /* 136 */
+ acoshf_lt_one, /* 137 */
+ log1pl_zero, log1pl_negative, /* 138, 139 */
+ log1p_zero, log1p_negative, /* 140, 141 */
+ log1pf_zero, log1pf_negative, /* 142, 143 */
+ ldexpl_overflow, ldexpl_underflow, /* 144, 145 */
+ ldexp_overflow, ldexp_underflow, /* 146, 147 */
+ ldexpf_overflow, ldexpf_underflow, /* 148, 149 */
+ logbl_zero, logb_zero, logbf_zero, /* 150, 151, 152 */
+ nextafterl_overflow, nextafter_overflow,
+ nextafterf_overflow, /* 153, 154, 155 */
+ ilogbl_zero, ilogb_zero, ilogbf_zero, /* 156, 157, 158 */
+ exp2l_overflow, exp2l_underflow, /* 159, 160 */
+ exp2_overflow, exp2_underflow, /* 161, 162 */
+ exp2f_overflow, exp2f_underflow, /* 163, 164 */
+ exp10l_overflow, exp10_overflow,
+ exp10f_overflow, /* 165, 166, 167 */
+ log2l_zero, log2l_negative, /* 168, 169 */
+ log2_zero, log2_negative, /* 170, 171 */
+ log2f_zero, log2f_negative, /* 172, 173 */
+ scalbnl_overflow, scalbnl_underflow, /* 174, 175 */
+ scalbn_overflow, scalbn_underflow, /* 176, 177 */
+ scalbnf_overflow, scalbnf_underflow /* 178, 179 */
+} error_types;
+
+void __libm_error_support(void*,void*,void*,error_types);
+libc_hidden_proto(__libm_error_support)
+
+#define BIAS_64 1023
+#define EXPINF_64 2047
+
+#define DOUBLE_HEX(HI, LO) 0x ## LO, 0x ## HI
+
+#if 0
+static const unsigned INF[] = {
+ DOUBLE_HEX(7ff00000, 00000000),
+ DOUBLE_HEX(fff00000, 00000000)
+};
-#include "libm_cpu_defs.h"
+static const double _zeroo = 0.0;
+static const double _bigg = 1.0e300;
+static const double _ponee = 1.0;
+static const double _nonee = -1.0;
-#if !(defined (IA64))
-# include "libm_dll.h"
-# include "libm_dispatch.h"
+#define INVALID (_zeroo * *((double*)&INF[0]))
+#define PINF *((double*)&INF[0])
+#define NINF -PINF
+#define PINF_DZ (_ponee/_zeroo)
+#define X_TLOSS 1.41484755040568800000e+16
#endif
-#include "libm_error_codes.h"
-
struct exceptionf
{
int type;
@@ -133,6 +290,8 @@ struct exception
# endif
# endif
+
+
struct exceptionl
{
int type;
@@ -140,27 +299,33 @@ struct exceptionl
long double arg1, arg2, retval;
};
-#if (defined (_MS_) && defined (IA64))
-#define MATHERR_F _matherrf
-#define MATHERR_D _matherr
+#ifdef _MS_
+#define MATHERR_F _matherrf
+#define MATHERR_D _matherr
#else
-#define MATHERR_F matherrf
-#define MATHERR_D matherr
+#define MATHERR_F matherrf
+#define MATHERR_D matherr
#endif
# ifdef __cplusplus
-#define EXC_DECL_D __exception
+#define EXC_DECL_D __exception
#else
// exception is a reserved name in C++
-#define EXC_DECL_D exception
+#define EXC_DECL_D exception
#endif
extern int MATHERR_F(struct exceptionf*);
extern int MATHERR_D(struct EXC_DECL_D*);
extern int matherrl(struct exceptionl*);
+
+/* Set these appropriately to make thread Safe */
+#define ERRNO_RANGE errno = ERANGE
+#define ERRNO_DOMAIN errno = EDOM
+
+
+// Add code to support _LIB_VERSION
#ifndef _LIBC
-// Add code to support _LIB_VERSIONIMF
typedef enum
{
_IEEE_ = -1, // IEEE-like behavior
@@ -169,883 +334,30 @@ typedef enum
_POSIX_, // Posix
_ISOC_ // ISO C9X
} _LIB_VERSION_TYPE;
-#endif
-
-// This is a run-time variable and may affect
-// floating point behavior of the libm functions
-
-#if !defined( LIBM_BUILD )
-#if defined( _DLL )
-extern _LIB_VERSION_TYPE __declspec(dllimport) _LIB_VERSIONIMF;
-#else
-extern _LIB_VERSION_TYPE _LIB_VERSIONIMF;
-#endif /* _DLL */
-#else
-extern int (*pmatherrf)(struct exceptionf*);
-extern int (*pmatherr)(struct EXC_DECL_D*);
-extern int (*pmatherrl)(struct exceptionl*);
-#endif /* LIBM_BUILD */
-
-/* memory format definitions (LITTLE_ENDIAN only) */
-
-#if !(defined(SIZE_INT_32) || defined(SIZE_INT_64))
-# error "You need to define SIZE_INT_32 or SIZE_INT_64"
-#endif
-
-#if (defined(SIZE_INT_32) && defined(SIZE_INT_64))
-#error multiple integer size definitions; define SIZE_INT_32 or SIZE_INT_64
-#endif
-#if !(defined(SIZE_LONG_32) || defined(SIZE_LONG_64))
-# error "You need to define SIZE_LONG_32 or SIZE_LONG_64"
+extern _LIB_VERSION_TYPE _LIB_VERSION;
#endif
-#if (defined(SIZE_LONG_32) && defined(SIZE_LONG_64))
-#error multiple integer size definitions; define SIZE_LONG_32 or SIZE_LONG_64
-#endif
-
-#if !defined(__USE_EXTERNAL_FPMEMTYP_H__)
-
-#define BIAS_32 0x007F
-#define BIAS_64 0x03FF
-#define BIAS_80 0x3FFF
-
-#define MAXEXP_32 0x00FE
-#define MAXEXP_64 0x07FE
-#define MAXEXP_80 0x7FFE
+// This is a run-time variable and may effect
+// floating point behavior of the libm functions
-#define EXPINF_32 0x00FF
-#define EXPINF_64 0x07FF
-#define EXPINF_80 0x7FFF
+#elif defined _LIBC
-struct fp32 { /*// sign:1 exponent:8 significand:23 (implied leading 1)*/
-#if defined(SIZE_INT_32)
- unsigned significand:23;
- unsigned exponent:8;
- unsigned sign:1;
-#elif defined(SIZE_INT_64)
- unsigned significand:23;
- unsigned exponent:8;
- unsigned sign:1;
-#endif
-};
+# if !defined NOT_IN_libc && defined SHARED && defined DO_VERSIONING \
+ && !defined HAVE_BROKEN_ALIAS_ATTRIBUTE && !defined NO_HIDDEN
+# define __libm_error_support __GI___libm_error_support
+# endif
-struct fp64 { /*/ sign:1 exponent:11 significand:52 (implied leading 1)*/
-#if defined(SIZE_INT_32)
- unsigned lo_significand:32;
- unsigned hi_significand:20;
- unsigned exponent:11;
- unsigned sign:1;
-#elif defined(SIZE_INT_64)
- unsigned significand:52;
- unsigned exponent:11;
- unsigned sign:1;
-#endif
-};
+#endif /* __ASSEMBLER__ */
-struct fp80 { /*/ sign:1 exponent:15 significand:64 (NO implied bits) */
-#if defined(SIZE_INT_32)
- unsigned lo_significand;
- unsigned hi_significand;
- unsigned exponent:15;
- unsigned sign:1;
-#elif defined(SIZE_INT_64)
- unsigned significand;
- unsigned exponent:15;
- unsigned sign:1;
-#endif
- unsigned pad:16;
-#if !(defined(__unix__) && defined(__i386__))
- unsigned padwin:32;
+/* Support for compatible assembler handling. */
+#if !defined L && defined _LIBC
+#define L(name) .L##name
#endif
-};
-
-#endif /*__USE_EXTERNAL_FPMEMTYP_H__*/
-
-#if !(defined(opensource))
-typedef __int32 INT32;
-typedef signed __int32 SINT32;
-typedef unsigned __int32 UINT32;
-
-typedef __int64 INT64;
-typedef signed __int64 SINT64;
-typedef unsigned __int64 UINT64;
+#ifdef __ELF__
+#define ASM_SIZE_DIRECTIVE(name) .size name,.-name
+#define ASM_TYPE_DIRECTIVE(name,T) .type name,T
#else
-typedef int INT32;
-typedef signed int SINT32;
-typedef unsigned int UINT32;
-
-typedef long long INT64;
-typedef signed long long SINT64;
-typedef unsigned long long UINT64;
-#endif
-
-#if (defined(_WIN32) || defined(_WIN64)) /* Windows */
-# define I64CONST(bits) 0x##bits##i64
-# define U64CONST(bits) 0x##bits##ui64
-#elif (defined(__linux__) && defined(_M_IA64)) /* Linux,64 */
-# define I64CONST(bits) 0x##bits##L
-# define U64CONST(bits) 0x##bits##uL
-#else /* Linux,32 */
-# define I64CONST(bits) 0x##bits##LL
-# define U64CONST(bits) 0x##bits##uLL
-#endif
-
-struct ker80 {
- union {
- long double ldhi;
- struct fp80 fphi;
- };
- union {
- long double ldlo;
- struct fp80 fplo;
- };
- int ex;
-};
-
-/* Addition: x+y */
-/* The result is sum rhi+rlo */
-/* Temporary variables: t1 */
-/* All variables are in long double precision */
-/* Correct if no overflow (algorithm by D.Knuth) */
-#define __LIBM_ADDL1_K80( rhi,rlo,x,y, t1 ) \
- rhi = x + y; \
- rlo = rhi - x; \
- t1 = rhi - rlo; \
- rlo = y - rlo; \
- t1 = x - t1; \
- rlo = rlo + t1;
-
-/* Addition: (xhi+xlo) + (yhi+ylo) */
-/* The result is sum rhi+rlo */
-/* Temporary variables: t1 */
-/* All variables are in long double precision */
-/* Correct if no overflow (algorithm by T.J.Dekker) */
-#define __LIBM_ADDL2_K80( rhi,rlo,xhi,xlo,yhi,ylo, t1 ) \
- rlo = xhi+yhi; \
- if ( VALUE_GT_80(FP80(xhi),FP80(yhi)) ) { \
- t1=xhi-rlo;t1=t1+yhi;t1=t1+ylo;t1=t1+xlo; \
- } else { \
- t1=yhi-rlo;t1=t1+xhi;t1=t1+xlo;t1=t1+ylo; \
- } \
- rhi=rlo+t1; \
- rlo=rlo-rhi;rlo=rlo+t1;
-
-/* Addition: r=x+y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Temporary variables: t1 */
-/* Correct if x and y belong to interval [2^-8000;2^8000], */
-/* or when one or both of them are zero */
-#if defined(SIZE_INT_32)
-#define __LIBM_ADDL_K80(r,x,y, t1) \
- if ( ((y)->ex+(y)->fphi.exponent-134 < \
- (x)->ex+(x)->fphi.exponent) && \
- ((x)->ex+(x)->fphi.exponent < \
- (y)->ex+(y)->fphi.exponent+134) && \
- !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
- !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
- { \
- /* y/2^134 < x < y*2^134, */ \
- /* and x,y are nonzero finite numbers */ \
- if ( (x)->ex != (y)->ex ) { \
- /* adjust x->ex to y->ex */ \
- /* t1 = 2^(x->ex - y->ex) */ \
- FP80(t1)->sign = 0; \
- FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
- /* exponent is correct because */ \
- /* |x->ex - y->ex| = */ \
- /* = | (x->ex + x->fphi.exponent) - */ \
- /* -(y->ex + y->fphi.exponent) + */ \
- /* + y->fphi.exponent - */ \
- /* - x->fphi.exponent | < */ \
- /* < | (x->ex+x->fphi.exponent) - */ \
- /* -(y->ex+y->fphi.exponent) | + */ \
- /* +| y->fphi.exponent - */ \
- /* -x->fphi.exponent | < */ \
- /* < 134 + 16000 */ \
- FP80(t1)->hi_significand = 0x80000000; \
- FP80(t1)->lo_significand = 0x00000000; \
- (x)->ex = (y)->ex; \
- (x)->ldhi *= t1; \
- (x)->ldlo *= t1; \
- } \
- /* r==x+y */ \
- (r)->ex = (y)->ex; \
- __LIBM_ADDL2_K80( (r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
- } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
- ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
- (x)->ex+(x)->fphi.exponent-BIAS_80) ) \
- { \
- /* |x|<<|y| */ \
- *(r) = *(y); \
- } else { \
- /* |y|<<|x| */ \
- *(r) = *(x); \
- }
-#elif defined(SIZE_INT_64)
-#define __LIBM_ADDL_K80(r,x,y, t1) \
- if ( ((y)->ex+(y)->fphi.exponent-134 < \
- (x)->ex+(x)->fphi.exponent) && \
- ((x)->ex+(x)->fphi.exponent < \
- (y)->ex+(y)->fphi.exponent+134) && \
- !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
- !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
- { \
- /* y/2^134 < x < y*2^134, */ \
- /* and x,y are nonzero finite numbers */ \
- if ( (x)->ex != (y)->ex ) { \
- /* adjust x->ex to y->ex */ \
- /* t1 = 2^(x->ex - y->ex) */ \
- FP80(t1)->sign = 0; \
- FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
- /* exponent is correct because */ \
- /* |x->ex - y->ex| = */ \
- /* = | (x->ex + x->fphi.exponent) - */ \
- /* -(y->ex + y->fphi.exponent) + */ \
- /* + y->fphi.exponent - */ \
- /* - x->fphi.exponent | < */ \
- /* < | (x->ex+x->fphi.exponent) - */ \
- /* -(y->ex+y->fphi.exponent) | + */ \
- /* +| y->fphi.exponent - */ \
- /* -x->fphi.exponent | < */ \
- /* < 134 + 16000 */ \
- FP80(t1)->significand = 0x8000000000000000; \
- (x)->ex = (y)->ex; \
- (x)->ldhi *= t1; \
- (x)->ldlo *= t1; \
- } \
- /* r==x+y */ \
- (r)->ex = (y)->ex; \
- __LIBM_ADDL2_K80( (r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
- } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
- ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
- (x)->ex+(x)->fphi.exponent-BIAS_80) ) \
- { \
- /* |x|<<|y| */ \
- *(r) = *(y); \
- } else { \
- /* |y|<<|x| */ \
- *(r) = *(x); \
- }
-#endif
-
-/* Addition: r=x+y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Temporary variables: t1 */
-/* Correct for any finite x and y */
-#define __LIBM_ADDL_NORM_K80(r,x,y, t1) \
- if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
- ((x)->fphi.exponent-BIAS_80>+8000) || \
- ((y)->fphi.exponent-BIAS_80<-8000) || \
- ((y)->fphi.exponent-BIAS_80>+8000) ) \
- { \
- __libm_normalizel_k80(x); \
- __libm_normalizel_k80(y); \
- } \
- __LIBM_ADDL_K80(r,x,y, t1)
-
-/* Subtraction: x-y */
-/* The result is sum rhi+rlo */
-/* Temporary variables: t1 */
-/* All variables are in long double precision */
-/* Correct if no overflow (algorithm by D.Knuth) */
-#define __LIBM_SUBL1_K80( rhi, rlo, x, y, t1 ) \
- rhi = x - y; \
- rlo = rhi - x; \
- t1 = rhi - rlo; \
- rlo = y + rlo; \
- t1 = x - t1; \
- rlo = t1 - rlo;
-
-/* Subtraction: (xhi+xlo) - (yhi+ylo) */
-/* The result is sum rhi+rlo */
-/* Temporary variables: t1 */
-/* All variables are in long double precision */
-/* Correct if no overflow (algorithm by T.J.Dekker) */
-#define __LIBM_SUBL2_K80( rhi,rlo,xhi,xlo,yhi,ylo, t1 ) \
- rlo = xhi-yhi; \
- if ( VALUE_GT_80(FP80(xhi),FP80(yhi)) ) { \
- t1=xhi-rlo;t1=t1-yhi;t1=t1-ylo;t1=t1+xlo; \
- } else { \
- t1=yhi+rlo;t1=xhi-t1;t1=t1+xlo;t1=t1-ylo; \
- } \
- rhi=rlo+t1; \
- rlo=rlo-rhi;rlo=rlo+t1;
-
-/* Subtraction: r=x-y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Temporary variables: t1 */
-/* Correct if x and y belong to interval [2^-8000;2^8000], */
-/* or when one or both of them are zero */
-#if defined(SIZE_INT_32)
-#define __LIBM_SUBL_K80(r,x,y, t1) \
- if ( ((y)->ex+(y)->fphi.exponent-134 < \
- (x)->ex+(x)->fphi.exponent) && \
- ((x)->ex+(x)->fphi.exponent < \
- (y)->ex+(y)->fphi.exponent+134) && \
- !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
- !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
- { \
- /* y/2^134 < x < y*2^134, */ \
- /* and x,y are nonzero finite numbers */ \
- if ( (x)->ex != (y)->ex ) { \
- /* adjust x->ex to y->ex */ \
- /* t1 = 2^(x->ex - y->ex) */ \
- FP80(t1)->sign = 0; \
- FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
- /* exponent is correct because */ \
- /* |x->ex - y->ex| = */ \
- /* = | (x->ex + x->fphi.exponent) - */ \
- /* -(y->ex + y->fphi.exponent) + */ \
- /* + y->fphi.exponent - */ \
- /* - x->fphi.exponent | < */ \
- /* < | (x->ex+x->fphi.exponent) - */ \
- /* -(y->ex+y->fphi.exponent) | + */ \
- /* +| y->fphi.exponent - */ \
- /* -x->fphi.exponent | < */ \
- /* < 134 + 16000 */ \
- FP80(t1)->hi_significand = 0x80000000; \
- FP80(t1)->lo_significand = 0x00000000; \
- (x)->ex = (y)->ex; \
- (x)->ldhi *= t1; \
- (x)->ldlo *= t1; \
- } \
- /* r==x+y */ \
- (r)->ex = (y)->ex; \
- __LIBM_SUBL2_K80( (r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
- } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
- ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
- (x)->ex+(x)->fphi.exponent-BIAS_80) ) \
- { \
- /* |x|<<|y| */ \
- (r)->ex = (y)->ex; \
- (r)->ldhi = -((y)->ldhi); \
- (r)->ldlo = -((y)->ldlo); \
- } else { \
- /* |y|<<|x| */ \
- *(r) = *(x); \
- }
-#elif defined(SIZE_INT_64)
-#define __LIBM_SUBL_K80(r,x,y, t1) \
- if ( ((y)->ex+(y)->fphi.exponent-134 < \
- (x)->ex+(x)->fphi.exponent) && \
- ((x)->ex+(x)->fphi.exponent < \
- (y)->ex+(y)->fphi.exponent+134) && \
- !SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
- !SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
- { \
- /* y/2^134 < x < y*2^134, */ \
- /* and x,y are nonzero finite numbers */ \
- if ( (x)->ex != (y)->ex ) { \
- /* adjust x->ex to y->ex */ \
- /* t1 = 2^(x->ex - y->ex) */ \
- FP80(t1)->sign = 0; \
- FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
- /* exponent is correct because */ \
- /* |x->ex - y->ex| = */ \
- /* = | (x->ex + x->fphi.exponent) - */ \
- /* -(y->ex + y->fphi.exponent) + */ \
- /* + y->fphi.exponent - */ \
- /* - x->fphi.exponent | < */ \
- /* < | (x->ex+x->fphi.exponent) - */ \
- /* -(y->ex+y->fphi.exponent) | + */ \
- /* +| y->fphi.exponent - */ \
- /* -x->fphi.exponent | < */ \
- /* < 134 + 16000 */ \
- FP80(t1)->significand = 0x8000000000000000; \
- (x)->ex = (y)->ex; \
- (x)->ldhi *= t1; \
- (x)->ldlo *= t1; \
- } \
- /* r==x+y */ \
- (r)->ex = (y)->ex; \
- __LIBM_SUBL2_K80( (r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
- } else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
- ((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
- (x)->ex+(x)->fphi.exponent-BIAS_80) ) \
- { \
- /* |x|<<|y| */ \
- (r)->ex = (y)->ex; \
- (r)->ldhi = -((y)->ldhi); \
- (r)->ldlo = -((y)->ldlo); \
- } else { \
- /* |y|<<|x| */ \
- *(r) = *(x); \
- }
-#endif
-
-/* Subtraction: r=x+y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Temporary variables: t1 */
-/* Correct for any finite x and y */
-#define __LIBM_SUBL_NORM_K80(r,x,y, t1) \
- if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
- ((x)->fphi.exponent-BIAS_80>+8000) || \
- ((y)->fphi.exponent-BIAS_80<-8000) || \
- ((y)->fphi.exponent-BIAS_80>+8000) ) \
- { \
- __libm_normalizel_k80(x); \
- __libm_normalizel_k80(y); \
- } \
- __LIBM_SUBL_K80(r,x,y, t1)
-
-/* Multiplication: x*y */
-/* The result is sum rhi+rlo */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6 */
-/* All variables are in long double precision */
-/* Correct if no over/underflow (algorithm by T.J.Dekker) */
-#define __LIBM_MULL1_K80(rhi,rlo,x,y, \
- t32,t1,t2,t3,t4,t5,t6) \
- t1=(x)*(t32); t3=x-t1; t3=t3+t1; t4=x-t3; \
- t1=(y)*(t32); t5=y-t1; t5=t5+t1; t6=y-t5; \
- t1=(t3)*(t5); \
- t2=(t3)*(t6)+(t4)*(t5); \
- rhi=t1+t2; \
- rlo=t1-rhi; rlo=rlo+t2; rlo=rlo+(t4*t6);
-
-/* Multiplication: (xhi+xlo)*(yhi+ylo) */
-/* The result is sum rhi+rlo */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
-/* All variables are in long double precision */
-/* Correct if no over/underflow (algorithm by T.J.Dekker) */
-#define __LIBM_MULL2_K80(rhi,rlo,xhi,xlo,yhi,ylo, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8) \
- __LIBM_MULL1_K80(t7,t8,xhi,yhi, t32,t1,t2,t3,t4,t5,t6) \
- t1=(xhi)*(ylo)+(xlo)*(yhi); t1=t1+t8; \
- rhi=t7+t1; \
- rlo=t7-rhi; rlo=rlo+t1;
-
-/* Multiplication: r=x*y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
-/* Correct if x and y belong to interval [2^-8000;2^8000] */
-#define __LIBM_MULL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8) \
- (r)->ex = (x)->ex + (y)->ex; \
- __LIBM_MULL2_K80((r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo,(y)->ldhi,(y)->ldlo, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8)
-
-/* Multiplication: r=x*y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
-/* Correct for any finite x and y */
-#define __LIBM_MULL_NORM_K80(r,x,y, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8) \
- if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
- ((x)->fphi.exponent-BIAS_80>+8000) || \
- ((y)->fphi.exponent-BIAS_80<-8000) || \
- ((y)->fphi.exponent-BIAS_80>+8000) ) \
- { \
- __libm_normalizel_k80(x); \
- __libm_normalizel_k80(y); \
- } \
- __LIBM_MULL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8)
-
-/* Division: (xhi+xlo)/(yhi+ylo) */
-/* The result is sum rhi+rlo */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
-/* All variables are in long double precision */
-/* Correct if no over/underflow (algorithm by T.J.Dekker) */
-#define __LIBM_DIVL2_K80(rhi,rlo,xhi,xlo,yhi,ylo, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
- t7=(xhi)/(yhi); \
- __LIBM_MULL1_K80(t8,t9,t7,yhi, t32,t1,t2,t3,t4,t5,t6) \
- t1=xhi-t8; t1=t1-t9; t1=t1+xlo; t1=t1-(t7)*(ylo); \
- t1=(t1)/(yhi); \
- rhi=t7+t1; \
- rlo=t7-rhi; rlo=rlo+t1;
-
-/* Division: r=x/y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
-/* Correct if x and y belong to interval [2^-8000;2^8000] */
-#define __LIBM_DIVL_K80(r,x,y, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
- (r)->ex = (x)->ex - (y)->ex; \
- __LIBM_DIVL2_K80( (r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo,(y)->ldhi,(y)->ldlo, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8,t9)
-
-/* Division: r=x/y */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Here t32 is the constant 2^32+1 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
-/* Correct for any finite x and y */
-#define __LIBM_DIVL_NORM_K80(r,x,y, \
- t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
- if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
- ((x)->fphi.exponent-BIAS_80>+8000) || \
- ((y)->fphi.exponent-BIAS_80<-8000) || \
- ((y)->fphi.exponent-BIAS_80>+8000) ) \
- { \
- __libm_normalizel_k80(x); \
- __libm_normalizel_k80(y); \
- } \
- __LIBM_DIVL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8,t9)
-
-/* Square root: sqrt(xhi+xlo) */
-/* The result is sum rhi+rlo */
-/* Here t32 is the constant 2^32+1 */
-/* half is the constant 0.5 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
-/* All variables are in long double precision */
-/* Correct for positive xhi+xlo (algorithm by T.J.Dekker) */
-#define __LIBM_SQRTL2_NORM_K80(rhi,rlo,xhi,xlo, \
- t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
- t7=sqrtl(xhi); \
- __LIBM_MULL1_K80(t8,t9,t7,t7, t32,t1,t2,t3,t4,t5,t6) \
- t1=xhi-t8; t1=t1-t9; t1=t1+xlo; t1=(t1)*(half); \
- t1=(t1)/(t7); \
- rhi=t7+t1; \
- rlo=t7-rhi; rlo=rlo+t1;
-
-/* Square root: r=sqrt(x) */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Here t32 is the constant 2^32+1 */
-/* half is the constant 0.5 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
-/* Correct if x belongs to interval [2^-16000;2^16000] */
-#define __LIBM_SQRTL_K80(r,x, \
- t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
- if ( ((x)->ex & 1) == 1 ) { \
- (x)->ex = (x)->ex + 1; \
- (x)->ldhi *= half; \
- (x)->ldlo *= half; \
- } \
- (r)->ex = (x)->ex >> 1; \
- __LIBM_SQRTL2_NORM_K80( (r)->ldhi,(r)->ldlo, \
- (x)->ldhi,(x)->ldlo, \
- t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9)
-
-/* Square root: r=sqrt(x) */
-/* Variables r,x,y are pointers to struct ker80, */
-/* all other variables are in long double precision */
-/* Here t32 is the constant 2^32+1 */
-/* half is the constant 0.5 */
-/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
-/* Correct for any positive x */
-#define __LIBM_SQRTL_NORM_K80(r,x, \
- t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
- if ( ((x)->fphi.exponent-BIAS_80<-16000) || \
- ((x)->fphi.exponent-BIAS_80>+16000) ) \
- { \
- __libm_normalizel_k80(x); \
- } \
- __LIBM_SQRTL_K80(r,x, t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9)
-
-
-#ifdef __INTEL_COMPILER
-#define ALIGN(n) __declspec(align(n))
-#else /* __INTEL_COMPILER */
-#define ALIGN(n)
-#endif /* __INTEL_COMPILER */
-
-/* macros to form a long double value in hex representation (unsigned short type) */
-
-#if (defined(__unix__) && defined(__i386__))
-# define LDOUBLE_ALIGN 12 /* IA32 Linux: 12-byte alignment */
-#else /*__linux__ & IA32*/
-# define LDOUBLE_ALIGN 16 /* EFI2/IA32 Win or IPF Win/Linux: 16-byte alignment */
-#endif /*__linux__ & IA32*/
-
-#if (LDOUBLE_ALIGN == 16)
-#define _XPD_ ,0x0000,0x0000,0x0000
-#else /*12*/
-#define _XPD_ ,0x0000
-#endif
-
-#define LDOUBLE_HEX(w4,w3,w2,w1,w0) 0x##w0,0x##w1,0x##w2,0x##w3,0x##w4 _XPD_ /*LITTLE_ENDIAN*/
-
-/* macros to sign-expand low 'num' bits of 'val' to native integer */
-
-#if defined(SIZE_INT_32)
-# define SIGN_EXPAND(val,num) ((int)(val) << (32-(num))) >> (32-(num)) /* sign expand of 'num' LSBs */
-#elif defined(SIZE_INT_64)
-# define SIGN_EXPAND(val,num) ((int)(val) << (64-(num))) >> (64-(num)) /* sign expand of 'num' LSBs */
-#endif
-
-/* macros to form pointers to FP number on-the-fly */
-
-#define FP32(f) ((struct fp32 *)&f)
-#define FP64(d) ((struct fp64 *)&d)
-#define FP80(ld) ((struct fp80 *)&ld)
-
-/* macros to extract signed low and high doubleword of long double */
-
-#if defined(SIZE_INT_32)
-# define HI_DWORD_80(ld) ((((FP80(ld)->sign << 15) | FP80(ld)->exponent) << 16) | \
- ((FP80(ld)->hi_significand >> 16) & 0xFFFF))
-# define LO_DWORD_80(ld) SIGN_EXPAND(FP80(ld)->lo_significand, 32)
-#elif defined(SIZE_INT_64)
-# define HI_DWORD_80(ld) ((((FP80(ld)->sign << 15) | FP80(ld)->exponent) << 16) | \
- ((FP80(ld)->significand >> 48) & 0xFFFF))
-# define LO_DWORD_80(ld) SIGN_EXPAND(FP80(ld)->significand, 32)
-#endif
-
-/* macros to extract hi bits of significand.
- * note that explicit high bit do not count (returns as is)
- */
-
-#if defined(SIZE_INT_32)
-# define HI_SIGNIFICAND_80(X,NBITS) ((X)->hi_significand >> (31 - (NBITS)))
-#elif defined(SIZE_INT_64)
-# define HI_SIGNIFICAND_80(X,NBITS) ((X)->significand >> (63 - (NBITS)))
-#endif
-
-/* macros to check, whether a significand bits are all zero, or some of them are non-zero.
- * note that SIGNIFICAND_ZERO_80 tests high bit also, but SIGNIFICAND_NONZERO_80 does not
- */
-
-#define SIGNIFICAND_ZERO_32(X) ((X)->significand == 0)
-#define SIGNIFICAND_NONZERO_32(X) ((X)->significand != 0)
-
-#if defined(SIZE_INT_32)
-# define SIGNIFICAND_ZERO_64(X) (((X)->hi_significand == 0) && ((X)->lo_significand == 0))
-# define SIGNIFICAND_NONZERO_64(X) (((X)->hi_significand != 0) || ((X)->lo_significand != 0))
-#elif defined(SIZE_INT_64)
-# define SIGNIFICAND_ZERO_64(X) ((X)->significand == 0)
-# define SIGNIFICAND_NONZERO_64(X) ((X)->significand != 0)
-#endif
-
-#if defined(SIZE_INT_32)
-# define SIGNIFICAND_ZERO_80(X) (((X)->hi_significand == 0x00000000) && ((X)->lo_significand == 0))
-# define SIGNIFICAND_NONZERO_80(X) (((X)->hi_significand != 0x80000000) || ((X)->lo_significand != 0))
-#elif defined(SIZE_INT_64)
-# define SIGNIFICAND_ZERO_80(X) ((X)->significand == 0x0000000000000000)
-# define SIGNIFICAND_NONZERO_80(X) ((X)->significand != 0x8000000000000000)
-#endif
-
-/* macros to compare long double with constant value, represented as hex */
-
-#define SIGNIFICAND_EQ_HEX_32(X,BITS) ((X)->significand == 0x ## BITS)
-#define SIGNIFICAND_GT_HEX_32(X,BITS) ((X)->significand > 0x ## BITS)
-#define SIGNIFICAND_GE_HEX_32(X,BITS) ((X)->significand >= 0x ## BITS)
-#define SIGNIFICAND_LT_HEX_32(X,BITS) ((X)->significand < 0x ## BITS)
-#define SIGNIFICAND_LE_HEX_32(X,BITS) ((X)->significand <= 0x ## BITS)
-
-#if defined(SIZE_INT_32)
-# define SIGNIFICAND_EQ_HEX_64(X,HI,LO) \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand == 0x ## LO))
-# define SIGNIFICAND_GT_HEX_64(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand > 0x ## LO)))
-# define SIGNIFICAND_GE_HEX_64(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand >= 0x ## LO)))
-# define SIGNIFICAND_LT_HEX_64(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand < 0x ## LO)))
-# define SIGNIFICAND_LE_HEX_64(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand <= 0x ## LO)))
-#elif defined(SIZE_INT_64)
-# define SIGNIFICAND_EQ_HEX_64(X,HI,LO) ((X)->significand == 0x ## HI ## LO)
-# define SIGNIFICAND_GT_HEX_64(X,HI,LO) ((X)->significand > 0x ## HI ## LO)
-# define SIGNIFICAND_GE_HEX_64(X,HI,LO) ((X)->significand >= 0x ## HI ## LO)
-# define SIGNIFICAND_LT_HEX_64(X,HI,LO) ((X)->significand < 0x ## HI ## LO)
-# define SIGNIFICAND_LE_HEX_64(X,HI,LO) ((X)->significand <= 0x ## HI ## LO)
-#endif
-
-#if defined(SIZE_INT_32)
-# define SIGNIFICAND_EQ_HEX_80(X,HI,LO) \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand == 0x ## LO))
-# define SIGNIFICAND_GT_HEX_80(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand > 0x ## LO)))
-# define SIGNIFICAND_GE_HEX_80(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand >= 0x ## LO)))
-# define SIGNIFICAND_LT_HEX_80(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand < 0x ## LO)))
-# define SIGNIFICAND_LE_HEX_80(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
- (((X)->hi_significand == 0x ## HI) && ((X)->lo_significand <= 0x ## LO)))
-#elif defined(SIZE_INT_64)
-# define SIGNIFICAND_EQ_HEX_80(X,HI,LO) ((X)->significand == 0x ## HI ## LO)
-# define SIGNIFICAND_GT_HEX_80(X,HI,LO) ((X)->significand > 0x ## HI ## LO)
-# define SIGNIFICAND_GE_HEX_80(X,HI,LO) ((X)->significand >= 0x ## HI ## LO)
-# define SIGNIFICAND_LT_HEX_80(X,HI,LO) ((X)->significand < 0x ## HI ## LO)
-# define SIGNIFICAND_LE_HEX_80(X,HI,LO) ((X)->significand <= 0x ## HI ## LO)
-#endif
-
-#define VALUE_EQ_HEX_32(X,EXP,BITS) \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_32(X, BITS)))
-#define VALUE_GT_HEX_32(X,EXP,BITS) (((X)->exponent > (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_32(X, BITS))))
-#define VALUE_GE_HEX_32(X,EXP,BITS) (((X)->exponent > (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_32(X, BITS))))
-#define VALUE_LT_HEX_32(X,EXP,BITS) (((X)->exponent < (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_32(X, BITS))))
-#define VALUE_LE_HEX_32(X,EXP,BITS) (((X)->exponent < (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_32(X, BITS))))
-
-#define VALUE_EQ_HEX_64(X,EXP,HI,LO) \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_64(X, HI, LO)))
-#define VALUE_GT_HEX_64(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_64(X, HI, LO))))
-#define VALUE_GE_HEX_64(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_64(X, HI, LO))))
-#define VALUE_LT_HEX_64(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_64(X, HI, LO))))
-#define VALUE_LE_HEX_64(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_64(X, HI, LO))))
-
-#define VALUE_EQ_HEX_80(X,EXP,HI,LO) \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_80(X, HI, LO)))
-#define VALUE_GT_HEX_80(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_80(X, HI, LO))))
-#define VALUE_GE_HEX_80(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_80(X, HI, LO))))
-#define VALUE_LT_HEX_80(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_80(X, HI, LO))))
-#define VALUE_LE_HEX_80(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
- (((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_80(X, HI, LO))))
-
-/* macros to compare two long doubles */
-
-#define SIGNIFICAND_EQ_32(X,Y) ((X)->significand == (Y)->significand)
-#define SIGNIFICAND_GT_32(X,Y) ((X)->significand > (Y)->significand)
-#define SIGNIFICAND_GE_32(X,Y) ((X)->significand >= (Y)->significand)
-#define SIGNIFICAND_LT_32(X,Y) ((X)->significand < (Y)->significand)
-#define SIGNIFICAND_LE_32(X,Y) ((X)->significand <= (Y)->significand)
-
-#if defined(SIZE_INT_32)
-# define SIGNIFICAND_EQ_64(X,Y) \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand == (Y)->lo_significand))
-# define SIGNIFICAND_GT_64(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand > (Y)->lo_significand)))
-# define SIGNIFICAND_GE_64(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand >= (Y)->lo_significand)))
-# define SIGNIFICAND_LT_64(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand < (Y)->lo_significand)))
-# define SIGNIFICAND_LE_64(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand <= (Y)->lo_significand)))
-#elif defined(SIZE_INT_64)
-# define SIGNIFICAND_EQ_64(X,Y) ((X)->significand == (Y)->significand)
-# define SIGNIFICAND_GT_64(X,Y) ((X)->significand > (Y)->significand)
-# define SIGNIFICAND_GE_64(X,Y) ((X)->significand >= (Y)->significand)
-# define SIGNIFICAND_LT_64(X,Y) ((X)->significand < (Y)->significand)
-# define SIGNIFICAND_LE_64(X,Y) ((X)->significand <= (Y)->significand)
+#define ASM_SIZE_DIRECTIVE(name)
+#define ASM_TYPE_DIRECTIVE(name,T)
#endif
-
-#if defined(SIZE_INT_32)
-# define SIGNIFICAND_EQ_80(X,Y) \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand == (Y)->lo_significand))
-# define SIGNIFICAND_GT_80(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand > (Y)->lo_significand)))
-# define SIGNIFICAND_GE_80(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand >= (Y)->lo_significand)))
-# define SIGNIFICAND_LT_80(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand < (Y)->lo_significand)))
-# define SIGNIFICAND_LE_80(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
- (((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand <= (Y)->lo_significand)))
-#elif defined(SIZE_INT_64)
-# define SIGNIFICAND_EQ_80(X,Y) ((X)->significand == (Y)->significand)
-# define SIGNIFICAND_GT_80(X,Y) ((X)->significand > (Y)->significand)
-# define SIGNIFICAND_GE_80(X,Y) ((X)->significand >= (Y)->significand)
-# define SIGNIFICAND_LT_80(X,Y) ((X)->significand < (Y)->significand)
-# define SIGNIFICAND_LE_80(X,Y) ((X)->significand <= (Y)->significand)
-#endif
-
-#define VALUE_EQ_32(X,Y) \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_32(X, Y)))
-#define VALUE_GT_32(X,Y) (((X)->exponent > (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_32(X, Y))))
-#define VALUE_GE_32(X,Y) (((X)->exponent > (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_32(X, Y))))
-#define VALUE_LT_32(X,Y) (((X)->exponent < (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_32(X, Y))))
-#define VALUE_LE_32(X,Y) (((X)->exponent < (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_32(X, Y))))
-
-#define VALUE_EQ_64(X,Y) \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_64(X, Y)))
-#define VALUE_GT_64(X,Y) (((X)->exponent > (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_64(X, Y))))
-#define VALUE_GE_64(X,Y) (((X)->exponent > (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_64(X, Y))))
-#define VALUE_LT_64(X,Y) (((X)->exponent < (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_64(X, Y))))
-#define VALUE_LE_64(X,Y) (((X)->exponent < (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_64(X, Y))))
-
-#define VALUE_EQ_80(X,Y) \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_80(X, Y)))
-#define VALUE_GT_80(X,Y) (((X)->exponent > (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_80(X, Y))))
-#define VALUE_GE_80(X,Y) (((X)->exponent > (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_80(X, Y))))
-#define VALUE_LT_80(X,Y) (((X)->exponent < (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_80(X, Y))))
-#define VALUE_LE_80(X,Y) (((X)->exponent < (Y)->exponent) || \
- (((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_80(X, Y))))
-
-/* add/subtract 1 ulp macros */
-
-#if defined(SIZE_INT_32)
-# define ADD_ULP_80(X) \
- if ((++(X)->lo_significand == 0) && \
- (++(X)->hi_significand == (((X)->exponent == 0) ? 0x80000000 : 0))) \
- { \
- (X)->hi_significand |= 0x80000000; \
- ++(X)->exponent; \
- }
-# define SUB_ULP_80(X) \
- if (--(X)->lo_significand == 0xFFFFFFFF) { \
- --(X)->hi_significand; \
- if (((X)->exponent != 0) && \
- ((X)->hi_significand == 0x7FFFFFFF) && \
- (--(X)->exponent != 0)) \
- { \
- (X)->hi_significand |= 0x80000000; \
- } \
- }
-#elif defined(SIZE_INT_64)
-# define ADD_ULP_80(X) \
- if (++(X)->significand == (((X)->exponent == 0) ? 0x8000000000000000 : 0))) { \
- (X)->significand |= 0x8000000000000000; \
- ++(X)->exponent; \
- }
-# define SUB_ULP_80(X) \
- { \
- --(X)->significand; \
- if (((X)->exponent != 0) && \
- ((X)->significand == 0x7FFFFFFFFFFFFFFF) && \
- (--(X)->exponent != 0)) \
- { \
- (X)->significand |= 0x8000000000000000; \
- } \
- }
-#endif
-
-
-/* error codes */
-
-#define DOMAIN 1 /* argument domain error */
-#define SING 2 /* argument singularity */
-#define OVERFLOW 3 /* overflow range error */
-#define UNDERFLOW 4 /* underflow range error */
-#define TLOSS 5 /* total loss of precision */
-#define PLOSS 6 /* partial loss of precision */
-
-/* */
-
-#define VOLATILE_32 /*volatile*/
-#define VOLATILE_64 /*volatile*/
-#define VOLATILE_80 /*volatile*/
-
-#define QUAD_TYPE _Quad
-
-#endif /*__LIBM_SUPPORT_H_INCLUDED__*/
diff --git a/sysdeps/ia64/fpu/printf_fphex.c b/sysdeps/ia64/fpu/printf_fphex.c
index 5def1905d8..42f64b2ab2 100644
--- a/sysdeps/ia64/fpu/printf_fphex.c
+++ b/sysdeps/ia64/fpu/printf_fphex.c
@@ -1,5 +1,5 @@
/* Print floating point number in hexadecimal notation according to ISO C99.
- Copyright (C) 2000, 2005 Free Software Foundation, Inc.
+ Copyright (C) 2000 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
@@ -78,4 +78,4 @@ do { \
} \
} while (0)
-#include <stdio-common/printf_fphex.c>
+#include <sysdeps/generic/printf_fphex.c>
diff --git a/sysdeps/ia64/fpu/s_asinh.S b/sysdeps/ia64/fpu/s_asinh.S
deleted file mode 100644
index 7eba39eb40..0000000000
--- a/sysdeps/ia64/fpu/s_asinh.S
+++ /dev/null
@@ -1,1138 +0,0 @@
-.file "asinh.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// ==============================================================
-// History
-// ==============================================================
-// 04/02/01 Initial version
-// 04/19/01 Improved speed of the paths #1,2,3,4,5
-// 10/18/01 Improved accuracy
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/21/03 Improved performance, fixed to handle unorms
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-// ==============================================================
-// double asinh(double)
-//
-// Overview of operation
-// ==============================================================
-//
-// There are 7 paths:
-// 1. x = 0.0
-// Return asinh(x) = 0.0
-//
-// 2. 0.0 <|x| < 2^(-3)
-// Return asinh(x) = POL13(x),
-// where POL13(x) = (x^2*C13 + ...)*x^2 + C5)*x^2 + C3)*x^3 + x
-//
-// 3. 2^(-3) <= |x| < 2^63
-// Return asinh(x) = sign(x)*(log(|x| + sqrt(x^2 + 1.0)))
-// To compute x + sqrt(x^2 + 1.0) modified Newton Raphson method is used
-// (3 iterations)
-// Algorithm description for log function see below.
-//
-// 4. 2^63 <= |x| < +INF
-// Return asinh(x) = sign(x)*log(2*|x|)
-// Algorithm description for log function see below.
-//
-// 5. x = INF
-// Return asinh(x) = INF
-//
-// 6. x = [S,Q]NaN
-// Return asinh(x) = QNaN
-//
-// 7. x = denormal
-// Return asinh(x) = x correctly rounded
-//
-//==============================================================
-// Algorithm Description for log(x) function
-// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always
-// true for this asinh implementation
-//
-// Consider x = 2^N 1.f1 f2 f3 f4...f63
-// Log(x) = log(frcpa(x) x/frcpa(x))
-// = log(1/frcpa(x)) + log(frcpa(x) x)
-// = -log(frcpa(x)) + log(frcpa(x) x)
-//
-// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
-//
-// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 + T + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + T + log(C x)
-//
-// Cx = 1 + r
-//
-// Log(x) = +Nlog2 + T + log(1+r)
-// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
-//
-// x = f * 2*n where f is 1.f_1f_2f_3....f_63
-// Nfloat = float(n) where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 16
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-// y_k = frcpa(x_k)
-// log(1/y_k) in quad and round to double-extended
-//
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f15, f32 -> f68
-
-// General registers used:
-// r14 -> r27
-
-// Predicate registers used:
-// p6 -> p14
-
-// p6 to filter out case when x = [Q,S]NaN or INF or zero
-// p7 to filter out case when x < 0.0
-// p8 to select path #2
-// p9 used in the frcpa from path #3
-// p11 to filter out case when x >= 0
-// p12 to filter out case when x = unorm
-// p13 to select path #4
-// Assembly macros
-//==============================================================
-log_GR_exp_17_ones = r14
-log_GR_signexp_f8 = r15
-log_table_address2 = r16
-log_GR_exp_16_ones = r17
-log_GR_exp_f8 = r18
-log_GR_true_exp_f8 = r19
-log_GR_significand_f8 = r20
-log_GR_index = r21
-log_GR_comp2 = r22
-asinh_GR_f8 = r23
-asinh_GR_comp = r24
-asinh_GR_f8 = r25
-log_table_address3 = r26
-NR_table_address = r27
-
-//==============================================================
-log_y = f9
-NR1 = f10
-NR2 = f11
-log_y_rs = f12
-log_y_rs_iter = f13
-log_y_rs_iter1 = f14
-fNormX = f15
-asinh_w_sq = f32
-log_C13 = f33
-log_C11 = f34
-log_P3 = f35
-log_P2 = f36
-log_P1 = f37
-log_P5 = f38
-log_P4 = f39
-log_C3 = f40
-log_C5 = f41
-log_C7 = f42
-log2 = f43
-asinh_f8 = f44
-log_C = f45
-log_arg = f46
-log_C9 = f47
-asinh_w_four = f48
-log_int_Nfloat = f49
-log_r = f50
-log_rsq = f51
-log_rp_p4 = f52
-log_rp_p32 = f53
-log_rcube = f54
-log_rp_p10 = f55
-log_rp_p2 = f56
-log_Nfloat = f57
-log_T = f58
-log_r2P_r = f59
-log_T_plus_Nlog2 = f60
-asinh_w_3 = f61
-asinh_w_5 = f62
-asinh_w_cube = f63
-asinh_w_7 = f64
-log_arg_early = f65
-asinh_w_9 = f66
-asinh_w_13 = f67
-asinh_w_seven = f68
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(log_table_1)
-data8 0xBFC5555DA7212371 // P5
-data8 0x3FC999A19EEF5826 // P4
-data8 0xBFCFFFFFFFFEF009 // P3
-data8 0x3FD555555554ECB2 // P2
-data8 0xBFE0000000000000 // P1 = -0.5
-data8 0x0000000000000000 // pad
-data8 0xb17217f7d1cf79ac, 0x00003ffe // log2
-LOCAL_OBJECT_END(log_table_1)
-
-LOCAL_OBJECT_START(log_table_2)
-data8 0x3FE0000000000000 // 0.5
-data8 0x4008000000000000 // 3.0
-//
-data8 0x8824BE4D74BC4F00, 0x00003FF9 // C13
-data8 0xB725A2CD9556CC57, 0x0000BFF9 // C11
-data8 0xF8E339127FBFF49D, 0x00003FF9 // C9
-data8 0xB6DB6D7DCE17CB78, 0x0000BFFA // C7
-data8 0x999999998802CCEF, 0x00003FFB // C5
-data8 0xAAAAAAAAAAA8DC40, 0x0000BFFC // C3
-LOCAL_OBJECT_END(log_table_2)
-
-
-LOCAL_OBJECT_START(log_table_3)
-data8 0x80200aaeac44ef38 , 0x00003ff6 // log(1/frcpa(1+ 0/2^-8))
-//
-data8 0xc09090a2c35aa070 , 0x00003ff7 // log(1/frcpa(1+ 1/2^-8))
-data8 0xa0c94fcb41977c75 , 0x00003ff8 // log(1/frcpa(1+ 2/2^-8))
-data8 0xe18b9c263af83301 , 0x00003ff8 // log(1/frcpa(1+ 3/2^-8))
-data8 0x8d35c8d6399c30ea , 0x00003ff9 // log(1/frcpa(1+ 4/2^-8))
-data8 0xadd4d2ecd601cbb8 , 0x00003ff9 // log(1/frcpa(1+ 5/2^-8))
-//
-data8 0xce95403a192f9f01 , 0x00003ff9 // log(1/frcpa(1+ 6/2^-8))
-data8 0xeb59392cbcc01096 , 0x00003ff9 // log(1/frcpa(1+ 7/2^-8))
-data8 0x862c7d0cefd54c5d , 0x00003ffa // log(1/frcpa(1+ 8/2^-8))
-data8 0x94aa63c65e70d499 , 0x00003ffa // log(1/frcpa(1+ 9/2^-8))
-data8 0xa54a696d4b62b382 , 0x00003ffa // log(1/frcpa(1+ 10/2^-8))
-//
-data8 0xb3e4a796a5dac208 , 0x00003ffa // log(1/frcpa(1+ 11/2^-8))
-data8 0xc28c45b1878340a9 , 0x00003ffa // log(1/frcpa(1+ 12/2^-8))
-data8 0xd35c55f39d7a6235 , 0x00003ffa // log(1/frcpa(1+ 13/2^-8))
-data8 0xe220f037b954f1f5 , 0x00003ffa // log(1/frcpa(1+ 14/2^-8))
-data8 0xf0f3389b036834f3 , 0x00003ffa // log(1/frcpa(1+ 15/2^-8))
-//
-data8 0xffd3488d5c980465 , 0x00003ffa // log(1/frcpa(1+ 16/2^-8))
-data8 0x87609ce2ed300490 , 0x00003ffb // log(1/frcpa(1+ 17/2^-8))
-data8 0x8ede9321e8c85927 , 0x00003ffb // log(1/frcpa(1+ 18/2^-8))
-data8 0x96639427f2f8e2f4 , 0x00003ffb // log(1/frcpa(1+ 19/2^-8))
-data8 0x9defad3e8f73217b , 0x00003ffb // log(1/frcpa(1+ 20/2^-8))
-//
-data8 0xa582ebd50097029c , 0x00003ffb // log(1/frcpa(1+ 21/2^-8))
-data8 0xac06dbe75ab80fee , 0x00003ffb // log(1/frcpa(1+ 22/2^-8))
-data8 0xb3a78449b2d3ccca , 0x00003ffb // log(1/frcpa(1+ 23/2^-8))
-data8 0xbb4f79635ab46bb2 , 0x00003ffb // log(1/frcpa(1+ 24/2^-8))
-data8 0xc2fec93a83523f3f , 0x00003ffb // log(1/frcpa(1+ 25/2^-8))
-//
-data8 0xc99af2eaca4c4571 , 0x00003ffb // log(1/frcpa(1+ 26/2^-8))
-data8 0xd1581106472fa653 , 0x00003ffb // log(1/frcpa(1+ 27/2^-8))
-data8 0xd8002560d4355f2e , 0x00003ffb // log(1/frcpa(1+ 28/2^-8))
-data8 0xdfcb43b4fe508632 , 0x00003ffb // log(1/frcpa(1+ 29/2^-8))
-data8 0xe67f6dff709d4119 , 0x00003ffb // log(1/frcpa(1+ 30/2^-8))
-//
-data8 0xed393b1c22351280 , 0x00003ffb // log(1/frcpa(1+ 31/2^-8))
-data8 0xf5192bff087bcc35 , 0x00003ffb // log(1/frcpa(1+ 32/2^-8))
-data8 0xfbdf4ff6dfef2fa3 , 0x00003ffb // log(1/frcpa(1+ 33/2^-8))
-data8 0x81559a97f92f9cc7 , 0x00003ffc // log(1/frcpa(1+ 34/2^-8))
-data8 0x84be72bce90266e8 , 0x00003ffc // log(1/frcpa(1+ 35/2^-8))
-//
-data8 0x88bc74113f23def2 , 0x00003ffc // log(1/frcpa(1+ 36/2^-8))
-data8 0x8c2ba3edf6799d11 , 0x00003ffc // log(1/frcpa(1+ 37/2^-8))
-data8 0x8f9dc92f92ea08b1 , 0x00003ffc // log(1/frcpa(1+ 38/2^-8))
-data8 0x9312e8f36efab5a7 , 0x00003ffc // log(1/frcpa(1+ 39/2^-8))
-data8 0x968b08643409ceb6 , 0x00003ffc // log(1/frcpa(1+ 40/2^-8))
-//
-data8 0x9a062cba08a1708c , 0x00003ffc // log(1/frcpa(1+ 41/2^-8))
-data8 0x9d845b3abf95485c , 0x00003ffc // log(1/frcpa(1+ 42/2^-8))
-data8 0xa06fd841bc001bb4 , 0x00003ffc // log(1/frcpa(1+ 43/2^-8))
-data8 0xa3f3a74652fbe0db , 0x00003ffc // log(1/frcpa(1+ 44/2^-8))
-data8 0xa77a8fb2336f20f5 , 0x00003ffc // log(1/frcpa(1+ 45/2^-8))
-//
-data8 0xab0497015d28b0a0 , 0x00003ffc // log(1/frcpa(1+ 46/2^-8))
-data8 0xae91c2be6ba6a615 , 0x00003ffc // log(1/frcpa(1+ 47/2^-8))
-data8 0xb189d1b99aebb20b , 0x00003ffc // log(1/frcpa(1+ 48/2^-8))
-data8 0xb51cced5de9c1b2c , 0x00003ffc // log(1/frcpa(1+ 49/2^-8))
-data8 0xb819bee9e720d42f , 0x00003ffc // log(1/frcpa(1+ 50/2^-8))
-//
-data8 0xbbb2a0947b093a5d , 0x00003ffc // log(1/frcpa(1+ 51/2^-8))
-data8 0xbf4ec1505811684a , 0x00003ffc // log(1/frcpa(1+ 52/2^-8))
-data8 0xc2535bacfa8975ff , 0x00003ffc // log(1/frcpa(1+ 53/2^-8))
-data8 0xc55a3eafad187eb8 , 0x00003ffc // log(1/frcpa(1+ 54/2^-8))
-data8 0xc8ff2484b2c0da74 , 0x00003ffc // log(1/frcpa(1+ 55/2^-8))
-//
-data8 0xcc0b1a008d53ab76 , 0x00003ffc // log(1/frcpa(1+ 56/2^-8))
-data8 0xcfb6203844b3209b , 0x00003ffc // log(1/frcpa(1+ 57/2^-8))
-data8 0xd2c73949a47a19f5 , 0x00003ffc // log(1/frcpa(1+ 58/2^-8))
-data8 0xd5daae18b49d6695 , 0x00003ffc // log(1/frcpa(1+ 59/2^-8))
-data8 0xd8f08248cf7e8019 , 0x00003ffc // log(1/frcpa(1+ 60/2^-8))
-//
-data8 0xdca7749f1b3e540e , 0x00003ffc // log(1/frcpa(1+ 61/2^-8))
-data8 0xdfc28e033aaaf7c7 , 0x00003ffc // log(1/frcpa(1+ 62/2^-8))
-data8 0xe2e012a5f91d2f55 , 0x00003ffc // log(1/frcpa(1+ 63/2^-8))
-data8 0xe600064ed9e292a8 , 0x00003ffc // log(1/frcpa(1+ 64/2^-8))
-data8 0xe9226cce42b39f60 , 0x00003ffc // log(1/frcpa(1+ 65/2^-8))
-//
-data8 0xec4749fd97a28360 , 0x00003ffc // log(1/frcpa(1+ 66/2^-8))
-data8 0xef6ea1bf57780495 , 0x00003ffc // log(1/frcpa(1+ 67/2^-8))
-data8 0xf29877ff38809091 , 0x00003ffc // log(1/frcpa(1+ 68/2^-8))
-data8 0xf5c4d0b245cb89be , 0x00003ffc // log(1/frcpa(1+ 69/2^-8))
-data8 0xf8f3afd6fcdef3aa , 0x00003ffc // log(1/frcpa(1+ 70/2^-8))
-//
-data8 0xfc2519756be1abc7 , 0x00003ffc // log(1/frcpa(1+ 71/2^-8))
-data8 0xff59119f503e6832 , 0x00003ffc // log(1/frcpa(1+ 72/2^-8))
-data8 0x8147ce381ae0e146 , 0x00003ffd // log(1/frcpa(1+ 73/2^-8))
-data8 0x82e45f06cb1ad0f2 , 0x00003ffd // log(1/frcpa(1+ 74/2^-8))
-data8 0x842f5c7c573cbaa2 , 0x00003ffd // log(1/frcpa(1+ 75/2^-8))
-//
-data8 0x85ce471968c8893a , 0x00003ffd // log(1/frcpa(1+ 76/2^-8))
-data8 0x876e8305bc04066d , 0x00003ffd // log(1/frcpa(1+ 77/2^-8))
-data8 0x891012678031fbb3 , 0x00003ffd // log(1/frcpa(1+ 78/2^-8))
-data8 0x8a5f1493d766a05f , 0x00003ffd // log(1/frcpa(1+ 79/2^-8))
-data8 0x8c030c778c56fa00 , 0x00003ffd // log(1/frcpa(1+ 80/2^-8))
-//
-data8 0x8da85df17e31d9ae , 0x00003ffd // log(1/frcpa(1+ 81/2^-8))
-data8 0x8efa663e7921687e , 0x00003ffd // log(1/frcpa(1+ 82/2^-8))
-data8 0x90a22b6875c6a1f8 , 0x00003ffd // log(1/frcpa(1+ 83/2^-8))
-data8 0x91f62cc8f5d24837 , 0x00003ffd // log(1/frcpa(1+ 84/2^-8))
-data8 0x93a06cfc3857d980 , 0x00003ffd // log(1/frcpa(1+ 85/2^-8))
-//
-data8 0x94f66d5e6fd01ced , 0x00003ffd // log(1/frcpa(1+ 86/2^-8))
-data8 0x96a330156e6772f2 , 0x00003ffd // log(1/frcpa(1+ 87/2^-8))
-data8 0x97fb3582754ea25b , 0x00003ffd // log(1/frcpa(1+ 88/2^-8))
-data8 0x99aa8259aad1bbf2 , 0x00003ffd // log(1/frcpa(1+ 89/2^-8))
-data8 0x9b0492f6227ae4a8 , 0x00003ffd // log(1/frcpa(1+ 90/2^-8))
-//
-data8 0x9c5f8e199bf3a7a5 , 0x00003ffd // log(1/frcpa(1+ 91/2^-8))
-data8 0x9e1293b9998c1daa , 0x00003ffd // log(1/frcpa(1+ 92/2^-8))
-data8 0x9f6fa31e0b41f308 , 0x00003ffd // log(1/frcpa(1+ 93/2^-8))
-data8 0xa0cda11eaf46390e , 0x00003ffd // log(1/frcpa(1+ 94/2^-8))
-data8 0xa22c8f029cfa45aa , 0x00003ffd // log(1/frcpa(1+ 95/2^-8))
-//
-data8 0xa3e48badb7856b34 , 0x00003ffd // log(1/frcpa(1+ 96/2^-8))
-data8 0xa5459a0aa95849f9 , 0x00003ffd // log(1/frcpa(1+ 97/2^-8))
-data8 0xa6a79c84480cfebd , 0x00003ffd // log(1/frcpa(1+ 98/2^-8))
-data8 0xa80a946d0fcb3eb2 , 0x00003ffd // log(1/frcpa(1+ 99/2^-8))
-data8 0xa96e831a3ea7b314 , 0x00003ffd // log(1/frcpa(1+100/2^-8))
-//
-data8 0xaad369e3dc544e3b , 0x00003ffd // log(1/frcpa(1+101/2^-8))
-data8 0xac92e9588952c815 , 0x00003ffd // log(1/frcpa(1+102/2^-8))
-data8 0xadfa035aa1ed8fdc , 0x00003ffd // log(1/frcpa(1+103/2^-8))
-data8 0xaf6219eae1ad6e34 , 0x00003ffd // log(1/frcpa(1+104/2^-8))
-data8 0xb0cb2e6d8160f753 , 0x00003ffd // log(1/frcpa(1+105/2^-8))
-//
-data8 0xb2354249ad950f72 , 0x00003ffd // log(1/frcpa(1+106/2^-8))
-data8 0xb3a056e98ef4a3b4 , 0x00003ffd // log(1/frcpa(1+107/2^-8))
-data8 0xb50c6dba52c6292a , 0x00003ffd // log(1/frcpa(1+108/2^-8))
-data8 0xb679882c33876165 , 0x00003ffd // log(1/frcpa(1+109/2^-8))
-data8 0xb78c07429785cedc , 0x00003ffd // log(1/frcpa(1+110/2^-8))
-//
-data8 0xb8faeb8dc4a77d24 , 0x00003ffd // log(1/frcpa(1+111/2^-8))
-data8 0xba6ad77eb36ae0d6 , 0x00003ffd // log(1/frcpa(1+112/2^-8))
-data8 0xbbdbcc915e9bee50 , 0x00003ffd // log(1/frcpa(1+113/2^-8))
-data8 0xbd4dcc44f8cf12ef , 0x00003ffd // log(1/frcpa(1+114/2^-8))
-data8 0xbec0d81bf5b531fa , 0x00003ffd // log(1/frcpa(1+115/2^-8))
-//
-data8 0xc034f19c139186f4 , 0x00003ffd // log(1/frcpa(1+116/2^-8))
-data8 0xc14cb69f7c5e55ab , 0x00003ffd // log(1/frcpa(1+117/2^-8))
-data8 0xc2c2abbb6e5fd56f , 0x00003ffd // log(1/frcpa(1+118/2^-8))
-data8 0xc439b2c193e6771e , 0x00003ffd // log(1/frcpa(1+119/2^-8))
-data8 0xc553acb9d5c67733 , 0x00003ffd // log(1/frcpa(1+120/2^-8))
-//
-data8 0xc6cc96e441272441 , 0x00003ffd // log(1/frcpa(1+121/2^-8))
-data8 0xc8469753eca88c30 , 0x00003ffd // log(1/frcpa(1+122/2^-8))
-data8 0xc962cf3ce072b05c , 0x00003ffd // log(1/frcpa(1+123/2^-8))
-data8 0xcadeba8771f694aa , 0x00003ffd // log(1/frcpa(1+124/2^-8))
-data8 0xcc5bc08d1f72da94 , 0x00003ffd // log(1/frcpa(1+125/2^-8))
-//
-data8 0xcd7a3f99ea035c29 , 0x00003ffd // log(1/frcpa(1+126/2^-8))
-data8 0xcef93860c8a53c35 , 0x00003ffd // log(1/frcpa(1+127/2^-8))
-data8 0xd0192f68a7ed23df , 0x00003ffd // log(1/frcpa(1+128/2^-8))
-data8 0xd19a201127d3c645 , 0x00003ffd // log(1/frcpa(1+129/2^-8))
-data8 0xd2bb92f4061c172c , 0x00003ffd // log(1/frcpa(1+130/2^-8))
-//
-data8 0xd43e80b2ee8cc8fc , 0x00003ffd // log(1/frcpa(1+131/2^-8))
-data8 0xd56173601fc4ade4 , 0x00003ffd // log(1/frcpa(1+132/2^-8))
-data8 0xd6e6637efb54086f , 0x00003ffd // log(1/frcpa(1+133/2^-8))
-data8 0xd80ad9f58f3c8193 , 0x00003ffd // log(1/frcpa(1+134/2^-8))
-data8 0xd991d1d31aca41f8 , 0x00003ffd // log(1/frcpa(1+135/2^-8))
-//
-data8 0xdab7d02231484a93 , 0x00003ffd // log(1/frcpa(1+136/2^-8))
-data8 0xdc40d532cde49a54 , 0x00003ffd // log(1/frcpa(1+137/2^-8))
-data8 0xdd685f79ed8b265e , 0x00003ffd // log(1/frcpa(1+138/2^-8))
-data8 0xde9094bbc0e17b1d , 0x00003ffd // log(1/frcpa(1+139/2^-8))
-data8 0xe01c91b78440c425 , 0x00003ffd // log(1/frcpa(1+140/2^-8))
-//
-data8 0xe14658f26997e729 , 0x00003ffd // log(1/frcpa(1+141/2^-8))
-data8 0xe270cdc2391e0d23 , 0x00003ffd // log(1/frcpa(1+142/2^-8))
-data8 0xe3ffce3a2aa64922 , 0x00003ffd // log(1/frcpa(1+143/2^-8))
-data8 0xe52bdb274ed82887 , 0x00003ffd // log(1/frcpa(1+144/2^-8))
-data8 0xe6589852e75d7df6 , 0x00003ffd // log(1/frcpa(1+145/2^-8))
-//
-data8 0xe786068c79937a7d , 0x00003ffd // log(1/frcpa(1+146/2^-8))
-data8 0xe91903adad100911 , 0x00003ffd // log(1/frcpa(1+147/2^-8))
-data8 0xea481236f7d35bb0 , 0x00003ffd // log(1/frcpa(1+148/2^-8))
-data8 0xeb77d48c692e6b14 , 0x00003ffd // log(1/frcpa(1+149/2^-8))
-data8 0xeca84b83d7297b87 , 0x00003ffd // log(1/frcpa(1+150/2^-8))
-//
-data8 0xedd977f4962aa158 , 0x00003ffd // log(1/frcpa(1+151/2^-8))
-data8 0xef7179a22f257754 , 0x00003ffd // log(1/frcpa(1+152/2^-8))
-data8 0xf0a450d139366ca7 , 0x00003ffd // log(1/frcpa(1+153/2^-8))
-data8 0xf1d7e0524ff9ffdb , 0x00003ffd // log(1/frcpa(1+154/2^-8))
-data8 0xf30c29036a8b6cae , 0x00003ffd // log(1/frcpa(1+155/2^-8))
-//
-data8 0xf4412bc411ea8d92 , 0x00003ffd // log(1/frcpa(1+156/2^-8))
-data8 0xf576e97564c8619d , 0x00003ffd // log(1/frcpa(1+157/2^-8))
-data8 0xf6ad62fa1b5f172f , 0x00003ffd // log(1/frcpa(1+158/2^-8))
-data8 0xf7e499368b55c542 , 0x00003ffd // log(1/frcpa(1+159/2^-8))
-data8 0xf91c8d10abaffe22 , 0x00003ffd // log(1/frcpa(1+160/2^-8))
-//
-data8 0xfa553f7018c966f3 , 0x00003ffd // log(1/frcpa(1+161/2^-8))
-data8 0xfb8eb13e185d802c , 0x00003ffd // log(1/frcpa(1+162/2^-8))
-data8 0xfcc8e3659d9bcbed , 0x00003ffd // log(1/frcpa(1+163/2^-8))
-data8 0xfe03d6d34d487fd2 , 0x00003ffd // log(1/frcpa(1+164/2^-8))
-data8 0xff3f8c7581e9f0ae , 0x00003ffd // log(1/frcpa(1+165/2^-8))
-//
-data8 0x803e029e280173ae , 0x00003ffe // log(1/frcpa(1+166/2^-8))
-data8 0x80dca10cc52d0757 , 0x00003ffe // log(1/frcpa(1+167/2^-8))
-data8 0x817ba200632755a1 , 0x00003ffe // log(1/frcpa(1+168/2^-8))
-data8 0x821b05f3b01d6774 , 0x00003ffe // log(1/frcpa(1+169/2^-8))
-data8 0x82bacd623ff19d06 , 0x00003ffe // log(1/frcpa(1+170/2^-8))
-//
-data8 0x835af8c88e7a8f47 , 0x00003ffe // log(1/frcpa(1+171/2^-8))
-data8 0x83c5f8299e2b4091 , 0x00003ffe // log(1/frcpa(1+172/2^-8))
-data8 0x8466cb43f3d87300 , 0x00003ffe // log(1/frcpa(1+173/2^-8))
-data8 0x850803a67c80ca4b , 0x00003ffe // log(1/frcpa(1+174/2^-8))
-data8 0x85a9a1d11a23b461 , 0x00003ffe // log(1/frcpa(1+175/2^-8))
-//
-data8 0x864ba644a18e6e05 , 0x00003ffe // log(1/frcpa(1+176/2^-8))
-data8 0x86ee1182dcc432f7 , 0x00003ffe // log(1/frcpa(1+177/2^-8))
-data8 0x875a925d7e48c316 , 0x00003ffe // log(1/frcpa(1+178/2^-8))
-data8 0x87fdaa109d23aef7 , 0x00003ffe // log(1/frcpa(1+179/2^-8))
-data8 0x88a129ed4becfaf2 , 0x00003ffe // log(1/frcpa(1+180/2^-8))
-//
-data8 0x89451278ecd7f9cf , 0x00003ffe // log(1/frcpa(1+181/2^-8))
-data8 0x89b29295f8432617 , 0x00003ffe // log(1/frcpa(1+182/2^-8))
-data8 0x8a572ac5a5496882 , 0x00003ffe // log(1/frcpa(1+183/2^-8))
-data8 0x8afc2d0ce3b2dadf , 0x00003ffe // log(1/frcpa(1+184/2^-8))
-data8 0x8b6a69c608cfd3af , 0x00003ffe // log(1/frcpa(1+185/2^-8))
-//
-data8 0x8c101e106e899a83 , 0x00003ffe // log(1/frcpa(1+186/2^-8))
-data8 0x8cb63de258f9d626 , 0x00003ffe // log(1/frcpa(1+187/2^-8))
-data8 0x8d2539c5bd19e2b1 , 0x00003ffe // log(1/frcpa(1+188/2^-8))
-data8 0x8dcc0e064b29e6f1 , 0x00003ffe // log(1/frcpa(1+189/2^-8))
-data8 0x8e734f45d88357ae , 0x00003ffe // log(1/frcpa(1+190/2^-8))
-//
-data8 0x8ee30cef034a20db , 0x00003ffe // log(1/frcpa(1+191/2^-8))
-data8 0x8f8b0515686d1d06 , 0x00003ffe // log(1/frcpa(1+192/2^-8))
-data8 0x90336bba039bf32f , 0x00003ffe // log(1/frcpa(1+193/2^-8))
-data8 0x90a3edd23d1c9d58 , 0x00003ffe // log(1/frcpa(1+194/2^-8))
-data8 0x914d0de2f5d61b32 , 0x00003ffe // log(1/frcpa(1+195/2^-8))
-//
-data8 0x91be0c20d28173b5 , 0x00003ffe // log(1/frcpa(1+196/2^-8))
-data8 0x9267e737c06cd34a , 0x00003ffe // log(1/frcpa(1+197/2^-8))
-data8 0x92d962ae6abb1237 , 0x00003ffe // log(1/frcpa(1+198/2^-8))
-data8 0x9383fa6afbe2074c , 0x00003ffe // log(1/frcpa(1+199/2^-8))
-data8 0x942f0421651c1c4e , 0x00003ffe // log(1/frcpa(1+200/2^-8))
-//
-data8 0x94a14a3845bb985e , 0x00003ffe // log(1/frcpa(1+201/2^-8))
-data8 0x954d133857f861e7 , 0x00003ffe // log(1/frcpa(1+202/2^-8))
-data8 0x95bfd96468e604c4 , 0x00003ffe // log(1/frcpa(1+203/2^-8))
-data8 0x9632d31cafafa858 , 0x00003ffe // log(1/frcpa(1+204/2^-8))
-data8 0x96dfaabd86fa1647 , 0x00003ffe // log(1/frcpa(1+205/2^-8))
-//
-data8 0x9753261fcbb2a594 , 0x00003ffe // log(1/frcpa(1+206/2^-8))
-data8 0x9800c11b426b996d , 0x00003ffe // log(1/frcpa(1+207/2^-8))
-data8 0x9874bf4d45ae663c , 0x00003ffe // log(1/frcpa(1+208/2^-8))
-data8 0x99231f5ee9a74f79 , 0x00003ffe // log(1/frcpa(1+209/2^-8))
-data8 0x9997a18a56bcad28 , 0x00003ffe // log(1/frcpa(1+210/2^-8))
-//
-data8 0x9a46c873a3267e79 , 0x00003ffe // log(1/frcpa(1+211/2^-8))
-data8 0x9abbcfc621eb6cb6 , 0x00003ffe // log(1/frcpa(1+212/2^-8))
-data8 0x9b310cb0d354c990 , 0x00003ffe // log(1/frcpa(1+213/2^-8))
-data8 0x9be14cf9e1b3515c , 0x00003ffe // log(1/frcpa(1+214/2^-8))
-data8 0x9c5710b8cbb73a43 , 0x00003ffe // log(1/frcpa(1+215/2^-8))
-//
-data8 0x9ccd0abd301f399c , 0x00003ffe // log(1/frcpa(1+216/2^-8))
-data8 0x9d7e67f3bdce8888 , 0x00003ffe // log(1/frcpa(1+217/2^-8))
-data8 0x9df4ea81a99daa01 , 0x00003ffe // log(1/frcpa(1+218/2^-8))
-data8 0x9e6ba405a54514ba , 0x00003ffe // log(1/frcpa(1+219/2^-8))
-data8 0x9f1e21c8c7bb62b3 , 0x00003ffe // log(1/frcpa(1+220/2^-8))
-//
-data8 0x9f956593f6b6355c , 0x00003ffe // log(1/frcpa(1+221/2^-8))
-data8 0xa00ce1092e5498c3 , 0x00003ffe // log(1/frcpa(1+222/2^-8))
-data8 0xa0c08309c4b912c1 , 0x00003ffe // log(1/frcpa(1+223/2^-8))
-data8 0xa1388a8c6faa2afa , 0x00003ffe // log(1/frcpa(1+224/2^-8))
-data8 0xa1b0ca7095b5f985 , 0x00003ffe // log(1/frcpa(1+225/2^-8))
-//
-data8 0xa22942eb47534a00 , 0x00003ffe // log(1/frcpa(1+226/2^-8))
-data8 0xa2de62326449d0a3 , 0x00003ffe // log(1/frcpa(1+227/2^-8))
-data8 0xa357690f88bfe345 , 0x00003ffe // log(1/frcpa(1+228/2^-8))
-data8 0xa3d0a93f45169a4b , 0x00003ffe // log(1/frcpa(1+229/2^-8))
-data8 0xa44a22f7ffe65f30 , 0x00003ffe // log(1/frcpa(1+230/2^-8))
-//
-data8 0xa500c5e5b4c1aa36 , 0x00003ffe // log(1/frcpa(1+231/2^-8))
-data8 0xa57ad064eb2ebbc2 , 0x00003ffe // log(1/frcpa(1+232/2^-8))
-data8 0xa5f5152dedf4384e , 0x00003ffe // log(1/frcpa(1+233/2^-8))
-data8 0xa66f9478856233ec , 0x00003ffe // log(1/frcpa(1+234/2^-8))
-data8 0xa6ea4e7cca02c32e , 0x00003ffe // log(1/frcpa(1+235/2^-8))
-//
-data8 0xa765437325341ccf , 0x00003ffe // log(1/frcpa(1+236/2^-8))
-data8 0xa81e21e6c75b4020 , 0x00003ffe // log(1/frcpa(1+237/2^-8))
-data8 0xa899ab333fe2b9ca , 0x00003ffe // log(1/frcpa(1+238/2^-8))
-data8 0xa9157039c51ebe71 , 0x00003ffe // log(1/frcpa(1+239/2^-8))
-data8 0xa991713433c2b999 , 0x00003ffe // log(1/frcpa(1+240/2^-8))
-//
-data8 0xaa0dae5cbcc048b3 , 0x00003ffe // log(1/frcpa(1+241/2^-8))
-data8 0xaa8a27ede5eb13ad , 0x00003ffe // log(1/frcpa(1+242/2^-8))
-data8 0xab06de228a9e3499 , 0x00003ffe // log(1/frcpa(1+243/2^-8))
-data8 0xab83d135dc633301 , 0x00003ffe // log(1/frcpa(1+244/2^-8))
-data8 0xac3fb076adc7fe7a , 0x00003ffe // log(1/frcpa(1+245/2^-8))
-//
-data8 0xacbd3cbbe47988f1 , 0x00003ffe // log(1/frcpa(1+246/2^-8))
-data8 0xad3b06b1a5dc57c3 , 0x00003ffe // log(1/frcpa(1+247/2^-8))
-data8 0xadb90e94af887717 , 0x00003ffe // log(1/frcpa(1+248/2^-8))
-data8 0xae3754a218f7c816 , 0x00003ffe // log(1/frcpa(1+249/2^-8))
-data8 0xaeb5d9175437afa2 , 0x00003ffe // log(1/frcpa(1+250/2^-8))
-//
-data8 0xaf349c322e9c7cee , 0x00003ffe // log(1/frcpa(1+251/2^-8))
-data8 0xafb39e30d1768d1c , 0x00003ffe // log(1/frcpa(1+252/2^-8))
-data8 0xb032df51c2c93116 , 0x00003ffe // log(1/frcpa(1+253/2^-8))
-data8 0xb0b25fd3e6035ad9 , 0x00003ffe // log(1/frcpa(1+254/2^-8))
-data8 0xb1321ff67cba178c , 0x00003ffe // log(1/frcpa(1+255/2^-8))
-LOCAL_OBJECT_END(log_table_3)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(asinh)
-
-{ .mfi
- getf.exp asinh_GR_f8 = f8 // Must recompute later if x unorm
- fclass.m p12,p0 = f8, 0x0b // Test x unorm
- mov log_GR_exp_17_ones = 0x1ffff
-}
-{ .mfi
- addl NR_table_address = @ltoff(log_table_1), gp
- fma.s1 log_y = f8, f8, f1 // y = x^2 + 1
- mov asinh_GR_comp = 0xfffc
-}
-;;
-
-{ .mfi
- mov log_GR_exp_16_ones = 0xffff //BIAS
- fclass.m p6,p0 = f8, 0xe7 // Test for x = NaN and inf and zero
- mov log_GR_comp2 = 0x1003e
-}
-{ .mfi
- ld8 NR_table_address = [NR_table_address]
- fma.s1 asinh_w_sq = f8,f8,f0 // x^2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p7,p11 = f8,f0 // if x<0
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize x
-(p12) br.cond.spnt ASINH_UNORM // Branch if x=unorm
-}
-;;
-
-ASINH_COMMON:
-// Return here if x=unorm and not denorm
-{ .mfi
- //to get second table address
- adds log_table_address2 = 0x40, NR_table_address
- fma.s1 log_arg = f8,f1,f8
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p6) fma.d.s0 f8 = f8,f1,f8 // quietize nan result if x=nan
-(p6) br.ret.spnt b0 // Exit for x=nan and inf and zero
-}
-;;
-
-{ .mfi
- ldfpd NR1,NR2 = [log_table_address2],16
- frsqrta.s1 log_y_rs,p0 = log_y // z=1/sqrt(y)
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log_C13 = [log_table_address2],16
- nop.f 0
- and asinh_GR_f8 = asinh_GR_f8,log_GR_exp_17_ones
-}
-;;
-
-{ .mib
- ldfe log_C11 = [log_table_address2],16
- cmp.le p13,p0 = log_GR_comp2,asinh_GR_f8
-(p13) br.cond.spnt LOG_COMMON1 // Branch if path 4, |x| >= 2^63
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter = log_y_rs,log_y,f0 // y*z
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p11) mov asinh_f8 = fNormX
- nop.i 0
-}
-{ .mfb
- cmp.gt p8,p0 = asinh_GR_comp,asinh_GR_f8
-(p7) fnma.s1 asinh_f8 = fNormX,f1,f0
-(p8) br.cond.spnt ASINH_NEAR_ZERO // Branch if path 2, 0 < |x| < 2^-3
-}
-;;
-
-// Here if main path, 2^-3 <= |x| < 2^63
-///////////////////////////////// The first iteration /////////////////////////
-{ .mfi
- ldfpd log_P5,log_P4 = [NR_table_address],16
- fnma.s1 log_y_rs_iter = log_y_rs_iter,log_y_rs,NR2 // 3-(y*z)*z
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs,NR1,f0 // 0.5*z
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P3,log_P2 = [NR_table_address],16
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_y_rs_iter = log_y_rs_iter1,log_y_rs_iter,f0
- nop.i 0
-}
-;;
-
-/////////////////////////// The second iteration /////////////////////////////
-{ .mfi
- ldfd log_P1 = [NR_table_address],16
- fma.s1 log_y_rs = log_y_rs_iter,log_y,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 log_y_rs = log_y_rs,log_y_rs_iter,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log2 = [NR_table_address],16
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_y_rs_iter = log_y_rs_iter1,log_y_rs,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_arg_early = log_y_rs_iter1,log_y_rs,f0
- nop.i 0
-}
-;;
-
-////////////////////////////////// The third iteration ////////////////////////
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs = log_y_rs_iter,log_y,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_arg_early = log_arg_early,log_y,asinh_f8
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 log_y_rs = log_y_rs,log_y_rs_iter,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter1,log_y,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- frcpa.s1 log_C,p0 = f1,log_arg_early
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp log_GR_signexp_f8 = log_arg_early
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig log_GR_significand_f8 = log_arg_early
- // (0.5*z)*(3-(y*z)*z)*y + |x|
- fma.s1 log_arg = log_y_rs_iter1,log_y_rs,asinh_f8
- //to get third table address
- adds log_table_address3 = 0x70, NR_table_address
-}
-;;
-
-///////////////////////////////// The end NR iterations /////////////////////
-{ .mfi
- nop.m 0
- nop.f 0
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-}
-;;
-
-{ .mfi
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
-(p7) fnma.s1 log2 = log2,f1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- fms.s1 log_r = log_C,log_arg,f1 // C = frcpa(x); r = C * x - 1
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*16 + index
- shladd log_table_address3 = log_GR_index,4,log_table_address3
-;;
- ldfe log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p4 = log_P5, log_r, log_P4 //P5*r + P4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rcube = log_rsq, log_r, f0 //r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //(P5*r + P4)*r^2 + P3*r + P2
- fma.s1 log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p11) fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T if x>0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fms.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 - T if x<0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
- fma.s1 log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
-(p11) fadd.d.s0 f8 = log_T_plus_Nlog2,log_r2P_r
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // -N*log2 - T - ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
-(p7) fsub.d.s0 f8 = log_T_plus_Nlog2,log_r2P_r
- br.ret.sptk b0 // Exit main path, path 3: 2^-3 <= |x| < 2^63
-}
-;;
-
-// Here if path 4, |x| >= 2^63
-LOG_COMMON1:
-{ .mfi
- ldfpd log_P5,log_P4 = [NR_table_address],16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P3,log_P2 = [NR_table_address],16
- frcpa.s1 log_C,p0 = f1,log_arg
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.exp log_GR_signexp_f8 = log_arg
- ldfd log_P1 = [NR_table_address],16
- nop.i 0
-}
-;;
-
-{ .mmi
- getf.sig log_GR_significand_f8 = log_arg
- ldfe log2 = [NR_table_address],16
- nop.i 0
-}
-;;
-
-{ .mfi
- adds log_table_address3 = 0x70, NR_table_address
- nop.f 0
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-}
-;;
-
-{ .mmf
- nop.m 0
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
- fms.s1 log_r = log_C,log_arg,f1 //C = frcpa(x); r = C * x - 1
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- nop.f 0
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*16 + index
- shladd log_table_address3 = log_GR_index,4,log_table_address3
-;;
- ldfe log_T = [log_table_address3]
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p4 = log_P5, log_r, log_P4 //P5*r + P4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fnma.s1 log2 = log2,f1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rcube = log_rsq, log_r, f0 //r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //(P5*r + P4)*r^2 + P3*r + P2
- fma.s1 log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p7) fnma.s1 log_T = log_T,f1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T
- nop.i 0
-}
-{ .mfi
- nop.m 0
- //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
- fma.s1 log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
- // N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
-(p11) fadd.d.s0 f8 = log_T_plus_Nlog2,log_r2P_r
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // -N*log2 - T - ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
-(p7) fsub.d.s0 f8 = log_T_plus_Nlog2,log_r2P_r
- br.ret.sptk b0 // Exit path 4, |x| >= 2^63
-}
-;;
-
-// Here is path 2, 0 < |x| < 2^-3
-ASINH_NEAR_ZERO:
-{ .mfi
- ldfe log_C9 = [log_table_address2],16
- fma.s1 asinh_w_cube = asinh_w_sq,fNormX,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log_C7 = [log_table_address2],16
- fma.s1 asinh_w_four = asinh_w_sq,asinh_w_sq,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log_C5 = [log_table_address2],16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log_C3 = [log_table_address2],16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_13 = log_C13,asinh_w_sq,log_C11
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_9 = log_C9,asinh_w_sq,log_C7
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_3 = log_C5,asinh_w_sq,log_C3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_seven = asinh_w_four,asinh_w_cube,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_7 = asinh_w_13,asinh_w_four,asinh_w_9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_5 = asinh_w_3,asinh_w_cube,fNormX
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = asinh_w_7,asinh_w_seven,asinh_w_5
- br.ret.sptk b0 // Exit path 2 (0.0 <|x| < 2^(-3))
-}
-;;
-
-ASINH_UNORM:
-// Here if x=unorm
-{ .mfi
- getf.exp asinh_GR_f8 = fNormX // Recompute if x unorm
- fclass.m p0,p13 = fNormX, 0x0b // Test x denorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fcmp.eq.s0 p14,p0 = f8, f0 // Dummy to set denormal flag
-(p13) br.cond.sptk ASINH_COMMON // Continue if x unorm and not denorm
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = f8,f8,f8 // Result x+x^2 if x=-denorm
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p11) fnma.d.s0 f8 = f8,f8,f8 // Result x-x^2 if x=+denorm
- br.ret.spnt b0 // Exit if denorm
-}
-;;
-
-GLOBAL_LIBM_END(asinh)
-
diff --git a/sysdeps/ia64/fpu/s_asinhf.S b/sysdeps/ia64/fpu/s_asinhf.S
deleted file mode 100644
index df616deae0..0000000000
--- a/sysdeps/ia64/fpu/s_asinhf.S
+++ /dev/null
@@ -1,937 +0,0 @@
-.file "asinhf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// ==============================================================
-// History
-// ==============================================================
-// 04/02/01 Initial version
-// 04/19/01 Improved speed of the paths #1,2,3,4,5
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 05/21/03 Improved performance, fixed to handle unorms
-//
-// API
-// ==============================================================
-// float asinhf(float)
-//
-// Overview of operation
-// ==============================================================
-//
-// There are 7 paths:
-// 1. x = 0.0
-// Return asinhf(x) = 0.0
-// 2. 0.0 <|x| < 2^(-5)
-// Return asinhf(x) = Pol5(x), where Pol5(x) = ((x^2)*C1 + C0)*x^3 + x
-
-// 3. 2^(-5) <= |x| < 2^51
-// Return asinhf(x) = sign(x)*(log(|x| + sqrt(x^2 + 1.0)))
-// To compute x + sqrt(x^2 + 1.0) modified Newton Raphson method is used
-// (2 iterations)
-// Algorithm description for log function see below.
-//
-// 4. 2^51 <= |x| < +INF
-// Return asinhf(x) = sign(x)*log(2*|x|)
-// Algorithm description for log function see below.
-//
-// 5. x = INF
-// Return asinhf(x) = INF
-//
-// 6. x = [S,Q]NaN
-// Return asinhf(x) = QNaN
-//
-// 7. x = denormal
-// Return asinhf(x) = x
-//
-//==============================================================
-// Algorithm Description for log(x) function
-// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always
-// true for this asinh implementation
-//
-// Consider x = 2^N 1.f1 f2 f3 f4...f63
-// Log(x) = log(frcpa(x) x/frcpa(x))
-// = log(1/frcpa(x)) + log(frcpa(x) x)
-// = -log(frcpa(x)) + log(frcpa(x) x)
-//
-// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)
-//
-// -log(frcpa(x)) = -log(C)
-// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
-//
-// -log(frcpa(x)) = -log(C)
-// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
-//
-// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
-// Log(x) = +Nlog2 + T + log(frcpa(x) x)
-//
-// Log(x) = +Nlog2 + T + log(C x)
-//
-// Cx = 1 + r
-//
-// Log(x) = +Nlog2 + T + log(1+r)
-// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
-//
-// 1.f1 f2 ... f8 has 256 entries.
-// They are 1 + k/2^8, k = 0 ... 255
-// These 256 values are the table entries.
-//
-// Implementation
-//==============================================================
-// C = frcpa(x)
-// r = C * x - 1
-//
-// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4
-//
-// x = f * 2*n where f is 1.f_1f_2f_3....f_63
-// Nfloat = float(n) where n is the true unbiased exponent
-// pre-index = f_1f_2....f_8
-// index = pre_index * 8
-// get the dxt table entry at index + offset = T
-//
-// result = (T + Nfloat * log(2)) + rseries
-//
-// The T table is calculated as follows
-// Form x_k = 1 + k/2^8 where k goes from 0... 255
-// y_k = frcpa(x_k)
-// log(1/y_k) in quad and round to double-extended
-//
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f15, f32 -> f55
-
-// General registers used:
-// r14 -> r27
-
-// Predicate registers used:
-// p6 -> p14
-
-// p6 to filter out case when x = [Q,S]NaN or INF or zero
-// p7 to filter out case when x < 0.0
-// p8 to select path #2
-
-// p11 to filter out case when x >= 0
-// p12 to filter out case when x = + denormal
-// p13 to select path #4
-// p14 to filtef out case when x = - denormal
-// Assembly macros
-//==============================================================
-log_GR_exp_17_ones = r14
-log_GR_signexp_f8 = r15
-log_table_address2 = r16
-log_GR_exp_16_ones = r17
-log_GR_exp_f8 = r18
-log_GR_true_exp_f8 = r19
-log_GR_significand_f8 = r20
-log_GR_index = r21
-log_GR_comp2 = r22
-asinh_GR_f8 = r23
-asinh_GR_comp = r24
-asinh_GR_f8 = r25
-log_table_address3 = r26
-NR_table_address = r27
-
-//==============================================================
-log_y = f9
-NR1 = f10
-NR2 = f11
-log_y_rs = f12
-log_y_rs_iter = f13
-log_y_rs_iter1 = f14
-fNormX = f15
-asinh_w_sq = f32
-log_arg_early = f33
-log_y_rs_iter2 = f34
-log_P3 = f35
-log_P2 = f36
-log_P1 = f37
-log2 = f38
-log_C0 = f39
-log_C1 = f40
-asinh_f8 = f41
-log_C = f42
-log_arg = f43
-asinh_w_cube = f44
-log_int_Nfloat = f45
-log_r = f46
-log_rsq = f47
-asinh_w_1 = f48
-log_rp_p32 = f49
-log_rcube = f50
-log_rp_p10 = f51
-log_rp_p2 = f52
-log_Nfloat = f53
-log_T = f54
-log_T_plus_Nlog2 = f55
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(log_table_1)
-
-data8 0xbfd0001008f39d59 // p3
-data8 0x3fd5556073e0c45a // p2
-data8 0xbfdffffffffaea15 // p1
-data8 0x3fe62e42fefa39ef // log(2)
-LOCAL_OBJECT_END(log_table_1)
-
-LOCAL_OBJECT_START(log_table_2)
-data8 0x3FE0000000000000 // 0.5
-data8 0x4008000000000000 // 3.0
-data8 0x9979C79685A5EB16, 0x00003FFB // C1 3FFB9979C79685A5EB16
-data8 0xAAAAA96F80786D62, 0x0000BFFC // C0 BFFCAAAAA96F80786D62
-LOCAL_OBJECT_END(log_table_2)
-
-LOCAL_OBJECT_START(log_table_3)
-data8 0x3F60040155D5889E //log(1/frcpa(1+ 0/256)
-data8 0x3F78121214586B54 //log(1/frcpa(1+ 1/256)
-data8 0x3F841929F96832F0 //log(1/frcpa(1+ 2/256)
-data8 0x3F8C317384C75F06 //log(1/frcpa(1+ 3/256)
-data8 0x3F91A6B91AC73386 //log(1/frcpa(1+ 4/256)
-data8 0x3F95BA9A5D9AC039 //log(1/frcpa(1+ 5/256)
-data8 0x3F99D2A8074325F4 //log(1/frcpa(1+ 6/256)
-data8 0x3F9D6B2725979802 //log(1/frcpa(1+ 7/256)
-data8 0x3FA0C58FA19DFAAA //log(1/frcpa(1+ 8/256)
-data8 0x3FA2954C78CBCE1B //log(1/frcpa(1+ 9/256)
-data8 0x3FA4A94D2DA96C56 //log(1/frcpa(1+ 10/256)
-data8 0x3FA67C94F2D4BB58 //log(1/frcpa(1+ 11/256)
-data8 0x3FA85188B630F068 //log(1/frcpa(1+ 12/256)
-data8 0x3FAA6B8ABE73AF4C //log(1/frcpa(1+ 13/256)
-data8 0x3FAC441E06F72A9E //log(1/frcpa(1+ 14/256)
-data8 0x3FAE1E6713606D07 //log(1/frcpa(1+ 15/256)
-data8 0x3FAFFA6911AB9301 //log(1/frcpa(1+ 16/256)
-data8 0x3FB0EC139C5DA601 //log(1/frcpa(1+ 17/256)
-data8 0x3FB1DBD2643D190B //log(1/frcpa(1+ 18/256)
-data8 0x3FB2CC7284FE5F1C //log(1/frcpa(1+ 19/256)
-data8 0x3FB3BDF5A7D1EE64 //log(1/frcpa(1+ 20/256)
-data8 0x3FB4B05D7AA012E0 //log(1/frcpa(1+ 21/256)
-data8 0x3FB580DB7CEB5702 //log(1/frcpa(1+ 22/256)
-data8 0x3FB674F089365A7A //log(1/frcpa(1+ 23/256)
-data8 0x3FB769EF2C6B568D //log(1/frcpa(1+ 24/256)
-data8 0x3FB85FD927506A48 //log(1/frcpa(1+ 25/256)
-data8 0x3FB9335E5D594989 //log(1/frcpa(1+ 26/256)
-data8 0x3FBA2B0220C8E5F5 //log(1/frcpa(1+ 27/256)
-data8 0x3FBB0004AC1A86AC //log(1/frcpa(1+ 28/256)
-data8 0x3FBBF968769FCA11 //log(1/frcpa(1+ 29/256)
-data8 0x3FBCCFEDBFEE13A8 //log(1/frcpa(1+ 30/256)
-data8 0x3FBDA727638446A2 //log(1/frcpa(1+ 31/256)
-data8 0x3FBEA3257FE10F7A //log(1/frcpa(1+ 32/256)
-data8 0x3FBF7BE9FEDBFDE6 //log(1/frcpa(1+ 33/256)
-data8 0x3FC02AB352FF25F4 //log(1/frcpa(1+ 34/256)
-data8 0x3FC097CE579D204D //log(1/frcpa(1+ 35/256)
-data8 0x3FC1178E8227E47C //log(1/frcpa(1+ 36/256)
-data8 0x3FC185747DBECF34 //log(1/frcpa(1+ 37/256)
-data8 0x3FC1F3B925F25D41 //log(1/frcpa(1+ 38/256)
-data8 0x3FC2625D1E6DDF57 //log(1/frcpa(1+ 39/256)
-data8 0x3FC2D1610C86813A //log(1/frcpa(1+ 40/256)
-data8 0x3FC340C59741142E //log(1/frcpa(1+ 41/256)
-data8 0x3FC3B08B6757F2A9 //log(1/frcpa(1+ 42/256)
-data8 0x3FC40DFB08378003 //log(1/frcpa(1+ 43/256)
-data8 0x3FC47E74E8CA5F7C //log(1/frcpa(1+ 44/256)
-data8 0x3FC4EF51F6466DE4 //log(1/frcpa(1+ 45/256)
-data8 0x3FC56092E02BA516 //log(1/frcpa(1+ 46/256)
-data8 0x3FC5D23857CD74D5 //log(1/frcpa(1+ 47/256)
-data8 0x3FC6313A37335D76 //log(1/frcpa(1+ 48/256)
-data8 0x3FC6A399DABBD383 //log(1/frcpa(1+ 49/256)
-data8 0x3FC70337DD3CE41B //log(1/frcpa(1+ 50/256)
-data8 0x3FC77654128F6127 //log(1/frcpa(1+ 51/256)
-data8 0x3FC7E9D82A0B022D //log(1/frcpa(1+ 52/256)
-data8 0x3FC84A6B759F512F //log(1/frcpa(1+ 53/256)
-data8 0x3FC8AB47D5F5A310 //log(1/frcpa(1+ 54/256)
-data8 0x3FC91FE49096581B //log(1/frcpa(1+ 55/256)
-data8 0x3FC981634011AA75 //log(1/frcpa(1+ 56/256)
-data8 0x3FC9F6C407089664 //log(1/frcpa(1+ 57/256)
-data8 0x3FCA58E729348F43 //log(1/frcpa(1+ 58/256)
-data8 0x3FCABB55C31693AD //log(1/frcpa(1+ 59/256)
-data8 0x3FCB1E104919EFD0 //log(1/frcpa(1+ 60/256)
-data8 0x3FCB94EE93E367CB //log(1/frcpa(1+ 61/256)
-data8 0x3FCBF851C067555F //log(1/frcpa(1+ 62/256)
-data8 0x3FCC5C0254BF23A6 //log(1/frcpa(1+ 63/256)
-data8 0x3FCCC000C9DB3C52 //log(1/frcpa(1+ 64/256)
-data8 0x3FCD244D99C85674 //log(1/frcpa(1+ 65/256)
-data8 0x3FCD88E93FB2F450 //log(1/frcpa(1+ 66/256)
-data8 0x3FCDEDD437EAEF01 //log(1/frcpa(1+ 67/256)
-data8 0x3FCE530EFFE71012 //log(1/frcpa(1+ 68/256)
-data8 0x3FCEB89A1648B971 //log(1/frcpa(1+ 69/256)
-data8 0x3FCF1E75FADF9BDE //log(1/frcpa(1+ 70/256)
-data8 0x3FCF84A32EAD7C35 //log(1/frcpa(1+ 71/256)
-data8 0x3FCFEB2233EA07CD //log(1/frcpa(1+ 72/256)
-data8 0x3FD028F9C7035C1C //log(1/frcpa(1+ 73/256)
-data8 0x3FD05C8BE0D9635A //log(1/frcpa(1+ 74/256)
-data8 0x3FD085EB8F8AE797 //log(1/frcpa(1+ 75/256)
-data8 0x3FD0B9C8E32D1911 //log(1/frcpa(1+ 76/256)
-data8 0x3FD0EDD060B78081 //log(1/frcpa(1+ 77/256)
-data8 0x3FD122024CF0063F //log(1/frcpa(1+ 78/256)
-data8 0x3FD14BE2927AECD4 //log(1/frcpa(1+ 79/256)
-data8 0x3FD180618EF18ADF //log(1/frcpa(1+ 80/256)
-data8 0x3FD1B50BBE2FC63B //log(1/frcpa(1+ 81/256)
-data8 0x3FD1DF4CC7CF242D //log(1/frcpa(1+ 82/256)
-data8 0x3FD214456D0EB8D4 //log(1/frcpa(1+ 83/256)
-data8 0x3FD23EC5991EBA49 //log(1/frcpa(1+ 84/256)
-data8 0x3FD2740D9F870AFB //log(1/frcpa(1+ 85/256)
-data8 0x3FD29ECDABCDFA04 //log(1/frcpa(1+ 86/256)
-data8 0x3FD2D46602ADCCEE //log(1/frcpa(1+ 87/256)
-data8 0x3FD2FF66B04EA9D4 //log(1/frcpa(1+ 88/256)
-data8 0x3FD335504B355A37 //log(1/frcpa(1+ 89/256)
-data8 0x3FD360925EC44F5D //log(1/frcpa(1+ 90/256)
-data8 0x3FD38BF1C3337E75 //log(1/frcpa(1+ 91/256)
-data8 0x3FD3C25277333184 //log(1/frcpa(1+ 92/256)
-data8 0x3FD3EDF463C1683E //log(1/frcpa(1+ 93/256)
-data8 0x3FD419B423D5E8C7 //log(1/frcpa(1+ 94/256)
-data8 0x3FD44591E0539F49 //log(1/frcpa(1+ 95/256)
-data8 0x3FD47C9175B6F0AD //log(1/frcpa(1+ 96/256)
-data8 0x3FD4A8B341552B09 //log(1/frcpa(1+ 97/256)
-data8 0x3FD4D4F3908901A0 //log(1/frcpa(1+ 98/256)
-data8 0x3FD501528DA1F968 //log(1/frcpa(1+ 99/256)
-data8 0x3FD52DD06347D4F6 //log(1/frcpa(1+ 100/256)
-data8 0x3FD55A6D3C7B8A8A //log(1/frcpa(1+ 101/256)
-data8 0x3FD5925D2B112A59 //log(1/frcpa(1+ 102/256)
-data8 0x3FD5BF406B543DB2 //log(1/frcpa(1+ 103/256)
-data8 0x3FD5EC433D5C35AE //log(1/frcpa(1+ 104/256)
-data8 0x3FD61965CDB02C1F //log(1/frcpa(1+ 105/256)
-data8 0x3FD646A84935B2A2 //log(1/frcpa(1+ 106/256)
-data8 0x3FD6740ADD31DE94 //log(1/frcpa(1+ 107/256)
-data8 0x3FD6A18DB74A58C5 //log(1/frcpa(1+ 108/256)
-data8 0x3FD6CF31058670EC //log(1/frcpa(1+ 109/256)
-data8 0x3FD6F180E852F0BA //log(1/frcpa(1+ 110/256)
-data8 0x3FD71F5D71B894F0 //log(1/frcpa(1+ 111/256)
-data8 0x3FD74D5AEFD66D5C //log(1/frcpa(1+ 112/256)
-data8 0x3FD77B79922BD37E //log(1/frcpa(1+ 113/256)
-data8 0x3FD7A9B9889F19E2 //log(1/frcpa(1+ 114/256)
-data8 0x3FD7D81B037EB6A6 //log(1/frcpa(1+ 115/256)
-data8 0x3FD8069E33827231 //log(1/frcpa(1+ 116/256)
-data8 0x3FD82996D3EF8BCB //log(1/frcpa(1+ 117/256)
-data8 0x3FD85855776DCBFB //log(1/frcpa(1+ 118/256)
-data8 0x3FD8873658327CCF //log(1/frcpa(1+ 119/256)
-data8 0x3FD8AA75973AB8CF //log(1/frcpa(1+ 120/256)
-data8 0x3FD8D992DC8824E5 //log(1/frcpa(1+ 121/256)
-data8 0x3FD908D2EA7D9512 //log(1/frcpa(1+ 122/256)
-data8 0x3FD92C59E79C0E56 //log(1/frcpa(1+ 123/256)
-data8 0x3FD95BD750EE3ED3 //log(1/frcpa(1+ 124/256)
-data8 0x3FD98B7811A3EE5B //log(1/frcpa(1+ 125/256)
-data8 0x3FD9AF47F33D406C //log(1/frcpa(1+ 126/256)
-data8 0x3FD9DF270C1914A8 //log(1/frcpa(1+ 127/256)
-data8 0x3FDA0325ED14FDA4 //log(1/frcpa(1+ 128/256)
-data8 0x3FDA33440224FA79 //log(1/frcpa(1+ 129/256)
-data8 0x3FDA57725E80C383 //log(1/frcpa(1+ 130/256)
-data8 0x3FDA87D0165DD199 //log(1/frcpa(1+ 131/256)
-data8 0x3FDAAC2E6C03F896 //log(1/frcpa(1+ 132/256)
-data8 0x3FDADCCC6FDF6A81 //log(1/frcpa(1+ 133/256)
-data8 0x3FDB015B3EB1E790 //log(1/frcpa(1+ 134/256)
-data8 0x3FDB323A3A635948 //log(1/frcpa(1+ 135/256)
-data8 0x3FDB56FA04462909 //log(1/frcpa(1+ 136/256)
-data8 0x3FDB881AA659BC93 //log(1/frcpa(1+ 137/256)
-data8 0x3FDBAD0BEF3DB165 //log(1/frcpa(1+ 138/256)
-data8 0x3FDBD21297781C2F //log(1/frcpa(1+ 139/256)
-data8 0x3FDC039236F08819 //log(1/frcpa(1+ 140/256)
-data8 0x3FDC28CB1E4D32FD //log(1/frcpa(1+ 141/256)
-data8 0x3FDC4E19B84723C2 //log(1/frcpa(1+ 142/256)
-data8 0x3FDC7FF9C74554C9 //log(1/frcpa(1+ 143/256)
-data8 0x3FDCA57B64E9DB05 //log(1/frcpa(1+ 144/256)
-data8 0x3FDCCB130A5CEBB0 //log(1/frcpa(1+ 145/256)
-data8 0x3FDCF0C0D18F326F //log(1/frcpa(1+ 146/256)
-data8 0x3FDD232075B5A201 //log(1/frcpa(1+ 147/256)
-data8 0x3FDD490246DEFA6B //log(1/frcpa(1+ 148/256)
-data8 0x3FDD6EFA918D25CD //log(1/frcpa(1+ 149/256)
-data8 0x3FDD9509707AE52F //log(1/frcpa(1+ 150/256)
-data8 0x3FDDBB2EFE92C554 //log(1/frcpa(1+ 151/256)
-data8 0x3FDDEE2F3445E4AF //log(1/frcpa(1+ 152/256)
-data8 0x3FDE148A1A2726CE //log(1/frcpa(1+ 153/256)
-data8 0x3FDE3AFC0A49FF40 //log(1/frcpa(1+ 154/256)
-data8 0x3FDE6185206D516E //log(1/frcpa(1+ 155/256)
-data8 0x3FDE882578823D52 //log(1/frcpa(1+ 156/256)
-data8 0x3FDEAEDD2EAC990C //log(1/frcpa(1+ 157/256)
-data8 0x3FDED5AC5F436BE3 //log(1/frcpa(1+ 158/256)
-data8 0x3FDEFC9326D16AB9 //log(1/frcpa(1+ 159/256)
-data8 0x3FDF2391A2157600 //log(1/frcpa(1+ 160/256)
-data8 0x3FDF4AA7EE03192D //log(1/frcpa(1+ 161/256)
-data8 0x3FDF71D627C30BB0 //log(1/frcpa(1+ 162/256)
-data8 0x3FDF991C6CB3B379 //log(1/frcpa(1+ 163/256)
-data8 0x3FDFC07ADA69A910 //log(1/frcpa(1+ 164/256)
-data8 0x3FDFE7F18EB03D3E //log(1/frcpa(1+ 165/256)
-data8 0x3FE007C053C5002E //log(1/frcpa(1+ 166/256)
-data8 0x3FE01B942198A5A1 //log(1/frcpa(1+ 167/256)
-data8 0x3FE02F74400C64EB //log(1/frcpa(1+ 168/256)
-data8 0x3FE04360BE7603AD //log(1/frcpa(1+ 169/256)
-data8 0x3FE05759AC47FE34 //log(1/frcpa(1+ 170/256)
-data8 0x3FE06B5F1911CF52 //log(1/frcpa(1+ 171/256)
-data8 0x3FE078BF0533C568 //log(1/frcpa(1+ 172/256)
-data8 0x3FE08CD9687E7B0E //log(1/frcpa(1+ 173/256)
-data8 0x3FE0A10074CF9019 //log(1/frcpa(1+ 174/256)
-data8 0x3FE0B5343A234477 //log(1/frcpa(1+ 175/256)
-data8 0x3FE0C974C89431CE //log(1/frcpa(1+ 176/256)
-data8 0x3FE0DDC2305B9886 //log(1/frcpa(1+ 177/256)
-data8 0x3FE0EB524BAFC918 //log(1/frcpa(1+ 178/256)
-data8 0x3FE0FFB54213A476 //log(1/frcpa(1+ 179/256)
-data8 0x3FE114253DA97D9F //log(1/frcpa(1+ 180/256)
-data8 0x3FE128A24F1D9AFF //log(1/frcpa(1+ 181/256)
-data8 0x3FE1365252BF0865 //log(1/frcpa(1+ 182/256)
-data8 0x3FE14AE558B4A92D //log(1/frcpa(1+ 183/256)
-data8 0x3FE15F85A19C765B //log(1/frcpa(1+ 184/256)
-data8 0x3FE16D4D38C119FA //log(1/frcpa(1+ 185/256)
-data8 0x3FE18203C20DD133 //log(1/frcpa(1+ 186/256)
-data8 0x3FE196C7BC4B1F3B //log(1/frcpa(1+ 187/256)
-data8 0x3FE1A4A738B7A33C //log(1/frcpa(1+ 188/256)
-data8 0x3FE1B981C0C9653D //log(1/frcpa(1+ 189/256)
-data8 0x3FE1CE69E8BB106B //log(1/frcpa(1+ 190/256)
-data8 0x3FE1DC619DE06944 //log(1/frcpa(1+ 191/256)
-data8 0x3FE1F160A2AD0DA4 //log(1/frcpa(1+ 192/256)
-data8 0x3FE2066D7740737E //log(1/frcpa(1+ 193/256)
-data8 0x3FE2147DBA47A394 //log(1/frcpa(1+ 194/256)
-data8 0x3FE229A1BC5EBAC3 //log(1/frcpa(1+ 195/256)
-data8 0x3FE237C1841A502E //log(1/frcpa(1+ 196/256)
-data8 0x3FE24CFCE6F80D9A //log(1/frcpa(1+ 197/256)
-data8 0x3FE25B2C55CD5762 //log(1/frcpa(1+ 198/256)
-data8 0x3FE2707F4D5F7C41 //log(1/frcpa(1+ 199/256)
-data8 0x3FE285E0842CA384 //log(1/frcpa(1+ 200/256)
-data8 0x3FE294294708B773 //log(1/frcpa(1+ 201/256)
-data8 0x3FE2A9A2670AFF0C //log(1/frcpa(1+ 202/256)
-data8 0x3FE2B7FB2C8D1CC1 //log(1/frcpa(1+ 203/256)
-data8 0x3FE2C65A6395F5F5 //log(1/frcpa(1+ 204/256)
-data8 0x3FE2DBF557B0DF43 //log(1/frcpa(1+ 205/256)
-data8 0x3FE2EA64C3F97655 //log(1/frcpa(1+ 206/256)
-data8 0x3FE3001823684D73 //log(1/frcpa(1+ 207/256)
-data8 0x3FE30E97E9A8B5CD //log(1/frcpa(1+ 208/256)
-data8 0x3FE32463EBDD34EA //log(1/frcpa(1+ 209/256)
-data8 0x3FE332F4314AD796 //log(1/frcpa(1+ 210/256)
-data8 0x3FE348D90E7464D0 //log(1/frcpa(1+ 211/256)
-data8 0x3FE35779F8C43D6E //log(1/frcpa(1+ 212/256)
-data8 0x3FE36621961A6A99 //log(1/frcpa(1+ 213/256)
-data8 0x3FE37C299F3C366A //log(1/frcpa(1+ 214/256)
-data8 0x3FE38AE2171976E7 //log(1/frcpa(1+ 215/256)
-data8 0x3FE399A157A603E7 //log(1/frcpa(1+ 216/256)
-data8 0x3FE3AFCCFE77B9D1 //log(1/frcpa(1+ 217/256)
-data8 0x3FE3BE9D503533B5 //log(1/frcpa(1+ 218/256)
-data8 0x3FE3CD7480B4A8A3 //log(1/frcpa(1+ 219/256)
-data8 0x3FE3E3C43918F76C //log(1/frcpa(1+ 220/256)
-data8 0x3FE3F2ACB27ED6C7 //log(1/frcpa(1+ 221/256)
-data8 0x3FE4019C2125CA93 //log(1/frcpa(1+ 222/256)
-data8 0x3FE4181061389722 //log(1/frcpa(1+ 223/256)
-data8 0x3FE42711518DF545 //log(1/frcpa(1+ 224/256)
-data8 0x3FE436194E12B6BF //log(1/frcpa(1+ 225/256)
-data8 0x3FE445285D68EA69 //log(1/frcpa(1+ 226/256)
-data8 0x3FE45BCC464C893A //log(1/frcpa(1+ 227/256)
-data8 0x3FE46AED21F117FC //log(1/frcpa(1+ 228/256)
-data8 0x3FE47A1527E8A2D3 //log(1/frcpa(1+ 229/256)
-data8 0x3FE489445EFFFCCC //log(1/frcpa(1+ 230/256)
-data8 0x3FE4A018BCB69835 //log(1/frcpa(1+ 231/256)
-data8 0x3FE4AF5A0C9D65D7 //log(1/frcpa(1+ 232/256)
-data8 0x3FE4BEA2A5BDBE87 //log(1/frcpa(1+ 233/256)
-data8 0x3FE4CDF28F10AC46 //log(1/frcpa(1+ 234/256)
-data8 0x3FE4DD49CF994058 //log(1/frcpa(1+ 235/256)
-data8 0x3FE4ECA86E64A684 //log(1/frcpa(1+ 236/256)
-data8 0x3FE503C43CD8EB68 //log(1/frcpa(1+ 237/256)
-data8 0x3FE513356667FC57 //log(1/frcpa(1+ 238/256)
-data8 0x3FE522AE0738A3D8 //log(1/frcpa(1+ 239/256)
-data8 0x3FE5322E26867857 //log(1/frcpa(1+ 240/256)
-data8 0x3FE541B5CB979809 //log(1/frcpa(1+ 241/256)
-data8 0x3FE55144FDBCBD62 //log(1/frcpa(1+ 242/256)
-data8 0x3FE560DBC45153C7 //log(1/frcpa(1+ 243/256)
-data8 0x3FE5707A26BB8C66 //log(1/frcpa(1+ 244/256)
-data8 0x3FE587F60ED5B900 //log(1/frcpa(1+ 245/256)
-data8 0x3FE597A7977C8F31 //log(1/frcpa(1+ 246/256)
-data8 0x3FE5A760D634BB8B //log(1/frcpa(1+ 247/256)
-data8 0x3FE5B721D295F10F //log(1/frcpa(1+ 248/256)
-data8 0x3FE5C6EA94431EF9 //log(1/frcpa(1+ 249/256)
-data8 0x3FE5D6BB22EA86F6 //log(1/frcpa(1+ 250/256)
-data8 0x3FE5E6938645D390 //log(1/frcpa(1+ 251/256)
-data8 0x3FE5F673C61A2ED2 //log(1/frcpa(1+ 252/256)
-data8 0x3FE6065BEA385926 //log(1/frcpa(1+ 253/256)
-data8 0x3FE6164BFA7CC06B //log(1/frcpa(1+ 254/256)
-data8 0x3FE62643FECF9743 //log(1/frcpa(1+ 255/256)
-LOCAL_OBJECT_END(log_table_3)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(asinhf)
-
-{ .mfi
- getf.exp asinh_GR_f8 = f8 // Must recompute later if x unorm
- fclass.m p12,p0 = f8, 0x0b // Test x unorm
- mov log_GR_exp_17_ones = 0x1ffff
-}
-{ .mfi
- addl NR_table_address = @ltoff(log_table_1), gp
- fma.s1 log_y = f8, f8, f1 // y = x^2 + 1
- mov asinh_GR_comp = 0xfffa
-}
-;;
-
-{ .mfi
- mov log_GR_exp_16_ones = 0xffff //BIAS
- fclass.m p6,p0 = f8, 0xe7 // Test for x = NaN and inf and zero
- mov log_GR_comp2 = 0x10032
-}
-{ .mfi
- ld8 NR_table_address = [NR_table_address]
- fma.s1 asinh_w_sq = f8,f8,f0 // x^2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p7,p11 = f8,f0 // if x<0
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize x
-(p12) br.cond.spnt ASINH_UNORM // Branch if x=unorm
-}
-;;
-
-ASINH_COMMON:
-// Return here if x=unorm and not denorm
-{ .mfi
- //to get second table address
- adds log_table_address2 = 0x20, NR_table_address
- fma.s1 log_arg = f8,f1,f8
-}
-{ .mfb
- nop.m 0
-(p6) fma.s.s0 f8 = f8,f1,f8 // quietize nan result if x=nan
-(p6) br.ret.spnt b0 // Exit for x=nan and inf and zero
-}
-;;
-
-{ .mfi
- ldfpd NR1,NR2 = [log_table_address2],16
- frsqrta.s1 log_y_rs,p0 = log_y // z=1/sqrt(y)
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe log_C1 = [log_table_address2],16
- nop.f 0
- and asinh_GR_f8 = asinh_GR_f8,log_GR_exp_17_ones
-}
-;;
-
-{ .mib
- ldfe log_C0 = [log_table_address2],16
- cmp.le p13,p0 = log_GR_comp2,asinh_GR_f8
-(p13) br.cond.spnt LOG_COMMON1 // Branch if path 4: |x| >= 2^51
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter = log_y_rs,log_y,f0 // y*z
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p11) mov asinh_f8 = fNormX
- nop.i 0
-}
-{ .mfb
- cmp.gt p8,p0 = asinh_GR_comp,asinh_GR_f8
-(p7) fnma.s1 asinh_f8 = fNormX,f1,f0
-(p8) br.cond.spnt ASINH_NEAR_ZERO // Branch if path 2: 0 < |x| < 2^-5
-}
-;;
-
-// Here if main path, 2^-5 <= |x| < 2^51
-///////////////////////////////// The first iteration /////////////////////////
-{ .mfi
- ldfpd log_P3,log_P2 = [NR_table_address],16
- fnma.s1 log_y_rs_iter2 = log_y_rs_iter,log_y_rs,NR2 // 3-(y*z)*z
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs,NR1,f0 // 0.5*z
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P1,log2 = [NR_table_address],16
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_y_rs_iter = log_y_rs_iter1,log_y_rs_iter2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // (0.5*z)*(3-(y*z)*z)
- fma.s1 log_arg_early = log_y_rs_iter1,log_y_rs_iter2,f0
- nop.i 0
-}
-;;
-
-////////////////////////////////// The second iteration ////////////////////////
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs = log_y_rs_iter,log_y,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter,NR1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_arg_early = log_arg_early,log_y,asinh_f8
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 log_y_rs = log_y_rs,log_y_rs_iter,NR2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_y_rs_iter1 = log_y_rs_iter1,log_y,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- frcpa.s1 log_C,p0 = f1,log_arg_early
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp log_GR_signexp_f8 = log_arg_early
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig log_GR_significand_f8 = log_arg_early
- // (0.5*z)*(3-(y*z)*z)*y + |x|
- fma.s1 log_arg = log_y_rs_iter1,log_y_rs,asinh_f8
- //to get third table address
- adds log_table_address3 = 0x30, NR_table_address
-}
-;;
-
-/////////////////////////////////////////// The end NR iterations /////////////
-
-{ .mfi
- nop.m 0
- nop.f 0
- //significant bit destruction
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-}
-;;
-
-{ .mfi
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
-(p7) fnma.s1 log2 = log2,f1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- fms.s1 log_r = log_C,log_arg,f1 //C = frcpa(x); r = C * x - 1
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*16 + index
- shladd log_table_address3 = log_GR_index,3,log_table_address3
-;;
- ldfd log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_P1, log_r, f1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p2 = log_rp_p32, log_rsq, log_rp_p10
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p11) fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T if x>0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fms.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 - T if x<0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p11) fma.s.s0 f8 = log_rp_p2,log_r,log_T_plus_Nlog2
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fnma.s.s0 f8 = log_rp_p2,log_r,log_T_plus_Nlog2
- br.ret.sptk b0 // Exit main path, path 3: 2^-5 <= |x| < 2^51
-}
-;;
-
-
-// Here if path 4, |x| >= 2^51
-LOG_COMMON1:
-{ .mfi
- ldfpd log_P3,log_P2 = [NR_table_address],16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd log_P1,log2 = [NR_table_address],16
- frcpa.s1 log_C,p0 = f1,log_arg
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.exp log_GR_signexp_f8 = log_arg
- nop.f 0
- //to get third table address
- adds log_table_address3 = 0x30, NR_table_address
-}
-;;
-
-{ .mfi
- getf.sig log_GR_significand_f8 = log_arg
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- nop.f 0
- //to destroy the most bit in the significant area
- and log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
-}
-;;
-
-{ .mmf
- nop.m 0
- //BIAS subtraction
- sub log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
- fms.s1 log_r = log_C,log_arg,f1 //C = frcpa(x); r = C * x - 1
-}
-;;
-
-{ .mfi
- setf.sig log_int_Nfloat = log_GR_true_exp_f8
- nop.f 0
- extr.u log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
-}
-;;
-
-{ .mmi
- //pre-index*16 + index
- shladd log_table_address3 = log_GR_index,3,log_table_address3
-;;
- ldfd log_T = [log_table_address3]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rsq = log_r, log_r, f0 //r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p32 = log_P3, log_r, log_P2 //P3*r + P2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p10 = log_P1, log_r, f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fnma.s1 log2 = log2,f1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- //convert N to the floating-point format
- fcvt.xf log_Nfloat = log_int_Nfloat
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 log_rp_p2 = log_rp_p32, log_rsq, log_rp_p10
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p11) fma.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 + T if x>0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fms.s1 log_T_plus_Nlog2 = log_Nfloat,log2,log_T //N*log2 - T if x<0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p11) fma.s.s0 f8 = log_rp_p2,log_r,log_T_plus_Nlog2
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fnma.s.s0 f8 = log_rp_p2,log_r,log_T_plus_Nlog2
- br.ret.sptk b0 // Exit path 4, |x| >= 2^51
-}
-;;
-
-// Here if path 2, 0 < |x| < 2^-5
-ASINH_NEAR_ZERO:
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_1 = asinh_w_sq,log_C1,log_C0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 asinh_w_cube = asinh_w_sq,fNormX,f0
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = asinh_w_1,asinh_w_cube,fNormX
- br.ret.sptk b0 // Exit path 2, 0 < |x| < 2^-5
-}
-;;
-
-ASINH_UNORM:
-// Here if x=unorm
-{ .mfi
- getf.exp asinh_GR_f8 = fNormX // Recompute if x unorm
- fclass.m p0,p13 = fNormX, 0x0b // Test x denorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fcmp.eq.s0 p14,p0 = f8, f0 // Dummy to set denormal flag
-(p13) br.cond.sptk ASINH_COMMON // Continue if x unorm and not denorm
-}
-;;
-
-.pred.rel "mutex",p7,p11
-{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = f8,f8,f8 // Result x+x^2 if x=-denorm
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p11) fnma.s.s0 f8 = f8,f8,f8 // Result x-x^2 if x=+denorm
- br.ret.spnt b0 // Exit if denorm
-}
-;;
-
-GLOBAL_LIBM_END(asinhf)
diff --git a/sysdeps/ia64/fpu/s_asinhl.S b/sysdeps/ia64/fpu/s_asinhl.S
deleted file mode 100644
index d3a5507a32..0000000000
--- a/sysdeps/ia64/fpu/s_asinhl.S
+++ /dev/null
@@ -1,1347 +0,0 @@
-.file "asinhl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 09/04/01 Initial version
-// 09/13/01 Performance improved, symmetry problems fixed
-// 10/10/01 Performance improved, split issues removed
-// 12/11/01 Changed huges_logp to not be global
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-//
-//*********************************************************************
-//
-// API
-//==============================================================
-// long double asinhl(long double);
-//
-// Overview of operation
-//==============================================================
-//
-// There are 6 paths:
-// 1. x = 0, [S,Q]Nan or +/-INF
-// Return asinhl(x) = x + x;
-//
-// 2. x = + denormal
-// Return asinhl(x) = x - x^2;
-//
-// 3. x = - denormal
-// Return asinhl(x) = x + x^2;
-//
-// 4. 'Near 0': max denormal < |x| < 1/128
-// Return asinhl(x) = sign(x)*(x+x^3*(c3+x^2*(c5+x^2*(c7+x^2*(c9)))));
-//
-// 5. 'Huges': |x| > 2^63
-// Return asinhl(x) = sign(x)*(logl(2*x));
-//
-// 6. 'Main path': 1/128 < |x| < 2^63
-// b_hi + b_lo = x + sqrt(x^2 + 1);
-// asinhl(x) = sign(x)*(log_special(b_hi, b_lo));
-//
-// Algorithm description
-//==============================================================
-//
-// Main path algorithm
-// ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )
-// *************************************************************************
-//
-// There are 3 parts of x+sqrt(x^2+1) computation:
-//
-// 1) p2 = (p2_hi+p2_lo) = x^2+1 obtaining
-// ------------------------------------
-// p2_hi = x2_hi + 1, where x2_hi = x * x;
-// p2_lo = x2_lo + p1_lo, where
-// x2_lo = FMS(x*x-x2_hi),
-// p1_lo = (1 - p2_hi) + x2_hi;
-//
-// 2) g = (g_hi+g_lo) = sqrt(p2) = sqrt(p2_hi+p2_lo)
-// ----------------------------------------------
-// r = invsqrt(p2_hi) (8-bit reciprocal square root approximation);
-// g = p2_hi * r (first 8 bit-approximation of sqrt);
-//
-// h = 0.5 * r;
-// e = 0.5 - g * h;
-// g = g * e + g (second 16 bit-approximation of sqrt);
-//
-// h = h * e + h;
-// e = 0.5 - g * h;
-// g = g * e + g (third 32 bit-approximation of sqrt);
-//
-// h = h * e + h;
-// e = 0.5 - g * h;
-// g_hi = g * e + g (fourth 64 bit-approximation of sqrt);
-//
-// Remainder computation:
-// h = h * e + h;
-// d = (p2_hi - g_hi * g_hi) + p2_lo;
-// g_lo = d * h;
-//
-// 3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2+1)
-// -------------------------------------------------------------------
-// b_hi = (g_hi + x) + gl;
-// b_lo = (g_hi - b_hi) + x + gl;
-//
-// Now we pass b presented as sum b_hi + b_lo to special version
-// of logl function which accept a pair of arguments as
-// 'mutiprecision' value.
-//
-// Special log algorithm overview
-// ================================
-// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) = logl (Arg-1) for an argument Arg in [1,2),
-// we construct a value G such that G*Arg is close to 1 and that
-// logl(1/G) is obtainable easily from a table of values calculated
-// beforehand. Thus
-//
-// logl(Arg) = logl(1/G) + logl((G*Arg - 1))
-//
-// Because |G*Arg - 1| is small, the second term on the right hand
-// side can be approximated by a short polynomial. We elaborate
-// this method in four steps.
-//
-// Step 0: Initialization
-//
-// We need to calculate logl( X ). Obtain N, S_hi such that
-//
-// X = 2^N * ( S_hi + S_lo ) exactly
-//
-// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
-// that |S_lo| <= ulp(S_hi).
-//
-// For the special version of logl: S_lo = b_lo
-// !-----------------------------------------------!
-//
-// Step 1: Argument Reduction
-//
-// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1) + G * S_lo
-//
-// These G_j's have the property that the product is exactly
-// representable and that |r| < 2^(-12) as a result.
-//
-// Step 2: Approximation
-//
-// logl(1 + r) is approximated by a short polynomial poly(r).
-//
-// Step 3: Reconstruction
-//
-// Finally,
-//
-// logl( X ) = logl( 2^N * (S_hi + S_lo) )
-// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
-// ~=~ N*logl(2) + logl(1/G) + poly(r).
-//
-// For detailed description see logl or log1pl function, regular path.
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f101 (70 registers)
-
-// General registers used:
-// r32 -> r57 (26 registers)
-
-// Predicate registers used:
-// p6 -> p11
-// p6 for '0, NaNs, Inf' path
-// p7 for '+ denormals' path
-// p8 for 'near 0' path
-// p9 for 'huges' path
-// p10 for '- denormals' path
-// p11 for negative values
-//
-// Data tables
-//==============================================================
-
-RODATA
-.align 64
-
-// C7, C9 'near 0' polynomial coefficients
-LOCAL_OBJECT_START(Poly_C_near_0_79)
-data8 0xF8DC939BBEDD5A54, 0x00003FF9
-data8 0xB6DB6DAB21565AC5, 0x0000BFFA
-LOCAL_OBJECT_END(Poly_C_near_0_79)
-
-// C3, C5 'near 0' polynomial coefficients
-LOCAL_OBJECT_START(Poly_C_near_0_35)
-data8 0x999999999991D582, 0x00003FFB
-data8 0xAAAAAAAAAAAAAAA9, 0x0000BFFC
-LOCAL_OBJECT_END(Poly_C_near_0_35)
-
-// Q coeffs
-LOCAL_OBJECT_START(Constants_Q)
-data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
-data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
-data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
-data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
-data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
-LOCAL_OBJECT_END(Constants_Q)
-
-// Z1 - 16 bit fixed
-LOCAL_OBJECT_START(Constants_Z_1)
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F70F0F0,0x3D785196
-data8 0x3DA163A6617D741C
-data4 0x3F638E38,0x3DF13843
-data8 0x3E2C55E6CBD3D5BB
-data4 0x3F579430,0x3E2FF9A0
-data8 0xBE3EB0BFD86EA5E7
-data4 0x3F4CCCC8,0x3E647FD6
-data8 0x3E2E6A8C86B12760
-data4 0x3F430C30,0x3E8B3AE7
-data8 0x3E47574C5C0739BA
-data4 0x3F3A2E88,0x3EA30C68
-data8 0x3E20E30F13E8AF2F
-data4 0x3F321640,0x3EB9CEC8
-data8 0xBE42885BF2C630BD
-data4 0x3F2AAAA8,0x3ECF9927
-data8 0x3E497F3497E577C6
-data4 0x3F23D708,0x3EE47FC5
-data8 0x3E3E6A6EA6B0A5AB
-data4 0x3F1D89D8,0x3EF8947D
-data8 0xBDF43E3CD328D9BE
-data4 0x3F17B420,0x3F05F3A1
-data8 0x3E4094C30ADB090A
-data4 0x3F124920,0x3F0F4303
-data8 0xBE28FBB2FC1FE510
-data4 0x3F0D3DC8,0x3F183EBF
-data8 0x3E3A789510FDE3FA
-data4 0x3F088888,0x3F20EC80
-data8 0x3E508CE57CC8C98F
-data4 0x3F042108,0x3F29516A
-data8 0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-LOCAL_OBJECT_START(Constants_Z_2)
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F7F00F8,0x3B7F875D
-data8 0x3DB5A11622C42273
-data4 0x3F7E03F8,0x3BFF015B
-data8 0x3DE620CF21F86ED3
-data4 0x3F7D08E0,0x3C3EE393
-data8 0xBDAFA07E484F34ED
-data4 0x3F7C0FC0,0x3C7E0586
-data8 0xBDFE07F03860BCF6
-data4 0x3F7B1880,0x3C9E75D2
-data8 0x3DEA370FA78093D6
-data4 0x3F7A2328,0x3CBDC97A
-data8 0x3DFF579172A753D0
-data4 0x3F792FB0,0x3CDCFE47
-data8 0x3DFEBE6CA7EF896B
-data4 0x3F783E08,0x3CFC15D0
-data8 0x3E0CF156409ECB43
-data4 0x3F774E38,0x3D0D874D
-data8 0xBE0B6F97FFEF71DF
-data4 0x3F766038,0x3D1CF49B
-data8 0xBE0804835D59EEE8
-data4 0x3F757400,0x3D2C531D
-data8 0x3E1F91E9A9192A74
-data4 0x3F748988,0x3D3BA322
-data8 0xBE139A06BF72A8CD
-data4 0x3F73A0D0,0x3D4AE46F
-data8 0x3E1D9202F8FBA6CF
-data4 0x3F72B9D0,0x3D5A1756
-data8 0xBE1DCCC4BA796223
-data4 0x3F71D488,0x3D693B9D
-data8 0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4 0x3F7FFC00,0x38800100
-data8 0x3D355595562224CD
-data4 0x3F7FF400,0x39400480
-data8 0x3D8200A206136FF6
-data4 0x3F7FEC00,0x39A00640
-data8 0x3DA4D68DE8DE9AF0
-data4 0x3F7FE400,0x39E00C41
-data8 0xBD8B4291B10238DC
-data4 0x3F7FDC00,0x3A100A21
-data8 0xBD89CCB83B1952CA
-data4 0x3F7FD400,0x3A300F22
-data8 0xBDB107071DC46826
-data4 0x3F7FCC08,0x3A4FF51C
-data8 0x3DB6FCB9F43307DB
-data4 0x3F7FC408,0x3A6FFC1D
-data8 0xBD9B7C4762DC7872
-data4 0x3F7FBC10,0x3A87F20B
-data8 0xBDC3725E3F89154A
-data4 0x3F7FB410,0x3A97F68B
-data8 0xBD93519D62B9D392
-data4 0x3F7FAC18,0x3AA7EB86
-data8 0x3DC184410F21BD9D
-data4 0x3F7FA420,0x3AB7E101
-data8 0xBDA64B952245E0A6
-data4 0x3F7F9C20,0x3AC7E701
-data8 0x3DB4B0ECAABB34B8
-data4 0x3F7F9428,0x3AD7DD7B
-data8 0x3D9923376DC40A7E
-data4 0x3F7F8C30,0x3AE7D474
-data8 0x3DC6E17B4F2083D3
-data4 0x3F7F8438,0x3AF7CBED
-data8 0x3DAE314B811D4394
-data4 0x3F7F7C40,0x3B03E1F3
-data8 0xBDD46F21B08F2DB1
-data4 0x3F7F7448,0x3B0BDE2F
-data8 0xBDDC30A46D34522B
-data4 0x3F7F6C50,0x3B13DAAA
-data8 0x3DCB0070B1F473DB
-data4 0x3F7F6458,0x3B1BD766
-data8 0xBDD65DDC6AD282FD
-data4 0x3F7F5C68,0x3B23CC5C
-data8 0xBDCDAB83F153761A
-data4 0x3F7F5470,0x3B2BC997
-data8 0xBDDADA40341D0F8F
-data4 0x3F7F4C78,0x3B33C711
-data8 0x3DCD1BD7EBC394E8
-data4 0x3F7F4488,0x3B3BBCC6
-data8 0xBDC3532B52E3E695
-data4 0x3F7F3C90,0x3B43BAC0
-data8 0xBDA3961EE846B3DE
-data4 0x3F7F34A0,0x3B4BB0F4
-data8 0xBDDADF06785778D4
-data4 0x3F7F2CA8,0x3B53AF6D
-data8 0x3DCC3ED1E55CE212
-data4 0x3F7F24B8,0x3B5BA620
-data8 0xBDBA31039E382C15
-data4 0x3F7F1CC8,0x3B639D12
-data8 0x3D635A0B5C5AF197
-data4 0x3F7F14D8,0x3B6B9444
-data8 0xBDDCCB1971D34EFC
-data4 0x3F7F0CE0,0x3B7393BC
-data8 0x3DC7450252CD7ADA
-data4 0x3F7F04F0,0x3B7B8B6D
-data8 0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-// Assembly macros
-//==============================================================
-
-// Floating Point Registers
-
-FR_Arg = f8
-FR_Res = f8
-FR_AX = f32
-FR_XLog_Hi = f33
-FR_XLog_Lo = f34
-
- // Special logl registers
-FR_Y_hi = f35
-FR_Y_lo = f36
-
-FR_Scale = f37
-FR_X_Prime = f38
-FR_S_hi = f39
-FR_W = f40
-FR_G = f41
-
-FR_H = f42
-FR_wsq = f43
-FR_w4 = f44
-FR_h = f45
-FR_w6 = f46
-
-FR_G2 = f47
-FR_H2 = f48
-FR_poly_lo = f49
-FR_P8 = f50
-FR_poly_hi = f51
-
-FR_P7 = f52
-FR_h2 = f53
-FR_rsq = f54
-FR_P6 = f55
-FR_r = f56
-
-FR_log2_hi = f57
-FR_log2_lo = f58
-
-FR_float_N = f59
-FR_Q4 = f60
-
-FR_G3 = f61
-FR_H3 = f62
-FR_h3 = f63
-
-FR_Q3 = f64
-FR_Q2 = f65
-FR_1LN10_hi = f66
-
-FR_Q1 = f67
-FR_1LN10_lo = f68
-FR_P5 = f69
-FR_rcub = f70
-
-FR_Neg_One = f71
-FR_Z = f72
-FR_AA = f73
-FR_BB = f74
-FR_S_lo = f75
-FR_2_to_minus_N = f76
-
-
- // Huge & Main path prolog registers
-FR_Half = f77
-FR_Two = f78
-FR_X2 = f79
-FR_P2 = f80
-FR_P2L = f81
-FR_Rcp = f82
-FR_GG = f83
-FR_HH = f84
-FR_EE = f85
-FR_DD = f86
-FR_GL = f87
-FR_A = f88
-FR_AL = f89
-FR_B = f90
-FR_BL = f91
-FR_Tmp = f92
-
- // Near 0 & Huges path prolog registers
-FR_C3 = f93
-FR_C5 = f94
-FR_C7 = f95
-FR_C9 = f96
-
-FR_X3 = f97
-FR_X4 = f98
-FR_P9 = f99
-FR_P5 = f100
-FR_P3 = f101
-
-
-// General Purpose Registers
-
- // General prolog registers
-GR_PFS = r32
-GR_TwoN7 = r40
-GR_TwoP63 = r41
-GR_ExpMask = r42
-GR_ArgExp = r43
-GR_Half = r44
-
- // Near 0 path prolog registers
-GR_Poly_C_35 = r45
-GR_Poly_C_79 = r46
-
- // Special logl registers
-GR_Index1 = r34
-GR_Index2 = r35
-GR_signif = r36
-GR_X_0 = r37
-GR_X_1 = r38
-GR_X_2 = r39
-GR_Z_1 = r40
-GR_Z_2 = r41
-GR_N = r42
-GR_Bias = r43
-GR_M = r44
-GR_Index3 = r45
-GR_exp_2tom80 = r45
-GR_exp_mask = r47
-GR_exp_2tom7 = r48
-GR_ad_ln10 = r49
-GR_ad_tbl_1 = r50
-GR_ad_tbl_2 = r51
-GR_ad_tbl_3 = r52
-GR_ad_q = r53
-GR_ad_z_1 = r54
-GR_ad_z_2 = r55
-GR_ad_z_3 = r56
-GR_minus_N = r57
-
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(asinhl)
-
-{ .mfi
- alloc GR_PFS = ar.pfs,0,27,0,0
- fma.s1 FR_P2 = FR_Arg, FR_Arg, f1 // p2 = x^2 + 1
- mov GR_Half = 0xfffe // 0.5's exp
-}
-{ .mfi
- addl GR_Poly_C_79 = @ltoff(Poly_C_near_0_79), gp // C7, C9 coeffs
- fma.s1 FR_X2 = FR_Arg, FR_Arg, f0 // Obtain x^2
- addl GR_Poly_C_35 = @ltoff(Poly_C_near_0_35), gp // C3, C5 coeffs
-};;
-
-{ .mfi
- getf.exp GR_ArgExp = FR_Arg // get arument's exponent
- fabs FR_AX = FR_Arg // absolute value of argument
- mov GR_TwoN7 = 0xfff8 // 2^-7 exp
-}
-{ .mfi
- ld8 GR_Poly_C_79 = [GR_Poly_C_79] // get actual coeff table address
- fma.s0 FR_Two = f1, f1, f1 // construct 2.0
- mov GR_ExpMask = 0x1ffff // mask for exp
-};;
-
-{ .mfi
- ld8 GR_Poly_C_35 = [GR_Poly_C_35] // get actual coeff table address
- fclass.m p6,p0 = FR_Arg, 0xe7 // if arg NaN inf zero
- mov GR_TwoP63 = 0x1003e // 2^63 exp
-}
-{ .mfi
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- setf.exp FR_Half = GR_Half // construct 0.5
- fclass.m p7,p0 = FR_Arg, 0x09 // if arg + denorm
- and GR_ArgExp = GR_ExpMask, GR_ArgExp // select exp
-}
-{ .mfb
- ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
- nop.f 0
- nop.b 0
-};;
-{ .mfi
- ldfe FR_C9 = [GR_Poly_C_79],16 // load C9
- fclass.m p10,p0 = FR_Arg, 0x0a // if arg - denorm
- cmp.gt p8, p0 = GR_TwoN7, GR_ArgExp // if arg < 2^-7 ('near 0')
-}
-{ .mfb
- cmp.le p9, p0 = GR_TwoP63, GR_ArgExp // if arg > 2^63 ('huges')
-(p6) fma.s0 FR_Res = FR_Arg,f1,FR_Arg // r = a + a
-(p6) br.ret.spnt b0 // return
-};;
-// (X^2 + 1) computation
-{ .mfi
-(p8) ldfe FR_C5 = [GR_Poly_C_35],16 // load C5
- fms.s1 FR_Tmp = f1, f1, FR_P2 // Tmp = 1 - p2
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
-}
-{ .mfb
-(p8) ldfe FR_C7 = [GR_Poly_C_79],16 // load C7
-(p7) fnma.s0 FR_Res = FR_Arg,FR_Arg,FR_Arg // r = a - a*a
-(p7) br.ret.spnt b0 // return
-};;
-
-{ .mfi
-(p8) ldfe FR_C3 = [GR_Poly_C_35],16 // load C3
- fcmp.lt.s1 p11, p12 = FR_Arg, f0 // if arg is negative
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
-}
-{ .mfb
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
-(p10) fma.s0 FR_Res = FR_Arg,FR_Arg,FR_Arg // r = a + a*a
-(p10) br.ret.spnt b0 // return
-};;
-
-{ .mfi
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
- frsqrta.s1 FR_Rcp, p0 = FR_P2 // Rcp = 1/p2 reciprocal appr.
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_P2L = FR_AX, FR_AX, FR_X2 //low part of p2=fma(X*X-p2)
- mov GR_Bias = 0x0FFFF // Create exponent bias
-};;
-
-{ .mfb
- nop.m 0
-(p9) fms.s1 FR_XLog_Hi = FR_Two, FR_AX, f0 // Hi of log1p arg = 2*X - 1
-(p9) br.cond.spnt huges_logl // special version of log1p
-};;
-
-{ .mfb
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
-(p8) fma.s1 FR_X3 = FR_X2, FR_Arg, f0 // x^3 = x^2 * x
-(p8) br.cond.spnt near_0 // Go to near 0 branch
-};;
-
-{ .mfi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
- fma.s1 FR_Tmp = FR_Tmp, f1, FR_X2 // Tmp = Tmp + x^2
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
-};;
-
-{ .mfi
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- fma.s1 FR_GG = FR_Rcp, FR_P2, f0 // g = Rcp * p2
- // 8 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp
- nop.i 0
-};;
-{ .mfi
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P2L = FR_Tmp, f1, FR_P2L // low part of p2 = Tmp + p2l
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
- // 16 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
- // 32 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
- // 64 bit Newton Raphson iteration
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_DD = FR_GG, FR_GG, FR_P2 // Remainder d = g * g - p2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_XLog_Hi = FR_AX, f1, FR_GG // bh = z + gh
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_DD = FR_DD, f1, FR_P2L // add p2l: d = d + p2l
- nop.i 0
-};;
-
-
-{ .mfi
- getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
- fmerge.ns FR_Neg_One = f1, f1 // Form -1.0
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_XLog_Hi = FR_DD, FR_HH, FR_XLog_Hi // bh = bh + gl
- nop.i 0
-};;
-
-{ .mmi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
-};;
-
-{ .mmi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- nop.m 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_XLog_Lo = FR_GG, f1, FR_XLog_Hi // bl = gh - bh
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
-};;
-
-// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// "DEAD" ZONE!
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1|
- nop.i 0
-};;
-
-{ .mmi
- getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-};;
-
-
-{ .mfi
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_AX // bl = bl + x
- mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
-}
-{ .mfi
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- nop.f 0
- sub GR_N = GR_N, GR_Bias // sub bias from exp
-};;
-
-{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
-};;
-
-{ .mmi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
- setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
-};;
-
-// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
-// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// So we can negate Q coefficients there for negative values
-
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q1 = FR_Q1, FR_Neg_One, f0 // Negate Q1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GL // bl = bl + gl
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q2 = FR_Q2, FR_Neg_One, f0 // Negate Q2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q3 = FR_Q3, FR_Neg_One, f0 // Negate Q3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q4 = FR_Q4, FR_Neg_One, f0 // Negate Q4
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-};;
-
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fcvt.xf FR_float_N = FR_float_N
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S_lo = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^-N
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r=G*S_lo+(G*S_hi-1)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p11
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fms.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
- nop.i 0
-};;
-
-
-.pred.rel "mutex",p12,p11
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fms.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo
- // Y_lo=poly_hi+poly_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s0 FR_Y_hi = FR_Y_hi, FR_Neg_One, f0 // FR_Y_hi sign for neg
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
- br.ret.sptk b0 // Common exit for 2^-7 < x < inf
-};;
-
-// * SPECIAL VERSION OF LOGL FOR HUGE ARGUMENTS *
-
-huges_logl:
-{ .mfi
- getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
- fmerge.ns FR_Neg_One = f1, f1 // Form -1.0
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
-};;
-
-{ .mfi
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
- nop.f 0
- add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
-}
-{ .mfi
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
- nop.f 0
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
-}
-{ .mfi
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- nop.f 0
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
-};;
-
-{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.f 0
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
-}
-{ .mfi
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- nop.f 0
- mov GR_Bias = 0x0FFFF // Create exponent bias
-};;
-
-{ .mfi
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1|
- nop.i 0
-};;
-
-{ .mmi
- getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- nop.f 0
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
-};;
-
-// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// "DEAD" ZONE!
-
-{ .mmi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
- sub GR_N = GR_N, GR_Bias
- mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
-};;
-
-{ .mfi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
- nop.f 0
- sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
-};;
-
-{ .mmf
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
- nop.f 0
-};;
-
-{ .mmi
- nop.m 0
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-};;
-
-{ .mmi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- nop.i 0
-};;
-
-{ .mmi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- nop.i 0
-};;
-
-{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- nop.m 0
- nop.i 0
-};;
-
-{ .mfi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.f 0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
-};;
-
-// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
-// "DEAD" ZONE!
-// JUST HAVE TO INSERT 3 NOP CYCLES (nothing to do here)
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q4 = FR_Q4, FR_Neg_One, f0 // Negate Q4
- extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
- };;
-
-{ .mfi
- shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
- fcvt.xf FR_float_N = FR_float_N
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q3 = FR_Q3, FR_Neg_One, f0 // Negate Q3
- nop.i 0
-};;
-
-{ .mfi
- ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
-(p11) fma.s1 FR_Q2 = FR_Q2, FR_Neg_One, f0 // Negate Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_Q1 = FR_Q1, FR_Neg_One, f0 // Negate Q1
- nop.i 0
-};;
-
-{ .mfi
- ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
- fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 0
-};;
-
-{ .mmf
- nop.m 0
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p11
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fms.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
- nop.i 0
-};;
-
-
-.pred.rel "mutex",p12,p11
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fms.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo=poly_hi+poly_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s0 FR_Y_hi = FR_Y_hi, FR_Neg_One, f0 // FR_Y_hi sign for neg
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
- br.ret.sptk b0 // Common exit for 2^-7 < x < inf
-};;
-
-// NEAR ZERO POLYNOMIAL INTERVAL
-near_0:
-{ .mfi
- nop.m 0
- fma.s1 FR_X4 = FR_X2, FR_X2, f0 // x^4 = x^2 * x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P9 = FR_C9,FR_X2,FR_C7 // p9 = C9*x^2 + C7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P5 = FR_C5,FR_X2,FR_C3 // p5 = C5*x^2 + C3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P3 = FR_P9,FR_X4,FR_P5 // p3 = p9*x^4 + p5
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s0 FR_Res = FR_P3,FR_X3,FR_Arg // res = p3*C3 + x
- br.ret.sptk b0 // Near 0 path return
-};;
-
-GLOBAL_LIBM_END(asinhl)
-
-
-
diff --git a/sysdeps/ia64/fpu/s_atan.S b/sysdeps/ia64/fpu/s_atan.S
index 720ecad28a..c0daabd3d7 100644
--- a/sysdeps/ia64/fpu/s_atan.S
+++ b/sysdeps/ia64/fpu/s_atan.S
@@ -1,10 +1,10 @@
.file "atan.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,734 +20,947 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/13/00 Improved speed
-// 04/19/00 Removed the qualifying predicate from the fmerge.s that
-// takes the absolute value.
-// 06/16/00 Reassigned FP registers to eliminate stalls on loads
-// 08/30/00 Saved 5 cycles in main path by rearranging large argument logic
-// and delaying use of result of fcmp in load by 1 group
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/20/02 Use atan2 algorithm with x=1 for better accuracy
-// 02/06/03 Reordered header: .section, .global, .proc, .align
+// 2/02/00: Initial version
+// 4/13/00: Improved speed
+// 4/19/00: Removed the qualifying predicate from the fmerge.s that
+// takes the absolute value.
+// 6/16/00: Reassigned FP registers to eliminate stalls on loads
+// 8/30/00: Saved 5 cycles in main path by rearranging large argument logic
+// and delaying use of result of fcmp in load by 1 group
//
// API
//==============================================================
-// double atan(double Y)
+// double atan( double x);
//
// Overview of operation
//==============================================================
+// atan(x) = sign(X)pi/2 - atan(1/x)
//
-// The atan function returns values in the interval [-pi/2,+pi/2].
-//
-// The algorithm used is the atan2(Y,X) algorithm where we fix X=1.0.
-//
-// There are two basic paths: swap true and swap false.
-// atan2(Y,X) ==> atan2(V/U) where U >= V. If Y > X, we must swap.
-//
-// p6 swap True |Y| > |X|
-// p7 swap False |Y| <= |X|
-//
-//
-// Simple trigonometric identities show
-// Region 1
-// |Y|<=1.0, V=Y, U=1.0 atan2(Y,X) = sgnY * (0 + atan(V/U))
+// We have two paths: |x| > 1 and |x| <= 1
//
-// Region 2
-// |Y|>1.0, V=1.0, U=Y atan2(Y,X) = sgnY * (pi/2 - atan(V/U))
+// |x| > 1
+// ==========================================
//
+// c = frcpa(x) which is approximately 1/x
//
-// We compute atan(V/U) from the identity
-// atan(z) + atan([(V/U)-z] / [1+(V/U)z])
-// where z is a limited precision approximation (16 bits) to V/U
+// xc = 1- B
+// B = 1-xc
//
-// z is calculated with the assistance of the frcpa instruction.
+// Approximate 1/(1-B)^k by a polynomial in B, poly(B)
+// k is 45.
//
-// atan(z) is calculated by a polynomial z + z^3 * p(w), w=z^2
-// where p(w) = P0+P1*w+...+P22*w^22
+// poly(B) = 1 + r1 B + r2 B^2 + ...+ r10 B^10
//
-// Let d = [(V/U)-z] / [1+(V/U)z]) = (V-U*z)/(U+V*z)
-//
-// Approximate atan(d) by d + P0*d^3
-// Let F = 1/(U+V*z) * (1-a), where |a|< 2^-8.8.
-// Compute q(a) = 1 + a + ... + a^5.
-// Then F*q(a) approximates the reciprocal to more than 50 bits.
+// c^k = (1-B)^k/x^k
+// c^k/(1-B)^k = 1/x^k
+// c^k poly(B) = 1/x^k
+
+// poly(x) = series(atan(1/x)) = 1/x - 1/3x^3 + 1/5x^5 - 1/7x^7 .... + 1/45 x^45
+// = 1/x^45 ( x^44 - x^42/3 + x^40/5 - x^38/7 ... +1)
+// = 1/x^45 ( y^22 - y^21/3 + y^20/5 - y^19/7 ... +1)
+//
+// = c^45 poly(B) poly(x)
+// = c^45 r(B) q(y)
+
+// q(y) = q0 + q1 y + q2 y^2 + ... + q22 y^22
+// where q22 is 1.0
+
+// atan(x) = sign(X)pi/2 - c^45 r(B) q(y)
+
+// |x| <= 1
+// ==========================================
+// poly(x) = series(atan(x)) = x - x^3/3 + x^5/5 + .....
+// poly(x) = series(atan(x)) = x + x^3(- 1/3 + x^2/5 + ..... +x^47/47)
+// poly(x) = series(atan(x)) = x + x^3(p0 + x^2/5 + ..... + x^44/47)
+// poly(x) = series(atan(x)) = x + x^3(p0 + y/5 + ..... + y^22/47)
+
+// where p0 is about -1/3.
-// Special values
+// atan(x) = poly(x)
+
+#include "libm_support.h"
+
+// Special Values
//==============================================================
// atan(QNAN) = QNAN
// atan(SNAN) = quieted SNAN
-// atan(+-inf) = +- pi/2
+// atan(+-inf) = +- pi/2
// atan(+-0) = +-0
+
+
// Registers used
//==============================================================
-// predicate registers used:
-// p6 -> p15
+// predicate registers used:
+// p6 -> p11
-// floating-point registers used:
-// f8, input
-// f32 -> f116
+// floating-point registers used:
+// f32 -> f127
// general registers used
-// r14 -> r16
+// r32 -> r37
// Assembly macros
//==============================================================
+atan_Pi_by_2 = f32
+atan_S_PI = f33
+atan_ABS_f8 = f34
+
+atan_R0 = f35
+atan_R1 = f36
+atan_R2 = f37
+atan_R3 = f38
+atan_R4 = f39
+atan_R5 = f40
+atan_R6 = f41
+atan_R7 = f42
+atan_R8 = f43
+atan_R9 = f44
+atan_R10 = f45
+
+atan_Q0 = f46
+
+atan_Q1 = f47
+atan_Q2 = f48
+atan_Q3 = f49
+atan_Q4 = f50
+atan_Q5 = f51
+atan_Q6 = f52
+atan_Q7 = f53
+atan_Q8 = f54
+atan_Q9 = f55
+atan_Q10 = f56
+
+atan_Q11 = f57
+atan_Q12 = f58
+atan_Q13 = f59
+atan_Q14 = f60
+atan_Q15 = f61
+atan_Q16 = f62
+atan_Q17 = f63
+atan_Q18 = f64
+atan_Q19 = f65
+atan_Q20 = f66
+atan_Q21 = f67
+atan_Q22 = f68
+
+// P and Q constants are mutually exclusive
+// so they can share macro definitions
+atan_P0 = f46
+
+atan_P1 = f47
+atan_P2 = f48
+atan_P3 = f49
+atan_P4 = f10
+atan_P5 = f11
+atan_P6 = f12
+atan_P7 = f13
+atan_P10 = f103
+
+atan_P11 = f114
+atan_P12 = f58
+atan_P13 = f59
+atan_P14 = f60
+atan_P15 = f61
+atan_P16 = f62
+atan_P17 = f63
+atan_P18 = f64
+atan_P19 = f65
+atan_P20 = f14
+atan_P21 = f99
+atan_P22 = f68
+// end of P constant macros
+
+atan_C = f69
+atan_Y = f70
+atan_B = f71
+atan_Z = f72
+atan_V11 = f73
+atan_V12 = f74
+
+atan_V7 = f75
+atan_V8 = f76
+
+atan_W13 = f77
+atan_W11 = f78
+
+atan_V3 = f79
+atan_V4 = f80
+
+atan_G11 = f81
+atan_G12 = f82
+atan_G7 = f83
+atan_G8 = f84
+
+atan_Z1 = f85
+atan_W7 = f86
+
+atan_G3 = f87
+atan_W8 = f88
+atan_V9 = f89
+atan_V10 = f90
+
+atan_G10 = f91
+atan_W3 = f92
+atan_G4 = f93
+atan_G9 = f94
+
+atan_G6 = f95
+atan_W4 = f96
+atan_Z2 = f97
+atan_V6 = f98
+
+atan_V2 = f99
+atan_W6 = f100
+atan_W10 = f101
+atan_Y3 = f102
+
+atan_G2 = f103
+
+atan_Y8 = f104
+
+atan_G5 = f105
+atan_Z3 = f106
+atan_Z4 = f107
+atan_W2 = f108
+atan_V5 = f109
+
+atan_W5 = f110
+atan_G1 = f111
+atan_Y11 = f112
+
+atan_Z5 = f113
+atan_Z6 = f114
+atan_V1 = f115
+atan_W1 = f116
+
+atan_Z7 = f117
+atan_Q = f118
+atan_Z = f119
+atan_abs_f8 = f120
+
+atan_V13 = f121
+atan_Xcub = f122
+atan_Y12 = f123
+atan_P = f124
+
+atan_NORM_f8 = f125
+
+atan_P8 = f126
+atan_P9 = f127
+
+
+
+
+atan_GR_AD_R = r14
+atan_GR_AD_Q = r15
+atan_GR_AD_P = r16
+atan_GR_10172 = r17
+atan_GR_exp_f8 = r18
+atan_GR_signexp_f8 = r19
+atan_GR_exp_mask = r20
+
+
-EXP_AD_P1 = r14
-EXP_AD_P2 = r15
-rsig_near_one = r16
-
-atan2_Y = f8
-atan2_X = f1
-
-atan2_u1_X = f32
-atan2_u1_Y = f33
-atan2_z2_X = f34
-
-atan2_two = f36
-atan2_B1sq_Y = f37
-atan2_z1_X = f38
-atan2_B1X = f40
-
-atan2_B1Y = f41
-atan2_wp_X = f42
-atan2_B1sq_X = f43
-atan2_z = f44
-atan2_w = f45
-
-atan2_P0 = f46
-atan2_P1 = f47
-atan2_P2 = f48
-atan2_P3 = f49
-atan2_P4 = f50
-
-atan2_P5 = f51
-atan2_P6 = f52
-atan2_P7 = f53
-atan2_P8 = f54
-atan2_P9 = f55
-
-atan2_P10 = f56
-atan2_P11 = f57
-atan2_P12 = f58
-atan2_P13 = f59
-atan2_P14 = f60
-
-atan2_P15 = f61
-atan2_P16 = f62
-atan2_P17 = f63
-atan2_P18 = f64
-atan2_P19 = f65
-
-atan2_P20 = f66
-atan2_P21 = f67
-atan2_P22 = f68
-atan2_pi_by_2 = f69
-atan2_sgn_pi_by_2 = f69
-atan2_V13 = f70
-
-atan2_W11 = f71
-atan2_E = f72
-atan2_wp_Y = f73
-atan2_V11 = f74
-atan2_V12 = f75
-
-atan2_V7 = f76
-atan2_V8 = f77
-atan2_W7 = f78
-atan2_W8 = f79
-atan2_W3 = f80
-
-atan2_W4 = f81
-atan2_V3 = f82
-atan2_V4 = f83
-atan2_F = f84
-atan2_gV = f85
-
-atan2_V10 = f86
-atan2_zcub = f87
-atan2_V6 = f88
-atan2_V9 = f89
-atan2_W10 = f90
-
-atan2_W6 = f91
-atan2_W2 = f92
-atan2_V2 = f93
-atan2_alpha = f94
-atan2_alpha_1 = f95
-
-atan2_gVF = f96
-atan2_V5 = f97
-atan2_W12 = f98
-atan2_W5 = f99
-atan2_alpha_sq = f100
-
-atan2_Cp = f101
-atan2_V1 = f102
-atan2_ysq = f103
-atan2_W1 = f104
-atan2_alpha_cub = f105
-
-atan2_C = f106
-atan2_d = f108
-atan2_A_hi = f109
-atan2_dsq = f110
-
-atan2_pd = f111
-atan2_A_lo = f112
-atan2_A = f113
-atan2_Pp = f114
-atan2_sgnY = f115
-
-atan2_sig_near_one = f116
-atan2_near_one = f116
/////////////////////////////////////////////////////////////
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(atan2_tb1)
-data8 0xA21922DC45605EA1 , 0x00003FFA // P11
-data8 0xB199DD6D2675C40F , 0x0000BFFA // P10
-data8 0xC2F01E5DDD100DBE , 0x00003FFA // P9
-data8 0xD78F28FC2A592781 , 0x0000BFFA // P8
-data8 0xF0F03ADB3FC930D3 , 0x00003FFA // P7
-data8 0x88887EBB209E3543 , 0x0000BFFB // P6
-data8 0x9D89D7D55C3287A5 , 0x00003FFB // P5
-data8 0xBA2E8B9793955C77 , 0x0000BFFB // P4
-data8 0xE38E38E320A8A098 , 0x00003FFB // P3
-data8 0x9249249247E37913 , 0x0000BFFC // P2
-data8 0xCCCCCCCCCCC906CD , 0x00003FFC // P1
-data8 0xAAAAAAAAAAAAA8A9 , 0x0000BFFD // P0
-data8 0x0000000000000000 , 0x00000000 // pad to avoid bank conflict
-LOCAL_OBJECT_END(atan2_tb1)
-
-LOCAL_OBJECT_START(atan2_tb2)
-data8 0xCE585A259BD8374C , 0x00003FF0 // P21
-data8 0x9F90FB984D8E39D0 , 0x0000BFF3 // P20
-data8 0x9D3436AABE218776 , 0x00003FF5 // P19
-data8 0xDEC343E068A6D2A8 , 0x0000BFF6 // P18
-data8 0xF396268151CFB11C , 0x00003FF7 // P17
-data8 0xD818B4BB43D84BF2 , 0x0000BFF8 // P16
-data8 0xA2270D30A90AA220 , 0x00003FF9 // P15
-data8 0xD5F4F2182E7A8725 , 0x0000BFF9 // P14
-data8 0x80D601879218B53A , 0x00003FFA // P13
-data8 0x9297B23CCFFB291F , 0x0000BFFA // P12
-data8 0xFE7E52D2A89995B3 , 0x0000BFEC // P22
-data8 0xC90FDAA22168C235 , 0x00003FFF // pi/2
-LOCAL_OBJECT_END(atan2_tb2)
-
+double_atan_constants_R:
+ASM_TYPE_DIRECTIVE(double_atan_constants_R,@object)
+ data8 0xB36B46B9C5443CED, 0x0000401C //R8
+ data8 0x842633E0D126261F, 0x0000401F //R9
+ data8 0xBE04FFFFFFFF46E0, 0x00004010 //R4
+ data8 0xE8C62000244D66E2, 0x00004013 //R5
+ data8 0xF2790C001E3789B3, 0x00004016 //R6
+ data8 0xDCD2CCF97D7C764F, 0x00004019 //R7
+ data8 0xB40000000000000B, 0x00004004 //R1
+ data8 0xB265F3D38F5EE28F, 0x00004021 //R10
+ data8 0x8160000000000001, 0x00004009 //R2
+ data8 0xFD5BFFFFFFFE55CD, 0x0000400C //R3
+ data8 0xC90FDAA22168C235, 0x00003FFF // pi/2
+ASM_SIZE_DIRECTIVE(double_atan_constants_R)
+
+double_atan_constants_Q:
+ASM_TYPE_DIRECTIVE(double_atan_constants_Q,@object)
+ data8 0xEBD602FA7761BC33, 0x00003FF9 //Q8
+ data8 0x8CB1CABD6A91913C, 0x0000BFFA //Q9
+ data8 0x84C665C37D623CD2, 0x00003FF7 //Q4
+ data8 0x8DE0D1673DAEA9BC, 0x0000BFF8 //Q5
+ data8 0xF658ADBE2C6E6FCC, 0x00003FF8 //Q6
+
+ data8 0xB56307BE1DD3FFB6, 0x0000BFF9 //Q7
+ data8 0xAAAAAAAAAAAA8000, 0x0000BFFD //Q21
+ data8 0x8000000000000000, 0x00003FFF //Q22
+ data8 0x924924923A9D710C, 0x0000BFFC //Q19
+ data8 0xCCCCCCCCCC9380E7, 0x00003FFC //Q20
+
+ data8 0xA644DC250EFA2800, 0x00003FED //Q0
+ data8 0x83DEAE24EEBF5E44, 0x0000BFF1 //Q1
+ data8 0xC758CCC64793D4EC, 0x00003FF3 //Q2
+ data8 0xBFDC0B54E7C89DCE, 0x0000BFF5 //Q3
+ data8 0x888855199D1290AF, 0x0000BFFB //Q15
+
+ data8 0x9D89D3BE514B0178, 0x00003FFB //Q16
+ data8 0xBA2E8B4DEC70282A, 0x0000BFFB //Q17
+ data8 0xE38E38DF9E9FC83B, 0x00003FFB //Q18
+ data8 0x9F8781CC990029D9, 0x00003FFA //Q10
+ data8 0xB0B39472DEBA3C79, 0x0000BFFA //Q11
+
+ data8 0xC2AFAEF8C85B0BC6, 0x00003FFA //Q12
+ data8 0xD780E539797525DD, 0x0000BFFA //Q13
+ data8 0xF0EDC449AC786DF9, 0x00003FFA //Q14
+ASM_SIZE_DIRECTIVE(double_atan_constants_Q)
+
+
+
+double_atan_constants_P:
+ASM_TYPE_DIRECTIVE(double_atan_constants_P,@object)
+ data8 0xB1899EC590CDB8DF, 0x0000BFFA //P10
+ data8 0xA1E79850A67D59B0, 0x00003FFA //P11
+ data8 0x911D8B30C2A96E6D, 0x0000BFF3 //P20
+ data8 0xB87233C68A640706, 0x00003FF0 //P21
+ data8 0xD78E4B82F3C29D7A, 0x0000BFFA //P8
+
+ data8 0xC2EBE37AF932C14F, 0x00003FFA //P9
+ data8 0xBA2E8B94AA104DD6, 0x0000BFFB //P4
+ data8 0x9D89D7A640B71D38, 0x00003FFB //P5
+ data8 0x88887CA2CE9B2A40, 0x0000BFFB //P6
+ data8 0xF0F017D57A919C1E, 0x00003FFA //P7
+
+ data8 0xD0D635F230C80E06, 0x0000BFF8 //P16
+ data8 0xE847BECA7209B479, 0x00003FF7 //P17
+ data8 0xD14C6A2AAE0D5B07, 0x0000BFF6 //P18
+ data8 0x915F612A5C469117, 0x00003FF5 //P19
+ data8 0x921EDE5FD0DBBBE2, 0x0000BFFA //P12
+
+ data8 0xFFD303C2C8535445, 0x00003FF9 //P13
+ data8 0xD30DF50E295386F7, 0x0000BFF9 //P14
+ data8 0x9E81F2B1BBD210A8, 0x00003FF9 //P15
+ data8 0xAAAAAAAAAAAAA800, 0x0000BFFD //P0
+ data8 0xCCCCCCCCCCC7D476, 0x00003FFC //P1
+
+ data8 0x9249249247838066, 0x0000BFFC //P2
+ data8 0xE38E38E302290D68, 0x00003FFB //P3
+ data8 0xDF7F0A816F7E5025, 0x0000BFEC //P22
+ASM_SIZE_DIRECTIVE(double_atan_constants_P)
+
+
+.align 32
+.global atan#
+
+////////////////////////////////////////////////////////
.section .text
-GLOBAL_LIBM_ENTRY(atan)
+.proc atan#
+.align 32
-{ .mfi
- nop.m 999
- frcpa.s1 atan2_u1_Y,p7 = f1,atan2_Y
- nop.i 999
+atan:
+
+{ .mmf
+(p0) addl atan_GR_AD_P = @ltoff(double_atan_constants_P), gp
+(p0) addl atan_GR_AD_Q = @ltoff(double_atan_constants_Q), gp
+(p0) fmerge.s atan_ABS_f8 = f0,f8
}
-{ .mfi
- addl EXP_AD_P1 = @ltoff(atan2_tb1), gp
- fma.s1 atan2_two = f1,f1,f1
- nop.i 999
;;
+
+{ .mmf
+ ld8 atan_GR_AD_P = [atan_GR_AD_P]
+ ld8 atan_GR_AD_Q = [atan_GR_AD_Q]
+(p0) frcpa.s1 atan_C,p8 = f1,f8
}
+;;
-{ .mfi
- ld8 EXP_AD_P1 = [EXP_AD_P1]
- frcpa.s1 atan2_u1_X,p6 = f1,atan2_X
- nop.i 999
+{ .mmf
+(p0) addl atan_GR_AD_R = @ltoff(double_atan_constants_R), gp
+(p0) addl atan_GR_exp_mask = 0x1ffff, r0
+(p0) fma.s1 atan_Y = f8,f8,f0
}
-{ .mfi
- nop.m 999
- fma.s1 atan2_ysq = atan2_Y,atan2_Y,f0
- nop.i 999
+;;
+
+// This fnorm takes faults or sets fault flags
+{ .mmf
+(p0) mov atan_GR_10172 = 0x10172
+ ld8 atan_GR_AD_R = [atan_GR_AD_R]
+(p0) fnorm atan_NORM_f8 = f8
}
;;
-{ .mfi
- add EXP_AD_P2 = 0xd0,EXP_AD_P1
- fmerge.s atan2_sgnY = atan2_Y,f1
- nop.i 999
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 0 0 0 1 11
+// c 7
+
+// p9 set if we have a NAN or +-0
+
+{ .mmf
+(p0) ldfe atan_Q8 = [atan_GR_AD_Q],16
+(p0) ldfe atan_P10 = [atan_GR_AD_P],16
+(p0) fclass.m.unc p9, p0 = f8, 0xc7
}
;;
+{ .mmi
+(p0) ldfe atan_Q9 = [atan_GR_AD_Q],16
+(p0) ldfe atan_P11 = [atan_GR_AD_P],16
+ nop.i 999
+}
+;;
+
+
+{ .mmf
+(p0) ldfe atan_Q4 = [atan_GR_AD_Q],16
+(p0) ldfe atan_P20 = [atan_GR_AD_P],16
+(p9) fma.d.s0 f8 = f8,f1,f0
+;;
+}
+
+// Exit if we have a NAN or +-0
+{ .mmb
+(p0) ldfe atan_Q5 = [atan_GR_AD_Q],16
+(p0) ldfe atan_P21 = [atan_GR_AD_P],16
+(p9) br.ret.spnt b0
+;;
+}
+
+
+// p6 is TRUE if |x| <= 1
+// p7 is TRUE if |x| > 1
+{ .mmf
+(p0) ldfe atan_Q6 = [atan_GR_AD_Q],16
+(p0) ldfe atan_P8 = [atan_GR_AD_P],16
+(p0) fcmp.le.unc p6,p7 = atan_ABS_f8, f1
+;;
+}
+
+
{ .mfi
- ldfe atan2_P11 = [EXP_AD_P1],16
- fclass.m p10,p0 = atan2_Y, 0xc3 // Test for y=nan
- nop.i 999
+(p0) ldfe atan_Q7 = [atan_GR_AD_Q],16
+(p0) fma.s1 atan_Z = atan_C, atan_C, f0
+ nop.i 999
}
{ .mfi
- ldfe atan2_P21 = [EXP_AD_P2],16
- nop.f 999
- nop.i 999
-;;
+(p0) ldfe atan_P9 = [atan_GR_AD_P],16
+(p0) fnma.s1 atan_B = atan_C,f8, f1
+ nop.i 999 ;;
}
{ .mfi
- ldfe atan2_P10 = [EXP_AD_P1],16
- fnma.s1 atan2_B1Y = atan2_u1_Y, atan2_Y, atan2_two
- nop.i 999
+(p0) ldfe atan_Q21 = [atan_GR_AD_Q],16
+(p0) fma.s1 atan_V12 = atan_Y, atan_Y, f0
+ nop.i 999
}
{ .mfi
- ldfe atan2_P20 = [EXP_AD_P2],16
- fma.s1 atan2_wp_Y = atan2_u1_Y, atan2_u1_Y, f0
- nop.i 999
+(p0) ldfe atan_P4 = [atan_GR_AD_P],16
+(p0) fma.s1 atan_Xcub = f8, atan_Y , f0
+ nop.i 999
+;;
+}
+
+
+{ .mmi
+(p7) ldfe atan_Q22 = [atan_GR_AD_Q],16
+(p6) ldfe atan_P5 = [atan_GR_AD_P],16
+(p6) cmp.eq.unc p8,p0 = r0,r0
+;;
+}
+
+
+{ .mmi
+(p7) ldfe atan_Q19 = [atan_GR_AD_Q],16
+(p6) ldfe atan_P6 = [atan_GR_AD_P],16
+(p7) cmp.eq.unc p9,p0 = r0,r0
+;;
+}
+
+
+{ .mmi
+(p7) ldfe atan_Q20 = [atan_GR_AD_Q],16
+(p6) ldfe atan_P7 = [atan_GR_AD_P],16
+ nop.i 999
;;
}
{ .mfi
- ldfe atan2_P9 = [EXP_AD_P1],16
- fma.s1 atan2_z1_X = atan2_u1_X, atan2_Y, f0
- nop.i 999
+(p7) ldfe atan_Q0 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_V13 = atan_Y, atan_P11, atan_P10
+ nop.i 999
}
{ .mfi
- ldfe atan2_P19 = [EXP_AD_P2],16
- fnma.s1 atan2_B1X = atan2_u1_X, atan2_X, atan2_two
- nop.i 999
+(p6) ldfe atan_P16 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_V11 = atan_Y, atan_Q9, atan_Q8
+ nop.i 999 ;;
}
-;;
+
{ .mfi
- ldfe atan2_P8 = [EXP_AD_P1],16
- fma.s1 atan2_z2_X = atan2_u1_X, atan2_ysq, f0
- nop.i 999
+(p7) ldfe atan_Q1 = [atan_GR_AD_Q],16
+(p7) fma.s1 atan_G12 = atan_B, atan_B, f0
+ nop.i 999
}
-{ .mfb
- ldfe atan2_P18 = [EXP_AD_P2],16
-(p10) fma.d.s0 f8 = atan2_Y,atan2_X,f0 // If y=nan, result quietized y
-(p10) br.ret.spnt b0 // Exit if y=nan
+{ .mfi
+(p6) ldfe atan_P17 = [atan_GR_AD_P],16
+(p0) fma.s1 atan_V9 = atan_V12, atan_V12, f0
+ nop.i 999 ;;
}
-;;
-// p6 true if swap, means |y| > 1.0 or ysq > 1.0
-// p7 true if no swap, means 1.0 >= |y| or 1.0 >= ysq
+
{ .mfi
- ldfe atan2_P7 = [EXP_AD_P1],16
- fcmp.ge.s1 p7,p6 = f1, atan2_ysq
- nop.i 999
+(p7) ldfe atan_Q2 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_W11 = atan_Y, atan_P21, atan_P20
+ nop.i 999
}
-{ .mmf
- ldfe atan2_P17 = [EXP_AD_P2],16
- nop.m 999
- nop.f 999
+{ .mfi
+(p6) ldfe atan_P18 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_V7 = atan_Y, atan_Q5, atan_Q4
+ nop.i 999 ;;
}
-;;
{ .mfi
- ldfe atan2_P6 = [EXP_AD_P1],16
- fma.s1 atan2_E = atan2_u1_Y, atan2_B1Y, atan2_Y
- nop.i 999
+(p7) ldfe atan_Q3 = [atan_GR_AD_Q],16
+(p7) fma.s1 atan_Z1 = atan_Z, atan_Z, f0
+ nop.i 999
}
{ .mfi
- ldfe atan2_P16 = [EXP_AD_P2],16
- fma.s1 atan2_B1sq_Y = atan2_B1Y, atan2_B1Y, f0
- nop.i 999
-;;
+(p6) ldfe atan_P19 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_Y3 = atan_Y , atan_V12, f0
+ nop.i 999 ;;
}
{ .mfi
- ldfe atan2_P5 = [EXP_AD_P1],16
-(p7) fma.s1 atan2_wp_X = atan2_z1_X, atan2_z1_X, f0
- nop.i 999
+(p7) ldfe atan_R8 = [atan_GR_AD_R],16
+(p6) fma.s1 atan_V11 = atan_Y, atan_P9, atan_P8
+ nop.i 999
}
{ .mfi
- ldfe atan2_P15 = [EXP_AD_P2],16
-(p7) fma.s1 atan2_B1sq_X = atan2_B1X, atan2_B1X, f0
- nop.i 999
+(p6) ldfe atan_P12 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_V8 = atan_Y, atan_Q7, atan_Q6
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p7) ldfe atan_R9 = [atan_GR_AD_R],16
+(p6) ldfe atan_P13 = [atan_GR_AD_P],16
+ nop.i 999
;;
}
{ .mfi
- ldfe atan2_P4 = [EXP_AD_P1],16
-(p6) fma.s1 atan2_z = atan2_u1_Y, atan2_B1Y, f0
- nop.i 999
+(p7) ldfe atan_R4 = [atan_GR_AD_R],16
+(p6) fma.s1 atan_V7 = atan_Y, atan_P5, atan_P4
+ nop.i 999
}
{ .mfi
- ldfe atan2_P14 = [EXP_AD_P2],16
-(p7) fma.s1 atan2_E = atan2_z2_X, atan2_B1X, atan2_X
- nop.i 999
-;;
+(p6) ldfe atan_P14 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_W13 = atan_Y, atan_Q22, atan_Q21
+ nop.i 999 ;;
}
{ .mfi
- ldfe atan2_P3 = [EXP_AD_P1],16
- fcmp.eq.s0 p14,p15=atan2_X,atan2_Y // Dummy for denorm and invalid
- nop.i 999
+(p7) ldfe atan_R5 = [atan_GR_AD_R],16
+(p6) fma.s1 atan_Y12 = atan_V9 , atan_V9 , f0
+ nop.i 999
}
-{ .mmf
- ldfe atan2_P13 = [EXP_AD_P2],16
- nop.m 999
-(p7) fma.s1 atan2_z = atan2_z1_X, atan2_B1X, f0
-;;
+{ .mfi
+(p6) ldfe atan_P15 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_Y8 = atan_V9 , atan_V9 , f0
+ nop.i 999 ;;
}
+
{ .mfi
- ldfe atan2_P2 = [EXP_AD_P1],16
-(p6) fma.s1 atan2_w = atan2_wp_Y, atan2_B1sq_Y,f0
- nop.i 999
+(p7) ldfe atan_R6 = [atan_GR_AD_R],16
+(p6) fma.s1 atan_V8 = atan_Y, atan_P7, atan_P6
+ nop.i 999
}
-{ .mlx
- ldfe atan2_P12 = [EXP_AD_P2],16
- movl rsig_near_one = 0x8000000000000001 // signif near 1.0
-;;
+{ .mfi
+(p6) ldfe atan_P0 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_W11 = atan_Y, atan_Q20, atan_Q19
+ nop.i 999 ;;
}
+
{ .mfi
- ldfe atan2_P1 = [EXP_AD_P1],16
- fclass.m p9,p0 = atan2_Y, 0x23 // test if y inf
- nop.i 999
+(p7) ldfe atan_R7 = [atan_GR_AD_R],16
+(p7) fma.s1 atan_Z2 = atan_Z1 , atan_Z1, f0
+ nop.i 999
}
{ .mfi
- ldfe atan2_P22 = [EXP_AD_P2],16
-(p7) fma.s1 atan2_w = atan2_wp_X, atan2_B1sq_X,f0
- nop.i 999
-;;
+(p6) ldfe atan_P1 = [atan_GR_AD_P],16
+(p6) fma.s1 atan_V10 = atan_V12, atan_V13, atan_V11
+ nop.i 999 ;;
}
{ .mfi
- ldfe atan2_P0 = [EXP_AD_P1],16
- frcpa.s1 atan2_F,p0 = f1, atan2_E
- nop.i 999
+(p7) ldfe atan_Q15 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_W7 = atan_Y, atan_P17, atan_P16
+ nop.i 999
}
{ .mfi
- ldfe atan2_pi_by_2 = [EXP_AD_P2],16
-(p6) fnma.s1 atan2_gV = atan2_Y, atan2_z, atan2_X
- nop.i 999
-;;
+(p6) ldfe atan_P2 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_V3 = atan_Y, atan_Q1 , atan_Q0
+ nop.i 999 ;;
}
{ .mfi
- setf.sig atan2_sig_near_one = rsig_near_one
-(p7) fnma.s1 atan2_gV = atan2_X, atan2_z, atan2_Y
- nop.i 999
+(p7) ldfe atan_Q16 = [atan_GR_AD_Q],16
+(p7) fma.s1 atan_G9 = atan_G12, atan_G12, f0
+ nop.i 999
}
-{ .mfb
- nop.m 999
-(p9) fma.d.s0 f8 = atan2_sgnY, atan2_pi_by_2, f0 // +-pi/2 if y inf
-(p9) br.ret.spnt b0 // exit if y inf, result is +-pi/2
-;;
+{ .mfi
+(p6) ldfe atan_P3 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_V6 = atan_V12, atan_V8, atan_V7
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V13 = atan2_w, atan2_P11, atan2_P10
- nop.i 999
+(p7) ldfe atan_R1 = [atan_GR_AD_R],16
+(p6) fma.s1 atan_W8 = atan_Y, atan_P19, atan_P18
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W11 = atan2_w, atan2_P21, atan2_P20
- nop.i 999
-;;
+(p6) ldfe atan_P22 = [atan_GR_AD_P],16
+(p7) fma.s1 atan_V4 = atan_Y, atan_Q3 , atan_Q2
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V11 = atan2_w, atan2_P9, atan2_P8
- nop.i 999
+ getf.exp atan_GR_signexp_f8 = atan_NORM_f8
+(p7) fma.s1 atan_Y11 = atan_Y3 , atan_Y8 , f0
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_V12 = atan2_w, atan2_w, f0
- nop.i 999
-;;
+(p7) ldfe atan_Q17 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_V6 = atan_V12, atan_V8, atan_V7
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V8 = atan2_w, atan2_P7 , atan2_P6
- nop.i 999
+(p7) ldfe atan_Q18 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_W3 = atan_Y, atan_P13, atan_P12
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W8 = atan2_w, atan2_P19, atan2_P18
- nop.i 999
-;;
+(p7) ldfe atan_R10 = [atan_GR_AD_R],16
+(p7) fma.s1 atan_G11 = atan_B, atan_R9 , atan_R8
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fnma.s1 atan2_alpha = atan2_E, atan2_F, f1
- nop.i 999
+(p7) ldfe atan_Q10 = [atan_GR_AD_Q],16
+(p7) fma.s1 atan_Z3 = atan_Z1 , atan_Z2 , f0
+(p0) and atan_GR_exp_f8 = atan_GR_signexp_f8,atan_GR_exp_mask
}
{ .mfi
- nop.m 999
- fnma.s1 atan2_alpha_1 = atan2_E, atan2_F, atan2_two
- nop.i 999
-;;
+(p7) ldfe atan_R2 = [atan_GR_AD_R],16
+(p7) fma.s1 atan_Z4 = atan_Z2 , atan_Z2 , f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 atan2_V7 = atan2_w, atan2_P5 , atan2_P4
- nop.i 999
+(p7) ldfe atan_Q11 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_W4 = atan_Y, atan_P15, atan_P14
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W7 = atan2_w, atan2_P17, atan2_P16
- nop.i 999
+(p7) ldfe atan_R3 = [atan_GR_AD_R],16
+(p7) fma.s1 atan_G7 = atan_B, atan_R5 , atan_R4
+(p0) cmp.le.unc p11,p0 = atan_GR_10172,atan_GR_exp_f8
+;;
+}
+
+
+{ .mmf
+(p9) ldfe atan_Q12 = [atan_GR_AD_Q],16
+(p0) ldfe atan_S_PI = [atan_GR_AD_R],16
+(p8) fma.s1 atan_W6 = atan_V12, atan_W8, atan_W7
;;
}
+
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V4 = atan2_w, atan2_P3 , atan2_P2
- nop.i 999
+(p9) ldfe atan_Q13 = [atan_GR_AD_Q],16
+(p8) fma.s1 atan_V3 = atan_Y, atan_P1 , atan_P0
+(p11) cmp.ne.and p6,p7 = r0,r0
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W4 = atan2_w, atan2_P15, atan2_P14
- nop.i 999
-;;
+ nop.m 999
+(p8) fma.s1 atan_V5 = atan_V9 , atan_V10, atan_V6
+ nop.i 999 ;;
}
+
+.pred.rel "mutex",p6,p7,p11
{ .mfi
- nop.m 999
- fma.s1 atan2_V3 = atan2_w, atan2_P1 , atan2_P0
- nop.i 999
+(p7) ldfe atan_Q14 = [atan_GR_AD_Q],16
+(p6) fma.s1 atan_Y12 = atan_V9 , atan_Y12, f0
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W3 = atan2_w, atan2_P13, atan2_P12
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_G8 = atan_B, atan_R7 , atan_R6
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V10 = atan2_V12, atan2_V13, atan2_V11
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_V4 = atan_Y, atan_P3 , atan_P2
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_gVF = atan2_gV, atan2_F, f0
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_W7 = atan_Y, atan_Q16, atan_Q15
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_alpha_sq = atan2_alpha, atan2_alpha, f0
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_W10 = atan_V12, atan_P22, atan_W11
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_Cp = atan2_alpha, atan2_alpha_1, f1
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_G3 = atan_B, atan_R1 , f1
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V9 = atan2_V12, atan2_V12, f0
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_W2 = atan_V12, atan_W4 , atan_W3
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W10 = atan2_V12, atan2_P22 , atan2_W11
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_V2 = atan_V12, atan_V4 , atan_V3
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 atan2_V6 = atan2_V12, atan2_V8 , atan2_V7
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_W8 = atan_Y, atan_Q18, atan_Q17
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W6 = atan2_V12, atan2_W8 , atan2_W7
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_G10 = atan_G12, atan_R10, atan_G11
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 atan2_V2 = atan2_V12, atan2_V4 , atan2_V3
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_V10 = atan_V12, atan_Q10, atan_V11
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W2 = atan2_V12, atan2_W4 , atan2_W3
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_G6 = atan_G12, atan_G8 , atan_G7
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_alpha_cub = atan2_alpha, atan2_alpha_sq, f0
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_V2 = atan_V12, atan_V4, atan_V3
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_C = atan2_gVF, atan2_Cp, f0
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_G4 = atan_B , atan_R3 , atan_R2
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_W12 = atan2_V9, atan2_V9, f0
- nop.i 999
-;;
+ nop.m 999
+(p6) fma.s1 atan_W5 = atan_V9 , atan_W10, atan_W6
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p7) fma.s1 atan_W3 = atan_Y , atan_Q12, atan_Q11
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V5 = atan2_V9, atan2_V10, atan2_V6
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_Z5 = atan_Z3 , atan_Z4 , f0
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W5 = atan2_V9, atan2_W10, atan2_W6
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_W10 = atan_V12, atan_W13, atan_W11
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fclass.m p8,p0 = atan2_Y, 0x07 // Test for y=0
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_W4 = atan_Y , atan_Q14, atan_Q13
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_d = atan2_alpha_cub, atan2_C, atan2_C
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_W6 = atan_V12, atan_W8, atan_W7
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 999
- fma.s1 atan2_W12 = atan2_V9, atan2_W12, f0
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_V5 = atan_V9 , atan_V10, atan_V6
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p7) fma.s1 atan_G5 = atan_G9 , atan_G10, atan_G6
+ nop.i 999 ;;
}
-;;
+
{ .mfi
- nop.m 999
- fma.s1 atan2_V1 = atan2_V9, atan2_V5, atan2_V2
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_V1 = atan_V9 , atan_V5 , atan_V2
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_W1 = atan2_V9, atan2_W5, atan2_W2
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_G2 = atan_G12, atan_G4 , atan_G3
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
-(p8) fmerge.s f8 = atan2_sgnY, f0 // +-0 if y=0
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_W1 = atan_V9 , atan_W5 , atan_W2
+ nop.i 999
}
-{ .mfb
- nop.m 999
- fma.s1 atan2_zcub = atan2_z, atan2_w, f0
-(p8) br.ret.spnt b0 // Exit if y=0
-;;
+{ .mfi
+ nop.m 999
+(p7) fma.s1 atan_Z6 = atan_Z4 , atan_C , f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 atan2_pd = atan2_P0, atan2_d, f0
- nop.i 999
+ nop.m 999
+(p0) fmerge.s atan_S_PI = f8, atan_S_PI
+ nop.i 999 ;;
}
+
+
{ .mfi
- nop.m 999
- fma.s1 atan2_dsq = atan2_d, atan2_d, f0
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_W5 = atan_V9 , atan_W10, atan_W6
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p7) fma.s1 atan_W2 = atan_V12, atan_W4 , atan_W3
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmerge.se atan2_near_one = f1, atan2_sig_near_one // Const ~1.0
- nop.i 999
+ nop.m 999
+(p7) fma.s1 atan_G1 = atan_G9 , atan_G5 , atan_G2
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_Pp = atan2_W12, atan2_W1, atan2_V1
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_V1 = atan_V9 , atan_V5 , atan_V2
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 atan2_sgn_pi_by_2 = atan2_pi_by_2, atan2_sgnY, f0
- nop.i 999
+ nop.m 999
+(p6) fma.s1 atan_P = atan_Y12, atan_W1 , atan_V1
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 atan2_A_lo = atan2_pd, atan2_dsq, atan2_d
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_Z7 = atan_Z5 , atan_Z6 , f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 atan2_A_hi = atan2_zcub, atan2_Pp, atan2_z
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_W1 = atan_V9 , atan_W5 , atan_W2
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p6) fma.s1 atan2_A = atan2_A_hi, f1, atan2_A_lo
- nop.i 999
+ nop.m 999
+(p11) fma.d.s0 f8 = atan_S_PI,f1,f0
+ nop.i 999
}
-// For |Y| <= |X| and X > 0, result is A_hi + A_lo
{ .mfi
- nop.m 999
-(p7) fma.d.s0 f8 = atan2_A_hi, f1, atan2_A_lo
- nop.i 999
-;;
+ nop.m 999
+(p7) fma.s1 atan_Z = atan_G1 , atan_Z7 , f0
+ nop.i 999 ;;
+}
+
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 atan_Q = atan_Y11, atan_W1 , atan_V1
+ nop.i 999 ;;
}
-// For |Y| > |X|, result is +- pi/2 - (A_hi + A_lo)
-// We perturb A by multiplying by 1.0+1ulp as we produce the result
-// in order to get symmetrically rounded results in directed rounding modes.
-// If we don't do this, there are a few cases where the trailing 11 bits of
-// the significand of the result, before converting to double, are zero. These
-// cases do not round symmetrically in round to +infinity or round to -infinity.
+
+{ .mfi
+ nop.m 999
+(p6) fma.d.s0 f8 = atan_P , atan_Xcub , f8
+ nop.i 999
+}
{ .mfb
- nop.m 999
-(p6) fnma.d.s0 f8 = atan2_A, atan2_near_one, atan2_sgn_pi_by_2
- br.ret.sptk b0
-;;
+ nop.m 999
+(p7) fnma.d.s0 f8 = atan_Z , atan_Q , atan_S_PI
+(p0) br.ret.sptk b0 ;;
}
-GLOBAL_LIBM_END(atan)
+.endp atan
+ASM_SIZE_DIRECTIVE(atan)
diff --git a/sysdeps/ia64/fpu/s_atanf.S b/sysdeps/ia64/fpu/s_atanf.S
index 4da68c7f08..b0a68737aa 100644
--- a/sysdeps/ia64/fpu/s_atanf.S
+++ b/sysdeps/ia64/fpu/s_atanf.S
@@ -1,10 +1,12 @@
.file "atanf.s"
+// THIS IS NOT OPTIMIZED AND NOT OFFICIAL
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +22,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,18 +37,16 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
// History
//==============================================================
-// 02/20/00 Initial version
-// 08/17/00 Changed predicate register macro-usage to direct predicate
+// ?/??/00 Initial revision
+// 8/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
-// 02/06/02 Corrected .section statement
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align;
-// added missing bundling
+
+#include "libm_support.h"
//
// Assembly macros
@@ -140,11 +140,16 @@ atanf_answer = f8
//atanf_pred_GT1 = p7
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(atanf_coeff_1_table)
+atanf_coeff_1_table:
+ASM_TYPE_DIRECTIVE(atanf_coeff_1_table,@object)
data8 0x40c4c241be751ff2 // r4
data8 0x40e9f300c2f3070b // r5
data8 0x409babffef772075 // r3
@@ -159,11 +164,12 @@ data8 0xbfc2473c5145ee38 // p3
data8 0x3fbc4f512b1865f5 // p4
data8 0x3fc9997e7afbff4e // p2
data8 0x3ff921fb54442d18 // pi/2
-LOCAL_OBJECT_END(atanf_coeff_1_table)
+ASM_SIZE_DIRECTIVE(atanf_coeff_1_table)
-LOCAL_OBJECT_START(atanf_coeff_2_table)
+atanf_coeff_2_table:
+ASM_TYPE_DIRECTIVE(atanf_coeff_2_table,@object)
data8 0x4035000000004284 // r1
data8 0x406cdffff336a59b // r2
data8 0x3fbc4f512b1865f5 // p4 = q6
@@ -176,12 +182,18 @@ data8 0xbfa6e10ba401393f // p7
data8 0x3f97105b4160f86b // p8
data8 0xbf7deaadaa336451 // p9
data8 0x3f522e5d33bc9baa // p10
-LOCAL_OBJECT_END(atanf_coeff_2_table)
+ASM_SIZE_DIRECTIVE(atanf_coeff_2_table)
+
+
+
+.global atanf
+.text
+.proc atanf
+.align 32
+atanf:
-.section .text
-GLOBAL_LIBM_ENTRY(atanf)
{ .mfi
alloc r32 = ar.pfs,1,2,0,0
@@ -313,7 +325,7 @@ GLOBAL_LIBM_ENTRY(atanf)
{ .mfb
nop.m 999
fma.s1 atanf_x5 = atanf_t,atanf_xcub,f0
-(p8) br.cond.spnt ATANF_X_INF_NAN_ZERO
+(p8) br.cond.spnt L(ATANF_X_INF_NAN_ZERO)
}
;;
@@ -475,7 +487,7 @@ GLOBAL_LIBM_ENTRY(atanf)
{ .mfi
nop.m 999
- fma.s0 atanf_sgnx_piby2 = atanf_sgn_x,atanf_piby2,f0
+ fma atanf_sgnx_piby2 = atanf_sgn_x,atanf_piby2,f0
nop.i 999
}
{ .mfi
@@ -518,39 +530,27 @@ GLOBAL_LIBM_ENTRY(atanf)
{ .mfi
nop.m 999
//(atanf_pred_GT1) fnma.s atanf_answer = atanf_poly_q,atanf_z21_poly_r,atanf_sgnx_piby2
-(p7) fnma.s.s0 atanf_answer = atanf_poly_q,atanf_z21_poly_r,atanf_sgnx_piby2
+(p7) fnma.s atanf_answer = atanf_poly_q,atanf_z21_poly_r,atanf_sgnx_piby2
nop.i 999;;
}
{ .mfb
nop.m 999
//(atanf_pred_LE1) fma.s atanf_answer = atanf_x11,atanf_poly_p1,atanf_poly_p4
-(p6) fma.s.s0 atanf_answer = atanf_x11,atanf_poly_p1,atanf_poly_p4
+(p6) fma.s atanf_answer = atanf_x11,atanf_poly_p1,atanf_poly_p4
br.ret.sptk b0
}
-ATANF_X_INF_NAN_ZERO:
+L(ATANF_X_INF_NAN_ZERO):
-{ .mfi
- nop.m 0
- fclass.m p8,p9 = f8,0x23 // @inf
- nop.i 0
-}
+ fclass.m p8,p9 = f8,0x23 // @inf
;;
-{ .mfi
- nop.m 0
(p8) fmerge.s f8 = f8, atanf_piby2
- nop.i 0
-}
;;
-{ .mfb
- nop.m 0
- fnorm.s.s0 f8 = f8
+ fnorm.s f8 = f8
br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(atanf)
+.endp atanf
+ASM_SIZE_DIRECTIVE(atanf)
diff --git a/sysdeps/ia64/fpu/s_atanl.S b/sysdeps/ia64/fpu/s_atanl.S
index 1a23611307..28d44c1850 100644
--- a/sysdeps/ia64/fpu/s_atanl.S
+++ b/sysdeps/ia64/fpu/s_atanl.S
@@ -1,10 +1,10 @@
.file "atanl.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,53 +35,41 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
//
-//*********************************************************************
+// *********************************************************************
//
// History
-// 02/02/00 (hand-optimized)
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 (hand-optimized)
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 03/13/01 Fixed flags when denormal raised on intermediate result
-// 01/08/02 Improved speed.
-// 02/06/02 Corrected .section statement
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 03/31/05 Reformatted delimiters between data tables
//
-//*********************************************************************
+// *********************************************************************
//
// Function: atanl(x) = inverse tangent(x), for double extended x values
-// Function: atan2l(y,x) = atan(y/x), for double extended y, x values
-//
-// API
-//
-// long double atanl (long double x)
-// long double atan2l (long double y, long double x)
+// Function: atan2l(y,x) = atan(y/x), for double extended x values
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
-// f9 (Input for atan2l)
-// f10-f15, f32-f83
+// f9-f15
+// f32-f79
//
// General Purpose Registers:
-// r32-r51
-// r49-r52 (Arguments to error support for 0,0 case)
+// r32-r48
+// r49,r50,r51,r52 (Arguments to error support for 0,0 case)
//
// Predicate Registers: p6-p15
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
-// Denormal fault raised on denormal inputs
+// Denormal fault raised on denormal inputs
// Underflow exceptions may occur
// Special error handling for the y=0 and x=0 case
// Inexact raised when appropriate by algorithm
@@ -104,7 +92,7 @@
// atan2l(+/-Inf, Inf) = +/-pi/4
// atan2l(+/-Inf, -Inf) = +/-3pi/4
//
-//*********************************************************************
+// *********************************************************************
//
// Mathematical Description
// ---------------------------
@@ -120,16 +108,16 @@
//
//
// (Arg_X, Arg_Y) x
-// \
-// \
-// \
-// \
+// \
+// \
+// \
+// \
// \ angle between is ATANL(Arg_Y,Arg_X)
-// \
+// \
// ------------------> X-axis
// Origin
@@ -244,14 +232,14 @@
// z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1
//
// then
-// / \
+// / \
// | (V/U) - z_hi |
// arctan(V/U) = arctan(z_hi) + acrtan| -------------- |
// | 1 + (V/U)*z_hi |
// \ /
//
-// / \
+// / \
// | V - z_hi*U |
// = arctan(z_hi) + acrtan| -------------- |
@@ -307,7 +295,7 @@
// U := max( |Arg_X|, |Arg_Y| )
// V := min( |Arg_X|, |Arg_Y| )
//
-// execute: frcpa E, pred, V, U
+// execute: frcap E, pred, V, U
// If pred is 0, go to Step 5 for special cases handling.
//
// Step 2. Decide on branch.
@@ -411,7 +399,7 @@
//
// z := V * E ...z approximates V/U to roughly working precision
// zsq := z * z
-// z4 := zsq * zsq; z8 := z4 * z4
+// z8 := zsq * zsq; z8 := z8 * z8
//
// poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
// poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))
@@ -450,11 +438,12 @@
//
// Step 5. Special Cases
//
-// These are detected early in the function by fclass instructions.
+// If pred is 0 where pred is obtained in
+// frcap E, pred, V, U
//
-// We are in one of those special cases when X or Y is 0,+-inf or NaN
+// we are in one of those special cases of 0,+-inf or NaN
//
-// If one of X and Y is NaN, return X+Y (which will generate
+// If one of U and V is NaN, return U+V (which will generate
// invalid in case one is a signaling NaN). Otherwise,
// return the Result as described in the table
//
@@ -480,6 +469,8 @@
//
//
+#include "libm_support.h"
+
ArgY_orig = f8
Result = f8
FR_RESULT = f8
@@ -513,7 +504,6 @@ Res_hi = f49
Res_lo = f50
Z = f52
zsq = f53
-z4 = f54
z8 = f54
poly1 = f55
poly2 = f56
@@ -531,8 +521,8 @@ P_5 = f67
P_6 = f68
P_7 = f69
P_8 = f70
-U_hold = f71
-TWO_TO_NEG3 = f72
+TWO_TO_NEG3 = f71
+U_hold = f72
C_hi_hold = f73
E_hold = f74
M = f75
@@ -540,11 +530,6 @@ ArgX_abs = f76
ArgY_abs = f77
Result_lo = f78
A_temp = f79
-FR_temp = f80
-Xsq = f81
-Ysq = f82
-tmp_small = f83
-
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
@@ -560,1401 +545,1415 @@ exp_ArgY = r44
exponent_Q = r45
significand_Q = r46
special = r47
-sp_exp_Q = r48
-sp_exp_4sig_Q = r49
-table_base = r50
-int_temp = r51
-
+special1 = r48
GR_Parameter_X = r49
GR_Parameter_Y = r50
GR_Parameter_RESULT = r51
GR_Parameter_TAG = r52
-GR_temp = r52
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(Constants_atan)
-// double pi/2
-data8 0x3FF921FB54442D18
-// single lo_pi/2, two**(-3)
-data4 0x248D3132, 0x3E000000
-data8 0xAAAAAAAAAAAAAAA3, 0xBFFD // P_1
-data8 0xCCCCCCCCCCCC54B2, 0x3FFC // P_2
-data8 0x9249249247E4D0C2, 0xBFFC // P_3
-data8 0xE38E38E058870889, 0x3FFB // P_4
-data8 0xBA2E895B290149F8, 0xBFFB // P_5
-data8 0x9D88E6D4250F733D, 0x3FFB // P_6
-data8 0x884E51FFFB8745A0, 0xBFFB // P_7
-data8 0xE1C7412B394396BD, 0x3FFA // P_8
-data8 0xAAAAAAAAAAAAA52F, 0xBFFD // Q_1
-data8 0xCCCCCCCCC75B60D3, 0x3FFC // Q_2
-data8 0x924923AD011F1940, 0xBFFC // Q_3
-data8 0xE36F716D2A5F89BD, 0x3FFB // Q_4
+int_temp = r52
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+.align 64
+
+Constants_atan:
+ASM_TYPE_DIRECTIVE(Constants_atan,@object)
+data4 0x54442D18, 0x3FF921FB, 0x248D3132, 0x3E000000
+// double pi/2, single lo_pi/2, two**(-3)
+data4 0xAAAAAAA3, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // P_1
+data4 0xCCCC54B2, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // P_2
+data4 0x47E4D0C2, 0x92492492, 0x0000BFFC, 0x00000000 // P_3
+data4 0x58870889, 0xE38E38E0, 0x00003FFB, 0x00000000 // P_4
+data4 0x290149F8, 0xBA2E895B, 0x0000BFFB, 0x00000000 // P_5
+data4 0x250F733D, 0x9D88E6D4, 0x00003FFB, 0x00000000 // P_6
+data4 0xFB8745A0, 0x884E51FF, 0x0000BFFB, 0x00000000 // P_7
+data4 0x394396BD, 0xE1C7412B, 0x00003FFA, 0x00000000 // P_8
+data4 0xAAAAA52F, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // Q_1
+data4 0xC75B60D3, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // Q_2
+data4 0x011F1940, 0x924923AD, 0x0000BFFC, 0x00000000 // Q_3
+data4 0x2A5F89BD, 0xE36F716D, 0x00003FFB, 0x00000000 // Q_4
//
// Entries Tbl_hi (double precision)
// B = 1+Index/16+1/32 Index = 0
// Entries Tbl_lo (single precision)
// B = 1+Index/16+1/32 Index = 0
//
-data8 0x3FE9A000A935BD8E
-data4 0x23ACA08F, 0x00000000
+data4 0xA935BD8E, 0x3FE9A000, 0x23ACA08F, 0x00000000
//
// Entries Tbl_hi (double precision) Index = 0,1,...,15
// B = 2^(-1)*(1+Index/16+1/32)
// Entries Tbl_lo (single precision)
// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32)
//
-data8 0x3FDE77EB7F175A34
-data4 0x238729EE, 0x00000000
-data8 0x3FE0039C73C1A40B
-data4 0x249334DB, 0x00000000
-data8 0x3FE0C6145B5B43DA
-data4 0x22CBA7D1, 0x00000000
-data8 0x3FE1835A88BE7C13
-data4 0x246310E7, 0x00000000
-data8 0x3FE23B71E2CC9E6A
-data4 0x236210E5, 0x00000000
-data8 0x3FE2EE628406CBCA
-data4 0x2462EAF5, 0x00000000
-data8 0x3FE39C391CD41719
-data4 0x24B73EF3, 0x00000000
-data8 0x3FE445065B795B55
-data4 0x24C11260, 0x00000000
-data8 0x3FE4E8DE5BB6EC04
-data4 0x242519EE, 0x00000000
-data8 0x3FE587D81F732FBA
-data4 0x24D4346C, 0x00000000
-data8 0x3FE6220D115D7B8D
-data4 0x24ED487B, 0x00000000
-data8 0x3FE6B798920B3D98
-data4 0x2495FF1E, 0x00000000
-data8 0x3FE748978FBA8E0F
-data4 0x223D9531, 0x00000000
-data8 0x3FE7D528289FA093
-data4 0x242B0411, 0x00000000
-data8 0x3FE85D69576CC2C5
-data4 0x2335B374, 0x00000000
-data8 0x3FE8E17AA99CC05D
-data4 0x24C27CFB, 0x00000000
+data4 0x7F175A34, 0x3FDE77EB, 0x238729EE, 0x00000000
+data4 0x73C1A40B, 0x3FE0039C, 0x249334DB, 0x00000000
+data4 0x5B5B43DA, 0x3FE0C614, 0x22CBA7D1, 0x00000000
+data4 0x88BE7C13, 0x3FE1835A, 0x246310E7, 0x00000000
+data4 0xE2CC9E6A, 0x3FE23B71, 0x236210E5, 0x00000000
+data4 0x8406CBCA, 0x3FE2EE62, 0x2462EAF5, 0x00000000
+data4 0x1CD41719, 0x3FE39C39, 0x24B73EF3, 0x00000000
+data4 0x5B795B55, 0x3FE44506, 0x24C11260, 0x00000000
+data4 0x5BB6EC04, 0x3FE4E8DE, 0x242519EE, 0x00000000
+data4 0x1F732FBA, 0x3FE587D8, 0x24D4346C, 0x00000000
+data4 0x115D7B8D, 0x3FE6220D, 0x24ED487B, 0x00000000
+data4 0x920B3D98, 0x3FE6B798, 0x2495FF1E, 0x00000000
+data4 0x8FBA8E0F, 0x3FE74897, 0x223D9531, 0x00000000
+data4 0x289FA093, 0x3FE7D528, 0x242B0411, 0x00000000
+data4 0x576CC2C5, 0x3FE85D69, 0x2335B374, 0x00000000
+data4 0xA99CC05D, 0x3FE8E17A, 0x24C27CFB, 0x00000000
//
// Entries Tbl_hi (double precision) Index = 0,1,...,15
// B = 2^(-2)*(1+Index/16+1/32)
// Entries Tbl_lo (single precision)
// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32)
//
-data8 0x3FD025FA510665B5
-data4 0x24263482, 0x00000000
-data8 0x3FD1151A362431C9
-data4 0x242C8DC9, 0x00000000
-data8 0x3FD2025567E47C95
-data4 0x245CF9BA, 0x00000000
-data8 0x3FD2ED987A823CFE
-data4 0x235C892C, 0x00000000
-data8 0x3FD3D6D129271134
-data4 0x2389BE52, 0x00000000
-data8 0x3FD4BDEE586890E6
-data4 0x24436471, 0x00000000
-data8 0x3FD5A2E0175E0F4E
-data4 0x2389DBD4, 0x00000000
-data8 0x3FD685979F5FA6FD
-data4 0x2476D43F, 0x00000000
-data8 0x3FD7660752817501
-data4 0x24711774, 0x00000000
-data8 0x3FD84422B8DF95D7
-data4 0x23EBB501, 0x00000000
-data8 0x3FD91FDE7CD0C662
-data4 0x23883A0C, 0x00000000
-data8 0x3FD9F93066168001
-data4 0x240DF63F, 0x00000000
-data8 0x3FDAD00F5422058B
-data4 0x23FE261A, 0x00000000
-data8 0x3FDBA473378624A5
-data4 0x23A8CD0E, 0x00000000
-data8 0x3FDC76550AAD71F8
-data4 0x2422D1D0, 0x00000000
-data8 0x3FDD45AEC9EC862B
-data4 0x2344A109, 0x00000000
+data4 0x510665B5, 0x3FD025FA, 0x24263482, 0x00000000
+data4 0x362431C9, 0x3FD1151A, 0x242C8DC9, 0x00000000
+data4 0x67E47C95, 0x3FD20255, 0x245CF9BA, 0x00000000
+data4 0x7A823CFE, 0x3FD2ED98, 0x235C892C, 0x00000000
+data4 0x29271134, 0x3FD3D6D1, 0x2389BE52, 0x00000000
+data4 0x586890E6, 0x3FD4BDEE, 0x24436471, 0x00000000
+data4 0x175E0F4E, 0x3FD5A2E0, 0x2389DBD4, 0x00000000
+data4 0x9F5FA6FD, 0x3FD68597, 0x2476D43F, 0x00000000
+data4 0x52817501, 0x3FD76607, 0x24711774, 0x00000000
+data4 0xB8DF95D7, 0x3FD84422, 0x23EBB501, 0x00000000
+data4 0x7CD0C662, 0x3FD91FDE, 0x23883A0C, 0x00000000
+data4 0x66168001, 0x3FD9F930, 0x240DF63F, 0x00000000
+data4 0x5422058B, 0x3FDAD00F, 0x23FE261A, 0x00000000
+data4 0x378624A5, 0x3FDBA473, 0x23A8CD0E, 0x00000000
+data4 0x0AAD71F8, 0x3FDC7655, 0x2422D1D0, 0x00000000
+data4 0xC9EC862B, 0x3FDD45AE, 0x2344A109, 0x00000000
//
// Entries Tbl_hi (double precision) Index = 0,1,...,15
// B = 2^(-3)*(1+Index/16+1/32)
// Entries Tbl_lo (single precision)
// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32)
//
-data8 0x3FC068D584212B3D
-data4 0x239874B6, 0x00000000
-data8 0x3FC1646541060850
-data4 0x2335E774, 0x00000000
-data8 0x3FC25F6E171A535C
-data4 0x233E36BE, 0x00000000
-data8 0x3FC359E8EDEB99A3
-data4 0x239680A3, 0x00000000
-data8 0x3FC453CEC6092A9E
-data4 0x230FB29E, 0x00000000
-data8 0x3FC54D18BA11570A
-data4 0x230C1418, 0x00000000
-data8 0x3FC645BFFFB3AA73
-data4 0x23F0564A, 0x00000000
-data8 0x3FC73DBDE8A7D201
-data4 0x23D4A5E1, 0x00000000
-data8 0x3FC8350BE398EBC7
-data4 0x23D4ADDA, 0x00000000
-data8 0x3FC92BA37D050271
-data4 0x23BCB085, 0x00000000
-data8 0x3FCA217E601081A5
-data4 0x23BC841D, 0x00000000
-data8 0x3FCB1696574D780B
-data4 0x23CF4A8E, 0x00000000
-data8 0x3FCC0AE54D768466
-data4 0x23BECC90, 0x00000000
-data8 0x3FCCFE654E1D5395
-data4 0x2323DCD2, 0x00000000
-data8 0x3FCDF110864C9D9D
-data4 0x23F53F3A, 0x00000000
-data8 0x3FCEE2E1451D980C
-data4 0x23CCB11F, 0x00000000
-//
-data8 0x400921FB54442D18, 0x3CA1A62633145C07 // PI two doubles
-data8 0x3FF921FB54442D18, 0x3C91A62633145C07 // PI_by_2 two dbles
-data8 0x3FE921FB54442D18, 0x3C81A62633145C07 // PI_by_4 two dbles
-data8 0x4002D97C7F3321D2, 0x3C9A79394C9E8A0A // 3PI_by_4 two dbles
-LOCAL_OBJECT_END(Constants_atan)
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(atanl)
-
-// Use common code with atan2l after setting x=1.0
-{ .mfi
- alloc r32 = ar.pfs, 0, 17, 4, 0
- fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
- nop.i 999
-}
-{ .mfi
- addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
- fma.s1 Xsq = f1, f1, f0 // Form x*x
- nop.i 999
-}
-;;
-
+data4 0x84212B3D, 0x3FC068D5, 0x239874B6, 0x00000000
+data4 0x41060850, 0x3FC16465, 0x2335E774, 0x00000000
+data4 0x171A535C, 0x3FC25F6E, 0x233E36BE, 0x00000000
+data4 0xEDEB99A3, 0x3FC359E8, 0x239680A3, 0x00000000
+data4 0xC6092A9E, 0x3FC453CE, 0x230FB29E, 0x00000000
+data4 0xBA11570A, 0x3FC54D18, 0x230C1418, 0x00000000
+data4 0xFFB3AA73, 0x3FC645BF, 0x23F0564A, 0x00000000
+data4 0xE8A7D201, 0x3FC73DBD, 0x23D4A5E1, 0x00000000
+data4 0xE398EBC7, 0x3FC8350B, 0x23D4ADDA, 0x00000000
+data4 0x7D050271, 0x3FC92BA3, 0x23BCB085, 0x00000000
+data4 0x601081A5, 0x3FCA217E, 0x23BC841D, 0x00000000
+data4 0x574D780B, 0x3FCB1696, 0x23CF4A8E, 0x00000000
+data4 0x4D768466, 0x3FCC0AE5, 0x23BECC90, 0x00000000
+data4 0x4E1D5395, 0x3FCCFE65, 0x2323DCD2, 0x00000000
+data4 0x864C9D9D, 0x3FCDF110, 0x23F53F3A, 0x00000000
+data4 0x451D980C, 0x3FCEE2E1, 0x23CCB11F, 0x00000000
+
+data4 0x54442D18, 0x400921FB, 0x33145C07, 0x3CA1A626 // PI two doubles
+data4 0x54442D18, 0x3FF921FB, 0x33145C07, 0x3C91A626 // PI_by_2 two dbles
+data4 0x54442D18, 0x3FE921FB, 0x33145C07, 0x3C81A626 // PI_by_4 two dbles
+data4 0x7F3321D2, 0x4002D97C, 0x4C9E8A0A, 0x3C9A7939 // 3PI_by_4 two dbles
+ASM_SIZE_DIRECTIVE(Constants_atan)
+
+
+.text
+.proc atanl#
+.global atanl#
+.align 64
+
+atanl:
+{ .mfb
+ nop.m 999
+(p0) mov ArgX_orig = f1
+(p0) br.cond.sptk atan2l ;;
+}
+.endp atanl
+ASM_SIZE_DIRECTIVE(atanl)
+
+.text
+.proc atan2l#
+.global atan2l#
+#ifdef _LIBC
+.proc __atan2l#
+.global __atan2l#
+.proc __ieee754_atan2l#
+.global __ieee754_atan2l#
+#endif
+.align 64
+
+
+atan2l:
+#ifdef _LIBC
+__atan2l:
+__ieee754_atan2l:
+#endif
+{ .mfi
+alloc r32 = ar.pfs, 0, 17 , 4, 0
+(p0) mov ArgY = ArgY_orig
+}
+{ .mfi
+ nop.m 999
+(p0) mov ArgX = ArgX_orig
+ nop.i 999
+};;
{ .mfi
- ld8 table_ptr1 = [table_ptr1] // Get table pointer
- fnorm.s1 ArgY = ArgY_orig
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p7,p0 = ArgY_orig, 0x103
+ nop.i 999
}
{ .mfi
- nop.m 999
- fnorm.s1 ArgX = f1
- nop.i 999
-}
-;;
-
+ nop.m 999
+//
+//
+// Save original input args and load table ptr.
+//
+(p0) fclass.m.unc p6,p0 = ArgX_orig, 0x103
+ nop.i 999
+};;
{ .mfi
- getf.exp sign_X = f1 // Get signexp of x
- fmerge.s ArgX_abs = f0, f1 // Form |x|
- nop.i 999
+(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp
+(p0) fclass.m.unc p0,p9 = ArgY_orig, 0x1FF
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fnorm.s1 ArgX_orig = f1
- nop.i 999
+ ld8 table_ptr1 = [table_ptr1]
+(p0) fclass.m.unc p0,p8 = ArgX_orig, 0x1FF
+ nop.i 999
}
-;;
-
{ .mfi
- getf.exp sign_Y = ArgY_orig // Get signexp of y
- fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
- mov table_base = table_ptr1 // Save base pointer to tables
+ nop.m 999
+(p0) fclass.m.unc p13,p0 = ArgY_orig, 0x0C3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
- fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
- nop.i 999
+(p0) fclass.m.unc p12,p0 = ArgX_orig, 0x0C3
+ nop.i 999
}
-;;
-{ .mfi
- ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
- nop.f 999
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fma.s1 M = f1, f1, f0 // Set M = 1.0
- nop.i 999
-}
-;;
//
+// Check for NatVals.
// Check for everything - if false, then must be pseudo-zero
// or pseudo-nan (IA unsupporteds).
//
-{ .mfb
- nop.m 999
- fclass.m p0,p12 = f1, 0x1FF // Test x unsupported
-(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(ATANL_NATVAL) ;;
}
-;;
-// U = max(ArgX_abs,ArgY_abs)
-// V = min(ArgX_abs,ArgY_abs)
-{ .mfi
- nop.m 999
- fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
- nop.i 999
+{ .mib
+ nop.m 999
+ nop.i 999
+(p7) br.cond.spnt L(ATANL_NATVAL) ;;
}
-{ .mfb
- nop.m 999
- fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
- br.cond.sptk ATANL_COMMON // Branch to common code
+{ .mib
+(p0) ldfd P_hi = [table_ptr1],8
+ nop.i 999
+(p8) br.cond.spnt L(ATANL_UNSUPPORTED) ;;
}
-;;
-
-GLOBAL_IEEE754_END(atanl)
-
-GLOBAL_IEEE754_ENTRY(atan2l)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 17, 4, 0
- fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
- nop.i 999
+{ .mbb
+(p0) add table_ptr2 = 96, table_ptr1
+(p9) br.cond.spnt L(ATANL_UNSUPPORTED)
+//
+// Load double precision high-order part of pi
+//
+(p12) br.cond.spnt L(ATANL_NAN) ;;
}
-{ .mfi
- addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
- fma.s1 Xsq = ArgX_orig, ArgX_orig, f0 // Form x*x
- nop.i 999
+{ .mfb
+ nop.m 999
+(p0) fnorm.s1 ArgX = ArgX
+(p13) br.cond.spnt L(ATANL_NAN) ;;
}
-;;
-
-{ .mfi
- ld8 table_ptr1 = [table_ptr1] // Get table pointer
- fnorm.s1 ArgY = ArgY_orig
- nop.i 999
+//
+// Normalize the input argument.
+// Branch out if NaN inputs
+//
+{ .mmf
+(p0) ldfs P_lo = [table_ptr1], 4
+ nop.m 999
+(p0) fnorm.s1 ArgY = ArgY ;;
}
-{ .mfi
- nop.m 999
- fnorm.s1 ArgX = ArgX_orig
- nop.i 999
+{ .mmf
+ nop.m 999
+(p0) ldfs TWO_TO_NEG3 = [table_ptr1], 180
+//
+// U = max(ArgX_abs,ArgY_abs)
+// V = min(ArgX_abs,ArgY_abs)
+// if PR1, swap = 0
+// if PR2, swap = 1
+//
+(p0) mov M = f1 ;;
}
-;;
-
{ .mfi
- getf.exp sign_X = ArgX_orig // Get signexp of x
- fmerge.s ArgX_abs = f0, ArgX_orig // Form |x|
- nop.i 999
+ nop.m 999
+//
+// Get exp and sign of ArgX
+// Get exp and sign of ArgY
+// Load 2**(-3) and increment ptr to Q_4.
+//
+(p0) fmerge.s ArgX_abs = f1, ArgX
+ nop.i 999 ;;
}
-;;
-
+//
+// load single precision low-order part of pi = P_lo
+//
{ .mfi
- getf.exp sign_Y = ArgY_orig // Get signexp of y
- fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
- mov table_base = table_ptr1 // Save base pointer to tables
+(p0) getf.exp sign_X = ArgX
+(p0) fmerge.s ArgY_abs = f1, ArgY
+ nop.i 999 ;;
}
-;;
-
-{ .mfi
- ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
- fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
- nop.i 999
+{ .mii
+(p0) getf.exp sign_Y = ArgY
+ nop.i 999 ;;
+(p0) shr sign_X = sign_X, 17 ;;
}
-;;
-
-{ .mfi
- ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
- fclass.m p9,p0 = ArgX_orig, 0x1e7 // Test x natval, nan, inf, zero
- nop.i 999
+{ .mii
+ nop.m 999
+(p0) shr sign_Y = sign_Y, 17 ;;
+(p0) cmp.eq.unc p8, p9 = 0x00000, sign_Y ;;
}
{ .mfi
- nop.m 999
- fma.s1 M = f1, f1, f0 // Set M = 1.0
- nop.i 999
-}
-;;
-
+ nop.m 999
//
-// Check for everything - if false, then must be pseudo-zero
-// or pseudo-nan (IA unsupporteds).
+// Is ArgX_abs >= ArgY_abs
+// Is sign_Y == 0?
//
-{ .mfb
- nop.m 999
- fclass.m p0,p12 = ArgX_orig, 0x1FF // Test x unsupported
-(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
+(p0) fmax.s1 U = ArgX_abs, ArgY_abs
+ nop.i 999
}
-;;
-
-// U = max(ArgX_abs,ArgY_abs)
-// V = min(ArgX_abs,ArgY_abs)
{ .mfi
- nop.m 999
- fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
-(p9) br.cond.spnt ATANL_X_SPECIAL // Branch if x natval, nan, inf, zero
-}
-;;
-
-// Now common code for atanl and atan2l
-ATANL_COMMON:
-{ .mfi
- nop.m 999
- fclass.m p0,p13 = ArgY_orig, 0x1FF // Test y unsupported
- shr sign_X = sign_X, 17 // Get sign bit of x
+ nop.m 999
+//
+// ArgX_abs = |ArgX|
+// ArgY_abs = |ArgY|
+// sign_X is sign bit of ArgX
+// sign_Y is sign bit of ArgY
+//
+(p0) fcmp.ge.s1 p6, p7 = ArgX_abs, ArgY_abs
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 U = ArgY_abs, f1, f0 // Set U assuming |x| < |y|
- adds table_ptr1 = 176, table_ptr1 // Point to Q4
+ nop.m 999
+(p0) fmin.s1 V = ArgX_abs, ArgY_abs
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p6) add swap = r0, r0 // Set swap=0 if |x| >= |y|
-(p6) frcpa.s1 E, p0 = ArgY_abs, ArgX_abs // Compute E if |x| >= |y|
- shr sign_Y = sign_Y, 17 // Get sign bit of y
+ nop.m 999
+(p8) fadd.s1 s_Y = f0, f1
+(p6) cmp.eq.unc p10, p11 = 0x00000, sign_X
}
-{ .mfb
- nop.m 999
-(p6) fma.s1 V = ArgY_abs, f1, f0 // Set V if |x| >= |y|
-(p12) br.cond.spnt ATANL_UNSUPPORTED // Branch if x unsupported
+{ .mii
+(p6) add swap = r0, r0
+ nop.i 999 ;;
+(p7) add swap = 1, r0
}
-;;
-
-// Set p8 if y >=0
-// Set p9 if y < 0
-// Set p10 if |x| >= |y| and x >=0
-// Set p11 if |x| >= |y| and x < 0
{ .mfi
- cmp.eq p8, p9 = 0, sign_Y // Test for y >= 0
-(p7) frcpa.s1 E, p0 = ArgX_abs, ArgY_abs // Compute E if |x| < |y|
-(p7) add swap = 1, r0 // Set swap=1 if |x| < |y|
-}
-{ .mfb
-(p6) cmp.eq.unc p10, p11 = 0, sign_X // If |x| >= |y|, test for x >= 0
-(p6) fma.s1 U = ArgX_abs, f1, f0 // Set U if |x| >= |y|
-(p13) br.cond.spnt ATANL_UNSUPPORTED // Branch if y unsupported
-}
-;;
-
+ nop.m 999
//
+// Let M = 1.0
// if p8, s_Y = 1.0
// if p9, s_Y = -1.0
//
-.pred.rel "mutex",p8,p9
+(p10) fsub.s1 M = M, f1
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
-(p8) fadd.s1 s_Y = f0, f1 // If y >= 0 set s_Y = 1.0
- nop.i 999
+ nop.m 999
+(p9) fsub.s1 s_Y = f0, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p9) fsub.s1 s_Y = f0, f1 // If y < 0 set s_Y = -1.0
- nop.i 999
+ nop.m 999
+(p0) frcpa.s1 E, p6 = V, U
+ nop.i 999 ;;
}
-;;
-
-.pred.rel "mutex",p10,p11
+{ .mbb
+ nop.m 999
+//
+// E = frcpa(V,U)
+//
+(p6) br.cond.sptk L(ATANL_STEP2)
+(p0) br.cond.spnt L(ATANL_SPECIAL_HANDLING) ;;
+}
+L(ATANL_STEP2):
{ .mfi
- nop.m 999
-(p10) fsub.s1 M = M, f1 // If |x| >= |y| and x >=0, set M=0
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 Q = E, V
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p11) fadd.s1 M = M, f1 // If |x| >= |y| and x < 0, set M=2.0
- nop.i 999
+ nop.m 999
+(p0) fcmp.eq.s0 p0, p9 = f1, ArgY_orig
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
- nop.i 999
+ nop.m 999
+//
+// Is Q < 2**(-3)?
+//
+(p0) fcmp.eq.s0 p0, p8 = f1, ArgX_orig
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p11) fadd.s1 M = M, f1
+ nop.i 999 ;;
}
+{ .mlx
+ nop.m 999
// *************************************************
// ********************* STEP2 *********************
// *************************************************
+(p0) movl special = 0x8400000000000000
+}
+{ .mlx
+ nop.m 999
//
-// Q = E * V
+// lookup = b_1 b_2 b_3 B_4
//
-{ .mfi
- nop.m 999
- fmpy.s1 Q = E, V
- nop.i 999
+(p0) movl special1 = 0x0000000000000100 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (1) if POLY path
- nop.i 999
-}
-;;
-
-// Create a single precision representation of the signexp of Q with the
-// 4 most significant bits of the significand followed by a 1 and then 18 0's
-{ .mfi
- nop.m 999
- fmpy.s1 P_hi = M, P_hi
- dep.z special = 0x1, 18, 1 // Form 0x0000000000040000
-}
-{ .mfi
- nop.m 999
- fmpy.s1 P_lo = M, P_lo
- add table_ptr2 = 32, table_ptr1
+ nop.m 999
+//
+// Do fnorms to raise any denormal operand
+// exceptions.
+//
+(p0) fmpy.s1 P_hi = M, P_hi
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 A_temp = Q, f1, f0 // Set A_temp if POLY path
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 P_lo = M, P_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 E = E, E_hold, E // E = E + E*E_hold (1) if POLY path
- nop.i 999
-}
-;;
-
+ nop.m 999
//
-// Is Q < 2**(-3)?
-// swap = xor(swap,sign_X)
+// Q = E * V
//
-{ .mfi
- nop.m 999
- fcmp.lt.s1 p9, p0 = Q, TWO_TO_NEG3 // Test Q < 2^-3
- xor swap = sign_X, swap
+(p0) fcmp.lt.unc.s1 p6, p7 = Q, TWO_TO_NEG3
+ nop.i 999 ;;
}
-;;
-
-// P_hi = s_Y * P_hi
-{ .mmf
- getf.exp exponent_Q = Q // Get signexp of Q
- cmp.eq.unc p7, p6 = 0x00000, swap
- fmpy.s1 P_hi = s_Y, P_hi
+{ .mmb
+(p0) getf.sig significand_Q = Q
+(p0) getf.exp exponent_Q = Q
+ nop.b 999 ;;
}
-;;
-
+{ .mmi
+ nop.m 999 ;;
+(p0) andcm k = 0x0003, exponent_Q
+(p0) extr.u lookup = significand_Q, 59, 4 ;;
+}
+{ .mib
+ nop.m 999
+(p0) dep special = lookup, special, 59, 4
//
-// if (PR_1) sigma = -1.0
-// if (PR_2) sigma = 1.0
+// Generate 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
//
-{ .mfi
- getf.sig significand_Q = Q // Get significand of Q
-(p6) fsub.s1 sigma = f0, f1
- nop.i 999
+(p6) br.cond.spnt L(ATANL_POLY) ;;
}
-{ .mfb
-(p9) add table_ptr1 = 128, table_base // Point to P8 if POLY path
-(p7) fadd.s1 sigma = f0, f1
-(p9) br.cond.spnt ATANL_POLY // Branch to POLY if 0 < Q < 2^-3
-}
-;;
-
+{ .mfi
+(p0) cmp.eq.unc p8, p9 = 0x0000, k
+(p0) fmpy.s1 P_hi = s_Y, P_hi
+//
+// We waited a few extra cycles so P_lo and P_hi could be calculated.
+// Load the constant 256 for loading up table entries.
//
// *************************************************
// ******************** STEP3 **********************
// *************************************************
+(p0) add table_ptr2 = 16, table_ptr1
+}
//
-// lookup = b_1 b_2 b_3 B_4
+// Let z_hi have exponent and sign of original Q
+// Load the Tbl_hi(0) else, increment pointer.
//
+{ .mii
+(p0) ldfe Q_4 = [table_ptr1], -16
+(p0) xor swap = sign_X, swap ;;
+(p9) sub k = k, r0, 1
+}
{ .mmi
- nop.m 999
- nop.m 999
- andcm k = 0x0003, exponent_Q // k=0,1,2,3 for exp_Q=0,-1,-2,-3
+(p0) setf.sig z_hi = special
+(p0) ldfe Q_3 = [table_ptr1], -16
+(p9) add table_ptr2 = 16, table_ptr2 ;;
}
-;;
-
//
-// Generate sign_exp_Q b_1 b_2 b_3 b_4 1 0 0 0 ... 0 in single precision
-// representation. Note sign of Q is always 0.
+// U_hold = U - U_prime_hi
+// k = k * 256 - Result can be 0, 256, or 512.
//
-{ .mfi
- cmp.eq p8, p9 = 0x0000, k // Test k=0
- nop.f 999
- extr.u lookup = significand_Q, 59, 4 // Extract b_1 b_2 b_3 b_4 for index
+{ .mmb
+(p0) ldfe Q_2 = [table_ptr1], -16
+(p8) ldfd Tbl_hi = [table_ptr2], 8
+ nop.b 999 ;;
}
-{ .mfi
- sub sp_exp_Q = 0x7f, k // Form single prec biased exp of Q
- nop.f 999
- sub k = k, r0, 1 // Decrement k
+//
+// U_prime_lo = U_hold + V * z_hi
+// lookup -> lookup * 16 + k
+//
+{ .mmi
+(p0) ldfe Q_1 = [table_ptr1], -16 ;;
+(p8) ldfs Tbl_lo = [table_ptr2], 8
+//
+// U_prime_hi = U + V * z_hi
+// Load the Tbl_lo(0)
+//
+(p9) pmpy2.r k = k, special1 ;;
}
-;;
-
-// Form pointer to B index table
-{ .mfi
- ldfe Q_4 = [table_ptr1], -16 // Load Q_4
- nop.f 999
-(p9) shl k = k, 8 // k = 0, 256, or 512
+{ .mii
+ nop.m 999
+ nop.i 999
+ nop.i 999 ;;
}
-{ .mfi
-(p9) shladd table_ptr2 = lookup, 4, table_ptr2
- nop.f 999
- shladd sp_exp_4sig_Q = sp_exp_Q, 4, lookup // Shift and add in 4 high bits
+{ .mii
+ nop.m 999
+ nop.i 999
+ nop.i 999 ;;
}
-;;
-
-{ .mmi
-(p8) add table_ptr2 = -16, table_ptr2 // Pointer if original k was 0
-(p9) add table_ptr2 = k, table_ptr2 // Pointer if k was 1, 2, 3
- dep special = sp_exp_4sig_Q, special, 19, 13 // Form z_hi as single prec
+{ .mii
+ nop.m 999
+ nop.i 999
+ nop.i 999 ;;
}
-;;
-
-// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
-{ .mmi
- ldfd Tbl_hi = [table_ptr2], 8 // Load Tbl_hi from index table
-;;
- setf.s z_hi = special // Form z_hi
- nop.i 999
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+(p9) shladd lookup = lookup, 0x0004, k ;;
}
{ .mmi
- ldfs Tbl_lo = [table_ptr2], 8 // Load Tbl_lo from index table
-;;
- ldfe Q_3 = [table_ptr1], -16 // Load Q_3
- nop.i 999
-}
-;;
-
-{ .mmi
- ldfe Q_2 = [table_ptr1], -16 // Load Q_2
- nop.m 999
- nop.i 999
+(p9) add table_ptr2 = table_ptr2, lookup ;;
+//
+// V_prime = V - U * z_hi
+//
+(p9) ldfd Tbl_hi = [table_ptr2], 8
+ nop.i 999 ;;
}
-;;
-
{ .mmf
- ldfe Q_1 = [table_ptr1], -16 // Load Q_1
- nop.m 999
- nop.f 999
+ nop.m 999
+//
+// C_hi = frcpa(1,U_prime_hi)
+//
+(p9) ldfs Tbl_lo = [table_ptr2], 8
+//
+// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
+// Point to beginning of Tbl_hi entries - k = 0.
+//
+(p0) fmerge.se z_hi = Q, z_hi ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 U_prime_hi = V, z_hi, U // U_prime_hi = U + V * z_hi
- nop.i 999
+ nop.m 999
+(p0) fma.s1 U_prime_hi = V, z_hi, U
+ nop.i 999
}
{ .mfi
- nop.m 999
- fnma.s1 V_prime = U, z_hi, V // V_prime = V - U * z_hi
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 V_prime = U, z_hi, V
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- mov A_hi = Tbl_hi // Start with A_hi = Tbl_hi
- nop.i 999
+ nop.m 999
+(p0) mov A_hi = Tbl_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 U_hold = U, U_prime_hi // U_hold = U - U_prime_hi
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 U_hold = U, U_prime_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- frcpa.s1 C_hi, p0 = f1, U_prime_hi // C_hi = frcpa(1,U_prime_hi)
- nop.i 999
+ nop.m 999
+(p0) frcpa.s1 C_hi, p6 = f1, U_prime_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
- nop.i 999
+(p0) cmp.eq.unc p7, p6 = 0x00000, swap
+(p0) fmpy.s1 A_hi = s_Y, A_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 U_prime_lo = z_hi, V, U_hold // U_prime_lo = U_hold + V * z_hi
- nop.i 999
+ nop.m 999
+//
+// poly = wsq * poly
+//
+(p7) fadd.s1 sigma = f0, f1
+ nop.i 999 ;;
}
-;;
-
-// C_hi_hold = 1 - C_hi * U_prime_hi (1)
{ .mfi
- nop.m 999
- fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
- nop.i 999
+ nop.m 999
+(p0) fma.s1 U_prime_lo = z_hi, V, U_hold
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
- nop.i 999
+ nop.m 999
+(p6) fsub.s1 sigma = f0, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (1)
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
+ nop.i 999 ;;
}
-;;
-
-// C_hi_hold = 1 - C_hi * U_prime_hi (2)
{ .mfi
- nop.m 999
- fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
- nop.i 999
+ nop.m 999
+//
+// A_lo = A_lo + w_hi
+// A_hi = s_Y * A_hi
+//
+(p0) fma.s1 Res_hi = sigma, A_hi, P_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (2)
- nop.i 999
+ nop.m 999
+//
+// C_hi_hold = 1 - C_hi * U_prime_hi (1)
+//
+(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi
+ nop.i 999 ;;
}
-;;
-
-// C_hi_hold = 1 - C_hi * U_prime_hi (3)
{ .mfi
- nop.m 999
- fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
- nop.i 999
+ nop.m 999
+//
+// C_hi = C_hi + C_hi * C_hi_hold (1)
+//
+(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (3)
- nop.i 999
+ nop.m 999
+//
+// C_hi_hold = 1 - C_hi * U_prime_hi (2)
+//
+(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 w_hi = V_prime, C_hi // w_hi = V_prime * C_hi
- nop.i 999
+ nop.m 999
+//
+// C_hi = C_hi + C_hi * C_hi_hold (2)
+//
+(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 wsq = w_hi, w_hi // wsq = w_hi * w_hi
- nop.i 999
+ nop.m 999
+//
+// C_hi_hold = 1 - C_hi * U_prime_hi (3)
+//
+(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fnma.s1 w_lo = w_hi, U_prime_hi, V_prime // w_lo = V_prime-w_hi*U_prime_hi
- nop.i 999
+ nop.m 999
+//
+// C_hi = C_hi + C_hi * C_hi_hold (3)
+//
+(p0) fmpy.s1 w_hi = V_prime, C_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 poly = wsq, Q_4, Q_3 // poly = Q_3 + wsq * Q_4
- nop.i 999
+ nop.m 999
+//
+// w_hi = V_prime * C_hi
+//
+(p0) fmpy.s1 wsq = w_hi, w_hi
+ nop.i 999
}
{ .mfi
- nop.m 999
- fnma.s1 w_lo = w_hi, U_prime_lo, w_lo // w_lo = w_lo - w_hi * U_prime_lo
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 w_lo = w_hi, U_prime_hi, V_prime
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 poly = wsq, poly, Q_2 // poly = Q_2 + wsq * poly
- nop.i 999
+ nop.m 999
+//
+// wsq = w_hi * w_hi
+// w_lo = = V_prime - w_hi * U_prime_hi
+//
+(p0) fma.s1 poly = wsq, Q_4, Q_3
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s1 w_lo = C_hi, w_lo // w_lo = = w_lo * C_hi
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 w_lo = w_hi, U_prime_lo, w_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 poly = wsq, poly, Q_1 // poly = Q_1 + wsq * poly
- nop.i 999
+ nop.m 999
+//
+// poly = Q_3 + wsq * Q_4
+// w_lo = = w_lo - w_hi * U_prime_lo
+//
+(p0) fma.s1 poly = wsq, poly, Q_2
+ nop.i 999
}
{ .mfi
- nop.m 999
- fadd.s1 A_lo = Tbl_lo, w_lo // A_lo = Tbl_lo + w_lo
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 w_lo = C_hi, w_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s0 Q_1 = Q_1, Q_1 // Dummy operation to raise inexact
- nop.i 999
+ nop.m 999
+//
+// poly = Q_2 + wsq * poly
+// w_lo = = w_lo * C_hi
+//
+(p0) fma.s1 poly = wsq, poly, Q_1
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 poly = wsq, poly // poly = wsq * poly
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 A_lo = Tbl_lo, w_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 poly = w_hi, poly // poly = w_hi * poly
- nop.i 999
+ nop.m 999
+//
+// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode)
+//
+(p0) fmpy.s0 Q_1 = Q_1, Q_1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 A_lo = A_lo, poly // A_lo = A_lo + poly
- nop.i 999
+ nop.m 999
+//
+// poly = Q_1 + wsq * poly
+// A_lo = Tbl_lo + w_lo
+// swap = xor(swap,sign_X)
+//
+(p0) fmpy.s1 poly = wsq, poly
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 A_lo = A_lo, w_hi // A_lo = A_lo + w_hi
- nop.i 999
+ nop.m 999
+//
+// Is (swap) != 0 ?
+// poly = wsq * poly
+// A_hi = Tbl_hi
+//
+(p0) fmpy.s1 poly = w_hi, poly
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 Res_lo = sigma, A_lo, P_lo // Res_lo = P_lo + sigma * A_lo
- nop.i 999
+ nop.m 999
+//
+// if (PR_1) sigma = -1.0
+// if (PR_2) sigma = 1.0
+//
+(p0) fadd.s1 A_lo = A_lo, poly
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode)
+// P_hi = s_Y * P_hi
+// A_lo = A_lo + poly
//
+(p0) fadd.s1 A_lo = A_lo, w_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fma.s1 Res_lo = sigma, A_lo, P_lo
+ nop.i 999 ;;
+}
{ .mfb
- nop.m 999
- fma.s0 Result = Res_lo, s_Y, Res_hi
- br.ret.sptk b0 // Exit table path 2^-3 <= V/U < 1
+ nop.m 999
+//
+// Res_hi = P_hi + sigma * A_hi
+// Res_lo = P_lo + sigma * A_lo
+//
+(p0) fma.s0 Result = Res_lo, s_Y, Res_hi
+//
+// Raise inexact.
+//
+br.ret.sptk b0 ;;
}
-;;
-
-
-ATANL_POLY:
-// Here if 0 < V/U < 2^-3
//
-// ***********************************************
-// ******************** STEP4 ********************
-// ***********************************************
-
+// poly1 = P_5 + zsq * poly1
+// poly2 = zsq * poly2
//
-// Following:
-// Iterate 3 times E = E + E*(1.0 - E*U)
-// Also load P_8, P_7, P_6, P_5, P_4
+L(ATANL_POLY):
+{ .mmf
+(p0) xor swap = sign_X, swap
+ nop.m 999
+(p0) fnma.s1 E_hold = E, U, f1 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) mov A_temp = Q
+//
+// poly1 = P_4 + zsq * poly1
+// swap = xor(swap,sign_X)
+//
+// sign_X gr_002
+// swap gr_004
+// poly1 = poly1 <== Done with poly1
+// poly1 = P_4 + zsq * poly1
+// swap = xor(swap,sign_X)
//
+(p0) cmp.eq.unc p7, p6 = 0x00000, swap
+}
{ .mfi
- ldfe P_8 = [table_ptr1], -16 // Load P_8
- fnma.s1 z_lo = A_temp, U, V // z_lo = V - A_temp * U
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 P_hi = s_Y, P_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (2)
- nop.i 999
+ nop.m 999
+(p6) fsub.s1 sigma = f0, f1
+ nop.i 999
}
-;;
-
-{ .mmi
- ldfe P_7 = [table_ptr1], -16 // Load P_7
-;;
- ldfe P_6 = [table_ptr1], -16 // Load P_6
- nop.i 999
+{ .mfi
+ nop.m 999
+(p7) fadd.s1 sigma = f0, f1
+ nop.i 999 ;;
}
-;;
-{ .mfi
- ldfe P_5 = [table_ptr1], -16 // Load P_5
- fma.s1 E = E, E_hold, E // E = E + E_hold*E (2)
+// ***********************************************
+// ******************** STEP4 ********************
+// ***********************************************
+
+{ .mmi
+ nop.m 999
+(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp
nop.i 999
}
;;
{ .mmi
- ldfe P_4 = [table_ptr1], -16 // Load P_4
-;;
- ldfe P_3 = [table_ptr1], -16 // Load P_3
+ ld8 table_ptr1 = [table_ptr1]
+ nop.m 999
nop.i 999
}
;;
+
{ .mfi
- ldfe P_2 = [table_ptr1], -16 // Load P_2
- fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (3)
- nop.i 999
-}
-{ .mlx
- nop.m 999
- movl int_temp = 0x24005 // Signexp for small neg number
+ nop.m 999
+(p0) fma.s1 E = E, E_hold, E
+//
+// Following:
+// Iterate 3 times E = E + E*(1.0 - E*U)
+// Also load P_8, P_7, P_6, P_5, P_4
+// E_hold = 1.0 - E * U (1)
+// A_temp = Q
+//
+(p0) add table_ptr1 = 128, table_ptr1 ;;
}
-;;
-
{ .mmf
- ldfe P_1 = [table_ptr1], -16 // Load P_1
- setf.exp tmp_small = int_temp // Form small neg number
- fma.s1 E = E, E_hold, E // E = E + E_hold*E (3)
+ nop.m 999
+//
+// E = E + E_hold*E (1)
+// Point to P_8.
+//
+(p0) ldfe P_8 = [table_ptr1], -16
+//
+// poly = z8*poly1 + poly2 (Typo in writeup)
+// Is (swap) != 0 ?
+//
+(p0) fnma.s1 z_lo = A_temp, U, V ;;
}
-;;
-
+{ .mmb
+ nop.m 999
+//
+// E_hold = 1.0 - E * U (2)
+//
+(p0) ldfe P_7 = [table_ptr1], -16
+ nop.b 999 ;;
+}
+{ .mmb
+ nop.m 999
+//
+// E = E + E_hold*E (2)
+//
+(p0) ldfe P_6 = [table_ptr1], -16
+ nop.b 999 ;;
+}
+{ .mmb
+ nop.m 999
+//
+// E_hold = 1.0 - E * U (3)
+//
+(p0) ldfe P_5 = [table_ptr1], -16
+ nop.b 999 ;;
+}
+{ .mmf
+ nop.m 999
+//
+// E = E + E_hold*E (3)
//
//
// At this point E approximates 1/U to roughly working precision
-// Z = V*E approximates V/U
+// z = V*E approximates V/U
//
-{ .mfi
- nop.m 999
- fmpy.s1 Z = V, E // Z = V * E
- nop.i 999
+(p0) ldfe P_4 = [table_ptr1], -16
+(p0) fnma.s1 E_hold = E, U, f1 ;;
}
-{ .mfi
- nop.m 999
- fmpy.s1 z_lo = z_lo, E // z_lo = z_lo * E
- nop.i 999
+{ .mmb
+ nop.m 999
+//
+// Z = V * E
+//
+(p0) ldfe P_3 = [table_ptr1], -16
+ nop.b 999 ;;
}
-;;
-
+{ .mmb
+ nop.m 999
//
-// Now what we want to do is
-// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
-// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
+// zsq = Z * Z
//
+(p0) ldfe P_2 = [table_ptr1], -16
+ nop.b 999 ;;
+}
+{ .mmb
+ nop.m 999
//
-// Fixup added to force inexact later -
-// A_hi = A_temp + z_lo
-// z_lo = (A_temp - A_hi) + z_lo
+// z8 = zsq * zsq
//
-{ .mfi
- nop.m 999
- fmpy.s1 zsq = Z, Z // zsq = Z * Z
- nop.i 999
+(p0) ldfe P_1 = [table_ptr1], -16
+ nop.b 999 ;;
+}
+{ .mlx
+ nop.m 999
+(p0) movl int_temp = 0x24005
}
{ .mfi
- nop.m 999
- fadd.s1 A_hi = A_temp, z_lo // A_hi = A_temp + z_lo
- nop.i 999
+ nop.m 999
+(p0) fma.s1 E = E, E_hold, E
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 poly1 = zsq, P_8, P_7 // poly1 = P_7 + zsq * P_8
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 E_hold = E, U, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 poly2 = zsq, P_3, P_2 // poly2 = P_2 + zsq * P_3
- nop.i 999
+ nop.m 999
+(p0) fma.s1 E = E, E_hold, E
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 z4 = zsq, zsq // z4 = zsq * zsq
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 Z = V, E
+ nop.i 999
}
{ .mfi
- nop.m 999
- fsub.s1 A_temp = A_temp, A_hi // A_temp = A_temp - A_hi
- nop.i 999
+ nop.m 999
+//
+// z_lo = V - A_temp * U
+// if (PR_2) sigma = 1.0
+//
+(p0) fmpy.s1 z_lo = z_lo, E
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmerge.s tmp = A_hi, A_hi // Copy tmp = A_hi
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 zsq = Z, Z
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 poly1 = zsq, poly1, P_6 // poly1 = P_6 + zsq * poly1
- nop.i 999
+ nop.m 999
+//
+// z_lo = z_lo * E
+// if (PR_1) sigma = -1.0
+//
+(p0) fadd.s1 A_hi = A_temp, z_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 poly2 = zsq, poly2, P_1 // poly2 = P_2 + zsq * poly2
- nop.i 999
+ nop.m 999
+//
+// z8 = z8 * z8
+//
+//
+// Now what we want to do is
+// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
+// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
+//
+(p0) fma.s1 poly1 = zsq, P_8, P_7
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 z8 = z4, z4 // z8 = z4 * z4
- nop.i 999
+ nop.m 999
+(p0) fma.s1 poly2 = zsq, P_3, P_2
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fadd.s1 z_lo = A_temp, z_lo // z_lo = (A_temp - A_hi) + z_lo
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 z8 = zsq, zsq
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 poly1 = zsq, poly1, P_5 // poly1 = P_5 + zsq * poly1
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 A_temp = A_temp, A_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 poly2 = poly2, zsq // poly2 = zsq * poly2
- nop.i 999
+ nop.m 999
+//
+// A_lo = Z * poly + z_lo
+//
+(p0) fmerge.s tmp = A_hi, A_hi
+ nop.i 999 ;;
}
-;;
-
-// Create small GR double in case need to raise underflow
{ .mfi
- nop.m 999
- fma.s1 poly1 = zsq, poly1, P_4 // poly1 = P_4 + zsq * poly1
- dep GR_temp = -1,r0,0,53
+ nop.m 999
+//
+// poly1 = P_7 + zsq * P_8
+// poly2 = P_2 + zsq * P_3
+//
+(p0) fma.s1 poly1 = zsq, poly1, P_6
+ nop.i 999
}
-;;
-
-// Create small double in case need to raise underflow
{ .mfi
- setf.d FR_temp = GR_temp
- fma.s1 poly = z8, poly1, poly2 // poly = poly2 + z8 * poly1
- nop.i 999
+ nop.m 999
+(p0) fma.s1 poly2 = zsq, poly2, P_1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 A_lo = Z, poly, z_lo // A_lo = z_lo + Z * poly
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 z8 = z8, z8
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 A_hi = tmp, A_lo // A_hi = tmp + A_lo
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 z_lo = A_temp, z_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 tmp = tmp, A_hi // tmp = tmp - A_hi
- nop.i 999
+ nop.m 999
+//
+// poly1 = P_6 + zsq * poly1
+// poly2 = P_2 + zsq * poly2
+//
+(p0) fma.s1 poly1 = zsq, poly1, P_5
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 poly2 = poly2, zsq
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 A_lo = tmp, A_lo // A_lo = tmp + A_lo
- nop.i 999
+ nop.m 999
+//
+// Result = Res_hi + Res_lo (User Supplied Rounding Mode)
+//
+(p0) fmpy.s1 P_5 = P_5, P_5
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
- nop.i 999
+ nop.m 999
+(p0) fma.s1 poly1 = zsq, poly1, P_4
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsub.s1 tmp = P_hi, Res_hi // tmp = P_hi - Res_hi
- nop.i 999
+ nop.m 999
+(p0) fma.s1 poly = z8, poly1, poly2
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// Test if A_lo is zero
+// Fixup added to force inexact later -
+// A_hi = A_temp + z_lo
+// z_lo = (A_temp - A_hi) + z_lo
//
-{ .mfi
- nop.m 999
- fclass.m p6,p0 = A_lo, 0x007 // Test A_lo = 0
- nop.i 999
+(p0) fma.s1 A_lo = Z, poly, z_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p6) mov A_lo = tmp_small // If A_lo zero, make very small
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 A_hi = tmp, A_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 tmp = A_hi, sigma, tmp // tmp = sigma * A_hi + tmp
- nop.i 999
+ nop.m 999
+(p0) fsub.s1 tmp = tmp, A_hi
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 sigma = A_lo, sigma, P_lo // sigma = A_lo * sigma + P_lo
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 A_hi = s_Y, A_hi
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 Res_lo = s_Y, sigma, tmp // Res_lo = s_Y * sigma + tmp
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 A_lo = tmp, A_lo
+ nop.i 999
}
-;;
-
+{ .mfi
+(p0) setf.exp tmp = int_temp
//
-// Test if Res_lo is denormal
+// P_hi = s_Y * P_hi
+// A_hi = s_Y * A_hi
//
+(p0) fma.s1 Res_hi = sigma, A_hi, P_hi
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fclass.m p14, p15 = Res_lo, 0x0b
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p6,p0 = A_lo, 0x007
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
+(p6) mov A_lo = tmp
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
//
-// Compute Result = Res_lo + Res_hi. Use s3 if Res_lo is denormal.
+// Res_hi = P_hi + sigma * A_hi
//
-{ .mfi
- nop.m 999
-(p14) fadd.s3 Result = Res_lo, Res_hi // Result for Res_lo denormal
- nop.i 999
+(p0) fsub.s1 tmp = P_hi, Res_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p15) fadd.s0 Result = Res_lo, Res_hi // Result for Res_lo normal
- nop.i 999
+ nop.m 999
+//
+// tmp = P_hi - Res_hi
+//
+(p0) fma.s1 tmp = A_hi, sigma, tmp
+ nop.i 999
}
-;;
-
-//
-// If Res_lo is denormal test if Result equals zero
-//
{ .mfi
- nop.m 999
-(p14) fclass.m.unc p14, p0 = Result, 0x07
- nop.i 999
+ nop.m 999
+(p0) fma.s1 sigma = A_lo, sigma, P_lo
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// If Res_lo is denormal and Result equals zero, raise inexact, underflow
-// by squaring small double
+// tmp = sigma * A_hi + tmp
+// sigma = A_lo * sigma + P_lo
//
+(p0) fma.s1 Res_lo = s_Y, sigma, tmp
+ nop.i 999 ;;
+}
{ .mfb
- nop.m 999
-(p14) fmpy.d.s0 FR_temp = FR_temp, FR_temp
- br.ret.sptk b0 // Exit POLY path, 0 < Q < 2^-3
+ nop.m 999
+//
+// Res_lo = s_Y * sigma + tmp
+//
+(p0) fadd.s0 Result = Res_lo, Res_hi
+br.ret.sptk b0 ;;
}
-;;
-
-
-ATANL_UNSUPPORTED:
+L(ATANL_NATVAL):
+L(ATANL_UNSUPPORTED):
+L(ATANL_NAN):
{ .mfb
- nop.m 999
- fmpy.s0 Result = ArgX,ArgY
- br.ret.sptk b0
+ nop.m 999
+(p0) fmpy.s0 Result = ArgX,ArgY
+(p0) br.ret.sptk b0 ;;
}
-;;
-
-// Here if y natval, nan, inf, zero
-ATANL_Y_SPECIAL:
-// Here if x natval, nan, inf, zero
-ATANL_X_SPECIAL:
+L(ATANL_SPECIAL_HANDLING):
{ .mfi
- nop.m 999
- fclass.m p13,p12 = ArgY_orig, 0x0c3 // Test y nan
- nop.i 999
+ nop.m 999
+(p0) fcmp.eq.s0 p0, p6 = f1, ArgY_orig
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p15,p14 = ArgY_orig, 0x103 // Test y natval
- nop.i 999
+ nop.m 999
+(p0) fcmp.eq.s0 p0, p5 = f1, ArgX_orig
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p12) fclass.m p13,p0 = ArgX_orig, 0x0c3 // Test x nan
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p6, p7 = ArgY, 0x007
+ nop.i 999
}
-;;
-
-{ .mfi
- nop.m 999
-(p14) fclass.m p15,p0 = ArgX_orig, 0x103 // Test x natval
- nop.i 999
+{ .mlx
+ nop.m 999
+(p0) movl special = 992
}
;;
-{ .mfb
- nop.m 999
-(p13) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result nan if x or y nan
-(p13) br.ret.spnt b0 // Exit if x or y nan
-}
-;;
-{ .mfb
+{ .mmi
nop.m 999
-(p15) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result natval if x or y natval
-(p15) br.ret.spnt b0 // Exit if x or y natval
+(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp
+ nop.i 999
}
;;
-
-// Here if x or y inf or zero
-ATANL_SPECIAL_HANDLING:
-{ .mfi
+{ .mmi
+ ld8 table_ptr1 = [table_ptr1]
nop.m 999
- fclass.m p6, p7 = ArgY_orig, 0x007 // Test y zero
- mov special = 992 // Offset to table
+ nop.i 999
}
;;
-{ .mfb
- add table_ptr1 = table_base, special // Point to 3pi/4
- fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
-(p7) br.cond.spnt ATANL_ArgY_Not_ZERO // Branch if y not zero
-}
-;;
-// Here if y zero
+{ .mib
+(p0) add table_ptr1 = table_ptr1, special
+ nop.i 999
+(p7) br.cond.spnt L(ATANL_ArgY_Not_ZERO) ;;
+}
{ .mmf
- ldfd Result = [table_ptr1], 8 // Get pi high
- nop.m 999
- fclass.m p14, p0 = ArgX, 0x035 // Test for x>=+0
+(p0) ldfd Result = [table_ptr1], 8
+ nop.m 999
+(p6) fclass.m.unc p14, p0 = ArgX, 0x035 ;;
}
-;;
-
{ .mmf
- nop.m 999
- ldfd Result_lo = [table_ptr1], -8 // Get pi lo
- fclass.m p15, p0 = ArgX, 0x036 // Test for x<=-0
+ nop.m 999
+(p0) ldfd Result_lo = [table_ptr1], -8
+(p6) fclass.m.unc p15, p0 = ArgX, 0x036 ;;
}
-;;
-
-//
-// Return sign_Y * 0 when ArgX > +0
-//
{ .mfi
- nop.m 999
-(p14) fmerge.s Result = ArgY, f0 // If x>=+0, y=0, hi sgn(y)*0
- nop.i 999
+ nop.m 999
+(p14) fmerge.s Result = ArgY, f0
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p13, p0 = ArgX, 0x007 // Test for x=0
- nop.i 999
+ nop.m 999
+(p6) fclass.m.unc p13, p0 = ArgX, 0x007
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p14) fmerge.s Result_lo = ArgY, f0 // If x>=+0, y=0, lo sgn(y)*0
- nop.i 999
+ nop.m 999
+(p14) fmerge.s Result_lo = ArgY, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p13) mov GR_Parameter_TAG = 36 // Error tag for x=0, y=0
- nop.f 999
- nop.i 999
+(p13) mov GR_Parameter_TAG = 36
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// Return sign_Y * pi when ArgX < -0
+// Return sign_Y * 0 when ArgX > +0
//
-{ .mfi
- nop.m 999
-(p15) fmerge.s Result = ArgY, Result // If x<0, y=0, hi=sgn(y)*pi
- nop.i 999
+(p15) fmerge.s Result = ArgY, Result
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p15) fmerge.s Result_lo = ArgY, Result_lo // If x<0, y=0, lo=sgn(y)*pi
- nop.i 999
+ nop.m 999
+(p15) fmerge.s Result_lo = ArgY, Result_lo
+ nop.i 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
//
-// Call error support function for atan(0,0)
+// Return sign_Y * 0 when ArgX < -0
//
-{ .mfb
- nop.m 999
- fadd.s0 Result = Result, Result_lo
-(p13) br.cond.spnt __libm_error_region // Branch if atan(0,0)
+(p0) fadd.s0 Result = Result, Result_lo
+(p13) br.cond.spnt __libm_error_region ;;
}
-;;
-
{ .mib
- nop.m 999
- nop.i 999
- br.ret.sptk b0 // Exit for y=0, x not 0
+ nop.m 999
+ nop.i 999
+//
+// Call error support funciton for atan(0,0)
+//
+(p0) br.ret.sptk b0 ;;
}
-;;
-
-// Here if y not zero
-ATANL_ArgY_Not_ZERO:
+L(ATANL_ArgY_Not_ZERO):
{ .mfi
- nop.m 999
- fclass.m p0, p10 = ArgY, 0x023 // Test y inf
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p9, p10 = ArgY, 0x023
+ nop.i 999 ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt L(ATANL_ArgY_Not_INF) ;;
+}
+{ .mfi
+ nop.m 999
+(p9) fclass.m.unc p6, p0 = ArgX, 0x017
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p9) fclass.m.unc p7, p0 = ArgX, 0x021
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p9) fclass.m.unc p8, p0 = ArgX, 0x022
+ nop.i 999 ;;
+}
+{ .mmi
+(p6) add table_ptr1 = 16, table_ptr1 ;;
+(p0) ldfd Result = [table_ptr1], 8
+ nop.i 999 ;;
+}
+{ .mfi
+(p0) ldfd Result_lo = [table_ptr1], -8
+ nop.f 999
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p6) fmerge.s Result = ArgY, Result
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p6) fmerge.s Result_lo = ArgY, Result_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
- fclass.m p6, p0 = ArgX, 0x017 // Test for 0 <= |x| < inf
-(p10) br.cond.spnt ATANL_ArgY_Not_INF // Branch if 0 < |y| < inf
+ nop.m 999
+(p6) fadd.s0 Result = Result, Result_lo
+(p6) br.ret.sptk b0 ;;
}
-;;
-
-// Here if y=inf
//
+// Load PI/2 and adjust its sign.
// Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal
// Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal
-// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
-// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
-// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
-// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
//
+{ .mmi
+(p7) add table_ptr1 = 32, table_ptr1 ;;
+(p7) ldfd Result = [table_ptr1], 8
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fclass.m p7, p0 = ArgX, 0x021 // Test for x=+inf
- nop.i 999
+(p7) ldfd Result_lo = [table_ptr1], -8
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2, if x finite
- fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
- nop.i 999
+ nop.m 999
+(p7) fmerge.s Result = ArgY, Result
+ nop.i 999 ;;
}
-;;
-
-{ .mmi
-(p7) add table_ptr1 = 32, table_ptr1 // Point to pi/4 if x=+inf
-;;
-(p8) add table_ptr1 = 48, table_ptr1 // Point to 3pi/4 if x=-inf
-
- nop.i 999
+{ .mfi
+ nop.m 999
+(p7) fmerge.s Result_lo = ArgY, Result_lo
+ nop.i 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
+(p7) fadd.s0 Result = Result, Result_lo
+(p7) br.ret.sptk b0 ;;
+}
+//
+// Load PI/4 and adjust its sign.
+// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
+// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
+//
{ .mmi
- ldfd Result = [table_ptr1], 8 // Load pi/2, pi/4, or 3pi/4 hi
-;;
- ldfd Result_lo = [table_ptr1], -8 // Load pi/2, pi/4, or 3pi/4 lo
- nop.i 999
+(p8) add table_ptr1 = 48, table_ptr1 ;;
+(p8) ldfd Result = [table_ptr1], 8
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
- nop.i 999
+(p8) ldfd Result_lo = [table_ptr1], -8
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
- nop.i 999
+ nop.m 999
+(p8) fmerge.s Result = ArgY, Result
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p8) fmerge.s Result_lo = ArgY, Result_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
- fadd.s0 Result = Result, Result_lo // Compute complete result
- br.ret.sptk b0 // Exit for y=inf
+ nop.m 999
+(p8) fadd.s0 Result = Result, Result_lo
+(p8) br.ret.sptk b0 ;;
}
-;;
-
-// Here if y not INF, and x=0 or INF
-ATANL_ArgY_Not_INF:
+L(ATANL_ArgY_Not_INF):
+{ .mfi
+ nop.m 999
//
-// Return +PI/2 when ArgY NOT Inf, ArgY > 0 and ArgX = +/-0
-// Return -PI/2 when ArgY NOT Inf, ArgY < 0 and ArgX = +/-0
-// Return +0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
-// Return -0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
-// Return +PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
-// Return -PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
+// Load PI/4 and adjust its sign.
+// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
+// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
//
+(p0) fclass.m.unc p6, p0 = ArgX, 0x007
+ nop.i 999
+}
{ .mfi
- nop.m 999
- fclass.m p7, p9 = ArgX, 0x021 // Test for x=+inf
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p7, p0 = ArgX, 0x021
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fclass.m p6, p0 = ArgX, 0x007 // Test for x=0
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p8, p0 = ArgX, 0x022
+ nop.i 999 ;;
+}
+{ .mmi
+(p6) add table_ptr1 = 16, table_ptr1 ;;
+(p6) ldfd Result = [table_ptr1], 8
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2
- fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
- nop.i 999
+(p6) ldfd Result_lo = [table_ptr1], -8
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
-.pred.rel "mutex",p7,p9
{ .mfi
-(p9) ldfd Result = [table_ptr1], 8 // Load pi or pi/2 hi
-(p7) fmerge.s Result = ArgY, f0 // If y not inf, x=+inf, sgn(y)*0
- nop.i 999
+ nop.m 999
+(p6) fmerge.s Result = ArgY, Result
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p9) ldfd Result_lo = [table_ptr1], -8 // Load pi or pi/2 lo
-(p7) fnorm.s0 Result = Result // If y not inf, x=+inf normalize
- nop.i 999
+ nop.m 999
+(p6) fmerge.s Result_lo = ArgY, Result_lo
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p6) fadd.s0 Result = Result, Result_lo
+(p6) br.ret.spnt b0 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
- nop.i 999
+ nop.m 999
+//
+// return = sign_Y * PI/2 when ArgX = 0
+//
+(p7) fmerge.s Result = ArgY, f0
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p7) fnorm.s0 Result = Result
+(p7) br.ret.spnt b0 ;;
+}
+//
+// return = sign_Y * 0 when ArgX = Inf
+//
+{ .mmi
+(p8) ldfd Result = [table_ptr1], 8 ;;
+(p8) ldfd Result_lo = [table_ptr1], -8
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
- nop.i 999
+ nop.m 999
+(p8) fmerge.s Result = ArgY, Result
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p8) fmerge.s Result_lo = ArgY, Result_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
-(p9) fadd.s0 Result = Result, Result_lo // Compute complete result
- br.ret.spnt b0 // Exit for y not inf, x=0,inf
+ nop.m 999
+(p8) fadd.s0 Result = Result, Result_lo
+(p8) br.ret.sptk b0 ;;
}
-;;
-
-GLOBAL_IEEE754_END(atan2l)
+//
+// return = sign_Y * PI when ArgX = -Inf
+//
+.endp atan2l
+ASM_SIZE_DIRECTIVE(atan2l)
+ASM_SIZE_DIRECTIVE(__atan2l)
+ASM_SIZE_DIRECTIVE(__ieee754_atan2l)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -2002,6 +2001,7 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_cbrt.S b/sysdeps/ia64/fpu/s_cbrt.S
index 7a74ac19be..1e23b6024d 100644
--- a/sysdeps/ia64/fpu/s_cbrt.S
+++ b/sysdeps/ia64/fpu/s_cbrt.S
@@ -1,10 +1,11 @@
-.file "cbrt.s"
+.file "cbrt.asm"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang
+// of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,30 +21,27 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 05/19/00 New version (modified algorithm)
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Updated polynomial coefficients (changed to Remez coefficients),
-// to slightly improve accuracy
+// 2/02/00: Initial version
+// 5/19/00: New version (modified algorithm)
//
// API
//==============================================================
@@ -55,713 +53,637 @@
//
// Implementation
//
-// Let y= frcpa(a), where a is the argument
-//
-// cbrt(a)= cbrt(a*y)/cbrt(y) = cbrt(1 - (1-a*y)) * (1/cbrt(y))
-//
-// For all values of y, the 3 possible significands of 1/cbrt(y)
-// are stored in a table (T0) to 64 bits of accuracy. (There are
-// 3 possible significands because the exponent of y modulo 3
-// can be 0, 1, or 2.)
+// cbrt(a) = cbrt(a y) / cbrt(y)
+// = cbrt(1 - (1 - a y)) * 1/cbrt(y)
//
+// where y = frcpa(a).
//
-// * cbrt(1 - (1-a*y)) is approximated by a degree-5 polynomial ~
-//
-// ~ 1 - (1/3)*r - (1/9)*r^2 - (5/81)*r^3 - (10/243)*r^4 - (22/729)*r^5
-//
-// in r = 1-a*y.
+// * cbrt(1 - (1 - a y)) is approximated by a degree-5 polynomial
+//
+// 1 - (1/3)*r - (1/9)*r^2 - (5/81)*r^3 - (10/243)*r^4 - (22/729)*r^5
+//
+// in r = 1 - a y.
//
+// * The values 1/cbrt(y) are stored in a table of constants T0
+// to 64 bits of accuracy
//
// The table values are stored for three exponent values and are
// then multiplied by e/3 where e is the exponent of the input number.
// This computation is carried out in parallel with the polynomial
// evaluation:
//
-// T= 2^(e/3) * T0
+// T = 2^(e/3) * T0
//===============
-// input= x
-// C= frcpa(x)
-// r= 1 - C * x
+// input = x
+// C = frcpa(x)
+// r = 1 - C * x
//
-// Special values
+// Special values
//==============================================================
// Registers used
//==============================================================
-// f6-f15
-// GR_GP, r23-r26, r28-r30
-// p6, p7, p8, p12
-
- FR_R = f6
- FR_COEFF1 = f7
- FR_COEFF2 = f9
- FR_COEFF3 = f10
- FR_COEFF4 = f11
- FR_COEFF5 = f12
- FR_R2 = f13
- FR_ARG = f14
- FR_P23 = f15
- FR_P25 = f32
- FR_P15 = f33
- FR_P1 = f34
- FR_P45 = f35
- FR_2EXP = f36
- FR_TMP63 = f37
-
- GR_GP = r2
- GR_ADDR = r2
- GR_CONST1 = r3
- GR_I1 = r8
- GR_EXP = r9
- GR_ADDR2 = r10
- GR_IT1 = r11
- GR_TMP2 = r11
- GR_EXPON = r15
- GR_TMP1 = r16
- GR_TMP6 = r16
- GR_ITB1 = r17
- GR_TMP3 = r18
- GR_TMP4 = r19
- GR_TMP63 = r19
- GR_TMP5 = r20
- GR_EXP_BY_3 = r20
- GR_CONST4 = r21
- GR_TMP6 = r22
- GR_INDEX = r23
- GR_EBIAS = r24
- GR_SIGNIF = r25
- GR_SIGNIF2 = r25
- GR_TEST = r25
- GR_ARGEXP = r26
- GR_CONST2 = r27
- GR_SIGN = r28
- GR_REM = r29
- GR_CONST3 = r30
- GR_SEXP = r31
-
-
-
+// f6-f15
+// r2, r23-r26, r28-r30
+// p6,p7,p8,p12
+#include "libm_support.h"
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(poly_coeffs)
-
- data8 0xaaaaaaaaaaaaaab4, 0x0000bffd // ~ 1/3
- data8 0xbfbc71c71c718e45, 0xbfaf9add3c0bbb43
- data8 0xbfa511edb93dc98d, 0xbf9ee71c45f0dfbc
-LOCAL_OBJECT_END(poly_coeffs)
-
-
-// For every entry B in the frcpa table, this table contains
-// the significands of cbrt(1/B), cbrt(2/B), cbrt(4/B).
-// The index to this table is the same as the frcpa index.
-
-LOCAL_OBJECT_START(T_table)
-
-
- data8 0x80155c748c374836, 0xa160019ed37fb4ae
- data8 0xcb51ddcb9e93095e, 0x8040404b0879f7f9
- data8 0xa1960b5966da4608, 0xcb95f333968ad59b
- data8 0x806b5dce4b405c10, 0xa1cc5dbe6dc2aab4
- data8 0xcbda64292d3ffd97, 0x8096b586974669b1
- data8 0xa202f97995b69c0d, 0xcc1f3184af961596
- data8 0x80bcd273d952a028, 0xa232fe6eb0c0577d
- data8 0xcc5bb1ac954d33e2, 0x80e898c52813f2f3
- data8 0xa26a2582012f6e17, 0xcca12e9831fc6402
- data8 0x81149add67c2d208, 0xa2a197e5d10465cb
- data8 0xcce70a67b64f24ad, 0x813b4e2c856b6e9a
- data8 0xa2d25a532efefbc8, 0xcd24794726477ea5
- data8 0x8167c1dde03de7aa, 0xa30a5bd6e49e4ab8
- data8 0xcd6b096a0b70ee87, 0x818ed973b811135e
- data8 0xa33b9c9b59879e24, 0xcda9177738b15a90
- data8 0x81bbc0c33e13ec98, 0xa3742fca6a3c1f21
- data8 0xcdf05f2247dffab9, 0x81e33e69fbe7504a
- data8 0xa3a5f1273887bf22, 0xce2f0f347f96f906
- data8 0x820aec524e3c23e9, 0xa3d7ef508ff11574
- data8 0xce6e0be0cd551a61, 0x823880f78e70b805
- data8 0xa4115ce30548bc15, 0xceb666b2c347d1de
- data8 0x826097a62a8e5200, 0xa443df0e53df577a
- data8 0xcef609b0cb874f00, 0x8288dfe00e9b5eaf
- data8 0xa4769fa5913c0ec3, 0xcf35fb5447e5c765
- data8 0x82b15a10c5371624, 0xa4a99f303bc7def5
- data8 0xcf763c47ee869f00, 0x82da06a527b18937
- data8 0xa4dcde37779adf4b, 0xcfb6cd3888d71785
- data8 0x8302e60b635ab394, 0xa5105d46152c938a
- data8 0xcff7aed4fbfbb447, 0x832bf8b2feec2f0e
- data8 0xa5441ce89825cb8d, 0xd038e1ce5167e3c6
- data8 0x83553f0ce00e276b, 0xa5781dad3e54d899
- data8 0xd07a66d7bfa0ebba, 0x837eb98b50f8322a
- data8 0xa5ac602406c4e68c, 0xd0bc3ea6b32d1b21
- data8 0x83a270f44c84f699, 0xa5d9601d95c2c0bc
- data8 0xd0f4f0e8f36c1bf8, 0x83cc4d7cfcfac5ca
- data8 0xa60e1e1a2de14745, 0xd1376458e34b037e
- data8 0x83f65f78a8872b4c, 0xa6431f6e3fbd9658
- data8 0xd17a2ca133f78572, 0x8420a75f2f7b53c8
- data8 0xa67864b0d432fda4, 0xd1bd4a80301c5715
- data8 0x844510461ff14209, 0xa6a6444aa0243c0b
- data8 0xd1f71682b2fa4575, 0x846fbd91b930bed2
- data8 0xa6dc094d10f25792, 0xd23ad555f773f059
- data8 0x84947e18234f3294, 0xa70a574cc02bba69
- data8 0xd2752c7039a5bf73, 0x84bf92755825045a
- data8 0xa7409e2af9549084, 0xd2b98ee008c06b59
- data8 0x84e4ac0ee112ba51, 0xa76f5c64ca2cf13b
- data8 0xd2f4735ffd700280, 0x8509ef44b86f20be
- data8 0xa79e4f0babab5dc0, 0xd32f99ed6d9ac0e1
- data8 0x85359d5d91768427, 0xa7d5579ae5164b85
- data8 0xd374f0666c75d51c, 0x855b3bd5b7384357
- data8 0xa804bd3c6fe61cc8, 0xd3b0a7d13618e4a1
- data8 0x858104f0c415f79a, 0xa8345895e5250a5a
- data8 0xd3eca2ea53bcec0c, 0x85a6f90390d29864
- data8 0xa8642a122b44ef0b, 0xd428e23874f13a17
- data8 0x85d3772fcd56a1dd, 0xa89c38ca18f6108b
- data8 0xd46f82fe293bc6d3, 0x85f9c982fcc002f3
- data8 0xa8cc81063b6e87ca, 0xd4ac57e9b7186420
- data8 0x862047e0e7ea554b, 0xa8fd00bfa409285e
- data8 0xd4e972becb04e8b8, 0x8646f2a26f7f5852
- data8 0xa92db8664d5516da, 0xd526d40a7a9b43a3
- data8 0x866dca21754096b5, 0xa95ea86b75cc2c20
- data8 0xd5647c5b73917370, 0x8694ceb8dfd17a37
- data8 0xa98fd141a4992deb, 0xd5a26c4201bd6d13
- data8 0x86bc00c49e9307e8, 0xa9c1335cae7446ba
- data8 0xd5e0a45015350a7e, 0x86dccd74fce79610
- data8 0xa9ea8686f556f645, 0xd614b539c6194104
- data8 0x870453c845acf90f, 0xaa1c52d17906bb19
- data8 0xd6537310e224283f, 0x872c089a1e90342c
- data8 0xaa4e59b046dab887, 0xd6927ab62244c917
- data8 0x8753ec4a92d16c5e, 0xaa809b9c60d1890b
- data8 0xd6d1ccc1fc4ef4b7, 0x877bff3aca19f6b4
- data8 0xaab319102f3f9b33, 0xd71169cea98fdded
- data8 0x879d88b6fe1c324c, 0xaadd5a18c1e21274
- data8 0xd746a66a5bc9f6d9, 0x87c5f346dbf98c3a
- data8 0xab1045f2ac31bdf5, 0xd786ce8f0fae5317
- data8 0x87e7c653efacef2c, 0xab3ae3ab2df7231e
- data8 0xd7bc7ff214c4e75a, 0x881089d4e73ffefc
- data8 0xab6e3f945d1e96fc, 0xd7fd35467a517ed1
- data8 0x88397e6a366f2a8a, 0xaba1d953a08fa94e
- data8 0xd83e38838648d815, 0x885bc559e5e1c081
- data8 0xabcd090db7ef4c3f, 0xd874a1db598b8951
- data8 0x887e2ee392bb7a93, 0xabf864602d7c323d
- data8 0xd8ab42205b80edaf, 0x88a7a8587e404257
- data8 0xac2ca5886ccf9b57, 0xd8ed1849d202f965
- data8 0x88ca5eda67594784, 0xac5861d4aa441f0f
- data8 0xd92432bd5a173685, 0x88f4356166bd590e
- data8 0xac8d183fe3a2fbed, 0xd9669ca45b03c23e
- data8 0x89173a0acf5ce026, 0xacb93703ff51571e
- data8 0xd99e3327cf89574e, 0x893a62a098b6a57b
- data8 0xace5830ad0c3f14b, 0xd9d602b19b100466
- data8 0x895daf637236ae2c, 0xad11fca5d78b3ff2
- data8 0xda0e0ba86c096841, 0x89883b9d1c2fa9c5
- data8 0xad4797fddf91a798, 0xda5195fcdb1c3dce
- data8 0x89abd8dd374a5d7b, 0xad747701e559ebcb
- data8 0xda8a1eb87a491f6c, 0x89cf9b1dcd197fa0
- data8 0xada184a47e9c7613, 0xdac2e230b91c3f84
- data8 0x89f382a258ea79de, 0xadcec13ab0dda8ff
- data8 0xdafbe0d0b66aea30, 0x8a178faf06648f29
- data8 0xadfc2d1a5fd21ba8, 0xdb351b04a8fafced
- data8 0x8a3bc288b3e1d18a, 0xae29c89a5053c33a
- data8 0xdb6e9139e33cdd8e, 0x8a601b74f4d1f835
- data8 0xae5794122b638df9, 0xdba843ded7151ea1
- data8 0x8a849aba14274764, 0xae858fda8137ae0a
- data8 0xdbe2336319b61fc8, 0x8aa9409f16cdbc9b
- data8 0xaeb3bc4ccc56d3d1, 0xdc1c60376789fa68
- data8 0x8ace0d6bbe2cb316, 0xaee219c374c09920
- data8 0xdc56cacda82d0cd5, 0x8af301688ab33558
- data8 0xaf10a899d3235fe7, 0xdc917398f2797814
- data8 0x8b181cdebe6f3206, 0xaf3f692c341fe8b4
- data8 0xdccc5b0d90a3e628, 0x8b3d60185fafcb7c
- data8 0xaf6e5bd7db9ae6c2, 0xdd0781a10469f0f2
- data8 0x8b62cb603bb2fad0, 0xaf9d80fb081cd91b
- data8 0xdd42e7ca0b52838f, 0x8b80d7d6bc4104de
- data8 0xafc35ce063eb3787, 0xdd729ad01c69114d
- data8 0x8ba68bf73ac74f39, 0xaff2ddcb5f28f03d
- data8 0xddae749c001fbf5e, 0x8bcc68fb9f9f7335
- data8 0xb022923b148e05c5, 0xddea8f50a51c69b1
- data8 0x8bf26f31c534fca2, 0xb0527a919adbf58b
- data8 0xde26eb69a0f0f111, 0x8c10f86e13a1a1f9
- data8 0xb078f3ab1d701c65, 0xde576480262399bc
- data8 0x8c3749916cc6abb5, 0xb0a93a6870649f31
- data8 0xde943789645933c8, 0x8c5dc4c4f7706032
- data8 0xb0d9b624d62ec856, 0xded14d58139a28af
- data8 0x8c7cac3a8c42e3e0, 0xb100a5f53fb3c8e1
- data8 0xdf025c00bbf2b5c7, 0x8ca373f1b7bf2716
- data8 0xb131821882f5540a, 0xdf3feb44d723a713
- data8 0x8cc29907fb951294, 0xb158bf8e4cb04055
- data8 0xdf715bc16c159be0, 0x8ce9ae4e9492aac8
- data8 0xb189fd69d56b238f, 0xdfaf66240e29cda8
- data8 0x8d0911dddbfdad0e, 0xb1b189958e8108e4
- data8 0xdfe139cbf6e19bdc, 0x8d3075c4f20f04ee
- data8 0xb1e32a8165b09832, 0xe01fc0fe94d9fc52
- data8 0x8d5018a9d4de77d5, 0xb20b0678fc271eec
- data8 0xe051f92ffcc0bd60, 0x8d77cc47dd143515
- data8 0xb23d0bd3f7592b6e, 0xe090feec9c9a06ac
- data8 0x8d97af6352739cb7, 0xb26538b2db8420dc
- data8 0xe0c39d0c9ff862d6, 0x8db7af523167800f
- data8 0xb28d89e339ceca14, 0xe0f668eeb99f188d
- data8 0x8ddfd80bc68c32ff, 0xb2c022ca12e55a16
- data8 0xe1362890eb663139, 0x8e00197e1e7c88fe
- data8 0xb2e8c6852c6b03f1, 0xe1695c7212aecbaa
- data8 0x8e207859f77e20e7, 0xb3118f4eda9fe40f
- data8 0xe19cbf0391bbbbe9, 0x8e40f4ce60c9f8e2
- data8 0xb33a7d6268109ebe, 0xe1d050901c531e85
- data8 0x8e69ba46cf2fde4d, 0xb36ddbc5ea70ec55
- data8 0xe2110903b4f4047a, 0x8e8a7a00bd7ae63e
- data8 0xb3971e9b39264023, 0xe2450559b4d80b6d
- data8 0x8eab57ef1cf2f529, 0xb3c0877ecc18e24a
- data8 0xe27931a231554ef3, 0x8ecc5442cffb1dad
- data8 0xb3ea16ae3a6c905f, 0xe2ad8e2ac3c5b04b
- data8 0x8eed6f2d2a4acbfe, 0xb413cc67aa0e4d2d
- data8 0xe2e21b41b9694cce, 0x8f0ea8dff24441ff
- data8 0xb43da8e9d163e1af, 0xe316d93615862714
- data8 0x8f385c95d696b817, 0xb47233773b84d425
- data8 0xe3590bd86a0d30f9, 0x8f59dc43edd930f3
- data8 0xb49c6825430fe730, 0xe38e38e38e38e38e
- data8 0x8f7b7b5f5ffad1c4, 0xb4c6c46bcdb27dcf
- data8 0xe3c397d1e6db7839, 0x8f9d3a1bea165f38
- data8 0xb4f1488c0b35d26f, 0xe3f928f5953feb9e
- data8 0x8fbf18adc34b66da, 0xb51bf4c7c51f0168
- data8 0xe42eeca17c62886c, 0x8fe117499e356095
- data8 0xb546c9616087ab9c, 0xe464e32943446305
- data8 0x90033624aa685f8d, 0xb571c69bdffd9a70
- data8 0xe49b0ce15747a8a2, 0x9025757495f36b86
- data8 0xb59cecbae56984c3, 0xe4d16a1eee94e9d4
- data8 0x903f3a5dcc091203, 0xb5bd64512bb14bb7
- data8 0xe4fa52107353f67d, 0x9061b2fceb2bdbab
- data8 0xb5e8d2a4bf5ba416, 0xe5310a471f4d2dc3
- data8 0x90844ca7211032a7, 0xb6146a9a1bc47819
- data8 0xe567f6f1c2b9c224, 0x90a7079403e6a15d
- data8 0xb6402c7749d621c0, 0xe59f18689a9e4c9a
- data8 0x90c9e3fbafd63799, 0xb66c1882fb435ea2
- data8 0xe5d66f04b8a68ecf, 0x90ece216c8a16ee4
- data8 0xb6982f048c999a56, 0xe60dfb2005c192e9
- data8 0x9110021e7b516f0a, 0xb6c47044075b4142
- data8 0xe645bd1544c7ea51, 0x912a708a39be9075
- data8 0xb6e5bd6bfd02bafd, 0xe66fb21b505b20a0
- data8 0x914dcc7b31146370, 0xb7124a2736ff8ef2
- data8 0xe6a7d32af4a7c59a, 0x91714af8cfe984d5
- data8 0xb73f026a01e94177, 0xe6e02b129c6a5ae4
- data8 0x918c00a6f3795e97, 0xb760a959f1d0a7a7
- data8 0xe70a9136a7403039, 0x91afbc299ed0295d
- data8 0xb78dae7e06868ab0, 0xe74349fb2d92a589
- data8 0x91d39add3e958db0, 0xb7badff8ad9e4e02
- data8 0xe77c3a9c86ed7d42, 0x91ee9920a8974d92
- data8 0xb7dce25b8e17ae9f, 0xe7a713f88151518a
- data8 0x9212b5fcac537c19, 0xb80a6226904045e2
- data8 0xe7e067453317ed2b, 0x9236f6b256923fcf
- data8 0xb8380f1cafd73c1c, 0xe819f37a81871bb5
- data8 0x92523ee6f90dcfc3, 0xb85a6ea8e321b4d8
- data8 0xe8454236bfaeca14, 0x9276bef031e6eb79
- data8 0xb8886b684ae7d2fa, 0xe87f32f24c3fc90e
- data8 0x929236ec237a24ad, 0xb8ab0726fa00cf5d
- data8 0xe8aacd8688892ba6, 0x92b6f70b7efe9dc3
- data8 0xb8d954a4d13b7cb1, 0xe8e523fd32f606f7
- data8 0x92d29f61eec7dc2b, 0xb8fc2d4f6cd9f04a
- data8 0xe9110b5311407927, 0x92f7a05d5b8ba92f
- data8 0xb92acc851476b1ab, 0xe94bc8bf0c108fa3
- data8 0x931379a403be5c16, 0xb94de2d841a184c2
- data8 0xe977fdc439c2ca3c, 0x9338bc44de2e3f34
- data8 0xb97cd4c36c92693c, 0xe9b3236528fc349e
- data8 0x9354c71412c69486, 0xb9a0297f172665e3
- data8 0xe9dfa70b745ac1b4, 0x937a4c273907e262
- data8 0xb9cf6f21e36c3924, 0xea1b36268d0eaa38
- data8 0x93968919f6e7975d, 0xb9f3030951267208
- data8 0xea480963fd394197, 0x93bc516fdd4680c9
- data8 0xba229d6a618e7c59, 0xea84034425f27484
- data8 0x93d8c123d9be59b2, 0xba467144459f9855
- data8 0xeab12713138dd1cc, 0x93f546c955e60076
- data8 0xba6a60c3c48f1a4b, 0xeade6db73a5e503b
- data8 0x941b70a65879079f, 0xba9a76056b67ee7a
- data8 0xeb1b0268343b121b, 0x943829f337410591
- data8 0xbabea699563ada6e, 0xeb489b0b2bdb5f14
- data8 0x9454f995765bc4d2, 0xbae2f350b262cc4b
- data8 0xeb765721e85f03d0, 0x947b86b57f5842ed
- data8 0xbb1385a23be24e57, 0xebb389645f222f62
- data8 0x94988aeb23470f86, 0xbb3814975e17c680
- data8 0xebe198f090607e0c, 0x94b5a5dc9695f42a
- data8 0xbb5cc031009bf467, 0xec0fcc9321024509
- data8 0x94d2d7a9170d8b42, 0xbb81889680024764
- data8 0xec3e247da8b82f61, 0x94f9e87dd78bf019
- data8 0xbbb2c0d8703ae95d, 0xec7c27d21321c9f7
- data8 0x95175019a503d89e, 0xbbd7cd09ba3c5463
- data8 0xecaad5278824e453, 0x9534cefa625fcb3a
- data8 0xbbfcf68c4977718f, 0xecd9a76d097d4e77
- data8 0x955265405c491a25, 0xbc223d88cfc88eee
- data8 0xed089ed5dcd99446, 0x9570130c1f9bb857
- data8 0xbc47a2284fee4ff8, 0xed37bb95add09a1c
- data8 0x9597ca4119525184, 0xbc79ac0916ed7b8a
- data8 0xed76c70508f904b6, 0x95b5af6fb5aa4d3c
- data8 0xbc9f5670d1a13030, 0xeda63bb05e7f93c6
- data8 0x95d3ac9273aafd7a, 0xbcc51f068cb95c1d
- data8 0xedd5d661daed2dc4, 0x95f1c1cafdfd3684
- data8 0xbceb05f4b30a9bc0, 0xee05974eef86b903
- data8 0x960fef3b430b8d5f, 0xbd110b6604c7d306
- data8 0xee357ead791fc670, 0x962e350575b409c5
- data8 0xbd372f8598620f19, 0xee658cb3c134a463
- data8 0x964c934c0dfc1708, 0xbd5d727edb6b3c7e
- data8 0xee95c1987f080211, 0x966b0a31c9c6bc7d
- data8 0xbd83d47d937bbc6d, 0xeec61d92d8c4314f
- data8 0x968999d9ad8d264e, 0xbdaa55addf1ae47d
- data8 0xeef6a0da64a014ac, 0x96a8426705198795
- data8 0xbdd0f63c36aa73f0, 0xef274ba72a07c811
- data8 0x96c703fd64445ee5, 0xbdf7b6556d550a15
- data8 0xef581e31a2c91260, 0x96e5dec0a7b4268d
- data8 0xbe1e9626b1ffa96b, 0xef8918b2bc43aec6
- data8 0x9704d2d4f59f79f3, 0xbe4595dd903e5371
- data8 0xefba3b63d89d7cbf, 0x9723e05ebe91b9b0
- data8 0xbe6cb5a7f14bc935, 0xefeb867ecffaa607
- data8 0x97430782be323831, 0xbe93f5b41d047cf7
- data8 0xf01cfa3df1b9c9fa, 0x97624865fc0df8bf
- data8 0xbebb5630bae4c15f, 0xf04e96dc05b43e2d
- data8 0x9781a32dcc640b2a, 0xbee2d74cd30a430c
- data8 0xf0805c944d827454, 0x97a117ffd0f48e46
- data8 0xbf0a7937cf38d981, 0xf0b24ba285c495cb
- data8 0x97c0a701f9d263c9, 0xbf323c217be2bc8c
- data8 0xf0e46442e76f6569, 0x97e0505a8637a036
- data8 0xbf5a203a09342bbb, 0xf116a6b2291d7896
- data8 0x97f57a9fb0b08c6e, 0xbf74cad1c14ebfc4
- data8 0xf1383fa9e9b5b381, 0x9815503365914a9d
- data8 0xbf9ce6a497a89f78, 0xf16ac84f90083b9b
- data8 0x98354085054fd204, 0xbfc52428bec6e72f
- data8 0xf19d7b686dcb03d7, 0x98554bbbf8a77902
- data8 0xbfed838fddab024b, 0xf1d0593311db1757
- data8 0x987571fffb7f94f6, 0xc016050c0420981a
- data8 0xf20361ee8f1c711e, 0x9895b3791dd03c23
- data8 0xc03ea8cfabddc330, 0xf23695da7de51d3f
- data8 0x98ab43a5fc65d0c8, 0xc059d3cbd65ddbce
- data8 0xf258d095e465cc35, 0x98cbb2d196bd713d
- data8 0xc082b122a3c78c9d, 0xf28c4d0bfc982b34
- data8 0x98ec3d9ec7b6f21a, 0xc0abb1499ae736c4
- data8 0xf2bff55eb3f0ea71, 0x990ce436db5e8344
- data8 0xc0d4d474c3aedaaf, 0xf2f3c9cf9884636e
- data8 0x9922b8218160967a, 0xc0f054ca33eb3437
- data8 0xf31670135ab9cc0f, 0x99438d686f75779d
- data8 0xc119b2c67e600ed0, 0xf34a8e9f0b54cdfb
- data8 0x99647eea131fa20b, 0xc1433453de2033ff
- data8 0xf37ed9fa6b8add3f, 0x997a85045a47c6d0
- data8 0xc15ef3e44e10032d, 0xf3a1cfe884ef6bb6
- data8 0x999ba5f14f8add02, 0xc188b130431d80e6
- data8 0xf3d66689dcc8e8d3, 0x99bce38b5465ecae
- data8 0xc1b2929d6067730e, 0xf40b2ab069d5c96a
- data8 0x99d31ca0887f30f9, 0xc1ce9268f31cc734
- data8 0xf42e718b90c8bc16, 0x99f48a669c74c09e
- data8 0xc1f8b0877c1b0c08, 0xf463822a0a3b4b00
- data8 0x9a16154eb445c873, 0xc222f35a87b415ba
- data8 0xf498c1076015faf8, 0x9a2c822ec198d667
- data8 0xc23f3467349e5c88, 0xf4bc5a19a33990b5
- data8 0x9a4e3e080cd91b78, 0xc269b4e40e088c01
- data8 0xf4f1e6a7d6f5425f, 0x9a70177afe52322e
- data8 0xc2945aac24daaf6e, 0xf527a232cf6be334
- data8 0x9a86b8fa94eebe10, 0xc2b0de05e43c1d66
- data8 0xf54b8ecdcda90851, 0x9aa8c42866ae2958
- data8 0xc2dbc275e1229d09, 0xf5819949c7ad87b4
- data8 0x9abf86f9e12fc45e, 0xc2f86fca9d80eeff
- data8 0xf5a5bac9213b48a9, 0x9ae1c462fc05f49d
- data8 0xc323938449a2587e, 0xf5dc1501f324a812
- data8 0x9af8a8dc936b84d0, 0xc3406b40a538ed20
- data8 0xf6006bee86b5589e, 0x9b1b19033be35730
- data8 0xc36bcee8211d15e0, 0xf63716b2fa067fa4
- data8 0x9b3da7daf04c2892, 0xc397593adf2ba366
- data8 0xf66df22fb6132b9c, 0x9b54c2e4c8a9012b
- data8 0xc3b475b6206155d5, 0xf6929fb98225deb1
- data8 0x9b77854e6c661200, 0xc3e0410243b97383
- data8 0xf6c9cd13021e3fea, 0x9b8ec2e678d56d2f
- data8 0xc3fd890709833d37, 0xf6eeb177472cedae
- data8 0x9ba60e6a5ca133b6, 0xc41ae295f7e7fa06
- data8 0xf713abf4cb0b3afb, 0x9bc919ea66a151a4
- data8 0xc44709f7bb8a4dd2, 0xf74b4d5333684ef1
- data8 0x9be0887c09ef82bb, 0xc4648fb0e0bec4c1
- data8 0xf7707f75a72f8e94, 0x9c03c8d5fffc3503
- data8 0xc490f9a94695ba14, 0xf7a874b97927af44
- data8 0x9c1b5ad21a81cbb9, 0xc4aeac0173b7d390
- data8 0xf7cddf140aedf1d8, 0x9c3ed09216e9ca02
- data8 0xc4db5941007aa853, 0xf806291bacb7f7a9
- data8 0x9c568656c0423def, 0xc4f938aec206291a
- data8 0xf82bcc43b92eafef, 0x9c7a320af242ce60
- data8 0xc52629e899dfd622, 0xf8646bf0defb759e
- data8 0x9c920bf7a8c01dc2, 0xc54436e44043b965
- data8 0xf88a487dfc3ff5f7, 0x9ca9f475d98b159c
- data8 0xc562563abf9ea07f, 0xf8b03c2b46cdc17f
- data8 0x9ccdeca60e80b5f8, 0xc58fa7d1dc42921c
- data8 0xf8e95541c152ae7a, 0x9ce5f9d4653d4902
- data8 0xc5adf561b91e110a, 0xf90f832c2700c160
- data8 0x9cfe15cb38bfdd8e, 0xc5cc5591bdbd82fa
- data8 0xf935c88e0c7f419b, 0x9d225b983f6c1f96
- data8 0xc5fa08f1ff20593c, 0xf96f5cd84fd86873
- data8 0x9d3a9cca32261ed7, 0xc618980a79ce6862
- data8 0xf995dd53ebdd9d6d, 0x9d52ecfccebe1768
- data8 0xc6373a09e34b50fa, 0xf9bc75a034436a41
- data8 0x9d77818d95b82f86, 0xc66550a6e0baaf35
- data8 0xf9f686f26d5518de, 0x9d8ff7893fa4706c
- data8 0xc6842241926342c9, 0xfa1d5b39b910a8c5
- data8 0x9da87cbef36f2a5e, 0xc6a3070b7c93bb9e
- data8 0xfa4447acc4ecbfd2, 0x9dcd6140b4a35aeb
- data8 0xc6d18260bb84081b, 0xfa7ed7e51e6fdfb4
- data8 0x9de60cd06dc6e2d4, 0xc6f0977c9416828b
- data8 0xfaa601394d49a1a0, 0x9dfec7d4cc43b76f
- data8 0xc70fc0117c641630, 0xfacd431644ce0e40
- data8 0x9e17925ec9fccc4a, 0xc72efc34d7e615be
- data8 0xfaf49d96f7a75909, 0x9e3cdf6db57dc075
- data8 0xc75dfb441594141e, 0xfb2fd3c65e562fd5
- data8 0x9e55d110b63637a8, 0xc77d68aa019bda4c
- data8 0xfb576c5762024805, 0x9e6ed27594550d2e
- data8 0xc79ce9ea478dbc4f, 0xfb7f1debc22c4040
- data8 0x9e87e3adc385d393, 0xc7bc7f1ae453219d
- data8 0xfba6e89f32d0190a, 0x9ead9b54b37a1055
- data8 0xc7ec0476e15e141a, 0xfbe2c803a0894893
- data8 0x9ec6d46a3d7de215, 0xc80bcbe16f1d540f
- data8 0xfc0ad1ff0ed9ecf0, 0x9ee01d9108be3154
- data8 0xc82ba78a5d349735, 0xfc32f57bdfbcbe7f
- data8 0x9ef976db07288d04, 0xc84b978847a06b87
- data8 0xfc5b32968f99b21c, 0x9f12e05a4759ec25
- data8 0xc86b9bf1ee817bc6, 0xfc83896bc861ab08
- data8 0x9f2c5a20f4da6668, 0xc88bb4de3667cdf4
- data8 0xfcabfa1861ed4815, 0x9f52af78ed1733ca
- data8 0xc8bc00e7fe9e23a3, 0xfce8d3cea7d3163e
- data8 0x9f6c52426a39d003, 0xc8dc4d7ff2d25232
- data8 0xfd118595143ee273, 0x9f860593d42fd7f3
- data8 0xc8fcaeebcb40eb47, 0xfd3a519943d4865a
- data8 0x9f9fc97fdb96bd51, 0xc91d25431426a663
- data8 0xfd6337f8e1ae5a4b, 0x9fb99e194f4a7037
- data8 0xc93db09d7fdb2949, 0xfd8c38d1c8e927eb
- data8 0x9fd383731ca51db9, 0xc95e5112e721582a
- data8 0xfdb5544205095a53, 0x9fed79a04fbf9423
- data8 0xc97f06bb49787677, 0xfdde8a67d2613531
- data8 0xa00780b413b24ee8, 0xc99fd1aecd6e1b06
- data8 0xfe07db619e781611, 0xa02eab2c4474b0cd
- data8 0xc9d12a3e27bb1625, 0xfe460768d80bf758
- data8 0xa048dcd51ccfd142, 0xc9f22ad82ba3d5f0
- data8 0xfe6f9bfb06cd32f6, 0xa0631fa894b11b8d
- data8 0xca134113105e67b2, 0xfe994bcd3d14fcc2
- data8 0xa07d73ba65e680af, 0xca346d07b045a876
- data8 0xfec316fecaf3f2ab, 0xa097d91e6aaf71b0
- data8 0xca55aecf0e94bb88, 0xfeecfdaf33fadb80
- data8 0xa0b24fe89e02602f, 0xca77068257be9bab
- data8 0xff16fffe2fa8fad6, 0xa0ccd82d1bd2f68b
- data8 0xca98743ae1c693a8, 0xff411e0ba9db886d
- data8 0xa0e77200215909e6, 0xcab9f8122c99a101
- data8 0xff6b57f7c33e4e9a, 0xa1021d760d584855
- data8 0xcadb9221e268c3b5, 0xff95ade2d1bd7358
- data8 0xa11cdaa36068a57d, 0xcafd4283d8043dfd
- data8 0xffc01fed60f86fb5, 0xa137a99cbd3f880b
- data8 0xcb1f09520d37c6fb, 0xffeaae3832b63956
-LOCAL_OBJECT_END(T_table)
-
-
-
-
-
-
+poly_coeffs:
+ASM_TYPE_DIRECTIVE(poly_coeffs,@object)
+data8 0xaaaaaaaaaaaaaaab, 0x00003ffd // 1/3
+data8 0x3fbc71c71c71c71d, 0x3faf9add3c0ca459
+data8 0x3fa511e8d2b3183b, 0x3f9ee7113506ac13
+ASM_SIZE_DIRECTIVE(poly_coeffs)
+
+T_table:
+ASM_TYPE_DIRECTIVE(T_table,@object)
+
+data8 0x80155c748c374836, 0xa160019ed37fb4ae
+data8 0xcb51ddcb9e93095e, 0x8040404b0879f7f9
+data8 0xa1960b5966da4608, 0xcb95f333968ad59b
+data8 0x806b5dce4b405c10, 0xa1cc5dbe6dc2aab4
+data8 0xcbda64292d3ffd97, 0x8096b586974669b1
+data8 0xa202f97995b69c0d, 0xcc1f3184af961596
+data8 0x80bcd273d952a028, 0xa232fe6eb0c0577d
+data8 0xcc5bb1ac954d33e2, 0x80e898c52813f2f3
+data8 0xa26a2582012f6e17, 0xcca12e9831fc6402
+data8 0x81149add67c2d208, 0xa2a197e5d10465cb
+data8 0xcce70a67b64f24ad, 0x813b4e2c856b6e9a
+data8 0xa2d25a532efefbc8, 0xcd24794726477ea5
+data8 0x8167c1dde03de7aa, 0xa30a5bd6e49e4ab8
+data8 0xcd6b096a0b70ee87, 0x818ed973b811135e
+data8 0xa33b9c9b59879e24, 0xcda9177738b15a90
+data8 0x81bbc0c33e13ec98, 0xa3742fca6a3c1f21
+data8 0xcdf05f2247dffab9, 0x81e33e69fbe7504a
+data8 0xa3a5f1273887bf22, 0xce2f0f347f96f906
+data8 0x820aec524e3c23e9, 0xa3d7ef508ff11574
+data8 0xce6e0be0cd551a61, 0x823880f78e70b805
+data8 0xa4115ce30548bc15, 0xceb666b2c347d1de
+data8 0x826097a62a8e5200, 0xa443df0e53df577a
+data8 0xcef609b0cb874f00, 0x8288dfe00e9b5eaf
+data8 0xa4769fa5913c0ec3, 0xcf35fb5447e5c765
+data8 0x82b15a10c5371624, 0xa4a99f303bc7def5
+data8 0xcf763c47ee869f00, 0x82da06a527b18937
+data8 0xa4dcde37779adf4b, 0xcfb6cd3888d71785
+data8 0x8302e60b635ab394, 0xa5105d46152c938a
+data8 0xcff7aed4fbfbb447, 0x832bf8b2feec2f0e
+data8 0xa5441ce89825cb8d, 0xd038e1ce5167e3c6
+data8 0x83553f0ce00e276b, 0xa5781dad3e54d899
+data8 0xd07a66d7bfa0ebba, 0x837eb98b50f8322a
+data8 0xa5ac602406c4e68c, 0xd0bc3ea6b32d1b21
+data8 0x83a270f44c84f699, 0xa5d9601d95c2c0bc
+data8 0xd0f4f0e8f36c1bf8, 0x83cc4d7cfcfac5ca
+data8 0xa60e1e1a2de14745, 0xd1376458e34b037e
+data8 0x83f65f78a8872b4c, 0xa6431f6e3fbd9658
+data8 0xd17a2ca133f78572, 0x8420a75f2f7b53c8
+data8 0xa67864b0d432fda4, 0xd1bd4a80301c5715
+data8 0x844510461ff14209, 0xa6a6444aa0243c0b
+data8 0xd1f71682b2fa4575, 0x846fbd91b930bed2
+data8 0xa6dc094d10f25792, 0xd23ad555f773f059
+data8 0x84947e18234f3294, 0xa70a574cc02bba69
+data8 0xd2752c7039a5bf73, 0x84bf92755825045a
+data8 0xa7409e2af9549084, 0xd2b98ee008c06b59
+data8 0x84e4ac0ee112ba51, 0xa76f5c64ca2cf13b
+data8 0xd2f4735ffd700280, 0x8509ef44b86f20be
+data8 0xa79e4f0babab5dc0, 0xd32f99ed6d9ac0e1
+data8 0x85359d5d91768427, 0xa7d5579ae5164b85
+data8 0xd374f0666c75d51c, 0x855b3bd5b7384357
+data8 0xa804bd3c6fe61cc8, 0xd3b0a7d13618e4a1
+data8 0x858104f0c415f79a, 0xa8345895e5250a5a
+data8 0xd3eca2ea53bcec0c, 0x85a6f90390d29864
+data8 0xa8642a122b44ef0b, 0xd428e23874f13a17
+data8 0x85d3772fcd56a1dd, 0xa89c38ca18f6108b
+data8 0xd46f82fe293bc6d3, 0x85f9c982fcc002f3
+data8 0xa8cc81063b6e87ca, 0xd4ac57e9b7186420
+data8 0x862047e0e7ea554b, 0xa8fd00bfa409285e
+data8 0xd4e972becb04e8b8, 0x8646f2a26f7f5852
+data8 0xa92db8664d5516da, 0xd526d40a7a9b43a3
+data8 0x866dca21754096b5, 0xa95ea86b75cc2c20
+data8 0xd5647c5b73917370, 0x8694ceb8dfd17a37
+data8 0xa98fd141a4992deb, 0xd5a26c4201bd6d13
+data8 0x86bc00c49e9307e8, 0xa9c1335cae7446ba
+data8 0xd5e0a45015350a7e, 0x86dccd74fce79610
+data8 0xa9ea8686f556f645, 0xd614b539c6194104
+data8 0x870453c845acf90f, 0xaa1c52d17906bb19
+data8 0xd6537310e224283f, 0x872c089a1e90342c
+data8 0xaa4e59b046dab887, 0xd6927ab62244c917
+data8 0x8753ec4a92d16c5e, 0xaa809b9c60d1890b
+data8 0xd6d1ccc1fc4ef4b7, 0x877bff3aca19f6b4
+data8 0xaab319102f3f9b33, 0xd71169cea98fdded
+data8 0x879d88b6fe1c324c, 0xaadd5a18c1e21274
+data8 0xd746a66a5bc9f6d9, 0x87c5f346dbf98c3a
+data8 0xab1045f2ac31bdf5, 0xd786ce8f0fae5317
+data8 0x87e7c653efacef2c, 0xab3ae3ab2df7231e
+data8 0xd7bc7ff214c4e75a, 0x881089d4e73ffefc
+data8 0xab6e3f945d1e96fc, 0xd7fd35467a517ed1
+data8 0x88397e6a366f2a8a, 0xaba1d953a08fa94e
+data8 0xd83e38838648d815, 0x885bc559e5e1c081
+data8 0xabcd090db7ef4c3f, 0xd874a1db598b8951
+data8 0x887e2ee392bb7a93, 0xabf864602d7c323d
+data8 0xd8ab42205b80edaf, 0x88a7a8587e404257
+data8 0xac2ca5886ccf9b57, 0xd8ed1849d202f965
+data8 0x88ca5eda67594784, 0xac5861d4aa441f0f
+data8 0xd92432bd5a173685, 0x88f4356166bd590e
+data8 0xac8d183fe3a2fbed, 0xd9669ca45b03c23e
+data8 0x89173a0acf5ce026, 0xacb93703ff51571e
+data8 0xd99e3327cf89574e, 0x893a62a098b6a57b
+data8 0xace5830ad0c3f14b, 0xd9d602b19b100466
+data8 0x895daf637236ae2c, 0xad11fca5d78b3ff2
+data8 0xda0e0ba86c096841, 0x89883b9d1c2fa9c5
+data8 0xad4797fddf91a798, 0xda5195fcdb1c3dce
+data8 0x89abd8dd374a5d7b, 0xad747701e559ebcb
+data8 0xda8a1eb87a491f6c, 0x89cf9b1dcd197fa0
+data8 0xada184a47e9c7613, 0xdac2e230b91c3f84
+data8 0x89f382a258ea79de, 0xadcec13ab0dda8ff
+data8 0xdafbe0d0b66aea30, 0x8a178faf06648f29
+data8 0xadfc2d1a5fd21ba8, 0xdb351b04a8fafced
+data8 0x8a3bc288b3e1d18a, 0xae29c89a5053c33a
+data8 0xdb6e9139e33cdd8e, 0x8a601b74f4d1f835
+data8 0xae5794122b638df9, 0xdba843ded7151ea1
+data8 0x8a849aba14274764, 0xae858fda8137ae0a
+data8 0xdbe2336319b61fc8, 0x8aa9409f16cdbc9b
+data8 0xaeb3bc4ccc56d3d1, 0xdc1c60376789fa68
+data8 0x8ace0d6bbe2cb316, 0xaee219c374c09920
+data8 0xdc56cacda82d0cd5, 0x8af301688ab33558
+data8 0xaf10a899d3235fe7, 0xdc917398f2797814
+data8 0x8b181cdebe6f3206, 0xaf3f692c341fe8b4
+data8 0xdccc5b0d90a3e628, 0x8b3d60185fafcb7c
+data8 0xaf6e5bd7db9ae6c2, 0xdd0781a10469f0f2
+data8 0x8b62cb603bb2fad0, 0xaf9d80fb081cd91b
+data8 0xdd42e7ca0b52838f, 0x8b80d7d6bc4104de
+data8 0xafc35ce063eb3787, 0xdd729ad01c69114d
+data8 0x8ba68bf73ac74f39, 0xaff2ddcb5f28f03d
+data8 0xddae749c001fbf5e, 0x8bcc68fb9f9f7335
+data8 0xb022923b148e05c5, 0xddea8f50a51c69b1
+data8 0x8bf26f31c534fca2, 0xb0527a919adbf58b
+data8 0xde26eb69a0f0f111, 0x8c10f86e13a1a1f9
+data8 0xb078f3ab1d701c65, 0xde576480262399bc
+data8 0x8c3749916cc6abb5, 0xb0a93a6870649f31
+data8 0xde943789645933c8, 0x8c5dc4c4f7706032
+data8 0xb0d9b624d62ec856, 0xded14d58139a28af
+data8 0x8c7cac3a8c42e3e0, 0xb100a5f53fb3c8e1
+data8 0xdf025c00bbf2b5c7, 0x8ca373f1b7bf2716
+data8 0xb131821882f5540a, 0xdf3feb44d723a713
+data8 0x8cc29907fb951294, 0xb158bf8e4cb04055
+data8 0xdf715bc16c159be0, 0x8ce9ae4e9492aac8
+data8 0xb189fd69d56b238f, 0xdfaf66240e29cda8
+data8 0x8d0911dddbfdad0e, 0xb1b189958e8108e4
+data8 0xdfe139cbf6e19bdc, 0x8d3075c4f20f04ee
+data8 0xb1e32a8165b09832, 0xe01fc0fe94d9fc52
+data8 0x8d5018a9d4de77d5, 0xb20b0678fc271eec
+data8 0xe051f92ffcc0bd60, 0x8d77cc47dd143515
+data8 0xb23d0bd3f7592b6e, 0xe090feec9c9a06ac
+data8 0x8d97af6352739cb7, 0xb26538b2db8420dc
+data8 0xe0c39d0c9ff862d6, 0x8db7af523167800f
+data8 0xb28d89e339ceca14, 0xe0f668eeb99f188d
+data8 0x8ddfd80bc68c32ff, 0xb2c022ca12e55a16
+data8 0xe1362890eb663139, 0x8e00197e1e7c88fe
+data8 0xb2e8c6852c6b03f1, 0xe1695c7212aecbaa
+data8 0x8e207859f77e20e7, 0xb3118f4eda9fe40f
+data8 0xe19cbf0391bbbbe9, 0x8e40f4ce60c9f8e2
+data8 0xb33a7d6268109ebe, 0xe1d050901c531e85
+data8 0x8e69ba46cf2fde4d, 0xb36ddbc5ea70ec55
+data8 0xe2110903b4f4047a, 0x8e8a7a00bd7ae63e
+data8 0xb3971e9b39264023, 0xe2450559b4d80b6d
+data8 0x8eab57ef1cf2f529, 0xb3c0877ecc18e24a
+data8 0xe27931a231554ef3, 0x8ecc5442cffb1dad
+data8 0xb3ea16ae3a6c905f, 0xe2ad8e2ac3c5b04b
+data8 0x8eed6f2d2a4acbfe, 0xb413cc67aa0e4d2d
+data8 0xe2e21b41b9694cce, 0x8f0ea8dff24441ff
+data8 0xb43da8e9d163e1af, 0xe316d93615862714
+data8 0x8f385c95d696b817, 0xb47233773b84d425
+data8 0xe3590bd86a0d30f9, 0x8f59dc43edd930f3
+data8 0xb49c6825430fe730, 0xe38e38e38e38e38e
+data8 0x8f7b7b5f5ffad1c4, 0xb4c6c46bcdb27dcf
+data8 0xe3c397d1e6db7839, 0x8f9d3a1bea165f38
+data8 0xb4f1488c0b35d26f, 0xe3f928f5953feb9e
+data8 0x8fbf18adc34b66da, 0xb51bf4c7c51f0168
+data8 0xe42eeca17c62886c, 0x8fe117499e356095
+data8 0xb546c9616087ab9c, 0xe464e32943446305
+data8 0x90033624aa685f8d, 0xb571c69bdffd9a70
+data8 0xe49b0ce15747a8a2, 0x9025757495f36b86
+data8 0xb59cecbae56984c3, 0xe4d16a1eee94e9d4
+data8 0x903f3a5dcc091203, 0xb5bd64512bb14bb7
+data8 0xe4fa52107353f67d, 0x9061b2fceb2bdbab
+data8 0xb5e8d2a4bf5ba416, 0xe5310a471f4d2dc3
+data8 0x90844ca7211032a7, 0xb6146a9a1bc47819
+data8 0xe567f6f1c2b9c224, 0x90a7079403e6a15d
+data8 0xb6402c7749d621c0, 0xe59f18689a9e4c9a
+data8 0x90c9e3fbafd63799, 0xb66c1882fb435ea2
+data8 0xe5d66f04b8a68ecf, 0x90ece216c8a16ee4
+data8 0xb6982f048c999a56, 0xe60dfb2005c192e9
+data8 0x9110021e7b516f0a, 0xb6c47044075b4142
+data8 0xe645bd1544c7ea51, 0x912a708a39be9075
+data8 0xb6e5bd6bfd02bafd, 0xe66fb21b505b20a0
+data8 0x914dcc7b31146370, 0xb7124a2736ff8ef2
+data8 0xe6a7d32af4a7c59a, 0x91714af8cfe984d5
+data8 0xb73f026a01e94177, 0xe6e02b129c6a5ae4
+data8 0x918c00a6f3795e97, 0xb760a959f1d0a7a7
+data8 0xe70a9136a7403039, 0x91afbc299ed0295d
+data8 0xb78dae7e06868ab0, 0xe74349fb2d92a589
+data8 0x91d39add3e958db0, 0xb7badff8ad9e4e02
+data8 0xe77c3a9c86ed7d42, 0x91ee9920a8974d92
+data8 0xb7dce25b8e17ae9f, 0xe7a713f88151518a
+data8 0x9212b5fcac537c19, 0xb80a6226904045e2
+data8 0xe7e067453317ed2b, 0x9236f6b256923fcf
+data8 0xb8380f1cafd73c1c, 0xe819f37a81871bb5
+data8 0x92523ee6f90dcfc3, 0xb85a6ea8e321b4d8
+data8 0xe8454236bfaeca14, 0x9276bef031e6eb79
+data8 0xb8886b684ae7d2fa, 0xe87f32f24c3fc90e
+data8 0x929236ec237a24ad, 0xb8ab0726fa00cf5d
+data8 0xe8aacd8688892ba6, 0x92b6f70b7efe9dc3
+data8 0xb8d954a4d13b7cb1, 0xe8e523fd32f606f7
+data8 0x92d29f61eec7dc2b, 0xb8fc2d4f6cd9f04a
+data8 0xe9110b5311407927, 0x92f7a05d5b8ba92f
+data8 0xb92acc851476b1ab, 0xe94bc8bf0c108fa3
+data8 0x931379a403be5c16, 0xb94de2d841a184c2
+data8 0xe977fdc439c2ca3c, 0x9338bc44de2e3f34
+data8 0xb97cd4c36c92693c, 0xe9b3236528fc349e
+data8 0x9354c71412c69486, 0xb9a0297f172665e3
+data8 0xe9dfa70b745ac1b4, 0x937a4c273907e262
+data8 0xb9cf6f21e36c3924, 0xea1b36268d0eaa38
+data8 0x93968919f6e7975d, 0xb9f3030951267208
+data8 0xea480963fd394197, 0x93bc516fdd4680c9
+data8 0xba229d6a618e7c59, 0xea84034425f27484
+data8 0x93d8c123d9be59b2, 0xba467144459f9855
+data8 0xeab12713138dd1cc, 0x93f546c955e60076
+data8 0xba6a60c3c48f1a4b, 0xeade6db73a5e503b
+data8 0x941b70a65879079f, 0xba9a76056b67ee7a
+data8 0xeb1b0268343b121b, 0x943829f337410591
+data8 0xbabea699563ada6e, 0xeb489b0b2bdb5f14
+data8 0x9454f995765bc4d2, 0xbae2f350b262cc4b
+data8 0xeb765721e85f03d0, 0x947b86b57f5842ed
+data8 0xbb1385a23be24e57, 0xebb389645f222f62
+data8 0x94988aeb23470f86, 0xbb3814975e17c680
+data8 0xebe198f090607e0c, 0x94b5a5dc9695f42a
+data8 0xbb5cc031009bf467, 0xec0fcc9321024509
+data8 0x94d2d7a9170d8b42, 0xbb81889680024764
+data8 0xec3e247da8b82f61, 0x94f9e87dd78bf019
+data8 0xbbb2c0d8703ae95d, 0xec7c27d21321c9f7
+data8 0x95175019a503d89e, 0xbbd7cd09ba3c5463
+data8 0xecaad5278824e453, 0x9534cefa625fcb3a
+data8 0xbbfcf68c4977718f, 0xecd9a76d097d4e77
+data8 0x955265405c491a25, 0xbc223d88cfc88eee
+data8 0xed089ed5dcd99446, 0x9570130c1f9bb857
+data8 0xbc47a2284fee4ff8, 0xed37bb95add09a1c
+data8 0x9597ca4119525184, 0xbc79ac0916ed7b8a
+data8 0xed76c70508f904b6, 0x95b5af6fb5aa4d3c
+data8 0xbc9f5670d1a13030, 0xeda63bb05e7f93c6
+data8 0x95d3ac9273aafd7a, 0xbcc51f068cb95c1d
+data8 0xedd5d661daed2dc4, 0x95f1c1cafdfd3684
+data8 0xbceb05f4b30a9bc0, 0xee05974eef86b903
+data8 0x960fef3b430b8d5f, 0xbd110b6604c7d306
+data8 0xee357ead791fc670, 0x962e350575b409c5
+data8 0xbd372f8598620f19, 0xee658cb3c134a463
+data8 0x964c934c0dfc1708, 0xbd5d727edb6b3c7e
+data8 0xee95c1987f080211, 0x966b0a31c9c6bc7d
+data8 0xbd83d47d937bbc6d, 0xeec61d92d8c4314f
+data8 0x968999d9ad8d264e, 0xbdaa55addf1ae47d
+data8 0xeef6a0da64a014ac, 0x96a8426705198795
+data8 0xbdd0f63c36aa73f0, 0xef274ba72a07c811
+data8 0x96c703fd64445ee5, 0xbdf7b6556d550a15
+data8 0xef581e31a2c91260, 0x96e5dec0a7b4268d
+data8 0xbe1e9626b1ffa96b, 0xef8918b2bc43aec6
+data8 0x9704d2d4f59f79f3, 0xbe4595dd903e5371
+data8 0xefba3b63d89d7cbf, 0x9723e05ebe91b9b0
+data8 0xbe6cb5a7f14bc935, 0xefeb867ecffaa607
+data8 0x97430782be323831, 0xbe93f5b41d047cf7
+data8 0xf01cfa3df1b9c9fa, 0x97624865fc0df8bf
+data8 0xbebb5630bae4c15f, 0xf04e96dc05b43e2d
+data8 0x9781a32dcc640b2a, 0xbee2d74cd30a430c
+data8 0xf0805c944d827454, 0x97a117ffd0f48e46
+data8 0xbf0a7937cf38d981, 0xf0b24ba285c495cb
+data8 0x97c0a701f9d263c9, 0xbf323c217be2bc8c
+data8 0xf0e46442e76f6569, 0x97e0505a8637a036
+data8 0xbf5a203a09342bbb, 0xf116a6b2291d7896
+data8 0x97f57a9fb0b08c6e, 0xbf74cad1c14ebfc4
+data8 0xf1383fa9e9b5b381, 0x9815503365914a9d
+data8 0xbf9ce6a497a89f78, 0xf16ac84f90083b9b
+data8 0x98354085054fd204, 0xbfc52428bec6e72f
+data8 0xf19d7b686dcb03d7, 0x98554bbbf8a77902
+data8 0xbfed838fddab024b, 0xf1d0593311db1757
+data8 0x987571fffb7f94f6, 0xc016050c0420981a
+data8 0xf20361ee8f1c711e, 0x9895b3791dd03c23
+data8 0xc03ea8cfabddc330, 0xf23695da7de51d3f
+data8 0x98ab43a5fc65d0c8, 0xc059d3cbd65ddbce
+data8 0xf258d095e465cc35, 0x98cbb2d196bd713d
+data8 0xc082b122a3c78c9d, 0xf28c4d0bfc982b34
+data8 0x98ec3d9ec7b6f21a, 0xc0abb1499ae736c4
+data8 0xf2bff55eb3f0ea71, 0x990ce436db5e8344
+data8 0xc0d4d474c3aedaaf, 0xf2f3c9cf9884636e
+data8 0x9922b8218160967a, 0xc0f054ca33eb3437
+data8 0xf31670135ab9cc0f, 0x99438d686f75779d
+data8 0xc119b2c67e600ed0, 0xf34a8e9f0b54cdfb
+data8 0x99647eea131fa20b, 0xc1433453de2033ff
+data8 0xf37ed9fa6b8add3f, 0x997a85045a47c6d0
+data8 0xc15ef3e44e10032d, 0xf3a1cfe884ef6bb6
+data8 0x999ba5f14f8add02, 0xc188b130431d80e6
+data8 0xf3d66689dcc8e8d3, 0x99bce38b5465ecae
+data8 0xc1b2929d6067730e, 0xf40b2ab069d5c96a
+data8 0x99d31ca0887f30f9, 0xc1ce9268f31cc734
+data8 0xf42e718b90c8bc16, 0x99f48a669c74c09e
+data8 0xc1f8b0877c1b0c08, 0xf463822a0a3b4b00
+data8 0x9a16154eb445c873, 0xc222f35a87b415ba
+data8 0xf498c1076015faf8, 0x9a2c822ec198d667
+data8 0xc23f3467349e5c88, 0xf4bc5a19a33990b5
+data8 0x9a4e3e080cd91b78, 0xc269b4e40e088c01
+data8 0xf4f1e6a7d6f5425f, 0x9a70177afe52322e
+data8 0xc2945aac24daaf6e, 0xf527a232cf6be334
+data8 0x9a86b8fa94eebe10, 0xc2b0de05e43c1d66
+data8 0xf54b8ecdcda90851, 0x9aa8c42866ae2958
+data8 0xc2dbc275e1229d09, 0xf5819949c7ad87b4
+data8 0x9abf86f9e12fc45e, 0xc2f86fca9d80eeff
+data8 0xf5a5bac9213b48a9, 0x9ae1c462fc05f49d
+data8 0xc323938449a2587e, 0xf5dc1501f324a812
+data8 0x9af8a8dc936b84d0, 0xc3406b40a538ed20
+data8 0xf6006bee86b5589e, 0x9b1b19033be35730
+data8 0xc36bcee8211d15e0, 0xf63716b2fa067fa4
+data8 0x9b3da7daf04c2892, 0xc397593adf2ba366
+data8 0xf66df22fb6132b9c, 0x9b54c2e4c8a9012b
+data8 0xc3b475b6206155d5, 0xf6929fb98225deb1
+data8 0x9b77854e6c661200, 0xc3e0410243b97383
+data8 0xf6c9cd13021e3fea, 0x9b8ec2e678d56d2f
+data8 0xc3fd890709833d37, 0xf6eeb177472cedae
+data8 0x9ba60e6a5ca133b6, 0xc41ae295f7e7fa06
+data8 0xf713abf4cb0b3afb, 0x9bc919ea66a151a4
+data8 0xc44709f7bb8a4dd2, 0xf74b4d5333684ef1
+data8 0x9be0887c09ef82bb, 0xc4648fb0e0bec4c1
+data8 0xf7707f75a72f8e94, 0x9c03c8d5fffc3503
+data8 0xc490f9a94695ba14, 0xf7a874b97927af44
+data8 0x9c1b5ad21a81cbb9, 0xc4aeac0173b7d390
+data8 0xf7cddf140aedf1d8, 0x9c3ed09216e9ca02
+data8 0xc4db5941007aa853, 0xf806291bacb7f7a9
+data8 0x9c568656c0423def, 0xc4f938aec206291a
+data8 0xf82bcc43b92eafef, 0x9c7a320af242ce60
+data8 0xc52629e899dfd622, 0xf8646bf0defb759e
+data8 0x9c920bf7a8c01dc2, 0xc54436e44043b965
+data8 0xf88a487dfc3ff5f7, 0x9ca9f475d98b159c
+data8 0xc562563abf9ea07f, 0xf8b03c2b46cdc17f
+data8 0x9ccdeca60e80b5f8, 0xc58fa7d1dc42921c
+data8 0xf8e95541c152ae7a, 0x9ce5f9d4653d4902
+data8 0xc5adf561b91e110a, 0xf90f832c2700c160
+data8 0x9cfe15cb38bfdd8e, 0xc5cc5591bdbd82fa
+data8 0xf935c88e0c7f419b, 0x9d225b983f6c1f96
+data8 0xc5fa08f1ff20593c, 0xf96f5cd84fd86873
+data8 0x9d3a9cca32261ed7, 0xc618980a79ce6862
+data8 0xf995dd53ebdd9d6d, 0x9d52ecfccebe1768
+data8 0xc6373a09e34b50fa, 0xf9bc75a034436a41
+data8 0x9d77818d95b82f86, 0xc66550a6e0baaf35
+data8 0xf9f686f26d5518de, 0x9d8ff7893fa4706c
+data8 0xc6842241926342c9, 0xfa1d5b39b910a8c5
+data8 0x9da87cbef36f2a5e, 0xc6a3070b7c93bb9e
+data8 0xfa4447acc4ecbfd2, 0x9dcd6140b4a35aeb
+data8 0xc6d18260bb84081b, 0xfa7ed7e51e6fdfb4
+data8 0x9de60cd06dc6e2d4, 0xc6f0977c9416828b
+data8 0xfaa601394d49a1a0, 0x9dfec7d4cc43b76f
+data8 0xc70fc0117c641630, 0xfacd431644ce0e40
+data8 0x9e17925ec9fccc4a, 0xc72efc34d7e615be
+data8 0xfaf49d96f7a75909, 0x9e3cdf6db57dc075
+data8 0xc75dfb441594141e, 0xfb2fd3c65e562fd5
+data8 0x9e55d110b63637a8, 0xc77d68aa019bda4c
+data8 0xfb576c5762024805, 0x9e6ed27594550d2e
+data8 0xc79ce9ea478dbc4f, 0xfb7f1debc22c4040
+data8 0x9e87e3adc385d393, 0xc7bc7f1ae453219d
+data8 0xfba6e89f32d0190a, 0x9ead9b54b37a1055
+data8 0xc7ec0476e15e141a, 0xfbe2c803a0894893
+data8 0x9ec6d46a3d7de215, 0xc80bcbe16f1d540f
+data8 0xfc0ad1ff0ed9ecf0, 0x9ee01d9108be3154
+data8 0xc82ba78a5d349735, 0xfc32f57bdfbcbe7f
+data8 0x9ef976db07288d04, 0xc84b978847a06b87
+data8 0xfc5b32968f99b21c, 0x9f12e05a4759ec25
+data8 0xc86b9bf1ee817bc6, 0xfc83896bc861ab08
+data8 0x9f2c5a20f4da6668, 0xc88bb4de3667cdf4
+data8 0xfcabfa1861ed4815, 0x9f52af78ed1733ca
+data8 0xc8bc00e7fe9e23a3, 0xfce8d3cea7d3163e
+data8 0x9f6c52426a39d003, 0xc8dc4d7ff2d25232
+data8 0xfd118595143ee273, 0x9f860593d42fd7f3
+data8 0xc8fcaeebcb40eb47, 0xfd3a519943d4865a
+data8 0x9f9fc97fdb96bd51, 0xc91d25431426a663
+data8 0xfd6337f8e1ae5a4b, 0x9fb99e194f4a7037
+data8 0xc93db09d7fdb2949, 0xfd8c38d1c8e927eb
+data8 0x9fd383731ca51db9, 0xc95e5112e721582a
+data8 0xfdb5544205095a53, 0x9fed79a04fbf9423
+data8 0xc97f06bb49787677, 0xfdde8a67d2613531
+data8 0xa00780b413b24ee8, 0xc99fd1aecd6e1b06
+data8 0xfe07db619e781611, 0xa02eab2c4474b0cd
+data8 0xc9d12a3e27bb1625, 0xfe460768d80bf758
+data8 0xa048dcd51ccfd142, 0xc9f22ad82ba3d5f0
+data8 0xfe6f9bfb06cd32f6, 0xa0631fa894b11b8d
+data8 0xca134113105e67b2, 0xfe994bcd3d14fcc2
+data8 0xa07d73ba65e680af, 0xca346d07b045a876
+data8 0xfec316fecaf3f2ab, 0xa097d91e6aaf71b0
+data8 0xca55aecf0e94bb88, 0xfeecfdaf33fadb80
+data8 0xa0b24fe89e02602f, 0xca77068257be9bab
+data8 0xff16fffe2fa8fad6, 0xa0ccd82d1bd2f68b
+data8 0xca98743ae1c693a8, 0xff411e0ba9db886d
+data8 0xa0e77200215909e6, 0xcab9f8122c99a101
+data8 0xff6b57f7c33e4e9a, 0xa1021d760d584855
+data8 0xcadb9221e268c3b5, 0xff95ade2d1bd7358
+data8 0xa11cdaa36068a57d, 0xcafd4283d8043dfd
+data8 0xffc01fed60f86fb5, 0xa137a99cbd3f880b
+data8 0xcb1f09520d37c6fb, 0xffeaae3832b63956
+ASM_SIZE_DIRECTIVE(T_table)
+
+
+
+
+
+
+.align 32
+.global cbrt#
.section .text
-GLOBAL_LIBM_ENTRY(cbrt)
-
-
-{.mfi
- // get significand
- getf.sig GR_SIGNIF = f8
- // normalize a
- fma.s1 FR_ARG = f8, f1, f0
- // GR_GP = pointer to C_1,..., C_5 followed by T_table
- addl GR_GP = @ltoff(poly_coeffs), gp ;;
+.proc cbrt#
+.align 32
+cbrt:
+
+
+{ .mfi
+ // get significand
+ getf.sig r23=f8
+ // will continue only for normal/denormal numbers
+ (p0) fclass.nm.unc p12,p0 = f8, 0x1b
+ // r2 = pointer to C_1,...,C_5 followed by T_table
+ addl r2 = @ltoff(poly_coeffs), gp
}
-
{.mfi
- // get exponent
- getf.exp GR_ARGEXP = f8
- // will continue only for normal/denormal numbers
- fclass.m.unc p12, p13 = f8, 0x1e7
- // GR_CONST4 = bias-((2^{12}-1)/3)-63 = 0xffff-0x555-0x3f = 0xfa6b
- mov GR_CONST4 = 0xfa6b ;;
+ // get exponent
+ getf.exp r24=f8
+ // normalize a
+ fma.s1 f14=f8,f1,f0
+ // r29=bias-((2^{12}-1)/3) -63=0xffff-0x555-0x3f=0xfa6b
+ mov r29=0xfa6b;;
}
-
{.mlx
- mov GR_CONST2 = 0x20000
- // GR_CONST3 = 2^52
- movl GR_CONST3 = 0x8000000000000000 ;;
-}
-
-.pred.rel "mutex", p12, p13
-{.mfi
- // load start address for C_1,..., C_5 followed by T_table
- ld8 GR_ADDR = [ GR_GP ]
- // y = frcpa(a)
- (p13) frcpa.s0 f8, p0 = f1, f8
- // p7 = 1 if denormal input
- cmp.gtu p7, p0 = GR_CONST3, GR_SIGNIF
+ mov r25=0x20000
+ // r28=2^52
+ movl r28=0x8000000000000000;;
}
{.mfb
- nop.m 0
- // if argument is 0, +/-Infinity, NaN, or NaTVal, then return
- (p12) fma.d.s0 f8 = f8, f1, f0
- (p12) br.ret.spnt b0 ;;
+ // load start address for C_1,...,C_5 followed by T_table
+ ld8 r3=[r2]
+ (p12) fma.d.s0 f8=f8,f1,f0
+ (p12) br.ret.spnt b0
+}
+{.mfi
+ nop.m 0
+ // y=frcpa(a)
+ frcpa.s0 f8,p6=f1,f8
+ // p7=1 if denormal input
+ cmp.gtu p7,p0=r28,r23;;
}
-
{.mmi
- // get exponent (for denormal input)
- (p7) getf.exp GR_ARGEXP = FR_ARG
- // get normalized significand (for denormal input)
- (p7) getf.sig GR_SIGNIF = FR_ARG
- // GR_CONST1 = bias-(2^{12}-1)
- mov GR_CONST1 = 0xf000 ;;
+ // get exponent
+ (p7) getf.exp r24=f14
+ // get normalized significand
+ (p7) getf.sig r23=f14
+ // r28=bias-(2^{12}-1)
+ mov r28=0xf000;;
}
-
{.mii
- // get GR_SIGN = sign
- and GR_SIGN = GR_ARGEXP, GR_CONST2
- // eliminate leading 1 from GR_I1 = 1st table index
- shl GR_I1 = GR_SIGNIF, 1
- // eliminate sign from exponent
- andcm GR_EXP = GR_ARGEXP, GR_CONST2 ;;
+ // get r26=sign
+ and r26=r24,r25
+ // eliminate leading 1 from r23=1st table index
+ shl r23=r23,1
+ // eliminate sign from exponent (r25)
+ andcm r25=r24,r25;;
}
-
{.mib
- add GR_ADDR2 = 32, GR_ADDR
- // GR_IT1 = 1st table index (y_index, 8 bits)
- shr.u GR_IT1 = GR_I1, 56
- nop.b 0
+ add r2=32,r3
+ // r23=1st table index (y_index,8 bits)
+ shr.u r23=r23,56
+ nop.b 0
}
{.mib
- // load C_1
- ldfe FR_COEFF1 = [ GR_ADDR ], 16
- // subtract bias from GR_EXPON = exponent
- sub GR_EXPON = GR_EXP, GR_CONST1
- nop.b 0 ;;
+ // load C_1
+ ldfe f7=[r3],16
+ // subtract bias from r25=exponent
+ sub r25=r25,r28
+ nop.b 0;;
}
-
{.mib
- // load C_2, C_3
- ldfpd FR_COEFF2, FR_COEFF3 = [ GR_ADDR ]
- // 1: exponent* = 5; // (2^{16}-1)/3 = 0x5555
- shladd GR_TMP1 = GR_EXPON, 2, GR_EXPON
- nop.b 0
+ // load C_2, C_3
+ ldfpd f9,f10=[r3]
+ // 1: exponent*=5; // (2^{16}-1)/3=0x5555
+ shladd r24=r25,2,r25
+ nop.b 0
}
{.mib
- // load C_4, C_5
- ldfpd FR_COEFF4, FR_COEFF5 = [ GR_ADDR2 ], 16
- // GR_TMP2 = 3*y_index
- shladd GR_TMP2 = GR_IT1, 1, GR_IT1
- nop.b 0 ;;
+ // load C_4, C_5
+ ldfpd f11,f12=[r2],16
+ // r23=3*y_index
+ shladd r23=r23,1,r23
+ nop.b 0;;
}
{.mfi
- // GR_TMP6 = (5*expon)*16+5*expon = (0x55)*expon
- shladd GR_TMP6 = GR_TMP1, 4, GR_TMP1
- // r = 1-a*y
- fnma.s1 FR_R = f8, FR_ARG, f1
- // adjust T_table pointer by 1st index
- shladd GR_ITB1 = GR_TMP2, 3, GR_ADDR2 ;;
+ // r30=(5*expon)*16+5*expon=(0x55)*expon
+ shladd r30=r24,4,r24
+ // r=1-a*y
+ (p6) fnma.s1 f6=f8,f14,f1
+ // adjust T_table pointer by 1st index
+ shladd r2=r23,3,r2;;
}
{.mii
- // eliminate leading 1 from significand
- add GR_SIGNIF2 = GR_SIGNIF, GR_SIGNIF
- // GR_TMP3 = (0x5500)*expon
- shl GR_TMP3 = GR_TMP6, 8 ;;
- // GR_TMP4 = (0x5555)*expon
- add GR_TMP4 = GR_TMP3, GR_TMP6 ;;
+ nop.m 0
+ // r24=(0x5500)*expon
+ shl r24=r30,8;;
+ // r24=(0x5555)*expon
+ add r24=r24,r30;;
}
-
{.mii
- // GR_TMP5 = (0x5556)*expon // 0x5556 = (2^{16}+2)/3
- add GR_TMP5 = GR_TMP4, GR_EXPON
- nop.i 0 ;;
- // GR_EXP_BY_3 = floor(expon/3)
- shr GR_EXP_BY_3 = GR_TMP5, 16 ;;
+ // r24=(0x5556)*expon // 0x5556=(2^{16}+2)/3
+ add r24=r24,r25
+ nop.i 0;;
+ // r24=floor(expon/3)
+ shr r24=r24,16;;
}
-
{.mfi
- // GR_TMP6 = 3*exponent
- shladd GR_TMP6 = GR_EXP_BY_3, 1, GR_EXP_BY_3
- // r*r
- fma.s1 FR_R2 = FR_R, FR_R, f0
- // bias exponent
- add GR_EBIAS = GR_CONST4, GR_EXP_BY_3 ;;
+ // r28=3*exponent
+ shladd r28=r24,1,r24
+ // r2=r*r
+ (p6) fma.s1 f13=f6,f6,f0
+ // bias exponent
+ add r24=r29,r24;;
}
-
{.mfi
- // get remainder of exponent/3
- sub GR_REM = GR_EXPON, GR_TMP6
- // c2+c3*r
- fma.s1 FR_P23 = FR_COEFF3, FR_R, FR_COEFF2
- nop.i 0
+ // get remainder of exponent/3 : r25-r28
+ sub r25=r25,r28
+ // c2+c3*r
+ (p6) fma.s1 f9=f10,f6,f9
+ // add sign to exponent
+ or r24=r24,r26
}
{.mfi
- // add sign to exponent
- or GR_SEXP = GR_EBIAS, GR_SIGN
- // c4+c5*r
- fma.s1 FR_P45 = FR_COEFF5, FR_R, FR_COEFF4
- mov GR_TMP63 = 63+0xffff ;;
+ nop.m 0
+ // c4+c5*r
+ (p6) fma.s1 f11=f12,f6,f11
+ nop.i 0;;
}
-
{.mmi
- // FR_2EXP = sign*2^{exponent/3}
- setf.exp FR_2EXP = GR_SEXP
- // adjust T_table pointer by 2nd index
- shladd GR_INDEX = GR_REM, 3, GR_ITB1
- // is the argument of the form 2^(3*k) ?
- // get (significand - leading 1) | (exponent mod 3)
- or GR_TEST = GR_REM, GR_SIGNIF2 ;;
+ // f14=sign*2^{exponent/3}
+ (p6) setf.exp f14=r24
+ // adjust T_table pointer by 2nd index
+ shladd r2=r25,3,r2
+ nop.i 0;;
}
-
{.mmi
- // 2^63
- setf.exp FR_TMP63 = GR_TMP63
- // load T
- ldf8 f8 = [ GR_INDEX ]
- // is the argument of the form 2^(3*k) ?
- cmp.eq p14, p0 = GR_TEST, r0 ;;
+ // load T
+ (p6) ldf8 f8=[r2]
+ nop.m 0
+ nop.i 0;;
}
{.mfi
- nop.m 0
- // (c2+c3*r)+r^2*(c4+c5*r)
- fma.s1 FR_P25 = FR_P45, FR_R2, FR_P23
- nop.i 0
+ nop.m 0
+ // (c2+c3*r)+r^2*(c4+c5*r)
+ (p6) fma.s1 f9=f11,f13,f9
+ nop.i 0
}
{.mfi
- nop.m 0
- // c1*r
- fma.s1 FR_P1 = FR_COEFF1, FR_R, f0
- nop.i 0 ;;
-}
-
-{.mfb
- nop.m 0
- (p14) fma.d.s0 f8 = FR_2EXP, FR_TMP63, f0
- (p14) br.ret.spnt b0 ;;
+ nop.m 0
+ // c1*r
+ (p6) fma.s1 f7=f7,f6,f0
+ nop.i 0;;
}
{.mfi
- nop.m 0
- // P = c1*r+r^2* [ (c2+c3*r)+r^2*(c4+c5*r) ]
- fma.s1 FR_P15 = FR_P25, FR_R2, FR_P1
- nop.i 0
+ nop.m 0
+ // P=c1*r+r^2*[(c2+c3*r)+r^2*(c4+c5*r)]
+ (p6) fma.s1 f9=f9,f13,f7
+ nop.i 0
}
{.mfi
- nop.m 0
- // T' = T*(2^exp)
- fma.s1 f8 = f8, FR_2EXP, f0
- nop.i 0 ;;
+ nop.m 0
+ // T'=T*(2^exp)
+ (p6) fma.s1 f8=f8,f14,f0
+ nop.i 0;;
}
-
{.mfb
- nop.m 0
- // result = T'+T'*P
- fma.d.s0 f8 = f8, FR_P15, f8
- br.ret.sptk b0 ;;
+ nop.m 0
+ // result = T'-T'*P
+ (p6) fnma.d.s0 f8=f8,f9,f8
+ br.ret.sptk b0;;
}
-
-
-GLOBAL_LIBM_END(cbrt)
+.endp cbrt
+ASM_SIZE_DIRECTIVE(cbrt)
diff --git a/sysdeps/ia64/fpu/s_cbrtf.S b/sysdeps/ia64/fpu/s_cbrtf.S
index 612fb85ea3..20167797b8 100644
--- a/sysdeps/ia64/fpu/s_cbrtf.S
+++ b/sysdeps/ia64/fpu/s_cbrtf.S
@@ -1,10 +1,11 @@
-.file "cbrtf.s"
+.file "cbrtf.asm"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang
+// of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,30 +21,27 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 05/18/00 New version (modified algorithm)
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Rescheduled some instructions for better performance
-// on Itanium 2, and reformatted
+// 2/02/00: Initial version
+// 5/18/00: New version (modified algorithm)
//
// API
//==============================================================
@@ -55,711 +53,616 @@
//
// Implementation
//
-// Let y= frcpa(a), where a is the argument
+// cbrt(a) = cbrt(a y) / cbrt(y)
+// = cbrt(1 - (1 - a y)) * 1/cbrt(y)
//
-// cbrt(a)= cbrt(a*y)/cbrt(y) = cbrt(1 - (1-a*y)) * (1/cbrt(y))
+// where y = frcpa(a).
//
-// For all values of y, the 3 possible significands of 1/cbrt(y)
-// are stored in a table (T0) to 64 bits of accuracy. (There are
-// 3 possible significands because the exponent of y modulo 3
-// can be 0, 1, or 2.)
+// * cbrt(1 - (1 - a y)) is approximated by a degree-2 polynomial
+//
+// 1 - (1/3)*r - (1/9)*r^2
+//
+// in r = 1 - a y.
//
-//
-// * cbrt(1 - (1-a*y)) is approximated by a degree-2 polynomial
-//
-// 1 - (1/3)*r - (1/9)*r^2
-//
-// in r = 1-a*y.
+// * The values 1/cbrt(y) are stored in a table of constants T0
+// to 64 bits of accuracy
//
// The table values are stored for three exponent values and are
-// then multiplied by 2^(e/3) where e is the exponent of the input number.
+// then multiplied by e/3 where e is the exponent of the input number.
// This computation is carried out in parallel with the polynomial
// evaluation:
//
-// T= 2^(e/3) * T0
+// T = 2^(e/3) * T0
//===============
-// input= x
-// C= frcpa(x)
-// r= 1 - C * x
+// input = x
+// C = frcpa(x)
+// r = 1 - C * x
//
-// Special values
+// Special values
//==============================================================
// Registers used
//==============================================================
-// p6, p7, p8, p12
-
- FR_R = f6
- FR_COEFF1 = f7
- FR_COEFF2 = f9
- FR_T0 = f10
- FR_T1 = f11
- FR_T2 = f12
- FR_2M63 = f13
- FR_ARG = f14
- FR_Y = f15
-
- GR_GP = r2
- GR_ADDR = r2
- GR_TMP5 = r3
- GR_CONST = r8
- GR_TMP63 = r8
- GR_SIGN = r9
- GR_CT2 = r10
- GR_CT3 = r11
- GR_TMP4 = r14
- GR_EBIAS3 = r15
- GR_REM = r16
- GR_SEXP = r17
- GR_2P63 = r18
- GR_SIGNIF = r19
- GR_I1 = r20
- GR_EBIAS = r21
- GR_EXP = r22
- GR_IT1 = r23
- GR_E5 = r24
- GR_IT1_3 = r25
- GR_TP1 = r26
- GR_TMP = r27
- GR_TMP2 = r28
- GR_TMP3 = r29
- GR_EXP3 = r30
- GR_ARGEXP = r31
-
-
+// f6-f15
+// r2, r23-r26, r28-r30
+// p6,p7,p8,p12
+#include "libm_support.h"
// Data tables
//==============================================================
-RODATA
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(poly_coeffs)
-
- data8 0xaaaab19b7e1f5ef9, 0x00003ffd // ~ 1/3
- data8 0xe38e5192a5a8e56c, 0x00003ffb // ~ 1/9
-LOCAL_OBJECT_END(poly_coeffs)
-
-// For every entry B in the frcpa table, this table contains
-// the significands of cbrt(1/B), cbrt(2/B), cbrt(4/B).
-// The index to this table is the same as the frcpa index.
-
-LOCAL_OBJECT_START(T_table)
-
- data8 0x80155c748c374836, 0xa160019ed37fb4ae
- data8 0xcb51ddcb9e93095e, 0x8040404b0879f7f9
- data8 0xa1960b5966da4608, 0xcb95f333968ad59b
- data8 0x806b5dce4b405c10, 0xa1cc5dbe6dc2aab4
- data8 0xcbda64292d3ffd97, 0x8096b586974669b1
- data8 0xa202f97995b69c0d, 0xcc1f3184af961596
- data8 0x80bcd273d952a028, 0xa232fe6eb0c0577d
- data8 0xcc5bb1ac954d33e2, 0x80e898c52813f2f3
- data8 0xa26a2582012f6e17, 0xcca12e9831fc6402
- data8 0x81149add67c2d208, 0xa2a197e5d10465cb
- data8 0xcce70a67b64f24ad, 0x813b4e2c856b6e9a
- data8 0xa2d25a532efefbc8, 0xcd24794726477ea5
- data8 0x8167c1dde03de7aa, 0xa30a5bd6e49e4ab8
- data8 0xcd6b096a0b70ee87, 0x818ed973b811135e
- data8 0xa33b9c9b59879e24, 0xcda9177738b15a90
- data8 0x81bbc0c33e13ec98, 0xa3742fca6a3c1f21
- data8 0xcdf05f2247dffab9, 0x81e33e69fbe7504a
- data8 0xa3a5f1273887bf22, 0xce2f0f347f96f906
- data8 0x820aec524e3c23e9, 0xa3d7ef508ff11574
- data8 0xce6e0be0cd551a61, 0x823880f78e70b805
- data8 0xa4115ce30548bc15, 0xceb666b2c347d1de
- data8 0x826097a62a8e5200, 0xa443df0e53df577a
- data8 0xcef609b0cb874f00, 0x8288dfe00e9b5eaf
- data8 0xa4769fa5913c0ec3, 0xcf35fb5447e5c765
- data8 0x82b15a10c5371624, 0xa4a99f303bc7def5
- data8 0xcf763c47ee869f00, 0x82da06a527b18937
- data8 0xa4dcde37779adf4b, 0xcfb6cd3888d71785
- data8 0x8302e60b635ab394, 0xa5105d46152c938a
- data8 0xcff7aed4fbfbb447, 0x832bf8b2feec2f0e
- data8 0xa5441ce89825cb8d, 0xd038e1ce5167e3c6
- data8 0x83553f0ce00e276b, 0xa5781dad3e54d899
- data8 0xd07a66d7bfa0ebba, 0x837eb98b50f8322a
- data8 0xa5ac602406c4e68c, 0xd0bc3ea6b32d1b21
- data8 0x83a270f44c84f699, 0xa5d9601d95c2c0bc
- data8 0xd0f4f0e8f36c1bf8, 0x83cc4d7cfcfac5ca
- data8 0xa60e1e1a2de14745, 0xd1376458e34b037e
- data8 0x83f65f78a8872b4c, 0xa6431f6e3fbd9658
- data8 0xd17a2ca133f78572, 0x8420a75f2f7b53c8
- data8 0xa67864b0d432fda4, 0xd1bd4a80301c5715
- data8 0x844510461ff14209, 0xa6a6444aa0243c0b
- data8 0xd1f71682b2fa4575, 0x846fbd91b930bed2
- data8 0xa6dc094d10f25792, 0xd23ad555f773f059
- data8 0x84947e18234f3294, 0xa70a574cc02bba69
- data8 0xd2752c7039a5bf73, 0x84bf92755825045a
- data8 0xa7409e2af9549084, 0xd2b98ee008c06b59
- data8 0x84e4ac0ee112ba51, 0xa76f5c64ca2cf13b
- data8 0xd2f4735ffd700280, 0x8509ef44b86f20be
- data8 0xa79e4f0babab5dc0, 0xd32f99ed6d9ac0e1
- data8 0x85359d5d91768427, 0xa7d5579ae5164b85
- data8 0xd374f0666c75d51c, 0x855b3bd5b7384357
- data8 0xa804bd3c6fe61cc8, 0xd3b0a7d13618e4a1
- data8 0x858104f0c415f79a, 0xa8345895e5250a5a
- data8 0xd3eca2ea53bcec0c, 0x85a6f90390d29864
- data8 0xa8642a122b44ef0b, 0xd428e23874f13a17
- data8 0x85d3772fcd56a1dd, 0xa89c38ca18f6108b
- data8 0xd46f82fe293bc6d3, 0x85f9c982fcc002f3
- data8 0xa8cc81063b6e87ca, 0xd4ac57e9b7186420
- data8 0x862047e0e7ea554b, 0xa8fd00bfa409285e
- data8 0xd4e972becb04e8b8, 0x8646f2a26f7f5852
- data8 0xa92db8664d5516da, 0xd526d40a7a9b43a3
- data8 0x866dca21754096b5, 0xa95ea86b75cc2c20
- data8 0xd5647c5b73917370, 0x8694ceb8dfd17a37
- data8 0xa98fd141a4992deb, 0xd5a26c4201bd6d13
- data8 0x86bc00c49e9307e8, 0xa9c1335cae7446ba
- data8 0xd5e0a45015350a7e, 0x86dccd74fce79610
- data8 0xa9ea8686f556f645, 0xd614b539c6194104
- data8 0x870453c845acf90f, 0xaa1c52d17906bb19
- data8 0xd6537310e224283f, 0x872c089a1e90342c
- data8 0xaa4e59b046dab887, 0xd6927ab62244c917
- data8 0x8753ec4a92d16c5e, 0xaa809b9c60d1890b
- data8 0xd6d1ccc1fc4ef4b7, 0x877bff3aca19f6b4
- data8 0xaab319102f3f9b33, 0xd71169cea98fdded
- data8 0x879d88b6fe1c324c, 0xaadd5a18c1e21274
- data8 0xd746a66a5bc9f6d9, 0x87c5f346dbf98c3a
- data8 0xab1045f2ac31bdf5, 0xd786ce8f0fae5317
- data8 0x87e7c653efacef2c, 0xab3ae3ab2df7231e
- data8 0xd7bc7ff214c4e75a, 0x881089d4e73ffefc
- data8 0xab6e3f945d1e96fc, 0xd7fd35467a517ed1
- data8 0x88397e6a366f2a8a, 0xaba1d953a08fa94e
- data8 0xd83e38838648d815, 0x885bc559e5e1c081
- data8 0xabcd090db7ef4c3f, 0xd874a1db598b8951
- data8 0x887e2ee392bb7a93, 0xabf864602d7c323d
- data8 0xd8ab42205b80edaf, 0x88a7a8587e404257
- data8 0xac2ca5886ccf9b57, 0xd8ed1849d202f965
- data8 0x88ca5eda67594784, 0xac5861d4aa441f0f
- data8 0xd92432bd5a173685, 0x88f4356166bd590e
- data8 0xac8d183fe3a2fbed, 0xd9669ca45b03c23e
- data8 0x89173a0acf5ce026, 0xacb93703ff51571e
- data8 0xd99e3327cf89574e, 0x893a62a098b6a57b
- data8 0xace5830ad0c3f14b, 0xd9d602b19b100466
- data8 0x895daf637236ae2c, 0xad11fca5d78b3ff2
- data8 0xda0e0ba86c096841, 0x89883b9d1c2fa9c5
- data8 0xad4797fddf91a798, 0xda5195fcdb1c3dce
- data8 0x89abd8dd374a5d7b, 0xad747701e559ebcb
- data8 0xda8a1eb87a491f6c, 0x89cf9b1dcd197fa0
- data8 0xada184a47e9c7613, 0xdac2e230b91c3f84
- data8 0x89f382a258ea79de, 0xadcec13ab0dda8ff
- data8 0xdafbe0d0b66aea30, 0x8a178faf06648f29
- data8 0xadfc2d1a5fd21ba8, 0xdb351b04a8fafced
- data8 0x8a3bc288b3e1d18a, 0xae29c89a5053c33a
- data8 0xdb6e9139e33cdd8e, 0x8a601b74f4d1f835
- data8 0xae5794122b638df9, 0xdba843ded7151ea1
- data8 0x8a849aba14274764, 0xae858fda8137ae0a
- data8 0xdbe2336319b61fc8, 0x8aa9409f16cdbc9b
- data8 0xaeb3bc4ccc56d3d1, 0xdc1c60376789fa68
- data8 0x8ace0d6bbe2cb316, 0xaee219c374c09920
- data8 0xdc56cacda82d0cd5, 0x8af301688ab33558
- data8 0xaf10a899d3235fe7, 0xdc917398f2797814
- data8 0x8b181cdebe6f3206, 0xaf3f692c341fe8b4
- data8 0xdccc5b0d90a3e628, 0x8b3d60185fafcb7c
- data8 0xaf6e5bd7db9ae6c2, 0xdd0781a10469f0f2
- data8 0x8b62cb603bb2fad0, 0xaf9d80fb081cd91b
- data8 0xdd42e7ca0b52838f, 0x8b80d7d6bc4104de
- data8 0xafc35ce063eb3787, 0xdd729ad01c69114d
- data8 0x8ba68bf73ac74f39, 0xaff2ddcb5f28f03d
- data8 0xddae749c001fbf5e, 0x8bcc68fb9f9f7335
- data8 0xb022923b148e05c5, 0xddea8f50a51c69b1
- data8 0x8bf26f31c534fca2, 0xb0527a919adbf58b
- data8 0xde26eb69a0f0f111, 0x8c10f86e13a1a1f9
- data8 0xb078f3ab1d701c65, 0xde576480262399bc
- data8 0x8c3749916cc6abb5, 0xb0a93a6870649f31
- data8 0xde943789645933c8, 0x8c5dc4c4f7706032
- data8 0xb0d9b624d62ec856, 0xded14d58139a28af
- data8 0x8c7cac3a8c42e3e0, 0xb100a5f53fb3c8e1
- data8 0xdf025c00bbf2b5c7, 0x8ca373f1b7bf2716
- data8 0xb131821882f5540a, 0xdf3feb44d723a713
- data8 0x8cc29907fb951294, 0xb158bf8e4cb04055
- data8 0xdf715bc16c159be0, 0x8ce9ae4e9492aac8
- data8 0xb189fd69d56b238f, 0xdfaf66240e29cda8
- data8 0x8d0911dddbfdad0e, 0xb1b189958e8108e4
- data8 0xdfe139cbf6e19bdc, 0x8d3075c4f20f04ee
- data8 0xb1e32a8165b09832, 0xe01fc0fe94d9fc52
- data8 0x8d5018a9d4de77d5, 0xb20b0678fc271eec
- data8 0xe051f92ffcc0bd60, 0x8d77cc47dd143515
- data8 0xb23d0bd3f7592b6e, 0xe090feec9c9a06ac
- data8 0x8d97af6352739cb7, 0xb26538b2db8420dc
- data8 0xe0c39d0c9ff862d6, 0x8db7af523167800f
- data8 0xb28d89e339ceca14, 0xe0f668eeb99f188d
- data8 0x8ddfd80bc68c32ff, 0xb2c022ca12e55a16
- data8 0xe1362890eb663139, 0x8e00197e1e7c88fe
- data8 0xb2e8c6852c6b03f1, 0xe1695c7212aecbaa
- data8 0x8e207859f77e20e7, 0xb3118f4eda9fe40f
- data8 0xe19cbf0391bbbbe9, 0x8e40f4ce60c9f8e2
- data8 0xb33a7d6268109ebe, 0xe1d050901c531e85
- data8 0x8e69ba46cf2fde4d, 0xb36ddbc5ea70ec55
- data8 0xe2110903b4f4047a, 0x8e8a7a00bd7ae63e
- data8 0xb3971e9b39264023, 0xe2450559b4d80b6d
- data8 0x8eab57ef1cf2f529, 0xb3c0877ecc18e24a
- data8 0xe27931a231554ef3, 0x8ecc5442cffb1dad
- data8 0xb3ea16ae3a6c905f, 0xe2ad8e2ac3c5b04b
- data8 0x8eed6f2d2a4acbfe, 0xb413cc67aa0e4d2d
- data8 0xe2e21b41b9694cce, 0x8f0ea8dff24441ff
- data8 0xb43da8e9d163e1af, 0xe316d93615862714
- data8 0x8f385c95d696b817, 0xb47233773b84d425
- data8 0xe3590bd86a0d30f9, 0x8f59dc43edd930f3
- data8 0xb49c6825430fe730, 0xe38e38e38e38e38e
- data8 0x8f7b7b5f5ffad1c4, 0xb4c6c46bcdb27dcf
- data8 0xe3c397d1e6db7839, 0x8f9d3a1bea165f38
- data8 0xb4f1488c0b35d26f, 0xe3f928f5953feb9e
- data8 0x8fbf18adc34b66da, 0xb51bf4c7c51f0168
- data8 0xe42eeca17c62886c, 0x8fe117499e356095
- data8 0xb546c9616087ab9c, 0xe464e32943446305
- data8 0x90033624aa685f8d, 0xb571c69bdffd9a70
- data8 0xe49b0ce15747a8a2, 0x9025757495f36b86
- data8 0xb59cecbae56984c3, 0xe4d16a1eee94e9d4
- data8 0x903f3a5dcc091203, 0xb5bd64512bb14bb7
- data8 0xe4fa52107353f67d, 0x9061b2fceb2bdbab
- data8 0xb5e8d2a4bf5ba416, 0xe5310a471f4d2dc3
- data8 0x90844ca7211032a7, 0xb6146a9a1bc47819
- data8 0xe567f6f1c2b9c224, 0x90a7079403e6a15d
- data8 0xb6402c7749d621c0, 0xe59f18689a9e4c9a
- data8 0x90c9e3fbafd63799, 0xb66c1882fb435ea2
- data8 0xe5d66f04b8a68ecf, 0x90ece216c8a16ee4
- data8 0xb6982f048c999a56, 0xe60dfb2005c192e9
- data8 0x9110021e7b516f0a, 0xb6c47044075b4142
- data8 0xe645bd1544c7ea51, 0x912a708a39be9075
- data8 0xb6e5bd6bfd02bafd, 0xe66fb21b505b20a0
- data8 0x914dcc7b31146370, 0xb7124a2736ff8ef2
- data8 0xe6a7d32af4a7c59a, 0x91714af8cfe984d5
- data8 0xb73f026a01e94177, 0xe6e02b129c6a5ae4
- data8 0x918c00a6f3795e97, 0xb760a959f1d0a7a7
- data8 0xe70a9136a7403039, 0x91afbc299ed0295d
- data8 0xb78dae7e06868ab0, 0xe74349fb2d92a589
- data8 0x91d39add3e958db0, 0xb7badff8ad9e4e02
- data8 0xe77c3a9c86ed7d42, 0x91ee9920a8974d92
- data8 0xb7dce25b8e17ae9f, 0xe7a713f88151518a
- data8 0x9212b5fcac537c19, 0xb80a6226904045e2
- data8 0xe7e067453317ed2b, 0x9236f6b256923fcf
- data8 0xb8380f1cafd73c1c, 0xe819f37a81871bb5
- data8 0x92523ee6f90dcfc3, 0xb85a6ea8e321b4d8
- data8 0xe8454236bfaeca14, 0x9276bef031e6eb79
- data8 0xb8886b684ae7d2fa, 0xe87f32f24c3fc90e
- data8 0x929236ec237a24ad, 0xb8ab0726fa00cf5d
- data8 0xe8aacd8688892ba6, 0x92b6f70b7efe9dc3
- data8 0xb8d954a4d13b7cb1, 0xe8e523fd32f606f7
- data8 0x92d29f61eec7dc2b, 0xb8fc2d4f6cd9f04a
- data8 0xe9110b5311407927, 0x92f7a05d5b8ba92f
- data8 0xb92acc851476b1ab, 0xe94bc8bf0c108fa3
- data8 0x931379a403be5c16, 0xb94de2d841a184c2
- data8 0xe977fdc439c2ca3c, 0x9338bc44de2e3f34
- data8 0xb97cd4c36c92693c, 0xe9b3236528fc349e
- data8 0x9354c71412c69486, 0xb9a0297f172665e3
- data8 0xe9dfa70b745ac1b4, 0x937a4c273907e262
- data8 0xb9cf6f21e36c3924, 0xea1b36268d0eaa38
- data8 0x93968919f6e7975d, 0xb9f3030951267208
- data8 0xea480963fd394197, 0x93bc516fdd4680c9
- data8 0xba229d6a618e7c59, 0xea84034425f27484
- data8 0x93d8c123d9be59b2, 0xba467144459f9855
- data8 0xeab12713138dd1cc, 0x93f546c955e60076
- data8 0xba6a60c3c48f1a4b, 0xeade6db73a5e503b
- data8 0x941b70a65879079f, 0xba9a76056b67ee7a
- data8 0xeb1b0268343b121b, 0x943829f337410591
- data8 0xbabea699563ada6e, 0xeb489b0b2bdb5f14
- data8 0x9454f995765bc4d2, 0xbae2f350b262cc4b
- data8 0xeb765721e85f03d0, 0x947b86b57f5842ed
- data8 0xbb1385a23be24e57, 0xebb389645f222f62
- data8 0x94988aeb23470f86, 0xbb3814975e17c680
- data8 0xebe198f090607e0c, 0x94b5a5dc9695f42a
- data8 0xbb5cc031009bf467, 0xec0fcc9321024509
- data8 0x94d2d7a9170d8b42, 0xbb81889680024764
- data8 0xec3e247da8b82f61, 0x94f9e87dd78bf019
- data8 0xbbb2c0d8703ae95d, 0xec7c27d21321c9f7
- data8 0x95175019a503d89e, 0xbbd7cd09ba3c5463
- data8 0xecaad5278824e453, 0x9534cefa625fcb3a
- data8 0xbbfcf68c4977718f, 0xecd9a76d097d4e77
- data8 0x955265405c491a25, 0xbc223d88cfc88eee
- data8 0xed089ed5dcd99446, 0x9570130c1f9bb857
- data8 0xbc47a2284fee4ff8, 0xed37bb95add09a1c
- data8 0x9597ca4119525184, 0xbc79ac0916ed7b8a
- data8 0xed76c70508f904b6, 0x95b5af6fb5aa4d3c
- data8 0xbc9f5670d1a13030, 0xeda63bb05e7f93c6
- data8 0x95d3ac9273aafd7a, 0xbcc51f068cb95c1d
- data8 0xedd5d661daed2dc4, 0x95f1c1cafdfd3684
- data8 0xbceb05f4b30a9bc0, 0xee05974eef86b903
- data8 0x960fef3b430b8d5f, 0xbd110b6604c7d306
- data8 0xee357ead791fc670, 0x962e350575b409c5
- data8 0xbd372f8598620f19, 0xee658cb3c134a463
- data8 0x964c934c0dfc1708, 0xbd5d727edb6b3c7e
- data8 0xee95c1987f080211, 0x966b0a31c9c6bc7d
- data8 0xbd83d47d937bbc6d, 0xeec61d92d8c4314f
- data8 0x968999d9ad8d264e, 0xbdaa55addf1ae47d
- data8 0xeef6a0da64a014ac, 0x96a8426705198795
- data8 0xbdd0f63c36aa73f0, 0xef274ba72a07c811
- data8 0x96c703fd64445ee5, 0xbdf7b6556d550a15
- data8 0xef581e31a2c91260, 0x96e5dec0a7b4268d
- data8 0xbe1e9626b1ffa96b, 0xef8918b2bc43aec6
- data8 0x9704d2d4f59f79f3, 0xbe4595dd903e5371
- data8 0xefba3b63d89d7cbf, 0x9723e05ebe91b9b0
- data8 0xbe6cb5a7f14bc935, 0xefeb867ecffaa607
- data8 0x97430782be323831, 0xbe93f5b41d047cf7
- data8 0xf01cfa3df1b9c9fa, 0x97624865fc0df8bf
- data8 0xbebb5630bae4c15f, 0xf04e96dc05b43e2d
- data8 0x9781a32dcc640b2a, 0xbee2d74cd30a430c
- data8 0xf0805c944d827454, 0x97a117ffd0f48e46
- data8 0xbf0a7937cf38d981, 0xf0b24ba285c495cb
- data8 0x97c0a701f9d263c9, 0xbf323c217be2bc8c
- data8 0xf0e46442e76f6569, 0x97e0505a8637a036
- data8 0xbf5a203a09342bbb, 0xf116a6b2291d7896
- data8 0x97f57a9fb0b08c6e, 0xbf74cad1c14ebfc4
- data8 0xf1383fa9e9b5b381, 0x9815503365914a9d
- data8 0xbf9ce6a497a89f78, 0xf16ac84f90083b9b
- data8 0x98354085054fd204, 0xbfc52428bec6e72f
- data8 0xf19d7b686dcb03d7, 0x98554bbbf8a77902
- data8 0xbfed838fddab024b, 0xf1d0593311db1757
- data8 0x987571fffb7f94f6, 0xc016050c0420981a
- data8 0xf20361ee8f1c711e, 0x9895b3791dd03c23
- data8 0xc03ea8cfabddc330, 0xf23695da7de51d3f
- data8 0x98ab43a5fc65d0c8, 0xc059d3cbd65ddbce
- data8 0xf258d095e465cc35, 0x98cbb2d196bd713d
- data8 0xc082b122a3c78c9d, 0xf28c4d0bfc982b34
- data8 0x98ec3d9ec7b6f21a, 0xc0abb1499ae736c4
- data8 0xf2bff55eb3f0ea71, 0x990ce436db5e8344
- data8 0xc0d4d474c3aedaaf, 0xf2f3c9cf9884636e
- data8 0x9922b8218160967a, 0xc0f054ca33eb3437
- data8 0xf31670135ab9cc0f, 0x99438d686f75779d
- data8 0xc119b2c67e600ed0, 0xf34a8e9f0b54cdfb
- data8 0x99647eea131fa20b, 0xc1433453de2033ff
- data8 0xf37ed9fa6b8add3f, 0x997a85045a47c6d0
- data8 0xc15ef3e44e10032d, 0xf3a1cfe884ef6bb6
- data8 0x999ba5f14f8add02, 0xc188b130431d80e6
- data8 0xf3d66689dcc8e8d3, 0x99bce38b5465ecae
- data8 0xc1b2929d6067730e, 0xf40b2ab069d5c96a
- data8 0x99d31ca0887f30f9, 0xc1ce9268f31cc734
- data8 0xf42e718b90c8bc16, 0x99f48a669c74c09e
- data8 0xc1f8b0877c1b0c08, 0xf463822a0a3b4b00
- data8 0x9a16154eb445c873, 0xc222f35a87b415ba
- data8 0xf498c1076015faf8, 0x9a2c822ec198d667
- data8 0xc23f3467349e5c88, 0xf4bc5a19a33990b5
- data8 0x9a4e3e080cd91b78, 0xc269b4e40e088c01
- data8 0xf4f1e6a7d6f5425f, 0x9a70177afe52322e
- data8 0xc2945aac24daaf6e, 0xf527a232cf6be334
- data8 0x9a86b8fa94eebe10, 0xc2b0de05e43c1d66
- data8 0xf54b8ecdcda90851, 0x9aa8c42866ae2958
- data8 0xc2dbc275e1229d09, 0xf5819949c7ad87b4
- data8 0x9abf86f9e12fc45e, 0xc2f86fca9d80eeff
- data8 0xf5a5bac9213b48a9, 0x9ae1c462fc05f49d
- data8 0xc323938449a2587e, 0xf5dc1501f324a812
- data8 0x9af8a8dc936b84d0, 0xc3406b40a538ed20
- data8 0xf6006bee86b5589e, 0x9b1b19033be35730
- data8 0xc36bcee8211d15e0, 0xf63716b2fa067fa4
- data8 0x9b3da7daf04c2892, 0xc397593adf2ba366
- data8 0xf66df22fb6132b9c, 0x9b54c2e4c8a9012b
- data8 0xc3b475b6206155d5, 0xf6929fb98225deb1
- data8 0x9b77854e6c661200, 0xc3e0410243b97383
- data8 0xf6c9cd13021e3fea, 0x9b8ec2e678d56d2f
- data8 0xc3fd890709833d37, 0xf6eeb177472cedae
- data8 0x9ba60e6a5ca133b6, 0xc41ae295f7e7fa06
- data8 0xf713abf4cb0b3afb, 0x9bc919ea66a151a4
- data8 0xc44709f7bb8a4dd2, 0xf74b4d5333684ef1
- data8 0x9be0887c09ef82bb, 0xc4648fb0e0bec4c1
- data8 0xf7707f75a72f8e94, 0x9c03c8d5fffc3503
- data8 0xc490f9a94695ba14, 0xf7a874b97927af44
- data8 0x9c1b5ad21a81cbb9, 0xc4aeac0173b7d390
- data8 0xf7cddf140aedf1d8, 0x9c3ed09216e9ca02
- data8 0xc4db5941007aa853, 0xf806291bacb7f7a9
- data8 0x9c568656c0423def, 0xc4f938aec206291a
- data8 0xf82bcc43b92eafef, 0x9c7a320af242ce60
- data8 0xc52629e899dfd622, 0xf8646bf0defb759e
- data8 0x9c920bf7a8c01dc2, 0xc54436e44043b965
- data8 0xf88a487dfc3ff5f7, 0x9ca9f475d98b159c
- data8 0xc562563abf9ea07f, 0xf8b03c2b46cdc17f
- data8 0x9ccdeca60e80b5f8, 0xc58fa7d1dc42921c
- data8 0xf8e95541c152ae7a, 0x9ce5f9d4653d4902
- data8 0xc5adf561b91e110a, 0xf90f832c2700c160
- data8 0x9cfe15cb38bfdd8e, 0xc5cc5591bdbd82fa
- data8 0xf935c88e0c7f419b, 0x9d225b983f6c1f96
- data8 0xc5fa08f1ff20593c, 0xf96f5cd84fd86873
- data8 0x9d3a9cca32261ed7, 0xc618980a79ce6862
- data8 0xf995dd53ebdd9d6d, 0x9d52ecfccebe1768
- data8 0xc6373a09e34b50fa, 0xf9bc75a034436a41
- data8 0x9d77818d95b82f86, 0xc66550a6e0baaf35
- data8 0xf9f686f26d5518de, 0x9d8ff7893fa4706c
- data8 0xc6842241926342c9, 0xfa1d5b39b910a8c5
- data8 0x9da87cbef36f2a5e, 0xc6a3070b7c93bb9e
- data8 0xfa4447acc4ecbfd2, 0x9dcd6140b4a35aeb
- data8 0xc6d18260bb84081b, 0xfa7ed7e51e6fdfb4
- data8 0x9de60cd06dc6e2d4, 0xc6f0977c9416828b
- data8 0xfaa601394d49a1a0, 0x9dfec7d4cc43b76f
- data8 0xc70fc0117c641630, 0xfacd431644ce0e40
- data8 0x9e17925ec9fccc4a, 0xc72efc34d7e615be
- data8 0xfaf49d96f7a75909, 0x9e3cdf6db57dc075
- data8 0xc75dfb441594141e, 0xfb2fd3c65e562fd5
- data8 0x9e55d110b63637a8, 0xc77d68aa019bda4c
- data8 0xfb576c5762024805, 0x9e6ed27594550d2e
- data8 0xc79ce9ea478dbc4f, 0xfb7f1debc22c4040
- data8 0x9e87e3adc385d393, 0xc7bc7f1ae453219d
- data8 0xfba6e89f32d0190a, 0x9ead9b54b37a1055
- data8 0xc7ec0476e15e141a, 0xfbe2c803a0894893
- data8 0x9ec6d46a3d7de215, 0xc80bcbe16f1d540f
- data8 0xfc0ad1ff0ed9ecf0, 0x9ee01d9108be3154
- data8 0xc82ba78a5d349735, 0xfc32f57bdfbcbe7f
- data8 0x9ef976db07288d04, 0xc84b978847a06b87
- data8 0xfc5b32968f99b21c, 0x9f12e05a4759ec25
- data8 0xc86b9bf1ee817bc6, 0xfc83896bc861ab08
- data8 0x9f2c5a20f4da6668, 0xc88bb4de3667cdf4
- data8 0xfcabfa1861ed4815, 0x9f52af78ed1733ca
- data8 0xc8bc00e7fe9e23a3, 0xfce8d3cea7d3163e
- data8 0x9f6c52426a39d003, 0xc8dc4d7ff2d25232
- data8 0xfd118595143ee273, 0x9f860593d42fd7f3
- data8 0xc8fcaeebcb40eb47, 0xfd3a519943d4865a
- data8 0x9f9fc97fdb96bd51, 0xc91d25431426a663
- data8 0xfd6337f8e1ae5a4b, 0x9fb99e194f4a7037
- data8 0xc93db09d7fdb2949, 0xfd8c38d1c8e927eb
- data8 0x9fd383731ca51db9, 0xc95e5112e721582a
- data8 0xfdb5544205095a53, 0x9fed79a04fbf9423
- data8 0xc97f06bb49787677, 0xfdde8a67d2613531
- data8 0xa00780b413b24ee8, 0xc99fd1aecd6e1b06
- data8 0xfe07db619e781611, 0xa02eab2c4474b0cd
- data8 0xc9d12a3e27bb1625, 0xfe460768d80bf758
- data8 0xa048dcd51ccfd142, 0xc9f22ad82ba3d5f0
- data8 0xfe6f9bfb06cd32f6, 0xa0631fa894b11b8d
- data8 0xca134113105e67b2, 0xfe994bcd3d14fcc2
- data8 0xa07d73ba65e680af, 0xca346d07b045a876
- data8 0xfec316fecaf3f2ab, 0xa097d91e6aaf71b0
- data8 0xca55aecf0e94bb88, 0xfeecfdaf33fadb80
- data8 0xa0b24fe89e02602f, 0xca77068257be9bab
- data8 0xff16fffe2fa8fad6, 0xa0ccd82d1bd2f68b
- data8 0xca98743ae1c693a8, 0xff411e0ba9db886d
- data8 0xa0e77200215909e6, 0xcab9f8122c99a101
- data8 0xff6b57f7c33e4e9a, 0xa1021d760d584855
- data8 0xcadb9221e268c3b5, 0xff95ade2d1bd7358
- data8 0xa11cdaa36068a57d, 0xcafd4283d8043dfd
- data8 0xffc01fed60f86fb5, 0xa137a99cbd3f880b
- data8 0xcb1f09520d37c6fb, 0xffeaae3832b63956
-LOCAL_OBJECT_END(T_table)
-
-
-
-
-
-
+poly_coeffs:
+ASM_TYPE_DIRECTIVE(poly_coeffs,@object)
+data8 0xaaaaaaaaaaaaaaab, 0x00003ffd // 1/3
+data8 0xe38e38e38e38e38e, 0x00003ffb // 1/9
+ASM_SIZE_DIRECTIVE(poly_coeffs)
+
+
+T_table:
+ASM_TYPE_DIRECTIVE(T_table,@object)
+
+data8 0x80155c748c374836, 0xa160019ed37fb4ae
+data8 0xcb51ddcb9e93095e, 0x8040404b0879f7f9
+data8 0xa1960b5966da4608, 0xcb95f333968ad59b
+data8 0x806b5dce4b405c10, 0xa1cc5dbe6dc2aab4
+data8 0xcbda64292d3ffd97, 0x8096b586974669b1
+data8 0xa202f97995b69c0d, 0xcc1f3184af961596
+data8 0x80bcd273d952a028, 0xa232fe6eb0c0577d
+data8 0xcc5bb1ac954d33e2, 0x80e898c52813f2f3
+data8 0xa26a2582012f6e17, 0xcca12e9831fc6402
+data8 0x81149add67c2d208, 0xa2a197e5d10465cb
+data8 0xcce70a67b64f24ad, 0x813b4e2c856b6e9a
+data8 0xa2d25a532efefbc8, 0xcd24794726477ea5
+data8 0x8167c1dde03de7aa, 0xa30a5bd6e49e4ab8
+data8 0xcd6b096a0b70ee87, 0x818ed973b811135e
+data8 0xa33b9c9b59879e24, 0xcda9177738b15a90
+data8 0x81bbc0c33e13ec98, 0xa3742fca6a3c1f21
+data8 0xcdf05f2247dffab9, 0x81e33e69fbe7504a
+data8 0xa3a5f1273887bf22, 0xce2f0f347f96f906
+data8 0x820aec524e3c23e9, 0xa3d7ef508ff11574
+data8 0xce6e0be0cd551a61, 0x823880f78e70b805
+data8 0xa4115ce30548bc15, 0xceb666b2c347d1de
+data8 0x826097a62a8e5200, 0xa443df0e53df577a
+data8 0xcef609b0cb874f00, 0x8288dfe00e9b5eaf
+data8 0xa4769fa5913c0ec3, 0xcf35fb5447e5c765
+data8 0x82b15a10c5371624, 0xa4a99f303bc7def5
+data8 0xcf763c47ee869f00, 0x82da06a527b18937
+data8 0xa4dcde37779adf4b, 0xcfb6cd3888d71785
+data8 0x8302e60b635ab394, 0xa5105d46152c938a
+data8 0xcff7aed4fbfbb447, 0x832bf8b2feec2f0e
+data8 0xa5441ce89825cb8d, 0xd038e1ce5167e3c6
+data8 0x83553f0ce00e276b, 0xa5781dad3e54d899
+data8 0xd07a66d7bfa0ebba, 0x837eb98b50f8322a
+data8 0xa5ac602406c4e68c, 0xd0bc3ea6b32d1b21
+data8 0x83a270f44c84f699, 0xa5d9601d95c2c0bc
+data8 0xd0f4f0e8f36c1bf8, 0x83cc4d7cfcfac5ca
+data8 0xa60e1e1a2de14745, 0xd1376458e34b037e
+data8 0x83f65f78a8872b4c, 0xa6431f6e3fbd9658
+data8 0xd17a2ca133f78572, 0x8420a75f2f7b53c8
+data8 0xa67864b0d432fda4, 0xd1bd4a80301c5715
+data8 0x844510461ff14209, 0xa6a6444aa0243c0b
+data8 0xd1f71682b2fa4575, 0x846fbd91b930bed2
+data8 0xa6dc094d10f25792, 0xd23ad555f773f059
+data8 0x84947e18234f3294, 0xa70a574cc02bba69
+data8 0xd2752c7039a5bf73, 0x84bf92755825045a
+data8 0xa7409e2af9549084, 0xd2b98ee008c06b59
+data8 0x84e4ac0ee112ba51, 0xa76f5c64ca2cf13b
+data8 0xd2f4735ffd700280, 0x8509ef44b86f20be
+data8 0xa79e4f0babab5dc0, 0xd32f99ed6d9ac0e1
+data8 0x85359d5d91768427, 0xa7d5579ae5164b85
+data8 0xd374f0666c75d51c, 0x855b3bd5b7384357
+data8 0xa804bd3c6fe61cc8, 0xd3b0a7d13618e4a1
+data8 0x858104f0c415f79a, 0xa8345895e5250a5a
+data8 0xd3eca2ea53bcec0c, 0x85a6f90390d29864
+data8 0xa8642a122b44ef0b, 0xd428e23874f13a17
+data8 0x85d3772fcd56a1dd, 0xa89c38ca18f6108b
+data8 0xd46f82fe293bc6d3, 0x85f9c982fcc002f3
+data8 0xa8cc81063b6e87ca, 0xd4ac57e9b7186420
+data8 0x862047e0e7ea554b, 0xa8fd00bfa409285e
+data8 0xd4e972becb04e8b8, 0x8646f2a26f7f5852
+data8 0xa92db8664d5516da, 0xd526d40a7a9b43a3
+data8 0x866dca21754096b5, 0xa95ea86b75cc2c20
+data8 0xd5647c5b73917370, 0x8694ceb8dfd17a37
+data8 0xa98fd141a4992deb, 0xd5a26c4201bd6d13
+data8 0x86bc00c49e9307e8, 0xa9c1335cae7446ba
+data8 0xd5e0a45015350a7e, 0x86dccd74fce79610
+data8 0xa9ea8686f556f645, 0xd614b539c6194104
+data8 0x870453c845acf90f, 0xaa1c52d17906bb19
+data8 0xd6537310e224283f, 0x872c089a1e90342c
+data8 0xaa4e59b046dab887, 0xd6927ab62244c917
+data8 0x8753ec4a92d16c5e, 0xaa809b9c60d1890b
+data8 0xd6d1ccc1fc4ef4b7, 0x877bff3aca19f6b4
+data8 0xaab319102f3f9b33, 0xd71169cea98fdded
+data8 0x879d88b6fe1c324c, 0xaadd5a18c1e21274
+data8 0xd746a66a5bc9f6d9, 0x87c5f346dbf98c3a
+data8 0xab1045f2ac31bdf5, 0xd786ce8f0fae5317
+data8 0x87e7c653efacef2c, 0xab3ae3ab2df7231e
+data8 0xd7bc7ff214c4e75a, 0x881089d4e73ffefc
+data8 0xab6e3f945d1e96fc, 0xd7fd35467a517ed1
+data8 0x88397e6a366f2a8a, 0xaba1d953a08fa94e
+data8 0xd83e38838648d815, 0x885bc559e5e1c081
+data8 0xabcd090db7ef4c3f, 0xd874a1db598b8951
+data8 0x887e2ee392bb7a93, 0xabf864602d7c323d
+data8 0xd8ab42205b80edaf, 0x88a7a8587e404257
+data8 0xac2ca5886ccf9b57, 0xd8ed1849d202f965
+data8 0x88ca5eda67594784, 0xac5861d4aa441f0f
+data8 0xd92432bd5a173685, 0x88f4356166bd590e
+data8 0xac8d183fe3a2fbed, 0xd9669ca45b03c23e
+data8 0x89173a0acf5ce026, 0xacb93703ff51571e
+data8 0xd99e3327cf89574e, 0x893a62a098b6a57b
+data8 0xace5830ad0c3f14b, 0xd9d602b19b100466
+data8 0x895daf637236ae2c, 0xad11fca5d78b3ff2
+data8 0xda0e0ba86c096841, 0x89883b9d1c2fa9c5
+data8 0xad4797fddf91a798, 0xda5195fcdb1c3dce
+data8 0x89abd8dd374a5d7b, 0xad747701e559ebcb
+data8 0xda8a1eb87a491f6c, 0x89cf9b1dcd197fa0
+data8 0xada184a47e9c7613, 0xdac2e230b91c3f84
+data8 0x89f382a258ea79de, 0xadcec13ab0dda8ff
+data8 0xdafbe0d0b66aea30, 0x8a178faf06648f29
+data8 0xadfc2d1a5fd21ba8, 0xdb351b04a8fafced
+data8 0x8a3bc288b3e1d18a, 0xae29c89a5053c33a
+data8 0xdb6e9139e33cdd8e, 0x8a601b74f4d1f835
+data8 0xae5794122b638df9, 0xdba843ded7151ea1
+data8 0x8a849aba14274764, 0xae858fda8137ae0a
+data8 0xdbe2336319b61fc8, 0x8aa9409f16cdbc9b
+data8 0xaeb3bc4ccc56d3d1, 0xdc1c60376789fa68
+data8 0x8ace0d6bbe2cb316, 0xaee219c374c09920
+data8 0xdc56cacda82d0cd5, 0x8af301688ab33558
+data8 0xaf10a899d3235fe7, 0xdc917398f2797814
+data8 0x8b181cdebe6f3206, 0xaf3f692c341fe8b4
+data8 0xdccc5b0d90a3e628, 0x8b3d60185fafcb7c
+data8 0xaf6e5bd7db9ae6c2, 0xdd0781a10469f0f2
+data8 0x8b62cb603bb2fad0, 0xaf9d80fb081cd91b
+data8 0xdd42e7ca0b52838f, 0x8b80d7d6bc4104de
+data8 0xafc35ce063eb3787, 0xdd729ad01c69114d
+data8 0x8ba68bf73ac74f39, 0xaff2ddcb5f28f03d
+data8 0xddae749c001fbf5e, 0x8bcc68fb9f9f7335
+data8 0xb022923b148e05c5, 0xddea8f50a51c69b1
+data8 0x8bf26f31c534fca2, 0xb0527a919adbf58b
+data8 0xde26eb69a0f0f111, 0x8c10f86e13a1a1f9
+data8 0xb078f3ab1d701c65, 0xde576480262399bc
+data8 0x8c3749916cc6abb5, 0xb0a93a6870649f31
+data8 0xde943789645933c8, 0x8c5dc4c4f7706032
+data8 0xb0d9b624d62ec856, 0xded14d58139a28af
+data8 0x8c7cac3a8c42e3e0, 0xb100a5f53fb3c8e1
+data8 0xdf025c00bbf2b5c7, 0x8ca373f1b7bf2716
+data8 0xb131821882f5540a, 0xdf3feb44d723a713
+data8 0x8cc29907fb951294, 0xb158bf8e4cb04055
+data8 0xdf715bc16c159be0, 0x8ce9ae4e9492aac8
+data8 0xb189fd69d56b238f, 0xdfaf66240e29cda8
+data8 0x8d0911dddbfdad0e, 0xb1b189958e8108e4
+data8 0xdfe139cbf6e19bdc, 0x8d3075c4f20f04ee
+data8 0xb1e32a8165b09832, 0xe01fc0fe94d9fc52
+data8 0x8d5018a9d4de77d5, 0xb20b0678fc271eec
+data8 0xe051f92ffcc0bd60, 0x8d77cc47dd143515
+data8 0xb23d0bd3f7592b6e, 0xe090feec9c9a06ac
+data8 0x8d97af6352739cb7, 0xb26538b2db8420dc
+data8 0xe0c39d0c9ff862d6, 0x8db7af523167800f
+data8 0xb28d89e339ceca14, 0xe0f668eeb99f188d
+data8 0x8ddfd80bc68c32ff, 0xb2c022ca12e55a16
+data8 0xe1362890eb663139, 0x8e00197e1e7c88fe
+data8 0xb2e8c6852c6b03f1, 0xe1695c7212aecbaa
+data8 0x8e207859f77e20e7, 0xb3118f4eda9fe40f
+data8 0xe19cbf0391bbbbe9, 0x8e40f4ce60c9f8e2
+data8 0xb33a7d6268109ebe, 0xe1d050901c531e85
+data8 0x8e69ba46cf2fde4d, 0xb36ddbc5ea70ec55
+data8 0xe2110903b4f4047a, 0x8e8a7a00bd7ae63e
+data8 0xb3971e9b39264023, 0xe2450559b4d80b6d
+data8 0x8eab57ef1cf2f529, 0xb3c0877ecc18e24a
+data8 0xe27931a231554ef3, 0x8ecc5442cffb1dad
+data8 0xb3ea16ae3a6c905f, 0xe2ad8e2ac3c5b04b
+data8 0x8eed6f2d2a4acbfe, 0xb413cc67aa0e4d2d
+data8 0xe2e21b41b9694cce, 0x8f0ea8dff24441ff
+data8 0xb43da8e9d163e1af, 0xe316d93615862714
+data8 0x8f385c95d696b817, 0xb47233773b84d425
+data8 0xe3590bd86a0d30f9, 0x8f59dc43edd930f3
+data8 0xb49c6825430fe730, 0xe38e38e38e38e38e
+data8 0x8f7b7b5f5ffad1c4, 0xb4c6c46bcdb27dcf
+data8 0xe3c397d1e6db7839, 0x8f9d3a1bea165f38
+data8 0xb4f1488c0b35d26f, 0xe3f928f5953feb9e
+data8 0x8fbf18adc34b66da, 0xb51bf4c7c51f0168
+data8 0xe42eeca17c62886c, 0x8fe117499e356095
+data8 0xb546c9616087ab9c, 0xe464e32943446305
+data8 0x90033624aa685f8d, 0xb571c69bdffd9a70
+data8 0xe49b0ce15747a8a2, 0x9025757495f36b86
+data8 0xb59cecbae56984c3, 0xe4d16a1eee94e9d4
+data8 0x903f3a5dcc091203, 0xb5bd64512bb14bb7
+data8 0xe4fa52107353f67d, 0x9061b2fceb2bdbab
+data8 0xb5e8d2a4bf5ba416, 0xe5310a471f4d2dc3
+data8 0x90844ca7211032a7, 0xb6146a9a1bc47819
+data8 0xe567f6f1c2b9c224, 0x90a7079403e6a15d
+data8 0xb6402c7749d621c0, 0xe59f18689a9e4c9a
+data8 0x90c9e3fbafd63799, 0xb66c1882fb435ea2
+data8 0xe5d66f04b8a68ecf, 0x90ece216c8a16ee4
+data8 0xb6982f048c999a56, 0xe60dfb2005c192e9
+data8 0x9110021e7b516f0a, 0xb6c47044075b4142
+data8 0xe645bd1544c7ea51, 0x912a708a39be9075
+data8 0xb6e5bd6bfd02bafd, 0xe66fb21b505b20a0
+data8 0x914dcc7b31146370, 0xb7124a2736ff8ef2
+data8 0xe6a7d32af4a7c59a, 0x91714af8cfe984d5
+data8 0xb73f026a01e94177, 0xe6e02b129c6a5ae4
+data8 0x918c00a6f3795e97, 0xb760a959f1d0a7a7
+data8 0xe70a9136a7403039, 0x91afbc299ed0295d
+data8 0xb78dae7e06868ab0, 0xe74349fb2d92a589
+data8 0x91d39add3e958db0, 0xb7badff8ad9e4e02
+data8 0xe77c3a9c86ed7d42, 0x91ee9920a8974d92
+data8 0xb7dce25b8e17ae9f, 0xe7a713f88151518a
+data8 0x9212b5fcac537c19, 0xb80a6226904045e2
+data8 0xe7e067453317ed2b, 0x9236f6b256923fcf
+data8 0xb8380f1cafd73c1c, 0xe819f37a81871bb5
+data8 0x92523ee6f90dcfc3, 0xb85a6ea8e321b4d8
+data8 0xe8454236bfaeca14, 0x9276bef031e6eb79
+data8 0xb8886b684ae7d2fa, 0xe87f32f24c3fc90e
+data8 0x929236ec237a24ad, 0xb8ab0726fa00cf5d
+data8 0xe8aacd8688892ba6, 0x92b6f70b7efe9dc3
+data8 0xb8d954a4d13b7cb1, 0xe8e523fd32f606f7
+data8 0x92d29f61eec7dc2b, 0xb8fc2d4f6cd9f04a
+data8 0xe9110b5311407927, 0x92f7a05d5b8ba92f
+data8 0xb92acc851476b1ab, 0xe94bc8bf0c108fa3
+data8 0x931379a403be5c16, 0xb94de2d841a184c2
+data8 0xe977fdc439c2ca3c, 0x9338bc44de2e3f34
+data8 0xb97cd4c36c92693c, 0xe9b3236528fc349e
+data8 0x9354c71412c69486, 0xb9a0297f172665e3
+data8 0xe9dfa70b745ac1b4, 0x937a4c273907e262
+data8 0xb9cf6f21e36c3924, 0xea1b36268d0eaa38
+data8 0x93968919f6e7975d, 0xb9f3030951267208
+data8 0xea480963fd394197, 0x93bc516fdd4680c9
+data8 0xba229d6a618e7c59, 0xea84034425f27484
+data8 0x93d8c123d9be59b2, 0xba467144459f9855
+data8 0xeab12713138dd1cc, 0x93f546c955e60076
+data8 0xba6a60c3c48f1a4b, 0xeade6db73a5e503b
+data8 0x941b70a65879079f, 0xba9a76056b67ee7a
+data8 0xeb1b0268343b121b, 0x943829f337410591
+data8 0xbabea699563ada6e, 0xeb489b0b2bdb5f14
+data8 0x9454f995765bc4d2, 0xbae2f350b262cc4b
+data8 0xeb765721e85f03d0, 0x947b86b57f5842ed
+data8 0xbb1385a23be24e57, 0xebb389645f222f62
+data8 0x94988aeb23470f86, 0xbb3814975e17c680
+data8 0xebe198f090607e0c, 0x94b5a5dc9695f42a
+data8 0xbb5cc031009bf467, 0xec0fcc9321024509
+data8 0x94d2d7a9170d8b42, 0xbb81889680024764
+data8 0xec3e247da8b82f61, 0x94f9e87dd78bf019
+data8 0xbbb2c0d8703ae95d, 0xec7c27d21321c9f7
+data8 0x95175019a503d89e, 0xbbd7cd09ba3c5463
+data8 0xecaad5278824e453, 0x9534cefa625fcb3a
+data8 0xbbfcf68c4977718f, 0xecd9a76d097d4e77
+data8 0x955265405c491a25, 0xbc223d88cfc88eee
+data8 0xed089ed5dcd99446, 0x9570130c1f9bb857
+data8 0xbc47a2284fee4ff8, 0xed37bb95add09a1c
+data8 0x9597ca4119525184, 0xbc79ac0916ed7b8a
+data8 0xed76c70508f904b6, 0x95b5af6fb5aa4d3c
+data8 0xbc9f5670d1a13030, 0xeda63bb05e7f93c6
+data8 0x95d3ac9273aafd7a, 0xbcc51f068cb95c1d
+data8 0xedd5d661daed2dc4, 0x95f1c1cafdfd3684
+data8 0xbceb05f4b30a9bc0, 0xee05974eef86b903
+data8 0x960fef3b430b8d5f, 0xbd110b6604c7d306
+data8 0xee357ead791fc670, 0x962e350575b409c5
+data8 0xbd372f8598620f19, 0xee658cb3c134a463
+data8 0x964c934c0dfc1708, 0xbd5d727edb6b3c7e
+data8 0xee95c1987f080211, 0x966b0a31c9c6bc7d
+data8 0xbd83d47d937bbc6d, 0xeec61d92d8c4314f
+data8 0x968999d9ad8d264e, 0xbdaa55addf1ae47d
+data8 0xeef6a0da64a014ac, 0x96a8426705198795
+data8 0xbdd0f63c36aa73f0, 0xef274ba72a07c811
+data8 0x96c703fd64445ee5, 0xbdf7b6556d550a15
+data8 0xef581e31a2c91260, 0x96e5dec0a7b4268d
+data8 0xbe1e9626b1ffa96b, 0xef8918b2bc43aec6
+data8 0x9704d2d4f59f79f3, 0xbe4595dd903e5371
+data8 0xefba3b63d89d7cbf, 0x9723e05ebe91b9b0
+data8 0xbe6cb5a7f14bc935, 0xefeb867ecffaa607
+data8 0x97430782be323831, 0xbe93f5b41d047cf7
+data8 0xf01cfa3df1b9c9fa, 0x97624865fc0df8bf
+data8 0xbebb5630bae4c15f, 0xf04e96dc05b43e2d
+data8 0x9781a32dcc640b2a, 0xbee2d74cd30a430c
+data8 0xf0805c944d827454, 0x97a117ffd0f48e46
+data8 0xbf0a7937cf38d981, 0xf0b24ba285c495cb
+data8 0x97c0a701f9d263c9, 0xbf323c217be2bc8c
+data8 0xf0e46442e76f6569, 0x97e0505a8637a036
+data8 0xbf5a203a09342bbb, 0xf116a6b2291d7896
+data8 0x97f57a9fb0b08c6e, 0xbf74cad1c14ebfc4
+data8 0xf1383fa9e9b5b381, 0x9815503365914a9d
+data8 0xbf9ce6a497a89f78, 0xf16ac84f90083b9b
+data8 0x98354085054fd204, 0xbfc52428bec6e72f
+data8 0xf19d7b686dcb03d7, 0x98554bbbf8a77902
+data8 0xbfed838fddab024b, 0xf1d0593311db1757
+data8 0x987571fffb7f94f6, 0xc016050c0420981a
+data8 0xf20361ee8f1c711e, 0x9895b3791dd03c23
+data8 0xc03ea8cfabddc330, 0xf23695da7de51d3f
+data8 0x98ab43a5fc65d0c8, 0xc059d3cbd65ddbce
+data8 0xf258d095e465cc35, 0x98cbb2d196bd713d
+data8 0xc082b122a3c78c9d, 0xf28c4d0bfc982b34
+data8 0x98ec3d9ec7b6f21a, 0xc0abb1499ae736c4
+data8 0xf2bff55eb3f0ea71, 0x990ce436db5e8344
+data8 0xc0d4d474c3aedaaf, 0xf2f3c9cf9884636e
+data8 0x9922b8218160967a, 0xc0f054ca33eb3437
+data8 0xf31670135ab9cc0f, 0x99438d686f75779d
+data8 0xc119b2c67e600ed0, 0xf34a8e9f0b54cdfb
+data8 0x99647eea131fa20b, 0xc1433453de2033ff
+data8 0xf37ed9fa6b8add3f, 0x997a85045a47c6d0
+data8 0xc15ef3e44e10032d, 0xf3a1cfe884ef6bb6
+data8 0x999ba5f14f8add02, 0xc188b130431d80e6
+data8 0xf3d66689dcc8e8d3, 0x99bce38b5465ecae
+data8 0xc1b2929d6067730e, 0xf40b2ab069d5c96a
+data8 0x99d31ca0887f30f9, 0xc1ce9268f31cc734
+data8 0xf42e718b90c8bc16, 0x99f48a669c74c09e
+data8 0xc1f8b0877c1b0c08, 0xf463822a0a3b4b00
+data8 0x9a16154eb445c873, 0xc222f35a87b415ba
+data8 0xf498c1076015faf8, 0x9a2c822ec198d667
+data8 0xc23f3467349e5c88, 0xf4bc5a19a33990b5
+data8 0x9a4e3e080cd91b78, 0xc269b4e40e088c01
+data8 0xf4f1e6a7d6f5425f, 0x9a70177afe52322e
+data8 0xc2945aac24daaf6e, 0xf527a232cf6be334
+data8 0x9a86b8fa94eebe10, 0xc2b0de05e43c1d66
+data8 0xf54b8ecdcda90851, 0x9aa8c42866ae2958
+data8 0xc2dbc275e1229d09, 0xf5819949c7ad87b4
+data8 0x9abf86f9e12fc45e, 0xc2f86fca9d80eeff
+data8 0xf5a5bac9213b48a9, 0x9ae1c462fc05f49d
+data8 0xc323938449a2587e, 0xf5dc1501f324a812
+data8 0x9af8a8dc936b84d0, 0xc3406b40a538ed20
+data8 0xf6006bee86b5589e, 0x9b1b19033be35730
+data8 0xc36bcee8211d15e0, 0xf63716b2fa067fa4
+data8 0x9b3da7daf04c2892, 0xc397593adf2ba366
+data8 0xf66df22fb6132b9c, 0x9b54c2e4c8a9012b
+data8 0xc3b475b6206155d5, 0xf6929fb98225deb1
+data8 0x9b77854e6c661200, 0xc3e0410243b97383
+data8 0xf6c9cd13021e3fea, 0x9b8ec2e678d56d2f
+data8 0xc3fd890709833d37, 0xf6eeb177472cedae
+data8 0x9ba60e6a5ca133b6, 0xc41ae295f7e7fa06
+data8 0xf713abf4cb0b3afb, 0x9bc919ea66a151a4
+data8 0xc44709f7bb8a4dd2, 0xf74b4d5333684ef1
+data8 0x9be0887c09ef82bb, 0xc4648fb0e0bec4c1
+data8 0xf7707f75a72f8e94, 0x9c03c8d5fffc3503
+data8 0xc490f9a94695ba14, 0xf7a874b97927af44
+data8 0x9c1b5ad21a81cbb9, 0xc4aeac0173b7d390
+data8 0xf7cddf140aedf1d8, 0x9c3ed09216e9ca02
+data8 0xc4db5941007aa853, 0xf806291bacb7f7a9
+data8 0x9c568656c0423def, 0xc4f938aec206291a
+data8 0xf82bcc43b92eafef, 0x9c7a320af242ce60
+data8 0xc52629e899dfd622, 0xf8646bf0defb759e
+data8 0x9c920bf7a8c01dc2, 0xc54436e44043b965
+data8 0xf88a487dfc3ff5f7, 0x9ca9f475d98b159c
+data8 0xc562563abf9ea07f, 0xf8b03c2b46cdc17f
+data8 0x9ccdeca60e80b5f8, 0xc58fa7d1dc42921c
+data8 0xf8e95541c152ae7a, 0x9ce5f9d4653d4902
+data8 0xc5adf561b91e110a, 0xf90f832c2700c160
+data8 0x9cfe15cb38bfdd8e, 0xc5cc5591bdbd82fa
+data8 0xf935c88e0c7f419b, 0x9d225b983f6c1f96
+data8 0xc5fa08f1ff20593c, 0xf96f5cd84fd86873
+data8 0x9d3a9cca32261ed7, 0xc618980a79ce6862
+data8 0xf995dd53ebdd9d6d, 0x9d52ecfccebe1768
+data8 0xc6373a09e34b50fa, 0xf9bc75a034436a41
+data8 0x9d77818d95b82f86, 0xc66550a6e0baaf35
+data8 0xf9f686f26d5518de, 0x9d8ff7893fa4706c
+data8 0xc6842241926342c9, 0xfa1d5b39b910a8c5
+data8 0x9da87cbef36f2a5e, 0xc6a3070b7c93bb9e
+data8 0xfa4447acc4ecbfd2, 0x9dcd6140b4a35aeb
+data8 0xc6d18260bb84081b, 0xfa7ed7e51e6fdfb4
+data8 0x9de60cd06dc6e2d4, 0xc6f0977c9416828b
+data8 0xfaa601394d49a1a0, 0x9dfec7d4cc43b76f
+data8 0xc70fc0117c641630, 0xfacd431644ce0e40
+data8 0x9e17925ec9fccc4a, 0xc72efc34d7e615be
+data8 0xfaf49d96f7a75909, 0x9e3cdf6db57dc075
+data8 0xc75dfb441594141e, 0xfb2fd3c65e562fd5
+data8 0x9e55d110b63637a8, 0xc77d68aa019bda4c
+data8 0xfb576c5762024805, 0x9e6ed27594550d2e
+data8 0xc79ce9ea478dbc4f, 0xfb7f1debc22c4040
+data8 0x9e87e3adc385d393, 0xc7bc7f1ae453219d
+data8 0xfba6e89f32d0190a, 0x9ead9b54b37a1055
+data8 0xc7ec0476e15e141a, 0xfbe2c803a0894893
+data8 0x9ec6d46a3d7de215, 0xc80bcbe16f1d540f
+data8 0xfc0ad1ff0ed9ecf0, 0x9ee01d9108be3154
+data8 0xc82ba78a5d349735, 0xfc32f57bdfbcbe7f
+data8 0x9ef976db07288d04, 0xc84b978847a06b87
+data8 0xfc5b32968f99b21c, 0x9f12e05a4759ec25
+data8 0xc86b9bf1ee817bc6, 0xfc83896bc861ab08
+data8 0x9f2c5a20f4da6668, 0xc88bb4de3667cdf4
+data8 0xfcabfa1861ed4815, 0x9f52af78ed1733ca
+data8 0xc8bc00e7fe9e23a3, 0xfce8d3cea7d3163e
+data8 0x9f6c52426a39d003, 0xc8dc4d7ff2d25232
+data8 0xfd118595143ee273, 0x9f860593d42fd7f3
+data8 0xc8fcaeebcb40eb47, 0xfd3a519943d4865a
+data8 0x9f9fc97fdb96bd51, 0xc91d25431426a663
+data8 0xfd6337f8e1ae5a4b, 0x9fb99e194f4a7037
+data8 0xc93db09d7fdb2949, 0xfd8c38d1c8e927eb
+data8 0x9fd383731ca51db9, 0xc95e5112e721582a
+data8 0xfdb5544205095a53, 0x9fed79a04fbf9423
+data8 0xc97f06bb49787677, 0xfdde8a67d2613531
+data8 0xa00780b413b24ee8, 0xc99fd1aecd6e1b06
+data8 0xfe07db619e781611, 0xa02eab2c4474b0cd
+data8 0xc9d12a3e27bb1625, 0xfe460768d80bf758
+data8 0xa048dcd51ccfd142, 0xc9f22ad82ba3d5f0
+data8 0xfe6f9bfb06cd32f6, 0xa0631fa894b11b8d
+data8 0xca134113105e67b2, 0xfe994bcd3d14fcc2
+data8 0xa07d73ba65e680af, 0xca346d07b045a876
+data8 0xfec316fecaf3f2ab, 0xa097d91e6aaf71b0
+data8 0xca55aecf0e94bb88, 0xfeecfdaf33fadb80
+data8 0xa0b24fe89e02602f, 0xca77068257be9bab
+data8 0xff16fffe2fa8fad6, 0xa0ccd82d1bd2f68b
+data8 0xca98743ae1c693a8, 0xff411e0ba9db886d
+data8 0xa0e77200215909e6, 0xcab9f8122c99a101
+data8 0xff6b57f7c33e4e9a, 0xa1021d760d584855
+data8 0xcadb9221e268c3b5, 0xff95ade2d1bd7358
+data8 0xa11cdaa36068a57d, 0xcafd4283d8043dfd
+data8 0xffc01fed60f86fb5, 0xa137a99cbd3f880b
+data8 0xcb1f09520d37c6fb, 0xffeaae3832b63956
+ASM_SIZE_DIRECTIVE(T_table)
+
+
+
+
+
+
+.align 32
+.global cbrtf#
.section .text
-GLOBAL_LIBM_ENTRY(cbrtf)
+.proc cbrtf#
+.align 32
+cbrtf:
-{.mfi
- getf.sig GR_SIGNIF = f8
- // will continue only for normal/denormal numbers
- fclass.nm.unc p12, p7 = f8, 0x1b
- // GR_GP = pointer to C_1, C_2 followed by T_table
- nop.i 0
+{ .mfi
+ getf.sig r28=f8
+ // will continue only for normal/denormal numbers
+(p0) fclass.nm.unc p12,p7 = f8, 0x1b
+ // r2 = pointer to C_1,C_2 followed by T_table
+ addl r2 = @ltoff(poly_coeffs), gp
}
{.mfi
- addl GR_GP = @ltoff(poly_coeffs), gp
- // normalize a
- fma.s1 FR_ARG = f8, f1, f0
- // GR_CT3 = bias-((2^8-1)/3) -63 = 0xffff-0x55-0x3f = 0xff6b
- mov GR_CT3 = 0xff6b ;;
-}
-
-{.mmi
- // get exponent
- getf.exp GR_ARGEXP = f8
- // load start address for C_1, C_2 followed by T_table
- ld8 GR_ADDR = [ GR_GP ]
- nop.i 0 ;;
-}
-
-{.mlx
- // check if input significand is 0
- (p7) cmp.eq p12, p7 = GR_SIGNIF, r0
- // GR_2P63 = 2^63
- movl GR_2P63 = 0x8000000000000000 ;;
+ // r29=bias-((2^8-1)/3) -63=0xffff-0x55-0x3f=0xff6b
+ mov r29=0xff6b
+ // normalize a
+ fma.s1 f14=f8,f1,f0
+ nop.i 0;;
}
-
-{.mfi
- nop.m 0
- // y = frcpa(a)
- // p7 = 1 for normal and denormal (but non-zero) arguments
- (p7) frcpa.s0 FR_Y, p0 = f1, f8
- // p9 = 1 if denormal input
- cmp.gtu p9, p0 = GR_2P63, GR_SIGNIF
+{.mib
+ nop.m 0
+ (p7) cmp.eq p12,p0=r28,r0
+ nop.b 0;;
}
{.mfb
- // load C_1
- ldfe FR_COEFF1 = [ GR_ADDR ], 16
- // if argument is 0, +/-Infinity, or NaN, return
- (p12) fma.s.s0 f8 = f8, f1, f0
- (p12) br.ret.spnt b0 ;;
+ // load start address for C_1,C_2 followed by T_table
+ ld8 r2=[r2]
+ (p12) fma.s.s0 f8=f8,f1,f0
+ (p12) br.ret.spnt b0;;
+}
+{.mmf
+ // load C_1
+ ldfe f7=[r2],16
+ nop.m 0
+ // y=frcpa(a)
+ frcpa.s0 f8,p6=f1,f8;;
}
-
{.mmi
- // get normalized significand (for denormal inputs only)
- (p9) getf.sig GR_SIGNIF = FR_ARG
- // load C_2
- ldfe FR_COEFF2 = [ GR_ADDR ], 16
- // GR_CT2 = bias-(2^8-1)
- mov GR_CT2 = 0xff00
+ // load C_2
+ ldfe f9=[r2],16
+ // r28=bias-(2^8-1)
+ mov r28=0xff00
+ nop.i 0;;
}
-
-{.mii
- // get exponent (for denormal inputs only)
- (p9) getf.exp GR_ARGEXP = FR_ARG
- nop.i 0
- mov GR_CONST = 0x20000 ;;
+{.mmi
+ // get normalized significand
+ getf.sig r23=f14
+ // get exponent
+ getf.exp r24=f14
+ mov r25=0x20000;;
}
-
-
{.mii
- // get GR_SIGN = sign
- and GR_SIGN = GR_ARGEXP, GR_CONST
- // eliminate leading 1 from GR_I1 = 1st table index
- shl GR_I1 = GR_SIGNIF, 1
- // eliminate sign from exponent
- andcm GR_EBIAS = GR_ARGEXP, GR_CONST ;;
+ // get r26=sign
+ and r26=r24,r25
+ // eliminate leading 1 from r23=1st table index
+ shl r23=r23,1
+ // eliminate sign from exponent (r25)
+ andcm r25=r24,r25;;
}
-
-
{.mfi
- // subtract bias from GR_EXP = exponent
- sub GR_EXP = GR_EBIAS, GR_CT2
- // r = 1-a*y
- fnma.s1 FR_R = FR_Y, FR_ARG, f1
- // GR_IT1 = 1st table index (y_index8 bits)
- shr.u GR_IT1 = GR_I1, 56 ;;
+ // subtract bias from r25=exponent
+ sub r25=r25,r28
+ // r=1-a*y
+ (p6) fnma.s1 f6=f8,f14,f1
+ // r23=1st table index (y_index8 bits)
+ shr.u r23=r23,56;;
}
-
-
{.mii
- // 1: exponent* = 5; // (2^{16}-1)/3 = 0x5555
- shladd GR_E5 = GR_EXP, 2, GR_EXP
- // GR_IT1_3 = 3*y_index
- shladd GR_IT1_3 = GR_IT1, 1, GR_IT1
- nop.i 0 ;;
-}
-
-
-{.mmi
- // GR_TMP5 = (5*expon)*16+5*expon = (0x55)*expon
- shladd GR_TMP5 = GR_E5, 4, GR_E5
- // adjust T_table pointer by 1st index
- shladd GR_TP1 = GR_IT1_3, 3, GR_ADDR
- nop.i 0 ;;
+ // 1: exponent*=5; // (2^{16}-1)/3=0x5555
+ shladd r24=r25,2,r25
+ // r23=3*y_index
+ shladd r23=r23,1,r23;;
+ // r30=(5*expon)*16+5*expon=(0x55)*expon
+ shladd r30=r24,4,r24;;
}
-
-
{.mmi
- // FR_T0 = T [ 0 ] [ y ]
- ldf8 FR_T0 = [ GR_TP1 ], 8
- // get 2^{-63}
- mov GR_TMP63 = 0xffff + 63
- // GR_TMP = (0x5500)*expon
- shl GR_TMP = GR_TMP5, 8 ;;
+ // adjust T_table pointer by 1st index
+ shladd r2=r23,3,r2;;
+ // f10=T[0][y]
+ (p6) ldf8 f10=[r2],8
+ // r24=(0x5500)*expon
+ shl r24=r30,8;;
}
-
-
{.mfi
- // FR_T1 = T [ 1 ] [ y ]
- ldf8 FR_T1 = [ GR_TP1 ], 8
- // P_1 = C_1+C_2*r
- fma.s1 FR_COEFF1 = FR_COEFF2, FR_R, FR_COEFF1
- // GR_TMP2 = (0x5555)*expon
- add GR_TMP2 = GR_TMP, GR_TMP5 ;;
+ // f11=T[1][y]
+ (p6) ldf8 f11=[r2],8
+ // P_1=C_1+C_2*r
+ (p6) fma.s1 f7=f9,f6,f7
+ // r24=(0x5555)*expon
+ add r24=r24,r30;;
}
-
-
{.mmi
- // GR_TMP3 = (0x5556)*expon // 0x5556 = (2^{16}+2)/3
- add GR_TMP3 = GR_TMP2, GR_EXP ;;
- // FR_T2 = T [ 2 ] [ y ]
- ldf8 FR_T2 = [ GR_TP1 ]
- // GR_EXP3 = floor(expon/3)
- shr GR_EXP3 = GR_TMP3, 16 ;;
+ // r24=(0x5556)*expon // 0x5556=(2^{16}+2)/3
+ add r24=r24,r25;;
+ // f8=T[2][y]
+ (p6) ldf8 f8=[r2]
+ // r24=floor(expon/3)
+ shr r24=r24,16;;
}
-
-
{.mmi
- setf.exp FR_2M63 = GR_TMP63
- // GR_TMP4 = 3*exponent
- shladd GR_TMP4 = GR_EXP3, 1, GR_EXP3
- // bias exponent
- add GR_EBIAS3 = GR_CT3, GR_EXP3 ;;
-}
-
-
-{.mmf
- // get remainder of exponent/3
- sub GR_REM = GR_EXP, GR_TMP4
- // add sign to exponent
- or GR_SEXP = GR_EBIAS3, GR_SIGN
- // P_2 = -r*P_1
- fnma.s1 FR_R = FR_COEFF1, FR_R, f0 ;;
+ nop.m 0
+ // r28=3*exponent
+ shladd r28=r24,1,r24
+ // bias exponent
+ add r24=r29,r24;;
}
-
-
-
{.mmi
- // FR_ARG = sign*2^{exponent/3}
- setf.exp FR_ARG = GR_SEXP
- nop.m 0
- // remainder = 0 ?
- // p7=1 if input exponent is 3*j (remainder is 0)
- cmp.eq.unc p7, p8 = r0, GR_REM ;;
+ // get remainder of exponent/3
+ sub r25=r25,r28
+ // add sign to exponent
+ or r24=r24,r26
+ nop.i 0;;
+}
+{.mfi
+ nop.m 0
+ // P_2=-r*P_1
+ (p6) fnma.s1 f6=f7,f6,f0
+ // remainder=0 ?
+ (p6) cmp.eq.unc p7,p8=r0,r25;;
}
-
-
{.mfi
- // remainder = 1 ?
- // p8=1 if input exponent is 3*j+1 (remainder is 1)
- // p12=1 if input exponent is 3*j+2 (remainder is 2)
- (p8) cmp.eq.unc p8, p12 = 1, GR_REM
- // p7=1 -> remainder = 0 -> use T = FR_T0
- (p7) fma.s1 f8 = FR_T0, FR_R, FR_T0
- // argument is of the form 2^(3*k) ?
- // ( GR_I1 holds significand bits, without the leading 1)
- or GR_I1 = GR_I1, GR_REM ;;
+ // f14=sign*2^{exponent/3}
+ (p6) setf.exp f14=r24
+ nop.f 0
+ // remainder = 1 ?
+ (p8) cmp.eq.unc p8,p12=1,r25;;
}
-
-
-.pred.rel "mutex", p12, p8
+.pred.rel "mutex",p7,p8
{.mfi
- nop.m 0
- // p8=1 -> remainder = 1 -> use FR_T1
- (p8) fma.s1 f8 = FR_T1, FR_R, FR_T1
- // argument is of the form 2^(3*k) ?
- cmp.eq p14, p7 = GR_I1, r0
+ nop.m 0
+ // remainder=0 -> use T=f10
+ (p7) fma.s1 f8=f10,f6,f10
+ nop.i 0
}
-
-
{.mfi
- nop.m 0
- // p12=1 -> remainder=2 -> result = T+T*P_2
- (p12) fma.s1 f8 = FR_T2, FR_R, FR_T2
- nop.i 0 ;;
+ nop.m 0
+ // remainder =1 -> use f11
+ (p8) fma.s1 f8=f11,f6,f11
+ nop.i 0;;
}
-
-
-.pred.rel "mutex", p14, p7
{.mfi
- nop.m 0
- // if argument is sgn*2^{3*(expon/3)}
- (p14) fma.s.s0 f8 = FR_2M63, FR_ARG, f0
- nop.i 0
+ nop.m 0
+ // result=T+T*P_2
+ (p12) fma.s.s0 f8=f8,f6,f8
+ nop.i 0;;
}
{.mfb
- nop.m 0
- // T* = sgn*2^{expon/3}
- (p7) fma.s.s0 f8 = f8, FR_ARG, f0
- br.ret.sptk b0 ;;
+ nop.m 0
+ // T*=sgn*2^{expon/3}
+ (p6) fma.s.s0 f8=f8,f14,f0
+ br.ret.sptk b0;;
}
-
-
-GLOBAL_LIBM_END(cbrtf)
-
-
-
-
+.endp cbrtf
+ASM_SIZE_DIRECTIVE(cbrtf)
diff --git a/sysdeps/ia64/fpu/s_cbrtl.S b/sysdeps/ia64/fpu/s_cbrtl.S
index 76ef12f334..d4bbf8fdbf 100644
--- a/sysdeps/ia64/fpu/s_cbrtl.S
+++ b/sysdeps/ia64/fpu/s_cbrtl.S
@@ -1,10 +1,11 @@
-.file "cbrtl.s"
+.file "cbrtl.asm"
-
-// Copyright (c) 2000 - 2004, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang
+// of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,29 +21,26 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 04/28/00 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header:.section,.global,.proc,.align
-// 11/23/04 Reformatted routine and improved speed
+// 4/28/00: Initial version
//
// API
//==============================================================
@@ -54,933 +52,851 @@
//
// Implementation
//
-// The result is computed as
-// cbrt(x)= cbrt(1 - (1 - x*y)) * (1/cbrt(y))
-// where y = frcpa(x) = (-1)^sgn_y * 2^(3*k+j) * m_y,
-// m_y in [1,2), j in {0,1,2}
+// cbrt(a) = cbrt(a y) / cbrt(y)
+// = cbrt(1 - (1 - a y)) * 1/cbrt(y)
//
-// cbrt(1 - (1 - x*y)) is approximated by a degree-6 polynomial
-// in r= 1 - x*y :
-// P = 1 - c_1 r - c_2 * r^2 - c_3 * r^3 - c_4 * r^4 - c_5 * r^5 - c_6 * r^6
+// where y = frcpa(a).
//
+// * cbrt(1 - (1 - a y)) is approximated by a degree-6 polynomial
+//
+// 1 - c_1 r - c_2 * r^2 - c_3 * r^3 - c_4 * r^4 - c_5 * r^5 - c_6 * r^6
+//
+// in r = 1 - a y.
//
-// The values (1/cbrt(y)) are stored as two tables of constants T_hi
-// (double-extended precision) and D (single precision) as follows:
-// T_hi (1 + D)= 1/cbrt(y) to about 80 bits of accuracy
+// * The values 1/cbrt(y) are stored as two tables of constants T_hi
+// (double-extended precision) and D (single precision) as follows:
//
-// The tables are only stored for three exponent values (i.e.
-// only for 2^j * m_y, where j in {0,1,2} and m_y covers the 256
-// possible mantissas for an frcpa result); the index is formed
-// by the 8 leading mantissa bits of x, which is the same index used
-// by the hardware to get frcpa(x).
+// T_hi (1 + D) = 1/cbrt(y) to about 80 bits of accuracy
//
-// The table values are multiplied by 2^k where e is the exponent of
-// the input number. This multiplication is carried out in parallel with
-// the polynomial evaluation:
-// T= 2^(k) * T_hi
+// The tables are only stored for three exponent values and are
+// then multiplied by e/3 where e is the exponent of the input number.
+// This computation is carried out in parallel with the polynomial
+// evaluation:
//
-//=======================================================================
+// T = 2^(e/3) * T_hi
-//===============
-// Special values
-//==============================================================
-// Registers used
-//==============================================================
-// p6, p7, p12
- FR_R = f6
- FR_C1 = f7
- FR_C2 = f9
- FR_C3 = f10
- FR_C4 = f11
- FR_C5 = f12
- FR_C6 = f13
- FR_XNORM = f14
- FR_D = f15
- FR_SPECIAL = f32
- FR_RCP = f33
- FR_R2 = f34
- FR_P1 = f35
- FR_P2 = f36
- FR_P3 = f37
- FR_P4 = f38
- FR_P5 = f39
- FR_R3 = f40
- FR_T = f41
- FR_TF = f42
- FR_P = f43
- FR_SGNEXP = f44
- GR_ADDR = r2
- GR_C_START = r2
- GR_ARGSIG = r3
- GR_NORMSIG = r15
- GR_D_ADDR = r16
- GR_D_START = r16
- GR_INDEX2 = r17
- GR_IX2 = r17
- GR_NORMEXP = r18
- GR_EXP5 = r19
- GR_EXP3 = r20
- GR_EXP6 = r20
- GR_EXP17 = r21
- GR_TMP1 = r21
- GR_SGNMASK = r22
- GR_T_INDEX = r23
- GR_IX_T = r23
- GR_IX_D = r24
- GR_D_INDEX = r24
- GR_TMP2 = r25
- GR_TMP3 = r25
- GR_TMP4 = r25
- GR_EXP_RES = r26
- GR_BIAS23 = r27
- GR_EXPBIAS = r27
- GR_EXP_MOD_3 = r28
- GR_SIGN = r29
- GR_EXPSIGNRES = r29
- GR_REMTMP = r30
- GR_NORMEXPSGN = r31
-// Data tables
+//===============
+// input = x
+// C = frcpa(x)
+// r = C * x - 1
+//
+// Special values
//==============================================================
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(poly_coeffs)
- data8 0xaaaaaaaaaaaaaab1, 0x00003ffd // C_1
- data8 0xe38e38e38e38e3e0, 0x00003ffb // C_2
- data8 0x3faf9add3c0be9a6, 0x3fa511e8d2b1f749 // C_3, C_4
- data8 0x3f9ee71b2c6ebe99, 0x3f9809180fd0340c // C_5, C_6
-LOCAL_OBJECT_END(poly_coeffs)
+// Registers used
+//==============================================================
+// f6-f15
+// r2-r3, r23-r30
+// p6,p7,p12
-LOCAL_OBJECT_START(T_table)
-
- data8 0x80155c748c374836, 0x8040404b0879f7f9
- data8 0x806b5dce4b405c10, 0x8096b586974669b1
- data8 0x80bcd273d952a028, 0x80e898c52813f2f3
- data8 0x81149add67c2d208, 0x813b4e2c856b6e9a
- data8 0x8167c1dde03de7aa, 0x818ed973b811135e
- data8 0x81bbc0c33e13ec98, 0x81e33e69fbe7504a
- data8 0x820aec524e3c23e9, 0x823880f78e70b805
- data8 0x826097a62a8e5200, 0x8288dfe00e9b5eaf
- data8 0x82b15a10c5371624, 0x82da06a527b18937
- data8 0x8302e60b635ab394, 0x832bf8b2feec2f0e
- data8 0x83553f0ce00e276b, 0x837eb98b50f8322a
- data8 0x83a270f44c84f699, 0x83cc4d7cfcfac5ca
- data8 0x83f65f78a8872b4c, 0x8420a75f2f7b53c8
- data8 0x844510461ff14209, 0x846fbd91b930bed2
- data8 0x84947e18234f3294, 0x84bf92755825045a
- data8 0x84e4ac0ee112ba51, 0x8509ef44b86f20be
- data8 0x85359d5d91768427, 0x855b3bd5b7384357
- data8 0x858104f0c415f79a, 0x85a6f90390d29864
- data8 0x85d3772fcd56a1dd, 0x85f9c982fcc002f3
- data8 0x862047e0e7ea554b, 0x8646f2a26f7f5852
- data8 0x866dca21754096b5, 0x8694ceb8dfd17a37
- data8 0x86bc00c49e9307e8, 0x86dccd74fce79610
- data8 0x870453c845acf90f, 0x872c089a1e90342c
- data8 0x8753ec4a92d16c5e, 0x877bff3aca19f6b4
- data8 0x879d88b6fe1c324c, 0x87c5f346dbf98c3a
- data8 0x87e7c653efacef2c, 0x881089d4e73ffefc
- data8 0x88397e6a366f2a8a, 0x885bc559e5e1c081
- data8 0x887e2ee392bb7a93, 0x88a7a8587e404257
- data8 0x88ca5eda67594784, 0x88f4356166bd590e
- data8 0x89173a0acf5ce026, 0x893a62a098b6a57b
- data8 0x895daf637236ae2c, 0x89883b9d1c2fa9c5
- data8 0x89abd8dd374a5d7b, 0x89cf9b1dcd197fa0
- data8 0x89f382a258ea79de, 0x8a178faf06648f29
- data8 0x8a3bc288b3e1d18a, 0x8a601b74f4d1f835
- data8 0x8a849aba14274764, 0x8aa9409f16cdbc9b
- data8 0x8ace0d6bbe2cb316, 0x8af301688ab33558
- data8 0x8b181cdebe6f3206, 0x8b3d60185fafcb7c
- data8 0x8b62cb603bb2fad0, 0x8b80d7d6bc4104de
- data8 0x8ba68bf73ac74f39, 0x8bcc68fb9f9f7335
- data8 0x8bf26f31c534fca2, 0x8c10f86e13a1a1f9
- data8 0x8c3749916cc6abb5, 0x8c5dc4c4f7706032
- data8 0x8c7cac3a8c42e3e0, 0x8ca373f1b7bf2716
- data8 0x8cc29907fb951294, 0x8ce9ae4e9492aac8
- data8 0x8d0911dddbfdad0e, 0x8d3075c4f20f04ee
- data8 0x8d5018a9d4de77d5, 0x8d77cc47dd143515
- data8 0x8d97af6352739cb7, 0x8db7af523167800f
- data8 0x8ddfd80bc68c32ff, 0x8e00197e1e7c88fe
- data8 0x8e207859f77e20e7, 0x8e40f4ce60c9f8e2
- data8 0x8e69ba46cf2fde4d, 0x8e8a7a00bd7ae63e
- data8 0x8eab57ef1cf2f529, 0x8ecc5442cffb1dad
- data8 0x8eed6f2d2a4acbfe, 0x8f0ea8dff24441ff
- data8 0x8f385c95d696b817, 0x8f59dc43edd930f3
- data8 0x8f7b7b5f5ffad1c4, 0x8f9d3a1bea165f38
- data8 0x8fbf18adc34b66da, 0x8fe117499e356095
- data8 0x90033624aa685f8d, 0x9025757495f36b86
- data8 0x903f3a5dcc091203, 0x9061b2fceb2bdbab
- data8 0x90844ca7211032a7, 0x90a7079403e6a15d
- data8 0x90c9e3fbafd63799, 0x90ece216c8a16ee4
- data8 0x9110021e7b516f0a, 0x912a708a39be9075
- data8 0x914dcc7b31146370, 0x91714af8cfe984d5
- data8 0x918c00a6f3795e97, 0x91afbc299ed0295d
- data8 0x91d39add3e958db0, 0x91ee9920a8974d92
- data8 0x9212b5fcac537c19, 0x9236f6b256923fcf
- data8 0x92523ee6f90dcfc3, 0x9276bef031e6eb79
- data8 0x929236ec237a24ad, 0x92b6f70b7efe9dc3
- data8 0x92d29f61eec7dc2b, 0x92f7a05d5b8ba92f
- data8 0x931379a403be5c16, 0x9338bc44de2e3f34
- data8 0x9354c71412c69486, 0x937a4c273907e262
- data8 0x93968919f6e7975d, 0x93bc516fdd4680c9
- data8 0x93d8c123d9be59b2, 0x93f546c955e60076
- data8 0x941b70a65879079f, 0x943829f337410591
- data8 0x9454f995765bc4d2, 0x947b86b57f5842ed
- data8 0x94988aeb23470f86, 0x94b5a5dc9695f42a
- data8 0x94d2d7a9170d8b42, 0x94f9e87dd78bf019
- data8 0x95175019a503d89e, 0x9534cefa625fcb3a
- data8 0x955265405c491a25, 0x9570130c1f9bb857
- data8 0x9597ca4119525184, 0x95b5af6fb5aa4d3c
- data8 0x95d3ac9273aafd7a, 0x95f1c1cafdfd3684
- data8 0x960fef3b430b8d5f, 0x962e350575b409c5
- data8 0x964c934c0dfc1708, 0x966b0a31c9c6bc7d
- data8 0x968999d9ad8d264e, 0x96a8426705198795
- data8 0x96c703fd64445ee5, 0x96e5dec0a7b4268d
- data8 0x9704d2d4f59f79f3, 0x9723e05ebe91b9b0
- data8 0x97430782be323831, 0x97624865fc0df8bf
- data8 0x9781a32dcc640b2a, 0x97a117ffd0f48e46
- data8 0x97c0a701f9d263c9, 0x97e0505a8637a036
- data8 0x97f57a9fb0b08c6e, 0x9815503365914a9d
- data8 0x98354085054fd204, 0x98554bbbf8a77902
- data8 0x987571fffb7f94f6, 0x9895b3791dd03c23
- data8 0x98ab43a5fc65d0c8, 0x98cbb2d196bd713d
- data8 0x98ec3d9ec7b6f21a, 0x990ce436db5e8344
- data8 0x9922b8218160967a, 0x99438d686f75779d
- data8 0x99647eea131fa20b, 0x997a85045a47c6d0
- data8 0x999ba5f14f8add02, 0x99bce38b5465ecae
- data8 0x99d31ca0887f30f9, 0x99f48a669c74c09e
- data8 0x9a16154eb445c873, 0x9a2c822ec198d667
- data8 0x9a4e3e080cd91b78, 0x9a70177afe52322e
- data8 0x9a86b8fa94eebe10, 0x9aa8c42866ae2958
- data8 0x9abf86f9e12fc45e, 0x9ae1c462fc05f49d
- data8 0x9af8a8dc936b84d0, 0x9b1b19033be35730
- data8 0x9b3da7daf04c2892, 0x9b54c2e4c8a9012b
- data8 0x9b77854e6c661200, 0x9b8ec2e678d56d2f
- data8 0x9ba60e6a5ca133b6, 0x9bc919ea66a151a4
- data8 0x9be0887c09ef82bb, 0x9c03c8d5fffc3503
- data8 0x9c1b5ad21a81cbb9, 0x9c3ed09216e9ca02
- data8 0x9c568656c0423def, 0x9c7a320af242ce60
- data8 0x9c920bf7a8c01dc2, 0x9ca9f475d98b159c
- data8 0x9ccdeca60e80b5f8, 0x9ce5f9d4653d4902
- data8 0x9cfe15cb38bfdd8e, 0x9d225b983f6c1f96
- data8 0x9d3a9cca32261ed7, 0x9d52ecfccebe1768
- data8 0x9d77818d95b82f86, 0x9d8ff7893fa4706c
- data8 0x9da87cbef36f2a5e, 0x9dcd6140b4a35aeb
- data8 0x9de60cd06dc6e2d4, 0x9dfec7d4cc43b76f
- data8 0x9e17925ec9fccc4a, 0x9e3cdf6db57dc075
- data8 0x9e55d110b63637a8, 0x9e6ed27594550d2e
- data8 0x9e87e3adc385d393, 0x9ead9b54b37a1055
- data8 0x9ec6d46a3d7de215, 0x9ee01d9108be3154
- data8 0x9ef976db07288d04, 0x9f12e05a4759ec25
- data8 0x9f2c5a20f4da6668, 0x9f52af78ed1733ca
- data8 0x9f6c52426a39d003, 0x9f860593d42fd7f3
- data8 0x9f9fc97fdb96bd51, 0x9fb99e194f4a7037
- data8 0x9fd383731ca51db9, 0x9fed79a04fbf9423
- data8 0xa00780b413b24ee8, 0xa02eab2c4474b0cd
- data8 0xa048dcd51ccfd142, 0xa0631fa894b11b8d
- data8 0xa07d73ba65e680af, 0xa097d91e6aaf71b0
- data8 0xa0b24fe89e02602f, 0xa0ccd82d1bd2f68b
- data8 0xa0e77200215909e6, 0xa1021d760d584855
- data8 0xa11cdaa36068a57d, 0xa137a99cbd3f880b
- data8 0xa160019ed37fb4ae, 0xa1960b5966da4608
- data8 0xa1cc5dbe6dc2aab4, 0xa202f97995b69c0d
- data8 0xa232fe6eb0c0577d, 0xa26a2582012f6e17
- data8 0xa2a197e5d10465cb, 0xa2d25a532efefbc8
- data8 0xa30a5bd6e49e4ab8, 0xa33b9c9b59879e24
- data8 0xa3742fca6a3c1f21, 0xa3a5f1273887bf22
- data8 0xa3d7ef508ff11574, 0xa4115ce30548bc15
- data8 0xa443df0e53df577a, 0xa4769fa5913c0ec3
- data8 0xa4a99f303bc7def5, 0xa4dcde37779adf4b
- data8 0xa5105d46152c938a, 0xa5441ce89825cb8d
- data8 0xa5781dad3e54d899, 0xa5ac602406c4e68c
- data8 0xa5d9601d95c2c0bc, 0xa60e1e1a2de14745
- data8 0xa6431f6e3fbd9658, 0xa67864b0d432fda4
- data8 0xa6a6444aa0243c0b, 0xa6dc094d10f25792
- data8 0xa70a574cc02bba69, 0xa7409e2af9549084
- data8 0xa76f5c64ca2cf13b, 0xa79e4f0babab5dc0
- data8 0xa7d5579ae5164b85, 0xa804bd3c6fe61cc8
- data8 0xa8345895e5250a5a, 0xa8642a122b44ef0b
- data8 0xa89c38ca18f6108b, 0xa8cc81063b6e87ca
- data8 0xa8fd00bfa409285e, 0xa92db8664d5516da
- data8 0xa95ea86b75cc2c20, 0xa98fd141a4992deb
- data8 0xa9c1335cae7446ba, 0xa9ea8686f556f645
- data8 0xaa1c52d17906bb19, 0xaa4e59b046dab887
- data8 0xaa809b9c60d1890b, 0xaab319102f3f9b33
- data8 0xaadd5a18c1e21274, 0xab1045f2ac31bdf5
- data8 0xab3ae3ab2df7231e, 0xab6e3f945d1e96fc
- data8 0xaba1d953a08fa94e, 0xabcd090db7ef4c3f
- data8 0xabf864602d7c323d, 0xac2ca5886ccf9b57
- data8 0xac5861d4aa441f0f, 0xac8d183fe3a2fbed
- data8 0xacb93703ff51571e, 0xace5830ad0c3f14b
- data8 0xad11fca5d78b3ff2, 0xad4797fddf91a798
- data8 0xad747701e559ebcb, 0xada184a47e9c7613
- data8 0xadcec13ab0dda8ff, 0xadfc2d1a5fd21ba8
- data8 0xae29c89a5053c33a, 0xae5794122b638df9
- data8 0xae858fda8137ae0a, 0xaeb3bc4ccc56d3d1
- data8 0xaee219c374c09920, 0xaf10a899d3235fe7
- data8 0xaf3f692c341fe8b4, 0xaf6e5bd7db9ae6c2
- data8 0xaf9d80fb081cd91b, 0xafc35ce063eb3787
- data8 0xaff2ddcb5f28f03d, 0xb022923b148e05c5
- data8 0xb0527a919adbf58b, 0xb078f3ab1d701c65
- data8 0xb0a93a6870649f31, 0xb0d9b624d62ec856
- data8 0xb100a5f53fb3c8e1, 0xb131821882f5540a
- data8 0xb158bf8e4cb04055, 0xb189fd69d56b238f
- data8 0xb1b189958e8108e4, 0xb1e32a8165b09832
- data8 0xb20b0678fc271eec, 0xb23d0bd3f7592b6e
- data8 0xb26538b2db8420dc, 0xb28d89e339ceca14
- data8 0xb2c022ca12e55a16, 0xb2e8c6852c6b03f1
- data8 0xb3118f4eda9fe40f, 0xb33a7d6268109ebe
- data8 0xb36ddbc5ea70ec55, 0xb3971e9b39264023
- data8 0xb3c0877ecc18e24a, 0xb3ea16ae3a6c905f
- data8 0xb413cc67aa0e4d2d, 0xb43da8e9d163e1af
- data8 0xb47233773b84d425, 0xb49c6825430fe730
- data8 0xb4c6c46bcdb27dcf, 0xb4f1488c0b35d26f
- data8 0xb51bf4c7c51f0168, 0xb546c9616087ab9c
- data8 0xb571c69bdffd9a70, 0xb59cecbae56984c3
- data8 0xb5bd64512bb14bb7, 0xb5e8d2a4bf5ba416
- data8 0xb6146a9a1bc47819, 0xb6402c7749d621c0
- data8 0xb66c1882fb435ea2, 0xb6982f048c999a56
- data8 0xb6c47044075b4142, 0xb6e5bd6bfd02bafd
- data8 0xb7124a2736ff8ef2, 0xb73f026a01e94177
- data8 0xb760a959f1d0a7a7, 0xb78dae7e06868ab0
- data8 0xb7badff8ad9e4e02, 0xb7dce25b8e17ae9f
- data8 0xb80a6226904045e2, 0xb8380f1cafd73c1c
- data8 0xb85a6ea8e321b4d8, 0xb8886b684ae7d2fa
- data8 0xb8ab0726fa00cf5d, 0xb8d954a4d13b7cb1
- data8 0xb8fc2d4f6cd9f04a, 0xb92acc851476b1ab
- data8 0xb94de2d841a184c2, 0xb97cd4c36c92693c
- data8 0xb9a0297f172665e3, 0xb9cf6f21e36c3924
- data8 0xb9f3030951267208, 0xba229d6a618e7c59
- data8 0xba467144459f9855, 0xba6a60c3c48f1a4b
- data8 0xba9a76056b67ee7a, 0xbabea699563ada6e
- data8 0xbae2f350b262cc4b, 0xbb1385a23be24e57
- data8 0xbb3814975e17c680, 0xbb5cc031009bf467
- data8 0xbb81889680024764, 0xbbb2c0d8703ae95d
- data8 0xbbd7cd09ba3c5463, 0xbbfcf68c4977718f
- data8 0xbc223d88cfc88eee, 0xbc47a2284fee4ff8
- data8 0xbc79ac0916ed7b8a, 0xbc9f5670d1a13030
- data8 0xbcc51f068cb95c1d, 0xbceb05f4b30a9bc0
- data8 0xbd110b6604c7d306, 0xbd372f8598620f19
- data8 0xbd5d727edb6b3c7e, 0xbd83d47d937bbc6d
- data8 0xbdaa55addf1ae47d, 0xbdd0f63c36aa73f0
- data8 0xbdf7b6556d550a15, 0xbe1e9626b1ffa96b
- data8 0xbe4595dd903e5371, 0xbe6cb5a7f14bc935
- data8 0xbe93f5b41d047cf7, 0xbebb5630bae4c15f
- data8 0xbee2d74cd30a430c, 0xbf0a7937cf38d981
- data8 0xbf323c217be2bc8c, 0xbf5a203a09342bbb
- data8 0xbf74cad1c14ebfc4, 0xbf9ce6a497a89f78
- data8 0xbfc52428bec6e72f, 0xbfed838fddab024b
- data8 0xc016050c0420981a, 0xc03ea8cfabddc330
- data8 0xc059d3cbd65ddbce, 0xc082b122a3c78c9d
- data8 0xc0abb1499ae736c4, 0xc0d4d474c3aedaaf
- data8 0xc0f054ca33eb3437, 0xc119b2c67e600ed0
- data8 0xc1433453de2033ff, 0xc15ef3e44e10032d
- data8 0xc188b130431d80e6, 0xc1b2929d6067730e
- data8 0xc1ce9268f31cc734, 0xc1f8b0877c1b0c08
- data8 0xc222f35a87b415ba, 0xc23f3467349e5c88
- data8 0xc269b4e40e088c01, 0xc2945aac24daaf6e
- data8 0xc2b0de05e43c1d66, 0xc2dbc275e1229d09
- data8 0xc2f86fca9d80eeff, 0xc323938449a2587e
- data8 0xc3406b40a538ed20, 0xc36bcee8211d15e0
- data8 0xc397593adf2ba366, 0xc3b475b6206155d5
- data8 0xc3e0410243b97383, 0xc3fd890709833d37
- data8 0xc41ae295f7e7fa06, 0xc44709f7bb8a4dd2
- data8 0xc4648fb0e0bec4c1, 0xc490f9a94695ba14
- data8 0xc4aeac0173b7d390, 0xc4db5941007aa853
- data8 0xc4f938aec206291a, 0xc52629e899dfd622
- data8 0xc54436e44043b965, 0xc562563abf9ea07f
- data8 0xc58fa7d1dc42921c, 0xc5adf561b91e110a
- data8 0xc5cc5591bdbd82fa, 0xc5fa08f1ff20593c
- data8 0xc618980a79ce6862, 0xc6373a09e34b50fa
- data8 0xc66550a6e0baaf35, 0xc6842241926342c9
- data8 0xc6a3070b7c93bb9e, 0xc6d18260bb84081b
- data8 0xc6f0977c9416828b, 0xc70fc0117c641630
- data8 0xc72efc34d7e615be, 0xc75dfb441594141e
- data8 0xc77d68aa019bda4c, 0xc79ce9ea478dbc4f
- data8 0xc7bc7f1ae453219d, 0xc7ec0476e15e141a
- data8 0xc80bcbe16f1d540f, 0xc82ba78a5d349735
- data8 0xc84b978847a06b87, 0xc86b9bf1ee817bc6
- data8 0xc88bb4de3667cdf4, 0xc8bc00e7fe9e23a3
- data8 0xc8dc4d7ff2d25232, 0xc8fcaeebcb40eb47
- data8 0xc91d25431426a663, 0xc93db09d7fdb2949
- data8 0xc95e5112e721582a, 0xc97f06bb49787677
- data8 0xc99fd1aecd6e1b06, 0xc9d12a3e27bb1625
- data8 0xc9f22ad82ba3d5f0, 0xca134113105e67b2
- data8 0xca346d07b045a876, 0xca55aecf0e94bb88
- data8 0xca77068257be9bab, 0xca98743ae1c693a8
- data8 0xcab9f8122c99a101, 0xcadb9221e268c3b5
- data8 0xcafd4283d8043dfd, 0xcb1f09520d37c6fb
- data8 0xcb51ddcb9e93095e, 0xcb95f333968ad59b
- data8 0xcbda64292d3ffd97, 0xcc1f3184af961596
- data8 0xcc5bb1ac954d33e2, 0xcca12e9831fc6402
- data8 0xcce70a67b64f24ad, 0xcd24794726477ea5
- data8 0xcd6b096a0b70ee87, 0xcda9177738b15a90
- data8 0xcdf05f2247dffab9, 0xce2f0f347f96f906
- data8 0xce6e0be0cd551a61, 0xceb666b2c347d1de
- data8 0xcef609b0cb874f00, 0xcf35fb5447e5c765
- data8 0xcf763c47ee869f00, 0xcfb6cd3888d71785
- data8 0xcff7aed4fbfbb447, 0xd038e1ce5167e3c6
- data8 0xd07a66d7bfa0ebba, 0xd0bc3ea6b32d1b21
- data8 0xd0f4f0e8f36c1bf8, 0xd1376458e34b037e
- data8 0xd17a2ca133f78572, 0xd1bd4a80301c5715
- data8 0xd1f71682b2fa4575, 0xd23ad555f773f059
- data8 0xd2752c7039a5bf73, 0xd2b98ee008c06b59
- data8 0xd2f4735ffd700280, 0xd32f99ed6d9ac0e1
- data8 0xd374f0666c75d51c, 0xd3b0a7d13618e4a1
- data8 0xd3eca2ea53bcec0c, 0xd428e23874f13a17
- data8 0xd46f82fe293bc6d3, 0xd4ac57e9b7186420
- data8 0xd4e972becb04e8b8, 0xd526d40a7a9b43a3
- data8 0xd5647c5b73917370, 0xd5a26c4201bd6d13
- data8 0xd5e0a45015350a7e, 0xd614b539c6194104
- data8 0xd6537310e224283f, 0xd6927ab62244c917
- data8 0xd6d1ccc1fc4ef4b7, 0xd71169cea98fdded
- data8 0xd746a66a5bc9f6d9, 0xd786ce8f0fae5317
- data8 0xd7bc7ff214c4e75a, 0xd7fd35467a517ed1
- data8 0xd83e38838648d815, 0xd874a1db598b8951
- data8 0xd8ab42205b80edaf, 0xd8ed1849d202f965
- data8 0xd92432bd5a173685, 0xd9669ca45b03c23e
- data8 0xd99e3327cf89574e, 0xd9d602b19b100466
- data8 0xda0e0ba86c096841, 0xda5195fcdb1c3dce
- data8 0xda8a1eb87a491f6c, 0xdac2e230b91c3f84
- data8 0xdafbe0d0b66aea30, 0xdb351b04a8fafced
- data8 0xdb6e9139e33cdd8e, 0xdba843ded7151ea1
- data8 0xdbe2336319b61fc8, 0xdc1c60376789fa68
- data8 0xdc56cacda82d0cd5, 0xdc917398f2797814
- data8 0xdccc5b0d90a3e628, 0xdd0781a10469f0f2
- data8 0xdd42e7ca0b52838f, 0xdd729ad01c69114d
- data8 0xddae749c001fbf5e, 0xddea8f50a51c69b1
- data8 0xde26eb69a0f0f111, 0xde576480262399bc
- data8 0xde943789645933c8, 0xded14d58139a28af
- data8 0xdf025c00bbf2b5c7, 0xdf3feb44d723a713
- data8 0xdf715bc16c159be0, 0xdfaf66240e29cda8
- data8 0xdfe139cbf6e19bdc, 0xe01fc0fe94d9fc52
- data8 0xe051f92ffcc0bd60, 0xe090feec9c9a06ac
- data8 0xe0c39d0c9ff862d6, 0xe0f668eeb99f188d
- data8 0xe1362890eb663139, 0xe1695c7212aecbaa
- data8 0xe19cbf0391bbbbe9, 0xe1d050901c531e85
- data8 0xe2110903b4f4047a, 0xe2450559b4d80b6d
- data8 0xe27931a231554ef3, 0xe2ad8e2ac3c5b04b
- data8 0xe2e21b41b9694cce, 0xe316d93615862714
- data8 0xe3590bd86a0d30f9, 0xe38e38e38e38e38e
- data8 0xe3c397d1e6db7839, 0xe3f928f5953feb9e
- data8 0xe42eeca17c62886c, 0xe464e32943446305
- data8 0xe49b0ce15747a8a2, 0xe4d16a1eee94e9d4
- data8 0xe4fa52107353f67d, 0xe5310a471f4d2dc3
- data8 0xe567f6f1c2b9c224, 0xe59f18689a9e4c9a
- data8 0xe5d66f04b8a68ecf, 0xe60dfb2005c192e9
- data8 0xe645bd1544c7ea51, 0xe66fb21b505b20a0
- data8 0xe6a7d32af4a7c59a, 0xe6e02b129c6a5ae4
- data8 0xe70a9136a7403039, 0xe74349fb2d92a589
- data8 0xe77c3a9c86ed7d42, 0xe7a713f88151518a
- data8 0xe7e067453317ed2b, 0xe819f37a81871bb5
- data8 0xe8454236bfaeca14, 0xe87f32f24c3fc90e
- data8 0xe8aacd8688892ba6, 0xe8e523fd32f606f7
- data8 0xe9110b5311407927, 0xe94bc8bf0c108fa3
- data8 0xe977fdc439c2ca3c, 0xe9b3236528fc349e
- data8 0xe9dfa70b745ac1b4, 0xea1b36268d0eaa38
- data8 0xea480963fd394197, 0xea84034425f27484
- data8 0xeab12713138dd1cc, 0xeade6db73a5e503b
- data8 0xeb1b0268343b121b, 0xeb489b0b2bdb5f14
- data8 0xeb765721e85f03d0, 0xebb389645f222f62
- data8 0xebe198f090607e0c, 0xec0fcc9321024509
- data8 0xec3e247da8b82f61, 0xec7c27d21321c9f7
- data8 0xecaad5278824e453, 0xecd9a76d097d4e77
- data8 0xed089ed5dcd99446, 0xed37bb95add09a1c
- data8 0xed76c70508f904b6, 0xeda63bb05e7f93c6
- data8 0xedd5d661daed2dc4, 0xee05974eef86b903
- data8 0xee357ead791fc670, 0xee658cb3c134a463
- data8 0xee95c1987f080211, 0xeec61d92d8c4314f
- data8 0xeef6a0da64a014ac, 0xef274ba72a07c811
- data8 0xef581e31a2c91260, 0xef8918b2bc43aec6
- data8 0xefba3b63d89d7cbf, 0xefeb867ecffaa607
- data8 0xf01cfa3df1b9c9fa, 0xf04e96dc05b43e2d
- data8 0xf0805c944d827454, 0xf0b24ba285c495cb
- data8 0xf0e46442e76f6569, 0xf116a6b2291d7896
- data8 0xf1383fa9e9b5b381, 0xf16ac84f90083b9b
- data8 0xf19d7b686dcb03d7, 0xf1d0593311db1757
- data8 0xf20361ee8f1c711e, 0xf23695da7de51d3f
- data8 0xf258d095e465cc35, 0xf28c4d0bfc982b34
- data8 0xf2bff55eb3f0ea71, 0xf2f3c9cf9884636e
- data8 0xf31670135ab9cc0f, 0xf34a8e9f0b54cdfb
- data8 0xf37ed9fa6b8add3f, 0xf3a1cfe884ef6bb6
- data8 0xf3d66689dcc8e8d3, 0xf40b2ab069d5c96a
- data8 0xf42e718b90c8bc16, 0xf463822a0a3b4b00
- data8 0xf498c1076015faf8, 0xf4bc5a19a33990b5
- data8 0xf4f1e6a7d6f5425f, 0xf527a232cf6be334
- data8 0xf54b8ecdcda90851, 0xf5819949c7ad87b4
- data8 0xf5a5bac9213b48a9, 0xf5dc1501f324a812
- data8 0xf6006bee86b5589e, 0xf63716b2fa067fa4
- data8 0xf66df22fb6132b9c, 0xf6929fb98225deb1
- data8 0xf6c9cd13021e3fea, 0xf6eeb177472cedae
- data8 0xf713abf4cb0b3afb, 0xf74b4d5333684ef1
- data8 0xf7707f75a72f8e94, 0xf7a874b97927af44
- data8 0xf7cddf140aedf1d8, 0xf806291bacb7f7a9
- data8 0xf82bcc43b92eafef, 0xf8646bf0defb759e
- data8 0xf88a487dfc3ff5f7, 0xf8b03c2b46cdc17f
- data8 0xf8e95541c152ae7a, 0xf90f832c2700c160
- data8 0xf935c88e0c7f419b, 0xf96f5cd84fd86873
- data8 0xf995dd53ebdd9d6d, 0xf9bc75a034436a41
- data8 0xf9f686f26d5518de, 0xfa1d5b39b910a8c5
- data8 0xfa4447acc4ecbfd2, 0xfa7ed7e51e6fdfb4
- data8 0xfaa601394d49a1a0, 0xfacd431644ce0e40
- data8 0xfaf49d96f7a75909, 0xfb2fd3c65e562fd5
- data8 0xfb576c5762024805, 0xfb7f1debc22c4040
- data8 0xfba6e89f32d0190a, 0xfbe2c803a0894893
- data8 0xfc0ad1ff0ed9ecf0, 0xfc32f57bdfbcbe7f
- data8 0xfc5b32968f99b21c, 0xfc83896bc861ab08
- data8 0xfcabfa1861ed4815, 0xfce8d3cea7d3163e
- data8 0xfd118595143ee273, 0xfd3a519943d4865a
- data8 0xfd6337f8e1ae5a4b, 0xfd8c38d1c8e927eb
- data8 0xfdb5544205095a53, 0xfdde8a67d2613531
- data8 0xfe07db619e781611, 0xfe460768d80bf758
- data8 0xfe6f9bfb06cd32f6, 0xfe994bcd3d14fcc2
- data8 0xfec316fecaf3f2ab, 0xfeecfdaf33fadb80
- data8 0xff16fffe2fa8fad6, 0xff411e0ba9db886d
- data8 0xff6b57f7c33e4e9a, 0xff95ade2d1bd7358
- data8 0xffc01fed60f86fb5, 0xffeaae3832b63956
-LOCAL_OBJECT_END(T_table)
+#include "libm_support.h"
+// Data tables
+//==============================================================
-LOCAL_OBJECT_START(D_table)
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
- data4 0x1e50f488, 0x1ebdc559, 0x1e649ec1, 0x9eed9b2c
- data4 0x9e511c44, 0x9ec6d551, 0x9eefe248, 0x9e313854
- data4 0x9f54ff18, 0x9d231411, 0x1ee5d63c, 0x9edf6b95
- data4 0x9f332aaa, 0x1dc92a84, 0x1f73fb7b, 0x1e32f100
- data4 0x9ea636f5, 0x9f6c3353, 0x9f405552, 0x1f33fd97
- data4 0x1e975291, 0x9e59a11e, 0x1e47b0ba, 0x9d8ad33e
- data4 0x1ea51bf6, 0x1f25d782, 0x9ecf534d, 0x1f55436f
- data4 0x1d0975e4, 0x9f0633a1, 0x1f3e840a, 0x1f523a4c
- data4 0x9f53cbbc, 0x9c8b5661, 0x9f6bc8eb, 0x1f4f6c7b
- data4 0x9ed9b376, 0x9f5b30b6, 0x1f64fa5e, 0x1cbcc3e0
- data4 0x1f343548, 0x1f62a6a2, 0x9f336abb, 0x9f1d15af
- data4 0x1f476c83, 0x1ea86421, 0x1f33b2cf, 0x9e8f1348
- data4 0x1f6fa829, 0x9f30ee3a, 0x9ebd6146, 0x1f2db598
- data4 0x1ef9600d, 0x1f5b1427, 0x9edd741b, 0x1f51ef4e
- data4 0x9f1aa57d, 0x9ee9b5e0, 0x9f17ecd7, 0x1ead71ff
- data4 0x1f6c910e, 0x9e1837df, 0x9f0f17d9, 0x9e8350dd
- data4 0x9d292f1b, 0x9e33b3ab, 0x9d6f0fe8, 0x9ed8c7cc
- data4 0x9ec598c8, 0x9d56758c, 0x1e090c1e, 0x9ed4b941
- data4 0x9f1fc4cf, 0x1f63513a, 0x9edd0abc, 0x1e3924dd
- data4 0x1f60d56f, 0x1ea84424, 0x9e88f4fb, 0x1f205c09
- data4 0x1ec9ae4e, 0x1d2d5738, 0x9f2c9f6d, 0x1e0765c2
- data4 0x1e8bbdd7, 0x9f16d9f1, 0x9ea62627, 0x1f13904c
- data4 0x1e566ab8, 0x9dca3d1a, 0x9e91f2a1, 0x9f14641c
- data4 0x9f278946, 0x1f490c1e, 0x1f575eb6, 0x1f50b3fd
- data4 0x9da32efb, 0x1ea95e59, 0x9e41e058, 0x9eada15f
- data4 0x9e4fe66c, 0x1f3abc98, 0x1f1b8d1e, 0x9ece97e4
- data4 0x1d188aed, 0x9e89b6ee, 0x1f287478, 0x9e8a161a
- data4 0x1e4749f7, 0x9e68084a, 0x1e867f33, 0x9f462b63
- data4 0x1db30792, 0x1f59a767, 0x9d1da4ae, 0x9f472a33
- data4 0x1d1e91cd, 0x9f414824, 0x9f473d4f, 0x1f4b5783
- data4 0x9f5b04b8, 0x9f5c205b, 0x1f309617, 0x9f0d6852
- data4 0x9d96a609, 0x9f0965c2, 0x9e23f467, 0x9f089884
- data4 0x9ec71458, 0x9ed6e955, 0x1e5e8691, 0x1f5b2bbc
- data4 0x9f128268, 0x1ed40f5b, 0x1dc430ce, 0x1f345986
- data4 0x1d778f72, 0x1e9b11d6, 0x9f5a40be, 0x9e07f61a
- data4 0x9ed641a7, 0x9f334787, 0x1e952fd0, 0x1edeb5e2
- data4 0x9e9f3eb1, 0x9e379fd9, 0x1f13102a, 0x9e5e80e1
- data4 0x1c757944, 0x1dae2260, 0x1f183ab7, 0x1e55d576
- data4 0x9e6bb99f, 0x9f52d7cb, 0x9e73a0f5, 0x1d4e1d14
- data4 0x9dd05b53, 0x1f2261e4, 0x9d4ee73d, 0x1ede515e
- data4 0x1f22a573, 0x9ecac348, 0x1e6a2ac0, 0x1e2787d2
- data4 0x9eb64b87, 0x1f0c69c6, 0x9f470a01, 0x9d7c1686
- data4 0x1e468ebe, 0x9f21ee2f, 0x9ee52116, 0x9e20f715
- data4 0x1ed18533, 0x9f005b38, 0x9f20cb95, 0x1da72967
- data4 0x1f1ba5d7, 0x1e2f8b16, 0x9c794f96, 0x9ca74ea3
- data4 0x1f410555, 0x9eff2b96, 0x1ce8f0b1, 0x1f0cee77
- data4 0x1f191edd, 0x9ed5fcbc, 0x1f30f242, 0x9e0ad369
- data4 0x1ed8f3c8, 0x1f52bb0e, 0x9e9ce408, 0x1f18907f
- data4 0x9ecdad40, 0x9e8af91d, 0x1d46698a, 0x9f4b93d6
- data4 0x9f3f5d33, 0x1e2e52f7, 0x9f13aeec, 0x9f3b1969
- data4 0x1f0996f4, 0x9f2a03df, 0x1e264767, 0x1f3ab1fb
- data4 0x9f3193c9, 0x9f21ce22, 0x9eab624c, 0x9ecd8fb1
- data4 0x1eaf9a85, 0x1f0c6a2c, 0x1eecbe61, 0x1f3fead9
- data4 0x1f1d3a29, 0x1e9099ce, 0x1eadd875, 0x1e4dbfb8
- data4 0x9dc640d2, 0x1f413680, 0x9f3f57b3, 0x1dfa1553
- data4 0x1ec71c6b, 0x1e00cc00, 0x9f271e55, 0x1e5a88bb
- data4 0x1f46cc2b, 0x1ee80ff9, 0x9e29c6f3, 0x1f15e229
- data4 0x9ea83d66, 0x1f37408e, 0x9dacb66e, 0x1e6f6259
- data4 0x9f106973, 0x1dd4e5ac, 0x1cbfdcc8, 0x9f231c9f
- data4 0x9e8677e4, 0x9e9e695a, 0x1efd782b, 0x9dd26959
- data4 0x9e80af69, 0x1f386fb3, 0x1f022e8c, 0x9e839967
- data4 0x1ce6796f, 0x1e4c22c2, 0x1e57ef24, 0x1e919804
- data4 0x9d7ea090, 0x1e40140a, 0x1f261b46, 0x1db75be2
- data4 0x1f145019, 0x9e3102b9, 0x9e22507b, 0x1eae813c
- data4 0x1f117e97, 0x1f282296, 0x1f3814b3, 0x1e17977b
- data4 0x1f39d6ff, 0x9f1c81b9, 0x9eb5bcad, 0x1f0f596e
- data4 0x1e757fd5, 0x9f090daa, 0x9f2532fc, 0x9eebafbb
- data4 0x1f086556, 0x9eeedde8, 0x9f32e174, 0x1e33c030
- data4 0x1f1f145a, 0x1e6e556c, 0x1e419ffb, 0x9eb6019a
- data4 0x9e872a2e, 0x1e113136, 0x1e93096f, 0x1f39be40
- data4 0x1f1665ad, 0x9db81d7d, 0x9cd29091, 0x1e3f4af7
- data4 0x9f23176c, 0x9eccf9b3, 0x1f34fc6c, 0x9ed36894
- data4 0x1ef08e06, 0x9f3b46bb, 0x9f2c850b, 0x1f1565a4
- data4 0x1e887bc3, 0x1e92629c, 0x9f11ac9e, 0x9e5579f3
- data4 0x1e4d5790, 0x9ee1c3d1, 0x9e916aec, 0x9eb8d9b8
- data4 0x1db46105, 0x1e168663, 0x1f26a942, 0x9f0f0383
- data4 0x9f079032, 0x9ecae1d8, 0x1ed3b34c, 0x9edc5ee6
- data4 0x9e8a75a7, 0x1f3c3de2, 0x9ee5041e, 0x1f08c727
- data4 0x1d02d7ae, 0x9f36adda, 0x9ef9a857, 0x9ef5cb3a
- data4 0x9eee73da, 0x9da5d629, 0x1e0e99be, 0x1e5159b9
- data4 0x1f2eac89, 0x9e8eedc5, 0x1dd0ec90, 0x1f229aff
- data4 0x1ed9c3e6, 0x1e95c55a, 0x9f0c24e4, 0x1e8afed6
- data4 0x1e599a96, 0x1e881b21, 0x1eab84b9, 0x9ba2bb0e
- data4 0x9e33ab10, 0x1f1710b5, 0x1ebfa271, 0x9e90bbc5
- data4 0x9f32515b, 0x9b32aae8, 0x1eda455c, 0x1da8186e
- data4 0x9e8917ff, 0x1ec4d08e, 0x1c90069d, 0x9f2f1d29
- data4 0x9ecee86d, 0x9f234d1f, 0x1f370724, 0x1da87496
- data4 0x1e7959f0, 0x9e8ada34, 0x1f1c7f6f, 0x1edd576b
- data4 0x9de91e8b, 0x1ec4ef89, 0x1f32078a, 0x1e9925e2
- data4 0x9d8eeccb, 0x9ea3d011, 0x1f231fdf, 0x9f1dbdfa
- data4 0x1e7507a3, 0x1ec42614, 0x9e8693cb, 0x9ec68398
- data4 0x1d5b05fb, 0x1de32119, 0x9f003429, 0x9ec16d92
- data4 0x9f095315, 0x9f119d2c, 0x9ed0c984, 0x9f090662
- data4 0x9e59aa1f, 0x9ed4e64a, 0x9f2798a7, 0x9f23624d
- data4 0x1e0467d9, 0x1f22e7e7, 0x1e915256, 0x9cb4df70
- data4 0x9e6f687c, 0x9e3c35e5, 0x9e5757ab, 0x9f031fa1
- data4 0x1f25bff7, 0x1f0e58c2, 0x1ef3ce04, 0x1f002ecb
- data4 0x9ebdc836, 0x9ed657dd, 0x9f149441, 0x9e8544b2
- data4 0x1cd8ff1e, 0x1e9bb463, 0x1eaa1c5c, 0x1f200c1a
- data4 0x1edbfbaf, 0x1f18724d, 0x9ed63c22, 0x9f08e045
- data4 0x1f13ad07, 0x9e949311, 0x9f0c50d4, 0x1e824516
- data4 0x1d5e52ba, 0x1d583fbd, 0x1e3b60a9, 0x9effe6d3
- data4 0x1f0d0508, 0x1f00be77, 0x9e404bfa, 0x9e1ca381
- data4 0x9f084dd8, 0x9e6db85d, 0x1db698e4, 0x9ebd1871
- data4 0x9ecc2679, 0x1ee68442, 0x1edb1050, 0x9dbc96a4
- data4 0x9f27c1f4, 0x1c99b756, 0x1eb4400a, 0x9f24390a
- data4 0x1d927875, 0x9f074faa, 0x1e9dc2c3, 0x1f13c0d2
- data4 0x1e3c9685, 0x9e6b6f75, 0x9db9cb31, 0x1ea5f3aa
- data4 0x9d992c61, 0x1f1015e4, 0x1f194f70, 0x9e19d2b3
- data4 0x9d89116c, 0x1f23cd35, 0x1e33d3a2, 0x1ee331b8
- data4 0x1d5ba7ec, 0x9f273788, 0x9e6907f4, 0x9ed5f912
- data4 0x9edd458d, 0x1e2ca7b2, 0x1ef81fe4, 0x1dc7ade6
- data4 0x1e876e51, 0x9f04ec89, 0x1f1da63a, 0x1ec02bd0
- data4 0x9e71326f, 0x1e7847b4, 0x1f0de618, 0x9e036cb6
- data4 0x1eec61e2, 0x1ef1758b, 0x9ee880a3, 0x1ed269d7
- data4 0x1e27edd3, 0x9e8a81a1, 0x1eacb84d, 0x9e1aad37
- data4 0x1f1aa8f7, 0x1e9bbd90, 0x1ea1b61f, 0x9ed41c2f
- data4 0x1dbb5dd6, 0x1f0ec733, 0x9df06b1b, 0x1e06fef1
- data4 0x9edede3a, 0x1edeb5e2, 0x1f0e63ee, 0x9db316bb
- data4 0x9efc1ad3, 0x1f01fbb5, 0x9cc0d078, 0x1ea28b36
- data4 0x9e9dd205, 0x9e791534, 0x1da1c8d5, 0x9e8195cc
- data4 0x1f0681a4, 0x1eeaf1e2, 0x9ef83b37, 0x9f22a92b
- data4 0x1eabc4ce, 0x1f10eefb, 0x1e06d9aa, 0x1e7cacd5
- data4 0x1f1ea087, 0x1eb21983, 0x9f100c78, 0x1e840abe
- data4 0x9efab66c, 0x1f183fa8, 0x9e84ee68, 0x9eea083d
- data4 0x9ee23a74, 0x1f1351d7, 0x9ec5d42a, 0x9f071f57
- data4 0x9ef578d9, 0x9f1aa7e7, 0x1eb02044, 0x1f151a2e
- data4 0x9c0dc8b2, 0x9ef4087a, 0x1ec12b93, 0x1c1a946b
- data4 0x1e89946f, 0x9dafe8c3, 0x1d295288, 0x9e8497ab
- data4 0x1ec000c6, 0x1e102f29, 0x1e542256, 0x1e67d44d
- data4 0x1ef688d8, 0x1f0e0f29, 0x1e67861f, 0x1e869748
- data4 0x1ee6aa6e, 0x9e4d228b, 0x9e50be5b, 0x1e9fe225
- data4 0x9ea34102, 0x9e628a3b, 0x9ed9fd83, 0x1ecd7109
- data4 0x1f1864ff, 0x1ea19b76, 0x1db0d1c9, 0x9dff519b
- data4 0x1e8fea71, 0x9ee82e9a, 0x9f08919b, 0x9ef5c8ae
- data4 0x9ee446a4, 0x1ea59444, 0x1eb74230, 0x1ea13fbf
- data4 0x9ea6a3ea, 0x1e5f2797, 0x9e0adb07, 0x9d3adadd
- data4 0x1ebf2ee2, 0x1da19bfa, 0x1e8dea6d, 0x1ec4fea9
- data4 0x1e669f22, 0x1dc5f919, 0x9ed25caa, 0x1ee475b1
- data4 0x1ed0603e, 0x9eacb35c, 0x1dc00b27, 0x1e2f9991
- data4 0x1e7b0406, 0x1eaa3387, 0x9d865bde, 0x1eb78a48
- data4 0x1c40ae2e, 0x1ee9838b, 0x9f0f0d7f, 0x1e3e5d26
- data4 0x1e99e7a6, 0x9e681ccf, 0x9e93ed65, 0x9eeb6a66
- data4 0x1e29e9af, 0x9e96f923, 0x9e74f11d, 0x9f1474da
- data4 0x1eec2ea7, 0x1ebf7aa3, 0x9c25dcca, 0x9f0553c2
- data4 0x9e599efd, 0x1d2ab490, 0x1e95d7cd, 0x9ee4b20e
- data4 0x9d988ce5, 0x9ef9787e, 0x9dbbba5b, 0x9f12c304
- data4 0x1e3b9d70, 0x1e7bcae8, 0x9d98bb6e, 0x9e8e6b01
- data4 0x9f07d03b, 0x9d67c822, 0x9f0ef69e, 0x1c7c0fe3
- data4 0x9e9bfbb9, 0x9e83b84b, 0x1efbf15e, 0x9ecfa6a6
- data4 0x9c91158e, 0x9ecf6770, 0x1ee1e3a8, 0x9dc95ec0
- data4 0x1ef603f7, 0x1d5e52ba, 0x1c477d1b, 0x9e955cd8
- data4 0x1ed665b0, 0x9e8376c4, 0x9c0ee88e, 0x1e8c989e
- data4 0x1ea2df29, 0x9d961e5c, 0x1e101813, 0x1e7fffff
- data4 0x9e5abff4, 0x1dbddd71, 0x1eb69100, 0x1e71f114
- data4 0x1e9ca798, 0x1ef62c8d, 0x9db4e55a, 0x1dbe69ce
- data4 0x9ef1c01f, 0x1f044a2a, 0x9eb9e0d7, 0x9ee59745
- data4 0x9e874803, 0x1ea0b418, 0x9e13572a, 0x1ddbb3a2
- data4 0x9ec0e391, 0x1e89fba1, 0x1ee8b261, 0x9e5d25f0
- data4 0x9ef222cb, 0x9ef135ec, 0x1ea04b9a, 0x9f04291f
- data4 0x9e969254, 0x9ee32f08, 0x9ed909d3, 0x9e362640
- data4 0x9ec20735, 0x1e50131b, 0x9ed4e049, 0x1ee8e817
- data4 0x1e1e09c0, 0x9ea643c5, 0x9e5a1ab6, 0x9e389059
- data4 0x1e560947, 0x1d02b877, 0x1e4475ab, 0x9ea9aaf6
- data4 0x1e95bc5e, 0x1eaf6afd, 0x1d43067d, 0x9d043821
- data4 0x9e97baa9, 0x1de5c4f9, 0x9e9a0069, 0x9e1b9944
- data4 0x1eb13686, 0x9eb907eb, 0x1e059589, 0x1cbd0f93
- data4 0x9eb7e6ae, 0x1e9fa175, 0x1ee5bdf4, 0x1e8052f7
- data4 0x9c80d1e3, 0x1bfbe28e, 0x9e672b3b, 0x9ecacf19
- data4 0x9e3c04be, 0x1dfe8c5c, 0x1e1ba9cb, 0x1eb40b1e
- data4 0x1ec7e7f6, 0x9d0d45b3, 0x1ef0113b, 0x9a155fa3
- data4 0x1e28ec3b, 0x1e7ca8df, 0x9d2f91b4, 0x1eccd9ed
- data4 0x9ed943bc, 0x9ccaab19, 0x9e8a5c58, 0x1ec3bca8
- data4 0x1ed78dc7, 0x9ed391a8, 0x9e938f6e, 0x9ec4a030
- data4 0x9e80346e, 0x1e7a4686, 0x9e284315, 0x9e39584c
- data4 0x1ebdc9b4, 0x9e9cfce5, 0x9ef55c65, 0x1e2941e7
- data4 0x9efbe59f, 0x1d87c41b, 0x1e40befc, 0x1e3d05b5
- data4 0x1de9ea67, 0x1ec9a21c, 0x1decb69a, 0x1df6e75a
- data4 0x9e8030ab, 0x9db20540, 0x9ef1e977, 0x1e3cdc43
- data4 0x1e0492b0, 0x9e91d872, 0x1e775346, 0x9e939978
- data4 0x1eb2714e, 0x1e49a203, 0x9e10195a, 0x1ef1ffc3
- data4 0x9ea8b709, 0x9e832e27, 0x1ed5ac3b, 0x1edb20a6
- data4 0x1e4dbd4e, 0x1efbb932, 0x1d8170ec, 0x1e6c4849
- data4 0x1f008e17, 0x1e8000c4, 0x1d855ecf, 0x9e37cb85
- data4 0x1ecffdf5, 0x1eba6519, 0x9edbe600, 0x1ea3e5e7
- data4 0x1ed4fb39, 0x1f00be77, 0x1e6f4484, 0x9e9e7107
- data4 0x9e30b29d, 0x9ee6e174, 0x1e3a2656, 0x9dd72f3f
- data4 0x9ee12138, 0x1ed16fed, 0x9ece8a02, 0x9ca5b249
- data4 0x9eafd508, 0x9ef0e9fc, 0x1d1307ac, 0x1eecee20
- data4 0x1cf60c6f, 0x9d556216, 0x9eaed175, 0x9ec919f4
- data4 0x1ec2c988, 0x1cd82772, 0x9dc99456, 0x1eab0467
- data4 0x1e89b36f, 0x1c757944, 0x1eef9abd, 0x9e98664d
-LOCAL_OBJECT_END(D_table)
+.align 16
+poly_coeffs:
+ASM_TYPE_DIRECTIVE(poly_coeffs,@object)
+data8 0xaaaaaaaaaaaaaab1, 0x00003ffd // C_1
+data8 0xe38e38e38e38e3e0, 0x00003ffb // C_2
+data8 0x3faf9add3c0be9a6, 0x3fa511e8d2b1f749 // C_3, C_4
+data8 0x3f9ee71b2c6ebe99, 0x3f9809180fd0340c // C_5, C_6
+ASM_SIZE_DIRECTIVE(poly_coeffs)
+
+T_table:
+ASM_TYPE_DIRECTIVE(T_table,@object)
+
+data8 0x80155c748c374836, 0x8040404b0879f7f9
+data8 0x806b5dce4b405c10, 0x8096b586974669b1
+data8 0x80bcd273d952a028, 0x80e898c52813f2f3
+data8 0x81149add67c2d208, 0x813b4e2c856b6e9a
+data8 0x8167c1dde03de7aa, 0x818ed973b811135e
+data8 0x81bbc0c33e13ec98, 0x81e33e69fbe7504a
+data8 0x820aec524e3c23e9, 0x823880f78e70b805
+data8 0x826097a62a8e5200, 0x8288dfe00e9b5eaf
+data8 0x82b15a10c5371624, 0x82da06a527b18937
+data8 0x8302e60b635ab394, 0x832bf8b2feec2f0e
+data8 0x83553f0ce00e276b, 0x837eb98b50f8322a
+data8 0x83a270f44c84f699, 0x83cc4d7cfcfac5ca
+data8 0x83f65f78a8872b4c, 0x8420a75f2f7b53c8
+data8 0x844510461ff14209, 0x846fbd91b930bed2
+data8 0x84947e18234f3294, 0x84bf92755825045a
+data8 0x84e4ac0ee112ba51, 0x8509ef44b86f20be
+data8 0x85359d5d91768427, 0x855b3bd5b7384357
+data8 0x858104f0c415f79a, 0x85a6f90390d29864
+data8 0x85d3772fcd56a1dd, 0x85f9c982fcc002f3
+data8 0x862047e0e7ea554b, 0x8646f2a26f7f5852
+data8 0x866dca21754096b5, 0x8694ceb8dfd17a37
+data8 0x86bc00c49e9307e8, 0x86dccd74fce79610
+data8 0x870453c845acf90f, 0x872c089a1e90342c
+data8 0x8753ec4a92d16c5e, 0x877bff3aca19f6b4
+data8 0x879d88b6fe1c324c, 0x87c5f346dbf98c3a
+data8 0x87e7c653efacef2c, 0x881089d4e73ffefc
+data8 0x88397e6a366f2a8a, 0x885bc559e5e1c081
+data8 0x887e2ee392bb7a93, 0x88a7a8587e404257
+data8 0x88ca5eda67594784, 0x88f4356166bd590e
+data8 0x89173a0acf5ce026, 0x893a62a098b6a57b
+data8 0x895daf637236ae2c, 0x89883b9d1c2fa9c5
+data8 0x89abd8dd374a5d7b, 0x89cf9b1dcd197fa0
+data8 0x89f382a258ea79de, 0x8a178faf06648f29
+data8 0x8a3bc288b3e1d18a, 0x8a601b74f4d1f835
+data8 0x8a849aba14274764, 0x8aa9409f16cdbc9b
+data8 0x8ace0d6bbe2cb316, 0x8af301688ab33558
+data8 0x8b181cdebe6f3206, 0x8b3d60185fafcb7c
+data8 0x8b62cb603bb2fad0, 0x8b80d7d6bc4104de
+data8 0x8ba68bf73ac74f39, 0x8bcc68fb9f9f7335
+data8 0x8bf26f31c534fca2, 0x8c10f86e13a1a1f9
+data8 0x8c3749916cc6abb5, 0x8c5dc4c4f7706032
+data8 0x8c7cac3a8c42e3e0, 0x8ca373f1b7bf2716
+data8 0x8cc29907fb951294, 0x8ce9ae4e9492aac8
+data8 0x8d0911dddbfdad0e, 0x8d3075c4f20f04ee
+data8 0x8d5018a9d4de77d5, 0x8d77cc47dd143515
+data8 0x8d97af6352739cb7, 0x8db7af523167800f
+data8 0x8ddfd80bc68c32ff, 0x8e00197e1e7c88fe
+data8 0x8e207859f77e20e7, 0x8e40f4ce60c9f8e2
+data8 0x8e69ba46cf2fde4d, 0x8e8a7a00bd7ae63e
+data8 0x8eab57ef1cf2f529, 0x8ecc5442cffb1dad
+data8 0x8eed6f2d2a4acbfe, 0x8f0ea8dff24441ff
+data8 0x8f385c95d696b817, 0x8f59dc43edd930f3
+data8 0x8f7b7b5f5ffad1c4, 0x8f9d3a1bea165f38
+data8 0x8fbf18adc34b66da, 0x8fe117499e356095
+data8 0x90033624aa685f8d, 0x9025757495f36b86
+data8 0x903f3a5dcc091203, 0x9061b2fceb2bdbab
+data8 0x90844ca7211032a7, 0x90a7079403e6a15d
+data8 0x90c9e3fbafd63799, 0x90ece216c8a16ee4
+data8 0x9110021e7b516f0a, 0x912a708a39be9075
+data8 0x914dcc7b31146370, 0x91714af8cfe984d5
+data8 0x918c00a6f3795e97, 0x91afbc299ed0295d
+data8 0x91d39add3e958db0, 0x91ee9920a8974d92
+data8 0x9212b5fcac537c19, 0x9236f6b256923fcf
+data8 0x92523ee6f90dcfc3, 0x9276bef031e6eb79
+data8 0x929236ec237a24ad, 0x92b6f70b7efe9dc3
+data8 0x92d29f61eec7dc2b, 0x92f7a05d5b8ba92f
+data8 0x931379a403be5c16, 0x9338bc44de2e3f34
+data8 0x9354c71412c69486, 0x937a4c273907e262
+data8 0x93968919f6e7975d, 0x93bc516fdd4680c9
+data8 0x93d8c123d9be59b2, 0x93f546c955e60076
+data8 0x941b70a65879079f, 0x943829f337410591
+data8 0x9454f995765bc4d2, 0x947b86b57f5842ed
+data8 0x94988aeb23470f86, 0x94b5a5dc9695f42a
+data8 0x94d2d7a9170d8b42, 0x94f9e87dd78bf019
+data8 0x95175019a503d89e, 0x9534cefa625fcb3a
+data8 0x955265405c491a25, 0x9570130c1f9bb857
+data8 0x9597ca4119525184, 0x95b5af6fb5aa4d3c
+data8 0x95d3ac9273aafd7a, 0x95f1c1cafdfd3684
+data8 0x960fef3b430b8d5f, 0x962e350575b409c5
+data8 0x964c934c0dfc1708, 0x966b0a31c9c6bc7d
+data8 0x968999d9ad8d264e, 0x96a8426705198795
+data8 0x96c703fd64445ee5, 0x96e5dec0a7b4268d
+data8 0x9704d2d4f59f79f3, 0x9723e05ebe91b9b0
+data8 0x97430782be323831, 0x97624865fc0df8bf
+data8 0x9781a32dcc640b2a, 0x97a117ffd0f48e46
+data8 0x97c0a701f9d263c9, 0x97e0505a8637a036
+data8 0x97f57a9fb0b08c6e, 0x9815503365914a9d
+data8 0x98354085054fd204, 0x98554bbbf8a77902
+data8 0x987571fffb7f94f6, 0x9895b3791dd03c23
+data8 0x98ab43a5fc65d0c8, 0x98cbb2d196bd713d
+data8 0x98ec3d9ec7b6f21a, 0x990ce436db5e8344
+data8 0x9922b8218160967a, 0x99438d686f75779d
+data8 0x99647eea131fa20b, 0x997a85045a47c6d0
+data8 0x999ba5f14f8add02, 0x99bce38b5465ecae
+data8 0x99d31ca0887f30f9, 0x99f48a669c74c09e
+data8 0x9a16154eb445c873, 0x9a2c822ec198d667
+data8 0x9a4e3e080cd91b78, 0x9a70177afe52322e
+data8 0x9a86b8fa94eebe10, 0x9aa8c42866ae2958
+data8 0x9abf86f9e12fc45e, 0x9ae1c462fc05f49d
+data8 0x9af8a8dc936b84d0, 0x9b1b19033be35730
+data8 0x9b3da7daf04c2892, 0x9b54c2e4c8a9012b
+data8 0x9b77854e6c661200, 0x9b8ec2e678d56d2f
+data8 0x9ba60e6a5ca133b6, 0x9bc919ea66a151a4
+data8 0x9be0887c09ef82bb, 0x9c03c8d5fffc3503
+data8 0x9c1b5ad21a81cbb9, 0x9c3ed09216e9ca02
+data8 0x9c568656c0423def, 0x9c7a320af242ce60
+data8 0x9c920bf7a8c01dc2, 0x9ca9f475d98b159c
+data8 0x9ccdeca60e80b5f8, 0x9ce5f9d4653d4902
+data8 0x9cfe15cb38bfdd8e, 0x9d225b983f6c1f96
+data8 0x9d3a9cca32261ed7, 0x9d52ecfccebe1768
+data8 0x9d77818d95b82f86, 0x9d8ff7893fa4706c
+data8 0x9da87cbef36f2a5e, 0x9dcd6140b4a35aeb
+data8 0x9de60cd06dc6e2d4, 0x9dfec7d4cc43b76f
+data8 0x9e17925ec9fccc4a, 0x9e3cdf6db57dc075
+data8 0x9e55d110b63637a8, 0x9e6ed27594550d2e
+data8 0x9e87e3adc385d393, 0x9ead9b54b37a1055
+data8 0x9ec6d46a3d7de215, 0x9ee01d9108be3154
+data8 0x9ef976db07288d04, 0x9f12e05a4759ec25
+data8 0x9f2c5a20f4da6668, 0x9f52af78ed1733ca
+data8 0x9f6c52426a39d003, 0x9f860593d42fd7f3
+data8 0x9f9fc97fdb96bd51, 0x9fb99e194f4a7037
+data8 0x9fd383731ca51db9, 0x9fed79a04fbf9423
+data8 0xa00780b413b24ee8, 0xa02eab2c4474b0cd
+data8 0xa048dcd51ccfd142, 0xa0631fa894b11b8d
+data8 0xa07d73ba65e680af, 0xa097d91e6aaf71b0
+data8 0xa0b24fe89e02602f, 0xa0ccd82d1bd2f68b
+data8 0xa0e77200215909e6, 0xa1021d760d584855
+data8 0xa11cdaa36068a57d, 0xa137a99cbd3f880b
+data8 0xa160019ed37fb4ae, 0xa1960b5966da4608
+data8 0xa1cc5dbe6dc2aab4, 0xa202f97995b69c0d
+data8 0xa232fe6eb0c0577d, 0xa26a2582012f6e17
+data8 0xa2a197e5d10465cb, 0xa2d25a532efefbc8
+data8 0xa30a5bd6e49e4ab8, 0xa33b9c9b59879e24
+data8 0xa3742fca6a3c1f21, 0xa3a5f1273887bf22
+data8 0xa3d7ef508ff11574, 0xa4115ce30548bc15
+data8 0xa443df0e53df577a, 0xa4769fa5913c0ec3
+data8 0xa4a99f303bc7def5, 0xa4dcde37779adf4b
+data8 0xa5105d46152c938a, 0xa5441ce89825cb8d
+data8 0xa5781dad3e54d899, 0xa5ac602406c4e68c
+data8 0xa5d9601d95c2c0bc, 0xa60e1e1a2de14745
+data8 0xa6431f6e3fbd9658, 0xa67864b0d432fda4
+data8 0xa6a6444aa0243c0b, 0xa6dc094d10f25792
+data8 0xa70a574cc02bba69, 0xa7409e2af9549084
+data8 0xa76f5c64ca2cf13b, 0xa79e4f0babab5dc0
+data8 0xa7d5579ae5164b85, 0xa804bd3c6fe61cc8
+data8 0xa8345895e5250a5a, 0xa8642a122b44ef0b
+data8 0xa89c38ca18f6108b, 0xa8cc81063b6e87ca
+data8 0xa8fd00bfa409285e, 0xa92db8664d5516da
+data8 0xa95ea86b75cc2c20, 0xa98fd141a4992deb
+data8 0xa9c1335cae7446ba, 0xa9ea8686f556f645
+data8 0xaa1c52d17906bb19, 0xaa4e59b046dab887
+data8 0xaa809b9c60d1890b, 0xaab319102f3f9b33
+data8 0xaadd5a18c1e21274, 0xab1045f2ac31bdf5
+data8 0xab3ae3ab2df7231e, 0xab6e3f945d1e96fc
+data8 0xaba1d953a08fa94e, 0xabcd090db7ef4c3f
+data8 0xabf864602d7c323d, 0xac2ca5886ccf9b57
+data8 0xac5861d4aa441f0f, 0xac8d183fe3a2fbed
+data8 0xacb93703ff51571e, 0xace5830ad0c3f14b
+data8 0xad11fca5d78b3ff2, 0xad4797fddf91a798
+data8 0xad747701e559ebcb, 0xada184a47e9c7613
+data8 0xadcec13ab0dda8ff, 0xadfc2d1a5fd21ba8
+data8 0xae29c89a5053c33a, 0xae5794122b638df9
+data8 0xae858fda8137ae0a, 0xaeb3bc4ccc56d3d1
+data8 0xaee219c374c09920, 0xaf10a899d3235fe7
+data8 0xaf3f692c341fe8b4, 0xaf6e5bd7db9ae6c2
+data8 0xaf9d80fb081cd91b, 0xafc35ce063eb3787
+data8 0xaff2ddcb5f28f03d, 0xb022923b148e05c5
+data8 0xb0527a919adbf58b, 0xb078f3ab1d701c65
+data8 0xb0a93a6870649f31, 0xb0d9b624d62ec856
+data8 0xb100a5f53fb3c8e1, 0xb131821882f5540a
+data8 0xb158bf8e4cb04055, 0xb189fd69d56b238f
+data8 0xb1b189958e8108e4, 0xb1e32a8165b09832
+data8 0xb20b0678fc271eec, 0xb23d0bd3f7592b6e
+data8 0xb26538b2db8420dc, 0xb28d89e339ceca14
+data8 0xb2c022ca12e55a16, 0xb2e8c6852c6b03f1
+data8 0xb3118f4eda9fe40f, 0xb33a7d6268109ebe
+data8 0xb36ddbc5ea70ec55, 0xb3971e9b39264023
+data8 0xb3c0877ecc18e24a, 0xb3ea16ae3a6c905f
+data8 0xb413cc67aa0e4d2d, 0xb43da8e9d163e1af
+data8 0xb47233773b84d425, 0xb49c6825430fe730
+data8 0xb4c6c46bcdb27dcf, 0xb4f1488c0b35d26f
+data8 0xb51bf4c7c51f0168, 0xb546c9616087ab9c
+data8 0xb571c69bdffd9a70, 0xb59cecbae56984c3
+data8 0xb5bd64512bb14bb7, 0xb5e8d2a4bf5ba416
+data8 0xb6146a9a1bc47819, 0xb6402c7749d621c0
+data8 0xb66c1882fb435ea2, 0xb6982f048c999a56
+data8 0xb6c47044075b4142, 0xb6e5bd6bfd02bafd
+data8 0xb7124a2736ff8ef2, 0xb73f026a01e94177
+data8 0xb760a959f1d0a7a7, 0xb78dae7e06868ab0
+data8 0xb7badff8ad9e4e02, 0xb7dce25b8e17ae9f
+data8 0xb80a6226904045e2, 0xb8380f1cafd73c1c
+data8 0xb85a6ea8e321b4d8, 0xb8886b684ae7d2fa
+data8 0xb8ab0726fa00cf5d, 0xb8d954a4d13b7cb1
+data8 0xb8fc2d4f6cd9f04a, 0xb92acc851476b1ab
+data8 0xb94de2d841a184c2, 0xb97cd4c36c92693c
+data8 0xb9a0297f172665e3, 0xb9cf6f21e36c3924
+data8 0xb9f3030951267208, 0xba229d6a618e7c59
+data8 0xba467144459f9855, 0xba6a60c3c48f1a4b
+data8 0xba9a76056b67ee7a, 0xbabea699563ada6e
+data8 0xbae2f350b262cc4b, 0xbb1385a23be24e57
+data8 0xbb3814975e17c680, 0xbb5cc031009bf467
+data8 0xbb81889680024764, 0xbbb2c0d8703ae95d
+data8 0xbbd7cd09ba3c5463, 0xbbfcf68c4977718f
+data8 0xbc223d88cfc88eee, 0xbc47a2284fee4ff8
+data8 0xbc79ac0916ed7b8a, 0xbc9f5670d1a13030
+data8 0xbcc51f068cb95c1d, 0xbceb05f4b30a9bc0
+data8 0xbd110b6604c7d306, 0xbd372f8598620f19
+data8 0xbd5d727edb6b3c7e, 0xbd83d47d937bbc6d
+data8 0xbdaa55addf1ae47d, 0xbdd0f63c36aa73f0
+data8 0xbdf7b6556d550a15, 0xbe1e9626b1ffa96b
+data8 0xbe4595dd903e5371, 0xbe6cb5a7f14bc935
+data8 0xbe93f5b41d047cf7, 0xbebb5630bae4c15f
+data8 0xbee2d74cd30a430c, 0xbf0a7937cf38d981
+data8 0xbf323c217be2bc8c, 0xbf5a203a09342bbb
+data8 0xbf74cad1c14ebfc4, 0xbf9ce6a497a89f78
+data8 0xbfc52428bec6e72f, 0xbfed838fddab024b
+data8 0xc016050c0420981a, 0xc03ea8cfabddc330
+data8 0xc059d3cbd65ddbce, 0xc082b122a3c78c9d
+data8 0xc0abb1499ae736c4, 0xc0d4d474c3aedaaf
+data8 0xc0f054ca33eb3437, 0xc119b2c67e600ed0
+data8 0xc1433453de2033ff, 0xc15ef3e44e10032d
+data8 0xc188b130431d80e6, 0xc1b2929d6067730e
+data8 0xc1ce9268f31cc734, 0xc1f8b0877c1b0c08
+data8 0xc222f35a87b415ba, 0xc23f3467349e5c88
+data8 0xc269b4e40e088c01, 0xc2945aac24daaf6e
+data8 0xc2b0de05e43c1d66, 0xc2dbc275e1229d09
+data8 0xc2f86fca9d80eeff, 0xc323938449a2587e
+data8 0xc3406b40a538ed20, 0xc36bcee8211d15e0
+data8 0xc397593adf2ba366, 0xc3b475b6206155d5
+data8 0xc3e0410243b97383, 0xc3fd890709833d37
+data8 0xc41ae295f7e7fa06, 0xc44709f7bb8a4dd2
+data8 0xc4648fb0e0bec4c1, 0xc490f9a94695ba14
+data8 0xc4aeac0173b7d390, 0xc4db5941007aa853
+data8 0xc4f938aec206291a, 0xc52629e899dfd622
+data8 0xc54436e44043b965, 0xc562563abf9ea07f
+data8 0xc58fa7d1dc42921c, 0xc5adf561b91e110a
+data8 0xc5cc5591bdbd82fa, 0xc5fa08f1ff20593c
+data8 0xc618980a79ce6862, 0xc6373a09e34b50fa
+data8 0xc66550a6e0baaf35, 0xc6842241926342c9
+data8 0xc6a3070b7c93bb9e, 0xc6d18260bb84081b
+data8 0xc6f0977c9416828b, 0xc70fc0117c641630
+data8 0xc72efc34d7e615be, 0xc75dfb441594141e
+data8 0xc77d68aa019bda4c, 0xc79ce9ea478dbc4f
+data8 0xc7bc7f1ae453219d, 0xc7ec0476e15e141a
+data8 0xc80bcbe16f1d540f, 0xc82ba78a5d349735
+data8 0xc84b978847a06b87, 0xc86b9bf1ee817bc6
+data8 0xc88bb4de3667cdf4, 0xc8bc00e7fe9e23a3
+data8 0xc8dc4d7ff2d25232, 0xc8fcaeebcb40eb47
+data8 0xc91d25431426a663, 0xc93db09d7fdb2949
+data8 0xc95e5112e721582a, 0xc97f06bb49787677
+data8 0xc99fd1aecd6e1b06, 0xc9d12a3e27bb1625
+data8 0xc9f22ad82ba3d5f0, 0xca134113105e67b2
+data8 0xca346d07b045a876, 0xca55aecf0e94bb88
+data8 0xca77068257be9bab, 0xca98743ae1c693a8
+data8 0xcab9f8122c99a101, 0xcadb9221e268c3b5
+data8 0xcafd4283d8043dfd, 0xcb1f09520d37c6fb
+data8 0xcb51ddcb9e93095e, 0xcb95f333968ad59b
+data8 0xcbda64292d3ffd97, 0xcc1f3184af961596
+data8 0xcc5bb1ac954d33e2, 0xcca12e9831fc6402
+data8 0xcce70a67b64f24ad, 0xcd24794726477ea5
+data8 0xcd6b096a0b70ee87, 0xcda9177738b15a90
+data8 0xcdf05f2247dffab9, 0xce2f0f347f96f906
+data8 0xce6e0be0cd551a61, 0xceb666b2c347d1de
+data8 0xcef609b0cb874f00, 0xcf35fb5447e5c765
+data8 0xcf763c47ee869f00, 0xcfb6cd3888d71785
+data8 0xcff7aed4fbfbb447, 0xd038e1ce5167e3c6
+data8 0xd07a66d7bfa0ebba, 0xd0bc3ea6b32d1b21
+data8 0xd0f4f0e8f36c1bf8, 0xd1376458e34b037e
+data8 0xd17a2ca133f78572, 0xd1bd4a80301c5715
+data8 0xd1f71682b2fa4575, 0xd23ad555f773f059
+data8 0xd2752c7039a5bf73, 0xd2b98ee008c06b59
+data8 0xd2f4735ffd700280, 0xd32f99ed6d9ac0e1
+data8 0xd374f0666c75d51c, 0xd3b0a7d13618e4a1
+data8 0xd3eca2ea53bcec0c, 0xd428e23874f13a17
+data8 0xd46f82fe293bc6d3, 0xd4ac57e9b7186420
+data8 0xd4e972becb04e8b8, 0xd526d40a7a9b43a3
+data8 0xd5647c5b73917370, 0xd5a26c4201bd6d13
+data8 0xd5e0a45015350a7e, 0xd614b539c6194104
+data8 0xd6537310e224283f, 0xd6927ab62244c917
+data8 0xd6d1ccc1fc4ef4b7, 0xd71169cea98fdded
+data8 0xd746a66a5bc9f6d9, 0xd786ce8f0fae5317
+data8 0xd7bc7ff214c4e75a, 0xd7fd35467a517ed1
+data8 0xd83e38838648d815, 0xd874a1db598b8951
+data8 0xd8ab42205b80edaf, 0xd8ed1849d202f965
+data8 0xd92432bd5a173685, 0xd9669ca45b03c23e
+data8 0xd99e3327cf89574e, 0xd9d602b19b100466
+data8 0xda0e0ba86c096841, 0xda5195fcdb1c3dce
+data8 0xda8a1eb87a491f6c, 0xdac2e230b91c3f84
+data8 0xdafbe0d0b66aea30, 0xdb351b04a8fafced
+data8 0xdb6e9139e33cdd8e, 0xdba843ded7151ea1
+data8 0xdbe2336319b61fc8, 0xdc1c60376789fa68
+data8 0xdc56cacda82d0cd5, 0xdc917398f2797814
+data8 0xdccc5b0d90a3e628, 0xdd0781a10469f0f2
+data8 0xdd42e7ca0b52838f, 0xdd729ad01c69114d
+data8 0xddae749c001fbf5e, 0xddea8f50a51c69b1
+data8 0xde26eb69a0f0f111, 0xde576480262399bc
+data8 0xde943789645933c8, 0xded14d58139a28af
+data8 0xdf025c00bbf2b5c7, 0xdf3feb44d723a713
+data8 0xdf715bc16c159be0, 0xdfaf66240e29cda8
+data8 0xdfe139cbf6e19bdc, 0xe01fc0fe94d9fc52
+data8 0xe051f92ffcc0bd60, 0xe090feec9c9a06ac
+data8 0xe0c39d0c9ff862d6, 0xe0f668eeb99f188d
+data8 0xe1362890eb663139, 0xe1695c7212aecbaa
+data8 0xe19cbf0391bbbbe9, 0xe1d050901c531e85
+data8 0xe2110903b4f4047a, 0xe2450559b4d80b6d
+data8 0xe27931a231554ef3, 0xe2ad8e2ac3c5b04b
+data8 0xe2e21b41b9694cce, 0xe316d93615862714
+data8 0xe3590bd86a0d30f9, 0xe38e38e38e38e38e
+data8 0xe3c397d1e6db7839, 0xe3f928f5953feb9e
+data8 0xe42eeca17c62886c, 0xe464e32943446305
+data8 0xe49b0ce15747a8a2, 0xe4d16a1eee94e9d4
+data8 0xe4fa52107353f67d, 0xe5310a471f4d2dc3
+data8 0xe567f6f1c2b9c224, 0xe59f18689a9e4c9a
+data8 0xe5d66f04b8a68ecf, 0xe60dfb2005c192e9
+data8 0xe645bd1544c7ea51, 0xe66fb21b505b20a0
+data8 0xe6a7d32af4a7c59a, 0xe6e02b129c6a5ae4
+data8 0xe70a9136a7403039, 0xe74349fb2d92a589
+data8 0xe77c3a9c86ed7d42, 0xe7a713f88151518a
+data8 0xe7e067453317ed2b, 0xe819f37a81871bb5
+data8 0xe8454236bfaeca14, 0xe87f32f24c3fc90e
+data8 0xe8aacd8688892ba6, 0xe8e523fd32f606f7
+data8 0xe9110b5311407927, 0xe94bc8bf0c108fa3
+data8 0xe977fdc439c2ca3c, 0xe9b3236528fc349e
+data8 0xe9dfa70b745ac1b4, 0xea1b36268d0eaa38
+data8 0xea480963fd394197, 0xea84034425f27484
+data8 0xeab12713138dd1cc, 0xeade6db73a5e503b
+data8 0xeb1b0268343b121b, 0xeb489b0b2bdb5f14
+data8 0xeb765721e85f03d0, 0xebb389645f222f62
+data8 0xebe198f090607e0c, 0xec0fcc9321024509
+data8 0xec3e247da8b82f61, 0xec7c27d21321c9f7
+data8 0xecaad5278824e453, 0xecd9a76d097d4e77
+data8 0xed089ed5dcd99446, 0xed37bb95add09a1c
+data8 0xed76c70508f904b6, 0xeda63bb05e7f93c6
+data8 0xedd5d661daed2dc4, 0xee05974eef86b903
+data8 0xee357ead791fc670, 0xee658cb3c134a463
+data8 0xee95c1987f080211, 0xeec61d92d8c4314f
+data8 0xeef6a0da64a014ac, 0xef274ba72a07c811
+data8 0xef581e31a2c91260, 0xef8918b2bc43aec6
+data8 0xefba3b63d89d7cbf, 0xefeb867ecffaa607
+data8 0xf01cfa3df1b9c9fa, 0xf04e96dc05b43e2d
+data8 0xf0805c944d827454, 0xf0b24ba285c495cb
+data8 0xf0e46442e76f6569, 0xf116a6b2291d7896
+data8 0xf1383fa9e9b5b381, 0xf16ac84f90083b9b
+data8 0xf19d7b686dcb03d7, 0xf1d0593311db1757
+data8 0xf20361ee8f1c711e, 0xf23695da7de51d3f
+data8 0xf258d095e465cc35, 0xf28c4d0bfc982b34
+data8 0xf2bff55eb3f0ea71, 0xf2f3c9cf9884636e
+data8 0xf31670135ab9cc0f, 0xf34a8e9f0b54cdfb
+data8 0xf37ed9fa6b8add3f, 0xf3a1cfe884ef6bb6
+data8 0xf3d66689dcc8e8d3, 0xf40b2ab069d5c96a
+data8 0xf42e718b90c8bc16, 0xf463822a0a3b4b00
+data8 0xf498c1076015faf8, 0xf4bc5a19a33990b5
+data8 0xf4f1e6a7d6f5425f, 0xf527a232cf6be334
+data8 0xf54b8ecdcda90851, 0xf5819949c7ad87b4
+data8 0xf5a5bac9213b48a9, 0xf5dc1501f324a812
+data8 0xf6006bee86b5589e, 0xf63716b2fa067fa4
+data8 0xf66df22fb6132b9c, 0xf6929fb98225deb1
+data8 0xf6c9cd13021e3fea, 0xf6eeb177472cedae
+data8 0xf713abf4cb0b3afb, 0xf74b4d5333684ef1
+data8 0xf7707f75a72f8e94, 0xf7a874b97927af44
+data8 0xf7cddf140aedf1d8, 0xf806291bacb7f7a9
+data8 0xf82bcc43b92eafef, 0xf8646bf0defb759e
+data8 0xf88a487dfc3ff5f7, 0xf8b03c2b46cdc17f
+data8 0xf8e95541c152ae7a, 0xf90f832c2700c160
+data8 0xf935c88e0c7f419b, 0xf96f5cd84fd86873
+data8 0xf995dd53ebdd9d6d, 0xf9bc75a034436a41
+data8 0xf9f686f26d5518de, 0xfa1d5b39b910a8c5
+data8 0xfa4447acc4ecbfd2, 0xfa7ed7e51e6fdfb4
+data8 0xfaa601394d49a1a0, 0xfacd431644ce0e40
+data8 0xfaf49d96f7a75909, 0xfb2fd3c65e562fd5
+data8 0xfb576c5762024805, 0xfb7f1debc22c4040
+data8 0xfba6e89f32d0190a, 0xfbe2c803a0894893
+data8 0xfc0ad1ff0ed9ecf0, 0xfc32f57bdfbcbe7f
+data8 0xfc5b32968f99b21c, 0xfc83896bc861ab08
+data8 0xfcabfa1861ed4815, 0xfce8d3cea7d3163e
+data8 0xfd118595143ee273, 0xfd3a519943d4865a
+data8 0xfd6337f8e1ae5a4b, 0xfd8c38d1c8e927eb
+data8 0xfdb5544205095a53, 0xfdde8a67d2613531
+data8 0xfe07db619e781611, 0xfe460768d80bf758
+data8 0xfe6f9bfb06cd32f6, 0xfe994bcd3d14fcc2
+data8 0xfec316fecaf3f2ab, 0xfeecfdaf33fadb80
+data8 0xff16fffe2fa8fad6, 0xff411e0ba9db886d
+data8 0xff6b57f7c33e4e9a, 0xff95ade2d1bd7358
+data8 0xffc01fed60f86fb5, 0xffeaae3832b63956
+ASM_SIZE_DIRECTIVE(T_table)
+
+
+
+
+
+D_table:
+ASM_TYPE_DIRECTIVE(D_table,@object)
+data4 0x1e50f488, 0x1ebdc559, 0x1e649ec1, 0x9eed9b2c
+data4 0x9e511c44, 0x9ec6d551, 0x9eefe248, 0x9e313854
+data4 0x9f54ff18, 0x9d231411, 0x1ee5d63c, 0x9edf6b95
+data4 0x9f332aaa, 0x1dc92a84, 0x1f73fb7b, 0x1e32f100
+data4 0x9ea636f5, 0x9f6c3353, 0x9f405552, 0x1f33fd97
+data4 0x1e975291, 0x9e59a11e, 0x1e47b0ba, 0x9d8ad33e
+data4 0x1ea51bf6, 0x1f25d782, 0x9ecf534d, 0x1f55436f
+data4 0x1d0975e4, 0x9f0633a1, 0x1f3e840a, 0x1f523a4c
+data4 0x9f53cbbc, 0x9c8b5661, 0x9f6bc8eb, 0x1f4f6c7b
+data4 0x9ed9b376, 0x9f5b30b6, 0x1f64fa5e, 0x1cbcc3e0
+data4 0x1f343548, 0x1f62a6a2, 0x9f336abb, 0x9f1d15af
+data4 0x1f476c83, 0x1ea86421, 0x1f33b2cf, 0x9e8f1348
+data4 0x1f6fa829, 0x9f30ee3a, 0x9ebd6146, 0x1f2db598
+data4 0x1ef9600d, 0x1f5b1427, 0x9edd741b, 0x1f51ef4e
+data4 0x9f1aa57d, 0x9ee9b5e0, 0x9f17ecd7, 0x1ead71ff
+data4 0x1f6c910e, 0x9e1837df, 0x9f0f17d9, 0x9e8350dd
+data4 0x9d292f1b, 0x9e33b3ab, 0x9d6f0fe8, 0x9ed8c7cc
+data4 0x9ec598c8, 0x9d56758c, 0x1e090c1e, 0x9ed4b941
+data4 0x9f1fc4cf, 0x1f63513a, 0x9edd0abc, 0x1e3924dd
+data4 0x1f60d56f, 0x1ea84424, 0x9e88f4fb, 0x1f205c09
+data4 0x1ec9ae4e, 0x1d2d5738, 0x9f2c9f6d, 0x1e0765c2
+data4 0x1e8bbdd7, 0x9f16d9f1, 0x9ea62627, 0x1f13904c
+data4 0x1e566ab8, 0x9dca3d1a, 0x9e91f2a1, 0x9f14641c
+data4 0x9f278946, 0x1f490c1e, 0x1f575eb6, 0x1f50b3fd
+data4 0x9da32efb, 0x1ea95e59, 0x9e41e058, 0x9eada15f
+data4 0x9e4fe66c, 0x1f3abc98, 0x1f1b8d1e, 0x9ece97e4
+data4 0x1d188aed, 0x9e89b6ee, 0x1f287478, 0x9e8a161a
+data4 0x1e4749f7, 0x9e68084a, 0x1e867f33, 0x9f462b63
+data4 0x1db30792, 0x1f59a767, 0x9d1da4ae, 0x9f472a33
+data4 0x1d1e91cd, 0x9f414824, 0x9f473d4f, 0x1f4b5783
+data4 0x9f5b04b8, 0x9f5c205b, 0x1f309617, 0x9f0d6852
+data4 0x9d96a609, 0x9f0965c2, 0x9e23f467, 0x9f089884
+data4 0x9ec71458, 0x9ed6e955, 0x1e5e8691, 0x1f5b2bbc
+data4 0x9f128268, 0x1ed40f5b, 0x1dc430ce, 0x1f345986
+data4 0x1d778f72, 0x1e9b11d6, 0x9f5a40be, 0x9e07f61a
+data4 0x9ed641a7, 0x9f334787, 0x1e952fd0, 0x1edeb5e2
+data4 0x9e9f3eb1, 0x9e379fd9, 0x1f13102a, 0x9e5e80e1
+data4 0x1c757944, 0x1dae2260, 0x1f183ab7, 0x1e55d576
+data4 0x9e6bb99f, 0x9f52d7cb, 0x9e73a0f5, 0x1d4e1d14
+data4 0x9dd05b53, 0x1f2261e4, 0x9d4ee73d, 0x1ede515e
+data4 0x1f22a573, 0x9ecac348, 0x1e6a2ac0, 0x1e2787d2
+data4 0x9eb64b87, 0x1f0c69c6, 0x9f470a01, 0x9d7c1686
+data4 0x1e468ebe, 0x9f21ee2f, 0x9ee52116, 0x9e20f715
+data4 0x1ed18533, 0x9f005b38, 0x9f20cb95, 0x1da72967
+data4 0x1f1ba5d7, 0x1e2f8b16, 0x9c794f96, 0x9ca74ea3
+data4 0x1f410555, 0x9eff2b96, 0x1ce8f0b1, 0x1f0cee77
+data4 0x1f191edd, 0x9ed5fcbc, 0x1f30f242, 0x9e0ad369
+data4 0x1ed8f3c8, 0x1f52bb0e, 0x9e9ce408, 0x1f18907f
+data4 0x9ecdad40, 0x9e8af91d, 0x1d46698a, 0x9f4b93d6
+data4 0x9f3f5d33, 0x1e2e52f7, 0x9f13aeec, 0x9f3b1969
+data4 0x1f0996f4, 0x9f2a03df, 0x1e264767, 0x1f3ab1fb
+data4 0x9f3193c9, 0x9f21ce22, 0x9eab624c, 0x9ecd8fb1
+data4 0x1eaf9a85, 0x1f0c6a2c, 0x1eecbe61, 0x1f3fead9
+data4 0x1f1d3a29, 0x1e9099ce, 0x1eadd875, 0x1e4dbfb8
+data4 0x9dc640d2, 0x1f413680, 0x9f3f57b3, 0x1dfa1553
+data4 0x1ec71c6b, 0x1e00cc00, 0x9f271e55, 0x1e5a88bb
+data4 0x1f46cc2b, 0x1ee80ff9, 0x9e29c6f3, 0x1f15e229
+data4 0x9ea83d66, 0x1f37408e, 0x9dacb66e, 0x1e6f6259
+data4 0x9f106973, 0x1dd4e5ac, 0x1cbfdcc8, 0x9f231c9f
+data4 0x9e8677e4, 0x9e9e695a, 0x1efd782b, 0x9dd26959
+data4 0x9e80af69, 0x1f386fb3, 0x1f022e8c, 0x9e839967
+data4 0x1ce6796f, 0x1e4c22c2, 0x1e57ef24, 0x1e919804
+data4 0x9d7ea090, 0x1e40140a, 0x1f261b46, 0x1db75be2
+data4 0x1f145019, 0x9e3102b9, 0x9e22507b, 0x1eae813c
+data4 0x1f117e97, 0x1f282296, 0x1f3814b3, 0x1e17977b
+data4 0x1f39d6ff, 0x9f1c81b9, 0x9eb5bcad, 0x1f0f596e
+data4 0x1e757fd5, 0x9f090daa, 0x9f2532fc, 0x9eebafbb
+data4 0x1f086556, 0x9eeedde8, 0x9f32e174, 0x1e33c030
+data4 0x1f1f145a, 0x1e6e556c, 0x1e419ffb, 0x9eb6019a
+data4 0x9e872a2e, 0x1e113136, 0x1e93096f, 0x1f39be40
+data4 0x1f1665ad, 0x9db81d7d, 0x9cd29091, 0x1e3f4af7
+data4 0x9f23176c, 0x9eccf9b3, 0x1f34fc6c, 0x9ed36894
+data4 0x1ef08e06, 0x9f3b46bb, 0x9f2c850b, 0x1f1565a4
+data4 0x1e887bc3, 0x1e92629c, 0x9f11ac9e, 0x9e5579f3
+data4 0x1e4d5790, 0x9ee1c3d1, 0x9e916aec, 0x9eb8d9b8
+data4 0x1db46105, 0x1e168663, 0x1f26a942, 0x9f0f0383
+data4 0x9f079032, 0x9ecae1d8, 0x1ed3b34c, 0x9edc5ee6
+data4 0x9e8a75a7, 0x1f3c3de2, 0x9ee5041e, 0x1f08c727
+data4 0x1d02d7ae, 0x9f36adda, 0x9ef9a857, 0x9ef5cb3a
+data4 0x9eee73da, 0x9da5d629, 0x1e0e99be, 0x1e5159b9
+data4 0x1f2eac89, 0x9e8eedc5, 0x1dd0ec90, 0x1f229aff
+data4 0x1ed9c3e6, 0x1e95c55a, 0x9f0c24e4, 0x1e8afed6
+data4 0x1e599a96, 0x1e881b21, 0x1eab84b9, 0x9ba2bb0e
+data4 0x9e33ab10, 0x1f1710b5, 0x1ebfa271, 0x9e90bbc5
+data4 0x9f32515b, 0x9b32aae8, 0x1eda455c, 0x1da8186e
+data4 0x9e8917ff, 0x1ec4d08e, 0x1c90069d, 0x9f2f1d29
+data4 0x9ecee86d, 0x9f234d1f, 0x1f370724, 0x1da87496
+data4 0x1e7959f0, 0x9e8ada34, 0x1f1c7f6f, 0x1edd576b
+data4 0x9de91e8b, 0x1ec4ef89, 0x1f32078a, 0x1e9925e2
+data4 0x9d8eeccb, 0x9ea3d011, 0x1f231fdf, 0x9f1dbdfa
+data4 0x1e7507a3, 0x1ec42614, 0x9e8693cb, 0x9ec68398
+data4 0x1d5b05fb, 0x1de32119, 0x9f003429, 0x9ec16d92
+data4 0x9f095315, 0x9f119d2c, 0x9ed0c984, 0x9f090662
+data4 0x9e59aa1f, 0x9ed4e64a, 0x9f2798a7, 0x9f23624d
+data4 0x1e0467d9, 0x1f22e7e7, 0x1e915256, 0x9cb4df70
+data4 0x9e6f687c, 0x9e3c35e5, 0x9e5757ab, 0x9f031fa1
+data4 0x1f25bff7, 0x1f0e58c2, 0x1ef3ce04, 0x1f002ecb
+data4 0x9ebdc836, 0x9ed657dd, 0x9f149441, 0x9e8544b2
+data4 0x1cd8ff1e, 0x1e9bb463, 0x1eaa1c5c, 0x1f200c1a
+data4 0x1edbfbaf, 0x1f18724d, 0x9ed63c22, 0x9f08e045
+data4 0x1f13ad07, 0x9e949311, 0x9f0c50d4, 0x1e824516
+data4 0x1d5e52ba, 0x1d583fbd, 0x1e3b60a9, 0x9effe6d3
+data4 0x1f0d0508, 0x1f00be77, 0x9e404bfa, 0x9e1ca381
+data4 0x9f084dd8, 0x9e6db85d, 0x1db698e4, 0x9ebd1871
+data4 0x9ecc2679, 0x1ee68442, 0x1edb1050, 0x9dbc96a4
+data4 0x9f27c1f4, 0x1c99b756, 0x1eb4400a, 0x9f24390a
+data4 0x1d927875, 0x9f074faa, 0x1e9dc2c3, 0x1f13c0d2
+data4 0x1e3c9685, 0x9e6b6f75, 0x9db9cb31, 0x1ea5f3aa
+data4 0x9d992c61, 0x1f1015e4, 0x1f194f70, 0x9e19d2b3
+data4 0x9d89116c, 0x1f23cd35, 0x1e33d3a2, 0x1ee331b8
+data4 0x1d5ba7ec, 0x9f273788, 0x9e6907f4, 0x9ed5f912
+data4 0x9edd458d, 0x1e2ca7b2, 0x1ef81fe4, 0x1dc7ade6
+data4 0x1e876e51, 0x9f04ec89, 0x1f1da63a, 0x1ec02bd0
+data4 0x9e71326f, 0x1e7847b4, 0x1f0de618, 0x9e036cb6
+data4 0x1eec61e2, 0x1ef1758b, 0x9ee880a3, 0x1ed269d7
+data4 0x1e27edd3, 0x9e8a81a1, 0x1eacb84d, 0x9e1aad37
+data4 0x1f1aa8f7, 0x1e9bbd90, 0x1ea1b61f, 0x9ed41c2f
+data4 0x1dbb5dd6, 0x1f0ec733, 0x9df06b1b, 0x1e06fef1
+data4 0x9edede3a, 0x1edeb5e2, 0x1f0e63ee, 0x9db316bb
+data4 0x9efc1ad3, 0x1f01fbb5, 0x9cc0d078, 0x1ea28b36
+data4 0x9e9dd205, 0x9e791534, 0x1da1c8d5, 0x9e8195cc
+data4 0x1f0681a4, 0x1eeaf1e2, 0x9ef83b37, 0x9f22a92b
+data4 0x1eabc4ce, 0x1f10eefb, 0x1e06d9aa, 0x1e7cacd5
+data4 0x1f1ea087, 0x1eb21983, 0x9f100c78, 0x1e840abe
+data4 0x9efab66c, 0x1f183fa8, 0x9e84ee68, 0x9eea083d
+data4 0x9ee23a74, 0x1f1351d7, 0x9ec5d42a, 0x9f071f57
+data4 0x9ef578d9, 0x9f1aa7e7, 0x1eb02044, 0x1f151a2e
+data4 0x9c0dc8b2, 0x9ef4087a, 0x1ec12b93, 0x1c1a946b
+data4 0x1e89946f, 0x9dafe8c3, 0x1d295288, 0x9e8497ab
+data4 0x1ec000c6, 0x1e102f29, 0x1e542256, 0x1e67d44d
+data4 0x1ef688d8, 0x1f0e0f29, 0x1e67861f, 0x1e869748
+data4 0x1ee6aa6e, 0x9e4d228b, 0x9e50be5b, 0x1e9fe225
+data4 0x9ea34102, 0x9e628a3b, 0x9ed9fd83, 0x1ecd7109
+data4 0x1f1864ff, 0x1ea19b76, 0x1db0d1c9, 0x9dff519b
+data4 0x1e8fea71, 0x9ee82e9a, 0x9f08919b, 0x9ef5c8ae
+data4 0x9ee446a4, 0x1ea59444, 0x1eb74230, 0x1ea13fbf
+data4 0x9ea6a3ea, 0x1e5f2797, 0x9e0adb07, 0x9d3adadd
+data4 0x1ebf2ee2, 0x1da19bfa, 0x1e8dea6d, 0x1ec4fea9
+data4 0x1e669f22, 0x1dc5f919, 0x9ed25caa, 0x1ee475b1
+data4 0x1ed0603e, 0x9eacb35c, 0x1dc00b27, 0x1e2f9991
+data4 0x1e7b0406, 0x1eaa3387, 0x9d865bde, 0x1eb78a48
+data4 0x1c40ae2e, 0x1ee9838b, 0x9f0f0d7f, 0x1e3e5d26
+data4 0x1e99e7a6, 0x9e681ccf, 0x9e93ed65, 0x9eeb6a66
+data4 0x1e29e9af, 0x9e96f923, 0x9e74f11d, 0x9f1474da
+data4 0x1eec2ea7, 0x1ebf7aa3, 0x9c25dcca, 0x9f0553c2
+data4 0x9e599efd, 0x1d2ab490, 0x1e95d7cd, 0x9ee4b20e
+data4 0x9d988ce5, 0x9ef9787e, 0x9dbbba5b, 0x9f12c304
+data4 0x1e3b9d70, 0x1e7bcae8, 0x9d98bb6e, 0x9e8e6b01
+data4 0x9f07d03b, 0x9d67c822, 0x9f0ef69e, 0x1c7c0fe3
+data4 0x9e9bfbb9, 0x9e83b84b, 0x1efbf15e, 0x9ecfa6a6
+data4 0x9c91158e, 0x9ecf6770, 0x1ee1e3a8, 0x9dc95ec0
+data4 0x1ef603f7, 0x1d5e52ba, 0x1c477d1b, 0x9e955cd8
+data4 0x1ed665b0, 0x9e8376c4, 0x9c0ee88e, 0x1e8c989e
+data4 0x1ea2df29, 0x9d961e5c, 0x1e101813, 0x1e7fffff
+data4 0x9e5abff4, 0x1dbddd71, 0x1eb69100, 0x1e71f114
+data4 0x1e9ca798, 0x1ef62c8d, 0x9db4e55a, 0x1dbe69ce
+data4 0x9ef1c01f, 0x1f044a2a, 0x9eb9e0d7, 0x9ee59745
+data4 0x9e874803, 0x1ea0b418, 0x9e13572a, 0x1ddbb3a2
+data4 0x9ec0e391, 0x1e89fba1, 0x1ee8b261, 0x9e5d25f0
+data4 0x9ef222cb, 0x9ef135ec, 0x1ea04b9a, 0x9f04291f
+data4 0x9e969254, 0x9ee32f08, 0x9ed909d3, 0x9e362640
+data4 0x9ec20735, 0x1e50131b, 0x9ed4e049, 0x1ee8e817
+data4 0x1e1e09c0, 0x9ea643c5, 0x9e5a1ab6, 0x9e389059
+data4 0x1e560947, 0x1d02b877, 0x1e4475ab, 0x9ea9aaf6
+data4 0x1e95bc5e, 0x1eaf6afd, 0x1d43067d, 0x9d043821
+data4 0x9e97baa9, 0x1de5c4f9, 0x9e9a0069, 0x9e1b9944
+data4 0x1eb13686, 0x9eb907eb, 0x1e059589, 0x1cbd0f93
+data4 0x9eb7e6ae, 0x1e9fa175, 0x1ee5bdf4, 0x1e8052f7
+data4 0x9c80d1e3, 0x1bfbe28e, 0x9e672b3b, 0x9ecacf19
+data4 0x9e3c04be, 0x1dfe8c5c, 0x1e1ba9cb, 0x1eb40b1e
+data4 0x1ec7e7f6, 0x9d0d45b3, 0x1ef0113b, 0x9a155fa3
+data4 0x1e28ec3b, 0x1e7ca8df, 0x9d2f91b4, 0x1eccd9ed
+data4 0x9ed943bc, 0x9ccaab19, 0x9e8a5c58, 0x1ec3bca8
+data4 0x1ed78dc7, 0x9ed391a8, 0x9e938f6e, 0x9ec4a030
+data4 0x9e80346e, 0x1e7a4686, 0x9e284315, 0x9e39584c
+data4 0x1ebdc9b4, 0x9e9cfce5, 0x9ef55c65, 0x1e2941e7
+data4 0x9efbe59f, 0x1d87c41b, 0x1e40befc, 0x1e3d05b5
+data4 0x1de9ea67, 0x1ec9a21c, 0x1decb69a, 0x1df6e75a
+data4 0x9e8030ab, 0x9db20540, 0x9ef1e977, 0x1e3cdc43
+data4 0x1e0492b0, 0x9e91d872, 0x1e775346, 0x9e939978
+data4 0x1eb2714e, 0x1e49a203, 0x9e10195a, 0x1ef1ffc3
+data4 0x9ea8b709, 0x9e832e27, 0x1ed5ac3b, 0x1edb20a6
+data4 0x1e4dbd4e, 0x1efbb932, 0x1d8170ec, 0x1e6c4849
+data4 0x1f008e17, 0x1e8000c4, 0x1d855ecf, 0x9e37cb85
+data4 0x1ecffdf5, 0x1eba6519, 0x9edbe600, 0x1ea3e5e7
+data4 0x1ed4fb39, 0x1f00be77, 0x1e6f4484, 0x9e9e7107
+data4 0x9e30b29d, 0x9ee6e174, 0x1e3a2656, 0x9dd72f3f
+data4 0x9ee12138, 0x1ed16fed, 0x9ece8a02, 0x9ca5b249
+data4 0x9eafd508, 0x9ef0e9fc, 0x1d1307ac, 0x1eecee20
+data4 0x1cf60c6f, 0x9d556216, 0x9eaed175, 0x9ec919f4
+data4 0x1ec2c988, 0x1cd82772, 0x9dc99456, 0x1eab0467
+data4 0x1e89b36f, 0x1c757944, 0x1eef9abd, 0x9e98664d
+ASM_SIZE_DIRECTIVE(D_table)
+
+
+
+
+
+.align 32
+.global cbrtl#
.section .text
-GLOBAL_LIBM_ENTRY(cbrtl)
+.proc cbrtl#
+.align 32
+cbrtl:
+
{ .mfi
- getf.sig GR_ARGSIG = f8
- // will continue on main path only for normal/denormal numbers
- // all other values will be filtered out and will exit early
- fclass.nm.unc p12, p7 = f8, 0x1b
- // GR_ADDR = pointer to C_1...C_6 followed by T_table
- addl GR_ADDR = @ltoff(poly_coeffs), gp
-}
-{ .mfi
- // GR_BIAS23 = 2/3*bias -63 = 0xaaaa-0x3f = 0xaa6b
- mov GR_BIAS23 = 0xaa6b
- // normalize a
- fma.s1 FR_XNORM = f8, f1, f0
- // GR_D_ADDR = pointer to D table
- addl GR_D_ADDR = @ltoff(D_table), gp
+ getf.sig r3=f8
+ // will continue only for normal/denormal numbers
+(p0) fclass.nm.unc p12,p7 = f8, 0x1b
+ // r2 = pointer to C_1...C_6 followed by T_table
+ addl r2 = @ltoff(poly_coeffs), gp;;
}
-;;
-
-{ .mmf
- // load start address for C_1...C_6 followed by T_table
- ld8 GR_C_START = [ GR_ADDR ]
- // load start address of D table
- ld8 GR_D_START = [ GR_D_ADDR ]
- // y = frcpa(a)
- frcpa.s1 FR_RCP, p6 = f1, f8
+{.mfi
+ // r29=2/3*bias -63=0xaaaa-0x3f=0xaa6b
+ mov r29=0xaa6b
+ // normalize a
+ fma.s1 f14=f8,f1,f0
+ // r27 = pointer to D table
+ addl r27 = @ltoff(D_table), gp;;
}
-;;
-
-{ .mmi
- // get normalized significand
- getf.sig GR_NORMSIG = FR_XNORM
- // get exponent
- getf.exp GR_NORMEXPSGN = FR_XNORM
- (p7) cmp.eq p12, p0 = GR_ARGSIG, r0
+{.mib
+ nop.m 0
+ (p7) cmp.eq p12,p0=r3,r0
+ nop.b 0;;
}
-;;
-
-{ .mii
- // load C_1
- ldfe FR_C1 = [ GR_C_START ], 16
- mov GR_SGNMASK = 0x20000
- nop.i 0
+{.mfb
+ // load start address for C_1...C_6 followed by T_table
+ ld8 r2=[r2]
+ (p12) fma.s0 f8=f8,f1,f0
+ (p12) br.ret.spnt b0;;
}
-;;
-
-{ .mfb
- // load C_2
- ldfe FR_C2 = [ GR_C_START ], 16
- (p12) fma.s0 f8 = f8, f1, f0
- // NaN/Infinities exit early
- (p12) br.ret.spnt b0
+{.mmf
+ // load C_1
+ ldfe f7=[r2],16
+ // load start address of D table
+ ld8 r27=[r27]
+ // y=frcpa(a)
+ frcpa.s0 f8,p6=f1,f8;;
}
-;;
-
-{ .mfi
- // load C_3, C_4
- ldfpd FR_C3, FR_C4 = [ GR_C_START ], 16
- // y = frcpa(a), set flags and result when argument is 0
- // only used when p6=0
- frcpa.s0 f8, p0 = f1, f8
- nop.i 0
+{.mmi
+ // load C_2
+ ldfe f9=[r2],16;;
+ // load C_3, C_4
+ ldfpd f10,f11=[r2],16
+ nop.i 0;;
}
-;;
-
-{ .mii
- // get GR_SIGN = sign
- and GR_SIGN = GR_NORMEXPSGN, GR_SGNMASK
- // eliminate leading 1 from GR_NORMSIG = 2nd table index
- shl GR_INDEX2 = GR_NORMSIG, 1
- // eliminate sign from exponent
- andcm GR_NORMEXP = GR_NORMEXPSGN, GR_SGNMASK
+{.mmi
+ // get normalized significand
+ getf.sig r23=f14
+ // get exponent
+ getf.exp r24=f14
+ mov r25=0x20000;;
}
-;;
-
-{ .mfi
- // load C_5, C_6
- (p6) ldfpd FR_C5, FR_C6 = [ GR_C_START ], 16
- // r = 1-a*y
- (p6) fnma.s1 FR_R = FR_RCP, FR_XNORM, f1
- // Start computation of floor(exponent/3) by
- // computing (2^20+2)/3*exponent = exponent*0x55556
- // 1: exponent* = 5;
- // (2^{16}-1)/3 = 0x5555:
- // will form 0x5555*exponent by using shladd's
- shladd GR_EXP5 = GR_NORMEXP, 2, GR_NORMEXP
+{.mii
+ // get r26=sign
+ and r26=r24,r25
+ // eliminate leading 1 from r23=2nd table index
+ shl r23=r23,1
+ // eliminate sign from exponent (r25)
+ andcm r25=r24,r25;;
}
-;;
-
-{ .mib
- // Next several integer steps compute floor(exponent/3)
- // GR_TMP1 = (5*expon)*16
- shladd GR_TMP1 = GR_EXP5, 4, r0
- // GR_EXP3 = 3*exponent
- shladd GR_EXP3 = GR_NORMEXP, 1, GR_NORMEXP
- nop.b 0
+{.mfi
+ // load C_5,C_6
+ (p6) ldfpd f12,f13=[r2],16
+ // r=1-a*y
+ (p6) fnma.s1 f6=f8,f14,f1
+ // 1: exponent*=5; // (2^{16}-1)/3=0x5555
+ shladd r24=r25,2,r25;;
}
-;;
-
-{ .mmi
- // GR_EXP6 = 6*exponent
- shladd GR_EXP6 = GR_EXP3, 1, r0
- // GR_EXP17 = 17*expon
- add GR_EXP17 = GR_EXP5, GR_TMP1
- // GR_IX2 = 2nd table index (8 bits)
- shr.u GR_IX2 = GR_INDEX2, 56
+{.mib
+ // r30=(5*expon)*16
+ shladd r30=r24,4,r0
+ // r28=3*exponent
+ shladd r28=r25,1,r25
+ nop.b 0;;
}
-;;
-
-{ .mmi
- // adjust T_table pointer by 2nd index
- shladd GR_T_INDEX = GR_IX2, 3, GR_C_START
- // adjust D_table pointer by 2nd index
- shladd GR_D_INDEX = GR_IX2, 2, GR_D_START
- // GR_TMP2 = (17*expon)*16^2
- shl GR_TMP2 = GR_EXP17, 8
+{.mmi
+ // r28=6*exponent
+ shladd r28=r28,1,r0
+ // r24=17*expon
+ add r24=r24,r30
+ // r23=2nd table index (8 bits)
+ shr.u r23=r23,56;;
}
-;;
-
-{ .mmi
- // GR_TMP3 = expon*(2^16-1)/3
- add GR_TMP3 = GR_EXP17, GR_TMP2
-;;
- // GR_TMP4 = expon*(2^20+2)/3 = expon*0x55556
- shladd GR_TMP4 = GR_TMP3, 4, GR_EXP6
- nop.i 0
+{.mmi
+ // adjust T_table pointer by 2nd index
+ shladd r2=r23,3,r2
+ // adjust D_table pointer by 2nd index
+ shladd r27=r23,2,r27
+ // r30=(17*expon)*16^2
+ shl r30=r24,8;;
}
-;;
-
-{ .mii
- nop.m 0
- // GR_EXP_RES = floor(expon/3)
- shr.u GR_EXP_RES = GR_TMP4, 20
- nop.i 0
+{.mmi
+ // r24=expon*(2^16-1)/3
+ add r24=r24,r30;;
+ // r24=expon*(2^20+2)/3=expon*0x55556
+ shladd r24=r24,4,r28
+ nop.i 0;;
}
-;;
-
-{ .mmi
- nop.m 0
- // r16 = 3*exponent
- shladd r16 = GR_EXP_RES, 1, GR_EXP_RES
- // bias exponent
- add GR_EXPBIAS = GR_BIAS23, GR_EXP_RES
+{.mii
+ nop.m 0
+ // r24=floor(expon/3)
+ shr.u r24=r24,20
+ nop.i 0;;
}
-;;
-
-{ .mmi
- // get remainder of exponent/3
- sub GR_EXP_MOD_3 = GR_NORMEXP, r16
-;;
- // add sign to exponent
- or GR_EXPSIGNRES = GR_EXPBIAS, GR_SIGN
- // remainder << = 8
- shl GR_REMTMP = GR_EXP_MOD_3, 8
+{.mmi
+ nop.m 0
+ // r28=3*exponent
+ shladd r28=r24,1,r24
+ // bias exponent
+ add r24=r29,r24;;
}
-;;
-
-{ .mfi
- // adjust D_table pointer by 1st index
- shladd GR_IX_D = GR_REMTMP, 2, GR_D_INDEX
- // P_1 = C_1+C_2*r
- (p6) fma.s1 FR_P1 = FR_C2, FR_R, FR_C1
- // adjust T_table pointer by 1st index
- shladd GR_IX_T = GR_REMTMP, 3, GR_T_INDEX
+{.mmi
+ // get remainder of exponent/3
+ sub r25=r25,r28;;
+ // add sign to exponent
+ or r24=r24,r26
+ // remainder <<=8
+ shl r25=r25,8;;
+}
+{.mfi
+ // adjust D_table pointer by 1st index
+ shladd r27=r25,2,r27
+ // P_1=C_1+C_2*r
+ (p6) fma.s1 f7=f9,f6,f7
+ // adjust T_table pointer by 1st index
+ shladd r2=r25,3,r2
}
-{ .mfi
- // FR_SGNEXP = sign*2^{exponent/3}
- (p6) setf.exp FR_SGNEXP = GR_EXPSIGNRES
- // r^2 = r*r
- (p6) fma.s1 FR_R2 = FR_R, FR_R, f0
- nop.i 0
+{.mfi
+ // f14=sign*2^{exponent/3}
+ (p6) setf.exp f14=r24
+ // r2=r*r
+ (p6) fma.s1 f9=f6,f6,f0
+ nop.i 0;;
}
-;;
-
-{ .mfi
- // load D
- (p6) ldfs FR_D = [ GR_IX_D ]
- // P_2 = C_3+C_4*r
- (p6) fma.s1 FR_P2 = FR_C4, FR_R, FR_C3
- nop.i 0
+{.mfi
+ // load D
+ (p6) ldfs f15=[r27]
+ // P_2=C_3+C_4*r
+ (p6) fma.s1 f10=f11,f6,f10
+ nop.i 0
}
-{ .mfi
- // load T
- (p6) ldf8 FR_T = [ GR_IX_T ]
- // P_3 = C_5+C_6*r
- (p6) fma.s1 FR_P3 = FR_C6, FR_R, FR_C5
- nop.i 0
+{.mfi
+ // load T
+ (p6) ldf8 f8=[r2]
+ // P_3=C_5+C_6*r
+ (p6) fma.s1 f12=f13,f6,f12
+ nop.i 0;;
}
-;;
-
-{ .mfi
- nop.m 0
- // P_4 = D-r*P_1
- (p6) fnma.s1 FR_P4 = FR_R, FR_P1, FR_D
- nop.i 0
+{.mfi
+ nop.m 0
+ // P_4=D-r*P_1
+ (p6) fnma.s1 f15=f6,f7,f15
+ nop.i 0
}
-{ .mfi
- nop.m 0
- // r^3 = r*r^2
- (p6) fma.s1 FR_R3 = FR_R, FR_R2, f0
- nop.i 0
+{.mfi
+ nop.m 0
+ // r3=r*r2
+ (p6) fma.s1 f6=f6,f9,f0
+ nop.i 0;;
}
-;;
-
-{ .mfi
- nop.m 0
- // P_5 = P_2+r2*P_3
- (p6) fma.s1 FR_P5 = FR_R2, FR_P3, FR_P2
- nop.i 0
+{.mfi
+ nop.m 0
+ // P_5=P_2+r2*P_3
+ (p6) fma.s1 f10=f9,f12,f10
+ nop.i 0;;
}
-;;
-
-{ .mfi
- nop.m 0
- // T = T*(sign*2^{exponent/3})
- (p6) fma.s1 FR_TF = FR_T, FR_SGNEXP, f0
- nop.i 0
+{.mfi
+ nop.m 0
+ // T=T*(sign*2^{exponent/3})
+ (p6) fma.s1 f8=f8,f14,f0
+ nop.i 0
}
-{ .mfi
- nop.m 0
- // P = P_4-r3*P_5
- (p6) fnma.s1 FR_P = FR_R3, FR_P5, FR_P4
- nop.i 0
+{.mfi
+ nop.m 0
+ // P=P_4-r3*P_5
+ (p6) fnma.s1 f6=f6,f10,f15
+ nop.i 0;;
}
-;;
-
-{ .mfb
- nop.m 0
- // result = T+T*p
- (p6) fma.s0 f8 = FR_TF, FR_P, FR_TF
- br.ret.sptk b0
+{.mfb
+ nop.m 0
+ // result=T+T*p
+ (p6) fma.s0 f8=f8,f6,f8
+ br.ret.sptk b0;;
}
-;;
-
-GLOBAL_LIBM_END(cbrtl)
-
-
+.endp cbrtl
+ASM_SIZE_DIRECTIVE(cbrtl)
diff --git a/sysdeps/ia64/fpu/s_ceil.S b/sysdeps/ia64/fpu/s_ceil.S
index d1d2980618..f7e6d2cfa6 100644
--- a/sysdeps/ia64/fpu/s_ceil.S
+++ b/sysdeps/ia64/fpu/s_ceil.S
@@ -1,10 +1,10 @@
.file "ceil.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +20,90 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+
+#include "libm_support.h"
+
+.align 32
+.global ceil#
+
+.section .text
+.proc ceil#
+.align 32
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/13/00 Improved speed
-// 06/27/00 Eliminated incorrect invalid flag setting
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//==============================================================
+// 2/02/00: Initial version
+// 6/13/00: Improved speed
+// 6/27/00: Eliminated incorrect invalid flag setting
// API
//==============================================================
// double ceil(double x)
-//==============================================================
-// general input registers:
-// r14 - r19
+// general input registers:
+
+ceil_GR_FFFF = r14
+ceil_GR_signexp = r15
+ceil_GR_exponent = r16
+ceil_GR_expmask = r17
+ceil_GR_bigexp = r18
+
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
-rSignexpM1 = r19
+// predicate registers used:
-// floating-point registers:
-// f8 - f13
+// p6 ==> Input is NaN, infinity, zero
+// p7 ==> Input is denormal
+// p8 ==> Input is <0
+// p9 ==> Input is >=0
+// p10 ==> Input is already an integer (bigger than largest integer)
+// p11 ==> Input is not a large integer
+// p12 ==> Input is a smaller integer
+// p13 ==> Input is not an even integer, so inexact must be set
+// p14 ==> Input is between -1 and 0, so result will be -0 and inexact
-fXInt = f9
-fNormX = f10
-fTmp = f11
-fAdj = f12
-fPreResult = f13
-// predicate registers used:
-// p6 - p10
+// floating-point registers used:
+
+CEIL_SIGNED_ZERO = f7
+CEIL_NORM_f8 = f9
+CEIL_FFFF = f10
+CEIL_INEXACT = f11
+CEIL_FLOAT_INT_f8 = f12
+CEIL_INT_f8 = f13
+CEIL_adj = f14
+CEIL_MINUS_ONE = f15
// Overview of operation
//==============================================================
+
// double ceil(double x)
-// Return an integer value (represented as a double) that is the smallest
+// Return an integer value (represented as a double) that is the smallest
// value not less than x
// This is x rounded toward +infinity to an integral value.
// Inexact is set if x != ceil(x)
-//==============================================================
+// **************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
@@ -101,124 +124,139 @@ fPreResult = f13
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
-.section .text
-GLOBAL_LIBM_ENTRY(ceil)
+
+ceil:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10033, r0 // Set exponent at which is integer
+ getf.exp ceil_GR_signexp = f8
+ fcvt.fx.trunc.s1 CEIL_INT_f8 = f8
+ addl ceil_GR_bigexp = 0x10033, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
+ addl ceil_GR_FFFF = -1,r0
+ fcmp.lt.s1 p8,p9 = f8,f0
+ mov ceil_GR_expmask = 0x1FFFF ;;
}
-;;
+// p7 ==> denorm
{ .mfi
- mov rSignexpM1 = 0x2FFFF // Form signexp of -1
- fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
- nop.i 0
+ setf.sig CEIL_FFFF = ceil_GR_FFFF
+ fclass.m p7,p0 = f8, 0x0b
+ nop.i 999
}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt CEIL_UNORM // Branch if x unorm
+{ .mfi
+ nop.m 999
+ fnorm CEIL_NORM_f8 = f8
+ nop.i 999 ;;
}
-;;
-CEIL_COMMON:
-// Return here from CEIL_UNORM
+// Form 0 with sign of input in case negative zero is needed
+{ .mfi
+ nop.m 999
+ fmerge.s CEIL_SIGNED_ZERO = f8, f0
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
- nop.i 0
+ nop.m 999
+ fsub.s1 CEIL_MINUS_ONE = f0, f1
+ nop.i 999 ;;
+}
+
+// p6 ==> NAN, INF, ZERO
+{ .mfb
+ nop.m 999
+ fclass.m p6,p10 = f8, 0xe7
+(p7) br.cond.spnt L(CEIL_DENORM) ;;
}
-;;
+L(CEIL_COMMON):
.pred.rel "mutex",p8,p9
+// Set adjustment to add to trunc(x) for result
+// If x>0, adjustment is 1.0
+// If x<=0, adjustment is 0.0
{ .mfi
- nop.m 0
-(p8) fma.s1 fAdj = f0, f0, f0 // If x < 0, adjustment is 0
- nop.i 0
+ and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
+(p9) fadd.s1 CEIL_adj = f1,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fAdj = f1, f1, f0 // If x > 0, adjustment is +1
- nop.i 0
+ nop.m 999
+(p8) fadd.s1 CEIL_adj = f0,f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcvt.xf fPreResult = fXInt // trunc(x)
- nop.i 0
+(p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
+(p6) fnorm.d f8 = f8
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p6) fma.d.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
+
+{ .mfi
+ nop.m 999
+(p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rExp = rSignexp, rExpMask // Get biased exponent
-;;
- cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^52?
-(p8) cmp.lt.unc p10,p0 = rSignexp, rSignexpM1 // Is -1 < x < 0?
+{ .mfi
+ nop.m 999
+(p10) fnorm.d f8 = CEIL_NORM_f8
+ nop.i 999 ;;
}
-;;
-// If -1 < x < 0, we turn off p6 and compute result as -0
+// Is -1 < x < 0? If so, result will be -0. Special case it with p14 set.
{ .mfi
-(p10) cmp.ne p6,p0 = r0,r0
-(p10) fmerge.s f8 = fNormX, f0
- nop.i 0
+ nop.m 999
+(p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 0
-(p6) fma.d.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^52
- nop.i 0
+(p14) cmp.ne p11,p0 = r0,r0
+(p14) fnorm.d f8 = CEIL_SIGNED_ZERO
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^52
-(p10) cmp.eq p6,p0 = r0,r0 // If -1 < x < 0, turn on p6 again
+ nop.m 999
+(p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
- nop.i 0
+ nop.m 999
+(p11) fadd.d f8 = CEIL_FLOAT_INT_f8,CEIL_adj
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
+ nop.i 999 ;;
}
-;;
+// Set inexact if result not equal to input
{ .mfi
- nop.m 0
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
+ nop.m 999
+(p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
+ nop.i 999
}
+// Set result to input if integer
{ .mfb
- nop.m 0
-(p8) fma.d.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
- br.ret.sptk b0 // Exit main path, 0 < |x| < 2^52
+ nop.m 999
+(p12) fnorm.d f8 = CEIL_NORM_f8
+ br.ret.sptk b0 ;;
}
-;;
-
-CEIL_UNORM:
-// Here if x unorm
+// Here if input denorm
+L(CEIL_DENORM):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk CEIL_COMMON // Return to main path
+ getf.exp ceil_GR_signexp = CEIL_NORM_f8
+ fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8
+ br.cond.sptk L(CEIL_COMMON) ;;
}
-;;
-GLOBAL_LIBM_END(ceil)
+.endp ceil
+ASM_SIZE_DIRECTIVE(ceil)
diff --git a/sysdeps/ia64/fpu/s_ceilf.S b/sysdeps/ia64/fpu/s_ceilf.S
index 051534a202..d1011052e8 100644
--- a/sysdeps/ia64/fpu/s_ceilf.S
+++ b/sysdeps/ia64/fpu/s_ceilf.S
@@ -1,10 +1,10 @@
.file "ceilf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +20,90 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+
+#include "libm_support.h"
+
+.align 32
+.global ceilf#
+
+.section .text
+.proc ceilf#
+.align 32
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/13/00 Improved speed
-// 06/27/00 Eliminated incorrect invalid flag setting
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//==============================================================
+// 2/02/00: Initial version
+// 6/13/00: Improved speed
+// 6/27/00: Eliminated incorrect invalid flag setting
// API
//==============================================================
// float ceilf(float x)
-//==============================================================
-// general input registers:
-// r14 - r19
+// general input registers:
+
+ceil_GR_FFFF = r14
+ceil_GR_signexp = r15
+ceil_GR_exponent = r16
+ceil_GR_expmask = r17
+ceil_GR_bigexp = r18
+
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
-rSignexpM1 = r19
+// predicate registers used:
-// floating-point registers:
-// f8 - f13
+// p6 ==> Input is NaN, infinity, zero
+// p7 ==> Input is denormal
+// p8 ==> Input is <0
+// p9 ==> Input is >=0
+// p10 ==> Input is already an integer (bigger than largest integer)
+// p11 ==> Input is not a large integer
+// p12 ==> Input is a smaller integer
+// p13 ==> Input is not an even integer, so inexact must be set
+// p14 ==> Input is between -1 and 0, so result will be -0 and inexact
-fXInt = f9
-fNormX = f10
-fTmp = f11
-fAdj = f12
-fPreResult = f13
-// predicate registers used:
-// p6 - p10
+// floating-point registers used:
+
+CEIL_SIGNED_ZERO = f7
+CEIL_NORM_f8 = f9
+CEIL_FFFF = f10
+CEIL_INEXACT = f11
+CEIL_FLOAT_INT_f8 = f12
+CEIL_INT_f8 = f13
+CEIL_adj = f14
+CEIL_MINUS_ONE = f15
// Overview of operation
//==============================================================
+
// float ceilf(float x)
-// Return an integer value (represented as a float) that is the smallest
+// Return an integer value (represented as a float) that is the smallest
// value not less than x
// This is x rounded toward +infinity to an integral value.
// Inexact is set if x != ceilf(x)
-//==============================================================
+// **************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
@@ -101,124 +124,139 @@ fPreResult = f13
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
-.section .text
-GLOBAL_LIBM_ENTRY(ceilf)
+
+ceilf:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10016, r0 // Set exponent at which is integer
+ getf.exp ceil_GR_signexp = f8
+ fcvt.fx.trunc.s1 CEIL_INT_f8 = f8
+ addl ceil_GR_bigexp = 0x10016, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
+ addl ceil_GR_FFFF = -1,r0
+ fcmp.lt.s1 p8,p9 = f8,f0
+ mov ceil_GR_expmask = 0x1FFFF ;;
}
-;;
+// p7 ==> denorm
{ .mfi
- mov rSignexpM1 = 0x2FFFF // Form signexp of -1
- fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
- nop.i 0
+ setf.sig CEIL_FFFF = ceil_GR_FFFF
+ fclass.m p7,p0 = f8, 0x0b
+ nop.i 999
}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt CEIL_UNORM // Branch if x unorm
+{ .mfi
+ nop.m 999
+ fnorm CEIL_NORM_f8 = f8
+ nop.i 999 ;;
}
-;;
-CEIL_COMMON:
-// Return here from CEIL_UNORM
+// Form 0 with sign of input in case negative zero is needed
+{ .mfi
+ nop.m 999
+ fmerge.s CEIL_SIGNED_ZERO = f8, f0
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
- nop.i 0
+ nop.m 999
+ fsub.s1 CEIL_MINUS_ONE = f0, f1
+ nop.i 999 ;;
+}
+
+// p6 ==> NAN, INF, ZERO
+{ .mfb
+ nop.m 999
+ fclass.m p6,p10 = f8, 0xe7
+(p7) br.cond.spnt L(CEIL_DENORM) ;;
}
-;;
+L(CEIL_COMMON):
.pred.rel "mutex",p8,p9
+// Set adjustment to add to trunc(x) for result
+// If x>0, adjustment is 1.0
+// If x<=0, adjustment is 0.0
{ .mfi
- nop.m 0
-(p8) fma.s1 fAdj = f0, f0, f0 // If x < 0, adjustment is 0
- nop.i 0
+ and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
+(p9) fadd.s1 CEIL_adj = f1,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fAdj = f1, f1, f0 // If x > 0, adjustment is +1
- nop.i 0
+ nop.m 999
+(p8) fadd.s1 CEIL_adj = f0,f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcvt.xf fPreResult = fXInt // trunc(x)
- nop.i 0
+(p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
+(p6) fnorm.s f8 = f8
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p6) fma.s.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
+
+{ .mfi
+ nop.m 999
+(p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rExp = rSignexp, rExpMask // Get biased exponent
-;;
- cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^23?
-(p8) cmp.lt.unc p10,p0 = rSignexp, rSignexpM1 // Is -1 < x < 0?
+{ .mfi
+ nop.m 999
+(p10) fnorm.s f8 = CEIL_NORM_f8
+ nop.i 999 ;;
}
-;;
-// If -1 < x < 0, we turn off p6 and compute result as -0
+// Is -1 < x < 0? If so, result will be -0. Special case it with p14 set.
{ .mfi
-(p10) cmp.ne p6,p0 = r0,r0
-(p10) fmerge.s f8 = fNormX, f0
- nop.i 0
+ nop.m 999
+(p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 0
-(p6) fma.s.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^23
- nop.i 0
+(p14) cmp.ne p11,p0 = r0,r0
+(p14) fnorm.s f8 = CEIL_SIGNED_ZERO
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^23
-(p10) cmp.eq p6,p0 = r0,r0 // If -1 < x < 0, turn on p6 again
+ nop.m 999
+(p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
- nop.i 0
+ nop.m 999
+(p11) fadd.s f8 = CEIL_FLOAT_INT_f8,CEIL_adj
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
+ nop.i 999 ;;
}
-;;
+// Set inexact if result not equal to input
{ .mfi
- nop.m 0
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
+ nop.m 999
+(p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
+ nop.i 999
}
+// Set result to input if integer
{ .mfb
- nop.m 0
-(p8) fma.s.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
- br.ret.sptk b0 // Exit main path, 0 < |x| < 2^23
+ nop.m 999
+(p12) fnorm.s f8 = CEIL_NORM_f8
+ br.ret.sptk b0 ;;
}
-;;
-
-CEIL_UNORM:
-// Here if x unorm
+// Here if input denorm
+L(CEIL_DENORM):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk CEIL_COMMON // Return to main path
+ getf.exp ceil_GR_signexp = CEIL_NORM_f8
+ fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8
+ br.cond.sptk L(CEIL_COMMON) ;;
}
-;;
-GLOBAL_LIBM_END(ceilf)
+.endp ceilf
+ASM_SIZE_DIRECTIVE(ceilf)
diff --git a/sysdeps/ia64/fpu/s_ceill.S b/sysdeps/ia64/fpu/s_ceill.S
index 71cb01d3fa..d3d8719584 100644
--- a/sysdeps/ia64/fpu/s_ceill.S
+++ b/sysdeps/ia64/fpu/s_ceill.S
@@ -1,10 +1,10 @@
.file "ceill.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +20,90 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+
+#include "libm_support.h"
+
+.align 32
+.global ceill#
+
+.section .text
+.proc ceill#
+.align 32
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/13/00 Improved speed
-// 06/27/00 Eliminated incorrect invalid flag setting
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//==============================================================
+// 2/02/00: Initial version
+// 6/13/00: Improved speed
+// 6/27/00: Eliminated incorrect invalid flag setting
// API
//==============================================================
-// long double ceill(long double x)
-//==============================================================
+// double ceill(double x)
+
+// general input registers:
+
+ceil_GR_FFFF = r14
+ceil_GR_signexp = r15
+ceil_GR_exponent = r16
+ceil_GR_expmask = r17
+ceil_GR_bigexp = r18
-// general input registers:
-// r14 - r19
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
-rSignexpM1 = r19
+// predicate registers used:
-// floating-point registers:
-// f8 - f13
+// p6 ==> Input is NaN, infinity, zero
+// p7 ==> Input is denormal
+// p8 ==> Input is <0
+// p9 ==> Input is >=0
+// p10 ==> Input is already an integer (bigger than largest integer)
+// p11 ==> Input is not a large integer
+// p12 ==> Input is a smaller integer
+// p13 ==> Input is not an even integer, so inexact must be set
+// p14 ==> Input is between -1 and 0, so result will be -0 and inexact
-fXInt = f9
-fNormX = f10
-fTmp = f11
-fAdj = f12
-fPreResult = f13
-// predicate registers used:
-// p6 - p10
+// floating-point registers used:
+
+CEIL_SIGNED_ZERO = f7
+CEIL_NORM_f8 = f9
+CEIL_FFFF = f10
+CEIL_INEXACT = f11
+CEIL_FLOAT_INT_f8 = f12
+CEIL_INT_f8 = f13
+CEIL_adj = f14
+CEIL_MINUS_ONE = f15
// Overview of operation
//==============================================================
+
// long double ceill(long double x)
-// Return an integer value (represented as a long double) that is the smallest
+// Return an integer value (represented as a long double) that is the smallest
// value not less than x
// This is x rounded toward +infinity to an integral value.
// Inexact is set if x != ceill(x)
-//==============================================================
+// **************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
@@ -101,124 +124,139 @@ fPreResult = f13
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
-.section .text
-GLOBAL_LIBM_ENTRY(ceill)
+
+ceill:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x1003e, r0 // Set exponent at which is integer
+ getf.exp ceil_GR_signexp = f8
+ fcvt.fx.trunc.s1 CEIL_INT_f8 = f8
+ addl ceil_GR_bigexp = 0x1003e, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
+ addl ceil_GR_FFFF = -1,r0
+ fcmp.lt.s1 p8,p9 = f8,f0
+ mov ceil_GR_expmask = 0x1FFFF ;;
}
-;;
+// p7 ==> denorm
{ .mfi
- mov rSignexpM1 = 0x2FFFF // Form signexp of -1
- fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
- nop.i 0
+ setf.sig CEIL_FFFF = ceil_GR_FFFF
+ fclass.m p7,p0 = f8, 0x0b
+ nop.i 999
}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt CEIL_UNORM // Branch if x unorm
+{ .mfi
+ nop.m 999
+ fnorm CEIL_NORM_f8 = f8
+ nop.i 999 ;;
}
-;;
-CEIL_COMMON:
-// Return here from CEIL_UNORM
+// Form 0 with sign of input in case negative zero is needed
+{ .mfi
+ nop.m 999
+ fmerge.s CEIL_SIGNED_ZERO = f8, f0
+ nop.i 999
+}
{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
- nop.i 0
+ nop.m 999
+ fsub.s1 CEIL_MINUS_ONE = f0, f1
+ nop.i 999 ;;
+}
+
+// p6 ==> NAN, INF, ZERO
+{ .mfb
+ nop.m 999
+ fclass.m p6,p10 = f8, 0xe7
+(p7) br.cond.spnt L(CEIL_DENORM) ;;
}
-;;
+L(CEIL_COMMON):
.pred.rel "mutex",p8,p9
+// Set adjustment to add to trunc(x) for result
+// If x>0, adjustment is 1.0
+// If x<=0, adjustment is 0.0
{ .mfi
- nop.m 0
-(p8) fma.s1 fAdj = f0, f0, f0 // If x < 0, adjustment is 0
- nop.i 0
+ and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
+(p9) fadd.s1 CEIL_adj = f1,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fAdj = f1, f1, f0 // If x > 0, adjustment is +1
- nop.i 0
+ nop.m 999
+(p8) fadd.s1 CEIL_adj = f0,f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcvt.xf fPreResult = fXInt // trunc(x)
- nop.i 0
+(p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
+(p6) fnorm f8 = f8
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p6) fma.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
+
+{ .mfi
+ nop.m 999
+(p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rExp = rSignexp, rExpMask // Get biased exponent
-;;
- cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^63?
-(p8) cmp.lt.unc p10,p0 = rSignexp, rSignexpM1 // Is -1 < x < 0?
+{ .mfi
+ nop.m 999
+(p10) fnorm f8 = CEIL_NORM_f8
+ nop.i 999 ;;
}
-;;
-// If -1 < x < 0, we turn off p6 and compute result as -0
+// Is -1 < x < 0? If so, result will be -0. Special case it with p14 set.
{ .mfi
-(p10) cmp.ne p6,p0 = r0,r0
-(p10) fmerge.s f8 = fNormX, f0
- nop.i 0
+ nop.m 999
+(p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 0
-(p6) fma.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^63
- nop.i 0
+(p14) cmp.ne p11,p0 = r0,r0
+(p14) fnorm f8 = CEIL_SIGNED_ZERO
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p7) fma.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^63
-(p10) cmp.eq p6,p0 = r0,r0 // If -1 < x < 0, turn on p6 again
+ nop.m 999
+(p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
- nop.i 0
+ nop.m 999
+(p11) fadd f8 = CEIL_FLOAT_INT_f8,CEIL_adj
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
+ nop.i 999 ;;
}
-;;
+// Set inexact if result not equal to input
{ .mfi
- nop.m 0
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
+ nop.m 999
+(p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
+ nop.i 999
}
+// Set result to input if integer
{ .mfb
- nop.m 0
-(p8) fma.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
- br.ret.sptk b0 // Exit main path, 0 < |x| < 2^63
+ nop.m 999
+(p12) fnorm f8 = CEIL_NORM_f8
+ br.ret.sptk b0 ;;
}
-;;
-
-CEIL_UNORM:
-// Here if x unorm
+// Here if input denorm
+L(CEIL_DENORM):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk CEIL_COMMON // Return to main path
+ getf.exp ceil_GR_signexp = CEIL_NORM_f8
+ fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8
+ br.cond.sptk L(CEIL_COMMON) ;;
}
-;;
-GLOBAL_LIBM_END(ceill)
+.endp ceill
+ASM_SIZE_DIRECTIVE(ceill)
diff --git a/sysdeps/ia64/fpu/s_copysign.S b/sysdeps/ia64/fpu/s_copysign.S
index 0903565ff3..e0d08cb721 100644
--- a/sysdeps/ia64/fpu/s_copysign.S
+++ b/sysdeps/ia64/fpu/s_copysign.S
@@ -23,16 +23,12 @@ ENTRY (__copysign)
{
fmerge.s fret0 = farg1, farg0
br.ret.sptk.many rp
-}
+}
END (__copysign)
strong_alias (__copysign, __copysignf)
strong_alias (__copysign, __copysignl)
-strong_alias (__copysign, __libm_copysign)
-strong_alias (__copysign, __libm_copysignf)
-strong_alias (__copysign, __libm_copysignl)
-
weak_alias (__copysign, copysign)
weak_alias (__copysignf, copysignf)
weak_alias (__copysignl, copysignl)
diff --git a/sysdeps/ia64/fpu/s_cos.S b/sysdeps/ia64/fpu/s_cos.S
index fc121fce19..6540aec724 100644
--- a/sysdeps/ia64/fpu/s_cos.S
+++ b/sysdeps/ia64/fpu/s_cos.S
@@ -1,10 +1,10 @@
.file "sincos.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,25 +35,17 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/02/00 Unwind support added.
-// 06/16/00 Updated tables to enforce symmetry
-// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
-// 09/20/00 The updated tables regressed to an old version, so reinstated them
+// 2/02/00 Initial revision
+// 4/02/00 Unwind support added.
+// 6/16/00 Updated tables to enforce symmetry
+// 8/31/00 Saved 2 cycles in main path, and 9 in other paths.
+// 9/20/00 The updated tables regressed to an old version, so reinstated them
// 10/18/00 Changed one table entry to ensure symmetry
-// 01/03/01 Improved speed, fixed flag settings for small arguments.
-// 02/18/02 Large arguments processing routine excluded
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 06/03/02 Insure inexact flag set for large arg result
-// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/08/03 Improved performance
-// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader
-// 03/31/05 Reformatted delimiters between data tables
+// 1/03/01 Improved speed, fixed flag settings for small arguments.
// API
//==============================================================
@@ -71,13 +63,9 @@
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
-// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
-// nfloat * LOW(pi/2^k)) -
-// nfloat * LOWEST(pi/2^k) for increased accuracy.
+// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-// HIGH and LOW parts are rounded to zero values,
-// and LOWEST is rounded to nearest one.
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
@@ -133,7 +121,7 @@
//
// as follows
//
-// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
+// Sm = Sin(Mpi/2^k) and Cm = Cos(Mpi/2^k)
// rsq = r*r
//
//
@@ -153,31 +141,32 @@
//
// P = r + rcub * P
//
-// Answer = S[m] Cos(r) + [Cm] P
+// Answer = Sm Cos(r) + Cm P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
//
-// S[m] Cos(r) = S[m](1 + rsq Q)
-// S[m] Cos(r) = S[m] + Sm rsq Q
-// S[m] Cos(r) = S[m] + s_rsq Q
-// Q = S[m] + s_rsq Q
+// Sm Cos(r) = Sm(1 + rsq Q)
+// Sm Cos(r) = Sm + Sm rsq Q
+// Sm Cos(r) = Sm + s_rsq Q
+// Q = Sm + s_rsq Q
//
// Then,
//
-// Answer = Q + C[m] P
+// Answer = Q + Cm P
+#include "libm_support.h"
// Registers used
//==============================================================
// general input registers:
-// r14 -> r26
-// r32 -> r35
+// r14 -> r19
+// r32 -> r45
// predicate registers used:
-// p6 -> p11
+// p6 -> p14
// floating-point registers used
// f9 -> f15
@@ -185,94 +174,99 @@
// Assembly macros
//==============================================================
-sincos_NORM_f8 = f9
-sincos_W = f10
-sincos_int_Nfloat = f11
-sincos_Nfloat = f12
+sind_NORM_f8 = f9
+sind_W = f10
+sind_int_Nfloat = f11
+sind_Nfloat = f12
-sincos_r = f13
-sincos_rsq = f14
-sincos_rcub = f15
-sincos_save_tmp = f15
+sind_r = f13
+sind_rsq = f14
+sind_rcub = f15
-sincos_Inv_Pi_by_16 = f32
-sincos_Pi_by_16_1 = f33
-sincos_Pi_by_16_2 = f34
+sind_Inv_Pi_by_16 = f32
+sind_Pi_by_16_hi = f33
+sind_Pi_by_16_lo = f34
-sincos_Inv_Pi_by_64 = f35
+sind_Inv_Pi_by_64 = f35
+sind_Pi_by_64_hi = f36
+sind_Pi_by_64_lo = f37
-sincos_Pi_by_16_3 = f36
+sind_Sm = f38
+sind_Cm = f39
-sincos_r_exact = f37
+sind_P1 = f40
+sind_Q1 = f41
+sind_P2 = f42
+sind_Q2 = f43
+sind_P3 = f44
+sind_Q3 = f45
+sind_P4 = f46
+sind_Q4 = f47
-sincos_Sm = f38
-sincos_Cm = f39
+sind_P_temp1 = f48
+sind_P_temp2 = f49
-sincos_P1 = f40
-sincos_Q1 = f41
-sincos_P2 = f42
-sincos_Q2 = f43
-sincos_P3 = f44
-sincos_Q3 = f45
-sincos_P4 = f46
-sincos_Q4 = f47
+sind_Q_temp1 = f50
+sind_Q_temp2 = f51
-sincos_P_temp1 = f48
-sincos_P_temp2 = f49
+sind_P = f52
+sind_Q = f53
-sincos_Q_temp1 = f50
-sincos_Q_temp2 = f51
+sind_srsq = f54
-sincos_P = f52
-sincos_Q = f53
+sind_SIG_INV_PI_BY_16_2TO61 = f55
+sind_RSHF_2TO61 = f56
+sind_RSHF = f57
+sind_2TOM61 = f58
+sind_NFLOAT = f59
+sind_W_2TO61_RSH = f60
-sincos_srsq = f54
+fp_tmp = f61
-sincos_SIG_INV_PI_BY_16_2TO61 = f55
-sincos_RSHF_2TO61 = f56
-sincos_RSHF = f57
-sincos_2TOM61 = f58
-sincos_NFLOAT = f59
-sincos_W_2TO61_RSH = f60
+/////////////////////////////////////////////////////////////
-fp_tmp = f61
+sind_AD_1 = r33
+sind_AD_2 = r34
+sind_exp_limit = r35
+sind_r_signexp = r36
+sind_AD_beta_table = r37
+sind_r_sincos = r38
-/////////////////////////////////////////////////////////////
+sind_r_exp = r39
+sind_r_17_ones = r40
+
+sind_GR_sig_inv_pi_by_16 = r14
+sind_GR_rshf_2to61 = r15
+sind_GR_rshf = r16
+sind_GR_exp_2tom61 = r17
+sind_GR_n = r18
+sind_GR_m = r19
+sind_GR_32m = r19
+
+gr_tmp = r41
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
-sincos_GR_sig_inv_pi_by_16 = r14
-sincos_GR_rshf_2to61 = r15
-sincos_GR_rshf = r16
-sincos_GR_exp_2tom61 = r17
-sincos_GR_n = r18
-sincos_GR_m = r19
-sincos_GR_32m = r19
-sincos_GR_all_ones = r19
-sincos_AD_1 = r20
-sincos_AD_2 = r21
-sincos_exp_limit = r22
-sincos_r_signexp = r23
-sincos_r_17_ones = r24
-sincos_r_sincos = r25
-sincos_r_exp = r26
-
-GR_SAVE_PFS = r33
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_r_sincos = r36
-
-
-RODATA
-
-// Pi/16 parts
.align 16
-LOCAL_OBJECT_START(double_sincos_pi)
- data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
- data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
- data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
-LOCAL_OBJECT_END(double_sincos_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_sincos_pq_k4)
+double_sind_pi:
+ASM_TYPE_DIRECTIVE(double_sind_pi,@object)
+// data8 0xA2F9836E4E44152A, 0x00004001 // 16/pi (significand loaded w/ setf)
+// c90fdaa22168c234
+ data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 hi
+// c4c6628b80dc1cd1 29024e088a
+ data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 lo
+ASM_SIZE_DIRECTIVE(double_sind_pi)
+
+double_sind_pq_k4:
+ASM_TYPE_DIRECTIVE(double_sind_pq_k4,@object)
data8 0x3EC71C963717C63A // P4
data8 0x3EF9FFBA8F191AE6 // Q4
data8 0xBF2A01A00F4E11A8 // P3
@@ -281,112 +275,125 @@ LOCAL_OBJECT_START(double_sincos_pq_k4)
data8 0x3FA555555554DD45 // Q2
data8 0xBFC5555555555555 // P1
data8 0xBFDFFFFFFFFFFFFC // Q1
-LOCAL_OBJECT_END(double_sincos_pq_k4)
+ASM_SIZE_DIRECTIVE(double_sind_pq_k4)
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
+double_sin_cos_beta_k4:
+ASM_TYPE_DIRECTIVE(double_sin_cos_beta_k4,@object)
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
-//
+
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
-//
+
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
-//
+
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
-//
+
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
-//
+
+
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
-//
+
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
-//
+
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
-//
+
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
-//
+
+
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
-//
+
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
-//
+
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
-//
+
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
-//
+
+
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
-//
+
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
-//
+
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
-//
+
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
-//
+
+
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
-//
+
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
-//
+
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
-//
+
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
-//
+
+
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
-//
+
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
-//
+
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
-//
+
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
-//
+
+
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
-//
+
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
-//
+
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
-//
+
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
-//
+
+
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
-//
+
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
-//
+
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
-//
+
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
+ASM_SIZE_DIRECTIVE(double_sin_cos_beta_k4)
-.section .text
+.align 32
+.global sin#
+.global cos#
+#ifdef _LIBC
+.global __sin#
+.global __cos#
+#endif
////////////////////////////////////////////////////////
// There are two entry points: sin and cos
@@ -395,374 +402,3100 @@ LOCAL_OBJECT_END(double_sin_cos_beta_k4)
// If from sin, p8 is true
// If from cos, p9 is true
-GLOBAL_IEEE754_ENTRY(sin)
+.section .text
+.proc sin#
+#ifdef _LIBC
+.proc __sin#
+#endif
+.align 32
+
+sin:
+#ifdef _LIBC
+__sin:
+#endif
{ .mlx
- getf.exp sincos_r_signexp = f8
- movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
+ alloc r32=ar.pfs,1,13,0,0
+ movl sind_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // significand of 16/pi
}
{ .mlx
- addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
- movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
+ addl sind_AD_1 = @ltoff(double_sind_pi), gp
+ movl sind_GR_rshf_2to61 = 0x47b8000000000000 // 1.1000 2^(63+63-2)
}
;;
{ .mfi
- ld8 sincos_AD_1 = [sincos_AD_1]
- fnorm.s0 sincos_NORM_f8 = f8 // Normalize argument
- cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
+ ld8 sind_AD_1 = [sind_AD_1]
+ fnorm sind_NORM_f8 = f8
+ cmp.eq p8,p9 = r0, r0
}
{ .mib
- mov sincos_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
- mov sincos_r_sincos = 0x0 // sincos_r_sincos = 0 for sin
- br.cond.sptk _SINCOS_COMMON // go to common part
+ mov sind_GR_exp_2tom61 = 0xffff-61 // exponent of scaling factor 2^-61
+ mov sind_r_sincos = 0x0
+ br.cond.sptk L(SIND_SINCOS)
}
;;
-GLOBAL_IEEE754_END(sin)
+.endp sin
+ASM_SIZE_DIRECTIVE(sin)
+
-GLOBAL_IEEE754_ENTRY(cos)
+.section .text
+.proc cos#
+#ifdef _LIBC
+.proc __cos#
+#endif
+.align 32
+cos:
+#ifdef _LIBC
+__cos:
+#endif
{ .mlx
- getf.exp sincos_r_signexp = f8
- movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
+ alloc r32=ar.pfs,1,13,0,0
+ movl sind_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // significand of 16/pi
}
{ .mlx
- addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
- movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
+ addl sind_AD_1 = @ltoff(double_sind_pi), gp
+ movl sind_GR_rshf_2to61 = 0x47b8000000000000 // 1.1000 2^(63+63-2)
}
;;
{ .mfi
- ld8 sincos_AD_1 = [sincos_AD_1]
- fnorm.s1 sincos_NORM_f8 = f8 // Normalize argument
- cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
+ ld8 sind_AD_1 = [sind_AD_1]
+ fnorm.s1 sind_NORM_f8 = f8
+ cmp.eq p9,p8 = r0, r0
}
{ .mib
- mov sincos_GR_exp_2tom61 = 0xffff-61 // exp of scale 2^-61
- mov sincos_r_sincos = 0x8 // sincos_r_sincos = 8 for cos
- nop.b 999
+ mov sind_GR_exp_2tom61 = 0xffff-61 // exponent of scaling factor 2^-61
+ mov sind_r_sincos = 0x8
+ br.cond.sptk L(SIND_SINCOS)
}
;;
+
////////////////////////////////////////////////////////
// All entry points end up here.
-// If from sin, sincos_r_sincos is 0 and p8 is true
-// If from cos, sincos_r_sincos is 8 = 2^(k-1) and p9 is true
-// We add sincos_r_sincos to N
+// If from sin, sind_r_sincos is 0 and p8 is true
+// If from cos, sind_r_sincos is 8 = 2^(k-1) and p9 is true
+// We add sind_r_sincos to N
-///////////// Common sin and cos part //////////////////
-_SINCOS_COMMON:
+L(SIND_SINCOS):
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
+// fcmp used to set denormal, and invalid on snans
{ .mfi
- setf.sig sincos_SIG_INV_PI_BY_16_2TO61 = sincos_GR_sig_inv_pi_by_16
- fclass.m p6,p0 = f8, 0xe7 // if x = 0,inf,nan
- mov sincos_exp_limit = 0x1001a
+ setf.sig sind_SIG_INV_PI_BY_16_2TO61 = sind_GR_sig_inv_pi_by_16
+ fcmp.eq.s0 p12,p0=f8,f0
+ mov sind_r_17_ones = 0x1ffff
}
{ .mlx
- setf.d sincos_RSHF_2TO61 = sincos_GR_rshf_2to61
- movl sincos_GR_rshf = 0x43e8000000000000 // 1.1 2^63
-} // Right shift
+ setf.d sind_RSHF_2TO61 = sind_GR_rshf_2to61
+ movl sind_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
+}
;;
// Form another constant
// 2^-61 for scaling Nfloat
-// 0x1001a is register_bias + 27.
-// So if f8 >= 2^27, go to large argument routines
+// 0x10009 is register_bias + 10.
+// So if f8 > 2^10 = Gamma, go to DBX
{ .mfi
- alloc r32 = ar.pfs, 1, 4, 0, 0
- fclass.m p11,p0 = f8, 0x0b // Test for x=unorm
- mov sincos_GR_all_ones = -1 // For "inexect" constant create
-}
-{ .mib
- setf.exp sincos_2TOM61 = sincos_GR_exp_2tom61
- nop.i 999
-(p6) br.cond.spnt _SINCOS_SPECIAL_ARGS
+ setf.exp sind_2TOM61 = sind_GR_exp_2tom61
+ fclass.m p13,p0 = f8, 0x23 // Test for x inf
+ mov sind_exp_limit = 0x10009
}
;;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
-{ .mmb
- ldfe sincos_Pi_by_16_1 = [sincos_AD_1],16
- setf.d sincos_RSHF = sincos_GR_rshf
-(p11) br.cond.spnt _SINCOS_UNORM // Branch if x=unorm
+{ .mmf
+ ldfe sind_Pi_by_16_hi = [sind_AD_1],16
+ setf.d sind_RSHF = sind_GR_rshf
+ fclass.m p14,p0 = f8, 0xc3 // Test for x nan
}
;;
-_SINCOS_COMMON2:
-// Return here if x=unorm
-// Create constant used to set inexact
-{ .mmi
- ldfe sincos_Pi_by_16_2 = [sincos_AD_1],16
- setf.sig fp_tmp = sincos_GR_all_ones
- nop.i 999
-};;
+{ .mfi
+ ldfe sind_Pi_by_16_lo = [sind_AD_1],16
+(p13) frcpa.s0 f8,p12=f0,f0 // force qnan indef for x=inf
+ addl gr_tmp = -1,r0
+}
+{ .mfb
+ addl sind_AD_beta_table = @ltoff(double_sin_cos_beta_k4), gp
+ nop.f 999
+(p13) br.ret.spnt b0 ;; // Exit for x=inf
+}
-// Select exponent (17 lsb)
+// Start loading P, Q coefficients
+// SIN(0)
{ .mfi
- ldfe sincos_Pi_by_16_3 = [sincos_AD_1],16
- nop.f 999
- dep.z sincos_r_exp = sincos_r_signexp, 0, 17
-};;
+ ldfpd sind_P4,sind_Q4 = [sind_AD_1],16
+(p8) fclass.m.unc p6,p0 = f8, 0x07 // Test for sin(0)
+ nop.i 999
+}
+{ .mfb
+ addl sind_AD_beta_table = @ltoff(double_sin_cos_beta_k4), gp
+(p14) fma.d f8=f8,f1,f0 // qnan for x=nan
+(p14) br.ret.spnt b0 ;; // Exit for x=nan
+}
+
+
+// COS(0)
+{ .mfi
+ getf.exp sind_r_signexp = f8
+(p9) fclass.m.unc p7,p0 = f8, 0x07 // Test for sin(0)
+ nop.i 999
+}
+{ .mfi
+ ld8 sind_AD_beta_table = [sind_AD_beta_table]
+ nop.f 999
+ nop.i 999 ;;
+}
-// Polynomial coefficients (Q4, P4, Q3, P3, Q2, Q1, P2, P1) loading
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x1001a (2^27)
{ .mmb
- ldfpd sincos_P4,sincos_Q4 = [sincos_AD_1],16
- cmp.ge p10,p0 = sincos_r_exp,sincos_exp_limit
-(p10) br.cond.spnt _SINCOS_LARGE_ARGS // Go to "large args" routine
-};;
+ ldfpd sind_P3,sind_Q3 = [sind_AD_1],16
+ setf.sig fp_tmp = gr_tmp // Create constant such that fmpy sets inexact
+(p6) br.ret.spnt b0 ;;
+}
+
+{ .mfb
+ and sind_r_exp = sind_r_17_ones, sind_r_signexp
+(p7) fmerge.s f8 = f1,f1
+(p7) br.ret.spnt b0 ;;
+}
-// sincos_W = x * sincos_Inv_Pi_by_16
+// p10 is true if we must call routines to handle larger arguments
+// p10 is true if f8 exp is > 0x10009
+
+{ .mfi
+ ldfpd sind_P2,sind_Q2 = [sind_AD_1],16
+ nop.f 999
+ cmp.ge p10,p0 = sind_r_exp,sind_exp_limit
+}
+;;
+
+// sind_W = x * sind_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
- ldfpd sincos_P3,sincos_Q3 = [sincos_AD_1],16
- fma.s1 sincos_W_2TO61_RSH = sincos_NORM_f8,sincos_SIG_INV_PI_BY_16_2TO61,sincos_RSHF_2TO61
- nop.i 999
-};;
+ ldfpd sind_P1,sind_Q1 = [sind_AD_1]
+ fma.s1 sind_W_2TO61_RSH = sind_NORM_f8,sind_SIG_INV_PI_BY_16_2TO61,sind_RSHF_2TO61
+ nop.i 999
+}
+{ .mbb
+(p10) cmp.ne.unc p11,p12=sind_r_sincos,r0 // p11 call __libm_cos_double_dbx
+ // p12 call __libm_sin_double_dbx
+(p11) br.cond.spnt L(COSD_DBX)
+(p12) br.cond.spnt L(SIND_DBX)
+}
+;;
+
-// get N = (int)sincos_int_Nfloat
-// sincos_NFLOAT = Round_Int_Nearest(sincos_W)
+// sind_NFLOAT = Round_Int_Nearest(sind_W)
// This is done by scaling back by 2^-61 and subtracting the shift constant
+{ .mfi
+ nop.m 999
+ fms.s1 sind_NFLOAT = sind_W_2TO61_RSH,sind_2TOM61,sind_RSHF
+ nop.i 999 ;;
+}
+
+
+// get N = (int)sind_int_Nfloat
+{ .mfi
+ getf.sig sind_GR_n = sind_W_2TO61_RSH
+ nop.f 999
+ nop.i 999 ;;
+}
+
+// Add 2^(k-1) (which is in sind_r_sincos) to N
+// sind_r = -sind_Nfloat * sind_Pi_by_16_hi + x
+// sind_r = sind_r -sind_Nfloat * sind_Pi_by_16_lo
+{ .mfi
+ add sind_GR_n = sind_GR_n, sind_r_sincos
+ fnma.s1 sind_r = sind_NFLOAT, sind_Pi_by_16_hi, sind_NORM_f8
+ nop.i 999 ;;
+}
+
+
+// Get M (least k+1 bits of N)
+{ .mmi
+ and sind_GR_m = 0x1f,sind_GR_n ;;
+ nop.m 999
+ shl sind_GR_32m = sind_GR_m,5 ;;
+}
+
+// Add 32*M to address of sin_cos_beta table
+{ .mmi
+ add sind_AD_2 = sind_GR_32m, sind_AD_beta_table
+ nop.m 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ ldfe sind_Sm = [sind_AD_2],16
+(p8) fclass.m.unc p10,p0=f8,0x0b // If sin, note denormal input to set uflow
+ nop.i 999 ;;
+}
+
+{ .mfi
+ ldfe sind_Cm = [sind_AD_2]
+ fnma.s1 sind_r = sind_NFLOAT, sind_Pi_by_16_lo, sind_r
+ nop.i 999 ;;
+}
+
+// get rsq
+{ .mfi
+ nop.m 999
+ fma.s1 sind_rsq = sind_r, sind_r, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s0 fp_tmp = fp_tmp,fp_tmp // fmpy forces inexact flag
+ nop.i 999 ;;
+}
+
+// form P and Q series
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P_temp1 = sind_rsq, sind_P4, sind_P3
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q_temp1 = sind_rsq, sind_Q4, sind_Q3
+ nop.i 999 ;;
+}
+
+// get rcube and sm*rsq
+{ .mfi
+ nop.m 999
+ fmpy.s1 sind_srsq = sind_Sm,sind_rsq
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fmpy.s1 sind_rcub = sind_r, sind_rsq
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q_temp2 = sind_rsq, sind_Q_temp1, sind_Q2
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P_temp2 = sind_rsq, sind_P_temp1, sind_P2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q = sind_rsq, sind_Q_temp2, sind_Q1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P = sind_rsq, sind_P_temp2, sind_P1
+ nop.i 999 ;;
+}
+
+// Get final P and Q
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q = sind_srsq,sind_Q, sind_Sm
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P = sind_rcub,sind_P, sind_r
+ nop.i 999 ;;
+}
+
+// If sin(denormal), force inexact to be set
+{ .mfi
+ nop.m 999
+(p10) fmpy.d.s0 fp_tmp = f8,f8
+ nop.i 999 ;;
+}
+
+// Final calculation
+{ .mfb
+ nop.m 999
+ fma.d f8 = sind_Cm, sind_P, sind_Q
+ br.ret.sptk b0 ;;
+}
+.endp cos#
+ASM_SIZE_DIRECTIVE(cos#)
+
+
+
+.proc __libm_callout_1s
+__libm_callout_1s:
+L(SIND_DBX):
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+;;
+
+{ .mfi
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+}
+
+.body
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.call.sptk.many b0=__libm_sin_double_dbx# ;;
+}
+;;
+
+
+{ .mfi
+ mov gp = GR_SAVE_GP
+ nop.f 999
+ mov b0 = GR_SAVE_B0
+}
+;;
+
+{ .mib
+ nop.m 999
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0 ;;
+}
+.endp __libm_callout_1s
+ASM_SIZE_DIRECTIVE(__libm_callout_1s)
+
+
+.proc __libm_callout_1c
+__libm_callout_1c:
+L(COSD_DBX):
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+;;
+
+{ .mfi
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+}
+
+.body
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.call.sptk.many b0=__libm_cos_double_dbx# ;;
+}
+;;
+
+
+{ .mfi
+ mov gp = GR_SAVE_GP
+ nop.f 999
+ mov b0 = GR_SAVE_B0
+}
+;;
+
+{ .mib
+ nop.m 999
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0 ;;
+}
+.endp __libm_callout_1c
+ASM_SIZE_DIRECTIVE(__libm_callout_1c)
+
+
+// ====================================================================
+// ====================================================================
+
+// These functions calculate the sin and cos for inputs
+// greater than 2^10
+// __libm_sin_double_dbx# and __libm_cos_double_dbx#
+
+// *********************************************************************
+// *********************************************************************
+//
+// Function: Combined sin(x) and cos(x), where
+//
+// sin(x) = sine(x), for double precision x values
+// cos(x) = cosine(x), for double precision x values
+//
+// *********************************************************************
+//
+// Accuracy: Within .7 ulps for 80-bit floating point values
+// Very accurate for double precision values
+//
+// *********************************************************************
+//
+// Resources Used:
+//
+// Floating-Point Registers: f8 (Input and Return Value)
+// f32-f99
+//
+// General Purpose Registers:
+// r32-r43
+// r44-r45 (Used to pass arguments to pi_by_2 reduce routine)
+//
+// Predicate Registers: p6-p13
+//
+// *********************************************************************
+//
+// IEEE Special Conditions:
+//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions do not occur
+// Underflow exceptions raised when appropriate for sin
+// (No specialized error handling for this routine)
+// Inexact raised when appropriate by algorithm
+//
+// sin(SNaN) = QNaN
+// sin(QNaN) = QNaN
+// sin(inf) = QNaN
+// sin(+/-0) = +/-0
+// cos(inf) = QNaN
+// cos(SNaN) = QNaN
+// cos(QNaN) = QNaN
+// cos(0) = 1
+//
+// *********************************************************************
+//
+// Mathematical Description
+// ========================
+//
+// The computation of FSIN and FCOS is best handled in one piece of
+// code. The main reason is that given any argument Arg, computation
+// of trigonometric functions first calculate N and an approximation
+// to alpha where
+//
+// Arg = N pi/2 + alpha, |alpha| <= pi/4.
+//
+// Since
+//
+// cos( Arg ) = sin( (N+1) pi/2 + alpha ),
+//
+// therefore, the code for computing sine will produce cosine as long
+// as 1 is added to N immediately after the argument reduction
+// process.
+//
+// Let M = N if sine
+// N+1 if cosine.
+//
+// Now, given
+//
+// Arg = M pi/2 + alpha, |alpha| <= pi/4,
+//
+// let I = M mod 4, or I be the two lsb of M when M is represented
+// as 2's complement. I = [i_0 i_1]. Then
+//
+// sin( Arg ) = (-1)^i_0 sin( alpha ) if i_1 = 0,
+// = (-1)^i_0 cos( alpha ) if i_1 = 1.
+//
+// For example:
+// if M = -1, I = 11
+// sin ((-pi/2 + alpha) = (-1) cos (alpha)
+// if M = 0, I = 00
+// sin (alpha) = sin (alpha)
+// if M = 1, I = 01
+// sin (pi/2 + alpha) = cos (alpha)
+// if M = 2, I = 10
+// sin (pi + alpha) = (-1) sin (alpha)
+// if M = 3, I = 11
+// sin ((3/2)pi + alpha) = (-1) cos (alpha)
+//
+// The value of alpha is obtained by argument reduction and
+// represented by two working precision numbers r and c where
+//
+// alpha = r + c accurately.
+//
+// The reduction method is described in a previous write up.
+// The argument reduction scheme identifies 4 cases. For Cases 2
+// and 4, because |alpha| is small, sin(r+c) and cos(r+c) can be
+// computed very easily by 2 or 3 terms of the Taylor series
+// expansion as follows:
+//
+// Case 2:
+// -------
+//
+// sin(r + c) = r + c - r^3/6 accurately
+// cos(r + c) = 1 - 2^(-67) accurately
+//
+// Case 4:
+// -------
+//
+// sin(r + c) = r + c - r^3/6 + r^5/120 accurately
+// cos(r + c) = 1 - r^2/2 + r^4/24 accurately
+//
+// The only cases left are Cases 1 and 3 of the argument reduction
+// procedure. These two cases will be merged since after the
+// argument is reduced in either cases, we have the reduced argument
+// represented as r + c and that the magnitude |r + c| is not small
+// enough to allow the usage of a very short approximation.
+//
+// The required calculation is either
+//
+// sin(r + c) = sin(r) + correction, or
+// cos(r + c) = cos(r) + correction.
+//
+// Specifically,
+//
+// sin(r + c) = sin(r) + c sin'(r) + O(c^2)
+// = sin(r) + c cos (r) + O(c^2)
+// = sin(r) + c(1 - r^2/2) accurately.
+// Similarly,
+//
+// cos(r + c) = cos(r) - c sin(r) + O(c^2)
+// = cos(r) - c(r - r^3/6) accurately.
+//
+// We therefore concentrate on accurately calculating sin(r) and
+// cos(r) for a working-precision number r, |r| <= pi/4 to within
+// 0.1% or so.
+//
+// The greatest challenge of this task is that the second terms of
+// the Taylor series
+//
+// r - r^3/3! + r^r/5! - ...
+//
+// and
+//
+// 1 - r^2/2! + r^4/4! - ...
+//
+// are not very small when |r| is close to pi/4 and the rounding
+// errors will be a concern if simple polynomial accumulation is
+// used. When |r| < 2^-3, however, the second terms will be small
+// enough (6 bits or so of right shift) that a normal Horner
+// recurrence suffices. Hence there are two cases that we consider
+// in the accurate computation of sin(r) and cos(r), |r| <= pi/4.
+//
+// Case small_r: |r| < 2^(-3)
+// --------------------------
+//
+// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
+// we have
+//
+// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
+// = (-1)^i_0 * cos(r + c) if i_1 = 1
+//
+// can be accurately approximated by
+//
+// sin(Arg) = (-1)^i_0 * [sin(r) + c] if i_1 = 0
+// = (-1)^i_0 * [cos(r) - c*r] if i_1 = 1
+//
+// because |r| is small and thus the second terms in the correction
+// are unneccessary.
+//
+// Finally, sin(r) and cos(r) are approximated by polynomials of
+// moderate lengths.
+//
+// sin(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
+// cos(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
+//
+// We can make use of predicates to selectively calculate
+// sin(r) or cos(r) based on i_1.
+//
+// Case normal_r: 2^(-3) <= |r| <= pi/4
+// ------------------------------------
+//
+// This case is more likely than the previous one if one considers
+// r to be uniformly distributed in [-pi/4 pi/4]. Again,
+//
+// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
+// = (-1)^i_0 * cos(r + c) if i_1 = 1.
+//
+// Because |r| is now larger, we need one extra term in the
+// correction. sin(Arg) can be accurately approximated by
+//
+// sin(Arg) = (-1)^i_0 * [sin(r) + c(1-r^2/2)] if i_1 = 0
+// = (-1)^i_0 * [cos(r) - c*r*(1 - r^2/6)] i_1 = 1.
+//
+// Finally, sin(r) and cos(r) are approximated by polynomials of
+// moderate lengths.
+//
+// sin(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
+// PP_2 r^5 + ... + PP_8 r^17
+//
+// cos(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
+//
+// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
+// The crux in accurate computation is to calculate
+//
+// r + PP_1_hi r^3 or 1 + QQ_1 r^2
+//
+// accurately as two pieces: U_hi and U_lo. The way to achieve this
+// is to obtain r_hi as a 10 sig. bit number that approximates r to
+// roughly 8 bits or so of accuracy. (One convenient way is
+//
+// r_hi := frcpa( frcpa( r ) ).)
+//
+// This way,
+//
+// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
+// PP_1_hi (r^3 - r_hi^3)
+// = [r + PP_1_hi r_hi^3] +
+// [PP_1_hi (r - r_hi)
+// (r^2 + r_hi r + r_hi^2) ]
+// = U_hi + U_lo
+//
+// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
+// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
+// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
+// and that there is no more than 8 bit shift off between r and
+// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
+// calculated without any error. Finally, the fact that
+//
+// |U_lo| <= 2^(-8) |U_hi|
+//
+// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
+// 8 extra bits of accuracy.
+//
+// Similarly,
+//
+// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
+// [QQ_1 (r - r_hi)(r + r_hi)]
+// = U_hi + U_lo.
+//
+// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
+//
+// If i_1 = 0, then
+//
+// U_hi := r + PP_1_hi * r_hi^3
+// U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
+// poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
+// correction := c * ( 1 + C_1 r^2 )
+//
+// Else ...i_1 = 1
+//
+// U_hi := 1 + QQ_1 * r_hi * r_hi
+// U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
+// poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
+// correction := -c * r * (1 + S_1 * r^2)
+//
+// End
+//
+// Finally,
+//
+// V := poly + ( U_lo + correction )
+//
+// / U_hi + V if i_0 = 0
+// result := |
+// \ (-U_hi) - V if i_0 = 1
+//
+// It is important that in the last step, negation of U_hi is
+// performed prior to the subtraction which is to be performed in
+// the user-set rounding mode.
+//
+//
+// Algorithmic Description
+// =======================
+//
+// The argument reduction algorithm is tightly integrated into FSIN
+// and FCOS which share the same code. The following is complete and
+// self-contained. The argument reduction description given
+// previously is repeated below.
+//
+//
+// Step 0. Initialization.
+//
+// If FSIN is invoked, set N_inc := 0; else if FCOS is invoked,
+// set N_inc := 1.
+//
+// Step 1. Check for exceptional and special cases.
+//
+// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
+// handling.
+// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
+// arguments. This is the most likely case.
+// * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
+// arguments.
+// * If |Arg| >= 2^63, go to Step 10 for special handling.
+//
+// Step 2. Reduction of moderate arguments.
+//
+// If |Arg| < pi/4 ...quick branch
+// N_fix := N_inc (integer)
+// r := Arg
+// c := 0.0
+// Branch to Step 4, Case_1_complete
+// Else ...cf. argument reduction
+// N := Arg * two_by_PI (fp)
+// N_fix := fcvt.fx( N ) (int)
+// N := fcvt.xf( N_fix )
+// N_fix := N_fix + N_inc
+// s := Arg - N * P_1 (first piece of pi/2)
+// w := -N * P_2 (second piece of pi/2)
+//
+// If |s| >= 2^(-33)
+// go to Step 3, Case_1_reduce
+// Else
+// go to Step 7, Case_2_reduce
+// Endif
+// Endif
+//
+// Step 3. Case_1_reduce.
+//
+// r := s + w
+// c := (s - r) + w ...observe order
+//
+// Step 4. Case_1_complete
+//
+// ...At this point, the reduced argument alpha is
+// ...accurately represented as r + c.
+// If |r| < 2^(-3), go to Step 6, small_r.
+//
+// Step 5. Normal_r.
+//
+// Let [i_0 i_1] by the 2 lsb of N_fix.
+// FR_rsq := r * r
+// r_hi := frcpa( frcpa( r ) )
+// r_lo := r - r_hi
+//
+// If i_1 = 0, then
+// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
+// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
+// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
+// correction := c + c*C_1*FR_rsq ...any order
+// Else
+// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
+// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
+// U_lo := QQ_1 * r_lo * (r + r_hi)
+// correction := -c*(r + S_1*FR_rsq*r) ...any order
+// Endif
+//
+// V := poly + (U_lo + correction) ...observe order
+//
+// result := (i_0 == 0? 1.0 : -1.0)
+//
+// Last instruction in user-set rounding mode
+//
+// result := (i_0 == 0? result*U_hi + V :
+// result*U_hi - V)
+//
+// Return
+//
+// Step 6. Small_r.
+//
+// ...Use flush to zero mode without causing exception
+// Let [i_0 i_1] be the two lsb of N_fix.
+//
+// FR_rsq := r * r
+//
+// If i_1 = 0 then
+// z := FR_rsq*FR_rsq; z := FR_rsq*z *r
+// poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
+// poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
+// correction := c
+// result := r
+// Else
+// z := FR_rsq*FR_rsq; z := FR_rsq*z
+// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
+// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
+// correction := -c*r
+// result := 1
+// Endif
+//
+// poly := poly_hi + (z * poly_lo + correction)
+//
+// If i_0 = 1, result := -result
+//
+// Last operation. Perform in user-set rounding mode
+//
+// result := (i_0 == 0? result + poly :
+// result - poly )
+// Return
+//
+// Step 7. Case_2_reduce.
+//
+// ...Refer to the write up for argument reduction for
+// ...rationale. The reduction algorithm below is taken from
+// ...argument reduction description and integrated this.
+//
+// w := N*P_3
+// U_1 := N*P_2 + w ...FMA
+// U_2 := (N*P_2 - U_1) + w ...2 FMA
+// ...U_1 + U_2 is N*(P_2+P_3) accurately
+//
+// r := s - U_1
+// c := ( (s - r) - U_1 ) - U_2
+//
+// ...The mathematical sum r + c approximates the reduced
+// ...argument accurately. Note that although compared to
+// ...Case 1, this case requires much more work to reduce
+// ...the argument, the subsequent calculation needed for
+// ...any of the trigonometric function is very little because
+// ...|alpha| < 1.01*2^(-33) and thus two terms of the
+// ...Taylor series expansion suffices.
+//
+// If i_1 = 0 then
+// poly := c + S_1 * r * r * r ...any order
+// result := r
+// Else
+// poly := -2^(-67)
+// result := 1.0
+// Endif
+//
+// If i_0 = 1, result := -result
+//
+// Last operation. Perform in user-set rounding mode
+//
+// result := (i_0 == 0? result + poly :
+// result - poly )
+//
+// Return
+//
+//
+// Step 8. Pre-reduction of large arguments.
+//
+// ...Again, the following reduction procedure was described
+// ...in the separate write up for argument reduction, which
+// ...is tightly integrated here.
+
+// N_0 := Arg * Inv_P_0
+// N_0_fix := fcvt.fx( N_0 )
+// N_0 := fcvt.xf( N_0_fix)
+
+// Arg' := Arg - N_0 * P_0
+// w := N_0 * d_1
+// N := Arg' * two_by_PI
+// N_fix := fcvt.fx( N )
+// N := fcvt.xf( N_fix )
+// N_fix := N_fix + N_inc
+//
+// s := Arg' - N * P_1
+// w := w - N * P_2
+//
+// If |s| >= 2^(-14)
+// go to Step 3
+// Else
+// go to Step 9
+// Endif
+//
+// Step 9. Case_4_reduce.
+//
+// ...first obtain N_0*d_1 and -N*P_2 accurately
+// U_hi := N_0 * d_1 V_hi := -N*P_2
+// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
+//
+// ...compute the contribution from N_0*d_1 and -N*P_3
+// w := -N*P_3
+// w := w + N_0*d_2
+// t := U_lo + V_lo + w ...any order
+//
+// ...at this point, the mathematical value
+// ...s + U_hi + V_hi + t approximates the true reduced argument
+// ...accurately. Just need to compute this accurately.
+//
+// ...Calculate U_hi + V_hi accurately:
+// A := U_hi + V_hi
+// if |U_hi| >= |V_hi| then
+// a := (U_hi - A) + V_hi
+// else
+// a := (V_hi - A) + U_hi
+// endif
+// ...order in computing "a" must be observed. This branch is
+// ...best implemented by predicates.
+// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
+// ...much smaller than A: |a| <= (1/2)ulp(A).
+//
+// ...Just need to calculate s + A + a + t
+// C_hi := s + A t := t + a
+// C_lo := (s - C_hi) + A
+// C_lo := C_lo + t
+//
+// ...Final steps for reduction
+// r := C_hi + C_lo
+// c := (C_hi - r) + C_lo
+//
+// ...At this point, we have r and c
+// ...And all we need is a couple of terms of the corresponding
+// ...Taylor series.
+//
+// If i_1 = 0
+// poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
+// result := r
+// Else
+// poly := FR_rsq*(C_1 + FR_rsq*C_2)
+// result := 1
+// Endif
+//
+// If i_0 = 1, result := -result
+//
+// Last operation. Perform in user-set rounding mode
+//
+// result := (i_0 == 0? result + poly :
+// result - poly )
+// Return
+//
+// Large Arguments: For arguments above 2**63, a Payne-Hanek
+// style argument reduction is used and pi_by_2 reduce is called.
+//
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+.align 64
+
+FSINCOS_CONSTANTS:
+ASM_TYPE_DIRECTIVE(FSINCOS_CONSTANTS,@object)
+data4 0x4B800000, 0xCB800000, 0x00000000,0x00000000 // two**24, -two**24
+data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
+data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
+data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
+data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
+data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
+data4 0x5F000000, 0xDF000000, 0x00000000,0x00000000 // two_to_63, -two_to_63
+data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
+data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
+data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
+data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
+data4 0x2168C234, 0xC90FDAA2, 0x0000BFFE,0x00000000 // neg_pi_by_4
+data4 0x3E000000, 0xBE000000, 0x00000000,0x00000000 // two**-3, -two**-3
+data4 0x2F000000, 0xAF000000, 0x9E000000,0x00000000 // two**-33, -two**-33, -two**-67
+data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
+data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
+data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
+data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
+data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
+data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
+data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
+data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
+data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
+data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2,0x00000000 // QQ_8
+data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA,0x00000000 // QQ_7
+data4 0x9C716658, 0x8F76C650, 0x00003FE2,0x00000000 // QQ_6
+data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9,0x00000000 // QQ_5
+data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
+data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
+data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
+data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
+data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
+data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
+data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
+data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
+data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
+data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
+data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
+data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
+data4 0x38800000, 0xB8800000, 0x00000000 // two**-14, -two**-14
+ASM_SIZE_DIRECTIVE(FSINCOS_CONSTANTS)
+
+FR_Input_X = f8
+FR_Neg_Two_to_M3 = f32
+FR_Two_to_63 = f32
+FR_Two_to_24 = f33
+FR_Pi_by_4 = f33
+FR_Two_to_M14 = f34
+FR_Two_to_M33 = f35
+FR_Neg_Two_to_24 = f36
+FR_Neg_Pi_by_4 = f36
+FR_Neg_Two_to_M14 = f37
+FR_Neg_Two_to_M33 = f38
+FR_Neg_Two_to_M67 = f39
+FR_Inv_pi_by_2 = f40
+FR_N_float = f41
+FR_N_fix = f42
+FR_P_1 = f43
+FR_P_2 = f44
+FR_P_3 = f45
+FR_s = f46
+FR_w = f47
+FR_c = f48
+FR_r = f49
+FR_Z = f50
+FR_A = f51
+FR_a = f52
+FR_t = f53
+FR_U_1 = f54
+FR_U_2 = f55
+FR_C_1 = f56
+FR_C_2 = f57
+FR_C_3 = f58
+FR_C_4 = f59
+FR_C_5 = f60
+FR_S_1 = f61
+FR_S_2 = f62
+FR_S_3 = f63
+FR_S_4 = f64
+FR_S_5 = f65
+FR_poly_hi = f66
+FR_poly_lo = f67
+FR_r_hi = f68
+FR_r_lo = f69
+FR_rsq = f70
+FR_r_cubed = f71
+FR_C_hi = f72
+FR_N_0 = f73
+FR_d_1 = f74
+FR_V = f75
+FR_V_hi = f75
+FR_V_lo = f76
+FR_U_hi = f77
+FR_U_lo = f78
+FR_U_hiabs = f79
+FR_V_hiabs = f80
+FR_PP_8 = f81
+FR_QQ_8 = f81
+FR_PP_7 = f82
+FR_QQ_7 = f82
+FR_PP_6 = f83
+FR_QQ_6 = f83
+FR_PP_5 = f84
+FR_QQ_5 = f84
+FR_PP_4 = f85
+FR_QQ_4 = f85
+FR_PP_3 = f86
+FR_QQ_3 = f86
+FR_PP_2 = f87
+FR_QQ_2 = f87
+FR_QQ_1 = f88
+FR_N_0_fix = f89
+FR_Inv_P_0 = f90
+FR_corr = f91
+FR_poly = f92
+FR_d_2 = f93
+FR_Two_to_M3 = f94
+FR_Neg_Two_to_63 = f94
+FR_P_0 = f95
+FR_C_lo = f96
+FR_PP_1 = f97
+FR_PP_1_lo = f98
+FR_ArgPrime = f99
+
+GR_Table_Base = r32
+GR_Table_Base1 = r33
+GR_i_0 = r34
+GR_i_1 = r35
+GR_N_Inc = r36
+GR_Sin_or_Cos = r37
+
+GR_SAVE_B0 = r39
+GR_SAVE_GP = r40
+GR_SAVE_PFS = r41
+
+.section .text
+.proc __libm_sin_double_dbx#
+.align 64
+__libm_sin_double_dbx:
+
+{ .mlx
+alloc GR_Table_Base = ar.pfs,0,12,2,0
+ movl GR_Sin_or_Cos = 0x0 ;;
+}
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.cond.sptk L(SINCOS_CONTINUE) ;;
+}
+
+.endp __libm_sin_double_dbx#
+ASM_SIZE_DIRECTIVE(__libm_sin_double_dbx)
+
+.section .text
+.proc __libm_cos_double_dbx#
+__libm_cos_double_dbx:
+
+{ .mlx
+alloc GR_Table_Base= ar.pfs,0,12,2,0
+ movl GR_Sin_or_Cos = 0x1 ;;
+}
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+//
+// Load Table Address
+//
+L(SINCOS_CONTINUE):
+
+{ .mmi
+ add GR_Table_Base1 = 96, GR_Table_Base
+ ldfs FR_Two_to_24 = [GR_Table_Base], 4
+ nop.i 999
+}
+;;
+
+{ .mmi
+ nop.m 999
+//
+// Load 2**24, load 2**63.
+//
+ ldfs FR_Neg_Two_to_24 = [GR_Table_Base], 12
+ mov r41 = ar.pfs ;;
+}
+
+{ .mfi
+ ldfs FR_Two_to_63 = [GR_Table_Base1], 4
+//
+// Check for unnormals - unsupported operands. We do not want
+// to generate denormal exception
+// Check for NatVals, QNaNs, SNaNs, +/-Infs
+// Check for EM unsupporteds
+// Check for Zero
+//
+ fclass.m.unc p6, p8 = FR_Input_X, 0x1E3
+ mov r40 = gp ;;
+}
+
+{ .mfi
+ nop.m 999
+ fclass.nm.unc p8, p0 = FR_Input_X, 0x1FF
+// GR_Sin_or_Cos denotes
+ mov r39 = b0
+}
+
+{ .mfb
+ ldfs FR_Neg_Two_to_63 = [GR_Table_Base1], 12
+ fclass.m.unc p10, p0 = FR_Input_X, 0x007
+(p6) br.cond.spnt L(SINCOS_SPECIAL) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(SINCOS_SPECIAL) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Branch if +/- NaN, Inf.
+// Load -2**24, load -2**63.
+//
+(p10) br.cond.spnt L(SINCOS_ZERO) ;;
+}
+
+{ .mmb
+ ldfe FR_Inv_pi_by_2 = [GR_Table_Base], 16
+ ldfe FR_Inv_P_0 = [GR_Table_Base1], 16
+ nop.b 999 ;;
+}
+
+{ .mmb
+ nop.m 999
+ ldfe FR_d_1 = [GR_Table_Base1], 16
+ nop.b 999 ;;
+}
+//
+// Raise possible denormal operand flag with useful fcmp
+// Is x <= -2**63
+// Load Inv_P_0 for pre-reduction
+// Load Inv_pi_by_2
+//
+
+{ .mmb
+ ldfe FR_P_0 = [GR_Table_Base], 16
+ ldfe FR_d_2 = [GR_Table_Base1], 16
+ nop.b 999 ;;
+}
+//
+// Load P_0
+// Load d_1
+// Is x >= 2**63
+// Is x <= -2**24?
+//
+
+{ .mmi
+ ldfe FR_P_1 = [GR_Table_Base], 16 ;;
+//
+// Load P_1
+// Load d_2
+// Is x >= 2**24?
+//
+ ldfe FR_P_2 = [GR_Table_Base], 16
+ nop.i 999 ;;
+}
+
{ .mmf
- getf.sig sincos_GR_n = sincos_W_2TO61_RSH
- ldfpd sincos_P2,sincos_Q2 = [sincos_AD_1],16
- fms.s1 sincos_NFLOAT = sincos_W_2TO61_RSH,sincos_2TOM61,sincos_RSHF
-};;
+ nop.m 999
+ ldfe FR_P_3 = [GR_Table_Base], 16
+ fcmp.le.unc.s1 p7, p8 = FR_Input_X, FR_Neg_Two_to_24
+}
-// sincos_r = -sincos_Nfloat * sincos_Pi_by_16_1 + x
{ .mfi
- ldfpd sincos_P1,sincos_Q1 = [sincos_AD_1],16
- fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_1, sincos_NORM_f8
- nop.i 999
-};;
+ nop.m 999
+//
+// Branch if +/- zero.
+// Decide about the paths to take:
+// If -2**24 < FR_Input_X < 2**24 - CASE 1 OR 2
+// OTHERWISE - CASE 3 OR 4
+//
+ fcmp.le.unc.s0 p10, p11 = FR_Input_X, FR_Neg_Two_to_63
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p8) fcmp.ge.s1 p7, p0 = FR_Input_X, FR_Two_to_24
+ nop.i 999
+}
+
+{ .mfi
+ ldfe FR_Pi_by_4 = [GR_Table_Base1], 16
+(p11) fcmp.ge.s1 p10, p0 = FR_Input_X, FR_Two_to_63
+ nop.i 999 ;;
+}
+
+{ .mmi
+ ldfe FR_Neg_Pi_by_4 = [GR_Table_Base1], 16 ;;
+ ldfs FR_Two_to_M3 = [GR_Table_Base1], 4
+ nop.i 999 ;;
+}
+
+{ .mib
+ ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1], 12
+ nop.i 999
+//
+// Load P_2
+// Load P_3
+// Load pi_by_4
+// Load neg_pi_by_4
+// Load 2**(-3)
+// Load -2**(-3).
+//
+(p10) br.cond.spnt L(SINCOS_ARG_TOO_LARGE) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Branch out if x >= 2**63. Use Payne-Hanek Reduction
+//
+(p7) br.cond.spnt L(SINCOS_LARGER_ARG) ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Branch if Arg <= -2**24 or Arg >= 2**24 and use pre-reduction.
+//
+ fma.s1 FR_N_float = FR_Input_X, FR_Inv_pi_by_2, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fcmp.lt.unc.s1 p6, p7 = FR_Input_X, FR_Pi_by_4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Select the case when |Arg| < pi/4
+// Else Select the case when |Arg| >= pi/4
+//
+ fcvt.fx.s1 FR_N_fix = FR_N_float
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// N = Arg * 2/pi
+// Check if Arg < pi/4
+//
+(p6) fcmp.gt.s1 p6, p7 = FR_Input_X, FR_Neg_Pi_by_4
+ nop.i 999 ;;
+}
+//
+// Case 2: Convert integer N_fix back to normalized floating-point value.
+// Case 1: p8 is only affected when p6 is set
+//
+
+{ .mfi
+(p7) ldfs FR_Two_to_M33 = [GR_Table_Base1], 4
+//
+// Grab the integer part of N and call it N_fix
+//
+(p6) fmerge.se FR_r = FR_Input_X, FR_Input_X
+// If |x| < pi/4, r = x and c = 0
+// lf |x| < pi/4, is x < 2**(-3).
+// r = Arg
+// c = 0
+(p6) mov GR_N_Inc = GR_Sin_or_Cos ;;
+}
+
+{ .mmf
+ nop.m 999
+(p7) ldfs FR_Neg_Two_to_M33 = [GR_Table_Base1], 4
+(p6) fmerge.se FR_c = f0, f0
+}
+
+{ .mfi
+ nop.m 999
+(p6) fcmp.lt.unc.s1 p8, p9 = FR_Input_X, FR_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
+// If |x| >= pi/4,
+// Create the right N for |x| < pi/4 and otherwise
+// Case 2: Place integer part of N in GP register
+//
+(p7) fcvt.xf FR_N_float = FR_N_fix
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+(p7) getf.sig GR_N_Inc = FR_N_fix
+(p8) fcmp.gt.s1 p8, p0 = FR_Input_X, FR_Neg_Two_to_M3 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Load 2**(-33), -2**(-33)
+//
+(p8) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+//
+// if |x| < pi/4, branch based on |x| < 2**(-3) or otherwise.
+//
+//
+// In this branch, |x| >= pi/4.
+//
+
+{ .mfi
+ ldfs FR_Neg_Two_to_M67 = [GR_Table_Base1], 8
+//
+// Load -2**(-67)
+//
+ fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X
+//
+// w = N * P_2
+// s = -N * P_1 + Arg
+//
+ add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_w = FR_N_float, FR_P_2, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Adjust N_fix by N_inc to determine whether sine or
+// cosine is being calculated
+//
+ fcmp.lt.unc.s1 p7, p6 = FR_s, FR_Two_to_M33
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+// Remember x >= pi/4.
+// Is s <= -2**(-33) or s >= 2**(-33) (p6)
+// or -2**(-33) < s < 2**(-33) (p7)
+(p6) fms.s1 FR_r = FR_s, f1, FR_w
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p6) fms.s1 FR_c = FR_s, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// For big s: r = s - w: No futher reduction is necessary
+// For small s: w = N * P_3 (change sign) More reduction
+//
+(p6) fcmp.lt.unc.s1 p8, p9 = FR_r, FR_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p8) fcmp.gt.s1 p8, p9 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+//
+// For big s: Is |r| < 2**(-3)?
+// For big s: c = S - r
+// For small s: U_1 = N * P_2 + w
+//
+// If p8 is set, prepare to branch to Small_R.
+// If p9 is set, prepare to branch to Normal_R.
+// For big s, r is complete here.
+//
+(p6) fms.s1 FR_c = FR_c, f1, FR_w
+//
+// For big s: c = c + w (w has not been negated.)
+// For small s: r = S - U_1
+//
+(p8) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+
+{ .mfi
+(p7) add GR_Table_Base1 = 224, GR_Table_Base1
+//
+// Branch to SINCOS_SMALL_R or SINCOS_NORMAL_R
+//
+(p7) fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
+//
+// c = S - U_1
+// r = S_1 * r
+//
+//
+(p7) extr.u GR_i_1 = GR_N_Inc, 0, 1
+}
-// Add 2^(k-1) (which is in sincos_r_sincos) to N
{ .mmi
- add sincos_GR_n = sincos_GR_n, sincos_r_sincos
+ nop.m 999 ;;
+//
+// Get [i_0,i_1] - two lsb of N_fix_gr.
+// Do dummy fmpy so inexact is always set.
+//
+(p7) cmp.eq.unc p9, p10 = 0x0, GR_i_1
+(p7) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+//
+// For small s: U_2 = N * P_2 - U_1
+// S_1 stored constant - grab the one stored with the
+// coefficients.
+//
+
+{ .mfi
+(p7) ldfe FR_S_1 = [GR_Table_Base1], 16
+//
+// Check if i_1 and i_0 != 0
+//
+(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67
+(p7) cmp.eq.unc p11, p12 = 0x0, GR_i_0 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fms.s1 FR_s = FR_s, f1, FR_r
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// S = S - r
+// U_2 = U_2 + w
+// load S_1
+//
+(p7) fma.s1 FR_rsq = FR_r, FR_r, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_U_2 = FR_U_2, f1, FR_w
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fmerge.se FR_Input_X = FR_r, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// FR_rsq = r * r
+// Save r as the result.
+//
+(p7) fms.s1 FR_c = FR_s, f1, FR_U_1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if ( i_1 ==0) poly = c + S_1*r*r*r
+// else Result = 1
+//
+(p12) fnma.s1 FR_Input_X = FR_Input_X, f1, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_r = FR_S_1, FR_r, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.d.s0 FR_S_1 = FR_S_1, FR_S_1, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// If i_1 != 0, poly = 2**(-67)
+//
+(p7) fms.s1 FR_c = FR_c, f1, FR_U_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// c = c - U_2
+//
+(p9) fma.s1 FR_poly = FR_r, FR_rsq, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// i_0 != 0, so Result = -Result
+//
+(p11) fma.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p12) fms.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+//
+// if (i_0 == 0), Result = Result + poly
+// else Result = Result - poly
+//
+ br.ret.sptk b0 ;;
+}
+L(SINCOS_LARGER_ARG):
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0
+ nop.i 999
+}
+;;
+
+// This path for argument > 2*24
+// Adjust table_ptr1 to beginning of table.
+//
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
;;
-// Get M (least k+1 bits of N)
- and sincos_GR_m = 0x1f,sincos_GR_n
- nop.i 999
-};;
-// sincos_r = sincos_r -sincos_Nfloat * sincos_Pi_by_16_2
+
+//
+// Point to 2*-14
+// N_0 = Arg * Inv_P_0
+//
+
+{ .mmi
+ add GR_Table_Base = 688, GR_Table_Base ;;
+ ldfs FR_Two_to_M14 = [GR_Table_Base], 4
+ nop.i 999 ;;
+}
+
{ .mfi
- nop.m 999
- fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_2, sincos_r
- shl sincos_GR_32m = sincos_GR_m,5
-};;
+ ldfs FR_Neg_Two_to_M14 = [GR_Table_Base], 0
+ nop.f 999
+ nop.i 999 ;;
+}
-// Add 32*M to address of sin_cos_beta table
-// For sin denorm. - set uflow
{ .mfi
- add sincos_AD_2 = sincos_GR_32m, sincos_AD_1
-(p8) fclass.m.unc p10,p0 = f8,0x0b
- nop.i 999
-};;
+ nop.m 999
+//
+// Load values 2**(-14) and -2**(-14)
+//
+ fcvt.fx.s1 FR_N_0_fix = FR_N_0
+ nop.i 999 ;;
+}
-// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
{ .mfi
- ldfe sincos_Sm = [sincos_AD_2],16
- nop.f 999
- nop.i 999
-};;
+ nop.m 999
+//
+// N_0_fix = integer part of N_0
+//
+ fcvt.xf FR_N_0 = FR_N_0_fix
+ nop.i 999 ;;
+}
-// get rsq = r*r
{ .mfi
- ldfe sincos_Cm = [sincos_AD_2]
- fma.s1 sincos_rsq = sincos_r, sincos_r, f0 // r^2 = r*r
- nop.i 999
+ nop.m 999
+//
+// Make N_0 the integer part
+//
+ fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X
+ nop.i 999
}
+
{ .mfi
- nop.m 999
- fmpy.s0 fp_tmp = fp_tmp,fp_tmp // forces inexact flag
- nop.i 999
-};;
+ nop.m 999
+ fma.s1 FR_w = FR_N_0, FR_d_1, f0
+ nop.i 999 ;;
+}
-// sincos_r_exact = sincos_r -sincos_Nfloat * sincos_Pi_by_16_3
{ .mfi
- nop.m 999
- fnma.s1 sincos_r_exact = sincos_NFLOAT, sincos_Pi_by_16_3, sincos_r
- nop.i 999
-};;
+ nop.m 999
+//
+// Arg' = -N_0 * P_0 + Arg
+// w = N_0 * d_1
+//
+ fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0
+ nop.i 999 ;;
+}
-// Polynomials calculation
-// P_1 = P4*r^2 + P3
-// Q_2 = Q4*r^2 + Q3
{ .mfi
- nop.m 999
- fma.s1 sincos_P_temp1 = sincos_rsq, sincos_P4, sincos_P3
- nop.i 999
+ nop.m 999
+//
+// N = A' * 2/pi
+//
+ fcvt.fx.s1 FR_N_fix = FR_N_float
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_Q_temp1 = sincos_rsq, sincos_Q4, sincos_Q3
- nop.i 999
-};;
+ nop.m 999
+//
+// N_fix is the integer part
+//
+ fcvt.xf FR_N_float = FR_N_fix
+ nop.i 999 ;;
+}
-// get rcube = r^3 and S[m]*r^2
{ .mfi
- nop.m 999
- fmpy.s1 sincos_srsq = sincos_Sm,sincos_rsq
- nop.i 999
+ getf.sig GR_N_Inc = FR_N_fix
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+ add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;;
}
+
{ .mfi
- nop.m 999
- fmpy.s1 sincos_rcub = sincos_r_exact, sincos_rsq
- nop.i 999
-};;
+ nop.m 999
+//
+// N is the integer part of the reduced-reduced argument.
+// Put the integer in a GP register
+//
+ fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime
+ nop.i 999
+}
-// Polynomials calculation
-// Q_2 = Q_1*r^2 + Q2
-// P_1 = P_1*r^2 + P2
{ .mfi
- nop.m 999
- fma.s1 sincos_Q_temp2 = sincos_rsq, sincos_Q_temp1, sincos_Q2
- nop.i 999
+ nop.m 999
+ fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_P_temp2 = sincos_rsq, sincos_P_temp1, sincos_P2
- nop.i 999
-};;
+ nop.m 999
+//
+// s = -N*P_1 + Arg'
+// w = -N*P_2 + w
+// N_fix_gr = N_fix_gr + N_inc
+//
+ fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
+ nop.i 999 ;;
+}
-// Polynomials calculation
-// Q = Q_2*r^2 + Q1
-// P = P_2*r^2 + P1
{ .mfi
- nop.m 999
- fma.s1 sincos_Q = sincos_rsq, sincos_Q_temp2, sincos_Q1
- nop.i 999
+ nop.m 999
+(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_P = sincos_rsq, sincos_P_temp2, sincos_P1
- nop.i 999
-};;
+ nop.m 999
+//
+// For |s| > 2**(-14) r = S + w (r complete)
+// Else U_hi = N_0 * d_1
+//
+(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
+ nop.i 999
+}
-// Get final P and Q
-// Q = Q*S[m]*r^2 + S[m]
-// P = P*r^3 + r
{ .mfi
- nop.m 999
- fma.s1 sincos_Q = sincos_srsq,sincos_Q, sincos_Sm
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_P = sincos_rcub,sincos_P, sincos_r_exact
- nop.i 999
-};;
+ nop.m 999
+//
+// Either S <= -2**(-14) or S >= 2**(-14)
+// or -2**(-14) < s < 2**(-14)
+//
+(p8) fma.s1 FR_r = FR_s, f1, FR_w
+ nop.i 999
+}
-// If sin(denormal), force underflow to be set
{ .mfi
- nop.m 999
-(p10) fmpy.d.s0 fp_tmp = sincos_NORM_f8,sincos_NORM_f8
- nop.i 999
-};;
+ nop.m 999
+(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// We need abs of both U_hi and V_hi - don't
+// worry about switched sign of V_hi.
+//
+(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// Big s: finish up c = (S - r) + w (c complete)
+// Case 4: A = U_hi + V_hi
+// Note: Worry about switched sign of V_hi, so subtract instead of add.
+//
+(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+// For big s: c = S - r
+// For small s do more work: U_lo = N_0 * d_1 - U_hi
+//
+(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// For big s: Is |r| < 2**(-3)
+// For big s: if p12 set, prepare to branch to Small_R.
+// For big s: If p13 set, prepare to branch to Normal_R.
+//
+(p8) fms.s1 FR_c = FR_s, f1, FR_r
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// For small S: V_hi = N * P_2
+// w = N * P_3
+// Note the product does not include the (-) as in the writeup
+// so (-) missing for V_hi and w.
+//
+(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p8) fma.s1 FR_c = FR_c, f1, FR_w
+ nop.i 999
+}
-// Final calculation
-// result = C[m]*P + Q
{ .mfb
- nop.m 999
- fma.d.s0 f8 = sincos_Cm, sincos_P, sincos_Q
- br.ret.sptk b0 // Exit for common path
-};;
+ nop.m 999
+(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
+(p12) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p13) br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
+// The remaining stuff is for Case 4.
+// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
+// Note: the (-) is still missing for V_lo.
+// Small s: w = w + N_0 * d_2
+// Note: the (-) is now incorporated in w.
+//
+(p9) fcmp.ge.unc.s1 p10, p11 = FR_U_hiabs, FR_V_hiabs
+ extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// C_hi = S + A
+//
+(p9) fma.s1 FR_t = FR_U_lo, f1, FR_V_lo
+ extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// t = U_lo + V_lo
+//
+//
+(p10) fms.s1 FR_a = FR_U_hi, f1, FR_A
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p11) fma.s1 FR_a = FR_V_hi, f1, FR_A
+ nop.i 999
+}
+;;
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+{ .mfi
+ add GR_Table_Base = 528, GR_Table_Base
+//
+// Is U_hiabs >= V_hiabs?
+//
+(p9) fma.s1 FR_C_hi = FR_s, f1, FR_A
+ nop.i 999 ;;
+}
+
+{ .mmi
+ ldfe FR_C_1 = [GR_Table_Base], 16 ;;
+ ldfe FR_C_2 = [GR_Table_Base], 64
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+//
+// c = c + C_lo finished.
+// Load C_2
+//
+ ldfe FR_S_1 = [GR_Table_Base], 16
+//
+// C_lo = S - C_hi
+//
+ fma.s1 FR_t = FR_t, f1, FR_w ;;
+}
+//
+// r and c have been computed.
+// Make sure ftz mode is set - should be automatic when using wre
+// |r| < 2**(-3)
+// Get [i_0,i_1] - two lsb of N_fix.
+// Load S_1
+//
+
+{ .mfi
+ ldfe FR_S_2 = [GR_Table_Base], 64
+//
+// t = t + w
+//
+(p10) fms.s1 FR_a = FR_a, f1, FR_V_hi
+ cmp.eq.unc p9, p10 = 0x0, GR_i_0
+}
+
+{ .mfi
+ nop.m 999
+//
+// For larger u than v: a = U_hi - A
+// Else a = V_hi - A (do an add to account for missing (-) on V_hi
+//
+ fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p11) fms.s1 FR_a = FR_U_hi, f1, FR_a
+ cmp.eq.unc p11, p12 = 0x0, GR_i_1
+}
+
+{ .mfi
+ nop.m 999
+//
+// If u > v: a = (U_hi - A) + V_hi
+// Else a = (V_hi - A) + U_hi
+// In each case account for negative missing from V_hi.
+//
+ fma.s1 FR_C_lo = FR_C_lo, f1, FR_A
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// C_lo = (S - C_hi) + A
+//
+ fma.s1 FR_t = FR_t, f1, FR_a
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// t = t + a
+//
+ fma.s1 FR_C_lo = FR_C_lo, f1, FR_t
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// C_lo = C_lo + t
+// Adjust Table_Base to beginning of table
+//
+ fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Load S_2
+//
+ fma.s1 FR_rsq = FR_r, FR_r, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// Table_Base points to C_1
+// r = C_hi + C_lo
+//
+ fms.s1 FR_c = FR_C_hi, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_1 ==0: poly = S_2 * FR_rsq + S_1
+// else poly = C_2 * FR_rsq + C_1
+//
+(p11) fma.s1 FR_Input_X = f0, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Compute r_cube = FR_rsq * r
+//
+(p11) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1
+ nop.i 999
+}
-////////// x = 0/Inf/NaN path //////////////////
-_SINCOS_SPECIAL_ARGS:
-.pred.rel "mutex",p8,p9
-// sin(+/-0) = +/-0
-// sin(Inf) = NaN
-// sin(NaN) = NaN
{ .mfi
- nop.m 999
-(p8) fma.d.s0 f8 = f8, f0, f0 // sin(+/-0,NaN,Inf)
- nop.i 999
+ nop.m 999
+//
+// Compute FR_rsq = r * r
+// Is i_1 == 0 ?
+//
+ fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
+ nop.i 999 ;;
}
-// cos(+/-0) = 1.0
-// cos(Inf) = NaN
-// cos(NaN) = NaN
+
+{ .mfi
+ nop.m 999
+//
+// c = C_hi - r
+// Load C_1
+//
+ fma.s1 FR_c = FR_c, f1, FR_C_lo
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_1 ==0: poly = r_cube * poly + c
+// else poly = FR_rsq * poly
+//
+(p10) fms.s1 FR_Input_X = f0, f1, FR_Input_X
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_1 ==0: Result = r
+// else Result = 1.0
+//
+(p11) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_0 !=0: Result = -Result
+//
+(p9) fma.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 999
-(p9) fma.d.s0 f8 = f8, f0, f1 // cos(+/-0,NaN,Inf)
- br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
-};;
+ nop.m 999
+(p10) fms.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+//
+// if i_0 == 0: Result = Result + poly
+// else Result = Result - poly
+//
+ br.ret.sptk b0 ;;
+}
+L(SINCOS_SMALL_R):
+
+{ .mii
+ nop.m 999
+ extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
+//
+//
+// Compare both i_1 and i_0 with 0.
+// if i_1 == 0, set p9.
+// if i_0 == 0, set p11.
+//
+ cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_rsq = FR_r, FR_r, f0
+ extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Z = Z * FR_rsq
+//
+(p10) fnma.s1 FR_c = FR_c, FR_r, f0
+ cmp.eq.unc p11, p12 = 0x0, GR_i_0
+}
+;;
+
+// ******************************************************************
+// ******************************************************************
+// ******************************************************************
+// r and c have been computed.
+// We know whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// |r| < 2**(-3)
+//
+// Set table_ptr1 to beginning of constant table.
+// Get [i_0,i_1] - two lsb of N_fix_gr.
+//
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+//
+// Set table_ptr1 to point to S_5.
+// Set table_ptr1 to point to C_5.
+// Compute FR_rsq = r * r
+//
+
+{ .mfi
+(p9) add GR_Table_Base = 672, GR_Table_Base
+(p10) fmerge.s FR_r = f1, f1
+(p10) add GR_Table_Base = 592, GR_Table_Base ;;
+}
+//
+// Set table_ptr1 to point to S_5.
+// Set table_ptr1 to point to C_5.
+//
+
+{ .mmi
+(p9) ldfe FR_S_5 = [GR_Table_Base], -16 ;;
+//
+// if (i_1 == 0) load S_5
+// if (i_1 != 0) load C_5
+//
+(p9) ldfe FR_S_4 = [GR_Table_Base], -16
+ nop.i 999 ;;
+}
+
+{ .mmf
+(p10) ldfe FR_C_5 = [GR_Table_Base], -16
+//
+// Z = FR_rsq * FR_rsq
+//
+(p9) ldfe FR_S_3 = [GR_Table_Base], -16
+//
+// Compute FR_rsq = r * r
+// if (i_1 == 0) load S_4
+// if (i_1 != 0) load C_4
+//
+ fma.s1 FR_Z = FR_rsq, FR_rsq, f0 ;;
+}
+//
+// if (i_1 == 0) load S_3
+// if (i_1 != 0) load C_3
+//
+
+{ .mmi
+(p9) ldfe FR_S_2 = [GR_Table_Base], -16 ;;
+//
+// if (i_1 == 0) load S_2
+// if (i_1 != 0) load C_2
+//
+(p9) ldfe FR_S_1 = [GR_Table_Base], -16
+ nop.i 999
+}
+
+{ .mmi
+(p10) ldfe FR_C_4 = [GR_Table_Base], -16 ;;
+(p10) ldfe FR_C_3 = [GR_Table_Base], -16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p10) ldfe FR_C_2 = [GR_Table_Base], -16 ;;
+(p10) ldfe FR_C_1 = [GR_Table_Base], -16
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 != 0):
+// poly_lo = FR_rsq * C_5 + C_4
+// poly_hi = FR_rsq * C_2 + C_1
+//
+(p9) fma.s1 FR_Z = FR_Z, FR_r, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0) load S_1
+// if (i_1 != 0) load C_1
+//
+(p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// c = -c * r
+// dummy fmpy's to flag inexact.
+//
+(p9) fma.d.s0 FR_S_4 = FR_S_4, FR_S_4, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = FR_rsq * poly_lo + C_3
+// poly_hi = FR_rsq * poly_hi
+//
+ fma.s1 FR_Z = FR_Z, FR_rsq, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0):
+// poly_lo = FR_rsq * S_5 + S_4
+// poly_hi = FR_rsq * S_2 + S_1
+//
+(p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0):
+// Z = Z * r for only one of the small r cases - not there
+// in original implementation notes.
+//
+(p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.d.s0 FR_C_1 = FR_C_1, FR_C_1, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = FR_rsq * poly_lo + S_3
+// poly_hi = FR_rsq * poly_hi
+//
+(p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0): dummy fmpy's to flag inexact
+// r = 1
+//
+(p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_hi = r * poly_hi
+//
+ fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fms.s1 FR_r = f0, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_hi = Z * poly_lo + c
+// if i_0 == 1: r = -r
+//
+ fma.s1 FR_poly = FR_poly, f1, FR_poly_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fms.d.s0 FR_Input_X = FR_r, f1, FR_poly
+ nop.i 999
+}
-_SINCOS_UNORM:
-// Here if x=unorm
{ .mfb
- getf.exp sincos_r_signexp = sincos_NORM_f8 // Get signexp of x
- fcmp.eq.s0 p11,p0 = f8, f0 // Dummy op to set denorm flag
- br.cond.sptk _SINCOS_COMMON2 // Return to main path
-};;
+ nop.m 999
+//
+// poly = poly + poly_hi
+//
+(p11) fma.d.s0 FR_Input_X = FR_r, f1, FR_poly
+//
+// if (i_0 == 0) Result = r + poly
+// if (i_0 != 0) Result = r - poly
+//
+ br.ret.sptk b0 ;;
+}
+L(SINCOS_NORMAL_R):
-GLOBAL_IEEE754_END(cos)
+{ .mii
+ nop.m 999
+ extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
+//
+// Set table_ptr1 and table_ptr2 to base address of
+// constant table.
+ cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_rsq = FR_r, FR_r, f0
+ extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
-//////////// x >= 2^27 - large arguments routine call ////////////
-LOCAL_LIBM_ENTRY(__libm_callout_sincos)
-_SINCOS_LARGE_ARGS:
-.prologue
{ .mfi
- mov GR_SAVE_r_sincos = sincos_r_sincos // Save sin or cos
- nop.f 999
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs
+ nop.m 999
+ frcpa.s1 FR_r_hi, p6 = f1, FR_r
+ cmp.eq.unc p11, p12 = 0x0, GR_i_0
}
;;
+// ******************************************************************
+// ******************************************************************
+// ******************************************************************
+//
+// r and c have been computed.
+// We known whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// Get [i_0,i_1] - two lsb of N_fix_gr alone.
+//
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
{ .mfi
- mov GR_SAVE_GP = gp
- nop.f 999
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0
+(p10) add GR_Table_Base = 384, GR_Table_Base
+(p12) fms.s1 FR_Input_X = f0, f1, f1
+(p9) add GR_Table_Base = 224, GR_Table_Base ;;
}
-.body
-{ .mbb
- setf.sig sincos_save_tmp = sincos_GR_all_ones// inexact set
- nop.b 999
-(p8) br.call.sptk.many b0 = __libm_sin_large# // sin(large_X)
+{ .mmf
+ nop.m 999
+(p10) ldfe FR_QQ_8 = [GR_Table_Base], 16
+//
+// if (i_1==0) poly = poly * FR_rsq + PP_1_lo
+// else poly = FR_rsq * poly
+//
+(p11) fma.s1 FR_Input_X = f0, f1, f1 ;;
+}
-};;
+{ .mmf
+(p10) ldfe FR_QQ_7 = [GR_Table_Base], 16
+//
+// Adjust table pointers based on i_0
+// Compute rsq = r * r
+//
+(p9) ldfe FR_PP_8 = [GR_Table_Base], 16
+ fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 ;;
+}
-{ .mbb
- cmp.ne p9,p0 = GR_SAVE_r_sincos, r0 // set p9 if cos
- nop.b 999
-(p9) br.call.sptk.many b0 = __libm_cos_large# // cos(large_X)
-};;
+{ .mmf
+(p9) ldfe FR_PP_7 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_6 = [GR_Table_Base], 16
+//
+// Load PP_8 and QQ_8; PP_7 and QQ_7
+//
+ frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi ;;
+}
+//
+// if (i_1==0) poly = PP_7 + FR_rsq * PP_8.
+// else poly = QQ_7 + FR_rsq * QQ_8.
+//
+
+{ .mmb
+(p9) ldfe FR_PP_6 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_5 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+
+{ .mmb
+(p9) ldfe FR_PP_5 = [GR_Table_Base], 16
+(p10) ldfe FR_S_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+
+{ .mmb
+(p10) ldfe FR_QQ_1 = [GR_Table_Base], 16
+(p9) ldfe FR_C_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+
+{ .mmi
+(p10) ldfe FR_QQ_4 = [GR_Table_Base], 16 ;;
+(p9) ldfe FR_PP_1 = [GR_Table_Base], 16
+ nop.i 999 ;;
+}
+
+{ .mmf
+(p10) ldfe FR_QQ_3 = [GR_Table_Base], 16
+//
+// if (i_1=0) corr = corr + c*c
+// else corr = corr * c
+//
+(p9) ldfe FR_PP_4 = [GR_Table_Base], 16
+(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 ;;
+}
+//
+// if (i_1=0) poly = rsq * poly + PP_5
+// else poly = rsq * poly + QQ_5
+// Load PP_4 or QQ_4
+//
+
+{ .mmf
+(p9) ldfe FR_PP_3 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_2 = [GR_Table_Base], 16
+//
+// r_hi = frcpa(frcpa(r)).
+// r_cube = r * FR_rsq.
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 ;;
+}
+//
+// Do dummy multiplies so inexact is always set.
+//
+
+{ .mfi
+(p9) ldfe FR_PP_2 = [GR_Table_Base], 16
+//
+// r_lo = r - r_hi
+//
+(p9) fma.s1 FR_U_lo = FR_r_hi, FR_r_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+(p9) ldfe FR_PP_1_lo = [GR_Table_Base], 16
+(p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) U_lo = r_hi * r_hi
+// else U_lo = r_hi + r
+//
+(p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) corr = C_1 * rsq
+// else corr = S_1 * r_cubed + r
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) U_hi = r_hi + U_hi
+// else U_hi = QQ_1 * U_hi + 1
+//
+(p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_U_lo
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// U_hi = r_hi * r_hi
+//
+ fms.s1 FR_r_lo = FR_r, f1, FR_r_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Load PP_1, PP_6, PP_5, and C_1
+// Load QQ_1, QQ_6, QQ_5, and S_1
+//
+ fma.s1 FR_U_hi = FR_r_hi, FR_r_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fnma.s1 FR_corr = FR_corr, FR_c, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) U_lo = r * r_hi + U_lo
+// else U_lo = r_lo * U_lo
+//
+(p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 =0) U_hi = r + U_hi
+// if (i_1 =0) U_lo = r_lo * U_lo
+//
+//
+(p9) fma.d.s0 FR_PP_5 = FR_PP_5, FR_PP_4, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) poly = poly * rsq + PP_6
+// else poly = poly * rsq + QQ_6
+//
+(p9) fma.s1 FR_U_hi = FR_r_hi, FR_U_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_hi = FR_QQ_1, FR_U_hi, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.d.s0 FR_QQ_5 = FR_QQ_5, FR_QQ_5, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1!=0) U_hi = PP_1 * U_hi
+// if (i_1!=0) U_lo = r * r + U_lo
+// Load PP_3 or QQ_3
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3
+ nop.i 999 ;;
+}
{ .mfi
- mov gp = GR_SAVE_GP
- fma.d.s0 f8 = f8, f1, f0 // Round result to double
- mov b0 = GR_SAVE_B0
+ nop.m 999
+//
+// Load PP_2, QQ_2
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3
+ nop.i 999 ;;
}
-// Force inexact set
+
{ .mfi
- nop.m 999
- fmpy.s0 sincos_save_tmp = sincos_save_tmp, sincos_save_tmp
- nop.i 999
+ nop.m 999
+//
+// if (i_1==0) poly = FR_rsq * poly + PP_3
+// else poly = FR_rsq * poly + QQ_3
+// Load PP_1_lo
+//
+(p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 =0) poly = poly * rsq + pp_r4
+// else poly = poly * rsq + qq_r4
+//
+(p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1==0) U_lo = PP_1_hi * U_lo
+// else U_lo = QQ_1 * U_lo
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_0==0) Result = 1
+// else Result = -1
+//
+ fma.s1 FR_V = FR_U_lo, f1, FR_corr
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1==0) poly = FR_rsq * poly + PP_2
+// else poly = FR_rsq * poly + QQ_2
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// V = U_lo + corr
+//
+(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1==0) poly = r_cube * poly
+// else poly = FR_rsq * poly
+//
+ fma.s1 FR_V = FR_poly, f1, FR_V
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fms.d.s0 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+//
+// V = V + poly
+//
+(p11) fma.d.s0 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
+//
+// if (i_0==0) Result = Result * U_hi + V
+// else Result = Result * U_hi - V
+//
+ br.ret.sptk b0 ;;
+}
+
+//
+// If cosine, FR_Input_X = 1
+// If sine, FR_Input_X = +/-Zero (Input FR_Input_X)
+// Results are exact, no exceptions
+//
+L(SINCOS_ZERO):
+
+{ .mmb
+ cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos
+ nop.m 999
+ nop.b 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fmerge.s FR_Input_X = FR_Input_X, FR_Input_X
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+(p6) fmerge.s FR_Input_X = f1, f1
+ br.ret.sptk b0 ;;
+}
+
+L(SINCOS_SPECIAL):
+
+//
+// Path for Arg = +/- QNaN, SNaN, Inf
+// Invalid can be raised. SNaNs
+// become QNaNs
+//
+
+{ .mfb
+ nop.m 999
+ fmpy.d.s0 FR_Input_X = FR_Input_X, f0
+ br.ret.sptk b0 ;;
+}
+.endp __libm_cos_double_dbx#
+ASM_SIZE_DIRECTIVE(__libm_cos_double_dbx#)
+
+
+
+//
+// Call int pi_by_2_reduce(double* x, double *y)
+// for |arguments| >= 2**63
+// Address to save r and c as double
+//
+//
+// psp sp+64
+// sp+48 -> f0 c
+// r45 sp+32 -> f0 r
+// r44 -> sp+16 -> InputX
+// sp sp -> scratch provided to callee
+
+
+
+.proc __libm_callout_2
+__libm_callout_2:
+L(SINCOS_ARG_TOO_LARGE):
+
+.prologue
+{ .mfi
+ add r45=-32,sp // Parameter: r address
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
+{ .mmi
+ stfe [r45] = f0,16 // Clear Parameter r on stack
+ add r44 = 16,sp // Parameter x address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+.body
+{ .mib
+ stfe [r45] = f0,-16 // Clear Parameter c on stack
+ nop.i 0
+ nop.b 0
+}
+{ .mib
+ stfe [r44] = FR_Input_X // Store Parameter x on stack
+ nop.i 0
+ br.call.sptk b0=__libm_pi_by_2_reduce# ;;
};;
+
+{ .mii
+ ldfe FR_Input_X =[r44],16
+//
+// Get r and c off stack
+//
+ adds GR_Table_Base1 = -16, GR_Table_Base1
+//
+// Get r and c off stack
+//
+ add GR_N_Inc = GR_Sin_or_Cos,r8 ;;
+}
+{ .mmb
+ ldfe FR_r =[r45],16
+//
+// Get X off the stack
+// Readjust Table ptr
+//
+ ldfs FR_Two_to_M3 = [GR_Table_Base1],4
+ nop.b 999 ;;
+}
+{ .mmb
+ ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1],0
+ ldfe FR_c =[r45]
+ nop.b 999 ;;
+}
+
+{ .mfi
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
{ .mib
- nop.m 999
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0 // Exit for large arguments routine call
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ nop.b 0
};;
-LOCAL_LIBM_END(__libm_callout_sincos)
-.type __libm_sin_large#,@function
-.global __libm_sin_large#
-.type __libm_cos_large#,@function
-.global __libm_cos_large#
+{ .mfi
+ nop.m 999
+(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+
+.endp __libm_callout_2
+ASM_SIZE_DIRECTIVE(__libm_callout_2)
+
+.type __libm_pi_by_2_reduce#,@function
+.global __libm_pi_by_2_reduce#
+
+.type __libm_sin_double_dbx#,@function
+.global __libm_sin_double_dbx#
+.type __libm_cos_double_dbx#,@function
+.global __libm_cos_double_dbx#
diff --git a/sysdeps/ia64/fpu/s_cosf.S b/sysdeps/ia64/fpu/s_cosf.S
index bcdf1b0c02..0e47255b3f 100644
--- a/sysdeps/ia64/fpu/s_cosf.S
+++ b/sysdeps/ia64/fpu/s_cosf.S
@@ -1,10 +1,12 @@
+
.file "sincosf.s"
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +22,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,683 +37,663 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
+// http://developer.intel.com/opensource.
+
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/02/00 Unwind support added.
-// 06/16/00 Updated tables to enforce symmetry
-// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
-// 09/20/00 The updated tables regressed to an old version, so reinstated them
-// 10/18/00 Changed one table entry to ensure symmetry
-// 01/03/01 Improved speed, fixed flag settings for small arguments.
-// 02/18/02 Large arguments processing routine excluded
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 06/03/02 Insure inexact flag set for large arg result
-// 09/05/02 Single precision version is made using double precision one as base
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
+// 2/02/00 Initial revision
+// 4/02/00 Unwind support added.
+// 5/10/00 Improved speed with new algorithm.
+// 8/08/00 Improved speed by avoiding SIR flush.
+// 8/17/00 Changed predicate register macro-usage to direct predicate
+// names due to an assembler bug.
+// 8/30/00 Put sin_of_r before sin_tbl_S_cos_of_r to gain a cycle
+// 1/02/00 Fixed flag settings, improved speed.
//
// API
//==============================================================
// float sinf( float x);
// float cosf( float x);
//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
-// divide x by pi/2^k.
-// Multiply by 2^k/pi.
-// nfloat = Round result to integer (round-to-nearest)
-//
-// r = x - nfloat * pi/2^k
-// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k)
-
-// for increased accuracy.
-// pi/2^k is stored as two numbers that when added make pi/2^k.
-// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-// HIGH part is rounded to zero, LOW - to nearest
-//
-// x = (nfloat * pi/2^k) + r
-// r is small enough that we can use a polynomial approximation
-// and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-// N * 2^(k+1)
-// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-// = Sin(Mpi/2^k)
-//
-// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-// = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
-// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
-//
-// and the coefficients q1, q2 and p1, p2 are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-// rsq = r*r
-//
-//
-// P = P1 + r^2*P2
-// Q = Q1 + r^2*Q2
-//
-// rcub = r * rsq
-// Sin(r) = r + rcub * P
-// = r + r^3p1 + r^5p2 = Sin(r)
-//
-// The coefficients are not exactly these values, but almost.
-//
-// p1 = -1/6 = -1/3!
-// p2 = 1/120 = 1/5!
-// p3 = -1/5040 = -1/7!
-// p4 = 1/362889 = 1/9!
-//
-// P = r + r^3 * P
-//
-// Answer = S[m] Cos(r) + C[m] P
-//
-// Cos(r) = 1 + rsq Q
-// Cos(r) = 1 + r^2 Q
-// Cos(r) = 1 + r^2 (q1 + r^2q2)
-// Cos(r) = 1 + r^2q1 + r^4q2
-//
-// S[m] Cos(r) = S[m](1 + rsq Q)
-// S[m] Cos(r) = S[m] + S[m] rsq Q
-// S[m] Cos(r) = S[m] + s_rsq Q
-// Q = S[m] + s_rsq Q
-//
-// Then,
-//
-// Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r19
-// r32 -> r45
-
-// predicate registers used:
-// p6 -> p14
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f61
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
-sincosf_NORM_f8 = f9
-sincosf_W = f10
-sincosf_int_Nfloat = f11
-sincosf_Nfloat = f12
-
-sincosf_r = f13
-sincosf_rsq = f14
-sincosf_rcub = f15
-sincosf_save_tmp = f15
-sincosf_Inv_Pi_by_16 = f32
-sincosf_Pi_by_16_1 = f33
-sincosf_Pi_by_16_2 = f34
+// SIN_Sin_Flag = p6
+// SIN_Cos_Flag = p7
+
+// integer registers used
+
+ SIN_AD_PQ_1 = r33
+ SIN_AD_PQ_2 = r33
+ sin_GR_sincos_flag = r34
+ sin_GR_Mint = r35
+
+ sin_GR_index = r36
+ gr_tmp = r37
+
+ GR_SAVE_B0 = r37
+ GR_SAVE_GP = r38
+ GR_SAVE_PFS = r39
+
+
+// floating point registers used
+
+ sin_coeff_P1 = f32
+ sin_coeff_P2 = f33
+ sin_coeff_Q1 = f34
+ sin_coeff_Q2 = f35
+ sin_coeff_P4 = f36
+ sin_coeff_P5 = f37
+ sin_coeff_Q3 = f38
+ sin_coeff_Q4 = f39
+ sin_Mx = f40
+ sin_Mfloat = f41
+ sin_tbl_S = f42
+ sin_tbl_C = f43
+ sin_r = f44
+ sin_rcube = f45
+ sin_tsq = f46
+ sin_r7 = f47
+ sin_t = f48
+ sin_poly_p2 = f49
+ sin_poly_p1 = f50
+ fp_tmp = f51
+ sin_poly_p3 = f52
+ sin_poly_p4 = f53
+ sin_of_r = f54
+ sin_S_t = f55
+ sin_poly_q2 = f56
+ sin_poly_q1 = f57
+ sin_S_tcube = f58
+ sin_poly_q3 = f59
+ sin_poly_q4 = f60
+ sin_tbl_S_tcube = f61
+ sin_tbl_S_cos_of_r = f62
+
+ sin_coeff_Q5 = f63
+ sin_coeff_Q6 = f64
+ sin_coeff_P3 = f65
+
+ sin_poly_q5 = f66
+ sin_poly_q12 = f67
+ sin_poly_q3456 = f68
+ fp_tmp2 = f69
+ SIN_NORM_f8 = f70
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
-sincosf_Inv_Pi_by_64 = f35
-
-sincosf_Pi_by_16_3 = f36
+.align 16
-sincosf_r_exact = f37
+sin_coeff_1_table:
+ASM_TYPE_DIRECTIVE(sin_coeff_1_table,@object)
+data8 0xBF56C16C16BF6462 // q3
+data8 0x3EFA01A0128B9EBC // q4
+data8 0xBE927E42FDF33FFE // q5
+data8 0x3E21DA5C72A446F3 // q6
+data8 0x3EC71DD1D5E421A4 // p4
+data8 0xBE5AC5C9D0ACF95A // p5
+data8 0xBFC55555555554CA // p1
+data8 0x3F811111110F2395 // p2
+data8 0xBFE0000000000000 // q1
+data8 0x3FA55555555554EF // q2
+data8 0xBF2A01A011232913 // p3
+data8 0x0000000000000000 // pad
+
+
+/////////////////////////////////////////
+
+data8 0xBFE1A54991426566 //sin(-32)
+data8 0x3FEAB1F5305DE8E5 //cos(-32)
+data8 0x3FD9DBC0B640FC81 //sin(-31)
+data8 0x3FED4591C3E12A20 //cos(-31)
+data8 0x3FEF9DF47F1C903D //sin(-30)
+data8 0x3FC3BE82F2505A52 //cos(-30)
+data8 0x3FE53C7D20A6C9E7 //sin(-29)
+data8 0xBFE7F01658314E47 //cos(-29)
+data8 0xBFD156853B4514D6 //sin(-28)
+data8 0xBFEECDAAD1582500 //cos(-28)
+data8 0xBFEE9AA1B0E5BA30 //sin(-27)
+data8 0xBFD2B266F959DED5 //cos(-27)
+data8 0xBFE866E0FAC32583 //sin(-26)
+data8 0x3FE4B3902691A9ED //cos(-26)
+data8 0x3FC0F0E6F31E809D //sin(-25)
+data8 0x3FEFB7EEF59504FF //cos(-25)
+data8 0x3FECFA7F7919140F //sin(-24)
+data8 0x3FDB25BFB50A609A //cos(-24)
+data8 0x3FEB143CD0247D02 //sin(-23)
+data8 0xBFE10CF7D591F272 //cos(-23)
+data8 0x3F8220A29F6EB9F4 //sin(-22)
+data8 0xBFEFFFADD8D4ACDA //cos(-22)
+data8 0xBFEAC5E20BB0D7ED //sin(-21)
+data8 0xBFE186FF83773759 //cos(-21)
+data8 0xBFED36D8F55D3CE0 //sin(-20)
+data8 0x3FDA1E043964A83F //cos(-20)
+data8 0xBFC32F2D28F584CF //sin(-19)
+data8 0x3FEFA377DE108258 //cos(-19)
+data8 0x3FE8081668131E26 //sin(-18)
+data8 0x3FE52150815D2470 //cos(-18)
+data8 0x3FEEC3C4AC42882B //sin(-17)
+data8 0xBFD19C46B07F58E7 //cos(-17)
+data8 0x3FD26D02085F20F8 //sin(-16)
+data8 0xBFEEA5257E962F74 //cos(-16)
+data8 0xBFE4CF2871CEC2E8 //sin(-15)
+data8 0xBFE84F5D069CA4F3 //cos(-15)
+data8 0xBFEFB30E327C5E45 //sin(-14)
+data8 0x3FC1809AEC2CA0ED //cos(-14)
+data8 0xBFDAE4044881C506 //sin(-13)
+data8 0x3FED09CDD5260CB7 //cos(-13)
+data8 0x3FE12B9AF7D765A5 //sin(-12)
+data8 0x3FEB00DA046B65E3 //cos(-12)
+data8 0x3FEFFFEB762E93EB //sin(-11)
+data8 0x3F7220AE41EE2FDF //cos(-11)
+data8 0x3FE1689EF5F34F52 //sin(-10)
+data8 0xBFEAD9AC890C6B1F //cos(-10)
+data8 0xBFDA6026360C2F91 //sin( -9)
+data8 0xBFED27FAA6A6196B //cos( -9)
+data8 0xBFEFA8D2A028CF7B //sin( -8)
+data8 0xBFC29FBEBF632F94 //cos( -8)
+data8 0xBFE50608C26D0A08 //sin( -7)
+data8 0x3FE81FF79ED92017 //cos( -7)
+data8 0x3FD1E1F18AB0A2C0 //sin( -6)
+data8 0x3FEEB9B7097822F5 //cos( -6)
+data8 0x3FEEAF81F5E09933 //sin( -5)
+data8 0x3FD22785706B4AD9 //cos( -5)
+data8 0x3FE837B9DDDC1EAE //sin( -4)
+data8 0xBFE4EAA606DB24C1 //cos( -4)
+data8 0xBFC210386DB6D55B //sin( -3)
+data8 0xBFEFAE04BE85E5D2 //cos( -3)
+data8 0xBFED18F6EAD1B446 //sin( -2)
+data8 0xBFDAA22657537205 //cos( -2)
+data8 0xBFEAED548F090CEE //sin( -1)
+data8 0x3FE14A280FB5068C //cos( -1)
+data8 0x0000000000000000 //sin( 0)
+data8 0x3FF0000000000000 //cos( 0)
+data8 0x3FEAED548F090CEE //sin( 1)
+data8 0x3FE14A280FB5068C //cos( 1)
+data8 0x3FED18F6EAD1B446 //sin( 2)
+data8 0xBFDAA22657537205 //cos( 2)
+data8 0x3FC210386DB6D55B //sin( 3)
+data8 0xBFEFAE04BE85E5D2 //cos( 3)
+data8 0xBFE837B9DDDC1EAE //sin( 4)
+data8 0xBFE4EAA606DB24C1 //cos( 4)
+data8 0xBFEEAF81F5E09933 //sin( 5)
+data8 0x3FD22785706B4AD9 //cos( 5)
+data8 0xBFD1E1F18AB0A2C0 //sin( 6)
+data8 0x3FEEB9B7097822F5 //cos( 6)
+data8 0x3FE50608C26D0A08 //sin( 7)
+data8 0x3FE81FF79ED92017 //cos( 7)
+data8 0x3FEFA8D2A028CF7B //sin( 8)
+data8 0xBFC29FBEBF632F94 //cos( 8)
+data8 0x3FDA6026360C2F91 //sin( 9)
+data8 0xBFED27FAA6A6196B //cos( 9)
+data8 0xBFE1689EF5F34F52 //sin( 10)
+data8 0xBFEAD9AC890C6B1F //cos( 10)
+data8 0xBFEFFFEB762E93EB //sin( 11)
+data8 0x3F7220AE41EE2FDF //cos( 11)
+data8 0xBFE12B9AF7D765A5 //sin( 12)
+data8 0x3FEB00DA046B65E3 //cos( 12)
+data8 0x3FDAE4044881C506 //sin( 13)
+data8 0x3FED09CDD5260CB7 //cos( 13)
+data8 0x3FEFB30E327C5E45 //sin( 14)
+data8 0x3FC1809AEC2CA0ED //cos( 14)
+data8 0x3FE4CF2871CEC2E8 //sin( 15)
+data8 0xBFE84F5D069CA4F3 //cos( 15)
+data8 0xBFD26D02085F20F8 //sin( 16)
+data8 0xBFEEA5257E962F74 //cos( 16)
+data8 0xBFEEC3C4AC42882B //sin( 17)
+data8 0xBFD19C46B07F58E7 //cos( 17)
+data8 0xBFE8081668131E26 //sin( 18)
+data8 0x3FE52150815D2470 //cos( 18)
+data8 0x3FC32F2D28F584CF //sin( 19)
+data8 0x3FEFA377DE108258 //cos( 19)
+data8 0x3FED36D8F55D3CE0 //sin( 20)
+data8 0x3FDA1E043964A83F //cos( 20)
+data8 0x3FEAC5E20BB0D7ED //sin( 21)
+data8 0xBFE186FF83773759 //cos( 21)
+data8 0xBF8220A29F6EB9F4 //sin( 22)
+data8 0xBFEFFFADD8D4ACDA //cos( 22)
+data8 0xBFEB143CD0247D02 //sin( 23)
+data8 0xBFE10CF7D591F272 //cos( 23)
+data8 0xBFECFA7F7919140F //sin( 24)
+data8 0x3FDB25BFB50A609A //cos( 24)
+data8 0xBFC0F0E6F31E809D //sin( 25)
+data8 0x3FEFB7EEF59504FF //cos( 25)
+data8 0x3FE866E0FAC32583 //sin( 26)
+data8 0x3FE4B3902691A9ED //cos( 26)
+data8 0x3FEE9AA1B0E5BA30 //sin( 27)
+data8 0xBFD2B266F959DED5 //cos( 27)
+data8 0x3FD156853B4514D6 //sin( 28)
+data8 0xBFEECDAAD1582500 //cos( 28)
+data8 0xBFE53C7D20A6C9E7 //sin( 29)
+data8 0xBFE7F01658314E47 //cos( 29)
+data8 0xBFEF9DF47F1C903D //sin( 30)
+data8 0x3FC3BE82F2505A52 //cos( 30)
+data8 0xBFD9DBC0B640FC81 //sin( 31)
+data8 0x3FED4591C3E12A20 //cos( 31)
+data8 0x3FE1A54991426566 //sin( 32)
+data8 0x3FEAB1F5305DE8E5 //cos( 32)
+ASM_SIZE_DIRECTIVE(sin_coeff_1_table)
+
+//////////////////////////////////////////
+
+
+.global sinf
+.global cosf
+#ifdef _LIBC
+.global __sinf
+.global __cosf
+#endif
+
+.text
+.proc cosf
+#ifdef _LIBC
+.proc __cosf
+#endif
+.align 32
+
+
+cosf:
+#ifdef _LIBC
+__cosf:
+#endif
+{ .mfi
+ alloc r32 = ar.pfs,1,7,0,0
+ fcvt.fx.s1 sin_Mx = f8
+ cmp.ne p6,p7 = r0,r0 // p7 set if cos
+}
+{ .mfi
+ addl SIN_AD_PQ_1 = @ltoff(sin_coeff_1_table),gp
+ fnorm.s0 SIN_NORM_f8 = f8 // Sets denormal or invalid
+ mov sin_GR_sincos_flag = 0x0
+}
+;;
-sincosf_Sm = f38
-sincosf_Cm = f39
+{ .mfi
+ ld8 SIN_AD_PQ_1 = [SIN_AD_PQ_1]
+ fclass.m.unc p9,p0 = f8, 0x07
+ cmp.ne p8,p0 = r0,r0
+}
+{ .mfb
+ nop.m 999
+ nop.f 999
+ br.sptk L(SINCOSF_COMMON)
+}
+;;
-sincosf_P1 = f40
-sincosf_Q1 = f41
-sincosf_P2 = f42
-sincosf_Q2 = f43
-sincosf_P3 = f44
-sincosf_Q3 = f45
-sincosf_P4 = f46
-sincosf_Q4 = f47
+.endp cosf
+ASM_SIZE_DIRECTIVE(cosf)
-sincosf_P_temp1 = f48
-sincosf_P_temp2 = f49
-sincosf_Q_temp1 = f50
-sincosf_Q_temp2 = f51
+.text
+.proc sinf
+#ifdef _LIBC
+.proc __sinf
+#endif
+.align 32
-sincosf_P = f52
-sincosf_Q = f53
+sinf:
+#ifdef _LIBC
+__sinf:
+#endif
+{ .mfi
+ alloc r32 = ar.pfs,1,7,0,0
+ fcvt.fx.s1 sin_Mx = f8
+ cmp.eq p6,p7 = r0,r0 // p6 set if sin
+}
+{ .mfi
+ addl SIN_AD_PQ_1 = @ltoff(sin_coeff_1_table),gp
+ fnorm.s0 SIN_NORM_f8 = f8 // Sets denormal or invalid
+ mov sin_GR_sincos_flag = 0x1
+}
+;;
-sincosf_srsq = f54
+{ .mfi
+ ld8 SIN_AD_PQ_1 = [SIN_AD_PQ_1]
+ fclass.m.unc p8,p0 = f8, 0x07
+ cmp.ne p9,p0 = r0,r0
+}
+{ .mfb
+ nop.m 999
+ nop.f 999
+ br.sptk L(SINCOSF_COMMON)
+}
+;;
-sincosf_SIG_INV_PI_BY_16_2TO61 = f55
-sincosf_RSHF_2TO61 = f56
-sincosf_RSHF = f57
-sincosf_2TOM61 = f58
-sincosf_NFLOAT = f59
-sincosf_W_2TO61_RSH = f60
-fp_tmp = f61
+L(SINCOSF_COMMON):
-/////////////////////////////////////////////////////////////
+// Here with p6 if sin, p7 if cos, p8 if sin(0), p9 if cos(0)
-sincosf_AD_1 = r33
-sincosf_AD_2 = r34
-sincosf_exp_limit = r35
-sincosf_r_signexp = r36
-sincosf_AD_beta_table = r37
-sincosf_r_sincos = r38
-sincosf_r_exp = r39
-sincosf_r_17_ones = r40
+{ .mmf
+ ldfpd sin_coeff_Q3, sin_coeff_Q4 = [SIN_AD_PQ_1], 16
+ nop.m 999
+ fclass.m.unc p11,p0 = f8, 0x23 // Test for x=inf
+}
+;;
-sincosf_GR_sig_inv_pi_by_16 = r14
-sincosf_GR_rshf_2to61 = r15
-sincosf_GR_rshf = r16
-sincosf_GR_exp_2tom61 = r17
-sincosf_GR_n = r18
-sincosf_GR_m = r19
-sincosf_GR_32m = r19
-sincosf_GR_all_ones = r19
+{ .mfb
+ ldfpd sin_coeff_Q5, sin_coeff_Q6 = [SIN_AD_PQ_1], 16
+ fclass.m.unc p10,p0 = f8, 0xc3 // Test for x=nan
+(p8) br.ret.spnt b0 // Exit for sin(0)
+}
+{ .mfb
+ nop.m 999
+(p9) fma.s f8 = f1,f1,f0
+(p9) br.ret.spnt b0 // Exit for cos(0)
+}
+;;
-gr_tmp = r41
-GR_SAVE_PFS = r41
-GR_SAVE_B0 = r42
-GR_SAVE_GP = r43
+{ .mmf
+ ldfpd sin_coeff_P4, sin_coeff_P5 = [SIN_AD_PQ_1], 16
+ addl gr_tmp = -1,r0
+ fcvt.xf sin_Mfloat = sin_Mx
+}
+;;
-RODATA
-.align 16
+{ .mfi
+ getf.sig sin_GR_Mint = sin_Mx
+(p11) frcpa.s0 f8,p13 = f0,f0 // qnan indef if x=inf
+ nop.i 999
+}
+{ .mfb
+ ldfpd sin_coeff_P1, sin_coeff_P2 = [SIN_AD_PQ_1], 16
+ nop.f 999
+(p11) br.ret.spnt b0 // Exit for x=inf
+}
+;;
-// Pi/16 parts
-LOCAL_OBJECT_START(double_sincosf_pi)
- data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
- data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-LOCAL_OBJECT_END(double_sincosf_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_sincosf_pq_k4)
- data8 0x3F810FABB668E9A2 // P2
- data8 0x3FA552E3D6DE75C9 // Q2
- data8 0xBFC555554447BC7F // P1
- data8 0xBFDFFFFFC447610A // Q1
-LOCAL_OBJECT_END(double_sincosf_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
- data8 0x0000000000000000 // sin ( 0 Pi / 16 )
- data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
-//
- data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
- data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
-//
- data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
- data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
-//
- data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
- data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
-//
- data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
- data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
-//
- data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
- data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
-//
- data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
- data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
-//
- data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
- data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
-//
- data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
- data8 0x0000000000000000 // cos ( 8 Pi / 16 )
-//
- data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
- data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
-//
- data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
- data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
-//
- data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
- data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
-//
- data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
- data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
-//
- data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
- data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
-//
- data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
- data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
-//
- data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
- data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
-//
- data8 0x0000000000000000 // sin ( 16 Pi / 16 )
- data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
-//
- data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
- data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
-//
- data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
- data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
-//
- data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
- data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
-//
- data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
- data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
-//
- data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
- data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
-//
- data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
- data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
-//
- data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
- data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
-//
- data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
- data8 0x0000000000000000 // cos ( 24 Pi / 16 )
-//
- data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
- data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
-//
- data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
- data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
-//
- data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
- data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
-//
- data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
- data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
-//
- data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
- data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
-//
- data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
- data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
-//
- data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
- data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
-//
- data8 0x0000000000000000 // sin ( 32 Pi / 16 )
- data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
+{ .mfi
+ ldfpd sin_coeff_Q1, sin_coeff_Q2 = [SIN_AD_PQ_1], 16
+ nop.f 999
+ cmp.ge p8,p9 = -33,sin_GR_Mint
+}
+{ .mfb
+ add sin_GR_index = 32,sin_GR_Mint
+(p10) fma.s f8 = f8,f1,f0 // Force qnan if x=nan
+(p10) br.ret.spnt b0 // Exit for x=nan
+}
+;;
-.section .text
+{ .mmi
+ ldfd sin_coeff_P3 = [SIN_AD_PQ_1], 16
+(p9) cmp.le p8,p0 = 33, sin_GR_Mint
+ shl sin_GR_index = sin_GR_index,4
+}
+;;
-////////////////////////////////////////////////////////
-// There are two entry points: sin and cos
-// If from sin, p8 is true
-// If from cos, p9 is true
-GLOBAL_IEEE754_ENTRY(sinf)
+{ .mfi
+ setf.sig fp_tmp = gr_tmp // Create constant such that fmpy sets inexact
+ fnma.s1 sin_r = f1,sin_Mfloat,SIN_NORM_f8
+(p8) cmp.eq.unc p11,p12=sin_GR_sincos_flag,r0 // p11 if must call dbl cos
+ // p12 if must call dbl sin
+}
+{ .mbb
+ add SIN_AD_PQ_2 = sin_GR_index,SIN_AD_PQ_1
+(p11) br.cond.spnt COS_DOUBLE
+(p12) br.cond.spnt SIN_DOUBLE
+}
+;;
-{ .mlx
- alloc r32 = ar.pfs,1,13,0,0
- movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
+.pred.rel "mutex",p6,p7 //SIN_Sin_Flag, SIN_Cos_Flag
+{ .mmi
+(p6) ldfpd sin_tbl_S,sin_tbl_C = [SIN_AD_PQ_2]
+(p7) ldfpd sin_tbl_C,sin_tbl_S = [SIN_AD_PQ_2]
+ nop.i 999
}
-{ .mlx
- addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp
- movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
+;;
-{ .mfi
- ld8 sincosf_AD_1 = [sincosf_AD_1]
- fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument
- cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
+{ .mfi
+ nop.m 999
+(p6) fclass.m.unc p8,p0 = f8, 0x0b // If sin, note denormal input to set uflow
+ nop.i 999
}
-{ .mib
- mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
- mov sincosf_r_sincos = 0x0 // 0 for sin
- br.cond.sptk _SINCOSF_COMMON // go to common part
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 sin_t = sin_r,sin_r,f0
+ nop.i 999
+}
+;;
-GLOBAL_IEEE754_END(sinf)
+{ .mfi
+ nop.m 999
+ fma.s1 sin_rcube = sin_t,sin_r,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 sin_tsq = sin_t,sin_t,f0
+ nop.i 999
+}
+;;
-GLOBAL_IEEE754_ENTRY(cosf)
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_q3 = sin_t,sin_coeff_Q4,sin_coeff_Q3
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_q5 = sin_t,sin_coeff_Q6,sin_coeff_Q5
+ nop.i 999
+}
+;;
-{ .mlx
- alloc r32 = ar.pfs,1,13,0,0
- movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_p1 = sin_t,sin_coeff_P5,sin_coeff_P4
+ nop.i 999
}
-{ .mlx
- addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp
- movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_p2 = sin_t,sin_coeff_P2,sin_coeff_P1
+ nop.i 999
+}
+;;
-{ .mfi
- ld8 sincosf_AD_1 = [sincosf_AD_1]
- fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument
- cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_q1 = sin_t,sin_coeff_Q2,sin_coeff_Q1
+ nop.i 999
}
-{ .mib
- mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
- mov sincosf_r_sincos = 0x8 // 8 for cos
- nop.b 999
-};;
-
-////////////////////////////////////////////////////////
-// All entry points end up here.
-// If from sin, sincosf_r_sincos is 0 and p8 is true
-// If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true
-// We add sincosf_r_sincos to N
-
-///////////// Common sin and cos part //////////////////
-_SINCOSF_COMMON:
-
-// Form two constants we need
-// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-// fcmp used to set denormal, and invalid on snans
-{ .mfi
- setf.sig sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16
- fclass.m p6,p0 = f8, 0xe7 // if x=0,inf,nan
- mov sincosf_exp_limit = 0x10017
-}
-{ .mlx
- setf.d sincosf_RSHF_2TO61 = sincosf_GR_rshf_2to61
- movl sincosf_GR_rshf = 0x43e8000000000000 // 1.1000 2^63
-};; // Right shift
-
-// Form another constant
-// 2^-61 for scaling Nfloat
-// 0x10017 is register_bias + 24.
-// So if f8 >= 2^24, go to large argument routines
-{ .mmi
- getf.exp sincosf_r_signexp = f8
- setf.exp sincosf_2TOM61 = sincosf_GR_exp_2tom61
- addl gr_tmp = -1,r0 // For "inexect" constant create
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-// 1.1000...000 * 2^63, the right shift constant
-{ .mmb
- ldfe sincosf_Pi_by_16_1 = [sincosf_AD_1],16
- setf.d sincosf_RSHF = sincosf_GR_rshf
-(p6) br.cond.spnt _SINCOSF_SPECIAL_ARGS
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 sin_S_t = sin_t,sin_tbl_S,f0
+ nop.i 999
+}
+;;
-// Getting argument's exp for "large arguments" filtering
-{ .mmi
- ldfe sincosf_Pi_by_16_2 = [sincosf_AD_1],16
- setf.sig fp_tmp = gr_tmp // constant for inexact set
- nop.i 999
-};;
+{ .mfi
+ nop.m 999
+(p8) fmpy.s.s0 fp_tmp2 = f8,f8 // Dummy mult to set underflow if sin(denormal)
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 sin_r7 = sin_rcube,sin_tsq,f0
+ nop.i 999
+}
+;;
-// Polynomial coefficients (Q2, Q1, P2, P1) loading
-{ .mmi
- ldfpd sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16
- nop.m 999
- nop.i 999
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_q3456 = sin_tsq,sin_poly_q5,sin_poly_q3
+ nop.i 999
+}
+;;
-// Select exponent (17 lsb)
-{ .mmi
- ldfpd sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16
- nop.m 999
- dep.z sincosf_r_exp = sincosf_r_signexp, 0, 17
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_p3 = sin_t,sin_poly_p1,sin_coeff_P3
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_p4 = sin_rcube,sin_poly_p2,sin_r
+ nop.i 999
+}
+;;
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x10017 (2^24)
-{ .mfb
- cmp.ge p10,p0 = sincosf_r_exp,sincosf_exp_limit
- nop.f 999
-(p10) br.cond.spnt _SINCOSF_LARGE_ARGS // Go to "large args" routine
-};;
-
-// sincosf_W = x * sincosf_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-// rightmost bits of significand
-{ .mfi
- nop.m 999
- fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61
- nop.i 999
-};;
+{ .mfi
+ nop.m 999
+ fma.s1 sin_tbl_S_tcube = sin_S_t,sin_tsq,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 sin_poly_q12 = sin_S_t,sin_poly_q1,sin_tbl_S
+ nop.i 999
+}
+;;
-// sincosf_NFLOAT = Round_Int_Nearest(sincosf_W)
-// This is done by scaling back by 2^-61 and subtracting the shift constant
-{ .mfi
- nop.m 999
- fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF
- nop.i 999
-};;
+{ .mfi
+ nop.m 999
+ fma.d.s1 sin_of_r = sin_r7,sin_poly_p3,sin_poly_p4
+ nop.i 999
+}
+;;
-// get N = (int)sincosf_int_Nfloat
-{ .mfi
- getf.sig sincosf_GR_n = sincosf_W_2TO61_RSH // integer N value
- nop.f 999
- nop.i 999
-};;
+{ .mfi
+ nop.m 999
+ fma.d.s1 sin_tbl_S_cos_of_r = sin_tbl_S_tcube,sin_poly_q3456,sin_poly_q12
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999
+}
+;;
-// Add 2^(k-1) (which is in sincosf_r_sincos=8) to N
-// sincosf_r = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x
-{ .mfi
- add sincosf_GR_n = sincosf_GR_n, sincosf_r_sincos
- fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8
- nop.i 999
-};;
-// Get M (least k+1 bits of N)
-{ .mmi
- and sincosf_GR_m = 0x1f,sincosf_GR_n // Put mask 0x1F -
- nop.m 999 // - select k+1 bits
- nop.i 999
-};;
+.pred.rel "mutex",p6,p7 //SIN_Sin_Flag, SIN_Cos_Flag
+{ .mfi
+ nop.m 999
+//(SIN_Sin_Flag) fma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r
+(p6) fma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+//(SIN_Cos_Flag) fnma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r
+(p7) fnma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r
+ br.ret.sptk b0
+}
-// Add 16*M to address of sin_cos_beta table
-{ .mfi
- shladd sincosf_AD_2 = sincosf_GR_32m, 4, sincosf_AD_1
-(p8) fclass.m.unc p10,p0 = f8,0x0b // If sin denormal input -
- nop.i 999
-};;
+.endp sinf
+ASM_SIZE_DIRECTIVE(sinf)
-// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
-{ .mfi
- ldfd sincosf_Sm = [sincosf_AD_2],8 // Sin value S[m]
-(p9) fclass.m.unc p11,p0 = f8,0x0b // If cos denormal input -
- nop.i 999 // - set denormal
-};;
-// sincosf_r = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2
+.proc SIN_DOUBLE
+SIN_DOUBLE:
+.prologue
{ .mfi
- ldfd sincosf_Cm = [sincosf_AD_2] // Cos table value C[m]
- fnma.s1 sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r
- nop.i 999
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
}
-// get rsq = r*r
-{ .mfi
- nop.m 999
- fma.s1 sincosf_rsq = sincosf_r, sincosf_r, f0 // r^2 = r*r
- nop.i 999
-};;
+;;
{ .mfi
- nop.m 999
- fmpy.s0 fp_tmp = fp_tmp, fp_tmp // forces inexact flag
- nop.i 999
-};;
-
-// Polynomials calculation
-// Q = Q2*r^2 + Q1
-// P = P2*r^2 + P1
-{ .mfi
- nop.m 999
- fma.s1 sincosf_Q = sincosf_rsq, sincosf_Q2, sincosf_Q1
- nop.i 999
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
}
-{ .mfi
- nop.m 999
- fma.s1 sincosf_P = sincosf_rsq, sincosf_P2, sincosf_P1
- nop.i 999
-};;
-// get rcube and S[m]*r^2
-{ .mfi
- nop.m 999
- fmpy.s1 sincosf_srsq = sincosf_Sm,sincosf_rsq // r^2*S[m]
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fmpy.s1 sincosf_rcub = sincosf_r_exact, sincosf_rsq
- nop.i 999
-};;
-
-// Get final P and Q
-// Q = Q*S[m]*r^2 + S[m]
-// P = P*r^3 + r
-{ .mfi
- nop.m 999
- fma.s1 sincosf_Q = sincosf_srsq,sincosf_Q, sincosf_Sm
- nop.i 999
+.body
+{ .mmb
+ nop.m 999
+ nop.m 999
+ br.call.sptk.many b0=sin
}
-{ .mfi
- nop.m 999
- fma.s1 sincosf_P = sincosf_rcub,sincosf_P,sincosf_r_exact
- nop.i 999
-};;
+;;
-// If sinf(denormal) - force underflow to be set
-.pred.rel "mutex",p10,p11
{ .mfi
- nop.m 999
-(p10) fmpy.s.s0 fp_tmp = f8,f8 // forces underflow flag
- nop.i 999 // for denormal sine args
+ mov gp = GR_SAVE_GP
+ nop.f 999
+ mov b0 = GR_SAVE_B0
}
-// If cosf(denormal) - force denormal to be set
-{ .mfi
- nop.m 999
-(p11) fma.s.s0 fp_tmp = f8, f1, f8 // forces denormal flag
- nop.i 999 // for denormal cosine args
-};;
-
+;;
-// Final calculation
-// result = C[m]*P + Q
-{ .mfb
- nop.m 999
- fma.s.s0 f8 = sincosf_Cm, sincosf_P, sincosf_Q
- br.ret.sptk b0 // Exit for common path
-};;
-
-////////// x = 0/Inf/NaN path //////////////////
-_SINCOSF_SPECIAL_ARGS:
-.pred.rel "mutex",p8,p9
-// sinf(+/-0) = +/-0
-// sinf(Inf) = NaN
-// sinf(NaN) = NaN
{ .mfi
- nop.m 999
-(p8) fma.s.s0 f8 = f8, f0, f0 // sinf(+/-0,NaN,Inf)
- nop.i 999
+ nop.m 999
+ fma.s f8 = f8,f1,f0
+(p0) mov ar.pfs = GR_SAVE_PFS
}
-// cosf(+/-0) = 1.0
-// cosf(Inf) = NaN
-// cosf(NaN) = NaN
-{ .mfb
- nop.m 999
-(p9) fma.s.s0 f8 = f8, f0, f1 // cosf(+/-0,NaN,Inf)
- br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
-};;
+{ .mib
+ nop.m 999
+ nop.i 999
+(p0) br.ret.sptk b0
+}
+;;
+
+.endp SIN_DOUBLE
+ASM_SIZE_DIRECTIVE(SIN_DOUBLE)
-GLOBAL_IEEE754_END(cosf)
-//////////// x >= 2^24 - large arguments routine call ////////////
-LOCAL_LIBM_ENTRY(__libm_callout_sincosf)
-_SINCOSF_LARGE_ARGS:
+.proc COS_DOUBLE
+COS_DOUBLE:
.prologue
{ .mfi
- mov sincosf_GR_all_ones = -1 // 0xffffffff
- nop.f 999
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
}
;;
{ .mfi
- mov GR_SAVE_GP = gp
- nop.f 999
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
}
-.body
-{ .mbb
- setf.sig sincosf_save_tmp = sincosf_GR_all_ones // inexact set
- nop.b 999
-(p8) br.call.sptk.many b0 = __libm_sin_large# // sinf(large_X)
-};;
-
-{ .mbb
- cmp.ne p9,p0 = sincosf_r_sincos, r0 // set p9 if cos
- nop.b 999
-(p9) br.call.sptk.many b0 = __libm_cos_large# // cosf(large_X)
-};;
+.body
+{ .mmb
+ nop.m 999
+ nop.m 999
+ br.call.sptk.many b0=cos
+}
+;;
{ .mfi
- mov gp = GR_SAVE_GP
- fma.s.s0 f8 = f8, f1, f0 // Round result to single
- mov b0 = GR_SAVE_B0
+ mov gp = GR_SAVE_GP
+ nop.f 999
+ mov b0 = GR_SAVE_B0
}
-{ .mfi // force inexact set
- nop.m 999
- fmpy.s0 sincosf_save_tmp = sincosf_save_tmp, sincosf_save_tmp
- nop.i 999
-};;
+;;
+{ .mfi
+ nop.m 999
+ fma.s f8 = f8,f1,f0
+(p0) mov ar.pfs = GR_SAVE_PFS
+}
{ .mib
- nop.m 999
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0 // Exit for large arguments routine call
-};;
-LOCAL_LIBM_END(__libm_callout_sincosf)
+ nop.m 999
+ nop.i 999
+(p0) br.ret.sptk b0
+}
+;;
+
+.endp COS_DOUBLE
+ASM_SIZE_DIRECTIVE(COS_DOUBLE)
+
-.type __libm_sin_large#, @function
-.global __libm_sin_large#
-.type __libm_cos_large#, @function
-.global __libm_cos_large#
+.type sin,@function
+.global sin
+.type cos,@function
+.global cos
diff --git a/sysdeps/ia64/fpu/s_cosl.S b/sysdeps/ia64/fpu/s_cosl.S
index 8d71e50c1a..2755580c0d 100644
--- a/sysdeps/ia64/fpu/s_cosl.S
+++ b/sysdeps/ia64/fpu/s_cosl.S
@@ -1,10 +1,10 @@
.file "sincosl.s"
-
-// Copyright (c) 2000 - 2004, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,82 +20,76 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
-// History:
-// 02/02/00 (hand-optimized)
-// 04/04/00 Unwind support added
-// 07/30/01 Improved speed on all paths
-// 08/20/01 Fixed bundling typo
-// 05/13/02 Changed interface to __libm_pi_by_2_reduce
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 10/13/03 Corrected final .endp name to match .proc
-// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
+// History:
+// 2/02/2000 (hand-optimized)
+// 4/04/00 Unwind support added
//
-//*********************************************************************
+// *********************************************************************
//
// Function: Combined sinl(x) and cosl(x), where
//
// sinl(x) = sine(x), for double-extended precision x values
// cosl(x) = cosine(x), for double-extended precision x values
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
-// Floating-Point Registers: f8 (Input and Return Value)
+// Floating-Point Registers: f8 (Input and Return Value)
// f32-f99
//
// General Purpose Registers:
-// r32-r58
+// r32-r43
+// r44-r45 (Used to pass arguments to pi_by_2 reduce routine)
//
// Predicate Registers: p6-p13
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions do not occur
-// Underflow exceptions raised when appropriate for sin
+// Underflow exceptions raised when appropriate for sin
// (No specialized error handling for this routine)
// Inexact raised when appropriate by algorithm
//
// sinl(SNaN) = QNaN
// sinl(QNaN) = QNaN
-// sinl(inf) = QNaN
+// sinl(inf) = QNaN
// sinl(+/-0) = +/-0
-// cosl(inf) = QNaN
+// cosl(inf) = QNaN
// cosl(SNaN) = QNaN
// cosl(QNaN) = QNaN
// cosl(0) = 1
-//
-//*********************************************************************
+//
+// *********************************************************************
//
// Mathematical Description
// ========================
//
-// The computation of FSIN and FCOS is best handled in one piece of
-// code. The main reason is that given any argument Arg, computation
-// of trigonometric functions first calculate N and an approximation
+// The computation of FSIN and FCOS is best handled in one piece of
+// code. The main reason is that given any argument Arg, computation
+// of trigonometric functions first calculate N and an approximation
// to alpha where
//
// Arg = N pi/2 + alpha, |alpha| <= pi/4.
@@ -104,62 +98,62 @@
//
// cosl( Arg ) = sinl( (N+1) pi/2 + alpha ),
//
-// therefore, the code for computing sine will produce cosine as long
-// as 1 is added to N immediately after the argument reduction
+// therefore, the code for computing sine will produce cosine as long
+// as 1 is added to N immediately after the argument reduction
// process.
//
// Let M = N if sine
-// N+1 if cosine.
+// N+1 if cosine.
//
// Now, given
//
// Arg = M pi/2 + alpha, |alpha| <= pi/4,
//
-// let I = M mod 4, or I be the two lsb of M when M is represented
+// let I = M mod 4, or I be the two lsb of M when M is represented
// as 2's complement. I = [i_0 i_1]. Then
//
-// sinl( Arg ) = (-1)^i_0 sinl( alpha ) if i_1 = 0,
+// sinl( Arg ) = (-1)^i_0 sinl( alpha ) if i_1 = 0,
// = (-1)^i_0 cosl( alpha ) if i_1 = 1.
//
// For example:
-// if M = -1, I = 11
+// if M = -1, I = 11
// sin ((-pi/2 + alpha) = (-1) cos (alpha)
-// if M = 0, I = 00
+// if M = 0, I = 00
// sin (alpha) = sin (alpha)
-// if M = 1, I = 01
+// if M = 1, I = 01
// sin (pi/2 + alpha) = cos (alpha)
-// if M = 2, I = 10
+// if M = 2, I = 10
// sin (pi + alpha) = (-1) sin (alpha)
-// if M = 3, I = 11
+// if M = 3, I = 11
// sin ((3/2)pi + alpha) = (-1) cos (alpha)
//
-// The value of alpha is obtained by argument reduction and
+// The value of alpha is obtained by argument reduction and
// represented by two working precision numbers r and c where
//
// alpha = r + c accurately.
//
// The reduction method is described in a previous write up.
-// The argument reduction scheme identifies 4 cases. For Cases 2
-// and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
-// computed very easily by 2 or 3 terms of the Taylor series
+// The argument reduction scheme identifies 4 cases. For Cases 2
+// and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
+// computed very easily by 2 or 3 terms of the Taylor series
// expansion as follows:
//
// Case 2:
// -------
//
-// sinl(r + c) = r + c - r^3/6 accurately
-// cosl(r + c) = 1 - 2^(-67) accurately
+// sinl(r + c) = r + c - r^3/6 accurately
+// cosl(r + c) = 1 - 2^(-67) accurately
//
// Case 4:
// -------
//
-// sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
-// cosl(r + c) = 1 - r^2/2 + r^4/24 accurately
+// sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
+// cosl(r + c) = 1 - r^2/2 + r^4/24 accurately
//
-// The only cases left are Cases 1 and 3 of the argument reduction
-// procedure. These two cases will be merged since after the
-// argument is reduced in either cases, we have the reduced argument
-// represented as r + c and that the magnitude |r + c| is not small
+// The only cases left are Cases 1 and 3 of the argument reduction
+// procedure. These two cases will be merged since after the
+// argument is reduced in either cases, we have the reduced argument
+// represented as r + c and that the magnitude |r + c| is not small
// enough to allow the usage of a very short approximation.
//
// The required calculation is either
@@ -169,32 +163,32 @@
//
// Specifically,
//
-// sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
-// = sinl(r) + c cos (r) + O(c^2)
-// = sinl(r) + c(1 - r^2/2) accurately.
+// sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
+// = sinl(r) + c cos (r) + O(c^2)
+// = sinl(r) + c(1 - r^2/2) accurately.
// Similarly,
//
-// cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
-// = cosl(r) - c(r - r^3/6) accurately.
+// cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
+// = cosl(r) - c(r - r^3/6) accurately.
//
-// We therefore concentrate on accurately calculating sinl(r) and
+// We therefore concentrate on accurately calculating sinl(r) and
// cosl(r) for a working-precision number r, |r| <= pi/4 to within
// 0.1% or so.
//
-// The greatest challenge of this task is that the second terms of
+// The greatest challenge of this task is that the second terms of
// the Taylor series
-//
-// r - r^3/3! + r^r/5! - ...
+//
+// r - r^3/3! + r^r/5! - ...
//
// and
//
-// 1 - r^2/2! + r^4/4! - ...
+// 1 - r^2/2! + r^4/4! - ...
//
-// are not very small when |r| is close to pi/4 and the rounding
-// errors will be a concern if simple polynomial accumulation is
-// used. When |r| < 2^-3, however, the second terms will be small
-// enough (6 bits or so of right shift) that a normal Horner
-// recurrence suffices. Hence there are two cases that we consider
+// are not very small when |r| is close to pi/4 and the rounding
+// errors will be a concern if simple polynomial accumulation is
+// used. When |r| < 2^-3, however, the second terms will be small
+// enough (6 bits or so of right shift) that a normal Horner
+// recurrence suffices. Hence there are two cases that we consider
// in the accurate computation of sinl(r) and cosl(r), |r| <= pi/4.
//
// Case small_r: |r| < 2^(-3)
@@ -203,88 +197,88 @@
// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
// we have
//
-// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
-// = (-1)^i_0 * cosl(r + c) if i_1 = 1
+// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
+// = (-1)^i_0 * cosl(r + c) if i_1 = 1
//
// can be accurately approximated by
//
-// sinl(Arg) = (-1)^i_0 * [sinl(r) + c] if i_1 = 0
+// sinl(Arg) = (-1)^i_0 * [sinl(r) + c] if i_1 = 0
// = (-1)^i_0 * [cosl(r) - c*r] if i_1 = 1
//
-// because |r| is small and thus the second terms in the correction
+// because |r| is small and thus the second terms in the correction
// are unneccessary.
//
-// Finally, sinl(r) and cosl(r) are approximated by polynomials of
+// Finally, sinl(r) and cosl(r) are approximated by polynomials of
// moderate lengths.
//
// sinl(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
// cosl(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
//
-// We can make use of predicates to selectively calculate
-// sinl(r) or cosl(r) based on i_1.
+// We can make use of predicates to selectively calculate
+// sinl(r) or cosl(r) based on i_1.
//
// Case normal_r: 2^(-3) <= |r| <= pi/4
// ------------------------------------
//
// This case is more likely than the previous one if one considers
// r to be uniformly distributed in [-pi/4 pi/4]. Again,
+//
+// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
+// = (-1)^i_0 * cosl(r + c) if i_1 = 1.
//
-// sinl(Arg) = (-1)^i_0 * sinl(r + c) if i_1 = 0
-// = (-1)^i_0 * cosl(r + c) if i_1 = 1.
-//
-// Because |r| is now larger, we need one extra term in the
+// Because |r| is now larger, we need one extra term in the
// correction. sinl(Arg) can be accurately approximated by
//
// sinl(Arg) = (-1)^i_0 * [sinl(r) + c(1-r^2/2)] if i_1 = 0
// = (-1)^i_0 * [cosl(r) - c*r*(1 - r^2/6)] i_1 = 1.
//
-// Finally, sinl(r) and cosl(r) are approximated by polynomials of
+// Finally, sinl(r) and cosl(r) are approximated by polynomials of
// moderate lengths.
//
-// sinl(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
-// PP_2 r^5 + ... + PP_8 r^17
+// sinl(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
+// PP_2 r^5 + ... + PP_8 r^17
//
-// cosl(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
+// cosl(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
//
-// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
-// The crux in accurate computation is to calculate
+// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
+// The crux in accurate computation is to calculate
//
// r + PP_1_hi r^3 or 1 + QQ_1 r^2
//
-// accurately as two pieces: U_hi and U_lo. The way to achieve this
-// is to obtain r_hi as a 10 sig. bit number that approximates r to
+// accurately as two pieces: U_hi and U_lo. The way to achieve this
+// is to obtain r_hi as a 10 sig. bit number that approximates r to
// roughly 8 bits or so of accuracy. (One convenient way is
//
// r_hi := frcpa( frcpa( r ) ).)
//
// This way,
//
-// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
-// PP_1_hi (r^3 - r_hi^3)
-// = [r + PP_1_hi r_hi^3] +
-// [PP_1_hi (r - r_hi)
-// (r^2 + r_hi r + r_hi^2) ]
-// = U_hi + U_lo
+// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
+// PP_1_hi (r^3 - r_hi^3)
+// = [r + PP_1_hi r_hi^3] +
+// [PP_1_hi (r - r_hi)
+// (r^2 + r_hi r + r_hi^2) ]
+// = U_hi + U_lo
//
// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
-// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
-// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
-// and that there is no more than 8 bit shift off between r and
-// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
-// calculated without any error. Finally, the fact that
+// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
+// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
+// and that there is no more than 8 bit shift off between r and
+// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
+// calculated without any error. Finally, the fact that
//
-// |U_lo| <= 2^(-8) |U_hi|
+// |U_lo| <= 2^(-8) |U_hi|
//
-// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
+// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
// 8 extra bits of accuracy.
//
// Similarly,
//
-// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
-// [QQ_1 (r - r_hi)(r + r_hi)]
-// = U_hi + U_lo.
-//
-// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
+// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
+// [QQ_1 (r - r_hi)(r + r_hi)]
+// = U_hi + U_lo.
+//
+// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
//
// If i_1 = 0, then
//
@@ -303,35 +297,35 @@
// End
//
// Finally,
-//
-// V := poly + ( U_lo + correction )
+//
+// V := poly + ( U_lo + correction )
//
// / U_hi + V if i_0 = 0
-// result := |
+// result := |
// \ (-U_hi) - V if i_0 = 1
//
-// It is important that in the last step, negation of U_hi is
-// performed prior to the subtraction which is to be performed in
-// the user-set rounding mode.
+// It is important that in the last step, negation of U_hi is
+// performed prior to the subtraction which is to be performed in
+// the user-set rounding mode.
//
//
// Algorithmic Description
// =======================
//
-// The argument reduction algorithm is tightly integrated into FSIN
-// and FCOS which share the same code. The following is complete and
-// self-contained. The argument reduction description given
+// The argument reduction algorithm is tightly integrated into FSIN
+// and FCOS which share the same code. The following is complete and
+// self-contained. The argument reduction description given
// previously is repeated below.
//
//
-// Step 0. Initialization.
+// Step 0. Initialization.
//
// If FSIN is invoked, set N_inc := 0; else if FCOS is invoked,
// set N_inc := 1.
//
// Step 1. Check for exceptional and special cases.
//
-// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
+// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
// handling.
// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
// arguments. This is the most likely case.
@@ -341,18 +335,18 @@
//
// Step 2. Reduction of moderate arguments.
//
-// If |Arg| < pi/4 ...quick branch
-// N_fix := N_inc (integer)
+// If |Arg| < pi/4 ...quick branch
+// N_fix := N_inc (integer)
// r := Arg
// c := 0.0
// Branch to Step 4, Case_1_complete
-// Else ...cf. argument reduction
-// N := Arg * two_by_PI (fp)
-// N_fix := fcvt.fx( N ) (int)
+// Else ...cf. argument reduction
+// N := Arg * two_by_PI (fp)
+// N_fix := fcvt.fx( N ) (int)
// N := fcvt.xf( N_fix )
// N_fix := N_fix + N_inc
-// s := Arg - N * P_1 (first piece of pi/2)
-// w := -N * P_2 (second piece of pi/2)
+// s := Arg - N * P_1 (first piece of pi/2)
+// w := -N * P_2 (second piece of pi/2)
//
// If |s| >= 2^(-33)
// go to Step 3, Case_1_reduce
@@ -364,8 +358,8 @@
// Step 3. Case_1_reduce.
//
// r := s + w
-// c := (s - r) + w ...observe order
-//
+// c := (s - r) + w ...observe order
+//
// Step 4. Case_1_complete
//
// ...At this point, the reduced argument alpha is
@@ -381,17 +375,17 @@
//
// If i_1 = 0, then
// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
-// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
+// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
-// correction := c + c*C_1*FR_rsq ...any order
+// correction := c + c*C_1*FR_rsq ...any order
// Else
// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
-// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
+// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
// U_lo := QQ_1 * r_lo * (r + r_hi)
-// correction := -c*(r + S_1*FR_rsq*r) ...any order
+// correction := -c*(r + S_1*FR_rsq*r) ...any order
// Endif
//
-// V := poly + (U_lo + correction) ...observe order
+// V := poly + (U_lo + correction) ...observe order
//
// result := (i_0 == 0? 1.0 : -1.0)
//
@@ -403,7 +397,7 @@
// Return
//
// Step 6. Small_r.
-//
+//
// ...Use flush to zero mode without causing exception
// Let [i_0 i_1] be the two lsb of N_fix.
//
@@ -418,7 +412,7 @@
// Else
// z := FR_rsq*FR_rsq; z := FR_rsq*z
// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
-// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
+// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
// correction := -c*r
// result := 1
// Endif
@@ -435,15 +429,15 @@
//
// Step 7. Case_2_reduce.
//
-// ...Refer to the write up for argument reduction for
+// ...Refer to the write up for argument reduction for
// ...rationale. The reduction algorithm below is taken from
// ...argument reduction description and integrated this.
//
// w := N*P_3
-// U_1 := N*P_2 + w ...FMA
-// U_2 := (N*P_2 - U_1) + w ...2 FMA
+// U_1 := N*P_2 + w ...FMA
+// U_2 := (N*P_2 - U_1) + w ...2 FMA
// ...U_1 + U_2 is N*(P_2+P_3) accurately
-//
+//
// r := s - U_1
// c := ( (s - r) - U_1 ) - U_2
//
@@ -452,29 +446,29 @@
// ...Case 1, this case requires much more work to reduce
// ...the argument, the subsequent calculation needed for
// ...any of the trigonometric function is very little because
-// ...|alpha| < 1.01*2^(-33) and thus two terms of the
+// ...|alpha| < 1.01*2^(-33) and thus two terms of the
// ...Taylor series expansion suffices.
//
// If i_1 = 0 then
-// poly := c + S_1 * r * r * r ...any order
+// poly := c + S_1 * r * r * r ...any order
// result := r
// Else
// poly := -2^(-67)
// result := 1.0
// Endif
-//
+//
// If i_0 = 1, result := -result
//
// Last operation. Perform in user-set rounding mode
//
// result := (i_0 == 0? result + poly :
// result - poly )
-//
+//
// Return
//
-//
+//
// Step 8. Pre-reduction of large arguments.
-//
+//
// ...Again, the following reduction procedure was described
// ...in the separate write up for argument reduction, which
// ...is tightly integrated here.
@@ -482,13 +476,13 @@
// N_0 := Arg * Inv_P_0
// N_0_fix := fcvt.fx( N_0 )
// N_0 := fcvt.xf( N_0_fix)
-
+
// Arg' := Arg - N_0 * P_0
// w := N_0 * d_1
// N := Arg' * two_by_PI
// N_fix := fcvt.fx( N )
// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
+// N_fix := N_fix + N_inc
//
// s := Arg' - N * P_1
// w := w - N * P_2
@@ -500,15 +494,15 @@
// Endif
//
// Step 9. Case_4_reduce.
-//
+//
// ...first obtain N_0*d_1 and -N*P_2 accurately
-// U_hi := N_0 * d_1 V_hi := -N*P_2
-// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
+// U_hi := N_0 * d_1 V_hi := -N*P_2
+// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
//
// ...compute the contribution from N_0*d_1 and -N*P_3
// w := -N*P_3
// w := w + N_0*d_2
-// t := U_lo + V_lo + w ...any order
+// t := U_lo + V_lo + w ...any order
//
// ...at this point, the mathematical value
// ...s + U_hi + V_hi + t approximates the true reduced argument
@@ -523,12 +517,12 @@
// endif
// ...order in computing "a" must be observed. This branch is
// ...best implemented by predicates.
-// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
+// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
// ...much smaller than A: |a| <= (1/2)ulp(A).
//
// ...Just need to calculate s + A + a + t
-// C_hi := s + A t := t + a
-// C_lo := (s - C_hi) + A
+// C_hi := s + A t := t + a
+// C_lo := (s - C_hi) + A
// C_lo := C_lo + t
//
// ...Final steps for reduction
@@ -554,192 +548,156 @@
// result := (i_0 == 0? result + poly :
// result - poly )
// Return
-//
+//
// Large Arguments: For arguments above 2**63, a Payne-Hanek
// style argument reduction is used and pi_by_2 reduce is called.
//
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(FSINCOSL_CONSTANTS)
-
-sincosl_table_p:
-data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
-data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
-data8 0xC90FDAA22168C235, 0x00003FFF // P_1
-data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
-data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
-data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
-data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
-LOCAL_OBJECT_END(FSINCOSL_CONSTANTS)
-
-LOCAL_OBJECT_START(sincosl_table_d)
-data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
-data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
-data4 0x3E000000, 0xBE000000 // 2^-3 and -2^-3
-data4 0x2F000000, 0xAF000000 // 2^-33 and -2^-33
-data4 0x9E000000, 0x00000000 // -2^-67
-data4 0x00000000, 0x00000000 // pad
-LOCAL_OBJECT_END(sincosl_table_d)
-
-LOCAL_OBJECT_START(sincosl_table_pp)
-data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
-data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
-data8 0xB092382F640AD517, 0x00003FDE // PP_6
-data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
-data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
-data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
-data8 0x8888888888888962, 0x00003FF8 // PP_2
-data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
-LOCAL_OBJECT_END(sincosl_table_pp)
-
-LOCAL_OBJECT_START(sincosl_table_qq)
-data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
-data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
-data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
-data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x8000000000000000, 0x0000BFFE // QQ_1
-data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
-data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
-data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
-LOCAL_OBJECT_END(sincosl_table_qq)
-
-LOCAL_OBJECT_START(sincosl_table_c)
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
-data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
-data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
-data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
-LOCAL_OBJECT_END(sincosl_table_c)
-
-LOCAL_OBJECT_START(sincosl_table_s)
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x88888888888868DB, 0x00003FF8 // S_2
-data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
-data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
-data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
-data4 0x38800000, 0xB8800000 // two**-14 and -two**-14
-LOCAL_OBJECT_END(sincosl_table_s)
-
-FR_Input_X = f8
-FR_Result = f8
-
-FR_r = f8
-FR_c = f9
-
-FR_norm_x = f9
-FR_inv_pi_2to63 = f10
-FR_rshf_2to64 = f11
-FR_2tom64 = f12
-FR_rshf = f13
-FR_N_float_signif = f14
-FR_abs_x = f15
-FR_Pi_by_4 = f34
-FR_Two_to_M14 = f35
-FR_Neg_Two_to_M14 = f36
-FR_Two_to_M33 = f37
-FR_Neg_Two_to_M33 = f38
-FR_Neg_Two_to_M67 = f39
-FR_Inv_pi_by_2 = f40
-FR_N_float = f41
-FR_N_fix = f42
-FR_P_1 = f43
-FR_P_2 = f44
-FR_P_3 = f45
-FR_s = f46
-FR_w = f47
-FR_d_2 = f48
-FR_tmp_result = f49
-FR_Z = f50
-FR_A = f51
-FR_a = f52
-FR_t = f53
-FR_U_1 = f54
-FR_U_2 = f55
-FR_C_1 = f56
-FR_C_2 = f57
-FR_C_3 = f58
-FR_C_4 = f59
-FR_C_5 = f60
-FR_S_1 = f61
-FR_S_2 = f62
-FR_S_3 = f63
-FR_S_4 = f64
-FR_S_5 = f65
-FR_poly_hi = f66
-FR_poly_lo = f67
-FR_r_hi = f68
-FR_r_lo = f69
-FR_rsq = f70
-FR_r_cubed = f71
-FR_C_hi = f72
-FR_N_0 = f73
-FR_d_1 = f74
-FR_V = f75
-FR_V_hi = f75
-FR_V_lo = f76
-FR_U_hi = f77
-FR_U_lo = f78
-FR_U_hiabs = f79
-FR_V_hiabs = f80
-FR_PP_8 = f81
-FR_QQ_8 = f101
-FR_PP_7 = f82
-FR_QQ_7 = f102
-FR_PP_6 = f83
-FR_QQ_6 = f103
-FR_PP_5 = f84
-FR_QQ_5 = f104
-FR_PP_4 = f85
-FR_QQ_4 = f105
-FR_PP_3 = f86
-FR_QQ_3 = f106
-FR_PP_2 = f87
-FR_QQ_2 = f107
-FR_QQ_1 = f108
-FR_r_hi_sq = f88
-FR_N_0_fix = f89
-FR_Inv_P_0 = f90
-FR_corr = f91
-FR_poly = f92
-FR_Neg_Two_to_M3 = f93
-FR_Two_to_M3 = f94
-FR_P_0 = f95
-FR_C_lo = f96
-FR_PP_1 = f97
-FR_PP_1_lo = f98
-FR_ArgPrime = f99
-FR_inexact = f100
-
-GR_exp_m2_to_m3= r36
-GR_N_Inc = r37
-GR_Sin_or_Cos = r38
-GR_signexp_x = r40
-GR_exp_x = r40
-GR_exp_mask = r41
-GR_exp_2_to_63 = r42
-GR_exp_2_to_m3 = r43
-GR_exp_2_to_24 = r44
-
-GR_sig_inv_pi = r45
-GR_rshf_2to64 = r46
-GR_exp_2tom64 = r47
-GR_rshf = r48
-GR_ad_p = r49
-GR_ad_d = r50
-GR_ad_pp = r51
-GR_ad_qq = r52
-GR_ad_c = r53
-GR_ad_s = r54
-GR_ad_ce = r55
-GR_ad_se = r56
-GR_ad_m14 = r57
-GR_ad_s1 = r58
+#include "libm_support.h"
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+.align 64
+
+FSINCOSL_CONSTANTS:
+ASM_TYPE_DIRECTIVE(FSINCOSL_CONSTANTS,@object)
+data4 0x4B800000, 0xCB800000, 0x00000000,0x00000000 // two**24, -two**24
+data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
+data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
+data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
+data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
+data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
+data4 0x5F000000, 0xDF000000, 0x00000000,0x00000000 // two_to_63, -two_to_63
+data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
+data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
+data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
+data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
+data4 0x2168C234, 0xC90FDAA2, 0x0000BFFE,0x00000000 // neg_pi_by_4
+data4 0x3E000000, 0xBE000000, 0x00000000,0x00000000 // two**-3, -two**-3
+data4 0x2F000000, 0xAF000000, 0x9E000000,0x00000000 // two**-33, -two**-33, -two**-67
+data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
+data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
+data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
+data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
+data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
+data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
+data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
+data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
+data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
+data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2,0x00000000 // QQ_8
+data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA,0x00000000 // QQ_7
+data4 0x9C716658, 0x8F76C650, 0x00003FE2,0x00000000 // QQ_6
+data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9,0x00000000 // QQ_5
+data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
+data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
+data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
+data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
+data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
+data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
+data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
+data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
+data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
+data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
+data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
+data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
+data4 0x38800000, 0xB8800000, 0x00000000 // two**-14, -two**-14
+ASM_SIZE_DIRECTIVE(FSINCOSL_CONSTANTS)
+
+FR_Input_X = f8
+FR_Neg_Two_to_M3 = f32
+FR_Two_to_63 = f32
+FR_Two_to_24 = f33
+FR_Pi_by_4 = f33
+FR_Two_to_M14 = f34
+FR_Two_to_M33 = f35
+FR_Neg_Two_to_24 = f36
+FR_Neg_Pi_by_4 = f36
+FR_Neg_Two_to_M14 = f37
+FR_Neg_Two_to_M33 = f38
+FR_Neg_Two_to_M67 = f39
+FR_Inv_pi_by_2 = f40
+FR_N_float = f41
+FR_N_fix = f42
+FR_P_1 = f43
+FR_P_2 = f44
+FR_P_3 = f45
+FR_s = f46
+FR_w = f47
+FR_c = f48
+FR_r = f49
+FR_Z = f50
+FR_A = f51
+FR_a = f52
+FR_t = f53
+FR_U_1 = f54
+FR_U_2 = f55
+FR_C_1 = f56
+FR_C_2 = f57
+FR_C_3 = f58
+FR_C_4 = f59
+FR_C_5 = f60
+FR_S_1 = f61
+FR_S_2 = f62
+FR_S_3 = f63
+FR_S_4 = f64
+FR_S_5 = f65
+FR_poly_hi = f66
+FR_poly_lo = f67
+FR_r_hi = f68
+FR_r_lo = f69
+FR_rsq = f70
+FR_r_cubed = f71
+FR_C_hi = f72
+FR_N_0 = f73
+FR_d_1 = f74
+FR_V = f75
+FR_V_hi = f75
+FR_V_lo = f76
+FR_U_hi = f77
+FR_U_lo = f78
+FR_U_hiabs = f79
+FR_V_hiabs = f80
+FR_PP_8 = f81
+FR_QQ_8 = f81
+FR_PP_7 = f82
+FR_QQ_7 = f82
+FR_PP_6 = f83
+FR_QQ_6 = f83
+FR_PP_5 = f84
+FR_QQ_5 = f84
+FR_PP_4 = f85
+FR_QQ_4 = f85
+FR_PP_3 = f86
+FR_QQ_3 = f86
+FR_PP_2 = f87
+FR_QQ_2 = f87
+FR_QQ_1 = f88
+FR_N_0_fix = f89
+FR_Inv_P_0 = f90
+FR_corr = f91
+FR_poly = f92
+FR_d_2 = f93
+FR_Two_to_M3 = f94
+FR_Neg_Two_to_63 = f94
+FR_P_0 = f95
+FR_C_lo = f96
+FR_PP_1 = f97
+FR_PP_1_lo = f98
+FR_ArgPrime = f99
+
+GR_Table_Base = r32
+GR_Table_Base1 = r33
+GR_i_0 = r34
+GR_i_1 = r35
+GR_N_Inc = r36
+GR_Sin_or_Cos = r37
// Added for unwind support
@@ -748,377 +706,386 @@ GR_SAVE_GP = r40
GR_SAVE_PFS = r41
-.section .text
+.global sinl#
+.global cosl#
+#ifdef _LIBC
+.global __sinl#
+.global __cosl#
+#endif
-GLOBAL_IEEE754_ENTRY(sinl)
+.section .text
+.proc sinl#
+#ifdef _LIBC
+.proc __sinl#
+#endif
+.align 64
+sinl:
+#ifdef _LIBC
+__sinl:
+#endif
{ .mlx
- alloc r32 = ar.pfs,0,27,2,0
- movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
+alloc GR_Table_Base = ar.pfs,0,12,2,0
+(p0) movl GR_Sin_or_Cos = 0x0 ;;
}
-{ .mlx
- mov GR_Sin_or_Cos = 0x0
- movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
+
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(FSINCOSL_CONSTANTS#), gp
+ nop.i 999
}
;;
-{ .mfi
- addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf
- mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3
-}
-{ .mfb
+{ .mmb
+ ld8 GR_Table_Base = [GR_Table_Base]
nop.m 999
- fnorm.s1 FR_norm_x = FR_Input_X // Normalize x
- br.cond.sptk SINCOSL_CONTINUE
+(p0) br.cond.sptk L(SINCOSL_CONTINUE) ;;
}
;;
-GLOBAL_IEEE754_END(sinl)
-GLOBAL_IEEE754_ENTRY(cosl)
-{ .mlx
- alloc r32 = ar.pfs,0,27,2,0
- movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
+.endp sinl#
+ASM_SIZE_DIRECTIVE(sinl#)
+
+.section .text
+.proc cosl#
+cosl:
+#ifdef _LIBC
+.proc __cosl#
+__cosl:
+#endif
{ .mlx
- mov GR_Sin_or_Cos = 0x1
- movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
+alloc GR_Table_Base= ar.pfs,0,12,2,0
+(p0) movl GR_Sin_or_Cos = 0x1 ;;
}
;;
-{ .mfi
- addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf
- mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3
-}
-{ .mfi
+{ .mmi
nop.m 999
- fnorm.s1 FR_norm_x = FR_Input_X // Normalize x
+(p0) addl GR_Table_Base = @ltoff(FSINCOSL_CONSTANTS#), gp
nop.i 999
}
;;
-SINCOSL_CONTINUE:
-{ .mfi
- setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
- nop.f 999
- mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
-}
-{ .mlx
- setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
- movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
+{ .mmb
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.b 999
}
;;
-{ .mfi
- ld8 GR_ad_p = [GR_ad_p] // Point to Inv_pi_by_2
- fclass.m p7, p0 = FR_Input_X, 0x0b // Test x denormal
- nop.i 999
-}
-;;
-{ .mfi
- getf.exp GR_signexp_x = FR_Input_X // Get sign and exponent of x
- fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero
- nop.i 999
+
+//
+// Load Table Address
+//
+
+L(SINCOSL_CONTINUE):
+{ .mmi
+(p0) add GR_Table_Base1 = 96, GR_Table_Base
+(p0) ldfs FR_Two_to_24 = [GR_Table_Base], 4
+// GR_Sin_or_Cos denotes
+(p0) mov r39 = b0 ;;
}
-{ .mib
- mov GR_exp_mask = 0x1ffff // Exponent mask
- nop.i 999
-(p6) br.cond.spnt SINCOSL_SPECIAL // Branch if x natval, nan, inf
+{ .mmi
+ nop.m 0
+//
+// Load 2**24, load 2**63.
+//
+(p0) ldfs FR_Neg_Two_to_24 = [GR_Table_Base], 12
+ nop.i 0
}
-;;
-
{ .mfi
- setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
- nop.f 0
- add GR_ad_d = 0x70, GR_ad_p // Point to constant table d
+(p0) ldfs FR_Two_to_63 = [GR_Table_Base1], 4
+//
+// Check for unnormals - unsupported operands. We do not want
+// to generate denormal exception
+// Check for NatVals, QNaNs, SNaNs, +/-Infs
+// Check for EM unsupporteds
+// Check for Zero
+//
+(p0) fclass.m.unc p6, p0 = FR_Input_X, 0x1E3
+ nop.i 0
+};;
+{ .mmf
+ nop.m 999
+(p0) ldfs FR_Neg_Two_to_63 = [GR_Table_Base1], 12
+(p0) fclass.nm.unc p8, p0 = FR_Input_X, 0x1FF
}
-{ .mib
- setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
- mov GR_exp_m2_to_m3 = 0x2fffc // Form -(2^-3)
-(p7) br.cond.spnt SINCOSL_DENORMAL // Branch if x denormal
+{ .mfb
+ nop.m 999
+(p0) fclass.m.unc p10, p0 = FR_Input_X, 0x007
+(p6) br.cond.spnt L(SINCOSL_SPECIAL) ;;
}
-;;
-
-SINCOSL_COMMON:
-{ .mfi
- and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
- fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type
- mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(SINCOSL_SPECIAL) ;;
}
{ .mib
- add GR_ad_pp = 0x40, GR_ad_d // Point to constant table pp
- mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
-(p10) br.cond.spnt SINCOSL_ZERO // Branch if x zero
+ nop.m 999
+ nop.i 999
+//
+// Branch if +/- NaN, Inf.
+// Load -2**24, load -2**63.
+//
+(p10) br.cond.spnt L(SINCOSL_ZERO) ;;
}
-;;
-
-{ .mfi
- ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16 // Load 2/pi
- fcmp.eq.s0 p15, p0 = FR_Input_X, f0 // Dummy to set denormal
- add GR_ad_qq = 0xa0, GR_ad_pp // Point to constant table qq
+{ .mmb
+(p0) ldfe FR_Inv_pi_by_2 = [GR_Table_Base], 16
+(p0) ldfe FR_Inv_P_0 = [GR_Table_Base1], 16
+ nop.b 999 ;;
}
-{ .mfi
- ldfe FR_Pi_by_4 = [GR_ad_d], 16 // Load pi/4 for range test
- nop.f 999
- cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
+{ .mmb
+(p0) ldfe FR_d_1 = [GR_Table_Base1], 16
+//
+// Raise possible denormal operand flag with useful fcmp
+// Is x <= -2**63
+// Load Inv_P_0 for pre-reduction
+// Load Inv_pi_by_2
+//
+(p0) ldfe FR_P_0 = [GR_Table_Base], 16
+ nop.b 999 ;;
}
-;;
-
-{ .mfi
- ldfe FR_P_0 = [GR_ad_p], 16 // Load P_0 for pi/4 <= |x| < 2^63
- fmerge.s FR_abs_x = f1, FR_norm_x // |x|
- add GR_ad_c = 0x90, GR_ad_qq // Point to constant table c
+{ .mmb
+(p0) ldfe FR_d_2 = [GR_Table_Base1], 16
+//
+// Load P_0
+// Load d_1
+// Is x >= 2**63
+// Is x <= -2**24?
+//
+(p0) ldfe FR_P_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
}
+//
+// Load P_1
+// Load d_2
+// Is x >= 2**24?
+//
{ .mfi
- ldfe FR_Inv_P_0 = [GR_ad_d], 16 // Load 1/P_0 for pi/4 <= |x| < 2^63
- nop.f 999
- cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
+(p0) ldfe FR_P_2 = [GR_Table_Base], 16
+(p0) fcmp.le.unc.s1 p7, p8 = FR_Input_X, FR_Neg_Two_to_24
+ nop.i 999 ;;
}
-;;
-
-{ .mfi
- ldfe FR_P_1 = [GR_ad_p], 16 // Load P_1 for pi/4 <= |x| < 2^63
- nop.f 999
- add GR_ad_s = 0x50, GR_ad_c // Point to constant table s
+{ .mbb
+(p0) ldfe FR_P_3 = [GR_Table_Base], 16
+ nop.b 999
+ nop.b 999 ;;
}
{ .mfi
- ldfe FR_PP_8 = [GR_ad_pp], 16 // Load PP_8 for 2^-3 < |r| < pi/4
- nop.f 999
- nop.i 999
+ nop.m 999
+(p8) fcmp.ge.s1 p7, p0 = FR_Input_X, FR_Two_to_24
+ nop.i 999
}
-;;
-
{ .mfi
- ldfe FR_P_2 = [GR_ad_p], 16 // Load P_2 for pi/4 <= |x| < 2^63
- nop.f 999
- add GR_ad_ce = 0x40, GR_ad_c // Point to end of constant table c
+(p0) ldfe FR_Pi_by_4 = [GR_Table_Base1], 16
+//
+// Branch if +/- zero.
+// Decide about the paths to take:
+// If -2**24 < FR_Input_X < 2**24 - CASE 1 OR 2
+// OTHERWISE - CASE 3 OR 4
+//
+(p0) fcmp.le.unc.s0 p10, p11 = FR_Input_X, FR_Neg_Two_to_63
+ nop.i 999 ;;
}
-{ .mfi
- ldfe FR_QQ_8 = [GR_ad_qq], 16 // Load QQ_8 for 2^-3 < |r| < pi/4
- nop.f 999
- nop.i 999
+{ .mmi
+(p0) ldfe FR_Neg_Pi_by_4 = [GR_Table_Base1], 16 ;;
+(p0) ldfs FR_Two_to_M3 = [GR_Table_Base1], 4
+ nop.i 999
}
-;;
-
{ .mfi
- ldfe FR_QQ_7 = [GR_ad_qq], 16 // Load QQ_7 for 2^-3 < |r| < pi/4
- fma.s1 FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64
- add GR_ad_se = 0x40, GR_ad_s // Point to end of constant table s
+ nop.m 999
+(p11) fcmp.ge.s1 p10, p0 = FR_Input_X, FR_Two_to_63
+ nop.i 999 ;;
}
{ .mib
- ldfe FR_PP_7 = [GR_ad_pp], 16 // Load PP_7 for 2^-3 < |r| < pi/4
- mov GR_ad_s1 = GR_ad_s // Save pointer to S_1
-(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE // Branch if |x| >= 2^63
- // Use Payne-Hanek Reduction
-}
-;;
-
-{ .mfi
- ldfe FR_P_3 = [GR_ad_p], 16 // Load P_3 for pi/4 <= |x| < 2^63
- fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4
- add GR_ad_m14 = 0x50, GR_ad_s // Point to constant table m14
-}
-{ .mfb
- ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8
- fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4
-(p7) br.cond.spnt SINCOSL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
- // Use pre-reduction
-}
-;;
-
-{ .mmf
- ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6 for normal path
- ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6 for normal path
- fmerge.se FR_c = f0, f0 // c = 0 in case |x| < pi/4
+(p0) ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1], 12
+ nop.i 999
+//
+// Load P_2
+// Load P_3
+// Load pi_by_4
+// Load neg_pi_by_4
+// Load 2**(-3)
+// Load -2**(-3).
+//
+(p10) br.cond.spnt L(SINCOSL_ARG_TOO_LARGE) ;;
}
-;;
-
-{ .mmf
- ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5 for normal path
- ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5 for normal path
- nop.f 999
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Branch out if x >= 2**63. Use Payne-Hanek Reduction
+//
+(p7) br.cond.spnt L(SINCOSL_LARGER_ARG) ;;
}
-;;
-
-// Here if 0 < |x| < 2^24
{ .mfi
- ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5 if i_1=0
- fcmp.lt.s1 p6, p7 = FR_abs_x, FR_Pi_by_4 // Test |x| < pi/4
- nop.i 999
+ nop.m 999
+//
+// Branch if Arg <= -2**24 or Arg >= 2**24 and use pre-reduction.
+//
+(p0) fma.s1 FR_N_float = FR_Input_X, FR_Inv_pi_by_2, f0
+ nop.i 999 ;;
}
{ .mfi
- ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5 if i_1=1
- fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf
- nop.i 999
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p6, p7 = FR_Input_X, FR_Pi_by_4
+ nop.i 999 ;;
}
-;;
-
-{ .mmi
- ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4 if i_1=0
- ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4 if i_1=1
- nop.i 999
+{ .mfi
+ nop.m 999
+//
+// Select the case when |Arg| < pi/4
+// Else Select the case when |Arg| >= pi/4
+//
+(p0) fcvt.fx.s1 FR_N_fix = FR_N_float
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
// N = Arg * 2/pi
// Check if Arg < pi/4
//
+(p6) fcmp.gt.s1 p6, p7 = FR_Input_X, FR_Neg_Pi_by_4
+ nop.i 999 ;;
+}
//
// Case 2: Convert integer N_fix back to normalized floating-point value.
// Case 1: p8 is only affected when p6 is set
//
+{ .mfi
+(p7) ldfs FR_Two_to_M33 = [GR_Table_Base1], 4
//
// Grab the integer part of N and call it N_fix
//
-{ .mfi
-(p7) ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8
-(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // r^3 if |x| < pi/4
-(p6) mov GR_N_Inc = GR_Sin_or_Cos // N_Inc if |x| < pi/4
-}
-;;
-
-// If |x| < pi/4, r = x and c = 0
+(p6) fmerge.se FR_r = FR_Input_X, FR_Input_X
+// If |x| < pi/4, r = x and c = 0
// lf |x| < pi/4, is x < 2**(-3).
-// r = Arg
+// r = Arg
// c = 0
-{ .mmi
-(p7) getf.sig GR_N_Inc = FR_N_float_signif
-(p6) cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3 // Is |x| < 2^-3
-(p6) tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1
- // p10 if i_1=1, N mod 4 = 2,3
+(p6) mov GR_N_Inc = GR_Sin_or_Cos ;;
}
-;;
-
+{ .mmf
+ nop.m 999
+(p7) ldfs FR_Neg_Two_to_M33 = [GR_Table_Base1], 4
+(p6) fmerge.se FR_c = f0, f0
+}
+{ .mfi
+ nop.m 999
+(p6) fcmp.lt.unc.s1 p8, p9 = FR_Input_X, FR_Two_to_M3
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
//
// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
-// If |x| >= pi/4,
-// Create the right N for |x| < pi/4 and otherwise
+// If |x| >= pi/4,
+// Create the right N for |x| < pi/4 and otherwise
// Case 2: Place integer part of N in GP register
//
-
-
-{ .mbb
- nop.m 999
-(p8) br.cond.spnt SINCOSL_SMALL_R_0 // Branch if 0 < |x| < 2^-3
-(p6) br.cond.spnt SINCOSL_NORMAL_R_0 // Branch if 2^-3 <= |x| < pi/4
+(p7) fcvt.xf FR_N_float = FR_N_fix
+ nop.i 999 ;;
}
-;;
-
-// Here if pi/4 <= |x| < 2^24
-{ .mfi
- ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8 // Load -2^-67
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1 + Arg
- add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos // Adjust N_Inc for sin/cos
+{ .mmf
+ nop.m 999
+(p7) getf.sig GR_N_Inc = FR_N_fix
+(p8) fcmp.gt.s1 p8, p0 = FR_Input_X, FR_Neg_Two_to_M3 ;;
}
-{ .mfi
- nop.m 999
- fma.s1 FR_w = FR_N_float, FR_P_2, f0 // w = N * P_2
- nop.i 999
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Load 2**(-33), -2**(-33)
+//
+(p8) br.cond.spnt L(SINCOSL_SMALL_R) ;;
}
-;;
-
-{ .mfi
- nop.m 999
- fms.s1 FR_r = FR_s, f1, FR_w // r = s - w, assume |s| >= 2^-33
- tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1
- // p10 if i_1=1, N mod 4 = 2,3
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.sptk L(SINCOSL_NORMAL_R) ;;
}
-;;
-
+//
+// if |x| < pi/4, branch based on |x| < 2**(-3) or otherwise.
+//
+//
+// In this branch, |x| >= pi/4.
+//
{ .mfi
- nop.m 999
- fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33
- nop.i 999
+(p0) ldfs FR_Neg_Two_to_M67 = [GR_Table_Base1], 8
+//
+// Load -2**(-67)
+//
+(p0) fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X
+//
+// w = N * P_2
+// s = -N * P_1 + Arg
+//
+(p0) add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_w = FR_N_float, FR_P_2, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fms.s1 FR_c = FR_s, f1, FR_r // c = s - r, for |s| >= 2^-33
- nop.i 999
+ nop.m 999
+//
+// Adjust N_fix by N_inc to determine whether sine or
+// cosine is being calculated
+//
+(p0) fcmp.lt.unc.s1 p7, p6 = FR_s, FR_Two_to_M33
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r, for |s| >= 2^-33
- nop.i 999
+ nop.m 999
+(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 999
+ nop.m 999
+// Remember x >= pi/4.
+// Is s <= -2**(-33) or s >= 2**(-33) (p6)
+// or -2**(-33) < s < 2**(-33) (p7)
+(p6) fms.s1 FR_r = FR_s, f1, FR_w
+ nop.i 999
}
-;;
-
-{ .mmf
-(p9) ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1 if i_1=0
-(p10) ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1 if i_1=1
- frcpa.s1 FR_r_hi, p15 = f1, FR_r // r_hi = frcpa(r)
-}
-;;
-
{ .mfi
- nop.m 999
-(p6) fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3
- nop.i 999
+ nop.m 999
+(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
- nop.i 999
+ nop.m 999
+(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
+ nop.i 999
}
-;;
-
-//
-// For big s: r = s - w: No futher reduction is necessary
-// For small s: w = N * P_3 (change sign) More reduction
-//
{ .mfi
- nop.m 999
-(p8) fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3
- nop.i 999 ;;
+ nop.m 999
+(p6) fms.s1 FR_c = FR_s, f1, FR_r
+ nop.i 999 ;;
}
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7 if i_1=0
- nop.i 999
+ nop.m 999
+//
+// For big s: r = s - w: No futher reduction is necessary
+// For small s: w = N * P_3 (change sign) More reduction
+//
+(p6) fcmp.lt.unc.s1 p8, p9 = FR_r, FR_Two_to_M3
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7 if i_1=1
- nop.i 999
+ nop.m 999
+(p8) fcmp.gt.s1 p8, p9 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
+ nop.m 999
(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
- nop.i 999
+ nop.i 999
}
-;;
-
-{ .mfi
- nop.m 999
-(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq
- nop.i 999
-}
-;;
-
-{ .mfi
+{ .mfb
+ nop.m 999
//
// For big s: Is |r| < 2**(-3)?
// For big s: c = S - r
@@ -1128,356 +1095,355 @@ SINCOSL_COMMON:
// If p9 is set, prepare to branch to Normal_R.
// For big s, r is complete here.
//
-//
+(p6) fms.s1 FR_c = FR_c, f1, FR_w
+//
// For big s: c = c + w (w has not been negated.)
// For small s: r = S - U_1
//
- nop.m 999
-(p6) fms.s1 FR_c = FR_c, f1, FR_w
- nop.i 999
+(p8) br.cond.spnt L(SINCOSL_SMALL_R) ;;
}
-{ .mbb
- nop.m 999
-(p8) br.cond.spnt SINCOSL_SMALL_R_1 // Branch if |s|>=2^-33, |r| < 2^-3,
- // and pi/4 <= |x| < 2^24
-(p13) br.cond.sptk SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3,
- // and pi/4 <= |x| < 2^24
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.sptk L(SINCOSL_NORMAL_R) ;;
}
-;;
-
-SINCOSL_S_TINY:
-//
-// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24
-//
{ .mfi
- fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
+(p7) add GR_Table_Base1 = 224, GR_Table_Base1
+//
+// Branch to SINCOSL_SMALL_R or SINCOSL_NORMAL_R
//
+(p7) fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
+//
// c = S - U_1
// r = S_1 * r
//
//
+(p7) extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
}
-;;
-
{ .mmi
- nop.m 999
+ nop.m 999
//
// Get [i_0,i_1] - two lsb of N_fix_gr.
// Do dummy fmpy so inexact is always set.
//
- tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1
- // p10 if i_1=1, N mod 4 = 2,3
+(p7) cmp.eq.unc p9, p10 = 0x0, GR_i_1
+(p7) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
}
-;;
-
-//
+//
// For small s: U_2 = N * P_2 - U_1
// S_1 stored constant - grab the one stored with the
// coefficients.
-//
+//
{ .mfi
- ldfe FR_S_1 = [GR_ad_s1], 16
+(p7) ldfe FR_S_1 = [GR_Table_Base1], 16
//
// Check if i_1 and i_0 != 0
//
-(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67
- tbit.z p11,p12 = GR_N_Inc, 1 // p11 if i_0=0, N mod 4 = 0,2
- // p12 if i_0=1, N mod 4 = 1,3
+(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67
+(p7) cmp.eq.unc p11, p12 = 0x0, GR_i_0 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fms.s1 FR_s = FR_s, f1, FR_r
- nop.i 999
+ nop.m 999
+(p7) fms.s1 FR_s = FR_s, f1, FR_r
+ nop.i 999
}
{ .mfi
- nop.m 999
-//
+ nop.m 999
+//
// S = S - r
// U_2 = U_2 + w
// load S_1
//
- fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 999 ;;
+(p7) fma.s1 FR_rsq = FR_r, FR_r, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_U_2 = FR_U_2, f1, FR_w
- nop.i 999
+ nop.m 999
+(p7) fma.s1 FR_U_2 = FR_U_2, f1, FR_w
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmerge.se FR_tmp_result = FR_r, FR_r
- nop.i 999 ;;
+ nop.m 999
+(p7) fmerge.se FR_Input_X = FR_r, FR_r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_tmp_result = f0, f1, f1
- nop.i 999 ;;
+ nop.m 999
+(p10) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-//
+ nop.m 999
+//
// FR_rsq = r * r
// Save r as the result.
//
- fms.s1 FR_c = FR_s, f1, FR_U_1
- nop.i 999 ;;
+(p7) fms.s1 FR_c = FR_s, f1, FR_U_1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-//
+ nop.m 999
+//
// if ( i_1 ==0) poly = c + S_1*r*r*r
// else Result = 1
//
-(p12) fnma.s1 FR_tmp_result = FR_tmp_result, f1, f0
- nop.i 999
+(p12) fnma.s1 FR_Input_X = FR_Input_X, f1, f0
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 FR_r = FR_S_1, FR_r, f0
- nop.i 999 ;;
+ nop.m 999
+(p7) fma.s1 FR_r = FR_S_1, FR_r, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s0 FR_S_1 = FR_S_1, FR_S_1, f0
- nop.i 999 ;;
+ nop.m 999
+(p7) fma.s0 FR_S_1 = FR_S_1, FR_S_1, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// If i_1 != 0, poly = 2**(-67)
//
- fms.s1 FR_c = FR_c, f1, FR_U_2
- nop.i 999 ;;
+(p7) fms.s1 FR_c = FR_c, f1, FR_U_2
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-//
+ nop.m 999
+//
// c = c - U_2
-//
+//
(p9) fma.s1 FR_poly = FR_r, FR_rsq, FR_c
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// i_0 != 0, so Result = -Result
//
-(p11) fma.s0 FR_Result = FR_tmp_result, f1, FR_poly
- nop.i 999 ;;
+(p11) fma.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p12) fms.s0 FR_Result = FR_tmp_result, f1, FR_poly
+ nop.m 999
+(p12) fms.s0 FR_Input_X = FR_Input_X, f1, FR_poly
//
// if (i_0 == 0), Result = Result + poly
// else Result = Result - poly
//
- br.ret.sptk b0 // Exit if |s| < 2^-33, and pi/4 <= |x| < 2^24
+(p0) br.ret.sptk b0 ;;
+}
+L(SINCOSL_LARGER_ARG):
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0
+ nop.i 999
}
;;
-SINCOSL_LARGER_ARG:
+// This path for argument > 2*24
+// Adjust table_ptr1 to beginning of table.
//
-// Here if 2^24 <= |x| < 2^63
-//
-{ .mfi
- ldfe FR_d_1 = [GR_ad_p], 16 // Load d_1 for |x| >= 2^24 path
- fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0
- nop.i 999
+
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(FSINCOSL_CONSTANTS#), gp
+ nop.i 999
}
;;
-//
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+//
+// Point to 2*-14
// N_0 = Arg * Inv_P_0
//
-// Load values 2**(-14) and -2**(-14)
{ .mmi
- ldfps FR_Two_to_M14, FR_Neg_Two_to_M14 = [GR_ad_m14]
- nop.i 999 ;;
+(p0) add GR_Table_Base = 688, GR_Table_Base ;;
+(p0) ldfs FR_Two_to_M14 = [GR_Table_Base], 4
+ nop.i 999 ;;
}
{ .mfi
- ldfe FR_d_2 = [GR_ad_p], 16 // Load d_2 for |x| >= 2^24 path
- nop.f 999
- nop.i 999 ;;
+(p0) ldfs FR_Neg_Two_to_M14 = [GR_Table_Base], 0
+ nop.f 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
+// Load values 2**(-14) and -2**(-14)
//
- fcvt.fx.s1 FR_N_0_fix = FR_N_0
- nop.i 999 ;;
+(p0) fcvt.fx.s1 FR_N_0_fix = FR_N_0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N_0_fix = integer part of N_0
//
- fcvt.xf FR_N_0 = FR_N_0_fix
- nop.i 999 ;;
+(p0) fcvt.xf FR_N_0 = FR_N_0_fix
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// Make N_0 the integer part
//
- fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X
- nop.i 999
+(p0) fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X
+ nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 FR_w = FR_N_0, FR_d_1, f0
- nop.i 999 ;;
+ nop.m 999
+(p0) fma.s1 FR_w = FR_N_0, FR_d_1, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// Arg' = -N_0 * P_0 + Arg
// w = N_0 * d_1
//
- fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0
- nop.i 999 ;;
+(p0) fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N = A' * 2/pi
+// N = A' * 2/pi
//
- fcvt.fx.s1 FR_N_fix = FR_N_float
- nop.i 999 ;;
+(p0) fcvt.fx.s1 FR_N_fix = FR_N_float
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N_fix is the integer part
+// N_fix is the integer part
//
- fcvt.xf FR_N_float = FR_N_fix
- nop.i 999 ;;
+(p0) fcvt.xf FR_N_float = FR_N_fix
+ nop.i 999 ;;
}
{ .mfi
- getf.sig GR_N_Inc = FR_N_fix
- nop.f 999
- nop.i 999 ;;
+(p0) getf.sig GR_N_Inc = FR_N_fix
+ nop.f 999
+ nop.i 999 ;;
}
{ .mii
- nop.m 999
- nop.i 999 ;;
- add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;;
+ nop.m 999
+ nop.i 999 ;;
+(p0) add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N is the integer part of the reduced-reduced argument.
// Put the integer in a GP register
//
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime
- nop.i 999
+(p0) fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime
+ nop.i 999
}
{ .mfi
- nop.m 999
- fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w
- nop.i 999 ;;
+ nop.m 999
+(p0) fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// s = -N*P_1 + Arg'
// w = -N*P_2 + w
// N_fix_gr = N_fix_gr + N_inc
//
- fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
- nop.i 999 ;;
+(p0) fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14 // p9 if |s| < 2^-14
- nop.i 999 ;;
+ nop.m 999
+(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14
+ nop.i 999 ;;
}
-
{ .mfi
- nop.m 999
+ nop.m 999
//
// For |s| > 2**(-14) r = S + w (r complete)
// Else U_hi = N_0 * d_1
//
(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// Either S <= -2**(-14) or S >= 2**(-14)
// or -2**(-14) < s < 2**(-14)
//
(p8) fma.s1 FR_r = FR_s, f1, FR_w
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// We need abs of both U_hi and V_hi - don't
// worry about switched sign of V_hi.
//
(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// Big s: finish up c = (S - r) + w (c complete)
+// Big s: finish up c = (S - r) + w (c complete)
// Case 4: A = U_hi + V_hi
// Note: Worry about switched sign of V_hi, so subtract instead of add.
//
(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mmf
- nop.m 999
- nop.m 999
+ nop.m 999
+ nop.m 999
(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi
}
{ .mfi
- nop.m 999
+ nop.m 999
(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
-//{ .mfb
-//(p9) fmerge.s f8= FR_V_lo,FR_V_lo
-//(p9) br.ret.sptk b0
-//}
-//;;
{ .mfi
- nop.m 999
+ nop.m 999
// For big s: c = S - r
// For small s do more work: U_lo = N_0 * d_1 - U_hi
//
(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// For big s: Is |r| < 2**(-3)
+// For big s: Is |r| < 2**(-3)
// For big s: if p12 set, prepare to branch to Small_R.
// For big s: If p13 set, prepare to branch to Normal_R.
//
-(p8) fms.s1 FR_c = FR_s, f1, FR_r
- nop.i 999 ;;
+(p8) fms.s1 FR_c = FR_s, f1, FR_r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// For small S: V_hi = N * P_2
// w = N * P_3
@@ -1485,99 +1451,104 @@ SINCOSL_LARGER_ARG:
// so (-) missing for V_hi and w.
//
(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p8) fma.s1 FR_c = FR_c, f1, FR_w
- nop.i 999
+ nop.i 999
}
{ .mfb
- nop.m 999
+ nop.m 999
(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
-(p12) br.cond.spnt SINCOSL_SMALL_R // Branch if |r| < 2^-3
- // and 2^24 <= |x| < 2^63
+(p12) br.cond.spnt L(SINCOSL_SMALL_R) ;;
}
-;;
-
{ .mib
- nop.m 999
- nop.i 999
-(p13) br.cond.sptk SINCOSL_NORMAL_R // Branch if |r| >= 2^-3
- // and 2^24 <= |x| < 2^63
+ nop.m 999
+ nop.i 999
+(p13) br.cond.sptk L(SINCOSL_NORMAL_R) ;;
}
-;;
-
-SINCOSL_LARGER_S_TINY:
-//
-// Here if |s| < 2^-14, and 2^24 <= |x| < 2^63
-//
{ .mfi
- nop.m 999
-//
-// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
+ nop.m 999
+//
+// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
// The remaining stuff is for Case 4.
// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
// Note: the (-) is still missing for V_lo.
// Small s: w = w + N_0 * d_2
// Note: the (-) is now incorporated in w.
//
- fcmp.ge.unc.s1 p7, p8 = FR_U_hiabs, FR_V_hiabs
+(p9) fcmp.ge.unc.s1 p10, p11 = FR_U_hiabs, FR_V_hiabs
+(p0) extr.u GR_i_1 = GR_N_Inc, 0, 1
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// C_hi = S + A
//
- fma.s1 FR_t = FR_U_lo, f1, FR_V_lo
+(p9) fma.s1 FR_t = FR_U_lo, f1, FR_V_lo
+(p0) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
}
-;;
-
{ .mfi
- nop.m 999
+ nop.m 999
//
-// t = U_lo + V_lo
+// t = U_lo + V_lo
//
//
-(p7) fms.s1 FR_a = FR_U_hi, f1, FR_A
- nop.i 999 ;;
+(p10) fms.s1 FR_a = FR_U_hi, f1, FR_A
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_a = FR_V_hi, f1, FR_A
- nop.i 999
+ nop.m 999
+(p11) fma.s1 FR_a = FR_V_hi, f1, FR_A
+ nop.i 999
}
;;
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(FSINCOSL_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
{ .mfi
+(p0) add GR_Table_Base = 528, GR_Table_Base
//
// Is U_hiabs >= V_hiabs?
//
- nop.m 999
- fma.s1 FR_C_hi = FR_s, f1, FR_A
- nop.i 999 ;;
+(p9) fma.s1 FR_C_hi = FR_s, f1, FR_A
+ nop.i 999 ;;
}
{ .mmi
- ldfe FR_C_1 = [GR_ad_c], 16 ;;
- ldfe FR_C_2 = [GR_ad_c], 64
- nop.i 999 ;;
+(p0) ldfe FR_C_1 = [GR_Table_Base], 16 ;;
+(p0) ldfe FR_C_2 = [GR_Table_Base], 64
+ nop.i 999 ;;
}
//
// c = c + C_lo finished.
// Load C_2
//
{ .mfi
- ldfe FR_S_1 = [GR_ad_s], 16
+(p0) ldfe FR_S_1 = [GR_Table_Base], 16
//
-// C_lo = S - C_hi
+// C_lo = S - C_hi
//
- fma.s1 FR_t = FR_t, f1, FR_w
- nop.i 999 ;;
+(p0) fma.s1 FR_t = FR_t, f1, FR_w
+ nop.i 999 ;;
}
//
// r and c have been computed.
@@ -1587,695 +1558,855 @@ SINCOSL_LARGER_S_TINY:
// Load S_1
//
{ .mfi
- ldfe FR_S_2 = [GR_ad_s], 64
+(p0) ldfe FR_S_2 = [GR_Table_Base], 64
//
-// t = t + w
+// t = t + w
//
-(p7) fms.s1 FR_a = FR_a, f1, FR_V_hi
- tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1
- // p10 if i_1=1, N mod 4 = 2,3
+(p10) fms.s1 FR_a = FR_a, f1, FR_V_hi
+(p0) cmp.eq.unc p9, p10 = 0x0, GR_i_0 ;;
}
-;;
{ .mfi
- nop.m 999
+ nop.m 999
//
// For larger u than v: a = U_hi - A
// Else a = V_hi - A (do an add to account for missing (-) on V_hi
//
- fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
- nop.i 999 ;;
+(p0) fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fms.s1 FR_a = FR_U_hi, f1, FR_a
- tbit.z p11,p12 = GR_N_Inc, 1 // p11 if i_0=0, N mod 4 = 0,2
- // p12 if i_0=1, N mod 4 = 1,3
+ nop.m 999
+(p11) fms.s1 FR_a = FR_U_hi, f1, FR_a
+(p0) cmp.eq.unc p11, p12 = 0x0, GR_i_1 ;;
}
-;;
-
{ .mfi
- nop.m 999
+ nop.m 999
//
// If u > v: a = (U_hi - A) + V_hi
// Else a = (V_hi - A) + U_hi
// In each case account for negative missing from V_hi.
//
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_A
- nop.i 999 ;;
+(p0) fma.s1 FR_C_lo = FR_C_lo, f1, FR_A
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// C_lo = (S - C_hi) + A
+// C_lo = (S - C_hi) + A
//
- fma.s1 FR_t = FR_t, f1, FR_a
- nop.i 999 ;;
+(p0) fma.s1 FR_t = FR_t, f1, FR_a
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// t = t + a
+// t = t + a
//
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_t
- nop.i 999 ;;
+(p0) fma.s1 FR_C_lo = FR_C_lo, f1, FR_t
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// C_lo = C_lo + t
+// Adjust Table_Base to beginning of table
//
- fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
- nop.i 999 ;;
+(p0) fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// Load S_2
//
- fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 999
+(p0) fma.s1 FR_rsq = FR_r, FR_r, f0
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
+// Table_Base points to C_1
// r = C_hi + C_lo
//
- fms.s1 FR_c = FR_C_hi, f1, FR_r
- nop.i 999 ;;
+(p0) fms.s1 FR_c = FR_C_hi, f1, FR_r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// if i_1 ==0: poly = S_2 * FR_rsq + S_1
// else poly = C_2 * FR_rsq + C_1
//
-(p9) fma.s1 FR_tmp_result = f0, f1, FR_r
- nop.i 999 ;;
+(p11) fma.s1 FR_Input_X = f0, f1, FR_r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_tmp_result = f0, f1, f1
- nop.i 999 ;;
+ nop.m 999
+(p12) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// Compute r_cube = FR_rsq * r
+// Compute r_cube = FR_rsq * r
//
-(p9) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1
- nop.i 999 ;;
+(p11) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1
- nop.i 999
+ nop.m 999
+(p12) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// Compute FR_rsq = r * r
// Is i_1 == 0 ?
//
- fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
- nop.i 999 ;;
+(p0) fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// c = C_hi - r
// Load C_1
//
- fma.s1 FR_c = FR_c, f1, FR_C_lo
- nop.i 999
+(p0) fma.s1 FR_c = FR_c, f1, FR_C_lo
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// if i_1 ==0: poly = r_cube * poly + c
// else poly = FR_rsq * poly
//
-(p12) fms.s1 FR_tmp_result = f0, f1, FR_tmp_result
- nop.i 999 ;;
+(p10) fms.s1 FR_Input_X = f0, f1, FR_Input_X
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// if i_1 ==0: Result = r
// else Result = 1.0
//
-(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c
- nop.i 999 ;;
+(p11) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
+ nop.m 999
+(p12) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// if i_0 !=0: Result = -Result
+// if i_0 !=0: Result = -Result
//
-(p11) fma.s0 FR_Result = FR_tmp_result, f1, FR_poly
- nop.i 999 ;;
+(p9) fma.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p12) fms.s0 FR_Result = FR_tmp_result, f1, FR_poly
+ nop.m 999
+(p10) fms.s0 FR_Input_X = FR_Input_X, f1, FR_poly
//
// if i_0 == 0: Result = Result + poly
// else Result = Result - poly
//
- br.ret.sptk b0 // Exit for |s| < 2^-14, and 2^24 <= |x| < 2^63
+(p0) br.ret.sptk b0 ;;
}
-;;
-
-
-SINCOSL_SMALL_R:
-//
-// Here if |r| < 2^-3
+L(SINCOSL_SMALL_R):
+{ .mii
+ nop.m 999
+(p0) extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
//
-// Enter with r, c, and N_Inc computed
//
// Compare both i_1 and i_0 with 0.
// if i_1 == 0, set p9.
// if i_0 == 0, set p11.
//
-
+(p0) cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
+}
{ .mfi
- nop.m 999
- fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r
- tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1
- // p10 if i_1=1, N mod 4 = 2,3
+ nop.m 999
+(p0) fma.s1 FR_rsq = FR_r, FR_r, f0
+(p0) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Z = Z * FR_rsq
+//
+(p10) fnma.s1 FR_c = FR_c, FR_r, f0
+(p0) cmp.eq.unc p11, p12 = 0x0, GR_i_0
}
;;
+// ******************************************************************
+// ******************************************************************
+// ******************************************************************
+// r and c have been computed.
+// We know whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// |r| < 2**(-3)
+//
+// Set table_ptr1 to beginning of constant table.
+// Get [i_0,i_1] - two lsb of N_fix_gr.
+//
+
{ .mmi
-(p9) ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5 if i_1=0
-(p10) ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5 if i_1=1
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(FSINCOSL_CONSTANTS#), gp
nop.i 999
}
;;
{ .mmi
-(p9) ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4 if i_1=0
-(p10) ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4 if i_1=1
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
nop.i 999
}
;;
-SINCOSL_SMALL_R_0:
-// Entry point for 2^-3 < |x| < pi/4
-.pred.rel "mutex",p9,p10
-SINCOSL_SMALL_R_1:
-// Entry point for pi/4 < |x| < 2^24 and |r| < 2^-3
-.pred.rel "mutex",p9,p10
-{ .mfi
-(p9) ldfe FR_S_3 = [GR_ad_se], -16 // Load S_3 if i_1=0
- fma.s1 FR_Z = FR_rsq, FR_rsq, f0 // Z = rsq * rsq
- nop.i 999
-}
+
+//
+// Set table_ptr1 to point to S_5.
+// Set table_ptr1 to point to C_5.
+// Compute FR_rsq = r * r
+//
{ .mfi
-(p10) ldfe FR_C_3 = [GR_ad_ce], -16 // Load C_3 if i_1=1
-(p10) fnma.s1 FR_c = FR_c, FR_r, f0 // c = -c * r if i_1=0
- nop.i 999
+(p9) add GR_Table_Base = 672, GR_Table_Base
+(p10) fmerge.s FR_r = f1, f1
+(p10) add GR_Table_Base = 592, GR_Table_Base ;;
+}
+//
+// Set table_ptr1 to point to S_5.
+// Set table_ptr1 to point to C_5.
+//
+{ .mmi
+(p9) ldfe FR_S_5 = [GR_Table_Base], -16 ;;
+//
+// if (i_1 == 0) load S_5
+// if (i_1 != 0) load C_5
+//
+(p9) ldfe FR_S_4 = [GR_Table_Base], -16
+ nop.i 999 ;;
}
-;;
-
{ .mmf
-(p9) ldfe FR_S_2 = [GR_ad_se], -16 // Load S_2 if i_1=0
-(p10) ldfe FR_C_2 = [GR_ad_ce], -16 // Load C_2 if i_1=1
-(p10) fmerge.s FR_r = f1, f1
+(p10) ldfe FR_C_5 = [GR_Table_Base], -16
+//
+// Z = FR_rsq * FR_rsq
+//
+(p9) ldfe FR_S_3 = [GR_Table_Base], -16
+//
+// Compute FR_rsq = r * r
+// if (i_1 == 0) load S_4
+// if (i_1 != 0) load C_4
+//
+(p0) fma.s1 FR_Z = FR_rsq, FR_rsq, f0 ;;
}
-;;
-
+//
+// if (i_1 == 0) load S_3
+// if (i_1 != 0) load C_3
+//
{ .mmi
-(p9) ldfe FR_S_1 = [GR_ad_se], -16 // Load S_1 if i_1=0
-(p10) ldfe FR_C_1 = [GR_ad_ce], -16 // Load C_1 if i_1=1
- nop.i 999
+(p9) ldfe FR_S_2 = [GR_Table_Base], -16 ;;
+//
+// if (i_1 == 0) load S_2
+// if (i_1 != 0) load C_2
+//
+(p9) ldfe FR_S_1 = [GR_Table_Base], -16
+ nop.i 999
}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_Z = FR_Z, FR_r, f0 // Z = Z * r if i_1=0
- nop.i 999
+{ .mmi
+(p10) ldfe FR_C_4 = [GR_Table_Base], -16 ;;
+(p10) ldfe FR_C_3 = [GR_Table_Base], -16
+ nop.i 999 ;;
+}
+{ .mmi
+(p10) ldfe FR_C_2 = [GR_Table_Base], -16 ;;
+(p10) ldfe FR_C_1 = [GR_Table_Base], -16
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4 // poly_lo=rsq*S_5+S_4 if i_1=0
- nop.i 999
+ nop.m 999
+//
+// if (i_1 != 0):
+// poly_lo = FR_rsq * C_5 + C_4
+// poly_hi = FR_rsq * C_2 + C_1
+//
+(p9) fma.s1 FR_Z = FR_Z, FR_r, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4 // poly_lo=rsq*C_5+C_4 if i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1 == 0) load S_1
+// if (i_1 != 0) load C_1
+//
+(p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1 // poly_hi=rsq*S_2+S_1 if i_1=0
- nop.i 999
+ nop.m 999
+//
+// c = -c * r
+// dummy fmpy's to flag inexact.
+//
+(p9) fma.s0 FR_S_4 = FR_S_4, FR_S_4, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1 // poly_hi=rsq*C_2+C_1 if i_1=1
- nop.i 999
+ nop.m 999
+//
+// poly_lo = FR_rsq * poly_lo + C_3
+// poly_hi = FR_rsq * poly_hi
+//
+(p0) fma.s1 FR_Z = FR_Z, FR_rsq, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_Z = FR_Z, FR_rsq, f0 // Z = Z * rsq
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3 // p_lo=p_lo*rsq+S_3, i_1=0
- nop.i 999
+ nop.m 999
+//
+// if (i_1 == 0):
+// poly_lo = FR_rsq * S_5 + S_4
+// poly_hi = FR_rsq * S_2 + S_1
+//
+(p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3 // p_lo=p_lo*rsq+C_3, i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1 == 0):
+// Z = Z * r for only one of the small r cases - not there
+// in original implementation notes.
+//
+(p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s0 FR_inexact = FR_S_4, FR_S_4, f0 // Dummy op to set inexact
- tbit.z p11,p12 = GR_N_Inc, 1 // p11 if i_0=0, N mod 4 = 0,2
- // p12 if i_0=1, N mod 4 = 1,3
+ nop.m 999
+(p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s0 FR_inexact = FR_C_1, FR_C_1, f0 // Dummy op to set inexact
- nop.i 999
+ nop.m 999
+(p10) fma.s0 FR_C_1 = FR_C_1, FR_C_1, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0 // p_hi=p_hi*rsq if i_1=0
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0 // p_hi=p_hi*rsq if i_1=1
- nop.i 999
+ nop.m 999
+//
+// poly_lo = FR_rsq * poly_lo + S_3
+// poly_hi = FR_rsq * poly_hi
+//
+(p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c // poly=Z*poly_lo+c
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0 // p_hi=r*p_hi if i_1=0
- nop.i 999
+ nop.m 999
+//
+// if (i_1 == 0): dummy fmpy's to flag inexact
+// r = 1
+//
+(p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p12) fms.s1 FR_r = f0, f1, FR_r // r = -r if i_0=1
- nop.i 999
+ nop.m 999
+//
+// poly_hi = r * poly_hi
+//
+(p0) fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_poly, f1, FR_poly_hi // poly=poly+poly_hi
- nop.i 999
+ nop.m 999
+(p12) fms.s1 FR_r = f0, f1, FR_r
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
-// if (i_0 == 0) Result = r + poly
-// if (i_0 != 0) Result = r - poly
+// poly_hi = Z * poly_lo + c
+// if i_0 == 1: r = -r
//
+(p0) fma.s1 FR_poly = FR_poly, f1, FR_poly_hi
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
-(p11) fma.s0 FR_Result = FR_r, f1, FR_poly
- nop.i 999
+ nop.m 999
+(p12) fms.s0 FR_Input_X = FR_r, f1, FR_poly
+ nop.i 999
}
{ .mfb
- nop.m 999
-(p12) fms.s0 FR_Result = FR_r, f1, FR_poly
- br.ret.sptk b0 // Exit for |r| < 2^-3
-}
-;;
-
-
-SINCOSL_NORMAL_R:
+ nop.m 999
+//
+// poly = poly + poly_hi
+//
+(p11) fma.s0 FR_Input_X = FR_r, f1, FR_poly
//
-// Here if 2^-3 <= |r| < pi/4
-// THIS IS THE MAIN PATH
+// if (i_0 == 0) Result = r + poly
+// if (i_0 != 0) Result = r - poly
//
-// Enter with r, c, and N_Inc having been computed
+(p0) br.ret.sptk b0 ;;
+}
+L(SINCOSL_NORMAL_R):
+{ .mii
+ nop.m 999
+(p0) extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
//
+// Set table_ptr1 and table_ptr2 to base address of
+// constant table.
+(p0) cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
+}
{ .mfi
- ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6
- fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r
- tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1
- // p10 if i_1=1, N mod 4 = 2,3
+ nop.m 999
+(p0) fma.s1 FR_rsq = FR_r, FR_r, f0
+(p0) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
}
{ .mfi
- ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6
- nop.f 999
- nop.i 999
+ nop.m 999
+(p0) frcpa.s1 FR_r_hi, p6 = f1, FR_r
+(p0) cmp.eq.unc p11, p12 = 0x0, GR_i_0
}
;;
+// ******************************************************************
+// ******************************************************************
+// ******************************************************************
+//
+// r and c have been computed.
+// We known whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// Get [i_0,i_1] - two lsb of N_fix_gr alone.
+//
+
{ .mmi
-(p9) ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5 if i_1=0
-(p10) ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5 if i_1=1
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(FSINCOSL_CONSTANTS#), gp
nop.i 999
}
;;
-SINCOSL_NORMAL_R_0:
-// Entry for 2^-3 < |x| < pi/4
-.pred.rel "mutex",p9,p10
-{ .mmf
-(p9) ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1 if i_1=0
-(p10) ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1 if i_1=1
- frcpa.s1 FR_r_hi, p6 = f1, FR_r // r_hi = frcpa(r)
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
}
;;
+
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7 if i_1=0
- nop.i 999
+(p10) add GR_Table_Base = 384, GR_Table_Base
+(p12) fms.s1 FR_Input_X = f0, f1, f1
+(p9) add GR_Table_Base = 224, GR_Table_Base ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7 if i_1=1
- nop.i 999
+(p10) ldfe FR_QQ_8 = [GR_Table_Base], 16
+//
+// if (i_1==0) poly = poly * FR_rsq + PP_1_lo
+// else poly = FR_rsq * poly
+//
+(p11) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
+}
+{ .mmb
+(p10) ldfe FR_QQ_7 = [GR_Table_Base], 16
+//
+// Adjust table pointers based on i_0
+// Compute rsq = r * r
+//
+(p9) ldfe FR_PP_8 = [GR_Table_Base], 16
+ nop.b 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0
+ nop.i 999 ;;
}
-;;
-
-
-SINCOSL_NORMAL_R_1:
-// Entry for pi/4 <= |x| < 2^24
-.pred.rel "mutex",p9,p10
{ .mmf
-(p9) ldfe FR_PP_1 = [GR_ad_pp], 16 // Load PP_1_hi if i_1=0
-(p10) ldfe FR_QQ_1 = [GR_ad_qq], 16 // Load QQ_1 if i_1=1
- frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi // r_hi = frpca(frcpa(r))
+(p9) ldfe FR_PP_7 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_6 = [GR_Table_Base], 16
+//
+// Load PP_8 and QQ_8; PP_7 and QQ_7
+//
+(p0) frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi ;;
}
-;;
-
-{ .mfi
-(p9) ldfe FR_PP_4 = [GR_ad_pp], 16 // Load PP_4 if i_1=0
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6 // poly = rsq*poly+PP_6 if i_1=0
- nop.i 999
+//
+// if (i_1==0) poly = PP_7 + FR_rsq * PP_8.
+// else poly = QQ_7 + FR_rsq * QQ_8.
+//
+{ .mmb
+(p9) ldfe FR_PP_6 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_5 = [GR_Table_Base], 16
+ nop.b 999 ;;
}
-{ .mfi
-(p10) ldfe FR_QQ_4 = [GR_ad_qq], 16 // Load QQ_4 if i_1=1
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6 // poly = rsq*poly+QQ_6 if i_1=1
- nop.i 999
+{ .mmb
+(p9) ldfe FR_PP_5 = [GR_Table_Base], 16
+(p10) ldfe FR_S_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+{ .mmb
+(p10) ldfe FR_QQ_1 = [GR_Table_Base], 16
+(p9) ldfe FR_C_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+{ .mmb
+(p10) ldfe FR_QQ_4 = [GR_Table_Base], 16
+(p9) ldfe FR_PP_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+{ .mmb
+(p10) ldfe FR_QQ_3 = [GR_Table_Base], 16
+//
+// if (i_1=0) corr = corr + c*c
+// else corr = corr * c
+//
+(p9) ldfe FR_PP_4 = [GR_Table_Base], 16
+ nop.b 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0 // corr = C_1 * rsq if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7
+ nop.i 999 ;;
+}
+//
+// if (i_1=0) poly = rsq * poly + PP_5
+// else poly = rsq * poly + QQ_5
+// Load PP_4 or QQ_4
+//
+{ .mmi
+(p9) ldfe FR_PP_3 = [GR_Table_Base], 16 ;;
+(p10) ldfe FR_QQ_2 = [GR_Table_Base], 16
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r // corr = S_1 * r^3 + r if i_1=1
- nop.i 999
+ nop.m 999
+//
+// r_hi = frcpa(frcpa(r)).
+// r_cube = r * FR_rsq.
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7
+ nop.i 999 ;;
}
-;;
-
+//
+// Do dummy multiplies so inexact is always set.
+//
{ .mfi
-(p9) ldfe FR_PP_3 = [GR_ad_pp], 16 // Load PP_3 if i_1=0
- fma.s1 FR_r_hi_sq = FR_r_hi, FR_r_hi, f0 // r_hi_sq = r_hi * r_hi
- nop.i 999
+(p9) ldfe FR_PP_2 = [GR_Table_Base], 16
+//
+// r_lo = r - r_hi
+//
+(p9) fma.s1 FR_U_lo = FR_r_hi, FR_r_hi, f0
+ nop.i 999 ;;
+}
+{ .mbb
+(p9) ldfe FR_PP_1_lo = [GR_Table_Base], 16
+ nop.b 999
+ nop.b 999 ;;
}
{ .mfi
-(p10) ldfe FR_QQ_3 = [GR_ad_qq], 16 // Load QQ_3 if i_1=1
- fms.s1 FR_r_lo = FR_r, f1, FR_r_hi // r_lo = r - r_hi
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r
+ nop.i 999
}
-;;
-
{ .mfi
-(p9) ldfe FR_PP_2 = [GR_ad_pp], 16 // Load PP_2 if i_1=0
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5 // poly = rsq*poly+PP_5 if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6
+ nop.i 999 ;;
}
{ .mfi
-(p10) ldfe FR_QQ_2 = [GR_ad_qq], 16 // Load QQ_2 if i_1=1
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5 // poly = rsq*poly+QQ_5 if i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1=0) U_lo = r_hi * r_hi
+// else U_lo = r_hi + r
+//
+(p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p9) ldfe FR_PP_1_lo = [GR_ad_pp], 16 // Load PP_1_lo if i_1=0
-(p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c // corr = corr * c + c if i_1=0
- nop.i 999
+ nop.m 999
+//
+// if (i_1=0) corr = C_1 * rsq
+// else corr = S_1 * r_cubed + r
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fnma.s1 FR_corr = FR_corr, FR_c, f0 // corr = -corr * c if i_1=1
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_r_hi_sq // U_lo = r*r_hi+r_hi_sq, i_1=0
- nop.i 999
+ nop.m 999
+//
+// if (i_1=0) U_hi = r_hi + U_hi
+// else U_hi = QQ_1 * U_hi + 1
+//
+(p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_U_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r // U_lo = r_hi + r if i_1=1
- nop.i 999
+ nop.m 999
+//
+// U_hi = r_hi * r_hi
+//
+(p0) fms.s1 FR_r_lo = FR_r, f1, FR_r_hi
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_r_hi, FR_r_hi_sq, f0 // U_hi = r_hi*r_hi_sq if i_1=0
- nop.i 999
+ nop.m 999
+//
+// Load PP_1, PP_6, PP_5, and C_1
+// Load QQ_1, QQ_6, QQ_5, and S_1
+//
+(p0) fma.s1 FR_U_hi = FR_r_hi, FR_r_hi, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_hi = FR_QQ_1, FR_r_hi_sq, f1 // U_hi = QQ_1*r_hi_sq+1, i_1=1
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4 // poly = poly*rsq+PP_4 if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fnma.s1 FR_corr = FR_corr, FR_c, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4 // poly = poly*rsq+QQ_4 if i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1=0) U_lo = r * r_hi + U_lo
+// else U_lo = r_lo * U_lo
+//
+(p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo // U_lo = r * r + U_lo if i_1=0
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0 // U_lo = r_lo * U_lo if i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1 =0) U_hi = r + U_hi
+// if (i_1 =0) U_lo = r_lo * U_lo
+//
+//
+(p9) fma.s0 FR_PP_5 = FR_PP_5, FR_PP_4, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0 // U_hi = PP_1 * U_hi if i_1=0
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3 // poly = poly*rsq+PP_3 if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3 // poly = poly*rsq+QQ_3 if i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1=0) poly = poly * rsq + PP_6
+// else poly = poly * rsq + QQ_6
+//
+(p9) fma.s1 FR_U_hi = FR_r_hi, FR_U_hi, f0
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0 // U_lo = r_lo * U_lo if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0 // U_lo = QQ_1 * U_lo if i_1=1
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_U_hi = FR_QQ_1, FR_U_hi, f1
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi // U_hi = r + U_hi if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s0 FR_QQ_5 = FR_QQ_5, FR_QQ_5, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2 // poly = poly*rsq+PP_2 if i_1=0
- nop.i 999
+ nop.m 999
+//
+// if (i_1!=0) U_hi = PP_1 * U_hi
+// if (i_1!=0) U_lo = r * r + U_lo
+// Load PP_3 or QQ_3
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2 // poly = poly*rsq+QQ_2 if i_1=1
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0 // U_lo = PP_1 * U_lo if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo // poly =poly*rsq+PP1lo i_1=0
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0 // poly = poly*rsq if i_1=1
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_V = FR_U_lo, f1, FR_corr // V = U_lo + corr
- tbit.z p11,p12 = GR_N_Inc, 1 // p11 if i_0=0, N mod 4 = 0,2
- // p12 if i_0=1, N mod 4 = 1,3
+ nop.m 999
+//
+// Load PP_2, QQ_2
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s0 FR_inexact = FR_PP_5, FR_PP_4, f0 // Dummy op to set inexact
- nop.i 999
+ nop.m 999
+//
+// if (i_1==0) poly = FR_rsq * poly + PP_3
+// else poly = FR_rsq * poly + QQ_3
+// Load PP_1_lo
+//
+(p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s0 FR_inexact = FR_QQ_5, FR_QQ_5, f0 // Dummy op to set inexact
- nop.i 999
+ nop.m 999
+//
+// if (i_1 =0) poly = poly * rsq + pp_r4
+// else poly = poly * rsq + qq_r4
+//
+(p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0 // poly = poly*r^3 if i_1=0
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0 // poly = poly*rsq if i_1=1
- nop.i 999
+ nop.m 999
+//
+// if (i_1==0) U_lo = PP_1_hi * U_lo
+// else U_lo = QQ_1 * U_lo
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p11) fma.s1 FR_tmp_result = f0, f1, f1// tmp_result=+1.0 if i_0=0
- nop.i 999
+ nop.m 999
+//
+// if (i_0==0) Result = 1
+// else Result = -1
+//
+(p0) fma.s1 FR_V = FR_U_lo, f1, FR_corr
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p12) fms.s1 FR_tmp_result = f0, f1, f1// tmp_result=-1.0 if i_0=1
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_V = FR_poly, f1, FR_V // V = poly + V
- nop.i 999
+ nop.m 999
+//
+// if (i_1==0) poly = FR_rsq * poly + PP_2
+// else poly = FR_rsq * poly + QQ_2
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo
+ nop.i 999 ;;
}
-;;
-
-// If i_0 = 0 Result = U_hi + V
-// If i_0 = 1 Result = -U_hi - V
{ .mfi
- nop.m 999
-(p11) fma.s0 FR_Result = FR_tmp_result, FR_U_hi, FR_V
- nop.i 999
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 999
-(p12) fms.s0 FR_Result = FR_tmp_result, FR_U_hi, FR_V
- br.ret.sptk b0 // Exit for 2^-3 <= |r| < pi/4
+{ .mfi
+ nop.m 999
+//
+// V = U_lo + corr
+//
+(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0
+ nop.i 999 ;;
}
-;;
-
-SINCOSL_ZERO:
-// Here if x = 0
{ .mfi
- cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos
- nop.f 999
- nop.i 999
+ nop.m 999
+//
+// if (i_1==0) poly = r_cube * poly
+// else poly = FR_rsq * poly
+//
+(p0) fma.s1 FR_V = FR_poly, f1, FR_V
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fmerge.s FR_Result = FR_Input_X, FR_Input_X // If sin, result = input
- nop.i 999
+ nop.m 999
+(p12) fms.s0 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
+ nop.i 999
}
{ .mfb
- nop.m 999
-(p6) fma.s0 FR_Result = f1, f1, f0 // If cos, result=1.0
- br.ret.sptk b0 // Exit for x=0
-}
-;;
+ nop.m 999
+//
+// V = V + poly
+//
+(p11) fma.s0 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
+//
+// if (i_0==0) Result = Result * U_hi + V
+// else Result = Result * U_hi - V
+//
+(p0) br.ret.sptk b0
+};;
+//
+// If cosine, FR_Input_X = 1
+// If sine, FR_Input_X = +/-Zero (Input FR_Input_X)
+// Results are exact, no exceptions
+//
-SINCOSL_DENORMAL:
-{ .mmb
- getf.exp GR_signexp_x = FR_norm_x // Get sign and exponent of x
- nop.m 999
- br.cond.sptk SINCOSL_COMMON // Return to common code
+L(SINCOSL_ZERO):
+{ .mbb
+(p0) cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos
+ nop.b 999
+ nop.b 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p7) fmerge.s FR_Input_X = FR_Input_X, FR_Input_X
+ nop.i 999
}
-;;
-
-SINCOSL_SPECIAL:
+{ .mfb
+ nop.m 999
+(p6) fmerge.s FR_Input_X = f1, f1
+(p0) br.ret.sptk b0 ;;
+}
+L(SINCOSL_SPECIAL):
{ .mfb
nop.m 999
//
@@ -2283,83 +2414,106 @@ SINCOSL_SPECIAL:
// Invalid can be raised. SNaNs
// become QNaNs
//
- fmpy.s0 FR_Result = FR_Input_X, f0
- br.ret.sptk b0 ;;
+(p0) fmpy.s0 FR_Input_X = FR_Input_X, f0
+(p0) br.ret.sptk b0 ;;
}
+.endp cosl#
+ASM_SIZE_DIRECTIVE(cosl#)
-GLOBAL_IEEE754_END(cosl)
-
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-//
-// Special Code to handle very large argument case.
-// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
-// The interface is custom:
-// On input:
-// (Arg or x) is in f8
-// On output:
-// r is in f8
-// c is in f9
-// N is in r8
-// Be sure to allocate at least 2 GP registers as output registers for
-// __libm_pi_by_2_reduce. This routine uses r59-60. These are used as
-// scratch registers within the __libm_pi_by_2_reduce routine (for speed).
-//
-// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
-// use this to eliminate save/restore of key fp registers in this calling
-// function.
-//
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
+// Call int pi_by_2_reduce(double* x, double *y)
+// for |arguments| >= 2**63
+// Address to save r and c as double
+//
+// sp+32 -> f0
+// r45 sp+16 -> f0
+// r44 -> sp -> InputX
+//
-LOCAL_LIBM_ENTRY(__libm_callout)
-SINCOSL_ARG_TOO_LARGE:
+.proc __libm_callout
+__libm_callout:
+L(SINCOSL_ARG_TOO_LARGE):
.prologue
{ .mfi
+ add r45=-32,sp // Parameter: r address
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- setf.exp FR_Two_to_M3 = GR_exp_2_to_m3 // Form 2^-3
- mov GR_SAVE_GP=gp // Save gp
+ stfe [r45] = f0,16 // Clear Parameter r on stack
+ add r44 = 16,sp // Parameter x address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
-//
-// Call argument reduction with x in f8
-// Returns with N in r8, r in f8, c in f9
-// Assumes f71-127 are preserved across the call
-//
{ .mib
- setf.exp FR_Neg_Two_to_M3 = GR_exp_m2_to_m3 // Form -(2^-3)
+ stfe [r45] = f0,-16 // Clear Parameter c on stack
+ nop.i 0
+ nop.b 0
+}
+{ .mib
+ stfe [r44] = FR_Input_X // Store Parameter x on stack
nop.i 0
- br.call.sptk b0=__libm_pi_by_2_reduce#
+(p0) br.call.sptk b0=__libm_pi_by_2_reduce# ;;
};;
-
+{ .mii
+(p0) ldfe FR_Input_X =[r44],16
+//
+// Get r and c off stack
+//
+(p0) adds GR_Table_Base1 = -16, GR_Table_Base1
+//
+// Get r and c off stack
+//
+(p0) add GR_N_Inc = GR_Sin_or_Cos,r8 ;;
+}
+{ .mmb
+(p0) ldfe FR_r =[r45],16
+//
+// Get X off the stack
+// Readjust Table ptr
+//
+(p0) ldfs FR_Two_to_M3 = [GR_Table_Base1],4
+ nop.b 999 ;;
+}
+{ .mmb
+(p0) ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1],0
+(p0) ldfe FR_c =[r45]
+ nop.b 999 ;;
+}
{ .mfi
- add GR_N_Inc = GR_Sin_or_Cos,r8
- fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+(p0) fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
-{ .mfi
+{ .mib
mov gp = GR_SAVE_GP // Restore gp
-(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ nop.b 0
};;
-
-{ .mbb
- nop.m 999
-(p6) br.cond.spnt SINCOSL_SMALL_R // Branch if |r|< 2^-3 for |x| >= 2^63
- br.cond.sptk SINCOSL_NORMAL_R // Branch if |r|>=2^-3 for |x| >= 2^63
-};;
-
-LOCAL_LIBM_END(__libm_callout)
+{ .mfi
+ nop.m 999
+(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(SINCOSL_SMALL_R) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p0) br.cond.sptk L(SINCOSL_NORMAL_R) ;;
+}
+.endp __libm_callout
+ASM_SIZE_DIRECTIVE(__libm_callout)
.type __libm_pi_by_2_reduce#,@function
.global __libm_pi_by_2_reduce#
diff --git a/sysdeps/ia64/fpu/s_erf.S b/sysdeps/ia64/fpu/s_erf.S
deleted file mode 100644
index 7174a197fb..0000000000
--- a/sysdeps/ia64/fpu/s_erf.S
+++ /dev/null
@@ -1,926 +0,0 @@
-.file "erf.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/15/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// double erf(double)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-//
-// There are 9 paths:
-// 1. x = +/-0.0
-// Return erf(x) = +/-0.0
-//
-// 2. 0.0 < |x| < 0.5
-// Return erf(x) = x *Pol9(x^2)
-//
-// 3. For several subranges of 0.5 <= |x| < 5.90625
-// Return erf(x) = sign(x)*Pol19(y),
-// where y = (|x|-b)/a, Pol19(y) = A0 + A1*y^1 + A2*y^2 + ... + A19*y^19
-//
-// For each subrange there is particular set of coefficients.
-// Below is the list of subranges:
-// 3.1 0.5 <= |x| < 1.0 b = a = 0.5
-// 3.2 1.0 <= |x| < 2.0, b = a = 1.0
-// 3.3 2.0 <= |x| < 3.25 b = a = 2.0
-// 3.4 4.0 <= |x| < 5.90625 b = 4.0, a = 2.0
-//
-// 4. 3.25 <= |x| < 4.0
-// Return erf(x) = sign(x)*Pol14(|x| - 3.25)
-//
-// 5. 5.90625 <= |x| < +INF
-// Return erf(x) = sign(x)*(1.0d - 2^(-63))
-//
-// 6. |x| = INF
-// Return erf(x) = sign(x) * 1.0
-//
-// 7. x = [S,Q]NaN
-// Return erf(x) = QNaN
-//
-// 8. x is positive denormal
-// Return erf(x) = A0*x - x^2,
-// where A0 = 2.0/sqrt(Pi)
-//
-// 9. x is negative denormal
-// Return erf(x) = A0*x + x^2,
-// where A0 = 2.0/sqrt(Pi)
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f32 -> f63
-
-// General registers used:
-// r32 -> r48, r2, r3
-
-// Predicate registers used:
-// p0, p6 -> p15
-
-// p6 to filter out case when x = denormal
-// p7 to filter out case when x = [Q,S]NaN or +/-0,
-// used also to process denormals
-// p8 to filter out case when 3.25 <= |x| < 4.0,
-// used also to process denormals
-// p9 to filter out case when |x| = inf
-// p10 to filter out case when |x| < 0.5
-// p11 set when |x| < 3.25 or |x| > 4.0
-// p12 to filter out case when |x| >= 5.90625
-// p13 set if 4.0 <=|x| < 5.90625
-// p14 set to 1 for positive x
-// p15 set to 1 for negative x
-
-// Assembly macros
-//==============================================================
-rDataPtr = r2
-rDataPtr1 = r3
-
-rBias = r33
-rCoeffAddr3 = r34
-rThreeAndQ = r35
-rCoeffAddr2 = r36
-rMask = r37
-rArg = r38
-rSignBit = r39
-rAbsArg = r40
-rSaturation = r41
-rIndex = r42
-rCoeffAddr1 = r43
-rCoeffAddr4 = r44
-rShiftedArg = r45
-rShiftedArgMasked = r46
-rBiasedExpOf4 = r47
-rShiftedAbsArg = r48
-
-//==============================================================
-fA0 = f32
-fA1 = f33
-fA2 = f34
-fA3 = f35
-fA4 = f36
-fA5 = f37
-fA6 = f38
-fA7 = f39
-fA8 = f40
-fA9 = f41
-fA10 = f42
-fA11 = f43
-fA12 = f44
-fA13 = f45
-fA14 = f46
-fA15 = f47
-fA16 = f48
-fA17 = f49
-fA18 = f50
-fA19 = f51
-fArgSqr = f52
-fArgAbsNorm = f53
-fSignumX = f54
-fRes = f55
-fThreeAndQ = f56
-fArgAbs = f57
-fTSqr = f58
-fTQuadr = f59
-fTDeg3 = f60
-fTDeg7 = f61
-fArgAbsNormSgn = f62
-fTQuadrSgn = f63
-
-// Data tables
-//==============================================================
-RODATA
-
-.align 64
-
-LOCAL_OBJECT_START(erf_data)
-// Coefficients ##0..15
-// Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
-data8 0xB69AC40646D1F6C1, 0x00003FD2 //A19
-data8 0x90AD48C0118FA10C, 0x00003FD7 //A18
-data8 0x826FBAD055EA4AB8, 0x0000BFDB //A17
-data8 0x8DAB171246CC2B89, 0x00003FDC //A16
-data8 0xC0B1D6662F8A7564, 0x00003FDF //A15
-data8 0xA46374AC35099BAF, 0x0000BFE1 //A14
-data8 0xB2F230996346EF27, 0x0000BFE4 //A13
-data8 0xCDEC50950FACE04A, 0x00003FE6 //A12
-data8 0x826014649396E9D2, 0x00003FE9 //A11
-data8 0xCDB787DC718B13F9, 0x0000BFEB //A10
-data8 0x8E0B23C24EE0C8EE, 0x0000BFED //A9
-data8 0xA49EA40A4E5A3F76, 0x00003FF0 //A8
-data8 0xB11E30BE912617D3, 0x00003FF0 //A7
-data8 0xCCF89D9351CE26E3, 0x0000BFF4 //A6
-data8 0xEFF75AD1F0F22809, 0x00003FF2 //A5
-data8 0xBB793EF404C09A22, 0x00003FF8 //A4
-// Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
-data8 0xBAE93FF4174EA59B, 0x00003FE6 //A19
-data8 0x8A0FD46092F95D44, 0x0000BFEA //A18
-data8 0xA37B3242B7809E12, 0x00003FEC //A17
-data8 0xA0330A5CD2E91689, 0x0000BFED //A16
-data8 0x8E34A678F3497D17, 0x0000BFEC //A15
-data8 0xAC185D45A2772384, 0x00003FEF //A14
-data8 0xB0C11347CE7EEDE8, 0x00003FEF //A13
-data8 0xD3330DC14EA0E4EB, 0x0000BFF2 //A12
-data8 0xB4A6DFDE578A428F, 0x00003FF1 //A11
-data8 0xA0B4034310D2D9CB, 0x00003FF5 //A10
-data8 0xF71662D3132B7759, 0x0000BFF5 //A9
-data8 0x9C88BF157695E9EC, 0x0000BFF7 //A8
-data8 0xF84B80EFCA43895D, 0x00003FF8 //A7
-data8 0x9722D22DA628A17B, 0x00003FF7 //A6
-data8 0x8DB0A586F8F3381F, 0x0000BFFB //A5
-data8 0x8DB0A5879F87E5BE, 0x00003FFB //A4
-// Polynomial coefficients for the erf(x), 2.0 <= |x| < 3.25
-data8 0x9C4AF1F3A4B21AFC, 0x00003FF6 //A19
-data8 0x8D40D5D5DB741AB8, 0x0000BFF9 //A18
-data8 0xDEBE7099E0A75BA4, 0x00003FFA //A17
-data8 0xB99A33294D32429D, 0x0000BFFB //A16
-data8 0x8109D9C7197BC7C9, 0x00003FFB //A15
-data8 0xC30DE8E2EFC2D760, 0x00003FFA //A14
-data8 0x80DDA28C5B35DC73, 0x0000BFFC //A13
-data8 0x9BE4DE5095BACE0D, 0x00003FF9 //A12
-data8 0xDA4092509EE7D111, 0x00003FFC //A11
-data8 0x89D98C561B0C9040, 0x0000BFFD //A10
-data8 0xD20B26EB2F0881D4, 0x0000BFF9 //A9
-data8 0xD089C56948731561, 0x00003FFD //A8
-data8 0xDD704DEFFB21B7E7, 0x0000BFFD //A7
-data8 0xF0C9A6BBDE469115, 0x00003FF9 //A6
-data8 0xD673A02CB5766633, 0x00003FFD //A5
-data8 0x8D162CBAD8A12649, 0x0000BFFE //A4
-// Polynomial coefficients for the erf(x), 4.0 <= |x| < 6.0
-data8 0xD4428B75C6FE8FD1, 0x0000BFFC //A19
-data8 0xF76BE1935675D5C8, 0x00003FFE //A18
-data8 0xFD6BB3B14AA7A8E6, 0x0000BFFF //A17
-data8 0x8BE8F573D348DDA4, 0x00004000 //A16
-data8 0x81E91923A1030502, 0x0000BFFF //A15
-data8 0xCE7FE87B26CFD286, 0x0000BFFE //A14
-data8 0x84EF6B4E17404384, 0x00004000 //A13
-data8 0x91FEF33015404991, 0x0000C000 //A12
-data8 0xDEDF6A9370747E56, 0x00003FFF //A11
-data8 0x8397E6FF56CDFD9D, 0x0000BFFF //A10
-data8 0xFAD1CE912473937B, 0x00003FFD //A9
-data8 0xC48C1EA8AAA624EA, 0x0000BFFC //A8
-data8 0xFECAF0097ACF981B, 0x00003FFA //A7
-data8 0x8829A394065E4B95, 0x0000BFF9 //A6
-data8 0xED3003E477A53EE7, 0x00003FF6 //A5
-data8 0xA4C07E9BB3FCB0F3, 0x0000BFF4 //A4
-//
-// Coefficients ##16..19
-// Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
-data8 0x95FA98C337005D13, 0x0000BFF9 //A3
-data8 0xE0F7E524D2808A97, 0x0000BFFB //A2
-data8 0xE0F7E524D2808A98, 0x00003FFD //A1
-data8 0x853F7AE0C76E915F, 0x00003FFE //A0
-// Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
-data8 0x8DB0A587A96ABCF0, 0x00003FFC //A3
-data8 0xD488F84B7DE18DA8, 0x0000BFFD //A2
-data8 0xD488F84B7DE12E9C, 0x00003FFD //A1
-data8 0xD7BB3D3A08445636, 0x00003FFE //A0
-// Polynomial coefficients for the erf(x), 2.0 <= |x| < 3.25
-data8 0xC58571D23D5C4B3A, 0x00003FFD //A3
-data8 0xA94DCF467CD6AFF3, 0x0000BFFC //A2
-data8 0xA94DCF467CD10A16, 0x00003FFA //A1
-data8 0xFECD70A13CAF1997, 0x00003FFE //A0
-// Polynomial coefficients for the erf(x), 4.0 <= |x| < 6.0
-data8 0xB01D2B4F0D5AB8B0, 0x00003FF1 //A3
-data8 0x8858A465CE594BD1, 0x0000BFEE //A2
-data8 0x8858A447456DE61D, 0x00003FEA //A1
-data8 0xFFFFFFBDC88BB107, 0x00003FFE //A0
-// Polynomial coefficients for the erf(x), 0.0 <= |x| < 0.5
-data8 0xBE839EDBB36C7FCE //A9
-data8 0x3EBB7745A18DD242 //A8
-data8 0xBF4C02DB238F2AFC //A5
-data8 0x3F7565BCD0A9A3EA //A4
-data8 0xC093A3581BCF3333, 0x0000BFFD //A1
-data8 0xBEEF4BB82AD8AE22 //A7
-data8 0x3F1F9A2A57A218CD //A6
-data8 0xBF9B82CE3127F4E4 //A3
-data8 0x3FBCE2F21A042B25 //A2
-data8 0x906EBA8214DB688D, 0x00003FFF //A0
-// 1.0 - 2^(-63)
-data8 0xFFFFFFFFFFFFFFFF, 0x00003FFE
-// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4.0
-data8 0x95E91576C7A12250, 0x00003FE7 //A14
-data8 0x8E5E0D0E1F5D3CB5, 0x0000BFEA //A13
-data8 0xED761DAFAF814DE9, 0x00003FEB //A12
-data8 0xB3A77D921D0ACFC7, 0x0000BFEC //A11
-data8 0xA662D27096B08D7C, 0x0000BFEC //A10
-data8 0xDA0F410AE6233EA5, 0x00003FEF //A9
-data8 0xAB4A8B16B3124327, 0x0000BFF1 //A8
-data8 0xB241E236A5EDCED3, 0x00003FF2 //A7
-data8 0x8A2A65BA1F551F77, 0x0000BFF3 //A6
-data8 0xA4852D0B1D87000A, 0x00003FF3 //A5
-data8 0x963EB00039489476, 0x0000BFF3 //A4
-data8 0xCD5244FF4F7313A5, 0x00003FF2 //A3
-data8 0xC6F1E695363BCB26, 0x0000BFF1 //A2
-data8 0xF4DAF4680DA54C02, 0x00003FEF //A1
-data8 0xFFFFB7CFB3F2ABBE, 0x00003FFE //A0
-// A = 2.0/sqrt(Pi)
-data8 0x906EBA8214DB688D, 0x00003FFF
-LOCAL_OBJECT_END(erf_data)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(erf)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 17, 0, 0
- fmerge.se fArgAbsNorm = f1, f8 // normalized x
- adds rSignBit = 0x1, r0
-}
-{ .mfi
- addl rDataPtr = @ltoff(erf_data), gp
- fma.s1 fArgSqr = f8, f8, f0 // x^2
- addl rThreeAndQ = 0x400A0, r0 // shifted bits of 3.25
-}
-;;
-{ .mfi
- getf.d rArg = f8 // x in GR
- fclass.m p6,p0 = f8, 0x0b // is x denormal ?
- shl rThreeAndQ = rThreeAndQ, 44 // bits of 3.25
-}
-{ .mfi
- ld8 rDataPtr = [rDataPtr]
- nop.f 0
- addl rBiasedExpOf4 = 0x40100, r0 // shifted bits of 4.0
-}
-;;
-{ .mfi
- addl rSaturation = 0x4017A, r0 // shifted bits of 5.90625
- fclass.m p7,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ?
- shl rSignBit = rSignBit, 63 // mask for sign bit
-}
-{ .mfi
- addl rMask = 0x7FF00, r0 // Mask for index bits
- nop.f 0
- addl rBias = 0x3FE00, r0 // bias of 0.5 << 8
-}
-;;
-{ .mfi
- setf.d fThreeAndQ = rThreeAndQ // 3.25 if FP register
- fclass.m p9,p0 = f8, 0x23 // is x +/- inf?
- shr.u rShiftedArg = rArg, 44
-}
-{ .mfb
- andcm rAbsArg = rArg, rSignBit // |x| in GR
- nop.f 0
-(p6) br.cond.spnt erf_denormal // branch out if x is denormal
-}
-;;
-{ .mfi
- and rShiftedArgMasked = rShiftedArg, rMask // bias of x << 8
- fmerge.s fArgAbs = f1, f8 // |x|
- shr rShiftedAbsArg = rAbsArg, 44
-}
-{ .mfb
- cmp.lt p8, p11 = rThreeAndQ, rAbsArg // p8 = 1 if |x| >= 3.25
-(p7) fma.d.s0 f8 = f8,f1,f8 // NaN or +/-0
-(p7) br.ret.spnt b0 // exit for x = NaN or +/-0
-}
-;;
-{ .mfi
- sub rIndex = rShiftedArgMasked, rBias // index << 8
- nop.f 0
- cmp.lt p10, p0 = rShiftedArgMasked, rBias // p10 = 1 if |x| < 0.5
-}
-{ .mfb
- // p8 = 1 if 3.25 <= |x| < 4.0
-(p8) cmp.lt p8, p11 = rShiftedAbsArg, rBiasedExpOf4
- fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f1
-(p10) br.cond.spnt erf_near_zero // branch out if |x| < 0.5
-}
-;;
-.pred.rel "mutex", p8, p11
-{ .mfi
-(p8) adds rCoeffAddr1 = 1392, rDataPtr // coeff. for 3.25 <=|x|<4.0
-(p9) fmerge.s f8 = f8,f1 // +/- inf
- nop.i 0
-}
-{ .mfb
-(p11) add rCoeffAddr1 = rDataPtr, rIndex// coeff. ##0,2,..14
- nop.f 0
-(p9) br.ret.spnt b0 // exit for x = +/- inf
-}
-;;
-{ .mfi
- adds rCoeffAddr2 = 16, rCoeffAddr1
- fmerge.s fSignumX = f8, f1 // signum(x)
- nop.i 0
-}
-{ .mfb
- cmp.lt p12, p0 = rSaturation, rShiftedAbsArg // |x| > 5.90625?
- nop.f 0
-(p12) br.cond.spnt erf_saturation // branch out if x |x| >= 6.0
-}
-;;
-// Here if paths #3,4
-// if path #4 we'll branch out after loading of 14 necessary coefficients
-{.mfi
- ldfe fA19 = [rCoeffAddr1], 32
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA18 = [rCoeffAddr2], 32
- nop.f 0
- adds rCoeffAddr3 = 1024, rDataPtr
-}
-;;
-{.mfi
- ldfe fA17 = [rCoeffAddr1], 32
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA16 = [rCoeffAddr2], 32
- nop.f 0
- nop.i 0
-}
-;;
-{.mfi
- ldfe fA15 = [rCoeffAddr1], 32
- fma.s1 fTSqr = fArgAbsNorm, fArgAbsNorm, f0
- shr.u rIndex = rIndex, 2
-}
-{.mfi
- ldfe fA14 = [rCoeffAddr2], 32
- nop.f 0
- adds rCoeffAddr4 = 16, r0
-}
-;;
-{.mfi
- ldfe fA13 = [rCoeffAddr1], 32
- nop.f 0
- // address of coefficients ##16..23
- add rCoeffAddr3 = rCoeffAddr3, rIndex
-}
-{.mfi
- ldfe fA12 = [rCoeffAddr2], 32
- nop.f 0
- cmp.lt p15, p14 = rArg, r0
-}
-;;
-{.mfi
- ldfe fA11 = [rCoeffAddr1], 32
- nop.f 0
- add rCoeffAddr4 = rCoeffAddr3, rCoeffAddr4
-}
-{.mfi
- ldfe fA10 = [rCoeffAddr2], 32
- nop.f 0
- nop.i 0
-}
-;;
-{.mfi
- ldfe fA9 = [rCoeffAddr1], 32
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA8 = [rCoeffAddr2], 32
- nop.f 0
- nop.i 0
-}
-;;
-{.mfi
- ldfe fA7 = [rCoeffAddr1], 32
- fms.s1 fArgAbs = fArgAbs, f1, fThreeAndQ
- nop.i 0
-}
-{.mfb
- ldfe fA6 = [rCoeffAddr2], 32
- nop.f 0
-(p8) br.cond.spnt erf_3q_4 // branch out if 3.25 < |x| < 4.0
-}
-;;
-{.mfi
- ldfe fA5 = [rCoeffAddr1], 32
- fma.s1 fTDeg3 = fArgAbsNorm, fTSqr, f0
- nop.i 0
-}
-{.mfi
- ldfe fA4 = [rCoeffAddr2], 32
- fma.s1 fTQuadr = fTSqr, fTSqr, f0
- nop.i 0
-}
-;;
-// Path #3 Polynomial Pol19(y) computation; y = fArgAbsNorm
-{.mfi
- ldfe fA3 = [rCoeffAddr3], 32
- fma.s1 fArgAbsNormSgn = fArgAbsNorm, fSignumX, f0
- nop.i 0
-}
-{.mfi
- ldfe fA2 = [rCoeffAddr4], 32
- nop.f 0
- nop.i 0
-}
-;;
-{.mfi
- ldfe fA1 = [rCoeffAddr3], 32
- fma.s1 fRes = fA19, fArgAbsNorm, fA18
- nop.i 0
-}
-{.mfi
- ldfe fA0 = [rCoeffAddr4], 32
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fArgAbsNorm, fA16
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fArgAbsNorm, fA14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fTDeg7 = fTDeg3, fTQuadr, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, fArgAbsNorm, fA12
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fArgAbsNorm, fA10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fArgAbsNorm, fA8
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA17
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fArgAbsNorm, fA6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, fArgAbsNorm, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fTSqr, fA13
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA4, fArgAbsNorm, fA3
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA2 = fA2, fArgAbsNorm, fA1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fTSqr, fA9
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fTSqr, fA5
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTQuadr, fA15
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA4, fTSqr, fA2
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTQuadr, fA11
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA7, fTDeg3, fA4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTDeg7, fA4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // result for negative argument
-(p15) fms.d.s0 f8 = fRes, fArgAbsNormSgn, fA0
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // result for positive argument
-(p14) fma.d.s0 f8 = fRes, fArgAbsNormSgn, fA0
- br.ret.sptk b0
-}
-
-// Here if 3.25 < |x| < 4.0
-.align 32
-erf_3q_4:
-.pred.rel "mutex", p14, p15
-{ .mfi
- ldfe fA5 = [rCoeffAddr1], 32
- fma.s1 fTSqr = fArgAbs, fArgAbs, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fRes = fA19, fArgAbs, fA18
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fArgAbs, fA16
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fArgAbs, fA14
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, fArgAbs, fA12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fArgAbs, fA10
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fArgAbs, fA8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fArgAbsNormSgn = fArgAbs, fSignumX, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fTQuadr = fTSqr, fTSqr, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA17
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fTSqr, fA13
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fTSqr, fA9
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fArgAbs, fA6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fTDeg7 = fTQuadr, fTSqr, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTQuadr, fA15
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fTSqr, fA7
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTDeg7, fA11
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- // result for negative argument
-(p15) fms.d.s0 f8 = fRes, fArgAbsNormSgn, fA5
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // result for positive argument
-(p14) fma.d.s0 f8 = fRes, fArgAbsNormSgn, fA5
- br.ret.sptk b0
-}
-;;
-
-// Here if |x| < 0.5
-.align 32
-erf_near_zero:
-{ .mfi
- adds rCoeffAddr1 = 1280, rDataPtr // address of A9
- fma.s1 fTSqr = fArgSqr, fArgSqr, f0 // x^4
- nop.i 0
-}
-{ .mfi
- adds rCoeffAddr2 = 1328, rDataPtr // address of A7
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA9, fA8 = [rCoeffAddr1], 16
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA7, fA6 = [rCoeffAddr2], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfpd fA5, fA4 = [rCoeffAddr1], 16
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA3, fA2 = [rCoeffAddr2], 16
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA1 = [rCoeffAddr1]
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe fA0 = [rCoeffAddr2]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fTQuadr = fTSqr, fTSqr, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fA9, fArgSqr, fA8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fArgSqr, fA6
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA3, fArgSqr, fA2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, fArgSqr, fA4
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA1 = fA1, fArgSqr, fA0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fTQuadrSgn = fTQuadr, f8, f0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA7
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA1 = fA3, fTSqr, fA1
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA5
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA1 = fA1, f8, f0
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fRes, fTQuadrSgn, fA1 // x*Pol9(x^2)
- br.ret.sptk b0 // Exit for |x| < 0.5
-};;
-
-// Here if 5.90625 <= |x| < +inf
-.align 32
-erf_saturation:
-{ .mfi
- adds rDataPtr = 1376, rDataPtr // address of A0
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA0 = [rDataPtr]
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0 - 2^(-63))
- // Exit for 5.90625 <= |x| < +inf
- br.ret.sptk b0 // Exit for 5.90625 <=|x|< +inf
-}
-;;
-
-// Here if x is double precision denormal
-.align 32
-erf_denormal:
-{ .mfi
- adds rDataPtr = 1632, rDataPtr // address of A0
- fclass.m p7,p8 = f8, 0x0a // is x -denormal ?
- nop.i 0
-}
-;;
-{ .mfi
- ldfe fA0 = [rDataPtr] // A0
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fA0 = fA0,f8,f0 // A0*x
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = f8,f8,fA0 // -denormal
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p8) fnma.d.s0 f8 = f8,f8,fA0 // +denormal
- br.ret.sptk b0 // Exit for denormal
-}
-;;
-
-GLOBAL_LIBM_END(erf)
-
-
diff --git a/sysdeps/ia64/fpu/s_erfc.S b/sysdeps/ia64/fpu/s_erfc.S
deleted file mode 100644
index addfef44c2..0000000000
--- a/sysdeps/ia64/fpu/s_erfc.S
+++ /dev/null
@@ -1,1199 +0,0 @@
-.file "erfc.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 11/12/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// double erfc(double)
-//
-// Overview of operation
-//==============================================================
-// 1. 0 <= x <= 28.0
-//
-// erfc(x) = P14(z) * exp( -x^2 ), z = x - x(i).
-//
-// Comment:
-//
-// Let x(i) = -1.0 + 2^(i/4),i=0,...19. So we have 20 unequal
-// argument intervals [x(i),x(i+1)] with length ratio q = 2^(1/4).
-// Values x(i) we have in the table erfc_xb_table.
-//
-// Let x(i)<= x < x(i+1).
-// We can find i as exponent of number (x + 1)^4.
-//
-// Let P14(z) - polynomial approximation of degree 14 for function
-// erfc(z+x(i)) * exp( (z+x(i))^2) and 0 <= z <= x(i+1)-x(i).
-// Polynomial coeffitients we have in the table erfc_p_table.
-//
-// So we can find result for erfc(x) as above.
-// Algorithm description for exp function see below.
-//
-// 2. -6 <= x < 0
-//
-// erfc(x) = 2.0 - erfc(-x)
-//
-// 3. x > 28.0
-// erfc(x) ~=~ 0.0
-//
-// 4. x < -6.0
-// erfc(x) ~=~ 2.0
-
-// Special values
-//==============================================================
-// erfc(+0) = 1.0
-// erfc(-0) = 1.0
-
-// erfc(+qnan) = +qnan
-// erfc(-qnan) = -qnan
-// erfc(+snan) = +qnan
-// erfc(-snan) = -qnan
-
-// erfc(-inf) = 2.0
-// erfc(+inf) = +0
-
-//==============================================================
-// Take double exp(double) from libm_64.
-//
-// Overview of operation
-//==============================================================
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 128/log2
-// n = int(w)
-// x = n log2/128 + r + delta
-
-// n = 128M + index_1 + 2^4 index_2
-// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
-
-// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
-// Construct 2^M
-// Get 2^(index_1/128) from table_1;
-// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by series
-// r = x - n (log2/128)_high
-// delta = - n (log2/128)_low
-// Calculate exp(delta) as 1 + delta
-//==============================================================
-// Comment for exp for erfc:
-//
-// We use quad precision for calculate input argument -x^2 and add
-// result low bits to value delta in exp.
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f15, f32 -> f93
-
-// General registers used:
-// r32 -> r68
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//==============================================================
-
-exp_GR_rshf = r33
-EXP_AD_TB1 = r34
-EXP_AD_TB2 = r35
-EXP_AD_P = r36
-exp_GR_N = r37
-exp_GR_index_1 = r38
-exp_GR_index_2_16 = r39
-exp_GR_biased_M = r40
-EXP_AD_T1 = r41
-EXP_AD_T2 = r42
-exp_GR_sig_inv_ln2 = r43
-exp_GR_17ones = r44
-exp_TB1_size = r45
-exp_TB2_size = r46
-exp_GR_rshf_2to56 = r47
-exp_GR_exp_2tom56 = r48
-
-// GR for erfc(x)
-//==============================================================
-GR_POS_ARG_ASYMP = r49
-GR_NEG_ARG_ASYMP = r50
-GR_ARG_ASYMP = r51
-GR_ERFC_XB_TB = r52
-GR_ERFC_P_TB = r53
-GR_IndxPlusBias = r54
-GR_BIAS = r55
-GR_P_A12 = r56
-GR_P_A13 = r57
-GR_AbsArg = r58
-GR_ShftXBi = r59
-GR_ShftPi = r60
-GR_mBIAS = r61
-GR_ShftPi_bias = r62
-GR_ShftXBi_bias = r63
-GR_ShftA12 = r64
-GR_ShftA13 = r65
-GR_EpsNorm = r66
-GR_0x1 = r67
-GR_ShftPi_8 = r68
-
-// GR for __libm_support call
-
-//==============================================================
-
-GR_SAVE_B0 = r61
-GR_SAVE_PFS = r62
-GR_SAVE_GP = r63
-GR_SAVE_SP = r64
-
-GR_Parameter_X = r65
-GR_Parameter_Y = r66
-GR_Parameter_RESULT = r67
-GR_Parameter_TAG = r68
-
-
-// FR for exp(-x^2)
-//==============================================================
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-EXP_2TOM56 = f6
-EXP_INV_LN2_2TO63 = f7
-EXP_W_2TO56_RSH = f9
-EXP_RSHF_2TO56 = f10
-
-exp_P4 = f11
-exp_P3 = f12
-exp_P2 = f13
-exp_P1 = f14
-exp_ln2_by_128_hi = f15
-
-exp_ln2_by_128_lo = f32
-EXP_RSHF = f33
-EXP_Nfloat = f34
-exp_r = f35
-exp_f = f36
-exp_rsq = f37
-exp_rcube = f38
-EXP_2M = f39
-exp_S1 = f40
-exp_T1 = f41
-exp_rP4pP3 = f42
-exp_P_lo = f43
-exp_P_hi = f44
-exp_P = f45
-exp_S = f46
-EXP_NORM_f8 = f47
-exp_S2 = f48
-exp_T2 = f49
-
-// FR for erfc(x)
-//==============================================================
-FR_AbsArg = f50
-FR_Tmp = f51
-FR_Xb = f52
-FR_A0 = f53
-FR_A1 = f54
-FR_A2 = f55
-FR_A3 = f56
-FR_A4 = f57
-FR_A5 = f58
-FR_A6 = f59
-FR_A7 = f60
-FR_A8 = f61
-FR_A9 = f62
-FR_A10 = f63
-FR_A11 = f64
-FR_A12 = f65
-FR_A13 = f66
-FR_A14 = f67
-
-FR_P14_0_1 = f68
-FR_P14_0_2 = f69
-FR_P14_1_1 = f70
-FR_P14_1_2 = f71
-FR_P14_2_1 = f72
-FR_P14_2_2 = f73
-FR_P14_3_1 = f74
-FR_P14_3_2 = f75
-FR_P14_6_1 = f76
-
-FR_P14_7_1 = f77
-FR_P14_7_2 = f78
-FR_P14_8_1 = f79
-FR_P14_8_2 = f80
-FR_P14_12_1 = f81
-FR_P14_13_1 = f82
-FR_P14_13_2 = f83
-FR_Pol = f84
-FR_Exp = f85
-FR_2 = f86
-f8_sq_lo = f87
-FR_LocArg = f88
-FR_Tmpf = f89
-FR_Tmp1 = f90
-FR_EpsNorm = f91
-FR_UnfBound = f92
-FR_NormX = f93
-
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-LOCAL_OBJECT_START(exp_table_1)
-
-data8 0x403a8b12fc6e4892 , 0 // underflow boundary
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_table_2)
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
-
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P_4
-data8 0x3fa55555d787761c //P_3
-data8 0x3fc5555555555414 //P_2
-data8 0x3fdffffffffffd6a //P_1
-LOCAL_OBJECT_END(exp_p_table)
-
-LOCAL_OBJECT_START(erfc_xb_table)
-data8 0x0000000000000000, 0x00000000 //XB[0] = +0.00000000000000000000e-01L
-data8 0xC1BF828C6DC54B7A, 0x00003FFC //XB[1] = +1.89207115002721066717e-01L
-data8 0xD413CCCFE7799211, 0x00003FFD //XB[2] = +4.14213562373095048802e-01L
-data8 0xAE89F995AD3AD5E8, 0x00003FFE //XB[3] = +6.81792830507429086062e-01L
-data8 0x8000000000000000, 0x00003FFF //XB[4] = +1.00000000000000000000e+00L
-data8 0xB06FE0A31B7152DF, 0x00003FFF //XB[5] = +1.37841423000544213343e+00L
-data8 0xEA09E667F3BCC909, 0x00003FFF //XB[6] = +1.82842712474619009760e+00L
-data8 0x9744FCCAD69D6AF4, 0x00004000 //XB[7] = +2.36358566101485817212e+00L
-data8 0xC000000000000000, 0x00004000 //XB[8] = +3.00000000000000000000e+00L
-data8 0xF06FE0A31B7152DF, 0x00004000 //XB[9] = +3.75682846001088426687e+00L
-data8 0x9504F333F9DE6484, 0x00004001 //XB[10] = +4.65685424949238019521e+00L
-data8 0xB744FCCAD69D6AF4, 0x00004001 //XB[11] = +5.72717132202971634425e+00L
-data8 0xE000000000000000, 0x00004001 //XB[12] = +7.00000000000000000000e+00L
-data8 0x8837F0518DB8A96F, 0x00004002 //XB[13] = +8.51365692002176853374e+00L
-data8 0xA504F333F9DE6484, 0x00004002 //XB[14] = +1.03137084989847603904e+01L
-data8 0xC744FCCAD69D6AF4, 0x00004002 //XB[15] = +1.24543426440594326885e+01L
-data8 0xF000000000000000, 0x00004002 //XB[16] = +1.50000000000000000000e+01L
-data8 0x9037F0518DB8A96F, 0x00004003 //XB[17] = +1.80273138400435370675e+01L
-data8 0xAD04F333F9DE6484, 0x00004003 //XB[18] = +2.16274169979695207808e+01L
-data8 0xCF44FCCAD69D6AF4, 0x00004003 //XB[19] = +2.59086852881188653770e+01L
-LOCAL_OBJECT_END(erfc_xb_table)
-
-LOCAL_OBJECT_START(erfc_p_table)
-
-// Pol0
-data8 0x8000000000000000, 0x00003FFF //A0 = +1.00000000000000000000e+00L
-data8 0x906EBA8214DB688D, 0x0000BFFF //A1 = -1.12837916709551257389e+00L
-data8 0xFFFFFFFFFFFFFFEB, 0x00003FFE //A2 = +9.99999999999999998841e-01L
-data8 0xC093A3581BCF2925, 0x0000BFFE //A3 = -7.52252778063674869885e-01L
-data8 0xFFFFFFFFFFF7CDBD, 0x00003FFD //A4 = +4.99999999999985440383e-01L
-data8 0x9A0FB5E014AE3EFB, 0x0000BFFD //A5 = -3.00901111224757482205e-01L
-data8 0xAAAAAAAA4672B0BD, 0x00003FFC //A6 = +1.66666666643879582201e-01L
-data8 0xB011F45C9F590FC0, 0x0000BFFB //A7 = -8.59717455640916223912e-02L
-data8 0xAAAAA89474161033, 0x00003FFA //A8 = +4.16666588928413935202e-02L
-data8 0x9C818E2CE37D4214, 0x0000BFF9 //A9 = -1.91047455656271634308e-02L
-data8 0x8885969315AB76A1, 0x00003FF8 //A10 = +8.33263115449753085659e-03L
-data8 0xE36112A686F5165B, 0x0000BFF6 //A11 = -3.46953111013788405745e-03L
-data8 0xB3DD6B2DB3307D2E, 0x00003FF5 //A12 = +1.37226041156280127011e-03L
-data8 0x8018A34267FED226, 0x0000BFF4 //A13 = -4.88648380816410282971e-04L
-data8 0xFBBA6A7AEBD3ABD9, 0x00003FF1 //A14 = +1.20033353451879025825e-04L
-// Pol1
-data8 0xD15A1EF03BB91E71, 0x00003FFE //A0 = +8.17781385088640600540e-01L
-data8 0xD1A4ADDAC3337118, 0x0000BFFE //A1 = -8.18919053944410683867e-01L
-data8 0xA9AF9FFA2AD18CB0, 0x00003FFE //A2 = +6.62836073471060947628e-01L
-data8 0xECB77514F0F151B3, 0x0000BFFD //A3 = -4.62337168508812580002e-01L
-data8 0x934AB35EA5CD5EEB, 0x00003FFD //A4 = +2.87679295829458273854e-01L
-data8 0xA71410A68C1EF21C, 0x0000BFFC //A5 = -1.63162479558223113104e-01L
-data8 0xAF506A335238094A, 0x00003FFB //A6 = +8.56025978958108330224e-02L
-data8 0xABFDF67F968765A7, 0x0000BFFA //A7 = -4.19902447551140139048e-02L
-data8 0x9F0B0165A6CDCA99, 0x00003FF9 //A8 = +1.94144274984979538382e-02L
-data8 0x8B8197BFC346CDEA, 0x0000BFF8 //A9 = -8.51478404279186775501e-03L
-data8 0xE950D763FE51AB1E, 0x00003FF6 //A10 = +3.56011637267641495904e-03L
-data8 0xBA821A59FC05FBAD, 0x0000BFF5 //A11 = -1.42294475244146555952e-03L
-data8 0x8D535042E11A0D89, 0x00003FF4 //A12 = +5.39113782651680545599e-04L
-data8 0xBE589447DB26564E, 0x0000BFF2 //A13 = -1.81528103431449706486e-04L
-data8 0xABC8C7EF636F5B0A, 0x00003FF0 //A14 = +4.09565689009869217620e-05L
-// Pol2
-data8 0xA9973ABB272898B2, 0x00003FFE //A0 = +6.62463827792779356910e-01L
-data8 0x945F1A7993F7AADD, 0x0000BFFE //A1 = -5.79576162988785154930e-01L
-data8 0xD84439C6609A8A62, 0x00003FFD //A2 = +4.22395520654665085222e-01L
-data8 0x8A1BBAA7E9CB8C52, 0x0000BFFD //A3 = -2.69742806431984313298e-01L
-data8 0x9F0F67364B466975, 0x00003FFC //A4 = +1.55332195938916594663e-01L
-data8 0xA843F180287DAF7F, 0x0000BFFB //A5 = -8.21608416782158837025e-02L
-data8 0xA59D71B7C690E545, 0x00003FFA //A6 = +4.04333536247671644540e-02L
-data8 0x991A733518C74874, 0x0000BFF9 //A7 = -1.86893701691354422481e-02L
-data8 0x85E7F91148F9F6D2, 0x00003FF8 //A8 = +8.17298243522623724858e-03L
-data8 0xDEE0607CC9D6777E, 0x0000BFF6 //A9 = -3.40082507754089306495e-03L
-data8 0xB145D2CC470B306B, 0x00003FF5 //A10 = +1.35248373238824318949e-03L
-data8 0x86FAEBB4438A20FA, 0x0000BFF4 //A11 = -5.14908443679775343409e-04L
-data8 0xC2503856CE48A657, 0x00003FF2 //A12 = +1.85311660448280465934e-04L
-data8 0xF52642F22A26965B, 0x0000BFF0 //A13 = -5.84481856856861454591e-05L
-data8 0xC98588E1A95FFDBD, 0x00003FEE //A14 = +1.20116245684500489648e-05L
-// Pol3
-data8 0x887CBA2C47B1E2B5, 0x00003FFE //A0 = +5.33153186617432643784e-01L
-data8 0xCD81909CF194328E, 0x0000BFFD //A1 = -4.01379126699602646289e-01L
-data8 0x84DCA15C52122372, 0x00003FFD //A2 = +2.59495775718310530164e-01L
-data8 0x993AA9C76AD28157, 0x0000BFFC //A3 = -1.49637844845261107836e-01L
-data8 0xA140CD8A96FADBA5, 0x00003FFB //A4 = +7.87368829650154013961e-02L
-data8 0x9D36B25E76E56EEA, 0x0000BFFA //A5 = -3.83822410143975630292e-02L
-data8 0x8F8BCC2C0536ECD3, 0x00003FF9 //A6 = +1.75227153523910189727e-02L
-data8 0xF77EDC644BA17AF9, 0x0000BFF7 //A7 = -7.55296479527793552675e-03L
-data8 0xCAB8AC76793C1151, 0x00003FF6 //A8 = +3.09328279988546711083e-03L
-data8 0x9E8FCBC793D555AF, 0x0000BFF5 //A9 = -1.20972979110659888616e-03L
-data8 0xEDC1328664A0CE79, 0x00003FF3 //A10 = +4.53481058502015766058e-04L
-data8 0xAAE3CAAB9D117591, 0x0000BFF2 //A11 = -1.62973223928790256249e-04L
-data8 0xE7704D06A3080C19, 0x00003FF0 //A12 = +5.51792801195012080688e-05L
-data8 0x875A5B53E510F305, 0x0000BFEF //A13 = -1.61353297293572230995e-05L
-data8 0xC8F10CDDB9CC9A42, 0x00003FEC //A14 = +2.99426321046583353559e-06L
-// Pol4
-data8 0xDAEC3C07CAB590C1, 0x00003FFD //A0 = +4.27583576155807004411e-01L
-data8 0x8BE271F8BE0280AC, 0x0000BFFD //A1 = -2.73212014783898564863e-01L
-data8 0x9E13941E19661429, 0x00003FFC //A2 = +1.54371561371908397882e-01L
-data8 0xA241BFC48377449D, 0x0000BFFB //A3 = -7.92269689413235358504e-02L
-data8 0x99E56877AD00D1AE, 0x00003FFA //A4 = +3.75722962151600767952e-02L
-data8 0x887E78DA3BA57C80, 0x0000BFF9 //A5 = -1.66618690872055148862e-02L
-data8 0xE465CAA9F4D54FD8, 0x00003FF7 //A6 = +6.97014232347351913821e-03L
-data8 0xB57930370208D4A7, 0x0000BFF6 //A7 = -2.76906420823065422653e-03L
-data8 0x89A90B5DF0C0C55E, 0x00003FF5 //A8 = +1.05026496655247749532e-03L
-data8 0xC83DB867F08D93C6, 0x0000BFF3 //A9 = -3.81929578900287685559e-04L
-data8 0x8C0C9113FC8061FA, 0x00003FF2 //A10 = +1.33561218944256209215e-04L
-data8 0xBC17A73E9CA51313, 0x0000BFF0 //A11 = -4.48447217225392170834e-05L
-data8 0xED10FE8FC0E44CAD, 0x00003FEE //A12 = +1.41302576244352578317e-05L
-data8 0xFE49912328516F81, 0x0000BFEC //A13 = -3.78917710289305330220e-06L
-data8 0xA8F6077E25DAFD33, 0x00003FEA //A14 = +6.29428967202166402369e-07L
-// Pol5
-data8 0xAF72220985BED710, 0x00003FFD //A0 = +3.42667640364081975844e-01L
-data8 0xBC1CB559042410AB, 0x0000BFFC //A1 = -1.83703263815036934677e-01L
-data8 0xB730BF62E0B63A3C, 0x00003FFB //A2 = +8.94484474229911741150e-02L
-data8 0xA4F307B1D1A1534E, 0x0000BFFA //A3 = -4.02708340235238993824e-02L
-data8 0x8B0327F5117861DB, 0x00003FF9 //A4 = +1.69692783752415790321e-02L
-data8 0xDD4059307B2B081C, 0x0000BFF7 //A5 = -6.75205569219747369303e-03L
-data8 0xA761D738974FECF6, 0x00003FF6 //A6 = +2.55404953403837072821e-03L
-data8 0xF208F6D704F4B487, 0x0000BFF4 //A7 = -9.23290315545127419886e-04L
-data8 0xA7F3658D34EC10B9, 0x00003FF3 //A8 = +3.20340668304962386053e-04L
-data8 0xE079C35CEFD4E6D6, 0x0000BFF1 //A9 = -1.07038324953715640850e-04L
-data8 0x90C5CDD19BB3DD2F, 0x00003FF0 //A10 = +3.45164947021915687751e-05L
-data8 0xB3911863705825F6, 0x0000BFEE //A11 = -1.07030140392753204852e-05L
-data8 0xD023CF5C3F915685, 0x00003FEC //A12 = +3.10152594473606007552e-06L
-data8 0xCA7016FADFF584F5, 0x0000BFEA //A13 = -7.54139761055503416594e-07L
-data8 0xEEBB5CC0901D2BB0, 0x00003FE7 //A14 = +1.11168196441717301549e-07L
-// Pol6
-data8 0x8CD1160326A754AF, 0x00003FFD //A0 = +2.75032699474947383325e-01L
-data8 0xFB22A4C657119388, 0x0000BFFB //A1 = -1.22624671271190511269e-01L
-data8 0xD02B2CA872A774E9, 0x00003FFA //A2 = +5.08224243596176920409e-02L
-data8 0xA23302E146E9E406, 0x0000BFF9 //A3 = -1.97997146844646077750e-02L
-data8 0xEF8918FEDE237C98, 0x00003FF7 //A4 = +7.31004448401605074486e-03L
-data8 0xA8A8B598FA20D881, 0x0000BFF6 //A5 = -2.57353242430059589053e-03L
-data8 0xE3964D9788BFF50F, 0x00003FF4 //A6 = +8.68175969920725727944e-04L
-data8 0x93B83C10B7210AC7, 0x0000BFF3 //A7 = -2.81752903983413936245e-04L
-data8 0xB913B752B0D56A42, 0x00003FF1 //A8 = +8.82515983758695613094e-05L
-data8 0xE0623EFA0B1E8DE9, 0x0000BFEF //A9 = -2.67486302195396417310e-05L
-data8 0x83C4D1A4019E1D2E, 0x00003FEE //A10 = +7.85403393879249335151e-06L
-data8 0x950CBA5D80D8125E, 0x0000BFEC //A11 = -2.22101388436550539151e-06L
-data8 0x9CE72C0409A3E800, 0x00003FEA //A12 = +5.84509280984781223375e-07L
-data8 0x88CCD7A000D1C213, 0x0000BFE8 //A13 = -1.27405082040077425019e-07L
-data8 0x8DF4EC84F093B1C0, 0x00003FE5 //A14 = +1.65259388738830506389e-08L
-// Pol7
-data8 0xE2BF82A153B1B82E, 0x00003FFC //A0 = +2.21433678719152843912e-01L
-data8 0xA72A9AE0BD7F29D5, 0x0000BFFB //A1 = -8.16242313227913578068e-02L
-data8 0xE98939292289EDBE, 0x00003FF9 //A2 = +2.85078159732432477516e-02L
-data8 0x9B93E5E0EEFF9516, 0x0000BFF8 //A3 = -9.49571084105114051468e-03L
-data8 0xC6B39897AABC47BC, 0x00003FF6 //A4 = +3.03194499398790451607e-03L
-data8 0xF442AC7D84DDF1E0, 0x0000BFF4 //A5 = -9.31779649708690069328e-04L
-data8 0x90FBD9F8B41DF23E, 0x00003FF3 //A6 = +2.76534642660360753287e-04L
-data8 0xA6AC59077C78B437, 0x0000BFF1 //A7 = -7.94759910003852154521e-05L
-data8 0xB9FC0BADD531E5E9, 0x00003FEF //A8 = +2.21710864553358009804e-05L
-data8 0xC9CFC8CD93648856, 0x0000BFED //A9 = -6.01445608619100503330e-06L
-data8 0xD4FA51B86A9B2494, 0x00003FEB //A10 = +1.58680833469323702924e-06L
-data8 0xD8D0ED030032926D, 0x0000BFE9 //A11 = -4.03851487695924456733e-07L
-data8 0xCCA1CA2AC3EB8973, 0x00003FE7 //A12 = +9.52891963880517988726e-08L
-data8 0x9E26A080F9DA39DE, 0x0000BFE5 //A13 = -1.84111863600343741644e-08L
-data8 0x8F3DC58F64A92C62, 0x00003FE2 //A14 = +2.08443519336792003049e-09L
-// Pol8
-data8 0xB74C13E914E9666F, 0x00003FFC //A0 = +1.79001151181389950418e-01L
-data8 0xDEB57268A58B763B, 0x0000BFFA //A1 = -5.43722600071728705200e-02L
-data8 0x821FF0D4C605A4CD, 0x00003FF9 //A2 = +1.58843711598712515609e-02L
-data8 0x92C830DD423DB924, 0x0000BFF7 //A3 = -4.47943101836927657394e-03L
-data8 0xA04E61767A095BB6, 0x00003FF5 //A4 = +1.22303905230942532198e-03L
-data8 0xA9EF64E0F6654358, 0x0000BFF3 //A5 = -3.24125543666296226957e-04L
-data8 0xAF39C8969BD163E8, 0x00003FF1 //A6 = +8.35541329311315562274e-05L
-data8 0xB01273B34197330C, 0x0000BFEF //A7 = -2.09894273215824495783e-05L
-data8 0xACAE4C820B99EBAC, 0x00003FED //A8 = +5.14629050848703676006e-06L
-data8 0xA57BF2AEA52B92DF, 0x0000BFEB //A9 = -1.23295315941138567172e-06L
-data8 0x9AD6FE7A852DA239, 0x00003FE9 //A10 = +2.88411640627675721042e-07L
-data8 0x8BFE95FCD7B92763, 0x0000BFE7 //A11 = -6.51900079707465044843e-08L
-data8 0xE9F15C8E7F58CF90, 0x00003FE4 //A12 = +1.36172642554216769522e-08L
-data8 0x9E90F22B11FAF8B5, 0x0000BFE2 //A13 = -2.30744183054978535129e-09L
-data8 0xF8CF74F1A138FBBA, 0x00003FDE //A14 = +2.26291720693360003233e-10L
-// Pol9
-data8 0x94D45274A831ED57, 0x00003FFC //A0 = +1.45341194505862183128e-01L
-data8 0x94D4518B699A4A68, 0x0000BFFA //A1 = -3.63352952323113355459e-02L
-data8 0x90C3B59FF403A916, 0x00003FF8 //A2 = +8.83572327421709216515e-03L
-data8 0x893B796D0E9B4867, 0x0000BFF6 //A3 = -2.09399904729894563201e-03L
-data8 0xFDFFA94903DCB8EA, 0x00003FF3 //A4 = +4.84464029001979577664e-04L
-data8 0xE5CE7C2E4B05CF16, 0x0000BFF1 //A5 = -1.09580317663729186599e-04L
-data8 0xCB88CC8F1146FDAE, 0x00003FEF //A6 = +2.42631878042764234194e-05L
-data8 0xB0AA52C6F44E47C8, 0x0000BFED //A7 = -5.26503698764159271674e-06L
-data8 0x966DD813170F8EBD, 0x00003FEB //A8 = +1.12078397189300511086e-06L
-data8 0xFB75782788A6E378, 0x0000BFE8 //A9 = -2.34189317246047219283e-07L
-data8 0xCDF787C4E5FDCF2A, 0x00003FE6 //A10 = +4.79554094892420966704e-08L
-data8 0xA34CD3DFAC12AA45, 0x0000BFE4 //A11 = -9.50531730989412282035e-09L
-data8 0xEEBB49645DE0E34C, 0x00003FE1 //A12 = +1.73700091999434388879e-09L
-data8 0x8C86D8677DEACFBA, 0x0000BFDF //A13 = -2.55616650187281815453e-10L
-data8 0xBDB223D0FE2A7D6B, 0x00003FDB //A14 = +2.15659223402509415592e-11L
-// Pol10
-data8 0xF2C1812715E4050A, 0x00003FFB //A0 = +1.18533143048567888157e-01L
-data8 0xC7DA2C565ADAEE57, 0x0000BFF9 //A1 = -2.43960252726894623056e-02L
-data8 0xA15CEFFD632F697D, 0x00003FF7 //A2 = +4.92440908672041077933e-03L
-data8 0xFFCFF4D3FB118F69, 0x0000BFF4 //A3 = -9.75846593969603576904e-04L
-data8 0xC73F437D2F226C56, 0x00003FF2 //A4 = +1.90016864347860462550e-04L
-data8 0x989D7E1F60845811, 0x0000BFF0 //A5 = -3.63863004988760879054e-05L
-data8 0xE615A5A669361BE1, 0x00003FED //A6 = +6.85705419984646959791e-06L
-data8 0xAACD08E0BE6270F8, 0x0000BFEB //A7 = -1.27256599602163049440e-06L
-data8 0xF9DEE9C1C02A3062, 0x00003FE8 //A8 = +2.32710274258898439253e-07L
-data8 0xB420E960508A3003, 0x0000BFE6 //A9 = -4.19394488070741280136e-08L
-data8 0xFF5E3ECA229CB0C7, 0x00003FE3 //A10 = +7.43219121339261970485e-09L
-data8 0xAF86504D78D35E89, 0x0000BFE1 //A11 = -1.27711000692808421573e-09L
-data8 0xDE1CE78ADB6DDF04, 0x00003FDE //A12 = +2.02010513073041015283e-10L
-data8 0xE124FFAA267301A5, 0x0000BFDB //A13 = -2.55959692063871343080e-11L
-data8 0x81F1BEBEFBE168D2, 0x00003FD8 //A14 = +1.84661980716000872722e-12L
-// Pol11
-data8 0xC6CE5D7D18203EAA, 0x00003FFB //A0 = +9.70732978630764996752e-02L
-data8 0x86E8A30A76923C88, 0x0000BFF9 //A1 = -1.64683517829920230086e-02L
-data8 0xB4A1CBB7576B4183, 0x00003FF6 //A2 = +2.75622581042760461528e-03L
-data8 0xEEB782FBC8BB352B, 0x0000BFF3 //A3 = -4.55316242981110299585e-04L
-data8 0x9BC489CC00C7E63A, 0x00003FF1 //A4 = +7.42758405750422020216e-05L
-data8 0xC8D418A9F2A78515, 0x0000BFEE //A5 = -1.19703114831817055481e-05L
-data8 0xFFE671DCEE8665A8, 0x00003FEB //A6 = +1.90660487794668853072e-06L
-data8 0xA1313247D3E35365, 0x0000BFE9 //A7 = -3.00243820009225833104e-07L
-data8 0xC8D5A87C970712B1, 0x00003FE6 //A8 = +4.67604496871825103188e-08L
-data8 0xF77258CEF4675E25, 0x0000BFE3 //A9 = -7.20164586117313631144e-09L
-data8 0x96549D79C0F33C27, 0x00003FE1 //A10 = +1.09379854902340983112e-09L
-data8 0xB16A6CC5A3AE6E01, 0x0000BFDE //A11 = -1.61358659378896671620e-10L
-data8 0xC0970F2551C52F96, 0x00003FDB //A12 = +2.18949565869759698947e-11L
-data8 0xA6E029ABB3BB500C, 0x0000BFD8 //A13 = -2.37144541649446501026e-12L
-data8 0xA3E43F3857D1B6A5, 0x00003FD4 //A14 = +1.45564973108152568130e-13L
-// Pol12
-data8 0xA36E35FC807B3E64, 0x00003FFB //A0 = +7.98000543291529334886e-02L
-data8 0xB725A29237C8F94F, 0x0000BFF8 //A1 = -1.11784064873715046550e-02L
-data8 0xCB51EF23EAD5F327, 0x00003FF5 //A2 = +1.55120891755237931425e-03L
-data8 0xDFA838770AE711A2, 0x0000BFF2 //A3 = -2.13296043002775850891e-04L
-data8 0xF3D7B777730B202D, 0x00003FEF //A4 = +2.90683082614108095819e-05L
-data8 0x83C5FF0D475796DD, 0x0000BFED //A5 = -3.92715403535014263671e-06L
-data8 0x8D37B41345244FD5, 0x00003FEA //A6 = +5.26076523514903487927e-07L
-data8 0x9616B7E9C40C1DCC, 0x0000BFE7 //A7 = -6.98905176445499510102e-08L
-data8 0x9E38FDF61B26699A, 0x00003FE4 //A8 = +9.20976891314475742405e-09L
-data8 0xA565DFE27AEA03A1, 0x0000BFE1 //A9 = -1.20342845518628622757e-09L
-data8 0xAAEB9EFB497EC812, 0x00003FDE //A10 = +1.55451193328690040046e-10L
-data8 0xABD305A38349EAEB, 0x0000BFDB //A11 = -1.95341618552982314342e-11L
-data8 0x9EDB00104DB66DD9, 0x00003FD8 //A12 = +2.25747200093121867690e-12L
-data8 0xE9F80AF513F2B8AB, 0x0000BFD4 //A13 = -2.07806143133802417637e-13L
-data8 0xC2B840C3859AB166, 0x00003FD0 //A14 = +1.08091168358477817812e-14L
-// Pol13
-data8 0x86CD0BF01914407A, 0x00003FFB //A0 = +6.58207829138836028568e-02L
-data8 0xF9F4A17FA70807C3, 0x0000BFF7 //A1 = -7.62803922344113067603e-03L
-data8 0xE63BF84EDE20EDAA, 0x00003FF4 //A2 = +8.78273993036530088653e-04L
-data8 0xD2B746011B39D879, 0x0000BFF1 //A3 = -1.00477176633442906101e-04L
-data8 0xBFA4F1F66023C975, 0x00003FEE //A4 = +1.14228914411837438985e-05L
-data8 0xAD3A05E1F1F0EA8F, 0x0000BFEB //A5 = -1.29063913420827451449e-06L
-data8 0x9BA1F2E56DBE1B49, 0x00003FE8 //A6 = +1.44944165416032280452e-07L
-data8 0x8AFE93AF627BAFA6, 0x0000BFE5 //A7 = -1.61810825806733824014e-08L
-data8 0xF6CEAB6E78304875, 0x00003FE1 //A8 = +1.79575947795401009493e-09L
-data8 0xD9BFD64FD9166ECF, 0x0000BFDE //A9 = -1.98041892772535870322e-10L
-data8 0xBE482C8AEA403737, 0x00003FDB //A10 = +2.16325508593741350803e-11L
-data8 0xA1FB98FA19E62A4F, 0x0000BFD8 //A11 = -2.30191407969654156362e-12L
-data8 0xFDB2E0599016AD1E, 0x00003FD4 //A12 = +2.25329742249079975388e-13L
-data8 0x9E179A99CDD4BF4B, 0x0000BFD1 //A13 = -1.75517603530017718494e-14L
-data8 0xDE4DE992A707C7BC, 0x00003FCC //A14 = +7.71273133169032472595e-16L
-// Pol14
-data8 0xDF0639E60CF6E96C, 0x00003FFA //A0 = +5.44492971101228988138e-02L
-data8 0xAB6737B6065BD1C2, 0x0000BFF7 //A1 = -5.23081035867078490333e-03L
-data8 0x8322CC0765FD9C27, 0x00003FF4 //A2 = +5.00243857322493802503e-04L
-data8 0xC7C37C447AABC9BE, 0x0000BFF0 //A3 = -4.76273572257807668623e-05L
-data8 0x977C068C67DD09B3, 0x00003FED //A4 = +4.51458915834329225528e-06L
-data8 0xE4C00648054CBD72, 0x0000BFE9 //A5 = -4.26080256412742187632e-07L
-data8 0xABF9032C426C0F54, 0x00003FE6 //A6 = +4.00405155179176153559e-08L
-data8 0x80BD82177111B70D, 0x0000BFE3 //A7 = -3.74683488305340664541e-09L
-data8 0xBFEFB2BBFC4AAE16, 0x00003FDF //A8 = +3.49130134089615132836e-10L
-data8 0x8E68BCEC2A2F6025, 0x0000BFDC //A9 = -3.23800879252444001040e-11L
-data8 0xD19FEF92B2157585, 0x00003FD8 //A10 = +2.97894685764287382560e-12L
-data8 0x967A0ECC142382D9, 0x0000BFD5 //A11 = -2.67300472044743953909e-13L
-data8 0xC6D8869855133985, 0x00003FD1 //A12 = +2.20763189681614758000e-14L
-data8 0xD10AC0B228ABCECC, 0x0000BFCD //A13 = -1.45052027893524847250e-15L
-data8 0xF7C6DEB4522487A3, 0x00003FC8 //A14 = +5.37280367113168366711e-17L
-// Pol15
-data8 0xB8F57DECFAC3B255, 0x00003FFA //A0 = +4.51559943173131409760e-02L
-data8 0xEC1B8A6C822C036F, 0x0000BFF6 //A1 = -3.60271577347565115947e-03L
-data8 0x963A6DD66951B72E, 0x00003FF3 //A2 = +2.86537625289770759336e-04L
-data8 0xBE93F9E80DF4AE0A, 0x0000BFEF //A3 = -2.27186718010906557773e-05L
-data8 0xF10589FC10D908E0, 0x00003FEB //A4 = +1.79575113004740124999e-06L
-data8 0x97F1A2435C7877EF, 0x0000BFE8 //A5 = -1.41508767557208714648e-07L
-data8 0xBEFF2FB5F00E9327, 0x00003FE4 //A6 = +1.11174782364058338591e-08L
-data8 0xEF5E09DC714DF198, 0x0000BFE0 //A7 = -8.70813302639377671664e-10L
-data8 0x958A6EB9408970A4, 0x00003FDD //A8 = +6.80032608255179732632e-11L
-data8 0xBA31F40954675710, 0x0000BFD9 //A9 = -5.29198388081297293593e-12L
-data8 0xE63B9CEEDC4CF0E6, 0x00003FD5 //A10 = +4.08975721481205179918e-13L
-data8 0x8AF8F1E3FED32CEC, 0x0000BFD2 //A11 = -3.08580807479307213059e-14L
-data8 0x9A88033A08842BEA, 0x00003FCE //A12 = +2.14455258045503137285e-15L
-data8 0x88BCF775B7B3A939, 0x0000BFCA //A13 = -1.18601440246395438386e-16L
-data8 0x88687B63A5B7135E, 0x00003FC5 //A14 = +3.69734984736162880476e-18L
-// Pol16
-data8 0x99B8A501204BF3E7, 0x00003FFA //A0 = +3.75296063885057657456e-02L
-data8 0xA33FA20D2867C79C, 0x0000BFF6 //A1 = -2.49097544033960143953e-03L
-data8 0xACFD14CA6AA55829, 0x00003FF2 //A2 = +1.64974783411741182991e-04L
-data8 0xB6E9B4ED9B378B09, 0x0000BFEE //A3 = -1.09024594422859744844e-05L
-data8 0xC0FD95D38ADCF301, 0x00003FEA //A4 = +7.18945888498730738040e-07L
-data8 0xCB302F7AAFFFA074, 0x0000BFE6 //A5 = -4.73084450875945514829e-08L
-data8 0xD578674188198402, 0x00003FE2 //A6 = +3.10640208133938026422e-09L
-data8 0xDFCC6ED4219E7FC4, 0x0000BFDE //A7 = -2.03543610142159316364e-10L
-data8 0xEA1F448AA373E4A9, 0x00003FDA //A8 = +1.33083028465054001215e-11L
-data8 0xF44780B8EACD37B5, 0x0000BFD6 //A9 = -8.67854438613319891312e-13L
-data8 0xFD55794492F53AEE, 0x00003FD2 //A10 = +5.62514216652784597182e-14L
-data8 0x805C040421E7A098, 0x0000BFCF //A11 = -3.56269003968981157635e-15L
-data8 0xEFCCD20DE93A138E, 0x00003FCA //A12 = +2.07993414310230172191e-16L
-data8 0xB259764466732080, 0x0000BFC6 //A13 = -9.66834364652262630640e-18L
-data8 0x9597C1DB6AF830E4, 0x00003FC1 //A14 = +2.53420063550355940811e-19L
-// Pol17
-data8 0xFFFCBD66BAA4368C, 0x00003FF9 //A0 = +3.12484454387527380657e-02L
-data8 0xE28174723762D197, 0x0000BFF5 //A1 = -1.72810121976742793952e-03L
-data8 0xC81D832836019EC4, 0x00003FF1 //A2 = +9.54224026432644399736e-05L
-data8 0xB0885530C7D7AB5B, 0x0000BFED //A3 = -5.26107996417947739207e-06L
-data8 0x9B7EA64F62F6FD06, 0x00003FE9 //A4 = +2.89631495607631932854e-07L
-data8 0x88C24ACAA9042166, 0x0000BFE5 //A5 = -1.59208376111789845204e-08L
-data8 0xF033E5CD9B7F2822, 0x00003FE0 //A6 = +8.73852423930118273815e-10L
-data8 0xD2A1B161FB4DFBFE, 0x0000BFDC //A7 = -4.78920839886600387264e-11L
-data8 0xB86B27FCBB5A1E9D, 0x00003FD8 //A8 = +2.62074563162805723295e-12L
-data8 0xA124E1303F08E508, 0x0000BFD4 //A9 = -1.43124677534734729453e-13L
-data8 0x8C0B270950D7C697, 0x00003FD0 //A10 = +7.77397948226387851915e-15L
-data8 0xEE034E350C65D2D9, 0x0000BFCB //A11 = -4.12886586201102092942e-16L
-data8 0xBA94473E52495304, 0x00003FC7 //A12 = +2.02289587087169937807e-17L
-data8 0xE913D34CBB853CEE, 0x0000BFC2 //A13 = -7.89697093687557412061e-19L
-data8 0xA44576A85E8CAB59, 0x00003FBD //A14 = +1.73929048516879172258e-20L
-// Pol18
-data8 0xD579A3FE4622DED2, 0x00003FF9 //A0 = +2.60589793198885278242e-02L
-data8 0x9D97EB84E7CD89C8, 0x0000BFF5 //A1 = -1.20234251012583627659e-03L
-data8 0xE86EFDC2CCA5C47B, 0x00003FF0 //A2 = +5.54164790116744315389e-05L
-data8 0xAB39FA5621E39B15, 0x0000BFEC //A3 = -2.55147332073979814633e-06L
-data8 0xFC0244F58F8D8097, 0x00003FE7 //A4 = +1.17350772365097747003e-07L
-data8 0xB941D44B71B14FE2, 0x0000BFE3 //A5 = -5.39169255673480031672e-09L
-data8 0x880B4A40B6F2C901, 0x00003FDF //A6 = +2.47462779512141204748e-10L
-data8 0xC7998AE5652CDCFC, 0x0000BFDA //A7 = -1.13459336509953900777e-11L
-data8 0x92438AA45915CD95, 0x00003FD6 //A8 = +5.19633524685027215673e-13L
-data8 0xD6067243AD3AEAE6, 0x0000BFD1 //A9 = -2.37615683835509918256e-14L
-data8 0x9BD0722A07669E4D, 0x00003FCD //A10 = +1.08117849400479298186e-15L
-data8 0xDDF6F1B79F50E3C4, 0x0000BFC8 //A11 = -4.81309059042573202592e-17L
-data8 0x91F283C0351A9ACA, 0x00003FC4 //A12 = +1.97795505638619048412e-18L
-data8 0x990BC4FAFA9C7542, 0x0000BFBF //A13 = -6.48174913943425248713e-20L
-data8 0xB536865B89676892, 0x00003FB9 //A14 = +1.19916696090758913485e-21L
-// Pol19
-data8 0xB241CEB1B7C953F1, 0x00003FF9 //A0 = +2.17598950382519671244e-02L
-data8 0xDBD6FBA9B11B85E1, 0x0000BFF4 //A1 = -8.38622198373701898430e-04L
-data8 0x877605B1AD082441, 0x00003FF0 //A2 = +3.22964249573360786077e-05L
-data8 0xA6D04DC067A5D310, 0x0000BFEB //A3 = -1.24285881515578912302e-06L
-data8 0xCD458A72BC161315, 0x00003FE6 //A4 = +4.77935289502172654216e-08L
-data8 0xFC6902CFB5DE90A2, 0x0000BFE1 //A5 = -1.83652591038905929358e-09L
-data8 0x9B12B0707DFE615C, 0x00003FDD //A6 = +7.05190381049444126079e-11L
-data8 0xBE67972F2C8EE5AE, 0x0000BFD8 //A7 = -2.70581282732878853626e-12L
-data8 0xE99D8CAF9A3FFE02, 0x00003FD3 //A8 = +1.03746090805854376435e-13L
-data8 0x8F35F5BBEF9E4299, 0x0000BFCF //A9 = -3.97489765699919189983e-15L
-data8 0xAF6E62C3C91B7178, 0x00003FCA //A10 = +1.52162305785839987182e-16L
-data8 0xD6636229C1646963, 0x0000BFC5 //A11 = -5.81100425482928485309e-18L
-data8 0x810331BF289E068F, 0x00003FC1 //A12 = +2.18555638648715837944e-19L
-data8 0x8E3D07CA59546B83, 0x0000BFBC //A13 = -7.53003820427900359431e-21L
-data8 0xD5970B291ED73560, 0x00003FB6 //A14 = +1.76677518655145552907e-22L
-LOCAL_OBJECT_END(erfc_p_table)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(erfc)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 33, 4, 0
- fma.s1 FR_Tmp = f1, f1, f8 // |x|+1, if x >= 0
- nop.i 0
-}
-{ .mfi
- addl EXP_AD_TB1 = @ltoff(exp_table_1), gp
- fms.s1 FR_Tmp1 = f1, f1, f8 // |x|+1, if x < 0
- mov exp_GR_rshf_2to56 = 0x4768 // begin 1.1 2^(63+56)
-};;
-
-{ .mfi
- ld8 EXP_AD_TB1 = [EXP_AD_TB1]
- fcmp.ge.s1 p6,p7 = f8, f0 // p6: x >= 0 ,p7: x<0
- mov exp_GR_rshf_2to56 = 0x4768 // begin 1.1 2^(63+56)
-}
-{ .mlx
- mov exp_TB1_size = 0x100
- movl exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc //signif. of 1/ln2
-};;
-
-{ .mfi
- nop.m 0
- fclass.m p8,p0 = f8,0x07 // p8: x = 0
- shl exp_GR_rshf_2to56 = exp_GR_rshf_2to56, 48 //end 1.1 2^(63+56)
-}
-{ .mfi
- mov exp_GR_exp_2tom56 = 0xffff-56
- fnma.s1 EXP_NORM_f8 = f8, f8, f0 // high bits for -x^2
- nop.i 0
-};;
-
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- setf.sig EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // form 1/ln2 * 2^63
-(p6) fma.s1 FR_AbsArg = f1, f0, f8 // |x|, if x >= 0
- mov GR_POS_ARG_ASYMP = 0x403C
-}
-{ .mfi
- mov GR_NEG_ARG_ASYMP = 0x4018
-(p7) fms.s1 FR_AbsArg = f1, f0, f8 // |x|, if x < 0
- mov exp_GR_rshf = 0x43e8 // begin 1.1 2^63 for right shift
-};;
-
-{ .mfi
- setf.exp EXP_2TOM56 = exp_GR_exp_2tom56 // 2^-56 for scaling Nfloat
- fclass.m p10,p0 = f8, 0x21 // p10: x = +inf
- mov exp_GR_17ones = 0x1FFFF
-}
-{ .mlx
- setf.d EXP_RSHF_2TO56 = exp_GR_rshf_2to56 // const 1.10*2^(63+56)
- movl GR_ERFC_XB_TB = 0x1A0
-};;
-
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- ldfd FR_UnfBound = [EXP_AD_TB1], 16
-(p6) fma.s1 FR_Tmp = FR_Tmp, FR_Tmp, f0 // (|x|+1)^2,x >=0
- shl exp_GR_rshf = exp_GR_rshf, 48 //end 1.1 2^63 for right shift
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_Tmp = FR_Tmp1, FR_Tmp1, f0 // (|x|+1)^2, x<0
- mov GR_0x1 = 0x1
-};;
-
-{ .mfi
- mov GR_BIAS = 0x0FFFF
- fclass.m p9,p0 = f8, 0x22 // p9: x = -inf
- shl GR_EpsNorm = GR_0x1,53
-}
-{ .mfb
- mov exp_TB2_size = 0x80
-(p8) fma.d.s0 f8 = f1, f1, f0 //p8: y = 1.0, x = 0
-(p8) br.ret.spnt b0 //p8: quick exit for x = 0
-};;
-
-{ .mfi
- nop.m 0
- fclass.m p11,p0 = f8, 0xc3 // p11: x = nan
- nop.i 0
-}
-{ .mfi
- setf.d EXP_RSHF = exp_GR_rshf //Form right shift const 1.100 * 2^63
- fma.s1 FR_NormX = f8,f1,f0
- nop.i 0
-};;
-
-{ .mfi
- setf.d FR_EpsNorm = GR_EpsNorm
- nop.f 0
-(p6) shl GR_ARG_ASYMP = GR_POS_ARG_ASYMP, 48//p6:ARG_ASYMP= 28.0,x>=0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_2 = f1, f1, f1
- nop.i 0
-};;
-
-{ .mfi
- ldfe exp_ln2_by_128_hi = [EXP_AD_TB1],16
- fma.s1 f8_sq_lo = f8, f8, EXP_NORM_f8 // low bits for -x^2
-(p7) shl GR_ARG_ASYMP = GR_NEG_ARG_ASYMP, 48//p6:ARG_ASYMP= 6.0,x < 0
-};;
-
-{ .mfi
- sub GR_mBIAS = r0, GR_BIAS
- fma.s1 FR_Tmp = FR_Tmp, FR_Tmp, f0 // (|x|+1)^4
- nop.i 0
-}
-{ .mfi
- ldfe exp_ln2_by_128_lo = [EXP_AD_TB1], 16
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- getf.d GR_AbsArg = FR_AbsArg
- nop.f 0
- add GR_ERFC_XB_TB = GR_ERFC_XB_TB, EXP_AD_TB1//pointer to XB_TBL
-}
-{ .mfb
- shladd GR_ShftPi_bias = GR_BIAS, 4, GR_mBIAS // BIAS * 2^4 - BIAS
-(p9) fma.d.s0 f8 = f1, f1, f1 // p9: y = 2 for x = -inf
-(p9) br.ret.spnt b0 // p9: quick exit for x = -inf
-};;
-
-{ .mfi
- add GR_ERFC_P_TB = 0x140, GR_ERFC_XB_TB // pointer to P_TBL
- fma.s1 EXP_W_2TO56_RSH = EXP_NORM_f8,EXP_INV_LN2_2TO63,EXP_RSHF_2TO56
- shladd GR_ShftPi_bias = GR_ShftPi_bias, 4, r0 // BIAS * 240
-}
-{ .mfb
- nop.m 0
-(p10) fma.d.s0 f8 = f0, f1, f0 // p10: y = 0 for x = +inf
-(p10) br.ret.spnt b0 // p10: quick exit for x = +inf
-};;
-
-
-.pred.rel "mutex",p6,p7
-{ .mfi
-(p6) cmp.gt.unc p15,p0 = GR_AbsArg,GR_ARG_ASYMP //p15: x > 28.0,p6: x >= 0
- nop.f 0
-(p7) cmp.gt.unc p14,p0 = GR_AbsArg, GR_ARG_ASYMP //p14: x < - 6.0,p7: x < 0
-}
-{ .mfb
- add EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
-(p11) fma.d.s0 f8 = f8, f1, f0 //p11: y = x for x = nan
-(p11) br.ret.spnt b0 //p11: quick exit for x = nan
-};;
-
-{ .mfi
- add EXP_AD_P = exp_TB2_size, EXP_AD_TB2
- fms.s1 f8_sq_lo = f1, f1, f8_sq_lo // 1 - low bits for -x^2
- nop.i 0
-};;
-
-{ .mfi
- ldfpd exp_P4, exp_P3 = [EXP_AD_P], 16
- fmerge.s FR_X = f8,f8
- shladd GR_ShftXBi_bias = GR_mBIAS, 4, r0
-}
-{ .mfb
- nop.m 0
-(p14) fnma.d.s0 FR_RESULT = FR_EpsNorm,FR_EpsNorm,FR_2 //p14:y ~=~ 2,x< -6.0
-(p14) br.ret.spnt b0 //p14: quick exit for x < -6.0
-};;
-
-//p15: y ~=~ 0.0(result with underflow error), x > ARG_ASYMP = 28,
-{ .mfi
- ldfpd exp_P2, exp_P1 = [EXP_AD_P]
- fma.d.s0 FR_Tmpf = f1, f1, FR_EpsNorm // flag i
- nop.i 0
-}
-{ .mfb
-(p15) mov GR_Parameter_TAG = 208
-(p15) fma.d.s0 FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0
-(p15) br.cond.spnt __libm_error_region
-};;
-
-//p8: x < 27.0, result without ungerflow error
-{ .mfi
- getf.exp GR_IndxPlusBias = FR_Tmp // exp + bias for (|x|+1)^4
- fcmp.lt.s1 p8,p0 = FR_NormX,FR_UnfBound
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
- nop.i 0
-};;
-
-{ .mmi
- shladd GR_ShftXBi = GR_IndxPlusBias, 4, GR_ShftXBi_bias
- shladd GR_ShftPi = GR_IndxPlusBias, 4, GR_ShftPi_bias
- shl GR_ShftPi_8 = GR_IndxPlusBias, 8
-};;
-
-{ .mmi
- getf.sig exp_GR_N = EXP_W_2TO56_RSH
- add GR_ERFC_XB_TB = GR_ERFC_XB_TB, GR_ShftXBi// pointer to XB[i]
- sub GR_ShftPi = GR_ShftPi_8, GR_ShftPi // (256-16)*i
-};;
-
-{ .mmi
- ldfe FR_Xb = [GR_ERFC_XB_TB]
- add GR_ShftA12 = 0xC0, GR_ShftPi // pointer shift for A12
- add GR_ShftA13 = 0xD0, GR_ShftPi // pointer shift for A13
-};;
-
-{ .mfi
- add GR_P_A13 = GR_ERFC_P_TB, GR_ShftA13 // pointer to A13
- nop.f 0
- and exp_GR_index_1 = 0x0f, exp_GR_N
-}
-{ .mfi
- add GR_P_A12 = GR_ERFC_P_TB, GR_ShftA12 // pointer to A12
- fnma.s1 exp_r = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_A12 = [GR_P_A12], -64
- nop.f 0
- and exp_GR_index_2_16 = 0x70, exp_GR_N
-}
-{ .mfi
- ldfe FR_A13 = [GR_P_A13], -64
- nop.f 0
- shladd EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
-};;
-
-{ .mmi
- ldfe FR_A8 = [GR_P_A12], 32
- ldfe FR_A9 = [GR_P_A13], 32
- add EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
-};;
-
-{ .mmi
- ldfe FR_A10 = [GR_P_A12], -96
- ldfe FR_A11 = [GR_P_A13], -96
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_A4 = [GR_P_A12], 32
- ldfe FR_A5 = [GR_P_A13], 32
- shr r2 = exp_GR_N, 0x7
-};;
-
-{ .mfi
- ldfe FR_A6 = [GR_P_A12], -64
- fma.s1 exp_rP4pP3 = exp_r, exp_P4, exp_P3
- nop.i 0
-}
-{ .mfi
- ldfe FR_A7 = [GR_P_A13], -64
- fma.s1 exp_rsq = exp_r, exp_r, f0
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_A2 = [GR_P_A12], -32
- ldfe FR_A3 = [GR_P_A13], -32
- addl exp_GR_biased_M = 0xffff, r2
-};;
-
-{ .mmi
- ldfe FR_A0 = [GR_P_A12], 224
- ldfe FR_A1 = [GR_P_A13]
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_A14 = [GR_P_A12]
- fms.s1 FR_LocArg = FR_AbsArg, f1, FR_Xb // xloc = x - x[i]
- nop.i 0
-};;
-
-{ .mmi
- setf.exp EXP_2M = exp_GR_biased_M
- ldfe exp_T1 = [EXP_AD_T1]
- nop.i 0
-};;
-
-{ .mfi
- ldfe exp_T2 = [EXP_AD_T2]
- fma.s1 exp_P_hi = exp_rsq, exp_P1, exp_r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 exp_rcube = exp_r, exp_rsq, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 exp_P_lo = exp_r, exp_rP4pP3, exp_P2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 exp_f = EXP_Nfloat, exp_ln2_by_128_lo, f8_sq_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_0_1 = FR_LocArg, FR_LocArg, f0 // xloc ^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_0_2 = FR_A13, FR_LocArg, FR_A12
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_1_1 = FR_A9, FR_LocArg, FR_A8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_1_2 = FR_A11, FR_LocArg, FR_A10
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_2_1 = FR_A5, FR_LocArg, FR_A4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_2_2 = FR_A7, FR_LocArg, FR_A6
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_3_1 = FR_A1, FR_LocArg, FR_A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_3_2 = FR_A3, FR_LocArg, FR_A2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_6_1 = FR_P14_0_1, FR_A14, FR_P14_0_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_7_2 = FR_P14_0_1, FR_P14_0_1, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_7_1 = FR_P14_0_1, FR_P14_1_2, FR_P14_1_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 exp_S2 = exp_f, exp_T2, f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 exp_S1 = EXP_2M, exp_T1, f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_8_1 = FR_P14_0_1, FR_P14_3_2, FR_P14_3_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_8_2 = FR_P14_0_1, FR_P14_2_2, FR_P14_2_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_12_1 = FR_P14_7_2, FR_P14_6_1, FR_P14_7_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 exp_S = exp_S1, exp_S2, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 exp_P = exp_rcube, exp_P_lo, exp_P_hi
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_13_1 = FR_P14_7_2, FR_P14_8_2, FR_P14_8_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P14_13_2 = FR_P14_7_2, FR_P14_7_2, f0 // xloc^8
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Exp = exp_S, exp_P, exp_S // exp(-x^2)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Pol = FR_P14_13_2, FR_P14_12_1, FR_P14_13_1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.d.s0 FR_Tmpf = f8, f1, f0 // flag d
- nop.i 0
-};;
-
-//p6: result for 0 < x < = 28.0,
-//p7: result for -6.0 <= x < 0,
-//p8: exit for - 6.0 <= x < UnfBound ~=~ 26.54..
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.d.s0 f8 = FR_Exp, FR_Pol, f0
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 208
-(p7) fnma.d.s0 f8 = FR_Exp, FR_Pol, FR_2
-(p8) br.ret.sptk b0
-};;
-
-GLOBAL_LIBM_END(erfc)
-
-// call via (p15) br.cond.spnt __libm_error_region
-// for x > ARG_ASYMP = 28.0
-// or
-//
-// after .endp erfc for UnfBound < = x < = ARG_ASYMP = 28.0
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
-
diff --git a/sysdeps/ia64/fpu/s_erfcf.S b/sysdeps/ia64/fpu/s_erfcf.S
deleted file mode 100644
index 2e3eeab3c7..0000000000
--- a/sysdeps/ia64/fpu/s_erfcf.S
+++ /dev/null
@@ -1,983 +0,0 @@
-.file "erfcf.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 01/17/02 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// float erfcf(float)
-//
-// Overview of operation
-//==============================================================
-// 1. 0 <= x <= 10.06
-//
-// erfcf(x) = P15(x) * exp( -x^2 )
-//
-// Comment:
-//
-// Let x(0)=0, x(i) = 2^(i), i=1,...3, x(4)= 10.06
-//
-// Let x(i)<= x < x(i+1).
-// We can find i as exponent of argument x (let i = 0 for 0<= x < 2 )
-//
-// Let P15(x) - polynomial approximation of degree 15 for function
-// erfcf(x) * exp( x^2) and x(i) <= x <= x(i+1), i = 0,1,2,3
-// Polynomial coeffitients we have in the table erfc_p_table.
-//
-// So we can find result for erfcf(x) as above.
-// Algorithm description for exp function see below.
-//
-// 2. -4.4 <= x < 0
-//
-// erfcf(x) = 2.0 - erfcf(-x)
-//
-// 3. x > 10.06
-//
-// erfcf(x) ~=~ 0.0
-//
-// 4. x < -4.4
-//
-// erfcf(x) ~=~ 2.0
-
-// Special values
-//==============================================================
-// erfcf(+0) = 1.0
-// erfcf(-0) = 1.0
-
-// erfcf(+qnan) = +qnan
-// erfcf(-qnan) = -qnan
-// erfcf(+snan) = +qnan
-// erfcf(-snan) = -qnan
-
-// erfcf(-inf) = 2.0
-// erfcf(+inf) = +0
-
-//==============================================================
-// Take double exp(double) from libm_64.
-//
-// Overview of operation
-//==============================================================
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 128/log2
-// n = int(w)
-// x = n log2/128 + r + delta
-
-// n = 128M + index_1 + 2^4 index_2
-// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
-
-// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
-// Construct 2^M
-// Get 2^(index_1/128) from table_1;
-// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by series
-// r = x - n (log2/128)_high
-// delta = - n (log2/128)_low
-// Calculate exp(delta) as 1 + delta
-//
-// Comment for erfcf:
-//
-// Let exp(r) = 1 + x + 0.5*x^2 + (1/6)*x^3
-// Let delta = 0.
-//==============================================================
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f6,f7,f9 -> f11, f32 -> f92
-
-// General registers used:
-// r14 -> r22,r32 -> r50
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//==============================================================
-EXP_AD_TB1 = r14
-exp_GR_sig_inv_ln2 = r15
-exp_TB1_size = r16
-exp_GR_rshf_2to56 = r17
-exp_GR_exp_2tom56 = r18
-
-exp_GR_rshf = r33
-EXP_AD_TB2 = r34
-EXP_AD_P = r35
-exp_GR_N = r36
-exp_GR_index_1 = r37
-exp_GR_index_2_16 = r38
-exp_GR_biased_M = r39
-EXP_AD_T1 = r40
-EXP_AD_T2 = r41
-exp_TB2_size = r42
-
-// GR for erfcf(x)
-//==============================================================
-GR_IndxPlusBias = r19
-GR_ExpMask = r20
-GR_BIAS = r21
-GR_ShftPi_bias = r22
-
-GR_P_POINT_1 = r43
-GR_P_POINT_2 = r44
-GR_P_POINT_3 = r45
-GR_P_POINT_4 = r46
-
-GR_ShftPi = r47
-GR_EpsNorm = r48
-
-GR_05 = r49
-GR_1_by_6 = r50
-
-// GR for __libm_support call
-//==============================================================
-
-GR_SAVE_B0 = r43
-GR_SAVE_PFS = r44
-GR_SAVE_GP = r45
-GR_SAVE_SP = r46
-
-GR_Parameter_X = r47
-GR_Parameter_Y = r48
-GR_Parameter_RESULT = r49
-GR_Parameter_TAG = r50
-
-
-// FR for exp(-x^2)
-//==============================================================
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-EXP_2TOM56 = f6
-EXP_INV_LN2_2TO63 = f7
-EXP_W_2TO56_RSH = f9
-exp_ln2_by_128_hi = f11
-
-EXP_RSHF_2TO56 = f32
-exp_ln2_by_128_lo = f33
-EXP_RSHF = f34
-EXP_Nfloat = f35
-exp_r = f36
-exp_rsq = f37
-EXP_2M = f38
-exp_S1 = f39
-exp_T1 = f40
-exp_P = f41
-exp_S = f42
-EXP_NORM_f8 = f43
-exp_S2 = f44
-exp_T2 = f45
-
-// FR for erfcf(x)
-//==============================================================
-FR_AbsArg = f46
-FR_Tmp = f47
-FR_Tmp1 = f48
-FR_Tmpf = f49
-FR_NormX = f50
-
-FR_A15 = f51
-FR_A14 = f52
-
-FR_A13 = f53
-FR_A12 = f54
-
-FR_A11 = f55
-FR_A10 = f56
-
-FR_A9 = f57
-FR_A8 = f58
-
-FR_A7 = f59
-FR_A6 = f60
-
-FR_A5 = f61
-FR_A4 = f62
-
-FR_A3 = f63
-FR_A2 = f64
-
-FR_A1 = f65
-FR_A0 = f66
-
-FR_P15_0_1 = f67
-FR_P15_1_1 = f68
-FR_P15_1_2 = f69
-FR_P15_2_1 = f70
-FR_P15_2_2 = f71
-FR_P15_3_1 = f72
-FR_P15_3_2 = f73
-FR_P15_4_1 = f74
-FR_P15_4_2 = f75
-FR_P15_7_1 = f76
-FR_P15_7_2 = f77
-FR_P15_8_1 = f78
-FR_P15_9_1 = f79
-FR_P15_9_2 = f80
-FR_P15_13_1 = f81
-FR_P15_14_1 = f82
-FR_P15_14_2 = f83
-
-FR_2 = f84
-FR_05 = f85
-FR_1_by_6 = f86
-FR_Pol = f87
-FR_Exp = f88
-
-FR_POS_ARG_ASYMP = f89
-FR_NEG_ARG_ASYMP = f90
-
-FR_UnfBound = f91
-FR_EpsNorm = f92
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*128/ln2 into the rightmost bits of the significand.
-// The result of this fma is EXP_W_2TO56_RSH.
-// 2. EXP_RSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
-// the integer part of w, n, as a floating-point number.
-// The result of this fms is EXP_Nfloat.
-
-
-LOCAL_OBJECT_START(exp_table_1)
-
-data4 0x4120f5c3, 0x408ccccd //POS_ARG_ASYMP = 10.06, NEG_ARG_ASYMP = 4.4
-data4 0x41131Cdf, 0x00800000 //UnfBound ~=~ 9.1, EpsNorm ~=~ 1.1754944e-38
-//
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-
-LOCAL_OBJECT_START(exp_table_2)
-
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
-
-LOCAL_OBJECT_START(erfc_p_table)
-
-// Pol_0
-data8 0xBEA3260C63CB0446 //A15 = -5.70673541831883454676e-07
-data8 0x3EE63D6178077654 //A14 = +1.06047480138940182343e-05
-data8 0xBF18646BC5FC70A7 //A13 = -9.30491237309283694347e-05
-data8 0x3F40F92F909117FE //A12 = +5.17986512144075019133e-04
-data8 0xBF611344289DE1E6 //A11 = -2.08438217390159994419e-03
-data8 0x3F7AF9FE6AD16DC0 //A10 = +6.58606893292862351928e-03
-data8 0xBF91D219E196CBA7 //A9 = -1.74030345858217321001e-02
-data8 0x3FA4AFDDA355854C //A8 = +4.04042493708041968315e-02
-data8 0xBFB5D465BB7025AE //A7 = -8.52721769916999425445e-02
-data8 0x3FC54C15A95B717D //A6 = +1.66384418195672549029e-01
-data8 0xBFD340A75B4B1AB5 //A5 = -3.00821150926292166899e-01
-data8 0x3FDFFFC0BFCD247F //A4 = +4.99984919839853542841e-01
-data8 0xBFE81270C361852B //A3 = -7.52251035312075583309e-01
-data8 0x3FEFFFFFC67295FC //A2 = +9.99999892800303301771e-01
-data8 0xBFF20DD74F8CD2BF //A1 = -1.12837916445020868099e+00
-data8 0x3FEFFFFFFFFE7C1D //A0 = +9.99999999988975570714e-01
-// Pol_1
-data8 0xBDE8EC4BDD953B56 //A15 = -1.81338928934942767144e-10
-data8 0x3E43607F269E2A1C //A14 = +9.02309090272196442358e-09
-data8 0xBE8C4D9E69C10E02 //A13 = -2.10875261143659275328e-07
-data8 0x3EC9CF2F84566725 //A12 = +3.07671055805877356583e-06
-data8 0xBF007980B1B46A4D //A11 = -3.14228438702169818945e-05
-data8 0x3F2F4C3AD6DEF24A //A10 = +2.38783056770846320260e-04
-data8 0xBF56F5129F8D30FA //A9 = -1.40120333363130546426e-03
-data8 0x3F7AA6C7ABFC38EE //A8 = +6.50671002200751820429e-03
-data8 0xBF98E7522CB84BEF //A7 = -2.43199195666185511109e-02
-data8 0x3FB2F68EB1C3D073 //A6 = +7.40746673580490638637e-02
-data8 0xBFC7C16055AC6385 //A5 = -1.85588876564704611769e-01
-data8 0x3FD8A707AEF5A440 //A4 = +3.85194702967570635211e-01
-data8 0xBFE547BFE39AE2EA //A3 = -6.65008492032112467310e-01
-data8 0x3FEE7C91BDF13578 //A2 = +9.52706213932898128515e-01
-data8 0xBFF1CB5B61F8C589 //A1 = -1.11214769621105541214e+00
-data8 0x3FEFEA56BC81FD37 //A0 = +9.97355812243688815239e-01
-// Pol_2
-data8 0xBD302724A12F46E0 //A15 = -5.73866382814058809406e-14
-data8 0x3D98889B75D3102E //A14 = +5.57829983681360947356e-12
-data8 0xBDF16EA15074A1E9 //A13 = -2.53671153922423457844e-10
-data8 0x3E3EC6E688CFEE5F //A12 = +7.16581828336436419561e-09
-data8 0xBE82E5ED44C52609 //A11 = -1.40802202239825487803e-07
-data8 0x3EC120BE5CE42353 //A10 = +2.04180535157522081699e-06
-data8 0xBEF7B8B0311A1911 //A9 = -2.26225266204633600888e-05
-data8 0x3F29A281F43FC238 //A8 = +1.95577968156184077632e-04
-data8 0xBF55E19858B3B7A4 //A7 = -1.33552434527526534043e-03
-data8 0x3F7DAC8C3D12E5FD //A6 = +7.24463253680473816303e-03
-data8 0xBF9FF9C04613FB47 //A5 = -3.12261622211693854028e-02
-data8 0x3FBB3D5DBF9D9366 //A4 = +1.06405123978743883370e-01
-data8 0xBFD224DE9F62C258 //A3 = -2.83500342989133623476e-01
-data8 0x3FE28A95CB8C6D3E //A2 = +5.79417131000276437708e-01
-data8 0xBFEC21205D358672 //A1 = -8.79043752717008257224e-01
-data8 0x3FEDAE44D5EDFE5B //A0 = +9.27523057776805771830e-01
-// Pol_3
-data8 0xBCA3BCA734AC82F1 //A15 = -1.36952437983096410260e-16
-data8 0x3D16740DC3990612 //A14 = +1.99425676175410093285e-14
-data8 0xBD77F4353812C46A //A13 = -1.36162367755616790260e-12
-data8 0x3DCFD0BE13C73DB4 //A12 = +5.78718761040355136007e-11
-data8 0xBE1D728DF71189B4 //A11 = -1.71406885583934105120e-09
-data8 0x3E64252C8CB710B5 //A10 = +3.75233795940731111303e-08
-data8 0xBEA514B93180F33D //A9 = -6.28261292774310809962e-07
-data8 0x3EE1381118CC7151 //A8 = +8.21066421390821904504e-06
-data8 0xBF1634404FB0FA72 //A7 = -8.47019436358372148764e-05
-data8 0x3F46B2CBBCF0EB32 //A6 = +6.92700845213200923490e-04
-data8 0xBF725C2B445E6D81 //A5 = -4.48243046949004063741e-03
-data8 0x3F974E7CFA4D89D9 //A4 = +2.27603462002522228717e-02
-data8 0xBFB6D7BAC2E342D1 //A3 = -8.92292714882032736443e-02
-data8 0x3FD0D156AD9CE2A6 //A2 = +2.62777013343603696631e-01
-data8 0xBFE1C228572AADB0 //A1 = -5.54950876471982857725e-01
-data8 0x3FE8A739F48B9A3B //A0 = +7.70413377406675619766e-01
-LOCAL_OBJECT_END(erfc_p_table)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(erfcf)
-
-// Form index i for table erfc_p_table as exponent of x
-// We use i + bias in real calculations
-{ .mlx
- getf.exp GR_IndxPlusBias = f8 // (sign + exp + bias) of x
- movl exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc //signif.of 1/ln2
-}
-{ .mlx
- addl EXP_AD_TB1 = @ltoff(exp_table_1), gp
- movl exp_GR_rshf_2to56 = 0x4768000000000000 // 1.100 2^(63+56)
-}
-;;
-
-// Form argument EXP_NORM_f8 for exp(-x^2)
-{ .mfi
- ld8 EXP_AD_TB1 = [EXP_AD_TB1]
- fcmp.ge.s1 p6,p7 = f8, f0 // p6: x >= 0 ,p7: x<0
- mov GR_BIAS = 0x0FFFF
-}
-{ .mfi
- mov exp_GR_exp_2tom56 = 0xffff-56
- fnma.s1 EXP_NORM_f8 = f8, f8, f0 // -x^2
- mov GR_ExpMask = 0x1ffff
-}
-;;
-
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
-
-// p9: x = 0,+inf,-inf,nan,unnorm.
-// p10: x!= 0,+inf,-inf,nan,unnorm.
-{ .mfi
- setf.sig EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // Form 1/ln2*2^63
- fclass.m p9,p10 = f8,0xef
- shl GR_ShftPi_bias = GR_BIAS, 7
-}
-{ .mfi
- setf.d EXP_RSHF_2TO56 = exp_GR_rshf_2to56 //Const 1.10*2^(63+56)
- nop.f 0
- and GR_IndxPlusBias = GR_IndxPlusBias, GR_ExpMask // i + bias
-}
-;;
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 15, 4, 0
-(p6) fma.s1 FR_AbsArg = f1, f0, f8 // |x| if x >= 0
- cmp.lt p15,p0 = GR_IndxPlusBias, GR_BIAS//p15: i < 0 (for |x|<1)
-}
-{ .mlx
- setf.exp EXP_2TOM56 = exp_GR_exp_2tom56 //2^-56 for scaling Nfloat
- movl exp_GR_rshf = 0x43e8000000000000 //1.10 2^63,right shift.
-}
-;;
-
-{ .mfi
- ldfps FR_POS_ARG_ASYMP, FR_NEG_ARG_ASYMP = [EXP_AD_TB1],8
- nop.f 0
-(p15) mov GR_IndxPlusBias = GR_BIAS //Let i = 0 if i < 0
-}
-{ .mlx
- mov GR_P_POINT_3 = 0x1A0
- movl GR_05 = 0x3fe0000000000000
-}
-;;
-
-// Form shift GR_ShftPi from the beginning of erfc_p_table
-// to the polynomial with number i
-{ .mfi
- ldfps FR_UnfBound, FR_EpsNorm = [EXP_AD_TB1],8
- nop.f 0
- shl GR_ShftPi = GR_IndxPlusBias, 7
-}
-{ .mfi
- setf.d EXP_RSHF = exp_GR_rshf // Form right shift 1.100 * 2^63
-(p7) fms.s1 FR_AbsArg = f1, f0, f8 // |x| if x < 0
- mov exp_TB1_size = 0x100
-}
-;;
-
-// Form pointer GR_P_POINT_3 to the beginning of erfc_p_table
-{ .mfi
- setf.d FR_05 = GR_05
- nop.f 0
- sub GR_ShftPi = GR_ShftPi,GR_ShftPi_bias
-}
-{ .mfb
- add GR_P_POINT_3 = GR_P_POINT_3, EXP_AD_TB1
- nop.f 0
-(p9) br.cond.spnt SPECIAL // For x = 0,+inf,-inf,nan,unnorm
-}
-;;
-
-{ .mfi
- add GR_P_POINT_1 = GR_P_POINT_3, GR_ShftPi
- nop.f 0
- add GR_P_POINT_2 = GR_P_POINT_3, GR_ShftPi
-}
-{ .mfi
- ldfe exp_ln2_by_128_hi = [EXP_AD_TB1],16
- fma.s1 FR_NormX = f8,f1,f0
- add GR_P_POINT_3 = GR_P_POINT_3, GR_ShftPi
-}
-;;
-
-// Load coefficients for polynomial P15(x)
-{ .mfi
- ldfpd FR_A15, FR_A14 = [GR_P_POINT_1], 16
- nop.f 0
- add GR_P_POINT_3 = 0x30, GR_P_POINT_3
-}
-{ .mfi
- ldfe exp_ln2_by_128_lo = [EXP_AD_TB1], 16
- nop.f 0
- add GR_P_POINT_2 = 0x20, GR_P_POINT_2
-}
-;;
-
-// Now EXP_AD_TB1 points to the beginning of table 1
-{ .mlx
- ldfpd FR_A13, FR_A12 = [GR_P_POINT_1]
- movl GR_1_by_6 = 0x3FC5555555555555
-}
-{ .mfi
- add GR_P_POINT_4 = 0x30, GR_P_POINT_2
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd FR_A11, FR_A10 = [GR_P_POINT_2]
- fma.s1 FR_2 = f1, f1, f1
- mov exp_TB2_size = 0x80
-}
-{ .mfi
- ldfpd FR_A9, FR_A8 = [GR_P_POINT_3],16
- nop.f 0
- add GR_P_POINT_1 = 0x60 ,GR_P_POINT_1
-}
-;;
-
-// W = X * Inv_log2_by_128
-// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
-// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
-{ .mfi
- ldfpd FR_A7, FR_A6 = [GR_P_POINT_3]
- fma.s1 EXP_W_2TO56_RSH = EXP_NORM_f8,EXP_INV_LN2_2TO63,EXP_RSHF_2TO56
- add EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
-
-}
-{ .mfi
- ldfpd FR_A5, FR_A4 = [GR_P_POINT_4], 16
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfpd FR_A3, FR_A2 = [GR_P_POINT_4]
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfi
- ldfpd FR_A1, FR_A0 = [GR_P_POINT_1]
- nop.f 0
- nop.i 0
-}
-;;
-
-//p14: x < - NEG_ARG_ASYMP = -4.4 -> erfcf(x) ~=~ 2.0
-{ .mfi
- setf.d FR_1_by_6 = GR_1_by_6
-(p7) fcmp.gt.unc.s1 p14,p0 = FR_AbsArg, FR_NEG_ARG_ASYMP //p7: x < 0
- nop.i 0
-}
-;;
-
-//p15: x > POS_ARG_ASYMP = 10.06 -> erfcf(x) ~=~ 0.0
-{ .mfi
- nop.m 0
-(p6) fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP //p6: x > 0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.le.s1 p8,p0 = FR_NormX, FR_UnfBound // p8: x <= UnfBound
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p14) fnma.s.s0 FR_RESULT = FR_EpsNorm, FR_EpsNorm, FR_2//y = 2 if x <-4.4
-(p14) br.ret.spnt b0
-}
-;;
-
-// Nfloat = round_int(W)
-// The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into exp_GR_N.
-
-// Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
-// Thus, EXP_Nfloat contains the floating point version of N
-
-{ .mfi
- nop.m 0
- fms.s1 EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
- nop.i 0
-}
-{ .mfb
-(p15) mov GR_Parameter_TAG = 209
-(p15) fma.s.s0 FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0 //Result.for x>10.06
-(p15) br.cond.spnt __libm_error_region
-}
-;;
-
-// Now we can calculate polynomial P15(x)
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_1_1 = FR_AbsArg, FR_AbsArg, f0 // x ^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_0_1 = FR_A15, FR_AbsArg, FR_A14
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_1_2 = FR_A13, FR_AbsArg, FR_A12
- nop.i 0
-}
-;;
-
-{ .mfi
- getf.sig exp_GR_N = EXP_W_2TO56_RSH
- fma.s1 FR_P15_2_1 = FR_A9, FR_AbsArg, FR_A8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_2_2 = FR_A11, FR_AbsArg, FR_A10
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_3_1 = FR_A5, FR_AbsArg, FR_A4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_3_2 = FR_A7, FR_AbsArg, FR_A6
- nop.i 0
-}
-;;
-
-// exp_GR_index_1 has index_1
-// exp_GR_index_2_16 has index_2 * 16
-// exp_GR_biased_M has M
-// exp_GR_index_1_16 has index_1 * 16
-
-// r2 has true M
-{ .mfi
- and exp_GR_index_1 = 0x0f, exp_GR_N
- fma.s1 FR_P15_4_1 = FR_A1, FR_AbsArg, FR_A0
- shr r2 = exp_GR_N, 0x7
-
-}
-{ .mfi
- and exp_GR_index_2_16 = 0x70, exp_GR_N
- fma.s1 FR_P15_4_2 = FR_A3, FR_AbsArg, FR_A2
- nop.i 0
-}
-;;
-
-// EXP_AD_T1 has address of T1
-// EXP_AD_T2 has address if T2
-
-{ .mfi
- add EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
- nop.f 0
- shladd EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
-}
-{ .mfi
- addl exp_GR_biased_M = 0xffff, r2
- fnma.s1 exp_r = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
- nop.i 0
-}
-;;
-
-// Create Scale = 2^M
-// r = x - Nfloat * ln2_by_128_hi
-
-{ .mfi
- setf.exp EXP_2M = exp_GR_biased_M
- fma.s1 FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
- nop.i 0
-}
-{ .mfi
- ldfe exp_T2 = [EXP_AD_T2]
- nop.f 0
- nop.i 0
-}
-;;
-
-// Load T1 and T2
-
-{ .mfi
- ldfe exp_T1 = [EXP_AD_T1]
- fma.s1 FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0 // x^4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_P15_4_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 exp_P = FR_1_by_6, exp_r, FR_05
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 exp_rsq = exp_r, exp_r, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0 // x^8
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 exp_P = exp_P, exp_rsq, exp_r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 exp_S1 = EXP_2M, exp_T2, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Pol = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1 // P15(x)
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 exp_S = exp_S1, exp_T1, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Exp = exp_S, exp_P, exp_S // exp(-x^2)
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s.s0 FR_Tmpf = f8, f1, f0 // Flag d
- nop.i 0
-}
-;;
-
-//p6: result for 0 < x < = POS_ARG_ASYMP
-//p7: result for - NEG_ARG_ASYMP <= x < 0
-//p8: exit for - NEG_ARG_ASYMP <= x <= UnfBound, x!=0
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.s.s0 f8 = FR_Exp, FR_Pol, f0
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 209
-(p7) fnma.s.s0 f8 = FR_Exp, FR_Pol, FR_2
-(p8) br.ret.sptk b0
-}
-;;
-
-//p10: branch for UnfBound < x < = POS_ARG_ASYMP
-{ .mfb
- nop.m 0
- nop.f 0
-(p10) br.cond.spnt __libm_error_region
-}
-;;
-
-//Only via (p9) br.cond.spnt SPECIAL for x = 0,+inf,-inf,nan,unnorm
-SPECIAL:
-
-{ .mfi
- nop.m 0
- fclass.m.unc p10,p0 = f8,0x07 // p10: x = 0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m.unc p11,p0 = f8,0x21 // p11: x = +inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m.unc p12,p0 = f8,0x22 // p12 x = -inf
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p10) fma.s.s0 f8 = f1, f1, f0
-(p10) br.ret.sptk b0 // Quick exit for x = 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m.unc p13,p0 = f8,0xc3 // p13: x = nan
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p11) fma.s.s0 f8 = f0, f1, f0
-(p11) br.ret.spnt b0 // Quick exit for x = +inf
-}
-;;
-{ .mfi
- nop.m 0
- fclass.m.unc p14,p0 = f8,0x0b // P14: x = unnormalized
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p12) fma.s.s0 f8 = f1, f1, f1
-(p12) br.ret.spnt b0 // Quick exit for x = -inf
-}
-;;
-
-{ .mfb
- nop.m 0
-(p13) fma.s.s0 f8 = f8, f1, f0
-(p13) br.ret.sptk b0 // Quick exit for x = nan
-}
-;;
-
-{ .mfb
- nop.m 0
-(p14) fnma.s.s0 f8 = f8, f1, f1
-(p14) br.ret.sptk b0 // Quick exit for x = unnormalized
-}
-;;
-
-GLOBAL_LIBM_END(erfcf)
-
-
-// Call via (p10) br.cond.spnt __libm_error_region
-// for UnfBound < x < = POS_ARG_ASYMP
-// and
-//
-// call via (p15) br.cond.spnt __libm_error_region
-// for x > POS_ARG_ASYMP
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
-
diff --git a/sysdeps/ia64/fpu/s_erfcl.S b/sysdeps/ia64/fpu/s_erfcl.S
deleted file mode 100644
index 266e1e1c91..0000000000
--- a/sysdeps/ia64/fpu/s_erfcl.S
+++ /dev/null
@@ -1,2066 +0,0 @@
-.file "erfcl.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 11/12/01 Initial version
-// 02/08/02 Added missing }
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// long double erfcl(long double)
-//
-// Implementation and Algorithm Notes:
-//==============================================================
-// 1. 0 <= x <= 107.0
-//
-// erfcl(x) ~=~ P15(z) * expl( -x^2 )/(dx + x), z = x - xc(i).
-//
-// Comment:
-//
-// Let x(i) = -1.0 + 2^(i/4),i=0,...27. So we have 28 unequal
-// argument intervals [x(i),x(i+1)] with length ratio q = 2^(1/4).
-// Values xc(i) we have in the table erfc_xc_table,xc(i)=x(i)for i = 0
-// and xc(i)= 0.5*( x(i)+x(i+1) ) for i>0.
-//
-// Let x(i)<= x < x(i+1).
-// We can find i as exponent of number (x + 1)^4.
-//
-// Let P15(z)= a0+ a1*z +..+a15*z^15 - polynomial approximation of degree 15
-// for function erfcl(z+xc(i)) * expl( (z+xc(i))^2)* (dx+z+xc(i)) and
-// -0.5*[x(i+1)-x(i)] <= z <= 0.5*[x(i+1)-x(i)].
-//
-// Let Q(z)= (P(z)- S)/S, S = a0, rounded to 16 bits.
-// Polynomial coeffitients for Q(z) we have in the table erfc_Q_table as
-// long double values
-//
-// We use multi precision to calculate input argument -x^2 for expl and
-// for u = 1/(dx + x).
-//
-// Algorithm description for expl function see below. In accordance with
-// denotation of this algorithm we have for expl:
-//
-// expl(X) ~=~ 2^K*T_1*(1+W_1)*T_2*(1+W_2)*(1+ poly(r)), X = -x^2.
-//
-// Final calculations for erfcl:
-//
-// erfcl(x) ~=~
-//
-// 2^K*T_1*(1+W_1)*T_2*(1+W_2)*(1+ poly(r))*(1-dy)*S*(1+Q(z))*u*(1+du),
-//
-// where dy - low bits of x^2 and u, u*du - hi and low bits of 1/(dx + x).
-//
-// The order of calculations is the next:
-//
-// 1) M = 2^K*T_1*T_2*S without rounding error,
-// 2) W = W_1 + (W_2 + W_1*W_2), where 1+W ~=~ (1+W_1)(1+W_2),
-// 3) H = W - dy, where 1+H ~=~ (1+W )(1-dy),
-// 4) R = poly(r)*H + poly(r),
-// 5) R = H + R , where 1+R ~=~ (1+H )(1+poly(r)),
-// 6) G = Q(z)*R + Q(z),
-// 7) R1 = R + du, where 1+R1 ~=~ (1+R)(1+du),
-// 8) G1 = R1 + G, where 1+G1 ~=~ (1+R1)(1+Q(z)),
-// 9) V = G1*M*u,
-// 10) erfcl(x) ~=~ M*u + V
-//
-// 2. -6.5 <= x < 0
-//
-// erfcl(x) = 2.0 - erfl(-x)
-//
-// 3. x > 107.0
-// erfcl(x) ~=~ 0.0
-//
-// 4. x < -6.5
-// erfcl(x) ~=~ 2.0
-
-// Special values
-//==============================================================
-// erfcl(+0) = 1.0
-// erfcl(-0) = 1.0
-
-// erfcl(+qnan) = +qnan
-// erfcl(-qnan) = -qnan
-// erfcl(+snan) = +qnan
-// erfcl(-snan) = -qnan
-
-// erfcl(-inf) = 2.0
-// erfcl(+inf) = +0
-
-//==============================================================
-// Algorithm description of used expl function.
-//
-// Implementation and Algorithm Notes:
-//
-// ker_exp_64( in_FR : X,
-// out_FR : Y_hi,
-// out_FR : Y_lo,
-// out_FR : scale,
-// out_PR : Safe )
-//
-// On input, X is in register format
-//
-// On output,
-//
-// scale*(Y_hi + Y_lo) approximates exp(X)
-//
-// The accuracy is sufficient for a highly accurate 64 sig.
-// bit implementation. Safe is set if there is no danger of
-// overflow/underflow when the result is composed from scale,
-// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
-// Otherwise, one must prepare to handle the possible exception
-// appropriately. Note that SAFE not set (false) does not mean
-// that overflow/underflow will occur; only the setting of SAFE
-// guarantees the opposite.
-//
-// **** High Level Overview ****
-//
-// The method consists of three cases.
-//
-// If |X| < Tiny use case exp_tiny;
-// else if |X| < 2^(-6) use case exp_small;
-// else use case exp_regular;
-//
-// Case exp_tiny:
-//
-// 1 + X can be used to approximate exp(X)
-// X + X^2/2 can be used to approximate exp(X) - 1
-//
-// Case exp_small:
-//
-// Here, exp(X) and exp(X) - 1 can all be
-// appproximated by a relatively simple polynomial.
-//
-// This polynomial resembles the truncated Taylor series
-//
-// exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
-//
-// Case exp_regular:
-//
-// Here we use a table lookup method. The basic idea is that in
-// order to compute exp(X), we accurately decompose X into
-//
-// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
-//
-// Hence
-//
-// exp(X) = 2^( N / 2^12 ) * exp(r).
-//
-// The value 2^( N / 2^12 ) is obtained by simple combinations
-// of values calculated beforehand and stored in table; exp(r)
-// is approximated by a short polynomial because |r| is small.
-//
-// We elaborate this method in 4 steps.
-//
-// Step 1: Reduction
-//
-// The value 2^12/log(2) is stored as a double-extended number
-// L_Inv.
-//
-// N := round_to_nearest_integer( X * L_Inv )
-//
-// The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
-// that r can be computed accurately via
-//
-// r := (X - N*L_hi) - N*L_lo
-//
-// We pick L_hi such that N*L_hi is representable in 64 sig. bits
-// and thus the FMA X - N*L_hi is error free. So r is the
-// 1 rounding error from an exact reduction with respect to
-//
-// L_hi + L_lo.
-//
-// In particular, L_hi has 30 significant bit and can be stored
-// as a double-precision number; L_lo has 64 significant bits and
-// stored as a double-extended number.
-//
-// Step 2: Approximation
-//
-// exp(r) - 1 is approximated by a short polynomial of the form
-//
-// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
-//
-// Step 3: Composition from Table Values
-//
-// The value 2^( N / 2^12 ) can be composed from a couple of tables
-// of precalculated values. First, express N as three integers
-// K, M_1, and M_2 as
-//
-// N = K * 2^12 + M_1 * 2^6 + M_2
-//
-// Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
-// When N is represented in 2's complement, M_2 is simply the 6
-// lsb's, M_1 is the next 6, and K is simply N shifted right
-// arithmetically (sign extended) by 12 bits.
-//
-// Now, 2^( N / 2^12 ) is simply
-//
-// 2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
-//
-// Clearly, 2^K needs no tabulation. The other two values are less
-// trivial because if we store each accurately to more than working
-// precision, than its product is too expensive to calculate. We
-// use the following method.
-//
-// Define two mathematical values, delta_1 and delta_2, implicitly
-// such that
-//
-// T_1 = exp( [M_1 log(2)/2^6] - delta_1 )
-// T_2 = exp( [M_2 log(2)/2^12] - delta_2 )
-//
-// are representable as 24 significant bits. To illustrate the idea,
-// we show how we define delta_1:
-//
-// T_1 := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
-// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
-//
-// The last equality means mathematical equality. We then tabulate
-//
-// W_1 := exp(delta_1) - 1
-// W_2 := exp(delta_2) - 1
-//
-// Both in double precision.
-//
-// From the tabulated values T_1, T_2, W_1, W_2, we compose the values
-// T and W via
-//
-// T := T_1 * T_2 ...exactly
-// W := W_1 + (1 + W_1)*W_2
-//
-// W approximates exp( delta ) - 1 where delta = delta_1 + delta_2.
-// The mathematical product of T and (W+1) is an accurate representation
-// of 2^(M_1/2^6) * 2^(M_2/2^12).
-//
-// Step 4. Reconstruction
-//
-// Finally, we can reconstruct exp(X), exp(X) - 1.
-// Because
-//
-// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
-// + (M_2*log(2)/2^12 - delta_2)
-// + delta_1 + delta_2 + r ...accurately
-// We have
-//
-// exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
-// ~=~ 2^K * ( T + T*[exp(delta + r) - 1] )
-// ~=~ 2^K * ( T + T*[(exp(delta)-1)
-// + exp(delta)*(exp(r)-1)] )
-// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
-// ~=~ 2^K * ( Y_hi + Y_lo )
-//
-// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
-//
-// For exp(X)-1, we have
-//
-// exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
-// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
-//
-// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
-// numbers Y_hi + Y_lo carefully.
-//
-// **** Algorithm Details ****
-//
-// A careful algorithm must be used to realize the mathematical ideas
-// accurately. We describe each of the three cases. We assume SAFE
-// is preset to be TRUE.
-//
-// Case exp_tiny:
-//
-// The important points are to ensure an accurate result under
-// different rounding directions and a correct setting of the SAFE
-// flag.
-//
-// If expm1 is 1, then
-// SAFE := False ...possibility of underflow
-// Scale := 1.0
-// Y_hi := X
-// Y_lo := 2^(-17000)
-// Else
-// Scale := 1.0
-// Y_hi := 1.0
-// Y_lo := X ...for different rounding modes
-// Endif
-//
-// Case exp_small:
-//
-// Here we compute a simple polynomial. To exploit parallelism, we split
-// the polynomial into several portions.
-//
-// Let r = X
-//
-// If exp ...i.e. exp( argument )
-//
-// rsq := r * r;
-// r4 := rsq*rsq
-// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
-// poly_hi := r + rsq*(P_1 + r*P_2)
-// Y_lo := poly_hi + r4 * poly_lo
-// Y_hi := 1.0
-// Scale := 1.0
-//
-// Else ...i.e. exp( argument ) - 1
-//
-// rsq := r * r
-// r4 := rsq * rsq
-// r6 := rsq * r4
-// poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
-// poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
-// Y_lo := rsq*poly_hi + poly_lo
-// Y_hi := X
-// Scale := 1.0
-//
-// Endif
-//
-// Case exp_regular:
-//
-// The previous description contain enough information except the
-// computation of poly and the final Y_hi and Y_lo in the case for
-// exp(X)-1.
-//
-// The computation of poly for Step 2:
-//
-// rsq := r*r
-// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
-//
-// For the case exp(X) - 1, we need to incorporate 2^(-K) into
-// Y_hi and Y_lo at the end of Step 4.
-//
-// If K > 10 then
-// Y_lo := Y_lo - 2^(-K)
-// Else
-// If K < -10 then
-// Y_lo := Y_hi + Y_lo
-// Y_hi := -2^(-K)
-// Else
-// Y_hi := Y_hi - 2^(-K)
-// End If
-// End If
-//
-
-// Overview of operation
-//==============================================================
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f14, f36 -> f126
-
-// General registers used:
-// r32 -> r71
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//==============================================================
-// GR for exp(X)
-GR_ad_Arg = r33
-GR_ad_C = r34
-GR_ERFC_S_TB = r35
-GR_signexp_x = r36
-GR_exp_x = r36
-GR_exp_mask = r37
-GR_ad_W1 = r38
-GR_ad_W2 = r39
-GR_M2 = r40
-GR_M1 = r41
-GR_K = r42
-GR_exp_2_k = r43
-GR_ad_T1 = r44
-GR_ad_T2 = r45
-GR_N_fix = r46
-GR_ad_P = r47
-GR_exp_bias = r48
-GR_BIAS = r48
-GR_exp_half = r49
-GR_sig_inv_ln2 = r50
-GR_rshf_2to51 = r51
-GR_exp_2tom51 = r52
-GR_rshf = r53
-
-// GR for erfcl(x)
-//==============================================================
-
-GR_ERFC_XC_TB = r54
-GR_ERFC_P_TB = r55
-GR_IndxPlusBias = r56
-GR_P_POINT_1 = r57
-GR_P_POINT_2 = r58
-GR_AbsArg = r59
-GR_ShftXBi = r60
-GR_ShftPi = r61
-GR_mBIAS = r62
-GR_ShftPi_bias = r63
-GR_ShftXBi_bias = r64
-GR_ShftA14 = r65
-GR_ShftA15 = r66
-GR_EpsNorm = r67
-GR_0x1 = r68
-GR_ShftPi_8 = r69
-GR_26PlusBias = r70
-GR_27PlusBias = r71
-
-// GR for __libm_support call
-//==============================================================
-GR_SAVE_B0 = r64
-GR_SAVE_PFS = r65
-GR_SAVE_GP = r66
-GR_SAVE_SP = r67
-
-GR_Parameter_X = r68
-GR_Parameter_Y = r69
-GR_Parameter_RESULT = r70
-GR_Parameter_TAG = r71
-
-//==============================================================
-// Floating Point Registers
-//
-FR_RSHF_2TO51 = f10
-FR_INV_LN2_2TO63 = f11
-FR_W_2TO51_RSH = f12
-FR_2TOM51 = f13
-FR_RSHF = f14
-
-FR_scale = f36
-FR_float_N = f37
-FR_N_signif = f38
-FR_L_hi = f39
-FR_L_lo = f40
-FR_r = f41
-FR_W1 = f42
-FR_T1 = f43
-FR_W2 = f44
-FR_T2 = f45
-FR_rsq = f46
-FR_C2 = f47
-FR_C3 = f48
-FR_poly = f49
-FR_P6 = f49
-FR_T = f50
-FR_P5 = f50
-FR_P4 = f51
-FR_W = f51
-FR_P3 = f52
-FR_Wp1 = f52
-FR_P2 = f53
-FR_P1 = f54
-FR_Q7 = f56
-FR_Q6 = f57
-FR_Q5 = f58
-FR_Q4 = f59
-FR_Q3 = f60
-FR_Q2 = f61
-FR_Q1 = f62
-FR_C1 = f63
-FR_A15 = f64
-FR_ch_dx = f65
-FR_T_scale = f66
-FR_norm_x = f67
-FR_AbsArg = f68
-FR_POS_ARG_ASYMP = f69
-FR_NEG_ARG_ASYMP = f70
-FR_Tmp = f71
-FR_Xc = f72
-FR_A0 = f73
-FR_A1 = f74
-FR_A2 = f75
-FR_A3 = f76
-FR_A4 = f77
-FR_A5 = f78
-FR_A6 = f79
-FR_A7 = f80
-FR_A8 = f81
-FR_A9 = f82
-FR_A10 = f83
-FR_A11 = f84
-FR_A12 = f85
-FR_A13 = f86
-FR_A14 = f87
-FR_P15_0_1 = f88
-FR_P15_8_1 = f88
-FR_P15_1_1 = f89
-FR_P15_8_2 = f89
-FR_P15_1_2 = f90
-FR_P15_2_1 = f91
-FR_P15_2_2 = f92
-FR_P15_3_1 = f93
-FR_P15_3_2 = f94
-FR_P15_4_2 = f95
-FR_P15_7_1 = f96
-FR_P15_7_2 = f97
-FR_P15_9_1 = f98
-FR_P15_9_2 = f99
-FR_P15_13_1 = f100
-FR_P15_14_1 = f101
-FR_P15_14_2 = f102
-FR_Tmp2 = f103
-FR_Xpdx_lo = f104
-FR_2 = f105
-FR_xsq_lo = f106
-FR_LocArg = f107
-FR_Tmpf = f108
-FR_Tmp1 = f109
-FR_EpsNorm = f110
-FR_UnfBound = f111
-FR_NormX = f112
-FR_Xpdx_hi = f113
-FR_dU = f114
-FR_H = f115
-FR_G = f116
-FR_V = f117
-FR_M = f118
-FR_U = f119
-FR_Q = f120
-FR_S = f121
-FR_R = f122
-FR_res_pos_x_hi = f123
-FR_res_pos_x_lo = f124
-FR_dx = f125
-FR_dx1 = f126
-
-// for error handler routine
-FR_X = f9
-FR_Y = f0
-FR_RESULT = f8
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-LOCAL_OBJECT_START(exp_table_1)
-
-data8 0xae89f995ad3ad5ea , 0x00003ffe // x = 0.681..,bound for dx = 0.875
-data8 0x405AC00000000000 , 0x401A000000000000 //ARG_ASYMP,NEG_ARG_ASYMP
-data8 0x3FE4000000000000 , 0x3FEC000000000000 //0.625,0.875
-data8 0xD5126065B720A4e9 , 0x00004005 // underflow boundary
-data8 0x8000000000000000 , 0x00000001 //FR_EpsNorm
-LOCAL_OBJECT_END(exp_table_1)
-
-LOCAL_OBJECT_START(Constants_exp_64_Arg)
-data8 0xB17217F400000000,0x00003FF2 //L_hi = hi part log(2)/2^12
-data8 0xF473DE6AF278ECE6,0x00003FD4 //L_lo = lo part log(2)/2^12
-LOCAL_OBJECT_END(Constants_exp_64_Arg)
-
-LOCAL_OBJECT_START(Constants_exp_64_C)
-data8 0xAAAAAAABB1B736A0,0x00003FFA // C3
-data8 0xAAAAAAAB90CD6327,0x00003FFC // C2
-data8 0xFFFFFFFFFFFFFFFF,0x00003FFD // C1
-LOCAL_OBJECT_END(Constants_exp_64_C)
-
-LOCAL_OBJECT_START(Constants_exp_64_T1)
-data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
-data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
-data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
-data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
-data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
-data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
-data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
-data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
-data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
-data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
-data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
-data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
-data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
-data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
-data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
-data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
-LOCAL_OBJECT_END(Constants_exp_64_T1)
-
-LOCAL_OBJECT_START(Constants_exp_64_T2)
-data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
-data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
-data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
-data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
-data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
-data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
-data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
-data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
-data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
-data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
-data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
-data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
-data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
-data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
-data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
-data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
-LOCAL_OBJECT_END(Constants_exp_64_T2)
-
-LOCAL_OBJECT_START(Constants_exp_64_W1)
-data8 0x0000000000000000, 0xBE384454171EC4B4
-data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
-data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
-data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
-data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
-data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
-data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
-data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
-data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
-data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
-data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
-data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
-data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
-data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
-data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
-data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
-data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
-data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
-data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
-data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
-data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
-data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
-data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
-data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
-data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
-data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
-data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
-data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
-data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
-data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
-data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
-data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
-LOCAL_OBJECT_END(Constants_exp_64_W1)
-
-LOCAL_OBJECT_START(Constants_exp_64_W2)
-data8 0x0000000000000000, 0xBE641F2537A3D7A2
-data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
-data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
-data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
-data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
-data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
-data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
-data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
-data8 0xBE56856B49BFF529, 0x3E66DD3300508651
-data8 0x3E51165FC114BC13, 0x3E53333DC453290F
-data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
-data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
-data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
-data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
-data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
-data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
-data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
-data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
-data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
-data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
-data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
-data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
-data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
-data8 0xBE559725ADE45917, 0xBE68C29C042FC476
-data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
-data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
-data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
-data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
-data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
-data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
-data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
-data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
-LOCAL_OBJECT_END(Constants_exp_64_W2)
-
-
-LOCAL_OBJECT_START(erfc_xc_table)
-
-data8 0x0000000000000000, 0x00000000 //XC[0] = +0.00000000000000000000e-01L
-data8 0x9A79C70000000000, 0x00003FFD //XC[1] = +3.01710337400436401367e-01L
-data8 0x8C49EF0000000000, 0x00003FFE //XC[2] = +5.48003137111663818359e-01L
-data8 0xD744FC0000000000, 0x00003FFE //XC[3] = +8.40896368026733398438e-01L
-data8 0x9837F00000000000, 0x00003FFF //XC[4] = +1.18920707702636718750e+00L
-data8 0xCD3CE30000000000, 0x00003FFF //XC[5] = +1.60342061519622802734e+00L
-data8 0x8624F70000000000, 0x00004000 //XC[6] = +2.09600615501403808594e+00L
-data8 0xABA27E0000000000, 0x00004000 //XC[7] = +2.68179273605346679688e+00L
-data8 0xD837F00000000000, 0x00004000 //XC[8] = +3.37841415405273437500e+00L
-data8 0x869E710000000000, 0x00004001 //XC[9] = +4.20684099197387695313e+00L
-data8 0xA624F70000000000, 0x00004001 //XC[10] = +5.19201231002807617188e+00L
-data8 0xCBA27E0000000000, 0x00004001 //XC[11] = +6.36358547210693359375e+00L
-data8 0xF837F00000000000, 0x00004001 //XC[12] = +7.75682830810546875000e+00L
-data8 0x969E710000000000, 0x00004002 //XC[13] = +9.41368198394775390625e+00L
-data8 0xB624F70000000000, 0x00004002 //XC[14] = +1.13840246200561523438e+01L
-data8 0xDBA27E0000000000, 0x00004002 //XC[15] = +1.37271709442138671875e+01L
-data8 0x841BF80000000000, 0x00004003 //XC[16] = +1.65136566162109375000e+01L
-data8 0x9E9E710000000000, 0x00004003 //XC[17] = +1.98273639678955078125e+01L
-data8 0xBE24F70000000000, 0x00004003 //XC[18] = +2.37680492401123046875e+01L
-data8 0xE3A27E0000000000, 0x00004003 //XC[19] = +2.84543418884277343750e+01L
-data8 0x881BF80000000000, 0x00004004 //XC[20] = +3.40273132324218750000e+01L
-data8 0xA29E710000000000, 0x00004004 //XC[21] = +4.06547279357910156250e+01L
-data8 0xC224F70000000000, 0x00004004 //XC[22] = +4.85360984802246093750e+01L
-data8 0xE7A27E0000000000, 0x00004004 //XC[23] = +5.79086837768554687500e+01L
-data8 0x8A1BF80000000000, 0x00004005 //XC[24] = +6.90546264648437500000e+01L
-data8 0xA49E710000000000, 0x00004005 //XC[25] = +8.23094558715820312500e+01L
-data8 0xC424F70000000000, 0x00004005 //XC[26] = +9.80721969604492187500e+01L
-data8 0xD5A27E0000000000, 0x00004005 //XC[27] = +1.06817367553710937500e+02L
-LOCAL_OBJECT_END(erfc_xc_table)
-
-LOCAL_OBJECT_START(erfc_s_table)
-
-data8 0xE000000000000000, 0x00003FFE //s[0] = +8.75000000000000000000e-01L
-data8 0xDCEF000000000000, 0x00003FFE //s[1] = +8.63021850585937500000e-01L
-data8 0xD79D000000000000, 0x00003FFE //s[2] = +8.42239379882812500000e-01L
-data8 0xB25E000000000000, 0x00003FFE //s[3] = +6.96746826171875000000e-01L
-data8 0xB0EA000000000000, 0x00003FFE //s[4] = +6.91070556640625000000e-01L
-data8 0xAE3F000000000000, 0x00003FFE //s[5] = +6.80648803710937500000e-01L
-data8 0xAB05000000000000, 0x00003FFE //s[6] = +6.68045043945312500000e-01L
-data8 0xA7AC000000000000, 0x00003FFE //s[7] = +6.54968261718750000000e-01L
-data8 0xA478000000000000, 0x00003FFE //s[8] = +6.42456054687500000000e-01L
-data8 0xA18D000000000000, 0x00003FFE //s[9] = +6.31057739257812500000e-01L
-data8 0x9EF8000000000000, 0x00003FFE //s[10] = +6.20971679687500000000e-01L
-data8 0x9CBA000000000000, 0x00003FFE //s[11] = +6.12213134765625000000e-01L
-data8 0x9ACD000000000000, 0x00003FFE //s[12] = +6.04690551757812500000e-01L
-data8 0x992A000000000000, 0x00003FFE //s[13] = +5.98297119140625000000e-01L
-data8 0x97C7000000000000, 0x00003FFE //s[14] = +5.92880249023437500000e-01L
-data8 0x969C000000000000, 0x00003FFE //s[15] = +5.88317871093750000000e-01L
-data8 0x95A0000000000000, 0x00003FFE //s[16] = +5.84472656250000000000e-01L
-data8 0x94CB000000000000, 0x00003FFE //s[17] = +5.81222534179687500000e-01L
-data8 0x9419000000000000, 0x00003FFE //s[18] = +5.78506469726562500000e-01L
-data8 0x9383000000000000, 0x00003FFE //s[19] = +5.76217651367187500000e-01L
-data8 0x9305000000000000, 0x00003FFE //s[20] = +5.74295043945312500000e-01L
-data8 0x929B000000000000, 0x00003FFE //s[21] = +5.72677612304687500000e-01L
-data8 0x9242000000000000, 0x00003FFE //s[22] = +5.71319580078125000000e-01L
-data8 0x91F8000000000000, 0x00003FFE //s[23] = +5.70190429687500000000e-01L
-data8 0x91B9000000000000, 0x00003FFE //s[24] = +5.69229125976562500000e-01L
-data8 0x9184000000000000, 0x00003FFE //s[25] = +5.68420410156250000000e-01L
-data8 0x9158000000000000, 0x00003FFE //s[26] = +5.67749023437500000000e-01L
-data8 0x9145000000000000, 0x00003FFE //s[27] = +5.67459106445312500000e-01L
-LOCAL_OBJECT_END(erfc_s_table)
-
-LOCAL_OBJECT_START(erfc_Q_table)
-// Q(z)= (P(z)- S)/S
-//
-// Pol0
-data8 0x98325D50F9DC3499, 0x0000BFAA //A0 = +3.07358861423101280650e-26L
-data8 0xED35081A2494DDD9, 0x00003FF8 //A1 = +1.44779757616302832466e-02L
-data8 0x9443549BCD0F94CE, 0x0000BFFD //A2 = -2.89576190966300084405e-01L
-data8 0xC7FD4B98ECF3DBBF, 0x00003FFD //A3 = +3.90604364793467799170e-01L
-data8 0xB82CE31288B49759, 0x0000BFFD //A4 = -3.59717460644199233866e-01L
-data8 0x8A8293447BEF69B5, 0x00003FFD //A5 = +2.70527460203054582368e-01L
-data8 0xB5793E30EE36766C, 0x0000BFFC //A6 = -1.77220317589265674647e-01L
-data8 0xD6066D16BBDECE17, 0x00003FFB //A7 = +1.04504444366724593714e-01L
-data8 0xE7C783CE3C997BD8, 0x0000BFFA //A8 = -5.65867565781331646771e-02L
-data8 0xE9969EBC2F5B2828, 0x00003FF9 //A9 = +2.85142040533900194955e-02L
-data8 0xDD31D619F29AD7BF, 0x0000BFF8 //A10 = -1.35006514390540367929e-02L
-data8 0xC63A20EB59768F3A, 0x00003FF7 //A11 = +6.04940993680332271481e-03L
-data8 0xA8DEC641AACEB600, 0x0000BFF6 //A12 = -2.57675495383156581601e-03L
-data8 0x87F0E77BA914FBEB, 0x00003FF5 //A13 = +1.03714776726541296794e-03L
-data8 0xC306C2894C5CEF2D, 0x0000BFF3 //A14 = -3.71983348634136412407e-04L
-data8 0xBDAB416A989D0697, 0x00003FF1 //A15 = +9.04412111877987292294e-05L
-// Pol1
-data8 0x82808893DA2DD83F, 0x00003FEE //A0 = +7.77853035974467145290e-06L
-data8 0xAE9CD9DCADC86113, 0x0000BFFB //A1 = -8.52601070853077921197e-02L
-data8 0x9D429743E312AD9F, 0x0000BFFB //A2 = -7.67871682732076080494e-02L
-data8 0x8637FC533AE805DC, 0x00003FFC //A3 = +1.31072943286859831330e-01L
-data8 0xF68DBE3639ABCB6E, 0x0000BFFB //A4 = -1.20387540845703264588e-01L
-data8 0xB168FFC3CFA71256, 0x00003FFB //A5 = +8.66260511047190247534e-02L
-data8 0xDBC5078A7EA89236, 0x0000BFFA //A6 = -5.36546988077281230848e-02L
-data8 0xF4331FEDB2CB838F, 0x00003FF9 //A7 = +2.98095344165515989564e-02L
-data8 0xF909173C0E61C25D, 0x0000BFF8 //A8 = -1.51999213123642373375e-02L
-data8 0xEC83560A2ACB23E9, 0x00003FF7 //A9 = +7.21780491979582106904e-03L
-data8 0xD350D62C4FEAD8F5, 0x0000BFF6 //A10 = -3.22442272982896360044e-03L
-data8 0xB2F44F4B3FD9B826, 0x00003FF5 //A11 = +1.36531322425499451283e-03L
-data8 0x9078BC61927671C6, 0x0000BFF4 //A12 = -5.51115510818844954547e-04L
-data8 0xDF67AC6287A63B03, 0x00003FF2 //A13 = +2.13055585989529858265e-04L
-data8 0xA719CFEE67FCE1CE, 0x0000BFF1 //A14 = -7.96798844477905965933e-05L
-data8 0xEF926367BABBB029, 0x00003FEF //A15 = +2.85591875675765038065e-05L
-// Pol2
-data8 0x82B5E5A93B059C50, 0x00003FEF //A0 = +1.55819100856330860049e-05L
-data8 0xDC856BC2542B1938, 0x0000BFFB //A1 = -1.07676355235999875911e-01L
-data8 0xDF225EF5694F14AE, 0x0000BFF8 //A2 = -1.36190345125628043277e-02L
-data8 0xDAF66A954ED22428, 0x00003FFA //A3 = +5.34576571853233908886e-02L
-data8 0xD28AE4F21A392EC6, 0x0000BFFA //A4 = -5.14019911949062230820e-02L
-data8 0x9441A95713F0DB5B, 0x00003FFA //A5 = +3.61954321717769771045e-02L
-data8 0xB0957B5C483C7A04, 0x0000BFF9 //A6 = -2.15556535133667988704e-02L
-data8 0xBB9260E812814F71, 0x00003FF8 //A7 = +1.14484735825400480057e-02L
-data8 0xB68AB17287ABAB04, 0x0000BFF7 //A8 = -5.57073273108465072470e-03L
-data8 0xA56A95E0BC0EF01B, 0x00003FF6 //A9 = +2.52405318381952650677e-03L
-data8 0x8D19C7D286839C00, 0x0000BFF5 //A10 = -1.07651294935087466892e-03L
-data8 0xE45DB3766711A0D3, 0x00003FF3 //A11 = +4.35573615323234291196e-04L
-data8 0xB05949F947FA7AEF, 0x0000BFF2 //A12 = -1.68179306983868501372e-04L
-data8 0x82901D055A0D5CB6, 0x00003FF1 //A13 = +6.22572626227726684168e-05L
-data8 0xBB957698542D6FD0, 0x0000BFEF //A14 = -2.23617364009159182821e-05L
-data8 0x810740E1DF572394, 0x00003FEE //A15 = +7.69068800065192940487e-06L
-// Pol3
-data8 0x9526D1C87655AFA8, 0x00003FEC //A0 = +2.22253260814242012255e-06L
-data8 0xA47E21EBFE73F72F, 0x0000BFF8 //A1 = -1.00398379581527733314e-02L
-data8 0xDE65685FCDF7A913, 0x0000BFFA //A2 = -5.42959286802879105148e-02L
-data8 0xED289CB8F97D4860, 0x00003FFA //A3 = +5.79000589346770417248e-02L
-data8 0xAA3100D5A7D870F1, 0x0000BFFA //A4 = -4.15506394006027604387e-02L
-data8 0xCA0567032C5308C0, 0x00003FF9 //A5 = +2.46607791863290331169e-02L
-data8 0xD3E1794A50F31BEB, 0x0000BFF8 //A6 = -1.29321751094401754013e-02L
-data8 0xCAA02CB4C87CC1F0, 0x00003FF7 //A7 = +6.18364508551740736863e-03L
-data8 0xB3F126AF16B121F2, 0x0000BFF6 //A8 = -2.74569696838501870748e-03L
-data8 0x962B2D64D3900510, 0x00003FF5 //A9 = +1.14569596409019883022e-03L
-data8 0xED8785714A9A00FB, 0x0000BFF3 //A10 = -4.53051338046340380512e-04L
-data8 0xB325DA4515D8B54C, 0x00003FF2 //A11 = +1.70848714622328427290e-04L
-data8 0x8179C36354571747, 0x0000BFF1 //A12 = -6.17387951061077132522e-05L
-data8 0xB40F241C01C907E9, 0x00003FEF //A13 = +2.14647227210702861416e-05L
-data8 0xF436D84AD7D4D316, 0x0000BFED //A14 = -7.27815144835213913238e-06L
-data8 0x9EB432503FB0B7BC, 0x00003FEC //A15 = +2.36487228755136968792e-06L
-// Pol4
-data8 0xE0BA539E4AFC4741, 0x00003FED //A0 = +6.69741148991838024429e-06L
-data8 0x8583BF71139452CF, 0x0000BFFA //A1 = -3.25963476363756051657e-02L
-data8 0x8384FEF6D08AD6CE, 0x0000BFF9 //A2 = -1.60546283500634200479e-02L
-data8 0xB1E67DFB84C97036, 0x00003FF9 //A3 = +2.17163525195697635702e-02L
-data8 0xFB6ACEE6899E360D, 0x0000BFF8 //A4 = -1.53452892792759316229e-02L
-data8 0x8D2B869EB9149905, 0x00003FF8 //A5 = +8.61633440480716870830e-03L
-data8 0x8A90BFE0FD869A41, 0x0000BFF7 //A6 = -4.22868126950622376530e-03L
-data8 0xF7536A76E59F54D2, 0x00003FF5 //A7 = +1.88694643606912107006e-03L
-data8 0xCCF6FE58C16E1CC7, 0x0000BFF4 //A8 = -7.81878732767742447339e-04L
-data8 0x9FCC6ED9914FAA24, 0x00003FF3 //A9 = +3.04791577214885118730e-04L
-data8 0xEC7F5AAACAE593E8, 0x0000BFF1 //A10 = -1.12770784960291779798e-04L
-data8 0xA72CE628A114C940, 0x00003FF0 //A11 = +3.98577182157456408782e-05L
-data8 0xE2DCC5750FD769BA, 0x0000BFEE //A12 = -1.35220520471857266339e-05L
-data8 0x9459160B1E6F1F8D, 0x00003FED //A13 = +4.42111470121432700283e-06L
-data8 0xBE0A05701BD0DD42, 0x0000BFEB //A14 = -1.41590196994052764542e-06L
-data8 0xE905D729105081BF, 0x00003FE9 //A15 = +4.34038814785401120999e-07L
-// Pol5
-data8 0xA33649C3AB459832, 0x00003FEE //A0 = +9.72819704141525206634e-06L
-data8 0x9E4EA2F44C9A24BD, 0x0000BFFA //A1 = -3.86492123987296806210e-02L
-data8 0xE80C0B1280F357BF, 0x0000BFF2 //A2 = -2.21297306012713370124e-04L
-data8 0xDAECCE90A4D45D9A, 0x00003FF7 //A3 = +6.68106161291482829670e-03L
-data8 0xA4006572071BDD4B, 0x0000BFF7 //A4 = -5.00493005170532147076e-03L
-data8 0xB07FD7EB1F4D8E8E, 0x00003FF6 //A5 = +2.69316693731732554959e-03L
-data8 0xA1F471D42ADD73A1, 0x0000BFF5 //A6 = -1.23561753760779610478e-03L
-data8 0x8611D0ED1B4C8176, 0x00003FF4 //A7 = +5.11434914439322741260e-04L
-data8 0xCDADB789B487A541, 0x0000BFF2 //A8 = -1.96150380913036018825e-04L
-data8 0x9470252731687FEE, 0x00003FF1 //A9 = +7.07807859951401721129e-05L
-data8 0xCB9399AD1C376D85, 0x0000BFEF //A10 = -2.42682175234436724152e-05L
-data8 0x858D815F9CA0A9F7, 0x00003FEE //A11 = +7.96036454038012144300e-06L
-data8 0xA878D338E6E6A079, 0x0000BFEC //A12 = -2.51042802626063073967e-06L
-data8 0xCD2C2F079D2FCB36, 0x00003FEA //A13 = +7.64327468786076941271e-07L
-data8 0xF5EF4A4B2EA426F2, 0x0000BFE8 //A14 = -2.29044563492386125272e-07L
-data8 0x8CE52181393820FC, 0x00003FE7 //A15 = +6.56093668622712763489e-08L
-// Pol6
-data8 0xB2015D7F1864B7CF, 0x00003FEC //A0 = +2.65248615880090351276e-06L
-data8 0x954EA7A861B4462A, 0x0000BFFA //A1 = -3.64519642954351295215e-02L
-data8 0x9E46F2A4D9157E69, 0x00003FF7 //A2 = +4.83023498390681965101e-03L
-data8 0xA0D12B422FFD5BAD, 0x00003FF5 //A3 = +1.22693684633643883352e-03L
-data8 0xB291D16A560A740E, 0x0000BFF5 //A4 = -1.36237794246703606647e-03L
-data8 0xC138941BC8AF4A9D, 0x00003FF4 //A5 = +7.37079658343628747256e-04L
-data8 0xA761669D61B405CF, 0x0000BFF3 //A6 = -3.19252914480518163396e-04L
-data8 0x8053680F1C84607E, 0x00003FF2 //A7 = +1.22381025852939439541e-04L
-data8 0xB518F4B6F25015F9, 0x0000BFF0 //A8 = -4.31770048258291369742e-05L
-data8 0xEFF526AC70B9411E, 0x00003FEE //A9 = +1.43025887824433324525e-05L
-data8 0x970B2A848DF5B5C2, 0x0000BFED //A10 = -4.50145058393497252604e-06L
-data8 0xB614D2E61DB86963, 0x00003FEB //A11 = +1.35661172167726780059e-06L
-data8 0xD34EA4D283EC33FA, 0x0000BFE9 //A12 = -3.93590335713880681528e-07L
-data8 0xED209EBD68E1145F, 0x00003FE7 //A13 = +1.10421060667544991323e-07L
-data8 0x83A126E22A17568D, 0x0000BFE6 //A14 = -3.06473811074239684132e-08L
-data8 0x8B778496EDE9F415, 0x00003FE4 //A15 = +8.11804009754249175736e-09L
-// Pol7
-data8 0x8E152F522501B7B9, 0x00003FEE //A0 = +8.46879203970927626532e-06L
-data8 0xFD22F92EE21F491E, 0x0000BFF9 //A1 = -3.09004656656418947425e-02L
-data8 0xAF0C41847D89EC14, 0x00003FF7 //A2 = +5.34203719233189217519e-03L
-data8 0xB7C539C400445956, 0x0000BFF3 //A3 = -3.50514245383356287965e-04L
-data8 0x8428C78B2B1E3622, 0x0000BFF3 //A4 = -2.52073850239006530978e-04L
-data8 0xAFC0CCC7D1A05F5B, 0x00003FF2 //A5 = +1.67611241057491801028e-04L
-data8 0x95DC7272C5695A5A, 0x0000BFF1 //A6 = -7.14593512262564106636e-05L
-data8 0xD6FCA68A61F0E835, 0x00003FEF //A7 = +2.56284375437771117850e-05L
-data8 0x8B71C74DEA936C66, 0x0000BFEE //A8 = -8.31153675277218441096e-06L
-data8 0xA8AC71E2A56AA2C9, 0x00003FEC //A9 = +2.51343269277107451413e-06L
-data8 0xC15DED6C44B46046, 0x0000BFEA //A10 = -7.20347851650066610771e-07L
-data8 0xD42BA1DFBD1277AC, 0x00003FE8 //A11 = +1.97599119274780745741e-07L
-data8 0xE03A81F2C976D11A, 0x0000BFE6 //A12 = -5.22072765405802337371e-08L
-data8 0xE56A19A67DD66100, 0x00003FE4 //A13 = +1.33536787408751203998e-08L
-data8 0xE964D255CB31DFFA, 0x0000BFE2 //A14 = -3.39632729387679010008e-09L
-data8 0xE22E62E932B704D4, 0x00003FE0 //A15 = +8.22842400379225526299e-10L
-// Pol8
-data8 0xB8B835882D46A6C8, 0x00003FEF //A0 = +2.20202883282415435401e-05L
-data8 0xC9D1F63F89B74E90, 0x0000BFF9 //A1 = -2.46362504515706189782e-02L
-data8 0x8E376748B1274F30, 0x00003FF7 //A2 = +4.34010070001387441657e-03L
-data8 0x98174C7EA49B5B37, 0x0000BFF4 //A3 = -5.80181163659971286762e-04L
-data8 0x8D2C40506AE9FF97, 0x00003FEF //A4 = +1.68291159100251734927e-05L
-data8 0xD9A580C115B9D150, 0x00003FEF //A5 = +2.59454841475194555896e-05L
-data8 0xDB35B21F1C3F99CE, 0x0000BFEE //A6 = -1.30659192305072674545e-05L
-data8 0x99FAADAE17A3050E, 0x00003FED //A7 = +4.58893813631592314881e-06L
-data8 0xBA1D259BCD6987A9, 0x0000BFEB //A8 = -1.38665627771423394637e-06L
-data8 0xCDD7FF5BEA0145C2, 0x00003FE9 //A9 = +3.83413844219813384124e-07L
-data8 0xD60857176CE6AB9D, 0x0000BFE7 //A10 = -9.96666862214499946343e-08L
-data8 0xD446A2402112DF4C, 0x00003FE5 //A11 = +2.47121687566658908126e-08L
-data8 0xCA87133235F1F495, 0x0000BFE3 //A12 = -5.89433000014933371980e-09L
-data8 0xBB15B0021581C8B6, 0x00003FE1 //A13 = +1.36122047057936849125e-09L
-data8 0xAC9D6585D4AF505E, 0x0000BFDF //A14 = -3.13984547328132268695e-10L
-data8 0x975A1439C3795183, 0x00003FDD //A15 = +6.88268624429648826457e-11L
-// Pol9
-data8 0x99A7676284CDC9FE, 0x00003FEF //A0 = +1.83169747921764176475e-05L
-data8 0x9AD0AE249A02896C, 0x0000BFF9 //A1 = -1.88983346204739151909e-02L
-data8 0xCB89B4AEC19898BE, 0x00003FF6 //A2 = +3.10574208447745576452e-03L
-data8 0xEBBC47E30E1AC2C2, 0x0000BFF3 //A3 = -4.49629730048297442064e-04L
-data8 0xD1E35B7FCE1CF859, 0x00003FF0 //A4 = +5.00412261289558493438e-05L
-data8 0xB40743664EF24552, 0x0000BFEB //A5 = -1.34131589671166307319e-06L
-data8 0xCAD2F5C596FFE1B4, 0x0000BFEB //A6 = -1.51115702599728593837e-06L
-data8 0xAE42B6D069DFDDF2, 0x00003FEA //A7 = +6.49171330116787223873e-07L
-data8 0xD0739A05BB43A714, 0x0000BFE8 //A8 = -1.94135651872623440782e-07L
-data8 0xD745B854AB601BD7, 0x00003FE6 //A9 = +5.01219983943456578062e-08L
-data8 0xCC4066E13E338B13, 0x0000BFE4 //A10 = -1.18890061172430768892e-08L
-data8 0xB6EAADB55A6C3CB4, 0x00003FE2 //A11 = +2.66178850259168707794e-09L
-data8 0x9CC6C178AD3F96AD, 0x0000BFE0 //A12 = -5.70349182959704086428e-10L
-data8 0x81D0E2AA27DEB74A, 0x00003FDE //A13 = +1.18066926578104076645e-10L
-data8 0xD75FB9049190BEFD, 0x0000BFDB //A14 = -2.44851795398843967972e-11L
-data8 0xA9384A51D48C8703, 0x00003FD9 //A15 = +4.80951837368635202609e-12L
-// Pol10
-data8 0xD2B3482EE449C535, 0x00003FEE //A0 = +1.25587177382575655080e-05L
-data8 0xE7939B2D0607DFCF, 0x0000BFF8 //A1 = -1.41343131436717436429e-02L
-data8 0x8810EB4AC5F0F1CE, 0x00003FF6 //A2 = +2.07620377002350121270e-03L
-data8 0x9546589602AEB955, 0x0000BFF3 //A3 = -2.84719065122144294949e-04L
-data8 0x9333434342229798, 0x00003FF0 //A4 = +3.50952732796136549298e-05L
-data8 0xEB36A98FD81D3DEB, 0x0000BFEC //A5 = -3.50495464815398722482e-06L
-data8 0xAC370EFA025D0477, 0x00003FE8 //A6 = +1.60387784498518639254e-07L
-data8 0xC8DF7F8ACA099426, 0x00003FE6 //A7 = +4.67693991699936842330e-08L
-data8 0xAC694AD4921C02CF, 0x0000BFE5 //A8 = -2.00713167514877937714e-08L
-data8 0xB6E29F2FDE2D8C1A, 0x00003FE3 //A9 = +5.32266106167252495164e-09L
-data8 0xA41F8EEA75474358, 0x0000BFE1 //A10 = -1.19415398856537468324e-09L
-data8 0x869D778A1C56D3D6, 0x00003FDF //A11 = +2.44863450057778470469e-10L
-data8 0xD02658BF31411F4C, 0x0000BFDC //A12 = -4.73277831746128372261e-11L
-data8 0x9A4A95EE59127779, 0x00003FDA //A13 = +8.77044784978207256260e-12L
-data8 0xE518330AF013C2F6, 0x0000BFD7 //A14 = -1.62781453276882333209e-12L
-data8 0xA036A9DF71BD108A, 0x00003FD5 //A15 = +2.84596398987114375607e-13L
-// Pol11
-data8 0x9191CFBF001F3BB3, 0x00003FEE //A0 = +8.67662287973472452343e-06L
-data8 0xAA47E0CF01AE9730, 0x0000BFF8 //A1 = -1.03931136509584404513e-02L
-data8 0xAEABE7F17B01D18F, 0x00003FF5 //A2 = +1.33263784731775399430e-03L
-data8 0xAC0D6A309D04E5DB, 0x0000BFF2 //A3 = -1.64081956462118568288e-04L
-data8 0xA08357DF458054D0, 0x00003FEF //A4 = +1.91346477952797715021e-05L
-data8 0x8A1596B557440FE0, 0x0000BFEC //A5 = -2.05761687274453412571e-06L
-data8 0xCDA0EAE0A5615E9A, 0x00003FE8 //A6 = +1.91506542215670149741e-07L
-data8 0xD36A08FB4E104F9A, 0x0000BFE4 //A7 = -1.23059260396551086769e-08L
-data8 0xD7433F91E78A7A11, 0x0000BFDF //A8 = -3.91560549815575091188e-10L
-data8 0xC2F5308FD4F5CE62, 0x00003FDF //A9 = +3.54626121852421163117e-10L
-data8 0xC83876915F49D630, 0x0000BFDD //A10 = -9.10497688901018285126e-11L
-data8 0xA11C605DEAE1FE9C, 0x00003FDB //A11 = +1.83161825409194847892e-11L
-data8 0xE7977BC1342D19BF, 0x0000BFD8 //A12 = -3.29111645807102123274e-12L
-data8 0x9BC3A7D6396C6756, 0x00003FD6 //A13 = +5.53385887288503961220e-13L
-data8 0xD0110D5683740B8C, 0x0000BFD3 //A14 = -9.24001363293241428519e-14L
-data8 0x81786D7856A5CC92, 0x00003FD1 //A15 = +1.43741041714595023996e-14L
-// Pol12
-data8 0xB85654F6033B3372, 0x00003FEF //A0 = +2.19747106911869287049e-05L
-data8 0xF78B40078736B406, 0x0000BFF7 //A1 = -7.55444170413862312647e-03L
-data8 0xDA8FDE84D88E5D5D, 0x00003FF4 //A2 = +8.33747822263358628569e-04L
-data8 0xBC2D3F3891721AA9, 0x0000BFF1 //A3 = -8.97296647669960333635e-05L
-data8 0x9D15ACFD3BF50064, 0x00003FEE //A4 = +9.36297600601039610762e-06L
-data8 0xFBED3D03F3C1B671, 0x0000BFEA //A5 = -9.38500137149172923985e-07L
-data8 0xBEE615E3B2FA16C8, 0x00003FE7 //A6 = +8.88941676851808958175e-08L
-data8 0x843D32692CF5662A, 0x0000BFE4 //A7 = -7.69732580860195238520e-09L
-data8 0x99E74472FD94E22B, 0x00003FE0 //A8 = +5.59897264617128952416e-10L
-data8 0xCEF63DABF4C32E15, 0x0000BFDB //A9 = -2.35288414996279313219e-11L
-data8 0xA2D86C25C0991123, 0x0000BFD8 //A10 = -2.31417232327307408235e-12L
-data8 0xF50C1B31D2E922BD, 0x00003FD6 //A11 = +8.70582858983364191159e-13L
-data8 0xC0F093DEC2B019A1, 0x0000BFD4 //A12 = -1.71364927865227509533e-13L
-data8 0xFC1441C4CD105981, 0x00003FD1 //A13 = +2.79864052545369490865e-14L
-data8 0x9CC959853267F026, 0x0000BFCF //A14 = -4.35170017302700609509e-15L
-data8 0xB06BA14016154F1E, 0x00003FCC //A15 = +6.12081320471295704631e-16L
-// Pol13
-data8 0xA59E74BF544F2422, 0x00003FEF //A0 = +1.97433196215210145261e-05L
-data8 0xB2814F4EDAE15330, 0x0000BFF7 //A1 = -5.44754383528015875700e-03L
-data8 0x867C249D378F0A23, 0x00003FF4 //A2 = +5.13019308804593120161e-04L
-data8 0xC76644393388AB68, 0x0000BFF0 //A3 = -4.75405403392600215101e-05L
-data8 0x91143AD5CCA229FE, 0x00003FED //A4 = +4.32369180778264703719e-06L
-data8 0xCE6A11FB6840A974, 0x0000BFE9 //A5 = -3.84476663329551178495e-07L
-data8 0x8EC29F66C59DE243, 0x00003FE6 //A6 = +3.32389596787155456596e-08L
-data8 0xBE3FCDDCA94CA24E, 0x0000BFE2 //A7 = -2.76849073931513325199e-09L
-data8 0xF06A84BDC70A0B0D, 0x00003FDE //A8 = +2.18657158231304988330e-10L
-data8 0x8B8E6969D056D124, 0x0000BFDB //A9 = -1.58657139740906811035e-11L
-data8 0x8984985AA29A0567, 0x00003FD7 //A10 = +9.77123802231106533829e-13L
-data8 0xA53ABA084300137C, 0x0000BFD2 //A11 = -3.66882970952892030306e-14L
-data8 0xA90EC851E91C3319, 0x0000BFCE //A12 = -2.34614750044359490986e-15L
-data8 0xEC9CAF64237B5060, 0x00003FCC //A13 = +8.20912960028437475035e-16L
-data8 0xA9156668FCF01479, 0x0000BFCA //A14 = -1.46656639874123613261e-16L
-data8 0xBAEF58D8118DD5D4, 0x00003FC7 //A15 = +2.02675278255254907493e-17L
-// Pol14
-data8 0xC698952E9CEAA800, 0x00003FEF //A0 = +2.36744912073515619263e-05L
-data8 0x800395F8C7B4FA00, 0x0000BFF7 //A1 = -3.90667746392883642897e-03L
-data8 0xA3B2467B6B391831, 0x00003FF3 //A2 = +3.12226081793919541155e-04L
-data8 0xCF2061122A69D72B, 0x0000BFEF //A3 = -2.46914006692526122176e-05L
-data8 0x817FAB6B5DEB9924, 0x00003FEC //A4 = +1.92968114320180123521e-06L
-data8 0x9FC190F5827740E7, 0x0000BFE8 //A5 = -1.48784479265231093475e-07L
-data8 0xC1FE5C1835C8AFCD, 0x00003FE4 //A6 = +1.12919132662720380018e-08L
-data8 0xE7216A9FBB204DA3, 0x0000BFE0 //A7 = -8.40847981461949000003e-10L
-data8 0x867566ED95C5C64F, 0x00003FDD //A8 = +6.11446929759298780795e-11L
-data8 0x97A8BFA723F0F014, 0x0000BFD9 //A9 = -4.31041298699752869577e-12L
-data8 0xA3D24B7034984522, 0x00003FD5 //A10 = +2.91005377301348717042e-13L
-data8 0xA5AAA371C22F3741, 0x0000BFD1 //A11 = -1.83926825395757259128e-14L
-data8 0x95352E5597EACC23, 0x00003FCD //A12 = +1.03533666540077850452e-15L
-data8 0xCCEBE3043B689428, 0x0000BFC8 //A13 = -4.44352525147076912166e-17L
-data8 0xA779DAB4BE1F80BB, 0x0000BFBC //A14 = -8.86610526981738255206e-21L
-data8 0xB171271F3517282C, 0x00003FC1 //A15 = +3.00598445879282370850e-19L
-// Pol15
-data8 0xB7AC727D1C3FEB05, 0x00003FEE //A0 = +1.09478009914822049780e-05L
-data8 0xB6E6274485C10B0A, 0x0000BFF6 //A1 = -2.79081782038927199588e-03L
-data8 0xC5CAE2122D009506, 0x00003FF2 //A2 = +1.88629638738336219173e-04L
-data8 0xD466E7957D0A3362, 0x0000BFEE //A3 = -1.26601440424012313479e-05L
-data8 0xE2593D798DA20E2E, 0x00003FEA //A4 = +8.43214222346512003230e-07L
-data8 0xEF2D2BBA7D2882CC, 0x0000BFE6 //A5 = -5.56876064495961858535e-08L
-data8 0xFA5819BB4AE974C2, 0x00003FE2 //A6 = +3.64298674151704370449e-09L
-data8 0x819BB0CE825FBB28, 0x0000BFDF //A7 = -2.35755881668932259913e-10L
-data8 0x84871099BF728B8F, 0x00003FDB //A8 = +1.50666434199945890414e-11L
-data8 0x858188962DFEBC9F, 0x0000BFD7 //A9 = -9.48617116568458677088e-13L
-data8 0x840F38FF2FBAE753, 0x00003FD3 //A10 = +5.86461827778372616657e-14L
-data8 0xFF47EAF69577B213, 0x0000BFCE //A11 = -3.54273456410181081472e-15L
-data8 0xEF402CCB4D29FAF8, 0x00003FCA //A12 = +2.07516888659313950588e-16L
-data8 0xD6B789E01141231B, 0x0000BFC6 //A13 = -1.16398290506765191078e-17L
-data8 0xB5EEE343E9CFE3EC, 0x00003FC2 //A14 = +6.16413506924643419723e-19L
-data8 0x859B41A39D600346, 0x0000BFBE //A15 = -2.82922705825870414438e-20L
-// Pol16
-data8 0x85708B69FD184E11, 0x00003FED //A0 = +3.97681079176353356199e-06L
-data8 0x824D92BC60A1F70A, 0x0000BFF6 //A1 = -1.98826630037499070532e-03L
-data8 0xEDCF7D3576BB5258, 0x00003FF1 //A2 = +1.13396885054265675352e-04L
-data8 0xD7FC59226A947CDF, 0x0000BFED //A3 = -6.43687650810478871875e-06L
-data8 0xC32C51B574E2651E, 0x00003FE9 //A4 = +3.63538268539251809118e-07L
-data8 0xAF67910F5681401F, 0x0000BFE5 //A5 = -2.04197779750247395258e-08L
-data8 0x9CB3E8D7DCD1EA9D, 0x00003FE1 //A6 = +1.14016272459029850306e-09L
-data8 0x8B14ECFBF7D4F114, 0x0000BFDD //A7 = -6.32470533185766848692e-11L
-data8 0xF518253AE4A3AE72, 0x00003FD8 //A8 = +3.48299974583453268369e-12L
-data8 0xD631A5699AA2F334, 0x0000BFD4 //A9 = -1.90242426474085078079e-13L
-data8 0xB971AD4C30C56E5D, 0x00003FD0 //A10 = +1.02942127356740047925e-14L
-data8 0x9ED0065A601F3160, 0x0000BFCC //A11 = -5.50991880383698965959e-16L
-data8 0x863A04008E12867C, 0x00003FC8 //A12 = +2.91057593756148904838e-17L
-data8 0xDF62F9F44F5C7170, 0x0000BFC3 //A13 = -1.51372666097522872780e-18L
-data8 0xBA4E118E88CFDD31, 0x00003FBF //A14 = +7.89032177282079635722e-20L
-data8 0x942AD897FC4D2F2A, 0x0000BFBB //A15 = -3.92195756076319409245e-21L
-// Pol17
-data8 0xCB8514540566C717, 0x00003FEF //A0 = +2.42614557068144130848e-05L
-data8 0xB94F08D6816E0CD4, 0x0000BFF5 //A1 = -1.41379340061829929314e-03L
-data8 0x8E7C342C2DABB51B, 0x00003FF1 //A2 = +6.79422240687700109911e-05L
-data8 0xDA69DAFF71E30D5B, 0x0000BFEC //A3 = -3.25461473899657142468e-06L
-data8 0xA6D5B2DB69B4B3F6, 0x00003FE8 //A4 = +1.55376978584082701045e-07L
-data8 0xFDF4F76BC1D1BD47, 0x0000BFE3 //A5 = -7.39111857092131684572e-09L
-data8 0xC08BC52C95B12C2D, 0x00003FDF //A6 = +3.50239092565793882444e-10L
-data8 0x91624BF6D3A3F6C9, 0x0000BFDB //A7 = -1.65282439890232458821e-11L
-data8 0xDA91F7A450DE4270, 0x00003FD6 //A8 = +7.76517285902715940501e-13L
-data8 0xA380ADF55416E624, 0x0000BFD2 //A9 = -3.63048822989374426852e-14L
-data8 0xF350FC0CEDEE0FD6, 0x00003FCD //A10 = +1.68834630987974622269e-15L
-data8 0xB3FA19FBDC8F023C, 0x0000BFC9 //A11 = -7.80525639701804380489e-17L
-data8 0x8435328C80940126, 0x00003FC5 //A12 = +3.58349966898667910204e-18L
-data8 0xC0D22F655BA5EF39, 0x0000BFC0 //A13 = -1.63325770165403860181e-19L
-data8 0x8F14B9EBD5A9AB25, 0x00003FBC //A14 = +7.57464305512080733773e-21L
-data8 0xCD4804BBF6DC1B6F, 0x0000BFB7 //A15 = -3.39609459750208886298e-22L
-// Pol18
-data8 0xE251DFE45AB0C22E, 0x00003FEE //A0 = +1.34897126299700418200e-05L
-data8 0x83943CC7D59D4215, 0x0000BFF5 //A1 = -1.00386850310061655307e-03L
-data8 0xAA57896951134BCA, 0x00003FF0 //A2 = +4.06126834109940757047e-05L
-data8 0xDC0A67051E1C4A2C, 0x0000BFEB //A3 = -1.63943048164477430317e-06L
-data8 0x8DCB3C0A8CD07BBE, 0x00003FE7 //A4 = +6.60279229777753829876e-08L
-data8 0xB64DE81C24F7F265, 0x0000BFE2 //A5 = -2.65287705357477481067e-09L
-data8 0xE9CBB7A990DBA8B5, 0x00003FDD //A6 = +1.06318007608620426224e-10L
-data8 0x9583D4B85C2ADC6F, 0x0000BFD9 //A7 = -4.24947087941505088222e-12L
-data8 0xBEB0EE8114EEDF77, 0x00003FD4 //A8 = +1.69367754741562774916e-13L
-data8 0xF2791BB8F06BDA93, 0x0000BFCF //A9 = -6.72997988617021128704e-15L
-data8 0x99A907F6A92195B4, 0x00003FCB //A10 = +2.66558091161711891239e-16L
-data8 0xC213E5E6F833BB93, 0x0000BFC6 //A11 = -1.05209746502719578617e-17L
-data8 0xF41FBBA6B343960F, 0x00003FC1 //A12 = +4.13562069721140021224e-19L
-data8 0x98F194AEE31D188D, 0x0000BFBD //A13 = -1.61935414722333263347e-20L
-data8 0xC42F5029BB622157, 0x00003FB8 //A14 = +6.49121108201931196678e-22L
-data8 0xF43BD08079E50E0F, 0x0000BFB3 //A15 = -2.52531675510242468317e-23L
-// Pol19
-data8 0x82557B149A04D08E, 0x00003FEF //A0 = +1.55370127331027842820e-05L
-data8 0xBAAB433307CE614B, 0x0000BFF4 //A1 = -7.12085701486669872724e-04L
-data8 0xCB52D9DBAC16FE82, 0x00003FEF //A2 = +2.42380662859334411743e-05L
-data8 0xDD214359DBBCE7D1, 0x0000BFEA //A3 = -8.23773197624244883859e-07L
-data8 0xF01E8E968139524C, 0x00003FE5 //A4 = +2.79535729459988509676e-08L
-data8 0x82286A057E0916CE, 0x0000BFE1 //A5 = -9.47023128967039348510e-10L
-data8 0x8CDDDC4E8D013365, 0x00003FDC //A6 = +3.20293663356974901319e-11L
-data8 0x982FEEE90D4E8751, 0x0000BFD7 //A7 = -1.08135537312234452657e-12L
-data8 0xA41D1E84083B8FD6, 0x00003FD2 //A8 = +3.64405720894915411836e-14L
-data8 0xB0A1B6111B72E159, 0x0000BFCD //A9 = -1.22562851790685744085e-15L
-data8 0xBDB77DE6B650FFA2, 0x00003FC8 //A10 = +4.11382657214908334175e-17L
-data8 0xCB54E95CDB66978A, 0x0000BFC3 //A11 = -1.37782909696752432371e-18L
-data8 0xD959E428A62B1B6C, 0x00003FBE //A12 = +4.60258936838597812582e-20L
-data8 0xE7D49EC23F1A16A0, 0x0000BFB9 //A13 = -1.53412587409583783059e-21L
-data8 0xFDE429BC9947B2BE, 0x00003FB4 //A14 = +5.25034823750902928092e-23L
-data8 0x872137A062C042EF, 0x0000BFB0 //A15 = -1.74651114923000080365e-24L
-// Pol20
-data8 0x8B9B185C6A2659AC, 0x00003FEF //A0 = +1.66423130594825442963e-05L
-data8 0x84503AD52588A1E8, 0x0000BFF4 //A1 = -5.04735556466270303549e-04L
-data8 0xF26C7C2B566388E1, 0x00003FEE //A2 = +1.44495826764677427386e-05L
-data8 0xDDDA15FEE262BB47, 0x0000BFE9 //A3 = -4.13231361893675488873e-07L
-data8 0xCACEBC73C90C2FE0, 0x00003FE4 //A4 = +1.18049538609157282958e-08L
-data8 0xB9314D00022B41DD, 0x0000BFDF //A5 = -3.36863342776746896664e-10L
-data8 0xA8E9FBDC714638B9, 0x00003FDA //A6 = +9.60164921624768038366e-12L
-data8 0x99E246C0CC8CA6F6, 0x0000BFD5 //A7 = -2.73352704217713596798e-13L
-data8 0x8C04E7B5DF372EA1, 0x00003FD0 //A8 = +7.77262480048865685174e-15L
-data8 0xFE7B90CAA0B6D5F7, 0x0000BFCA //A9 = -2.20728537958846147109e-16L
-data8 0xE6F40BAD4EC6CB4F, 0x00003FC5 //A10 = +6.26000182616999972048e-18L
-data8 0xD14F4E0538F0F992, 0x0000BFC0 //A11 = -1.77292283439752259258e-19L
-data8 0xBD5A7FAA548CC749, 0x00003FBB //A12 = +5.01214569023722089225e-21L
-data8 0xAB15D69425373A67, 0x0000BFB6 //A13 = -1.41518447770061562822e-22L
-data8 0x9EF95456F75B4DF4, 0x00003FB1 //A14 = +4.10938011540250142351e-24L
-data8 0x8FADCC45E81433E7, 0x0000BFAC //A15 = -1.16062889679749879834e-25L
-// Pol21
-data8 0xB47A917B0F7B50AE, 0x00003FEF //A0 = +2.15147474240529518138e-05L
-data8 0xBB77DC3BA0C937B3, 0x0000BFF3 //A1 = -3.57567223048598672970e-04L
-data8 0x90694DFF4EBF7370, 0x00003FEE //A2 = +8.60758700336677694536e-06L
-data8 0xDE5379AA90A98F3F, 0x0000BFE8 //A3 = -2.07057292787309736495e-07L
-data8 0xAB0322293F1F9CA0, 0x00003FE3 //A4 = +4.97711123919916694625e-09L
-data8 0x837119E59D3B7AC2, 0x0000BFDE //A5 = -1.19545621970063369582e-10L
-data8 0xC9E5B74A38ECF3FC, 0x00003FD8 //A6 = +2.86913359605586285967e-12L
-data8 0x9AEF5110C6885352, 0x0000BFD3 //A7 = -6.88048865490621757799e-14L
-data8 0xED988D52189CE6A3, 0x00003FCD //A8 = +1.64865278639132278935e-15L
-data8 0xB6063CECD8012B6D, 0x0000BFC8 //A9 = -3.94702428606368525374e-17L
-data8 0x8B541EB15E79CEEC, 0x00003FC3 //A10 = +9.44127272399408815784e-19L
-data8 0xD51A136D8C75BC25, 0x0000BFBD //A11 = -2.25630369561137931232e-20L
-data8 0xA2C1C5E19CC79E6F, 0x00003FB8 //A12 = +5.38517493921589837361e-22L
-data8 0xF86F9772306F56C1, 0x0000BFB2 //A13 = -1.28438352359240135735e-23L
-data8 0xC32F6FEEDE86528E, 0x00003FAD //A14 = +3.15338862172962186458e-25L
-data8 0x9534ED189744D7D4, 0x0000BFA8 //A15 = -7.53301543611470014315e-27L
-// Pol22
-data8 0xCBA0A2DB94A2C494, 0x00003FEF //A0 = +2.42742878212752702946e-05L
-data8 0x84C089154A49E0E8, 0x0000BFF3 //A1 = -2.53204520651046300034e-04L
-data8 0xABF5665BD0D8B0CD, 0x00003FED //A2 = +5.12476542947092361490e-06L
-data8 0xDEA1C518E3EEE872, 0x0000BFE7 //A3 = -1.03671063536324831083e-07L
-data8 0x900B77F271559AE8, 0x00003FE2 //A4 = +2.09612770408581408652e-09L
-data8 0xBA4C74A262BE3E4E, 0x0000BFDC //A5 = -4.23594098489216166935e-11L
-data8 0xF0D1680FCC1EAF97, 0x00003FD6 //A6 = +8.55557381760467917779e-13L
-data8 0x9B8F8E033BB83A24, 0x0000BFD1 //A7 = -1.72707138247091685914e-14L
-data8 0xC8DCA6A691DB8335, 0x00003FCB //A8 = +3.48439884388851942939e-16L
-data8 0x819A6CB9CEA5E9BD, 0x0000BFC6 //A9 = -7.02580471688245511753e-18L
-data8 0xA726B4F622585BEA, 0x00003FC0 //A10 = +1.41582572516648501043e-19L
-data8 0xD7727648A4095986, 0x0000BFBA //A11 = -2.85141885626054217632e-21L
-data8 0x8AB627E09CF45997, 0x00003FB5 //A12 = +5.73697507862703019314e-23L
-data8 0xB28C15C117CC604F, 0x0000BFAF //A13 = -1.15383428132352407085e-24L
-data8 0xECB8428626DA072C, 0x00003FA9 //A14 = +2.39025879246942839796e-26L
-data8 0x98B731BCFA2CE2B2, 0x0000BFA4 //A15 = -4.81885474332093262902e-28L
-// Pol23
-data8 0xC6D013811314D31B, 0x00003FED //A0 = +5.92508308918577687876e-06L
-data8 0xBBF3057B8DBACBCF, 0x0000BFF2 //A1 = -1.79242422493281965934e-04L
-data8 0xCCADECA501162313, 0x00003FEC //A2 = +3.04996061562356504918e-06L
-data8 0xDED1FDBE8CCAF3DB, 0x0000BFE6 //A3 = -5.18793887648024117154e-08L
-data8 0xF27B74EDDCA65859, 0x00003FE0 //A4 = +8.82145297317787820675e-10L
-data8 0x83E4415687F01A0C, 0x0000BFDB //A5 = -1.49943414247603665601e-11L
-data8 0x8F6CB350861CE446, 0x00003FD5 //A6 = +2.54773288906376920377e-13L
-data8 0x9BE8456A30CBFC02, 0x0000BFCF //A7 = -4.32729710913845745148e-15L
-data8 0xA9694F7E1033977D, 0x00003FC9 //A8 = +7.34704698157502347441e-17L
-data8 0xB8035A3D5AF82D85, 0x0000BFC3 //A9 = -1.24692123826025468001e-18L
-data8 0xC7CB4B3ACB905FDA, 0x00003FBD //A10 = +2.11540249352095943317e-20L
-data8 0xD8D70AEB2E58D729, 0x0000BFB7 //A11 = -3.58731705184186608576e-22L
-data8 0xEB27A61B1D5C7697, 0x00003FB1 //A12 = +6.07861113430709162243e-24L
-data8 0xFEF9ED74D4F4C9B0, 0x0000BFAB //A13 = -1.02984099170876754831e-25L
-data8 0x8E6F410068C12043, 0x00003FA6 //A14 = +1.79777721804459361762e-27L
-data8 0x9AE2F6705481630E, 0x0000BFA0 //A15 = -3.05459905177379058768e-29L
-// Pol24
-data8 0xD2D858D5B01C9434, 0x00003FEE //A0 = +1.25673476165670766128e-05L
-data8 0x8505330F8B4FDE49, 0x0000BFF2 //A1 = -1.26858053564784963985e-04L
-data8 0xF39171C8B1D418C2, 0x00003FEB //A2 = +1.81472407620770441249e-06L
-data8 0xDEF065C3D7BFD26E, 0x0000BFE5 //A3 = -2.59535215807652675043e-08L
-data8 0xCC0199EA6ACA630C, 0x00003FDF //A4 = +3.71085215769339916703e-10L
-data8 0xBAA25319F01ED248, 0x0000BFD9 //A5 = -5.30445960650683029105e-12L
-data8 0xAAB28A84F8CFE4D1, 0x00003FD3 //A6 = +7.58048850973457592162e-14L
-data8 0x9C14B931AEB311A8, 0x0000BFCD //A7 = -1.08302915828084288776e-15L
-data8 0x8EADA745715A0714, 0x00003FC7 //A8 = +1.54692159263197000533e-17L
-data8 0x82643F3F722CE6B5, 0x0000BFC1 //A9 = -2.20891945694400066611e-19L
-data8 0xEE42ECDE465A99E4, 0x00003FBA //A10 = +3.15336372779307614198e-21L
-data8 0xD99FC74326ACBFC0, 0x0000BFB4 //A11 = -4.50036161691276556269e-23L
-data8 0xC6A4DCACC554911E, 0x00003FAE //A12 = +6.41853356148678957077e-25L
-data8 0xB550CEA09DA96F44, 0x0000BFA8 //A13 = -9.15410112414783078242e-27L
-data8 0xAA9149317996F32F, 0x00003FA2 //A14 = +1.34554050666508391264e-28L
-data8 0x9C3008EFE3F52F19, 0x0000BF9C //A15 = -1.92516125328592532359e-30L
-// Pol25
-data8 0xA68E78218806283F, 0x00003FEF //A0 = +1.98550844852103406280e-05L
-data8 0xBC41423996DC8A37, 0x0000BFF1 //A1 = -8.97669395268764751516e-05L
-data8 0x90E55AE31A2F8271, 0x00003FEB //A2 = +1.07955871580069359702e-06L
-data8 0xDF022272DA4A3BEF, 0x0000BFE4 //A3 = -1.29807937275957214439e-08L
-data8 0xAB95DCBFFB0BAAB8, 0x00003FDE //A4 = +1.56056011861921437794e-10L
-data8 0x83FF2547BA9011FF, 0x0000BFD8 //A5 = -1.87578539510813332135e-12L
-data8 0xCB0C353560EEDC45, 0x00003FD1 //A6 = +2.25428217090412574481e-14L
-data8 0x9C24CEB86E76D2C5, 0x0000BFCB //A7 = -2.70866279585559299821e-16L
-data8 0xF01AFA23DDFDAE0E, 0x00003FC4 //A8 = +3.25403467375734083376e-18L
-data8 0xB892BDFBCF1D9740, 0x0000BFBE //A9 = -3.90848978133441513662e-20L
-data8 0x8DDBBF34415AAECA, 0x00003FB8 //A10 = +4.69370027479731756829e-22L
-data8 0xDA04170D07458C3B, 0x0000BFB1 //A11 = -5.63558091177482043435e-24L
-data8 0xA76F391095A9563A, 0x00003FAB //A12 = +6.76262416498584003290e-26L
-data8 0x8098FA125C18D8DB, 0x0000BFA5 //A13 = -8.11564737276592661642e-28L
-data8 0xCB9E4D5C08923227, 0x00003F9E //A14 = +1.00391606269366059664e-29L
-data8 0x9CEC3BF7A0BE2CAF, 0x0000BF98 //A15 = -1.20888920108938909316e-31L
-// Pol26
-data8 0xC17AB25E269272F7, 0x00003FEE //A0 = +1.15322640047234590651e-05L
-data8 0x85310509E633FEF2, 0x0000BFF1 //A1 = -6.35106483144690768696e-05L
-data8 0xAC5E4C4DCB2D940C, 0x00003FEA //A2 = +6.42122148740412561597e-07L
-data8 0xDF0AAD0571FFDD48, 0x0000BFE3 //A3 = -6.49136789710824396482e-09L
-data8 0x9049D8440AFD180F, 0x00003FDD //A4 = +6.56147932223174570008e-11L
-data8 0xBAA936477C5FA9D7, 0x0000BFD6 //A5 = -6.63153032879993841863e-13L
-data8 0xF17261294EAB1443, 0x00003FCF //A6 = +6.70149477756803680009e-15L
-data8 0x9C22F87C31DB007A, 0x0000BFC9 //A7 = -6.77134581402030645534e-17L
-data8 0xC9E98E633942AC12, 0x00003FC2 //A8 = +6.84105580182052870823e-19L
-data8 0x828998181309642C, 0x0000BFBC //A9 = -6.91059649300859944955e-21L
-data8 0xA8C3D4DCE1ECBAB6, 0x00003FB5 //A10 = +6.97995542988331257517e-23L
-data8 0xDA288D52CC4C351A, 0x0000BFAE //A11 = -7.04907829139578377009e-25L
-data8 0x8CEEACB790B5F374, 0x00003FA8 //A12 = +7.11526399101774993883e-27L
-data8 0xB61C8A29D98F24C0, 0x0000BFA1 //A13 = -7.18303147470398859453e-29L
-data8 0xF296F69FE45BDA7D, 0x00003F9A //A14 = +7.47537230021540031251e-31L
-data8 0x9D4B25BF6FB7234B, 0x0000BF94 //A15 = -7.57340869663212138051e-33L
-// Pol27
-data8 0xC7772CC326D6FBB8, 0x00003FEE //A0 = +1.18890718679826004395e-05L
-data8 0xE0F9D5410565D55D, 0x0000BFF0 //A1 = -5.36384368533203585378e-05L
-data8 0x85C0BE825680E148, 0x00003FEA //A2 = +4.98268406609692971520e-07L
-data8 0x9F058A389D7BA177, 0x0000BFE3 //A3 = -4.62813885933188677790e-09L
-data8 0xBD0B751F0A6BAC7A, 0x00003FDC //A4 = +4.29838009673609430305e-11L
-data8 0xE0B6823570502E9D, 0x0000BFD5 //A5 = -3.99170340031272728535e-13L
-data8 0x858A9C52FC426D86, 0x00003FCF //A6 = +3.70651975271664045723e-15L
-data8 0x9EB4438BFDF1928D, 0x0000BFC8 //A7 = -3.44134780748056488222e-17L
-data8 0xBC968DCD8C06D74E, 0x00003FC1 //A8 = +3.19480670422195579127e-19L
-data8 0xE0133A405F782125, 0x0000BFBA //A9 = -2.96560935615546392028e-21L
-data8 0x851AFEBB70D07E79, 0x00003FB4 //A10 = +2.75255617931932536111e-23L
-data8 0x9E1E21A841BF8738, 0x0000BFAD //A11 = -2.55452923487640676799e-25L
-data8 0xBBCF2EF1C6E72327, 0x00003FA6 //A12 = +2.37048675755308004410e-27L
-data8 0xDF0D320CF12B8BCB, 0x0000BF9F //A13 = -2.19945804585962185550e-29L
-data8 0x8470A76DE5FCADD8, 0x00003F99 //A14 = +2.04056213851532266258e-31L
-data8 0x9D41C15F6A6FBB04, 0x0000BF92 //A15 = -1.89291056020108587823e-33L
-LOCAL_OBJECT_END(erfc_Q_table)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(erfcl)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 36, 4, 0
- fma.s1 FR_Tmp = f1, f1, f8 // |x|+1, if x >= 0
- nop.i 0
-}
-{ .mfi
- addl GR_ad_Arg = @ltoff(exp_table_1), gp
- fms.s1 FR_Tmp1 = f1, f1, f8 // |x|+1, if x < 0
- mov GR_rshf_2to51 = 0x4718 // begin 1.10000 2^(63+51)
-}
-;;
-
-{ .mfi
- ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
- fcmp.ge.s1 p6,p7 = f8, f0 // p6: x >= 0 ,p7: x<0
- shl GR_rshf_2to51 = GR_rshf_2to51,48 // end 1.10000 2^(63+51)
-}
-{ .mlx
- mov GR_rshf = 0x43e8 // begin 1.1000 2^63 for right shift
- movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // signif. of 1/ln2
-}
-;;
-
-{ .mfi
- mov GR_exp_2tom51 = 0xffff-51
- fclass.m p8,p0 = f8,0x07 // p8: x = 0
- shl GR_rshf = GR_rshf,48 // end 1.1000 2^63 for right shift
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_norm_x = f8, f8, f0 //high bits for -x^2
- nop.i 0
-}
-;;
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
-(p6) fma.s1 FR_AbsArg = f1, f0, f8 // |x|, if x >= 0
- nop.i 0
-}
-{ .mfi
- setf.d FR_RSHF_2TO51 = GR_rshf_2to51 //const 1.10 * 2^(63+51)
-(p7) fms.s1 FR_AbsArg = f1, f0, f8 // |x|, if x < 0
- mov GR_exp_mask = 0x1FFFF // Form exponent mask
-}
-;;
-
-{ .mfi
- ldfe FR_ch_dx = [GR_ad_Arg], 16
- fclass.m p10,p0 = f8, 0x21 // p10: x = +inf
- mov GR_exp_bias = 0x0FFFF // Set exponent bias
-}
-{ .mlx
- setf.d FR_RSHF = GR_rshf // Right shift const 1.1000 * 2^63
- movl GR_ERFC_XC_TB = 0x650
-}
-;;
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- setf.exp FR_2TOM51 = GR_exp_2tom51 // 2^-51 for scaling float_N
-(p6) fma.s1 FR_Tmp = FR_Tmp, FR_Tmp, f0 // (|x|+1)^2,x >=0
- nop.i 0
-}
-{ .mfi
- ldfpd FR_POS_ARG_ASYMP,FR_NEG_ARG_ASYMP = [GR_ad_Arg], 16
-(p7) fma.s1 FR_Tmp = FR_Tmp1, FR_Tmp1, f0 // (|x|+1)^2, x<0
- mov GR_0x1 = 0x1
-}
-;;
-
-//p8: y = 1.0, x = 0.0,quick exit
-{ .mfi
- ldfpd FR_dx,FR_dx1 = [GR_ad_Arg], 16
- fclass.m p9,p0 = f8, 0x22 // p9: x = -inf
- nop.i 0
-
-}
-{ .mfb
- nop.m 0
-(p8) fma.s0 f8 = f1, f1, f0
-(p8) br.ret.spnt b0
-}
-;;
-
-{ .mfi
- ldfe FR_UnfBound = [GR_ad_Arg], 16
- fclass.m p11,p0 = f8, 0xc3 // p11: x = nan
- mov GR_BIAS = 0x0FFFF
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_NormX = f8,f1,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe FR_EpsNorm = [GR_ad_Arg], 16
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_xsq_lo = f8, f8, FR_norm_x // low bits for -x^2
- nop.i 0
-}
-;;
-
-{ .mfi
- add GR_ad_C = 0x20, GR_ad_Arg // Point to C table
- nop.f 0
- add GR_ad_T1 = 0x50, GR_ad_Arg // Point to T1 table
-}
-{ .mfi
- add GR_ad_T2 = 0x150, GR_ad_Arg // Point to T2 table
- nop.f 0
- add GR_ERFC_XC_TB = GR_ERFC_XC_TB, GR_ad_Arg //poin.to XB_TBL
-}
-;;
-
-{ .mfi
- getf.exp GR_signexp_x = FR_norm_x // Extr. sign and exponent of x
- fma.s1 FR_Tmp = FR_Tmp, FR_Tmp, f0 // (|x|+1)^4
- add GR_ad_W1 = 0x100, GR_ad_T2 // Point to W1 table
-}
-{ .mfi
- ldfe FR_L_hi = [GR_ad_Arg],16 // Get L_hi
- nop.f 0
- add GR_ad_W2 = 0x300, GR_ad_T2 // Point to W2 table
-}
-;;
-
-// p9: y = 2.0, x = -inf, quick exit
-{ .mfi
- sub GR_mBIAS = r0, GR_BIAS
- fma.s1 FR_2 = f1, f1, f1
- nop.i 0
-}
-{ .mfb
- ldfe FR_L_lo = [GR_ad_Arg],16 // Get L_lo
-(p9) fma.s0 f8 = f1, f1, f1
-(p9) br.ret.spnt b0
-}
-;;
-
-// p10: y = 0.0, x = +inf, quick exit
-{ .mfi
- adds GR_ERFC_P_TB = 0x380, GR_ERFC_XC_TB // pointer to P_TBL
- fma.s1 FR_N_signif = FR_norm_x, FR_INV_LN2_2TO63, FR_RSHF_2TO51
- and GR_exp_x = GR_signexp_x, GR_exp_mask
-}
-{ .mfb
- adds GR_ERFC_S_TB = 0x1C0, GR_ERFC_XC_TB // pointer to S_TBL
-(p10) fma.s0 f8 = f0, f1, f0
-(p10) br.ret.spnt b0
-}
-;;
-
-// p12: |x| < 0.681... -> dx = 0.875 (else dx = 0.625 )
-// p11: y = x, x = nan, quick exit
-{ .mfi
- ldfe FR_C3 = [GR_ad_C],16 // Get C3 for normal path
- fcmp.lt.s1 p12,p0 = FR_AbsArg, FR_ch_dx
- shl GR_ShftPi_bias = GR_BIAS, 8 // BIAS * 256
-}
-{ .mfb
- sub GR_exp_x = GR_exp_x, GR_exp_bias // Get exponent
-(p11) fma.s0 f8 = f8, f1, f0
-(p11) br.ret.spnt b0
-
-}
-;;
-
-{ .mfi
- ldfe FR_C2 = [GR_ad_C],16 // Get A2 for main path
- nop.f 0
- nop.i 0
-}
-;;
-
-//p15: x > POS_ARG_ASYMP = 107.0 -> erfcl(x) ~=~ 0.0
-{ .mfi
- ldfe FR_C1 = [GR_ad_C],16 // Get C1 for main path
-(p6) fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP // p6: x >= 0
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p12) fma.s1 FR_dx = FR_dx1, f1, f0 //p12: dx = 0.875 for x < 0.681
- nop.b 0
-}
-;;
-
-//p14: x < - NEG_ARG_ASYMP = -6.5 -> erfcl(x) ~=~ 2.0
-{ .mfi
- nop.m 0
-(p7) fcmp.gt.unc.s1 p14,p0 = FR_AbsArg,FR_NEG_ARG_ASYMP // p7: x < 0
- shladd GR_ShftXBi_bias = GR_mBIAS, 4, r0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s0 FR_Tmpf = f1, f1, FR_EpsNorm // flag i
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_float_N = FR_N_signif, FR_2TOM51, FR_RSHF
- nop.i 0
-}
-;;
-
-// p8: x < UnfBound ~=~ 106.53... -> result without underflow error
-// p14: y ~=~ 2, x < -6.5,quick exit
-{ .mfi
- getf.exp GR_IndxPlusBias = FR_Tmp // exp + bias for (|x|+1)^4
- fcmp.lt.s1 p8,p0 = FR_NormX,FR_UnfBound
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p14) fnma.s0 FR_RESULT = FR_EpsNorm,FR_EpsNorm,FR_2
-(p14) br.ret.spnt b0
-
-}
-;;
-
-// p15: y ~=~ 0.0 (result with underflow error), x > POS_ARG_ASYMP = 107.0,
-// call __libm_error_region
-{ .mfb
-(p15) mov GR_Parameter_TAG = 207
-(p15) fma.s0 FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0
-(p15) br.cond.spnt __libm_error_region
-}
-;;
-
-{ .mfi
- getf.sig GR_N_fix = FR_N_signif // Get N from significand
- nop.f 0
- shl GR_ShftPi = GR_IndxPlusBias, 8
-
-}
-{ .mfi
- shladd GR_ShftXBi = GR_IndxPlusBias, 4, GR_ShftXBi_bias
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mmi
- add GR_ERFC_S_TB = GR_ERFC_S_TB, GR_ShftXBi //poin.to S[i]
- add GR_ERFC_XC_TB = GR_ERFC_XC_TB, GR_ShftXBi //poin.to XC[i]
- sub GR_ShftPi = GR_ShftPi, GR_ShftPi_bias // 256*i
-}
-;;
-
-{ .mfi
- ldfe FR_Xc = [GR_ERFC_XC_TB]
- fma.s1 FR_Xpdx_hi = FR_AbsArg, f1, FR_dx // x + dx
- add GR_ShftA14 = 0xE0, GR_ShftPi // pointer shift for A14
-
-
-}
-{ .mfi
- ldfe FR_S = [GR_ERFC_S_TB]
- fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_norm_x//r= -L_hi*float_N+x
- add GR_ShftA15 = 0xF0, GR_ShftPi // pointer shift for A15
-}
-;;
-
-{ .mfi
- add GR_P_POINT_1 = GR_ERFC_P_TB, GR_ShftA14 // pointer to A14
- fcmp.gt.s1 p9,p10 = FR_AbsArg, FR_dx //p9: x > dx, p10: x <= dx
- extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
-}
-{ .mfi
- add GR_P_POINT_2 = GR_ERFC_P_TB, GR_ShftA15 // pointer to A15
- nop.f 0
- nop.i 0
-
-}
-;;
-
-{ .mfi
- ldfe FR_A14 = [GR_P_POINT_1], -32
- nop.f 0
- extr.u GR_M2 = GR_N_fix, 0, 6 // Extract index M_2
-}
-{ .mfi
- ldfe FR_A15 = [GR_P_POINT_2], -32
- nop.f 0
- shladd GR_ad_W1 = GR_M1,3,GR_ad_W1 // Point to W1
-}
-;;
-
-{ .mfi
- ldfe FR_A12 = [GR_P_POINT_1], -64
- nop.f 0
- extr GR_K = GR_N_fix, 12, 32 // Extract limite range K
-}
-{ .mfi
- ldfe FR_A13 = [GR_P_POINT_2], -64
- nop.f 0
- shladd GR_ad_T1 = GR_M1,2,GR_ad_T1 // Point to T1
-}
-;;
-
-{ .mfi
- ldfe FR_A8 = [GR_P_POINT_1], 32
- nop.f 0
- add GR_exp_2_k = GR_exp_bias, GR_K // Form exponent of 2^k
-}
-{ .mfi
- ldfe FR_A9 = [GR_P_POINT_2], 32
- nop.f 0
- shladd GR_ad_W2 = GR_M2,3,GR_ad_W2 // Point to W2
-}
-;;
-
-{ .mfi
- ldfe FR_A10 = [GR_P_POINT_1], -96
- nop.f 0
- shladd GR_ad_T2 = GR_M2,2,GR_ad_T2 // Point to T2
-}
-{ .mfi
- ldfe FR_A11 = [GR_P_POINT_2], -96
- fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r //r = -L_lo*float_N + r
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe FR_A4 = [GR_P_POINT_1], 32
-(p10) fms.s1 FR_Tmp = FR_dx,f1, FR_Xpdx_hi //for lo of x+dx, x<=dx
- nop.i 0
-}
-{ .mfi
- ldfe FR_A5 = [GR_P_POINT_2], 32
-(p9) fms.s1 FR_Tmp = FR_AbsArg, f1, FR_Xpdx_hi //for lo of x+dx, x>dx
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe FR_A6 = [GR_P_POINT_1], -64
- frcpa.s1 FR_U,p11 = f1, FR_Xpdx_hi // hi of 1 /(x + dx)
- nop.i 0
-}
-{ .mfi
- ldfe FR_A7 = [GR_P_POINT_2], -64
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe FR_A2 = [GR_P_POINT_1], -32
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A3 = [GR_P_POINT_2], -32
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfe FR_A0 = [GR_P_POINT_1], 224
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A1 = [GR_P_POINT_2]
- fms.s1 FR_LocArg = FR_AbsArg, f1, FR_Xc // xloc = x - x[i]
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfd FR_W1 = [GR_ad_W1],0 // Get W1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfd FR_W2 = [GR_ad_W2],0 // Get W2
- fma.s1 FR_poly = FR_r, FR_C3, FR_C2 // poly = r * A3 + A2
- nop.i 0
-}
-;;
-
-{ .mfi
- ldfs FR_T1 = [GR_ad_T1],0 // Get T1
-(p10) fma.s1 FR_Xpdx_lo = FR_AbsArg,f1, FR_Tmp//lo of x + dx , x <= dx
- nop.i 0
-}
-{ .mfi
- ldfs FR_T2 = [GR_ad_T2],0 // Get T2
-(p9) fma.s1 FR_Xpdx_lo = FR_dx,f1, FR_Tmp // lo of x + dx, x > dx
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_Tmp1 = FR_Xpdx_hi, FR_U, FR_2 // N-R, iter. N1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.exp FR_scale = GR_exp_2_k // Set scale = 2^k
- fma.s1 FR_P15_1_1 = FR_LocArg, FR_LocArg, f0 // xloc ^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_0_1 = FR_A15, FR_LocArg, FR_A14
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_1_2 = FR_A13, FR_LocArg, FR_A12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_poly = FR_r, FR_poly, FR_C1 // poly = r * poly + A1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_2_1 = FR_A9, FR_LocArg, FR_A8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_2_2 = FR_A11, FR_LocArg, FR_A10
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U = FR_U, FR_Tmp1, f0 // N-R, iter. N1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_3_1 = FR_A5, FR_LocArg, FR_A4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_3_2 = FR_A7, FR_LocArg, FR_A6
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_4_2 = FR_A3, FR_LocArg, FR_A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_W = FR_W1, FR_W2, FR_W2 // W = W1 * W2 + W2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_T = FR_T1, FR_T2 // T = T1 * T2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0 // xloc^4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_Tmp = FR_Xpdx_hi, FR_U, FR_2 // N-R, iter. N2
- nop.i 0
-}
-
-{ .mfi
- nop.m 0
- fma.s1 FR_poly = FR_rsq, FR_poly, FR_r // poly = rsq * poly + r
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_W = FR_W, f1, FR_W1 // W = W + W1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_T_scale = FR_T, FR_scale, f0 // T_scale = T * scale
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U = FR_U, FR_Tmp, f0 // N-R, iter. N2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0 // xloc^8
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_M = FR_T_scale, FR_S, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_Tmp = FR_Xpdx_hi, FR_U, FR_2 // N-R, iter. N3
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Q = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_H = FR_W, f1, FR_xsq_lo // H = W - xsq_lo
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_U = FR_U, FR_Tmp, f0 // N-R, iter. N3
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Q = FR_A1, FR_LocArg, FR_Q
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_Tmp = FR_Xpdx_hi, FR_U, f1 // for du
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_R = FR_H, FR_poly, FR_poly
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_res_pos_x_hi = FR_M, FR_U, f0 // M *U
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_R = FR_R, f1, FR_H // R = H + P(r) + H*P(r)
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s0 FR_Tmpf = f8, f1, f0 // flag d
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_dU = FR_Xpdx_lo, FR_U, FR_Tmp
- nop.i 0
-}
-;;
-
-// p7: we begin to calculate y(x) = 2 - erfcl(-x) in multi precision
-// for -6.5 <= x < 0
-{ .mfi
- nop.m 0
- fms.s1 FR_res_pos_x_lo = FR_M, FR_U, FR_res_pos_x_hi
- nop.i 0
-
-}
-{ .mfi
- nop.m 0
-(p7) fnma.s1 FR_Tmp1 = FR_res_pos_x_hi, f1, FR_2 //p7: x < 0
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_G = FR_R, FR_Q, FR_Q
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_Tmp = FR_R, f1, FR_dU // R + du
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
-(p7) fnma.s1 FR_Tmp2 = FR_Tmp1, f1, FR_2 //p7: x < 0
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_G = FR_G, f1, FR_Tmp
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
-(p7) fnma.s1 FR_Tmp2 = FR_res_pos_x_hi, f1, FR_Tmp2 //p7: x < 0
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_V = FR_G, FR_res_pos_x_hi, f0 // V = G * M *U
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_res_pos_x_lo = FR_res_pos_x_lo, f1, FR_V //p7: x < 0
- nop.i 0
-
-}
-;;
-
-{ .mfi
- nop.m 0
-(p7) fnma.s1 FR_Tmp2 = FR_res_pos_x_lo, f1, FR_Tmp2 //p7: x < 0
- nop.i 0
-
-}
-;;
-
-
-//p6: result for 0 < x < = POS_ARG_ASYMP
-//p7: result for - NEG_ARG_ASYMP <= x < 0
-//p8: exit for - NEG_ARG_ASYMP <= x < UnfBound
-
-ERFC_RESULT:
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.s0 f8 = FR_M, FR_U, FR_V // p6: x >= 0
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 207
-(p7) fma.s0 f8 = FR_Tmp2, f1, FR_Tmp1 // p7: x < 0
-(p8) br.ret.sptk b0
-};;
-
-GLOBAL_LIBM_END(erfcl)
-
-// call via (p15) br.cond.spnt __libm_error_region
-// for x > POS_ARG_ASYMP
-// or
-//
-// after .endp erfcl for UnfBound < = x < = POS_ARG_ASYMP
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
-
diff --git a/sysdeps/ia64/fpu/s_erff.S b/sysdeps/ia64/fpu/s_erff.S
deleted file mode 100644
index ed0aaac488..0000000000
--- a/sysdeps/ia64/fpu/s_erff.S
+++ /dev/null
@@ -1,558 +0,0 @@
-.file "erff.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/14/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// float erff(float)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-//
-// There are 8 paths:
-// 1. x = +/-0.0
-// Return erff(x) = +/-0.0
-//
-// 2. 0.0 < |x| < 0.125
-// Return erff(x) = x *Pol3(x^2),
-// where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0
-//
-// 3. 0.125 <= |x| < 4.0
-// Return erff(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|),
-// where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4),
-// PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0,
-// PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0
-//
-// Actually range 0.125<=|x|< 4.0 is splitted to 5 subranges.
-// For each subrange there is particular set of coefficients.
-// Below is the list of subranges:
-// 3.1 0.125 <= |x| < 0.25
-// 3.2 0.25 <= |x| < 0.5
-// 3.3 0.5 <= |x| < 1.0
-// 3.4 1.0 <= |x| < 2.0
-// 3.5 2.0 <= |x| < 4.0
-//
-// 4. 4.0 <= |x| < +INF
-// Return erff(x) = sign(x)*(1.0d - 2^(-52))
-//
-// 5. |x| = INF
-// Return erff(x) = sign(x) * 1.0
-//
-// 6. x = [S,Q]NaN
-// Return erff(x) = QNaN
-//
-// 7. x is positive denormal
-// Return erff(x) = C0*x - x^2,
-// where C0 = 2.0/sqrt(Pi)
-//
-// 8. x is negative denormal
-// Return erff(x) = C0*x + x^2,
-// where C0 = 2.0/sqrt(Pi)
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f59
-
-// General registers used:
-// r32 -> r45, r2, r3
-
-// Predicate registers used:
-// p0, p6 -> p12, p14, p15
-
-// p6 to filter out case when x = [Q,S]NaN or +/-0
-// p7 to filter out case when x = denormal
-// p8 set if |x| >= 0.3125, used also to process denormal input
-// p9 to filter out case when |x| = inf
-// p10 to filter out case when |x| < 0.125
-// p11 to filter out case when 0.125 <= |x| < 4.0
-// p12 to filter out case when |x| >= 4.0
-// p14 set to 1 for positive x
-// p15 set to 1 for negative x
-
-// Assembly macros
-//==============================================================
-rDataPtr = r2
-rDataPtr1 = r3
-
-rBias = r33
-rCoeffAddr3 = r34
-rCoeffAddr1 = r35
-rCoeffAddr2 = r36
-rOffset2 = r37
-rBias2 = r38
-rMask = r39
-rArg = r40
-rBound = r41
-rSignBit = r42
-rAbsArg = r43
-rDataPtr2 = r44
-rSaturation = r45
-
-//==============================================================
-fA0 = f32
-fA1 = f33
-fA2 = f34
-fA3 = f35
-fC0 = f36
-fC1 = f37
-fC2 = f38
-fC3 = f39
-fD0 = f40
-fD1 = f41
-fD2 = f42
-fB0 = f43
-fArgSqr = f44
-fAbsArg = f45
-fSignumX = f46
-fArg4 = f47
-fArg4Sgn = f48
-fArg3 = f49
-fArg3Sgn = f50
-fArg7Sgn = f51
-fArg6Sgn = f52
-fPolC = f53
-fPolCTmp = f54
-fPolA = f55
-fPolATmp = f56
-fPolD = f57
-fPolDTmp = f58
-fArgSqrSgn = f59
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(erff_data)
-// Polynomial coefficients for the erf(x), 0.125 <= |x| < 0.25
-data8 0xBE4218BB56B49E66 // C0
-data8 0x3F7AFB8315DA322B // C1
-data8 0x3F615D6EBEE0CA32 // C2
-data8 0xBF468D71CF4F0918 // C3
-data8 0x40312115B0932F24 // D0
-data8 0xC0160D6CD0991EA3 // D1
-data8 0xBFE04A567A6DBE4A // D2
-data8 0xBF4207BC640D1509 // B0
-// Polynomial coefficients for the erf(x), 0.25 <= |x| < 0.5
-data8 0x3F90849356383F58 // C0
-data8 0x3F830BD5BA240F09 // C1
-data8 0xBF3FA4970E2BCE23 // C2
-data8 0xBF6061798E58D0FD // C3
-data8 0xBF68C0D83DD22E02 // D0
-data8 0x401C0A9EE4108F94 // D1
-data8 0xC01056F9B5E387F5 // D2
-data8 0x3F1C9744E36A5706 // B0
-// Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
-data8 0x3F85F7D419A13DE3 // C0
-data8 0x3F791A13FF66D45A // C1
-data8 0x3F46B17B16B5929F // C2
-data8 0xBF5124947A8BF45E // C3
-data8 0x3FA1B3FD95EA9564 // D0
-data8 0x40250CECD79A020A // D1
-data8 0xC0190DC96FF66CCD // D2
-data8 0x3F4401AE28BA4DD5 // B0
-// Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
-data8 0xBF49E07E3584C3AE // C0
-data8 0x3F3166621131445C // C1
-data8 0xBF65B7FC1EAC2099 // C2
-data8 0x3F508C6BD211D736 // C3
-data8 0xC053FABD70601067 // D0
-data8 0x404A06640EE87808 // D1
-data8 0xC0283F30817A3F08 // D2
-data8 0xBF2F6DBBF4D6257F // B0
-// Polynomial coefficients for the erf(x), 2.0 <= |x| < 4.0
-data8 0xBF849855D67E9407 // C0
-data8 0x3F5ECA5FEC01C70C // C1
-data8 0xBF483110C30FABA4 // C2
-data8 0x3F1618DA72860403 // C3
-data8 0xC08A5C9D5FE8B9F6 // D0
-data8 0x406EFF5F088CEC4B // D1
-data8 0xC03A5743DF38FDE0 // D2
-data8 0xBEE397A9FA5686A2 // B0
-// Polynomial coefficients for the erf(x), -0.125 < x < 0.125
-data8 0x3FF20DD7504270CB // C0
-data8 0xBFD8127465AFE719 // C1
-data8 0x3FBCE2D77791DD77 // C2
-data8 0xBF9B582755CDF345 // C3
-// Polynomial coefficients for the erf(x), 0.125 <= |x| < 0.25
-data8 0xBD54E7E451AF0E36 // A0
-data8 0x3FF20DD75043FE20 // A1
-data8 0xBE05680ACF8280E4 // A2
-data8 0xBFD812745E92C3D3 // A3
-// Polynomial coefficients for the erf(x), 0.25 <= |x| < 0.5
-data8 0xBE1ACEC2859CB55F // A0
-data8 0x3FF20DD75E8D2B64 // A1
-data8 0xBEABC6A83208FCFC // A2
-data8 0xBFD81253E42E7B99 // A3
-// Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
-data8 0x3EABD5A2482B4979 // A0
-data8 0x3FF20DCAA52085D5 // A1
-data8 0x3F13A994A348795B // A2
-data8 0xBFD8167B2DFCDE44 // A3
-// Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
-data8 0xBF5BA377DDAB4E17 // A0
-data8 0x3FF2397F1D8FC0ED // A1
-data8 0xBF9945BFC1915C21 // A2
-data8 0xBFD747AAABB690D8 // A3
-// Polynomial coefficients for the erf(x), 2.0 <= |x| < 4.0
-data8 0x3FF0E2920E0391AF // A0
-data8 0xC00D249D1A95A5AE // A1
-data8 0x40233905061C3803 // A2
-data8 0xC027560B851F7690 // A3
-//
-data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon
-data8 0x3FF20DD750429B6D // C0 = 2.0/sqrt(Pi)
-LOCAL_OBJECT_END(erff_data)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(erff)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 14, 0, 0
- fmerge.s fAbsArg = f1, f8 // |x|
- addl rMask = 0x806, r0
-}
-{ .mfi
- addl rDataPtr = @ltoff(erff_data), gp
- fma.s1 fArgSqr = f8, f8, f0 // x^2
- adds rSignBit = 0x1, r0
-}
-;;
-
-{ .mfi
- getf.s rArg = f8 // x in GR
- fclass.m p7,p0 = f8, 0x0b // is x denormal ?
- // sign bit and 2 most bits in significand
- shl rMask = rMask, 20
-}
-{ .mfi
- ld8 rDataPtr = [rDataPtr]
- nop.f 0
- adds rBias2 = 0x1F0, r0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmerge.s fSignumX = f8, f1 // signum(x)
- shl rSignBit = rSignBit, 31 // mask for sign bit
-}
-{ .mfi
- adds rBound = 0x3E0, r0
- nop.f 0
- adds rSaturation = 0x408, r0
-}
-;;
-
-{ .mfi
- andcm rOffset2 = rArg, rMask
- fclass.m p6,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ?
- shl rBound = rBound, 20 // 0.125f in GR
-}
-{ .mfb
- andcm rAbsArg = rArg, rSignBit // |x| in GR
- nop.f 0
-(p7) br.cond.spnt erff_denormal // branch out if x is denormal
-}
-;;
-
-{ .mfi
- adds rCoeffAddr2 = 352, rDataPtr
- fclass.m p9,p0 = f8, 0x23 // is x +/- inf?
- shr rOffset2 = rOffset2, 21
-}
-{ .mfi
- cmp.lt p10, p8 = rAbsArg, rBound // |x| < 0.125?
- nop.f 0
- adds rCoeffAddr3 = 16, rDataPtr
-}
-;;
-
-{ .mfi
-(p8) sub rBias = rOffset2, rBias2
- fma.s1 fArg4 = fArgSqr, fArgSqr, f0 // x^4
- shl rSaturation = rSaturation, 20// 4.0 in GR (saturation bound)
-}
-{ .mfb
-(p10) adds rBias = 0x14, r0
-(p6) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0
-(p6) br.ret.spnt b0 // exit for x = NaN or +/-0
-}
-;;
-
-{ .mfi
- shladd rCoeffAddr1 = rBias, 4, rDataPtr
- fma.s1 fArg3Sgn = fArgSqr, f8, f0 // sign(x)*|x|^3
- // is |x| < 4.0?
- cmp.lt p11, p12 = rAbsArg, rSaturation
-}
-{ .mfi
- shladd rCoeffAddr3 = rBias, 4, rCoeffAddr3
- fma.s1 fArg3 = fArgSqr, fAbsArg, f0 // |x|^3
- shladd rCoeffAddr2 = rBias, 3, rCoeffAddr2
-}
-;;
-
-{ .mfi
-(p11) ldfpd fC0, fC1 = [rCoeffAddr1]
-(p9) fmerge.s f8 = f8,f1 // +/- inf
-(p12) adds rDataPtr = 512, rDataPtr
-}
-{ .mfb
-(p11) ldfpd fC2, fC3 = [rCoeffAddr3], 16
- nop.f 0
-(p9) br.ret.spnt b0 // exit for x = +/- inf
-}
-;;
-
-{ .mfi
-(p11) ldfpd fA0, fA1 = [rCoeffAddr2], 16
- nop.f 0
- nop.i 0
-}
-{ .mfi
- add rCoeffAddr1 = 48, rCoeffAddr1
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
-(p11) ldfpd fD0, fD1 = [rCoeffAddr3]
- nop.f 0
- nop.i 0
-}
-{ .mfb
-(p11) ldfpd fD2, fB0 = [rCoeffAddr1]
- // sign(x)*|x|^2
- fma.s1 fArgSqrSgn = fArgSqr, fSignumX, f0
-(p10) br.cond.spnt erff_near_zero
-}
-;;
-
-{ .mfi
-(p11) ldfpd fA2, fA3 = [rCoeffAddr2], 16
- fcmp.lt.s1 p15, p14 = f8,f0
- nop.i 0
-}
-{ .mfb
-(p12) ldfd fA0 = [rDataPtr]
- fma.s1 fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4
-(p12) br.cond.spnt erff_saturation
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fArg7Sgn = fArg4, fArg3Sgn, f0 // sign(x)*|x|^7
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fArg6Sgn = fArg3, fArg3Sgn, f0 // sign(x)*|x|^6
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolC = fC3, fAbsArg, fC2 // C3*|x| + C2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolA = fA1, fAbsArg, fA0 // A1*|x| + A0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolD = fD1, fAbsArg, fD0 // D1*|x| + D0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // sign(x)*(|x|^7 + D2*x^6)
- fma.s1 fPolDTmp = fArg6Sgn, fD2, fArg7Sgn
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolATmp = fA3, fAbsArg, fA2 // A3*|x| + A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB0 = fB0, fArg4, f0 // B0*x^4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- // C3*|x|^3 + C2*x^2 + C1*|x| + C0
- fma.s1 fPolC = fPolC, fArgSqr, fPolCTmp
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4)
- fma.d.s1 fPolD = fPolD, fArg4Sgn, fPolDTmp
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0
- fma.d.s1 fPolA = fPolATmp, fArgSqr, fPolA
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0
- fma.d.s1 fPolC = fPolC, f1, fB0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p14) fma.s.s0 f8 = fPolC, fPolD, fPolA // for positive x
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fms.s.s0 f8 = fPolC, fPolD, fPolA // for negative x
- br.ret.sptk b0 // Exit for 0.125 <=|x|< 4.0
-};;
-
-
-// Here if |x| < 0.125
-erff_near_zero:
-{ .mfi
- nop.m 0
- fma.s1 fPolC = fC3, fArgSqr, fC2 // C3*x^2 + C2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolCTmp = fC1, fArgSqr, fC0 // C1*x^2 + C0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- // x*(C3*x^6 + C2*x^4 + C1*x^2 + C0)
- fma.s.s0 f8 = fPolC, f8, f0
- br.ret.sptk b0 // Exit for |x| < 0.125
-};;
-
-// Here if 4.0 <= |x| < +inf
-erff_saturation:
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0d - 2^(-52))
- // Exit for 4.0 <= |x| < +inf
- br.ret.sptk b0 // Exit for 4.0 <=|x|< +inf
-}
-;;
-
-// Here if x is single precision denormal
-erff_denormal:
-{ .mfi
- adds rDataPtr = 520, rDataPtr // address of C0
- fclass.m p7,p8 = f8, 0x0a // is x -denormal ?
- nop.i 0
-}
-;;
-{ .mfi
- ldfd fC0 = [rDataPtr] // C0
- nop.f 0
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fC0 = fC0,f8,f0 // C0*x
- nop.i 0
-}
-;;
-{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = f8,f8,fC0 // -denormal
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p8) fnma.s.s0 f8 = f8,f8,fC0 // +denormal
- br.ret.sptk b0 // Exit for denormal
-}
-;;
-
-GLOBAL_LIBM_END(erff)
diff --git a/sysdeps/ia64/fpu/s_erfl.S b/sysdeps/ia64/fpu/s_erfl.S
deleted file mode 100644
index 10da22ce36..0000000000
--- a/sysdeps/ia64/fpu/s_erfl.S
+++ /dev/null
@@ -1,1240 +0,0 @@
-.file "erfl.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 11/21/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/14/02 Changed mli templates to mlx
-// 02/06/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double erfl(long double)
-//
-// Overview of operation
-//==============================================================
-//
-// Algorithm description
-// ---------------------
-//
-// There are 4 paths:
-//
-// 1. Special path: x = 0, Inf, NaNs, denormal
-// Return erfl(x) = +/-0.0 for zeros
-// Return erfl(x) = QNaN for NaNs
-// Return erfl(x) = sign(x)*1.0 for Inf
-// Return erfl(x) = (A0H+A0L)*x + x^2, ((A0H+A0L) = 2.0/sqrt(Pi))
-// for denormals
-//
-// 2. [0;1/8] path: 0.0 < |x| < 1/8
-// Return erfl(x) = x*(A1H+A1L) + x^3*A3 + ... + x^15*A15
-//
-// 3. Main path: 1/8 <= |x| < 6.53
-// For several ranges of 1/8 <= |x| < 6.53
-// Return erfl(x) = sign(x)*((A0H+A0L) + y*(A1H+A1L) + y^2*(A2H+A2L) +
-// + y^3*A3 + y^4*A4 + ... + y^25*A25 )
-// where y = (|x|/a) - b
-//
-// For each range there is particular set of coefficients.
-// Below is the list of ranges:
-// 1/8 <= |x| < 1/4 a = 0.125, b = 1.5
-// 1/4 <= |x| < 1/2 a = 0.25, b = 1.5
-// 1/2 <= |x| < 1.0 a = 0.5, b = 1.5
-// 1.0 <= |x| < 2.0 a = 1.0, b = 1.5
-// 2.0 <= |x| < 3.25 a = 2.0, b = 1.5
-// 3.25 <= |x| < 4.0 a = 2.0, b = 2.0
-// 4.0 <= |x| < 6.53 a = 4.0, b = 1.5
-// ( [3.25;4.0] subrange separated for monotonicity issues resolve )
-//
-// 4. Saturation path: 6.53 <= |x| < +INF
-// Return erfl(x) = sign(x)*(1.0 - tiny_value)
-// (tiny_value ~ 1e-1233)
-//
-// Implementation notes
-// --------------------
-//
-// 1. Special path: x = 0, INF, NaNa, denormals
-//
-// This branch is cut off by one fclass operation.
-// Then zeros+nans, infinities and denormals processed separately.
-// For denormals we had to use multiprecision A0 coefficient to reach
-// necessary accuracy: (A0H+A0L)*x-x^2
-//
-// 2. [0;1/8] path: 0.0 < |x| < 1/8
-//
-// First coefficient of polynomial we must split to multiprecision too.
-// Also we can parallelise computations:
-// (x*(A1H+A1L)) calculated in parallel with "tail" (x^3*A3 + ... + x^15*A15)
-// Furthermore the second part is factorized using binary tree technique.
-//
-// 3. Main path: 1/8 <= |x| < 6.53
-//
-// Multiprecision have to be performed only for first few
-// polynomial iterations (up to 3-rd x degree)
-// Here we use the same parallelisation way as above:
-// Split whole polynomial to first, "multiprecision" part, and second,
-// so called "tail", native precision part.
-//
-// 1) Multiprecision part:
-// [v1=(A0H+A0L)+y*(A1H+A1L)] + [v2=y^2*((A2H+A2L)+y*A3)]
-// v1 and v2 terms calculated in parallel
-//
-// 2) Tail part:
-// v3 = x^4 * ( A4 + x*A5 + ... + x^21*A25 )
-// v3 is splitted to 2 even parts (10 coefficient in each one).
-// These 2 parts are also factorized using binary tree technique.
-//
-// So Multiprecision and Tail parts cost is almost the same
-// and we have both results ready before final summation.
-//
-// 4. Saturation path: 6.53 <= |x| < +INF
-//
-// We use formula sign(x)*(1.0 - tiny_value) instead of simple sign(x)*1.0
-// just to meet IEEE requirements for different rounding modes in this case.
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8 - input & output
-// f32 -> f90
-
-// General registers used:
-// r2, r3, r32 -> r52
-
-// Predicate registers used:
-// p0, p6 -> p11, p14, p15
-
-// p6 - arg is zero, denormal or special IEEE
-// p7 - arg is in [4;8] binary interval
-// p8 - arg is in [3.25;4] interval
-// p9 - arg < 1/8
-// p10 - arg is NOT in [3.25;4] interval
-// p11 - arg in saturation domain
-// p14 - arg is positive
-// p15 - arg is negative
-
-// Assembly macros
-//==============================================================
-rDataPtr = r2
-rTailDataPtr = r3
-
-rBias = r33
-rSignBit = r34
-rInterval = r35
-
-rArgExp = r36
-rArgSig = r37
-r3p25Offset = r38
-r2to4 = r39
-r1p25 = r40
-rOffset = r41
-r1p5 = r42
-rSaturation = r43
-r3p25Sign = r44
-rTiny = r45
-rAddr1 = r46
-rAddr2 = r47
-rTailAddr1 = r48
-rTailAddr2 = r49
-rTailOffset = r50
-rTailAddOffset = r51
-rShiftedDataPtr = r52
-
-//==============================================================
-fA0H = f32
-fA0L = f33
-fA1H = f34
-fA1L = f35
-fA2H = f36
-fA2L = f37
-fA3 = f38
-fA4 = f39
-fA5 = f40
-fA6 = f41
-fA7 = f42
-fA8 = f43
-fA9 = f44
-fA10 = f45
-fA11 = f46
-fA12 = f47
-fA13 = f48
-fA14 = f49
-fA15 = f50
-fA16 = f51
-fA17 = f52
-fA18 = f53
-fA19 = f54
-fA20 = f55
-fA21 = f56
-fA22 = f57
-fA23 = f58
-fA24 = f59
-fA25 = f60
-
-fArgSqr = f61
-fArgCube = f62
-fArgFour = f63
-fArgEight = f64
-
-fArgAbsNorm = f65
-fArgAbsNorm2 = f66
-fArgAbsNorm2L = f67
-fArgAbsNorm3 = f68
-fArgAbsNorm4 = f69
-fArgAbsNorm11 = f70
-
-fRes = f71
-fResH = f72
-fResL = f73
-fRes1H = f74
-fRes1L = f75
-fRes1Hd = f76
-fRes2H = f77
-fRes2L = f78
-fRes3H = f79
-fRes3L = f80
-fRes4 = f81
-
-fTT = f82
-fTH = f83
-fTL = f84
-fTT2 = f85
-fTH2 = f86
-fTL2 = f87
-
-f1p5 = f88
-f2p0 = f89
-fTiny = f90
-
-
-// Data tables
-//==============================================================
-RODATA
-
-.align 64
-LOCAL_OBJECT_START(erfl_data)
-////////// Main tables ///////////
-_0p125_to_0p25_data: // exp = 2^-3
-// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4
-data8 0xACD9ED470F0BB048, 0x0000BFF4 //A3 = -6.5937529303909561891162915809e-04
-data8 0xBF6A254428DDB452 //A2H = -3.1915980570631852578089571182e-03
-data8 0xBC131B3BE3AC5079 //A2L = -2.5893976889070198978842231134e-19
-data8 0x3FC16E2D7093CD8C //A1H = 1.3617485043469590433318217038e-01
-data8 0x3C6979A52F906B4C //A1L = 1.1048096806003284897639351952e-17
-data8 0x3FCAC45E37FE2526 //A0H = 2.0911767705937583938791135552e-01
-data8 0x3C648D48536C61E3 //A0L = 8.9129592834861155344147026365e-18
-data8 0xD1FC135B4A30E746, 0x00003F90 //A25 = 6.3189963203954877364460345654e-34
-data8 0xB1C79B06DD8C988C, 0x00003F97 //A24 = 6.8478253118093953461840838106e-32
-data8 0xCC7AE121D1DEDA30, 0x0000BF9A //A23 = -6.3010264109146390803803408666e-31
-data8 0x8927B8841D1E0CA8, 0x0000BFA1 //A22 = -5.4098171537601308358556861717e-29
-data8 0xB4E84D6D0C8F3515, 0x00003FA4 //A21 = 5.7084320046554628404861183887e-28
-data8 0xC190EAE69A67959A, 0x00003FAA //A20 = 3.9090359419467121266470910523e-26
-data8 0x90122425D312F680, 0x0000BFAE //A19 = -4.6551806872355374409398000522e-25
-data8 0xF8456C9C747138D6, 0x0000BFB3 //A18 = -2.5670639225386507569611436435e-23
-data8 0xCDCAE0B3C6F65A3A, 0x00003FB7 //A17 = 3.4045511783329546779285646369e-22
-data8 0x8F41909107C62DCC, 0x00003FBD //A16 = 1.5167830861896169812375771948e-20
-data8 0x82F0FCB8A4B8C0A3, 0x0000BFC1 //A15 = -2.2182328575376704666050112195e-19
-data8 0x92E992C58B7C3847, 0x0000BFC6 //A14 = -7.9641369349930600223371163611e-18
-LOCAL_OBJECT_END(erfl_data)
-
-LOCAL_OBJECT_START(_0p25_to_0p5_data)
-// Polynomial coefficients for the erf(x), 1/4 <= |x| < 1/2
-data8 0xF083628E8F7CE71D, 0x0000BFF6 //A3 = -3.6699405305266733332335619531e-03
-data8 0xBF978749A434FE4E //A2H = -2.2977018973732214746075186440e-02
-data8 0xBC30B3FAFBC21107 //A2L = -9.0547407100537663337591537643e-19
-data8 0x3FCF5F0CDAF15313 //A1H = 2.4508820238647696654332719390e-01
-data8 0x3C1DFF29F5AD8117 //A1L = 4.0653155218104625249413579084e-19
-data8 0x3FD9DD0D2B721F38 //A0H = 4.0411690943482225790717166092e-01
-data8 0x3C874C71FEF1759E //A0L = 4.0416653425001310671815863946e-17
-data8 0xA621D99B8C12595E, 0x0000BFAB //A25 = -6.7100271986703749013021666304e-26
-data8 0xBD7BBACB439992E5, 0x00003FAE //A24 = 6.1225362452814749024566661525e-25
-data8 0xFF2FEFF03A98E410, 0x00003FB2 //A23 = 1.3192871864994282747963195183e-23
-data8 0xAE8180957ABE6FD5, 0x0000BFB6 //A22 = -1.4434787102181180110707433640e-22
-data8 0xAF0566617B453AA6, 0x0000BFBA //A21 = -2.3163848847252215762970075142e-21
-data8 0x8F33D3616B9B8257, 0x00003FBE //A20 = 3.0324297082969526400202995913e-20
-data8 0xD58AB73354438856, 0x00003FC1 //A19 = 3.6175397854863872232142412590e-19
-data8 0xD214550E2F3210DF, 0x0000BFC5 //A18 = -5.6942141660091333278722310354e-18
-data8 0xE2CA60C328F3BBF5, 0x0000BFC8 //A17 = -4.9177359011428870333915211291e-17
-data8 0x88D9BB274F9B3873, 0x00003FCD //A16 = 9.4959118337089189766177270051e-16
-data8 0xCA4A00AB538A2DB2, 0x00003FCF //A15 = 5.6146496538690657993449251855e-15
-data8 0x9CC8FFFBDDCF9853, 0x0000BFD4 //A14 = -1.3925319209173383944263942226e-13
-LOCAL_OBJECT_END(_0p25_to_0p5_data)
-
-LOCAL_OBJECT_START(_0p5_to_1_data)
-// Polynomial coefficients for the erf(x), 1/2 <= |x| < 1
-data8 0xDB742C8FB372DBE0, 0x00003FF6 //A3 = 3.3485993187250381721535255963e-03
-data8 0xBFBEDC5644353C26 //A2H = -1.2054957547410136142751468924e-01
-data8 0xBC6D7215B023455F //A2L = -1.2770012232203569059818773287e-17
-data8 0x3FD492E42D78D2C4 //A1H = 3.2146553459760363047337250464e-01
-data8 0x3C83A163CAC22E05 //A1L = 3.4053365952542489137756724868e-17
-data8 0x3FE6C1C9759D0E5F //A0H = 7.1115563365351508462453011816e-01
-data8 0x3C8B1432F2CBC455 //A0L = 4.6974407716428899960674098333e-17
-data8 0x95A6B92162813FF8, 0x00003FC3 //A25 = 1.0140763985766801318711038400e-18
-data8 0xFE5EC3217F457B83, 0x0000BFC6 //A24 = -1.3789434273280972156856405853e-17
-data8 0x9B49651031B5310B, 0x0000BFC8 //A23 = -3.3672435142472427475576375889e-17
-data8 0xDBF73927E19B7C8D, 0x00003FCC //A22 = 7.6315938248752024965922341872e-16
-data8 0xF55CBA3052730592, 0x00003FCB //A21 = 4.2563559623888750271176552350e-16
-data8 0xA1DC9380DA82CFF6, 0x0000BFD2 //A20 = -3.5940500736023122607663701015e-14
-data8 0xAAD1AE1067F3D577, 0x00003FD2 //A19 = 3.7929451192558641569555227613e-14
-data8 0xCD1DB83F3B9D2090, 0x00003FD7 //A18 = 1.4574374961011929143375716362e-12
-data8 0x87235ACB5E8BB298, 0x0000BFD9 //A17 = -3.8408559294899660346666452560e-12
-data8 0xDA417B78FF9F46B4, 0x0000BFDC //A16 = -4.9625621225715971268115023451e-11
-data8 0xF075762685484436, 0x00003FDE //A15 = 2.1869603559309150844390066920e-10
-data8 0xB989FDB3795165C7, 0x00003FE1 //A14 = 1.3499740992928183247608593000e-09
-LOCAL_OBJECT_END(_0p5_to_1_data)
-
-LOCAL_OBJECT_START(_1_to_2_data)
-// Polynomial coefficients for the erf(x), 1 <= |x| < 2.0
-data8 0x8E15015F5B55BEAC, 0x00003FFC //A3 = 1.3875200409423426678618977531e-01
-data8 0xBFC6D5A95D0A1B7E //A2H = -1.7839543383544403942764233761e-01
-data8 0xBC7499F704C80E02 //A2L = -1.7868888188464394090788198634e-17
-data8 0x3FBE723726B824A8 //A1H = 1.1893028922362935961842822508e-01
-data8 0x3C6B77F399C2AD27 //A1L = 1.1912589318015368492508652194e-17
-data8 0x3FEEEA5557137ADF //A0H = 9.6610514647531064991170524081e-01
-data8 0x3C963D0DDD0A762F //A0L = 7.7155271023949055047261953350e-17
-data8 0x8FAA405DAD409771, 0x0000BFDB //A25 = -1.6332824616946528652252813763e-11
-data8 0x941386F4697976D8, 0x0000BFDD //A24 = -6.7337295147729213955410252613e-11
-data8 0xBCBE75234530B404, 0x00003FDF //A23 = 3.4332329029092304943838374908e-10
-data8 0xF55E2CE71A00D040, 0x00003FDF //A22 = 4.4632156034175937694868068394e-10
-data8 0xA6CADFE489D2671F, 0x0000BFE3 //A21 = -4.8543000253822277507724949798e-09
-data8 0xA4C69F11FEAFB3A8, 0x00003FE2 //A20 = 2.3978044150868471771557059958e-09
-data8 0xD63441E3BED59703, 0x00003FE6 //A19 = 4.9873285553412397317802071288e-08
-data8 0xDFDAED9D3089D732, 0x0000BFE7 //A18 = -1.0424069510877052249228047044e-07
-data8 0xB47287FF165756A5, 0x0000BFE9 //A17 = -3.3610945128073834488448164164e-07
-data8 0xCDAF2DC0A79A9059, 0x00003FEB //A16 = 1.5324673941628851136481785187e-06
-data8 0x9FD6A7B2ECE8EDA9, 0x00003FEA //A15 = 5.9544479989469083598476592569e-07
-data8 0xEC6E63BB4507B585, 0x0000BFEE //A14 = -1.4092398243085031882423746824e-05
-LOCAL_OBJECT_END(_1_to_2_data)
-
-LOCAL_OBJECT_START(_2_to_3p25_data)
-// Polynomial coefficients for the erf(x), 2 <= |x| < 3.25
-data8 0xCEDBA58E8EE6F055, 0x00003FF7 //A3 = 6.3128050215859026984338771121e-03
-data8 0xBF5B60D5E974CBBD //A2H = -1.6710366233609740427984435840e-03
-data8 0xBC0E11E2AEC18AF6 //A2L = -2.0376133202996259839305825162e-19
-data8 0x3F32408E9BA3327E //A1H = 2.7850610389349567379974059733e-04
-data8 0x3BE41010E4B3B224 //A1L = 3.3987633691879253781833531576e-20
-data8 0x3FEFFFD1AC4135F9 //A0H = 9.9997790950300136092465663751e-01
-data8 0x3C8EEAFA1E97EAE0 //A0L = 5.3633970564750967956196033852e-17
-data8 0xBF9C6F2C6D7263C1, 0x00003FF0 //A25 = 4.5683639377039166585098497471e-05
-data8 0xCB4167CC4798096D, 0x00003FF0 //A24 = 4.8459885139772945417160731273e-05
-data8 0xE1394FECFE972D32, 0x0000BFF2 //A23 = -2.1479022581129892562916533804e-04
-data8 0xC7F9E47581FC2A5F, 0x0000BFF2 //A22 = -1.9071211076537531370822343363e-04
-data8 0xDD612EDFAA41BEAE, 0x00003FF2 //A21 = 2.1112405918671957390188348542e-04
-data8 0x8C166AA4CB2AD8FD, 0x0000BFF4 //A20 = -5.3439165021555312536009227942e-04
-data8 0xEFBE33D9F62B68D4, 0x0000BFF2 //A19 = -2.2863672131516067770956697877e-04
-data8 0xCCB92F5D91562494, 0x00003FF5 //A18 = 1.5619154280865226092321881421e-03
-data8 0x80A5DBE71D4BA0E2, 0x0000BFF6 //A17 = -1.9630109664962540123775799179e-03
-data8 0xA0ADEB2D4C41347A, 0x0000BFF4 //A16 = -6.1294315248639348947483422457e-04
-data8 0xB1F5D4911B911665, 0x00003FF7 //A15 = 5.4309165882071876864550213817e-03
-data8 0xF2F3D8D21E8762E0, 0x0000BFF7 //A14 = -7.4143227286535936033409745884e-03
-LOCAL_OBJECT_END(_2_to_3p25_data)
-
-LOCAL_OBJECT_START(_4_to_6p53_data)
-// Polynomial coefficients for the erf(x), 4 <= |x| < 6.53
-data8 0xDF3151BE8652827E, 0x00003FD5 //A3 = 3.9646979666953349095427642209e-13
-data8 0xBD1C4A9787DF888B //A2H = -2.5127788450714750484839908889e-14
-data8 0xB99B35483E4603FD //A2L = -3.3536613901268985626466020210e-31
-data8 0x3CD2DBF507F1A1F3 //A1H = 1.0468963266736687758710258897e-15
-data8 0x398A97B60913B4BD //A1L = 1.6388968267515149775818013207e-31
-data8 0x3FEFFFFFFFFFFFFF //A0H = 9.9999999999999988897769753748e-01
-data8 0x3C99CC25E658129E //A0L = 8.9502895736398715695745861054e-17
-data8 0xB367B21294713D39, 0x00003FFB //A25 = 8.7600127403270828432337605471e-02
-data8 0xCEE3A423ADEC0F4C, 0x00003FFD //A24 = 4.0408051429309221404807497715e-01
-data8 0xC389626CF2D727C0, 0x00003FFE //A23 = 7.6381507072332210580356159947e-01
-data8 0xD15A03E082D0A307, 0x00003FFE //A22 = 8.1777977210259904277239787430e-01
-data8 0x8FD3DA92675E8E00, 0x00003FFE //A21 = 5.6182638239203638864793584264e-01
-data8 0xFD375E6EE167AA58, 0x00003FFC //A20 = 2.4728152801285544751731937424e-01
-data8 0x89A9482FADE66AE1, 0x00003FFB //A19 = 6.7217410998398471333985773237e-02
-data8 0xC62E1F02606C04DD, 0x00003FF7 //A18 = 6.0479785358923404401184993359e-03
-data8 0xEE7BF2BE71CC531C, 0x0000BFF5 //A17 = -1.8194898432032114199803271708e-03
-data8 0x8084081981CDC79C, 0x0000BFF5 //A16 = -9.8049734947701208487713246099e-04
-data8 0x8975DFB834C118C3, 0x0000BFF0 //A15 = -3.2773123965143773578608926094e-05
-data8 0x965DA4A80008B7BC, 0x0000BFEE //A14 = -8.9624997201558650125662820562e-06
-LOCAL_OBJECT_END(_4_to_6p53_data)
-
-LOCAL_OBJECT_START(_3p25_to_4_data)
-// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4
-data8 0xB01D29846286CE08, 0x00003FEE //A3 = 1.0497207328743021499800978059e-05
-data8 0xBEC10B1488AEB234 //A2H = -2.0317175474986489113480084279e-06
-data8 0xBB7F19701B8B74F9 //A2L = -4.1159669348226960337518214996e-22
-data8 0x3E910B1488AEB234 //A1H = 2.5396469343733111391850105348e-07
-data8 0x3B4F1944906D5D60 //A1L = 5.1448487494628801547474934193e-23
-data8 0x3FEFFFFFF7B91176 //A0H = 9.9999998458274208523732795584e-01
-data8 0x3C70B2865615DB3F //A0L = 1.4482653192002495179309994964e-17
-data8 0xA818D085D56F3021, 0x00003FEC //A25 = 2.5048394770210505593609705765e-06
-data8 0xD9C5C509AAE5561F, 0x00003FEC //A24 = 3.2450636894654766492719395406e-06
-data8 0x9682D71C549EEB07, 0x0000BFED //A23 = -4.4855801709974050650263470866e-06
-data8 0xBC230E1EB6FBF8B9, 0x00003FEA //A22 = 7.0086469577174843181452303996e-07
-data8 0xE1432649FF29D4DE, 0x0000BFEA //A21 = -8.3916747195472308725504497231e-07
-data8 0xB40CEEBD2803D2F0, 0x0000BFEF //A20 = -2.1463694318102769992677291330e-05
-data8 0xEAAB57ABFFA003EB, 0x00003FEF //A19 = 2.7974761309213643228699449426e-05
-data8 0xFBFA4D0B893A5BFB, 0x0000BFEE //A18 = -1.5019043571612821858165073446e-05
-data8 0xBB6AA248EED3E364, 0x0000BFF0 //A17 = -4.4683584873907316507141131797e-05
-data8 0x86C1B3AE3E500ED9, 0x00003FF2 //A16 = 1.2851395412345761361068234880e-04
-data8 0xB60729445F0C37B5, 0x0000BFF2 //A15 = -1.7359540313300841352152461287e-04
-data8 0xCA389F9E707337B1, 0x00003FF1 //A14 = 9.6426575465763394281615740282e-05
-LOCAL_OBJECT_END(_3p25_to_4_data)
-
-
-//////// "Tail" tables //////////
-LOCAL_OBJECT_START(_0p125_to_0p25_data_tail)
-// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4
-data8 0x93086CBD21ED3962, 0x00003FCA //A13 = 1.2753071968462837024755878679e-16
-data8 0x83CB5045A6D4B419, 0x00003FCF //A12 = 3.6580237062957773626379648530e-15
-data8 0x8FCDB723209690EB, 0x0000BFD3 //A11 = -6.3861616307180801527566117146e-14
-data8 0xCAA173F680B5D56B, 0x0000BFD7 //A10 = -1.4397775466324880354578008779e-12
-data8 0xF0CEA934AD6AC013, 0x00003FDB //A9 = 2.7376616955640415767655526857e-11
-data8 0x81C69F9D0B5AB8EE, 0x00003FE0 //A8 = 4.7212187567505249115688961488e-10
-data8 0xA8B590298C20A194, 0x0000BFE4 //A7 = -9.8201697105565925460801441797e-09
-data8 0x84F3DE72AC964615, 0x0000BFE8 //A6 = -1.2382176987480830706988411266e-07
-data8 0xC01A1398868CC4BD, 0x00003FEC //A5 = 2.8625408039722670291121341583e-06
-data8 0xCC43247F4410C54A, 0x00003FEF //A4 = 2.4349960762505993017186935493e-05
-LOCAL_OBJECT_END(_0p125_to_0p25_data_tail)
-
-LOCAL_OBJECT_START(_0p25_to_0p5_data_tail)
-// Polynomial coefficients for the erf(x), 1/4 <= |x| < 1/2
-data8 0x8CEAC59AF361B78A, 0x0000BFD6 //A13 = -5.0063802958258679384986669123e-13
-data8 0x9BC67404F348C0CE, 0x00003FDB //A12 = 1.7709590771868743572061278273e-11
-data8 0xF4B5D0348AFAAC7A, 0x00003FDB //A11 = 2.7820329729584630464848160970e-11
-data8 0x83AB447FF619DA4A, 0x0000BFE2 //A10 = -1.9160363295631539615395477207e-09
-data8 0x82115AB487202E7B, 0x00003FE0 //A9 = 4.7318386460142606822119637959e-10
-data8 0xB84D5B0AE17054AA, 0x00003FE8 //A8 = 1.7164477188916895004843908951e-07
-data8 0xB2E085C1C4AA06E5, 0x0000BFE9 //A7 = -3.3318445266863554512523957574e-07
-data8 0xCD3CA2E6C3971666, 0x0000BFEE //A6 = -1.2233070175554502732980949519e-05
-data8 0xBA445C53F8DD40E6, 0x00003FF0 //A5 = 4.4409521535330413551781808621e-05
-data8 0xAA94D5E68033B764, 0x00003FF4 //A4 = 6.5071635765452563856926608000e-04
-LOCAL_OBJECT_END(_0p25_to_0p5_data_tail)
-
-LOCAL_OBJECT_START(_0p5_to_1_data_tail)
-// Polynomial coefficients for the erf(x), 1/2 <= |x| < 1
-data8 0x9ED99EDF111CB785, 0x0000BFE4 //A13 = -9.2462916180079278241704711522e-09
-data8 0xDEAF7539AE2FB062, 0x0000BFE5 //A12 = -2.5923990465973151101298441139e-08
-data8 0xA392D5E5CC9DB1A7, 0x00003FE9 //A11 = 3.0467952847327075747032372101e-07
-data8 0xC311A7619B96CA1A, 0x00003FE8 //A10 = 1.8167212632079596881709988649e-07
-data8 0x82082E6B6A93F116, 0x0000BFEE //A9 = -7.7505086843257228386931766018e-06
-data8 0x96D9997CF326A36D, 0x00003FEE //A8 = 8.9913605625817479172071008270e-06
-data8 0x97057D85DCB0ED99, 0x00003FF2 //A7 = 1.4402527482741758767786898553e-04
-data8 0xDC23BCB3599C0490, 0x0000BFF3 //A6 = -4.1988296144950673955519083419e-04
-data8 0xDA150C4867208A81, 0x0000BFF5 //A5 = -1.6638352864915033417887831090e-03
-data8 0x9A4DAF550A2CC29A, 0x00003FF8 //A4 = 9.4179355839141698591817907680e-03
-LOCAL_OBJECT_END(_0p5_to_1_data_tail)
-
-LOCAL_OBJECT_START(_1_to_2_data_tail)
-// Polynomial coefficients for the erf(x), 1 <= |x| < 2.0
-data8 0x969EAC5C7B46CAB9, 0x00003FEF //A13 = 1.7955281439310148162059582795e-05
-data8 0xA2ED832912E9FCD9, 0x00003FF1 //A12 = 7.7690020847111408916570845775e-05
-data8 0x85677C39C48E43E7, 0x0000BFF3 //A11 = -2.5444839340796031538582511806e-04
-data8 0xC2DAFA91683DAAE4, 0x0000BFF1 //A10 = -9.2914288456063075386925076097e-05
-data8 0xE01C061CBC6A2825, 0x00003FF5 //A9 = 1.7098195515864039518892834211e-03
-data8 0x9AD7271CAFD01C78, 0x0000BFF6 //A8 = -2.3626776207372761518718893636e-03
-data8 0x9B6B9D30EDD5F4FF, 0x0000BFF7 //A7 = -4.7430532011804570628999212874e-03
-data8 0x9E51EB9623F1D446, 0x00003FF9 //A6 = 1.9326171998839772791190405201e-02
-data8 0xF391B935C12546DE, 0x0000BFF8 //A5 = -1.4866286152953671441682166195e-02
-data8 0xB6AD4AE850DBF526, 0x0000BFFA //A4 = -4.4598858458861014323191919669e-02
-LOCAL_OBJECT_END(_1_to_2_data_tail)
-
-LOCAL_OBJECT_START(_2_to_3p25_data_tail)
-// Polynomial coefficients for the erf(x), 2 <= |x| < 3.25
-data8 0x847C24DAC7C7558B, 0x00003FF5 //A13 = 1.0107798565424606512130100541e-03
-data8 0xCB6340EAF02C3DF8, 0x00003FF8 //A12 = 1.2413800617425931997420375435e-02
-data8 0xB5163D252DBBC107, 0x0000BFF9 //A11 = -2.2105330871844825370020459523e-02
-data8 0x82FF9C0B68E331E4, 0x00003FF9 //A10 = 1.5991024756001692140897408128e-02
-data8 0xE9519E4A49752E04, 0x00003FF7 //A9 = 7.1203253651891723548763348088e-03
-data8 0x8D52F11B7AE846D9, 0x0000BFFA //A8 = -3.4502927613795425888684181521e-02
-data8 0xCCC5A3E32BC6FA30, 0x00003FFA //A7 = 4.9993171868423886228679106871e-02
-data8 0xC1791AD8284A1919, 0x0000BFFA //A6 = -4.7234635220336795411997070641e-02
-data8 0x853DAAA35A8A3C18, 0x00003FFA //A5 = 3.2529512934760303976755163452e-02
-data8 0x88E42D8F47FAB60E, 0x0000BFF9 //A4 = -1.6710366233609742619461063050e-02
-LOCAL_OBJECT_END(_2_to_3p25_data_tail)
-
-LOCAL_OBJECT_START(_4_to_6p53_data_tail)
-// Polynomial coefficients for the erf(x), 4 <= |x| < 6.53
-data8 0xD8235ABF08B8A6D1, 0x00003FEE //A13 = 1.2882834877224764938429832586e-05
-data8 0xAEDF44F9C77844C2, 0x0000BFEC //A12 = -2.6057980393716019511497492890e-06
-data8 0xCCD5490956A4FCFD, 0x00003FEA //A11 = 7.6306293047300300284923464089e-07
-data8 0xF71AF0126EE26AEA, 0x0000BFE8 //A10 = -2.3013467500738417953513680935e-07
-data8 0xE4CE68089858AC20, 0x00003FE6 //A9 = 5.3273112263151109935867439775e-08
-data8 0xBD15106FBBAEE593, 0x0000BFE4 //A8 = -1.1006037358336556244645388790e-08
-data8 0x8BBF9A5769B6E480, 0x00003FE2 //A7 = 2.0336075804332107927300019116e-09
-data8 0xB049D845D105E302, 0x0000BFDF //A6 = -3.2066683399502826067820249320e-10
-data8 0xBAC69B3F0DFE5483, 0x00003FDC //A5 = 4.2467901578369360007795282687e-11
-data8 0xA29C398F83F8A0D1, 0x0000BFD9 //A4 = -4.6216613698438694005327544047e-12
-LOCAL_OBJECT_END(_4_to_6p53_data_tail)
-
-LOCAL_OBJECT_START(_3p25_to_4_data_tail)
-// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4
-data8 0x95BE1BEAD738160F, 0x00003FF2 //A13 = 1.4280568455209843005829620687e-04
-data8 0x8108C8FFAC0F0B21, 0x0000BFF4 //A12 = -4.9222685622046459346377033307e-04
-data8 0xD72A7FAEE7832BBE, 0x00003FF4 //A11 = 8.2079319302109644436194651098e-04
-data8 0x823AB4281CA7BBE7, 0x0000BFF5 //A10 = -9.9357079675971109178261577703e-04
-data8 0xFA1232D476048D11, 0x00003FF4 //A9 = 9.5394549599882496825916138915e-04
-data8 0xC463D7AF88025FB2, 0x0000BFF4 //A8 = -7.4916843357898101689031755368e-04
-data8 0xFEBE32B6B379D072, 0x00003FF3 //A7 = 4.8588363901002111193445057206e-04
-data8 0x882829BB68409BF3, 0x0000BFF3 //A6 = -2.5969865184916169002074135516e-04
-data8 0xED2F886E29DAAB09, 0x00003FF1 //A5 = 1.1309894347742479284610149994e-04
-data8 0xA4C07129436555B2, 0x0000BFF0 //A4 = -3.9279872584973887163830479579e-05
-LOCAL_OBJECT_END(_3p25_to_4_data_tail)
-
-
-LOCAL_OBJECT_START(_0_to_1o8_data)
-// Polynomial coefficients for the erf(x), 0.0 <= |x| < 0.125
-data8 0x3FF20DD750429B6D, 0x3C71AE3A8DDFFEDE //A1H, A1L
-data8 0xF8B0DACE42525CC2, 0x0000BFEE //A15
-data8 0xFCD02E1BF0EC2C37, 0x00003FF1 //A13
-data8 0xE016D968FE473B5E, 0x0000BFF4 //A11
-data8 0xAB2DE68711BF5A79, 0x00003FF7 //A9
-data8 0xDC16718944518309, 0x0000BFF9 //A7
-data8 0xE71790D0215F0C8F, 0x00003FFB //A5
-data8 0xC093A3581BCF3612, 0x0000BFFD //A3
-LOCAL_OBJECT_END(_0_to_1o8_data)
-
-
-LOCAL_OBJECT_START(_denorm_data)
-data8 0x3FF20DD750429B6D //A1H = 1.1283791670955125585606992900e+00
-data8 0x3C71AE3A914FED80 //A1L = 1.5335459613165880745599768129e-17
-LOCAL_OBJECT_END(_denorm_data)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(erfl)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 21, 0, 0
- fmerge.se fArgAbsNorm = f1, f8 // normalized x (1.0 <= x < 2.0)
- addl rSignBit = 0x20000, r0 // Set sign bit for exponent
-}
-{ .mlx
- addl rDataPtr = @ltoff(erfl_data), gp // Get common data ptr
- movl r1p5 = 0x3FF8000000000000 // 1.5 in dbl repres.
-};;
-
-{ .mfi
- getf.exp rArgExp = f8 // Get arg exponent
- fclass.m p6,p0 = f8, 0xEF // Filter 0, denormals and specials
- // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf
- addl rBias = 0xfffc, r0 // Value to subtract from exp
- // to get actual interval number
-}
-{ .mfi
- ld8 rDataPtr = [rDataPtr] // Get real common data pointer
- fma.s1 fArgSqr = f8, f8, f0 // x^2 (for [0;1/8] path)
- addl r2to4 = 0x10000, r0 // unbiased exponent
- // for [2;4] binary interval
-};;
-
-{ .mfi
- getf.sig rArgSig = f8 // Get arg significand
- fcmp.lt.s1 p15, p14 = f8, f0 // Is arg negative/positive?
- addl rSaturation = 0xd0e, r0 // First 12 bits of
- // saturation value signif.
-}
-{ .mfi
- setf.d f1p5 = r1p5 // 1.5 construction
- fma.s1 f2p0 = f1,f1,f1 // 2.0 construction
- addl r3p25Sign = 0xd00, r0 // First 12 bits of
- // 3.25 value signif.
-};;
-
-{ .mfi
- addl rTailDataPtr = 0x700, rDataPtr // Pointer to "tail" data
- nop.f 0
- andcm rArgExp = rArgExp, rSignBit // Remove sign of exp
-}
-{ .mfb
- addl rTiny = 0xf000, r0 // Tiny value for saturation path
- nop.f 0
-(p6) br.cond.spnt erfl_spec // Branch to zero, denorm & specs
-};;
-
-{ .mfi
- sub rInterval = rArgExp, rBias // Get actual interval number
- nop.f 0
- shr.u rArgSig = rArgSig, 52 // Leave only 12 bits of sign.
-}
-{ .mfi
- adds rShiftedDataPtr = 0x10, rDataPtr // Second ptr to data
- nop.f 0
- cmp.eq p8, p10 = r2to4, rArgExp // If exp is in 2to4 interval?
-};;
-
-{ .mfi
-(p8) cmp.le p8, p10 = r3p25Sign, rArgSig // If sign. is greater
- // than 1.25? (means arg is in [3.25;4] interval)
- nop.f 0
- shl rOffset = rInterval, 8 // Make offset from
- // interval number
-}
-{ .mfi
- cmp.gt p9, p0 = 0x0, rInterval // If interval is less than 0
- // (means arg is in [0; 1/8])
- nop.f 0
- cmp.eq p7, p0 = 0x5, rInterval // If arg is in [4:8] interv.?
-};;
-
-{ .mfi
-(p8) adds rOffset = 0x200, rOffset // Add additional offset
- // if arg is in [3.25;4] (another data set)
- fma.s1 fArgCube = fArgSqr, f8, f0 // x^3 (for [0;1/8] path)
- shl rTailOffset = rInterval, 7 // Make offset to "tail" data
- // from interval number
-}
-{ .mib
- setf.exp fTiny = rTiny // Construct "tiny" value
- // for saturation path
- cmp.ltu p11, p0 = 0x5, rInterval // if arg > 8
-(p9) br.cond.spnt _0_to_1o8
-};;
-
-{ .mfi
- add rAddr1 = rDataPtr, rOffset // Get address for
- // interval data
- nop.f 0
- shl rTailAddOffset = rInterval, 5 // Offset to interval
- // "tail" data
-}
-{ .mib
- add rAddr2 = rShiftedDataPtr, rOffset // Get second
- // address for interval data
-(p7) cmp.leu p11, p0 = rSaturation, rArgSig // if arg is
- // in [6.53;8] interval
-(p11) br.cond.spnt _saturation // Branch to Saturation path
-};;
-
-{ .mmi
- ldfe fA3 = [rAddr1], 0x90 // Load A3
- ldfpd fA2H, fA2L = [rAddr2], 16 // Load A2High, A2Low
- add rTailOffset = rTailOffset, rTailAddOffset // "Tail" offset
-};;
-
-{ .mmi
- ldfe fA20 = [rAddr1], 16 // Load A20
- ldfpd fA1H, fA1L = [rAddr2], 16 // Load A1High, A1Low
-(p8) adds rTailOffset = 0x140, rTailOffset // Additional offset
- // for [3.24;4] interval
-};;
-
-{ .mmi
- ldfe fA19 = [rAddr1], 16 // Load A19
- ldfpd fA0H, fA0L = [rAddr2], 16 // Load A0High, A0Low
- add rTailAddr1 = rTailDataPtr, rTailOffset // First tail
- // data address
-};;
-
-.pred.rel "mutex",p8,p10
-{ .mfi
- ldfe fA18 = [rAddr1], 16 // Load A18
-(p8) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f2p0 // Add 2.0
- // to normalized arg (for [3.24;4] interval)
- adds rTailAddr2 = 0x10, rTailAddr1 // First tail
- // data address
-}
-{ .mfi
- ldfe fA25 = [rAddr2], 16 // Load A25
-(p10) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f1p5 // Add 1.5
- // to normalized arg
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA17 = [rAddr1], 16 // Load A17
- ldfe fA24 = [rAddr2], 16 // Load A24
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA16 = [rAddr1], 16 // Load A16
- ldfe fA23 = [rAddr2], 16 // Load A23
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA15 = [rAddr1], 16 // Load A15
- ldfe fA22 = [rAddr2], 16 // Load A22
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA14 = [rAddr1], 16 // Load A14
- ldfe fA21 = [rAddr2], 16 // Load A21
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA13 = [rTailAddr1], 32 // Load A13
- fms.s1 fArgAbsNorm2 = fArgAbsNorm, fArgAbsNorm, f0 // x^2
- nop.i 0
-}
-{ .mfi
- ldfe fA12 = [rTailAddr2], 32 // Load A12
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA11 = [rTailAddr1], 32 // Load A11
- fma.s1 fRes3H = fA3, fArgAbsNorm, fA2H // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- ldfe fA10 = [rTailAddr2], 32 // Load A10
- fma.s1 fTH = fA3, fArgAbsNorm, f0 // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA9 = [rTailAddr1], 32 // Load A9
- fma.s1 fTT2 = fA1L, fArgAbsNorm, f0 // A1*x+A0
- nop.i 0
-}
-{ .mfi
- ldfe fA8 = [rTailAddr2], 32 // Load A8
- nop.f 0
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA7 = [rTailAddr1], 32 // Load A7
- ldfe fA6 = [rTailAddr2], 32 // Load A6
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA5 = [rTailAddr1], 32 // Load A5
- ldfe fA4 = [rTailAddr2], 32 // Load A4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm2L = fArgAbsNorm, fArgAbsNorm, fArgAbsNorm2
- // Low part of x^2 (delta)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm4 = fArgAbsNorm2, fArgAbsNorm2, f0 // x^4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes3L = fA2H, f1, fRes3H // // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm3 = fArgAbsNorm2, fArgAbsNorm, f0 // x^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fTH2 = fA1H, fArgAbsNorm, fTT2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA23 = fA24, fArgAbsNorm, fA23 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA21 = fA22, fArgAbsNorm, fA21 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA12 = fA13, fArgAbsNorm, fA12 // Polynomial tail
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes3L, f1, fTH // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA20, fArgAbsNorm, fA19 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1H = fTH2, f1, fA0H // A1*x+A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fTL2 = fA1H, fArgAbsNorm, fTH2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA9, fArgAbsNorm, fA8 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA10 = fA11, fArgAbsNorm, fA10 // Polynomial tail
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA16, fArgAbsNorm, fA15 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA18, fArgAbsNorm, fA17 // Polynomial tail
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm11 = fArgAbsNorm4, fArgAbsNorm4, f0 // x^8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA5, fArgAbsNorm, fA4 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes3L, f1, fA2L // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA6 = fA7, fArgAbsNorm, fA6 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTL2 = fTL2, f1, fTT2 // A1*x+A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = fA0H, f1, fRes1H // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA23 = fA25, fArgAbsNorm2, fA23 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA12 = fA14, fArgAbsNorm2, fA12 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA21, fArgAbsNorm2, fA19 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA10, fArgAbsNorm2, fA8 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA17, fArgAbsNorm2, fA15 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm11 = fArgAbsNorm11, fArgAbsNorm3, f0 // x^11
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTT = fRes3L, fArgAbsNorm2, f0 // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA6, fArgAbsNorm2, fA4 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fTH2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA23, fArgAbsNorm4, fA19 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA12, fArgAbsNorm4, fA8 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTT = fRes3H, fArgAbsNorm2L, fTT // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fTL2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA19, fArgAbsNorm4, fA15 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA8, fArgAbsNorm4, fA4 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes2H = fRes3H, fArgAbsNorm2, fTT // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fA0L // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes4 = fA15, fArgAbsNorm11, fA4 // Result of
- // polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes2L = fRes3H, fArgAbsNorm2, fRes2H // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fResH = fRes2H, f1, fRes1H // High result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes4, fArgAbsNorm4, fRes1L // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes2L = fRes2L, f1, fTT // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fResL = fRes1H, f1, fResH // Low result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fRes2L // Low result
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fResL = fResL, f1, fRes2H // Low result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fneg fResH = fResH // Invert high result if arg is neg.
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fResL = fResL, f1, fRes1L // Low result
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s0 f8 = fResH, f1, fResL // Add high and low results
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fms.s0 f8 = fResH, f1, fResL // Add high and low results
- br.ret.sptk b0 // Main path return
-};;
-
-// satiration path ////////////////////////////////////////////////////////////
-_saturation:
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fms.s0 f8 = f1, f1, fTiny // Saturation result r = 1-tiny
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p15) fnma.s0 f8 = f1, f1, fTiny // Saturation result r = tiny-1
- br.ret.sptk b0 // Saturation path return
-};;
-
-
-// 0, denormals and special IEEE numbers path /////////////////////////////////
-erfl_spec:
-
-{ .mfi
- addl rDataPtr = 0xBE0, rDataPtr // Ptr to denormals coeffs
- fclass.m p6,p0 = f8, 0x23 // To filter infinities
- // 0x23 = @pos|@neg|@inf
- nop.i 0
-};;
-
-{ .mfi
- ldfpd fA1H, fA1L = [rDataPtr] // Load denormals coeffs A1H, A1L
- fclass.m p7,p0 = f8, 0xC7 // To filter NaNs & Zeros
- // 0xC7 = @pos|@neg|@zero|@qnan|@snan
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
-(p6) fmerge.s f8 = f8, f1 // +/-1 for INF args
-(p6) br.ret.spnt b0 // exit for x = INF
-};;
-
-{ .mfb
- nop.m 0
-(p7) fma.s0 f8 = f8, f1, f8 // +/-0 for 0 args
- // and NaNs for NaNs
-(p7) br.ret.spnt b0 // exit for x = NaN or +/-0
-};;
-
-{ .mfi
- nop.m 0
- fnorm.s0 f8 = f8 // Normalize arg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes1H = f8, fA1H, f0 // HighRes
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = f8, fA1L, f0 // LowRes
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes1Hd = f8, fA1H, fRes1H // HighRes delta
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes1L, f1, fRes1Hd // LowRes+HighRes delta
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = f8, f8, fRes // r=x^2+r
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s0 f8 = fRes, f1, fRes1H // res = r+ResHigh
- br.ret.sptk b0 // 0, denormals, specials return
-};;
-
-
-// 0 < |x| < 1/8 path /////////////////////////////////////////////////////////
-_0_to_1o8:
-
-{ .mmi
- adds rAddr1 = 0xB60, rDataPtr // Ptr 1 to coeffs
- adds rAddr2 = 0xB80, rDataPtr // Ptr 2 to coeffs
- nop.i 0
-};;
-
-{ .mmi
- ldfpd fA1H, fA1L = [rAddr1], 16 // Load A1High, A1Low
- ldfe fA13 = [rAddr2], 16 // Load A13
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA15 = [rAddr1], 48 // Load A15
- ldfe fA11 = [rAddr2], 32 // Load A11
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA9 = [rAddr1], 32 // Load A9
- ldfe fA7 = [rAddr2], 32 // Load A7
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA5 = [rAddr1] // Load A5
- ldfe fA3 = [rAddr2] // Load A3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes1H = f8, fA1H, f0 // x*(A1H+A1L)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = f8, fA1L, f0 // x*(A1H+A1L)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA13, fArgSqr, fA11 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fArgFour = fArgSqr, fArgSqr, f0 // a^4
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA5, fArgSqr, fA3 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA9, fArgSqr, fA7 // Polynomial tail
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fms.s1 fRes1Hd = f8, fA1H, fRes1H // x*(A1H+A1L) delta
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA15, fArgFour, fA11 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA7, fArgFour, fA3 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fArgEight = fArgFour, fArgFour, f0 // a^8
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 f8 = fRes1L, f1, fRes1Hd // x*(A1H+A1L)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fA11, fArgEight, fA3 //Polynomial tail result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 f8 = fRes, fArgCube, f8 // (Polynomial tail)*x^3
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s0 f8 = f8, f1, fRes1H // (Polynomial tail)*x^3 +
- // + x*(A1H+A1L)
- br.ret.sptk b0 // [0;1/8] interval return
-};;
-
-
-GLOBAL_LIBM_END(erfl)
-
-
-
diff --git a/sysdeps/ia64/fpu/s_expm1.S b/sysdeps/ia64/fpu/s_expm1.S
index 09a22bbbdd..19a237990c 100644
--- a/sysdeps/ia64/fpu/s_expm1.S
+++ b/sysdeps/ia64/fpu/s_expm1.S
@@ -1,10 +1,10 @@
.file "exp_m1.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,821 +20,1694 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial Version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// HISTORY
+// 2/02/00 Initial Version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 07/07/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/20/02 Improved speed, algorithm based on exp
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// double expm1(double)
-
-// Overview of operation
-//==============================================================
-// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
-//
-// 2. |x| < 2^-60
-// Result = x, computed by x + x*x to handle appropriate flags and rounding
-//
-// 3. 2^-60 <= |x| < 2^-2
-// Result determined by 13th order Taylor series polynomial
-// expm1f(x) = x + Q2*x^2 + ... + Q13*x^13
-//
-// 4. x < -48.0
-// Here we know result is essentially -1 + eps, where eps only affects
-// rounded result. Set I.
-//
-// 5. x >= 709.7827
-// Result overflows. Set I, O, and call error support
//
-// 6. 2^-2 <= x < 709.7827 or -48.0 <= x < -2^-2
-// This is the main path. The algorithm is described below:
-
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 128/log2
-// n = int(w)
-// x = n log2/128 + r + delta
-
-// n = 128M + index_1 + 2^4 index_2
-// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
-
-// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
-// Construct 2^M
-// Get 2^(index_1/128) from table_1;
-// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by series by 5th order polynomial
-// r = x - n (log2/128)_high
-// delta = - n (log2/128)_low
-// Calculate exp(delta) as 1 + delta
-
-
-// Special values
-//==============================================================
-// expm1(+0) = +0.0
-// expm1(-0) = -0.0
-
-// expm1(+qnan) = +qnan
-// expm1(-qnan) = -qnan
-// expm1(+snan) = +qnan
-// expm1(-snan) = -qnan
-
-// expm1(-inf) = -1.0
-// expm1(+inf) = +inf
-
-// Overflow and Underflow
-//=======================
-// expm1(x) = largest double normal when
-// x = 709.7827 = 40862e42fefa39ef
-//
-// Underflow is handled as described in case 2 above.
-
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f9 -> f15, f32 -> f75
-
-// General registers used:
-// r14 -> r40
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//==============================================================
-
-rRshf = r14
-rAD_TB1 = r15
-rAD_T1 = r15
-rAD_TB2 = r16
-rAD_T2 = r16
-rAD_Ln2_lo = r17
-rAD_P = r17
-
-rN = r18
-rIndex_1 = r19
-rIndex_2_16 = r20
-
-rM = r21
-rBiased_M = r21
-rIndex_1_16 = r22
-rSignexp_x = r23
-rExp_x = r24
-rSig_inv_ln2 = r25
-
-rAD_Q1 = r26
-rAD_Q2 = r27
-rTmp = r27
-rExp_bias = r28
-rExp_mask = r29
-rRshf_2to56 = r30
-
-rGt_ln = r31
-rExp_2tom56 = r31
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-fRSHF_2TO56 = f6
-fINV_LN2_2TO63 = f7
-fW_2TO56_RSH = f9
-f2TOM56 = f11
-fP5 = f12
-fP54 = f50
-fP5432 = f50
-fP4 = f13
-fP3 = f14
-fP32 = f14
-fP2 = f15
-
-fLn2_by_128_hi = f33
-fLn2_by_128_lo = f34
-
-fRSHF = f35
-fNfloat = f36
-fW = f37
-fR = f38
-fF = f39
-
-fRsq = f40
-fRcube = f41
-
-f2M = f42
-fS1 = f43
-fT1 = f44
-
-fMIN_DBL_OFLOW_ARG = f45
-fMAX_DBL_MINUS_1_ARG = f46
-fMAX_DBL_NORM_ARG = f47
-fP_lo = f51
-fP_hi = f52
-fP = f53
-fS = f54
-
-fNormX = f56
-
-fWre_urm_f8 = f57
-
-fGt_pln = f58
-fTmp = f58
-
-fS2 = f59
-fT2 = f60
-fSm1 = f61
-
-fXsq = f62
-fX6 = f63
-fX4 = f63
-fQ7 = f64
-fQ76 = f64
-fQ7654 = f64
-fQ765432 = f64
-fQ6 = f65
-fQ5 = f66
-fQ54 = f66
-fQ4 = f67
-fQ3 = f68
-fQ32 = f68
-fQ2 = f69
-fQD = f70
-fQDC = f70
-fQDCBA = f70
-fQDCBA98 = f70
-fQDCBA98765432 = f70
-fQC = f71
-fQB = f72
-fQBA = f72
-fQA = f73
-fQ9 = f74
-fQ98 = f74
-fQ8 = f75
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*128/ln2 into the rightmost bits of the significand.
-// The result of this fma is fW_2TO56_RSH.
-// 2. fRSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
-// the integer part of w, n, as a floating-point number.
-// The result of this fms is fNfloat.
-
-
-LOCAL_OBJECT_START(exp_Table_1)
-data8 0x40862e42fefa39f0 // smallest dbl overflow arg
-data8 0xc048000000000000 // approx largest arg for minus one result
-data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
-data8 0x0 // pad
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_Table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_Table_2)
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_Table_2)
-
-
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P5
-data8 0x3fa55555d787761c //P4
-data8 0x3fc5555555555414 //P3
-data8 0x3fdffffffffffd6a //P2
-LOCAL_OBJECT_END(exp_p_table)
-
-LOCAL_OBJECT_START(exp_Q1_table)
-data8 0x3de6124613a86d09 // QD = 1/13!
-data8 0x3e21eed8eff8d898 // QC = 1/12!
-data8 0x3ec71de3a556c734 // Q9 = 1/9!
-data8 0x3efa01a01a01a01a // Q8 = 1/8!
-data8 0x8888888888888889,0x3ff8 // Q5 = 1/5!
-data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3!
-data8 0x0,0x0 // Pad to avoid bank conflicts
-LOCAL_OBJECT_END(exp_Q1_table)
-
-LOCAL_OBJECT_START(exp_Q2_table)
-data8 0x3e5ae64567f544e4 // QB = 1/11!
-data8 0x3e927e4fb7789f5c // QA = 1/10!
-data8 0x3f2a01a01a01a01a // Q7 = 1/7!
-data8 0x3f56c16c16c16c17 // Q6 = 1/6!
-data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4!
-data8 0x8000000000000000,0x3ffe // Q2 = 1/2!
-LOCAL_OBJECT_END(exp_Q2_table)
+// *********************************************************************
+//
+// Function: Combined exp(x) and expm1(x), where
+// x
+// exp(x) = e , for double precision x values
+// x
+// expm1(x) = e - 1 for double precision x values
+//
+// *********************************************************************
+//
+// Accuracy: Within .7 ulps for 80-bit floating point values
+// Very accurate for double precision values
+//
+// *********************************************************************
+//
+// Resources Used:
+//
+// Floating-Point Registers: f8 (Input and Return Value)
+// f9,f32-f61, f99-f102
+//
+// General Purpose Registers:
+// r32-r61
+// r62-r65 (Used to pass arguments to error handling routine)
+//
+// Predicate Registers: p6-p15
+//
+// *********************************************************************
+//
+// IEEE Special Conditions:
+//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions raised when appropriate for exp and expm1
+// Underflow exceptions raised when appropriate for exp and expm1
+// (Error Handling Routine called for overflow and Underflow)
+// Inexact raised when appropriate by algorithm
+//
+// exp(inf) = inf
+// exp(-inf) = +0
+// exp(SNaN) = QNaN
+// exp(QNaN) = QNaN
+// exp(0) = 1
+// exp(EM_special Values) = QNaN
+// exp(inf) = inf
+// expm1(-inf) = -1
+// expm1(SNaN) = QNaN
+// expm1(QNaN) = QNaN
+// expm1(0) = 0
+// expm1(EM_special Values) = QNaN
+//
+// *********************************************************************
+//
+// Implementation and Algorithm Notes:
+//
+// ker_exp_64( in_FR : X,
+// in_GR : Flag,
+// in_GR : Expo_Range
+// out_FR : Y_hi,
+// out_FR : Y_lo,
+// out_FR : scale,
+// out_PR : Safe )
+//
+// On input, X is in register format and
+// Flag = 0 for exp,
+// Flag = 1 for expm1,
+//
+// On output, provided X and X_cor are real numbers, then
+//
+// scale*(Y_hi + Y_lo) approximates exp(X) if Flag is 0
+// scale*(Y_hi + Y_lo) approximates exp(X)-1 if Flag is 1
+//
+// The accuracy is sufficient for a highly accurate 64 sig.
+// bit implementation. Safe is set if there is no danger of
+// overflow/underflow when the result is composed from scale,
+// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
+// Otherwise, one must prepare to handle the possible exception
+// appropriately. Note that SAFE not set (false) does not mean
+// that overflow/underflow will occur; only the setting of SAFE
+// guarantees the opposite.
+//
+// **** High Level Overview ****
+//
+// The method consists of three cases.
+//
+// If |X| < Tiny use case exp_tiny;
+// else if |X| < 2^(-6) use case exp_small;
+// else use case exp_regular;
+//
+// Case exp_tiny:
+//
+// 1 + X can be used to approximate exp(X) or exp(X+X_cor);
+// X + X^2/2 can be used to approximate exp(X) - 1
+//
+// Case exp_small:
+//
+// Here, exp(X), exp(X+X_cor), and exp(X) - 1 can all be
+// appproximated by a relatively simple polynomial.
+//
+// This polynomial resembles the truncated Taylor series
+//
+// exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
+//
+// Case exp_regular:
+//
+// Here we use a table lookup method. The basic idea is that in
+// order to compute exp(X), we accurately decompose X into
+//
+// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
+//
+// Hence
+//
+// exp(X) = 2^( N / 2^12 ) * exp(r).
+//
+// The value 2^( N / 2^12 ) is obtained by simple combinations
+// of values calculated beforehand and stored in table; exp(r)
+// is approximated by a short polynomial because |r| is small.
+//
+// We elaborate this method in 4 steps.
+//
+// Step 1: Reduction
+//
+// The value 2^12/log(2) is stored as a double-extended number
+// L_Inv.
+//
+// N := round_to_nearest_integer( X * L_Inv )
+//
+// The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
+// that r can be computed accurately via
+//
+// r := (X - N*L_hi) - N*L_lo
+//
+// We pick L_hi such that N*L_hi is representable in 64 sig. bits
+// and thus the FMA X - N*L_hi is error free. So r is the
+// 1 rounding error from an exact reduction with respect to
+//
+// L_hi + L_lo.
+//
+// In particular, L_hi has 30 significant bit and can be stored
+// as a double-precision number; L_lo has 64 significant bits and
+// stored as a double-extended number.
+//
+// In the case Flag = 2, we further modify r by
+//
+// r := r + X_cor.
+//
+// Step 2: Approximation
+//
+// exp(r) - 1 is approximated by a short polynomial of the form
+//
+// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
+//
+// Step 3: Composition from Table Values
+//
+// The value 2^( N / 2^12 ) can be composed from a couple of tables
+// of precalculated values. First, express N as three integers
+// K, M_1, and M_2 as
+//
+// N = K * 2^12 + M_1 * 2^6 + M_2
+//
+// Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
+// When N is represented in 2's complement, M_2 is simply the 6
+// lsb's, M_1 is the next 6, and K is simply N shifted right
+// arithmetically (sign extended) by 12 bits.
+//
+// Now, 2^( N / 2^12 ) is simply
+//
+// 2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
+//
+// Clearly, 2^K needs no tabulation. The other two values are less
+// trivial because if we store each accurately to more than working
+// precision, than its product is too expensive to calculate. We
+// use the following method.
+//
+// Define two mathematical values, delta_1 and delta_2, implicitly
+// such that
+//
+// T_1 = exp( [M_1 log(2)/2^6] - delta_1 )
+// T_2 = exp( [M_2 log(2)/2^12] - delta_2 )
+//
+// are representable as 24 significant bits. To illustrate the idea,
+// we show how we define delta_1:
+//
+// T_1 := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
+// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
+//
+// The last equality means mathematical equality. We then tabulate
+//
+// W_1 := exp(delta_1) - 1
+// W_2 := exp(delta_2) - 1
+//
+// Both in double precision.
+//
+// From the tabulated values T_1, T_2, W_1, W_2, we compose the values
+// T and W via
+//
+// T := T_1 * T_2 ...exactly
+// W := W_1 + (1 + W_1)*W_2
+//
+// W approximates exp( delta ) - 1 where delta = delta_1 + delta_2.
+// The mathematical product of T and (W+1) is an accurate representation
+// of 2^(M_1/2^6) * 2^(M_2/2^12).
+//
+// Step 4. Reconstruction
+//
+// Finally, we can reconstruct exp(X), exp(X) - 1.
+// Because
+//
+// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
+// + (M_2*log(2)/2^12 - delta_2)
+// + delta_1 + delta_2 + r ...accurately
+// We have
+//
+// exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
+// ~=~ 2^K * ( T + T*[exp(delta + r) - 1] )
+// ~=~ 2^K * ( T + T*[(exp(delta)-1)
+// + exp(delta)*(exp(r)-1)] )
+// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
+// ~=~ 2^K * ( Y_hi + Y_lo )
+//
+// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
+//
+// For exp(X)-1, we have
+//
+// exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
+// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
+//
+// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
+// numbers Y_hi + Y_lo carefully.
+//
+// **** Algorithm Details ****
+//
+// A careful algorithm must be used to realize the mathematical ideas
+// accurately. We describe each of the three cases. We assume SAFE
+// is preset to be TRUE.
+//
+// Case exp_tiny:
+//
+// The important points are to ensure an accurate result under
+// different rounding directions and a correct setting of the SAFE
+// flag.
+//
+// If Flag is 1, then
+// SAFE := False ...possibility of underflow
+// Scale := 1.0
+// Y_hi := X
+// Y_lo := 2^(-17000)
+// Else
+// Scale := 1.0
+// Y_hi := 1.0
+// Y_lo := X ...for different rounding modes
+// Endif
+//
+// Case exp_small:
+//
+// Here we compute a simple polynomial. To exploit parallelism, we split
+// the polynomial into several portions.
+//
+// Let r = X
+//
+// If Flag is not 1 ...i.e. exp( argument )
+//
+// rsq := r * r;
+// r4 := rsq*rsq
+// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
+// poly_hi := r + rsq*(P_1 + r*P_2)
+// Y_lo := poly_hi + r4 * poly_lo
+// set lsb(Y_lo) to 1
+// Y_hi := 1.0
+// Scale := 1.0
+//
+// Else ...i.e. exp( argument ) - 1
+//
+// rsq := r * r
+// r4 := rsq * rsq
+// r6 := rsq * r4
+// poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
+// poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
+// Y_lo := rsq*poly_hi + poly_lo
+// set lsb(Y_lo) to 1
+// Y_hi := X
+// Scale := 1.0
+//
+// Endif
+//
+// Case exp_regular:
+//
+// The previous description contain enough information except the
+// computation of poly and the final Y_hi and Y_lo in the case for
+// exp(X)-1.
+//
+// The computation of poly for Step 2:
+//
+// rsq := r*r
+// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
+//
+// For the case exp(X) - 1, we need to incorporate 2^(-K) into
+// Y_hi and Y_lo at the end of Step 4.
+//
+// If K > 10 then
+// Y_lo := Y_lo - 2^(-K)
+// Else
+// If K < -10 then
+// Y_lo := Y_hi + Y_lo
+// Y_hi := -2^(-K)
+// Else
+// Y_hi := Y_hi - 2^(-K)
+// End If
+// End If
+//
+#include "libm_support.h"
+
+GR_SAVE_PFS = r59
+GR_SAVE_B0 = r60
+GR_SAVE_GP = r61
+
+GR_Parameter_X = r62
+GR_Parameter_Y = r63
+GR_Parameter_RESULT = r64
+
+FR_X = f9
+FR_Y = f1
+FR_RESULT = f99
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+.align 64
+Constants_exp_64_Arg:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Arg,@object)
+data4 0x5C17F0BC,0xB8AA3B29,0x0000400B,0x00000000
+data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000
+data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000
+// /* Inv_L, L_hi, L_lo */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Arg)
+
+.align 64
+Constants_exp_64_Exponents:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Exponents,@object)
+data4 0x0000007E,0x00000000,0xFFFFFF83,0xFFFFFFFF
+data4 0x000003FE,0x00000000,0xFFFFFC03,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0xFFFFFFE2,0xFFFFFFFF,0xFFFFFFC4,0xFFFFFFFF
+data4 0xFFFFFFBA,0xFFFFFFFF,0xFFFFFFBA,0xFFFFFFFF
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Exponents)
+
+.align 64
+Constants_exp_64_A:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_A,@object)
+data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000
+data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000
+data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_A)
+
+.align 64
+Constants_exp_64_P:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_P,@object)
+data4 0x43914A8A,0xD00D6C81,0x00003FF2,0x00000000
+data4 0x30304B30,0xB60BC4AC,0x00003FF5,0x00000000
+data4 0x7474C518,0x88888888,0x00003FF8,0x00000000
+data4 0x8DAE729D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAAF61,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x000004C7,0x80000000,0x00003FFE,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_P)
+
+.align 64
+Constants_exp_64_Q:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Q,@object)
+data4 0xA49EF6CA,0xD00D56F7,0x00003FEF,0x00000000
+data4 0x1C63493D,0xD00D59AB,0x00003FF2,0x00000000
+data4 0xFB50CDD2,0xB60B60B5,0x00003FF5,0x00000000
+data4 0x7BA68DC8,0x88888888,0x00003FF8,0x00000000
+data4 0xAAAAAC8D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAACCA,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x00000000,0x80000000,0x00003FFE,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Q)
+
+.align 64
+Constants_exp_64_T1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T1,@object)
+data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
+data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
+data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
+data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
+data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
+data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
+data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
+data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
+data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
+data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
+data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
+data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
+data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
+data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
+data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
+data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T1)
+
+.align 64
+Constants_exp_64_T2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T2,@object)
+data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
+data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
+data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
+data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
+data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
+data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
+data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
+data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
+data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
+data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
+data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
+data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
+data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
+data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
+data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
+data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T2)
+
+.align 64
+Constants_exp_64_W1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W1,@object)
+data4 0x00000000,0x00000000,0x171EC4B4,0xBE384454
+data4 0x4AA72766,0xBE694741,0xD42518F8,0xBE5D32B6
+data4 0x3A319149,0x3E68D96D,0x62415F36,0xBE68F4DA
+data4 0xC9C86A3B,0xBE6DDA2F,0xF49228FE,0x3E6B2E50
+data4 0x1188B886,0xBE49C0C2,0x1A4C2F1F,0x3E64BFC2
+data4 0x2CB98B54,0xBE6A2FBB,0x9A55D329,0x3E5DC5DE
+data4 0x39A7AACE,0x3E696490,0x5C66DBA5,0x3E54728B
+data4 0xBA1C7D7D,0xBE62B0DB,0x09F1AF5F,0x3E576E04
+data4 0x1A0DD6A1,0x3E612500,0x795FBDEF,0xBE66A419
+data4 0xE1BD41FC,0xBE5CDE8C,0xEA54964F,0xBE621376
+data4 0x476E76EE,0x3E6370BE,0x3427EB92,0x3E390D1A
+data4 0x2BF82BF8,0x3E1336DE,0xD0F7BD9E,0xBE5FF1CB
+data4 0x0CEB09DD,0xBE60A355,0x0980F30D,0xBE5CA37E
+data4 0x4C082D25,0xBE5C541B,0x3B467D29,0xBE5BBECA
+data4 0xB9D946C5,0xBE400D8A,0x07ED374A,0xBE5E2A08
+data4 0x365C8B0A,0xBE66CB28,0xD3403BCA,0x3E3AAD5B
+data4 0xC7EA21E0,0x3E526055,0xE72880D6,0xBE442C75
+data4 0x85222A43,0x3E58B2BB,0x522C42BF,0xBE5AAB79
+data4 0x469DC2BC,0xBE605CB4,0xA48C40DC,0xBE589FA7
+data4 0x1AA42614,0xBE51C214,0xC37293F4,0xBE48D087
+data4 0xA2D673E0,0x3E367A1C,0x114F7A38,0xBE51BEBB
+data4 0x661A4B48,0xBE6348E5,0x1D3B9962,0xBDF52643
+data4 0x35A78A53,0x3E3A3B5E,0x1CECD788,0xBE46C46C
+data4 0x7857D689,0xBE60B7EC,0xD14F1AD7,0xBE594D3D
+data4 0x4C9A8F60,0xBE4F9C30,0x02DFF9D2,0xBE521873
+data4 0x55E6D68F,0xBE5E4C88,0x667F3DC4,0xBE62140F
+data4 0x3BF88747,0xBE36961B,0xC96EC6AA,0x3E602861
+data4 0xD57FD718,0xBE3B5151,0xFC4A627B,0x3E561CD0
+data4 0xCA913FEA,0xBE3A5217,0x9A5D193A,0x3E40A3CC
+data4 0x10A9C312,0xBE5AB713,0xC5F57719,0x3E4FDADB
+data4 0xDBDF59D5,0x3E361428,0x61B4180D,0x3E5DB5DB
+data4 0x7408D856,0xBE42AD5F,0x31B2B707,0x3E2A3148
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W1)
+
+.align 64
+Constants_exp_64_W2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W2,@object)
+data4 0x00000000,0x00000000,0x37A3D7A2,0xBE641F25
+data4 0xAD028C40,0xBE68DD57,0xF212B1B6,0xBE5C77D8
+data4 0x1BA5B070,0x3E57878F,0x2ECAE6FE,0xBE55A36A
+data4 0x569DFA3B,0xBE620608,0xA6D300A3,0xBE53B50E
+data4 0x223F8F2C,0x3E5B5EF2,0xD6DE0DF4,0xBE56A0D9
+data4 0xEAE28F51,0xBE64EEF3,0x367EA80B,0xBE5E5AE2
+data4 0x5FCBC02D,0x3E47CB1A,0x9BDAFEB7,0xBE656BA0
+data4 0x805AFEE7,0x3E6E70C6,0xA3415EBA,0xBE6E0509
+data4 0x49BFF529,0xBE56856B,0x00508651,0x3E66DD33
+data4 0xC114BC13,0x3E51165F,0xC453290F,0x3E53333D
+data4 0x05539FDA,0x3E6A072B,0x7C0A7696,0xBE47CD87
+data4 0xEB05C6D9,0xBE668BF4,0x6AE86C93,0xBE67C3E3
+data4 0xD0B3E84B,0xBE533904,0x556B53CE,0x3E63E8D9
+data4 0x63A98DC8,0x3E212C89,0x032A7A22,0xBE33138F
+data4 0xBC584008,0x3E530FA9,0xCCB93C97,0xBE6ADF82
+data4 0x8370EA39,0x3E5F9113,0xFB6A05D8,0x3E5443A4
+data4 0x181FEE7A,0x3E63DACD,0xF0F67DEC,0xBE62B29D
+data4 0x3DDE6307,0x3E65C483,0xD40A24C1,0x3E5BF030
+data4 0x14E437BE,0x3E658B8F,0xED98B6C7,0xBE631C29
+data4 0x04CF7C71,0x3E6335D2,0xE954A79D,0x3E529EED
+data4 0xF64A2FB8,0x3E5D9257,0x854ED06C,0xBE6BED1B
+data4 0xD71405CB,0x3E5096F6,0xACB9FDF5,0xBE3D4893
+data4 0x01B68349,0xBDFEB158,0xC6A463B9,0x3E628D35
+data4 0xADE45917,0xBE559725,0x042FC476,0xBE68C29C
+data4 0x01E511FA,0xBE67593B,0x398801ED,0xBE4A4313
+data4 0xDA7C3300,0x3E699571,0x08062A9E,0x3E5349BE
+data4 0x755BB28E,0x3E5229C4,0x77A1F80D,0x3E67E426
+data4 0x6B69C352,0xBE52B33F,0x084DA57F,0xBE6B3550
+data4 0xD1D09A20,0xBE6DB03F,0x2161B2C1,0xBE60CBC4
+data4 0x78A2B771,0x3E56ED9C,0x9D0FA795,0xBE508E31
+data4 0xFD1A54E9,0xBE59482A,0xB07FD23E,0xBE2A17CE
+data4 0x17365712,0x3E68BF5C,0xB3785569,0x3E3956F9
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W2)
.section .text
-GLOBAL_IEEE754_ENTRY(expm1)
+.proc expm1#
+.global expm1#
+.align 64
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // signif of 1/ln2
-}
-{ .mlx
- addl rAD_TB1 = @ltoff(exp_Table_1), gp
- movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
+expm1:
+#ifdef _LIBC
+.global __expm1#
+__expm1:
+#endif
+
+
+{ .mii
+ alloc r32 = ar.pfs,0,30,4,0
+(p0) add r33 = 1, r0
+(p0) cmp.eq.unc p7, p0 = r0, r0
}
;;
-// We do this fnorm right at the beginning to normalize
-// any input unnormals so that SWA is not taken.
+
+//
+// Set p7 true for expm1
+// Set Flag = r33 = 1 for expm1
+// These are really no longer necesary, but are a remnant
+// when this file had multiple entry points.
+// They should be carefully removed
+
+
+
{ .mfi
- ld8 rAD_TB1 = [rAD_TB1]
- fclass.m p6,p0 = f8,0x0b // Test for x=unorm
- mov rExp_mask = 0x1ffff
+(p0) add r32 = 1,r0
+(p0) fnorm.s1 f9 = f8
+ nop.i 999
}
+
+
{ .mfi
- mov rExp_bias = 0xffff
- fnorm.s1 fNormX = f8
- mov rExp_2tom56 = 0xffff-56
+ nop.m 999
+(p0) fclass.m.unc p6, p8 = f8, 0x1E7
+ nop.i 999
}
-;;
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
+{ .mfi
+ nop.m 999
+(p0) fclass.nm.unc p9, p0 = f8, 0x1FF
+ nop.i 999
+}
{ .mfi
- setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
- fclass.m p8,p0 = f8,0x07 // Test for x=0
- nop.i 0
+ nop.m 999
+(p0) mov f36 = f1
+ nop.i 999 ;;
+}
+
+//
+// Identify NatVals, NaNs, Infs, and Zeros.
+// Identify EM unsupporteds.
+// Save special input registers
+//
+// Create FR_X_cor = 0.0
+// GR_Flag = 0
+// GR_Expo_Range = 1
+// FR_Scale = 1.0
+//
+
+{ .mfb
+ nop.m 999
+(p0) mov f32 = f0
+(p6) br.cond.spnt EXP_64_SPECIAL ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt EXP_64_UNSUPPORTED ;;
+}
+
+//
+// Branch out for special input values
+//
+
+{ .mfi
+(p0) cmp.ne.unc p12, p13 = 0x01, r33
+(p0) fcmp.lt.unc.s0 p9,p0 = f8, f0
+(p0) cmp.eq.unc p15, p0 = r0, r0
+}
+
+//
+// Raise possible denormal operand exception
+// Normalize x
+//
+// This function computes exp( x + x_cor)
+// Input FR 1: FR_X
+// Input FR 2: FR_X_cor
+// Input GR 1: GR_Flag
+// Input GR 2: GR_Expo_Range
+// Output FR 3: FR_Y_hi
+// Output FR 4: FR_Y_lo
+// Output FR 5: FR_Scale
+// Output PR 1: PR_Safe
+
+//
+// Prepare to load constants
+// Set Safe = True
+//
+
+{ .mmi
+(p0) addl r34 = @ltoff(Constants_exp_64_Arg#), gp
+(p0) addl r40 = @ltoff(Constants_exp_64_W1#), gp
+(p0) addl r41 = @ltoff(Constants_exp_64_W2#), gp
}
+;;
+
+{ .mmi
+ ld8 r34 = [r34]
+ ld8 r40 = [r40]
+(p0) addl r50 = @ltoff(Constants_exp_64_T1#), gp
+}
+;;
+
+
+{ .mmi
+ ld8 r41 = [r41]
+(p0) ldfe f37 = [r34],16
+(p0) addl r51 = @ltoff(Constants_exp_64_T2#), gp
+}
+;;
+
+//
+// N = fcvt.fx(float_N)
+// Set p14 if -6 > expo_X
+//
+
+
+//
+// Bias = 0x0FFFF
+// expo_X = expo_X and Mask
+//
+
+//
+// Load L_lo
+// Set p10 if 14 < expo_X
+//
+
+{ .mmi
+ ld8 r50 = [r50]
+(p0) ldfe f40 = [r34],16
+ nop.i 999
+}
+;;
+
{ .mlx
- setf.d fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56)
- movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for rshift
+ nop.m 999
+(p0) movl r58 = 0x0FFFF
}
;;
-{ .mfi
- setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
- fclass.m p9,p0 = f8,0x22 // Test for x=-inf
- add rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2
+//
+// Load W2_ptr
+// Branch to SMALL is expo_X < -6
+//
+
+//
+// float_N = X * L_Inv
+// expo_X = exponent of X
+// Mask = 0x1FFFF
+//
+
+{ .mmi
+ ld8 r51 = [r51]
+(p0) ldfe f41 = [r34],16
}
-{ .mib
- add rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path
- add rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo
-(p6) br.cond.spnt EXPM1_UNORM // Branch if x unorm
+;;
+
+{ .mlx
+(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#), gp
+(p0) movl r39 = 0x1FFFF
+}
+;;
+
+{ .mmi
+ ld8 r34 = [r34]
+(p0) getf.exp r37 = f9
+ nop.i 999
}
;;
-EXPM1_COMMON:
+{ .mii
+ nop.m 999
+ nop.i 999
+(p0) and r37 = r37, r39 ;;
+}
+
+{ .mmi
+(p0) sub r37 = r37, r58 ;;
+(p0) cmp.gt.unc p14, p0 = -6, r37
+(p0) cmp.lt.unc p10, p0 = 14, r37 ;;
+}
+
{ .mfi
- ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16
- fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, NaN, NaT
- add rAD_Q2 = 0x50, rAD_Q1 // Point to Q table for small path
+ nop.m 999
+//
+// Load L_inv
+// Set p12 true for Flag = 0 (exp)
+// Set p13 true for Flag = 1 (expm1)
+//
+(p0) fmpy.s1 f38 = f9, f37
+ nop.i 999 ;;
}
+
{ .mfb
- nop.m 0
- nop.f 0
-(p8) br.ret.spnt b0 // Exit for x=0, return x
+ nop.m 999
+//
+// Load L_hi
+// expo_X = expo_X - Bias
+// get W1_ptr
+//
+(p0) fcvt.fx.s1 f39 = f38
+(p14) br.cond.spnt EXP_SMALL ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt EXP_HUGE ;;
+}
+
+{ .mmi
+(p0) shladd r34 = r32,4,r34
+(p0) addl r35 = @ltoff(Constants_exp_64_A#), gp
+ nop.i 999
}
;;
+{ .mmi
+ ld8 r35 = [r35]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+//
+// Load T_1,T_2
+//
+
+{ .mmb
+(p0) ldfe f51 = [r35],16
+(p0) ld8 r45 = [r34],8
+ nop.b 999 ;;
+}
+//
+// Set Safe = True if k >= big_expo_neg
+// Set Safe = False if k < big_expo_neg
+//
+
+{ .mmb
+(p0) ldfe f49 = [r35],16
+(p0) ld8 r48 = [r34],0
+ nop.b 999 ;;
+}
+
{ .mfi
- ldfd fMAX_DBL_NORM_ARG = [rAD_TB1],16
- nop.f 0
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+ nop.m 999
+//
+// Branch to HUGE is expo_X > 14
+//
+(p0) fcvt.xf f38 = f39
+ nop.i 999 ;;
}
-{ .mfb
- setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
-(p9) fms.d.s0 f8 = f0,f0,f1 // quick exit for x=-inf
-(p9) br.ret.spnt b0
+
+{ .mfi
+(p0) getf.sig r52 = f39
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) extr.u r43 = r52, 6, 6 ;;
+//
+// r = r - float_N * L_lo
+// K = extr(N_fix,12,52)
+//
+(p0) shladd r40 = r43,3,r40 ;;
}
-;;
{ .mfi
- ldfpd fQD, fQC = [rAD_Q1], 16 // Load coeff for small path
- nop.f 0
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
+(p0) shladd r50 = r43,2,r50
+(p0) fnma.s1 f42 = f40, f38, f9
+//
+// float_N = float(N)
+// N_fix = signficand N
+//
+(p0) extr.u r42 = r52, 0, 6
}
-{ .mfb
- ldfpd fQB, fQA = [rAD_Q2], 16 // Load coeff for small path
-(p10) fma.d.s0 f8 = f8, f1, f0 // For x=+inf, NaN, NaT
-(p10) br.ret.spnt b0 // Exit for x=+inf, NaN, NaT
+
+{ .mmi
+(p0) ldfd f43 = [r40],0 ;;
+(p0) shladd r41 = r42,3,r41
+(p0) shladd r51 = r42,2,r51
+}
+//
+// W_1_p1 = 1 + W_1
+//
+
+{ .mmi
+(p0) ldfs f44 = [r50],0 ;;
+(p0) ldfd f45 = [r41],0
+//
+// M_2 = extr(N_fix,0,6)
+// M_1 = extr(N_fix,6,6)
+// r = X - float_N * L_hi
+//
+(p0) extr r44 = r52, 12, 52
+}
+
+{ .mmi
+(p0) ldfs f46 = [r51],0 ;;
+(p0) sub r46 = r58, r44
+(p0) cmp.gt.unc p8, p15 = r44, r45
+}
+//
+// W = W_1 + W_1_p1*W_2
+// Load A_2
+// Bias_m_K = Bias - K
+//
+
+{ .mii
+(p0) ldfe f40 = [r35],16
+//
+// load A_1
+// poly = A_2 + r*A_3
+// rsq = r * r
+// neg_2_mK = exponent of Bias_m_k
+//
+(p0) add r47 = r58, r44 ;;
+//
+// Set Safe = True if k <= big_expo_pos
+// Set Safe = False if k > big_expo_pos
+// Load A_3
+//
+(p15) cmp.lt p8,p15 = r44,r48 ;;
+}
+
+{ .mmf
+(p0) setf.exp f61 = r46
+//
+// Bias_p + K = Bias + K
+// T = T_1 * T_2
+//
+(p0) setf.exp f36 = r47
+(p0) fnma.s1 f42 = f41, f38, f42 ;;
}
-;;
{ .mfi
- ldfpd fQ9, fQ8 = [rAD_Q1], 16 // Load coeff for small path
- fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
- cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)
+ nop.m 999
+//
+// Load W_1,W_2
+// Load big_exp_pos, load big_exp_neg
+//
+(p0) fadd.s1 f47 = f43, f1
+ nop.i 999 ;;
}
+
{ .mfi
- ldfpd fQ7, fQ6 = [rAD_Q2], 16 // Load coeff for small path
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fma.s1 f52 = f42, f51, f49
+ nop.i 999
}
-;;
{ .mfi
- ldfe fQ5 = [rAD_Q1], 16 // Load coeff for small path
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fmpy.s1 f48 = f42, f42
+ nop.i 999 ;;
}
-{ .mib
- ldfe fQ4 = [rAD_Q2], 16 // Load coeff for small path
-(p7) cmp.gt.unc p6, p7 = -60, rExp_x // Test |x| < 2^(-60)
-(p7) br.cond.spnt EXPM1_SMALL // Branch if 2^-60 <= |x| < 2^-2
+
+{ .mfi
+ nop.m 999
+(p0) fmpy.s1 f53 = f44, f46
+ nop.i 999 ;;
}
-;;
-// W = X * Inv_log2_by_128
-// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
-// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
+{ .mfi
+ nop.m 999
+(p0) fma.s1 f54 = f45, f47, f43
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fneg f61 = f61
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 f52 = f42, f52, f40
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fadd.s1 f55 = f54, f1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// W + Wp1 * poly
+//
+(p0) mov f34 = f53
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// A_1 + r * poly
+// Scale = setf_exp(Bias_p_k)
+//
+(p0) fma.s1 f52 = f48, f52, f42
+ nop.i 999 ;;
+}
{ .mfi
- ldfe fLn2_by_128_hi = [rAD_TB1],32
- fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
- nop.i 0
+ nop.m 999
+//
+// poly = r + rsq(A_1 + r*poly)
+// Wp1 = 1 + W
+// neg_2_mK = -neg_2_mK
+//
+(p0) fma.s1 f35 = f55, f52, f54
+ nop.i 999 ;;
}
+
{ .mfb
- ldfe fLn2_by_128_lo = [rAD_Ln2_lo]
-(p6) fma.d.s0 f8 = f8, f8, f8 // If x < 2^-60, result=x+x*x
-(p6) br.ret.spnt b0 // Exit if x < 2^-60
+ nop.m 999
+(p0) fmpy.s1 f35 = f35, f53
+//
+// Y_hi = T
+// Y_lo = T * (W + Wp1*poly)
+//
+(p12) br.cond.sptk EXP_MAIN ;;
}
-;;
+//
+// Branch if exp(x)
+// Continue for exp(x-1)
+//
-// Divide arguments into the following categories:
-// Certain minus one p11 - -inf < x <= MAX_DBL_MINUS_1_ARG
-// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
-// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
+{ .mii
+(p0) cmp.lt.unc p12, p13 = 10, r44
+ nop.i 999 ;;
+//
+// Set p12 if 10 < K, Else p13
+//
+(p13) cmp.gt.unc p13, p14 = -10, r44 ;;
+}
//
-// If the input is really a double arg, then there will never be "Possible
-// Overflow" arguments.
+// K > 10: Y_lo = Y_lo + neg_2_mK
+// K <=10: Set p13 if -10 > K, Else set p14
//
-// After that last load, rAD_TB1 points to the beginning of table 1
+{ .mfi
+(p13) cmp.eq p15, p0 = r0, r0
+(p14) fadd.s1 f34 = f61, f34
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 0
- fcmp.ge.s1 p15,p14 = fNormX,fMIN_DBL_OFLOW_ARG
- nop.i 0
+ nop.m 999
+(p12) fadd.s1 f35 = f35, f61
+ nop.i 999 ;;
}
-;;
{ .mfi
- add rAD_P = 0x80, rAD_TB2
- fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_MINUS_1_ARG
- nop.i 0
+ nop.m 999
+(p13) fadd.s1 f35 = f35, f34
+ nop.i 999
}
-;;
{ .mfb
- ldfpd fP5, fP4 = [rAD_P] ,16
-(p14) fcmp.gt.unc.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG
-(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW
+ nop.m 999
+//
+// K <= 10 and K < -10, Set Safe = True
+// K <= 10 and K < 10, Y_lo = Y_hi + Y_lo
+// K <= 10 and K > =-10, Y_hi = Y_hi + neg_2_mk
+//
+(p13) mov f34 = f61
+(p0) br.cond.sptk EXP_MAIN ;;
+}
+EXP_SMALL:
+
+{ .mmi
+(p12) addl r35 = @ltoff(Constants_exp_64_P#), gp
+(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#), gp
+ nop.i 999
}
;;
-// Nfloat = round_int(W)
-// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into rN.
+{ .mmi
+(p12) ld8 r35 = [r35]
+ ld8 r34 = [r34]
+ nop.i 999
+}
+;;
-// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
-// Thus, fNfloat contains the floating point version of N
-{ .mfb
- ldfpd fP3, fP2 = [rAD_P]
- fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
-(p11) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE
+{ .mmi
+(p13) addl r35 = @ltoff(Constants_exp_64_Q#), gp
+ nop.m 999
+ nop.i 999
}
;;
+
+//
+// Return
+// K <= 10 and K < 10, Y_hi = neg_2_mk
+//
+// /*******************************************************/
+// /*********** Branch EXP_SMALL *************************/
+// /*******************************************************/
+
{ .mfi
- getf.sig rN = fW_2TO56_RSH
- nop.f 0
- nop.i 0
+(p13) ld8 r35 = [r35]
+(p0) mov f42 = f9
+(p0) add r34 = 0x48,r34
}
;;
-// rIndex_1 has index_1
-// rIndex_2_16 has index_2 * 16
-// rBiased_M has M
-// rIndex_1_16 has index_1 * 16
+//
+// Flag = 0
+// r4 = rsq * rsq
+//
+
+{ .mfi
+(p0) ld8 r49 =[r34],0
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Flag = 1
+//
+(p0) cmp.lt.unc p14, p0 = r37, r49 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// r = X
+//
+(p0) fmpy.s1 f48 = f42, f42
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+//
+// rsq = r * r
+//
+(p0) fmpy.s1 f50 = f48, f48
+//
+// Is input very small?
+//
+(p14) br.cond.spnt EXP_VERY_SMALL ;;
+}
+//
+// Flag_not1: Y_hi = 1.0
+// Flag is 1: r6 = rsq * r4
+//
-// r = x - Nfloat * ln2_by_128_hi
-// f = 1 - Nfloat * ln2_by_128_lo
{ .mfi
- and rIndex_1 = 0x0f, rN
- fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
- shr rM = rN, 0x7
+(p12) ldfe f52 = [r35],16
+(p12) mov f34 = f1
+(p0) add r53 = 0x1,r0 ;;
}
+
{ .mfi
- and rIndex_2_16 = 0x70, rN
- fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
- nop.i 0
+(p13) ldfe f51 = [r35],16
+//
+// Flag_not_1: Y_lo = poly_hi + r4 * poly_lo
+//
+(p13) mov f34 = f9
+ nop.i 999 ;;
}
-;;
-// rAD_T1 has address of T1
-// rAD_T2 has address if T2
+{ .mmf
+(p12) ldfe f53 = [r35],16
+//
+// For Flag_not_1, Y_hi = X
+// Scale = 1
+// Create 0x000...01
+//
+(p0) setf.sig f37 = r53
+(p0) mov f36 = f1 ;;
+}
{ .mmi
- add rBiased_M = rExp_bias, rM
- add rAD_T2 = rAD_TB2, rIndex_2_16
- shladd rAD_T1 = rIndex_1, 4, rAD_TB1
+(p13) ldfe f52 = [r35],16 ;;
+(p12) ldfe f54 = [r35],16
+ nop.i 999 ;;
}
-;;
-// Create Scale = 2^M
-// Load T1 and T2
+{ .mfi
+(p13) ldfe f53 = [r35],16
+(p13) fmpy.s1 f58 = f48, f50
+ nop.i 999 ;;
+}
+//
+// Flag_not1: poly_lo = P_5 + r*P_6
+// Flag_1: poly_lo = Q_6 + r*Q_7
+//
+
{ .mmi
- setf.exp f2M = rBiased_M
- ldfe fT2 = [rAD_T2]
- nop.i 0
+(p13) ldfe f54 = [r35],16 ;;
+(p12) ldfe f55 = [r35],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p12) ldfe f56 = [r35],16 ;;
+(p13) ldfe f55 = [r35],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p12) ldfe f57 = [r35],0 ;;
+(p13) ldfe f56 = [r35],16
+ nop.i 999 ;;
}
-;;
{ .mfi
- ldfe fT1 = [rAD_T1]
- fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
- nop.i 0
+(p13) ldfe f57 = [r35],0
+ nop.f 999
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP54 = fR, fP5, fP4
- nop.i 0
+ nop.m 999
+//
+// For Flag_not_1, load p5,p6,p1,p2
+// Else load p5,p6,p1,p2
+//
+(p12) fma.s1 f60 = f52, f42, f53
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fP32 = fR, fP3, fP2
- nop.i 0
+ nop.m 999
+(p13) fma.s1 f60 = f51, f42, f52
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fRsq = fR, fR, f0
- nop.i 0
+ nop.m 999
+(p12) fma.s1 f60 = f60, f42, f54
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP5432 = fRsq, fP54, fP32
- nop.i 0
+ nop.m 999
+(p12) fma.s1 f59 = f56, f42, f57
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p13) fma.s1 f60 = f42, f60, f53
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fS2 = fF,fT2,f0
- nop.i 0
+ nop.m 999
+(p12) fma.s1 f59 = f59, f48, f42
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fS1 = f2M,fT1,f0
- nop.i 0
+ nop.m 999
+//
+// Flag_1: poly_lo = Q_5 + r*(Q_6 + r*Q_7)
+// Flag_not1: poly_lo = P_4 + r*(P_5 + r*P_6)
+// Flag_not1: poly_hi = (P_1 + r*P_2)
+//
+(p13) fmpy.s1 f60 = f60, f58
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP = fRsq, fP5432, fR
- nop.i 0
+ nop.m 999
+(p12) fma.s1 f60 = f60, f42, f55
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_1: poly_lo = r6 *(Q_5 + ....)
+// Flag_not1: poly_hi = r + rsq *(P_1 + r*P_2)
+//
+(p12) fma.s1 f35 = f60, f50, f59
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fms.s1 fSm1 = fS1,fS2,f1 // S - 1.0
- nop.i 0
+ nop.m 999
+(p13) fma.s1 f59 = f54, f42, f55
+ nop.i 999 ;;
}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_not1: Y_lo = rsq* poly_hi + poly_lo
+// Flag_1: poly_lo = rsq* poly_hi + poly_lo
+//
+(p13) fma.s1 f59 = f59, f42, f56
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_not_1: (P_1 + r*P_2)
+//
+(p13) fma.s1 f59 = f59, f42, f57
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_not_1: poly_hi = r + rsq * (P_1 + r*P_2)
+//
+(p13) fma.s1 f35 = f59, f48, f60
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Create 0.000...01
+//
+(p0) for f37 = f35, f37
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 0
- fma.s1 fS = fS1,fS2,f0
-(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW
+ nop.m 999
+//
+// Set lsb of Y_lo to 1
+//
+(p0) fmerge.se f35 = f35,f37
+(p0) br.cond.sptk EXP_MAIN ;;
+}
+EXP_VERY_SMALL:
+
+{ .mmi
+ nop.m 999
+(p13) addl r34 = @ltoff(Constants_exp_64_Exponents#),gp
+ nop.i 999;;
+}
+
+{ .mfi
+(p13) ld8 r34 = [r34];
+(p12) mov f35 = f9
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fSm1
- br.ret.sptk b0 // Normal path exit
+ nop.m 999
+(p12) mov f34 = f1
+(p12) br.cond.sptk EXP_MAIN ;;
}
-;;
-// Here if 2^-60 <= |x| <2^-2
-// Compute 13th order polynomial
-EXPM1_SMALL:
-{ .mmf
- ldfe fQ3 = [rAD_Q1], 16
- ldfe fQ2 = [rAD_Q2], 16
- fma.s1 fX4 = fXsq, fXsq, f0
+{ .mlx
+(p13) add r34 = 8,r34
+(p13) movl r39 = 0x0FFFE ;;
}
-;;
+//
+// Load big_exp_neg
+// Create 1/2's exponent
+//
+
+{ .mii
+(p13) setf.exp f56 = r39
+(p13) shladd r34 = r32,4,r34 ;;
+ nop.i 999
+}
+//
+// Negative exponents are stored after positive
+//
{ .mfi
- nop.m 0
- fma.s1 fQDC = fQD, fNormX, fQC
- nop.i 0
+(p13) ld8 r45 = [r34],0
+//
+// Y_hi = x
+// Scale = 1
+//
+(p13) fmpy.s1 f35 = f9, f9
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fQBA = fQB, fNormX, fQA
- nop.i 0
+ nop.m 999
+//
+// Reset Safe if necessary
+// Create 1/2
+//
+(p13) mov f34 = f9
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fQ98 = fQ9, fNormX, fQ8
- nop.i 0
+(p13) cmp.lt.unc p0, p15 = r37, r45
+(p13) mov f36 = f1
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+//
+// Y_lo = x * x
+//
+(p13) fmpy.s1 f35 = f35, f56
+//
+// Y_lo = x*x/2
+//
+(p13) br.cond.sptk EXP_MAIN ;;
}
+EXP_HUGE:
+
{ .mfi
- nop.m 0
- fma.s1 fQ76= fQ7, fNormX, fQ6
- nop.i 0
+ nop.m 999
+(p0) fcmp.gt.unc.s1 p14, p0 = f9, f0
+ nop.i 999
+}
+
+{ .mlx
+ nop.m 999
+(p0) movl r39 = 0x15DC0 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fQ54 = fQ5, fNormX, fQ4
- nop.i 0
+(p14) setf.exp f34 = r39
+(p14) mov f35 = f1
+(p14) cmp.eq p0, p15 = r0, r0 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p14) mov f36 = f34
+//
+// If x > 0, Set Safe = False
+// If x > 0, Y_hi = 2**(24,000)
+// If x > 0, Y_lo = 1.0
+// If x > 0, Scale = 2**(24,000)
+//
+(p14) br.cond.sptk EXP_MAIN ;;
+}
+
+{ .mlx
+ nop.m 999
+(p12) movl r39 = 0xA240
+}
+
+{ .mlx
+ nop.m 999
+(p12) movl r38 = 0xA1DC ;;
+}
+
+{ .mmb
+(p13) cmp.eq p15, p14 = r0, r0
+(p12) setf.exp f34 = r39
+ nop.b 999 ;;
+}
+
+{ .mlx
+(p12) setf.exp f35 = r38
+(p13) movl r39 = 0xFF9C
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fX6 = fX4, fXsq, f0
- nop.i 0
+ nop.m 999
+(p13) fsub.s1 f34 = f0, f1
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
- fma.s1 fQ32= fQ3, fNormX, fQ2
- nop.i 0
+ nop.m 999
+(p12) mov f36 = f34
+(p12) cmp.eq p0, p15 = r0, r0 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fQDCBA = fQDC, fXsq, fQBA
- nop.i 0
+(p13) setf.exp f35 = r39
+(p13) mov f36 = f1
+ nop.i 999 ;;
}
+EXP_MAIN:
+
{ .mfi
- nop.m 0
- fma.s1 fQ7654 = fQ76, fXsq, fQ54
- nop.i 0
+(p0) cmp.ne.unc p12, p0 = 0x01, r33
+(p0) fmpy.s1 f101 = f36, f35
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p0) fma.d.s0 f99 = f34, f36, f101
+(p15) br.cond.sptk EXP_64_RETURN;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fQDCBA98 = fQDCBA, fXsq, fQ98
- nop.i 0
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x01
+ nop.i 999
}
+
+{ .mlx
+ nop.m 999
+(p0) movl r50 = 0x000000000103FF ;;
+}
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + RZ + TD (Underflows)
+//
+//
+// If (Safe) is true, then
+// Compute result using user supplied status field.
+// No overflow or underflow here, but perhaps inexact.
+// Return
+// Else
+// Determine if overflow or underflow was raised.
+// Fetch +/- overflow threshold for IEEE single, double,
+// double extended
+//
+
{ .mfi
- nop.m 0
- fma.s1 fQ765432 = fQ7654, fXsq, fQ32
- nop.i 0
+(p0) setf.exp f60 = r50
+(p0) fma.d.s3 f102 = f34, f36, f101
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fQDCBA98765432 = fQDCBA98, fX6, fQ765432
- nop.i 0
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x40
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fQDCBA98765432, fXsq, fNormX
- br.ret.sptk b0 // Exit small branch
+{ .mfi
+ nop.m 999
+//
+// For Safe, no need to check for over/under.
+// For expm1, handle errors like exp.
+//
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.d.s2 f100 = f34, f36, f101
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x40
+ nop.i 999 ;;
}
-;;
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p12, p0 = f102, 0x00F
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = f102, 0x00F
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fcmp.ge.unc.s1 p10, p0 = f100, f60
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// Create largest double exponent + 1.
+// Create smallest double exponent - 1.
+//
+(p0) fcmp.ge.unc.s1 p8, p0 = f100, f60
+ nop.i 999 ;;
+}
+//
+// fcmp: resultS2 >= + overflow threshold -> set (a) if true
+// fcmp: resultS2 <= - overflow threshold -> set (b) if true
+// fclass: resultS3 is denorm/unorm/0 -> set (d) if true
+//
+
+{ .mib
+(p10) mov r65 = 41
+ nop.i 999
+(p10) br.cond.sptk __libm_error_region ;;
+}
+
+{ .mib
+(p8) mov r65 = 14
+ nop.i 999
+(p8) br.cond.sptk __libm_error_region ;;
+}
+//
+// Report that exp overflowed
+//
-EXPM1_POSSIBLE_OVERFLOW:
+{ .mib
+(p12) mov r65 = 42
+ nop.i 999
+(p12) br.cond.sptk __libm_error_region ;;
+}
-// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
-// This cannot happen if input is a double, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+{ .mib
+(p11) mov r65 = 15
+ nop.i 999
+(p11) br.cond.sptk __libm_error_region ;;
+}
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest double, then we have
-// overflow
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Report that exp underflowed
+//
+(p0) br.cond.sptk EXP_64_RETURN;;
+}
+EXP_64_SPECIAL:
{ .mfi
- mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = f8, 0x0c3
+ nop.i 999
}
-;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
- fma.d.s2 fWre_urm_f8 = fS, fP, fSm1 // Result with wre set
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p13, p8 = f8, 0x007
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+ nop.m 999
+(p7) fclass.m.unc p14, p0 = f8, 0x007
+ nop.i 999
}
-;;
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+ nop.m 999
+(p0) fclass.m.unc p12, p9 = f8, 0x021
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = f8, 0x022
+ nop.i 999
}
-;;
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fSm1
- br.ret.sptk b0 // Exit if really no overflow
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p10, p0 = f8, 0x022
+ nop.i 999 ;;
}
-;;
-EXPM1_CERTAIN_OVERFLOW:
-{ .mmi
- sub rTmp = rExp_mask, r0, 1
-;;
- setf.exp fTmp = rTmp
- nop.i 0
+{ .mfi
+ nop.m 999
+//
+// Identify +/- 0, Inf, or -Inf
+// Generate the right kind of NaN.
+//
+(p13) fadd.d.s0 f99 = f0, f1
+ nop.i 999 ;;
}
-;;
{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+(p14) mov f99 = f8
+ nop.i 999 ;;
}
+
{ .mfb
- mov GR_Parameter_TAG = 41
- fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p6) fadd.d.s0 f99 = f8, f1
+//
+// exp(+/-0) = 1
+// expm1(+/-0) = +/-0
+// No exceptions raised
+//
+(p6) br.cond.sptk EXP_64_RETURN;;
}
-;;
-// Here if x unorm
-EXPM1_UNORM:
-{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk EXPM1_COMMON
+{ .mib
+ nop.m 999
+ nop.i 999
+(p14) br.cond.sptk EXP_64_RETURN;;
}
-;;
-// here if result will be -1 and inexact, x <= -48.0
-EXPM1_CERTAIN_MINUS_ONE:
-{ .mmi
- mov rTmp = 1
-;;
- setf.exp fTmp = rTmp
- nop.i 0
+{ .mfi
+ nop.m 999
+(p11) mov f99 = f0
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- fms.d.s0 FR_RESULT = fTmp, fTmp, f1 // Set I, rounded -1+eps result
- br.ret.sptk b0
+ nop.m 999
+(p10) fsub.d.s1 f99 = f0, f1
+//
+// exp(-Inf) = 0
+// expm1(-Inf) = -1
+// No exceptions raised.
+//
+(p10) br.cond.sptk EXP_64_RETURN;;
}
-;;
-GLOBAL_IEEE754_END(expm1)
+{ .mfb
+ nop.m 999
+(p12) fmpy.d.s1 f99 = f8, f1
+//
+// exp(+Inf) = Inf
+// No exceptions raised.
+//
+(p0) br.cond.sptk EXP_64_RETURN;;
+}
-LOCAL_LIBM_ENTRY(__libm_error_region)
+EXP_64_UNSUPPORTED:
+
+{ .mfb
+ nop.m 999
+(p0) fmpy.d.s0 f99 = f8, f0
+ nop.b 0;;
+}
+
+EXP_64_RETURN:
+{ .mfb
+ nop.m 999
+(p0) mov f8 = f99
+(p0) br.ret.sptk b0
+}
+.endp expm1
+ASM_SIZE_DIRECTIVE(expm1)
+
+.proc __libm_error_region
+__libm_error_region:
.prologue
+// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
@@ -843,32 +1716,38 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+// (2)
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+// (3)
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
+ stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+
+// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
@@ -881,6 +1760,9 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_expm1f.S b/sysdeps/ia64/fpu/s_expm1f.S
index 8996977ddb..cc2c537ba2 100644
--- a/sysdeps/ia64/fpu/s_expm1f.S
+++ b/sysdeps/ia64/fpu/s_expm1f.S
@@ -1,10 +1,10 @@
-.file "expf_m1.s"
+.file "exp_m1f.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,651 +20,1735 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-
-// History
-//*********************************************************************
-// 02/02/00 Initial Version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// HISTORY
+// 2/02/00 Initial Version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 07/07/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/20/02 Improved speed, algorithm based on expf
-// 03/31/05 Reformatted delimiters between data tables
//
+// *********************************************************************
+//
+// Function: Combined expf(x) and expm1f(x), where
+// x
+// expf(x) = e , for single precision x values
+// x
+// expm1f(x) = e - 1 for single precision x values
+//
+// *********************************************************************
+//
+// Accuracy: Within .7 ulps for 80-bit floating point values
+// Very accurate for single precision values
+//
+// *********************************************************************
+//
+// Resources Used:
+//
+// Floating-Point Registers: f8 (Input and Return Value)
+// f9,f32-f61, f99-f102
+//
+// General Purpose Registers:
+// r32-r61
+// r62-r65 (Used to pass arguments to error handling routine)
+//
+// Predicate Registers: p6-p15
+//
+// *********************************************************************
+//
+// IEEE Special Conditions:
+//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions raised when appropriate for exp and expm1
+// Underflow exceptions raised when appropriate for exp and expm1
+// (Error Handling Routine called for overflow and Underflow)
+// Inexact raised when appropriate by algorithm
+//
+// expf(inf) = inf
+// expf(-inf) = +0
+// expf(SNaN) = QNaN
+// expf(QNaN) = QNaN
+// expf(0) = 1
+// expf(EM_special Values) = QNaN
+// expf(inf) = inf
+// expm1f(-inf) = -1
+// expm1f(SNaN) = QNaN
+// expm1f(QNaN) = QNaN
+// expm1f(0) = 0
+// expm1f(EM_special Values) = QNaN
+//
+// *********************************************************************
+//
+// Implementation and Algorithm Notes:
+//
+// ker_exp_64( in_FR : X,
+// in_GR : Flag,
+// in_GR : Expo_Range
+// out_FR : Y_hi,
+// out_FR : Y_lo,
+// out_FR : scale,
+// out_PR : Safe )
+//
+// On input, X is in register format and
+// Flag = 0 for exp,
+// Flag = 1 for expm1,
+//
+// On output, provided X and X_cor are real numbers, then
+//
+// scale*(Y_hi + Y_lo) approximates expf(X) if Flag is 0
+// scale*(Y_hi + Y_lo) approximates expf(X)-1 if Flag is 1
+//
+// The accuracy is sufficient for a highly accurate 64 sig.
+// bit implementation. Safe is set if there is no danger of
+// overflow/underflow when the result is composed from scale,
+// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
+// Otherwise, one must prepare to handle the possible exception
+// appropriately. Note that SAFE not set (false) does not mean
+// that overflow/underflow will occur; only the setting of SAFE
+// guarantees the opposite.
+//
+// **** High Level Overview ****
+//
+// The method consists of three cases.
+//
+// If |X| < Tiny use case exp_tiny;
+// else if |X| < 2^(-6) use case exp_small;
+// else use case exp_regular;
+//
+// Case exp_tiny:
+//
+// 1 + X can be used to approximate expf(X) or expf(X+X_cor);
+// X + X^2/2 can be used to approximate expf(X) - 1
+//
+// Case exp_small:
+//
+// Here, expf(X), expf(X+X_cor), and expf(X) - 1 can all be
+// appproximated by a relatively simple polynomial.
+//
+// This polynomial resembles the truncated Taylor series
+//
+// expf(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
+//
+// Case exp_regular:
+//
+// Here we use a table lookup method. The basic idea is that in
+// order to compute expf(X), we accurately decompose X into
+//
+// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
+//
+// Hence
+//
+// expf(X) = 2^( N / 2^12 ) * expf(r).
+//
+// The value 2^( N / 2^12 ) is obtained by simple combinations
+// of values calculated beforehand and stored in table; expf(r)
+// is approximated by a short polynomial because |r| is small.
+//
+// We elaborate this method in 4 steps.
+//
+// Step 1: Reduction
+//
+// The value 2^12/log(2) is stored as a double-extended number
+// L_Inv.
+//
+// N := round_to_nearest_integer( X * L_Inv )
+//
+// The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
+// that r can be computed accurately via
+//
+// r := (X - N*L_hi) - N*L_lo
+//
+// We pick L_hi such that N*L_hi is representable in 64 sig. bits
+// and thus the FMA X - N*L_hi is error free. So r is the
+// 1 rounding error from an exact reduction with respect to
+//
+// L_hi + L_lo.
+//
+// In particular, L_hi has 30 significant bit and can be stored
+// as a double-precision number; L_lo has 64 significant bits and
+// stored as a double-extended number.
+//
+// In the case Flag = 2, we further modify r by
+//
+// r := r + X_cor.
+//
+// Step 2: Approximation
+//
+// expf(r) - 1 is approximated by a short polynomial of the form
+//
+// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
+//
+// Step 3: Composition from Table Values
+//
+// The value 2^( N / 2^12 ) can be composed from a couple of tables
+// of precalculated values. First, express N as three integers
+// K, M_1, and M_2 as
+//
+// N = K * 2^12 + M_1 * 2^6 + M_2
+//
+// Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
+// When N is represented in 2's complement, M_2 is simply the 6
+// lsb's, M_1 is the next 6, and K is simply N shifted right
+// arithmetically (sign extended) by 12 bits.
+//
+// Now, 2^( N / 2^12 ) is simply
+//
+// 2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
+//
+// Clearly, 2^K needs no tabulation. The other two values are less
+// trivial because if we store each accurately to more than working
+// precision, than its product is too expensive to calculate. We
+// use the following method.
+//
+// Define two mathematical values, delta_1 and delta_2, implicitly
+// such that
+//
+// T_1 = expf( [M_1 log(2)/2^6] - delta_1 )
+// T_2 = expf( [M_2 log(2)/2^12] - delta_2 )
+//
+// are representable as 24 significant bits. To illustrate the idea,
+// we show how we define delta_1:
+//
+// T_1 := round_to_24_bits( expf( M_1 log(2)/2^6 ) )
+// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
+//
+// The last equality means mathematical equality. We then tabulate
+//
+// W_1 := expf(delta_1) - 1
+// W_2 := expf(delta_2) - 1
+//
+// Both in double precision.
+//
+// From the tabulated values T_1, T_2, W_1, W_2, we compose the values
+// T and W via
+//
+// T := T_1 * T_2 ...exactly
+// W := W_1 + (1 + W_1)*W_2
+//
+// W approximates expf( delta ) - 1 where delta = delta_1 + delta_2.
+// The mathematical product of T and (W+1) is an accurate representation
+// of 2^(M_1/2^6) * 2^(M_2/2^12).
+//
+// Step 4. Reconstruction
+//
+// Finally, we can reconstruct expf(X), expf(X) - 1.
+// Because
+//
+// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
+// + (M_2*log(2)/2^12 - delta_2)
+// + delta_1 + delta_2 + r ...accurately
+// We have
+//
+// expf(X) ~=~ 2^K * ( T + T*[expf(delta_1+delta_2+r) - 1] )
+// ~=~ 2^K * ( T + T*[expf(delta + r) - 1] )
+// ~=~ 2^K * ( T + T*[(expf(delta)-1)
+// + expf(delta)*(expf(r)-1)] )
+// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
+// ~=~ 2^K * ( Y_hi + Y_lo )
+//
+// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
+//
+// For expf(X)-1, we have
+//
+// expf(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
+// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
+//
+// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
+// numbers Y_hi + Y_lo carefully.
+//
+// **** Algorithm Details ****
+//
+// A careful algorithm must be used to realize the mathematical ideas
+// accurately. We describe each of the three cases. We assume SAFE
+// is preset to be TRUE.
+//
+// Case exp_tiny:
+//
+// The important points are to ensure an accurate result under
+// different rounding directions and a correct setting of the SAFE
+// flag.
+//
+// If Flag is 1, then
+// SAFE := False ...possibility of underflow
+// Scale := 1.0
+// Y_hi := X
+// Y_lo := 2^(-17000)
+// Else
+// Scale := 1.0
+// Y_hi := 1.0
+// Y_lo := X ...for different rounding modes
+// Endif
+//
+// Case exp_small:
+//
+// Here we compute a simple polynomial. To exploit parallelism, we split
+// the polynomial into several portions.
+//
+// Let r = X
+//
+// If Flag is not 1 ...i.e. expf( argument )
+//
+// rsq := r * r;
+// r4 := rsq*rsq
+// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
+// poly_hi := r + rsq*(P_1 + r*P_2)
+// Y_lo := poly_hi + r4 * poly_lo
+// set lsb(Y_lo) to 1
+// Y_hi := 1.0
+// Scale := 1.0
+//
+// Else ...i.e. expf( argument ) - 1
+//
+// rsq := r * r
+// r4 := rsq * rsq
+// r6 := rsq * r4
+// poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
+// poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
+// Y_lo := rsq*poly_hi + poly_lo
+// set lsb(Y_lo) to 1
+// Y_hi := X
+// Scale := 1.0
+//
+// Endif
+//
+// Case exp_regular:
+//
+// The previous description contain enough information except the
+// computation of poly and the final Y_hi and Y_lo in the case for
+// expf(X)-1.
+//
+// The computation of poly for Step 2:
+//
+// rsq := r*r
+// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
+//
+// For the case expf(X) - 1, we need to incorporate 2^(-K) into
+// Y_hi and Y_lo at the end of Step 4.
+//
+// If K > 10 then
+// Y_lo := Y_lo - 2^(-K)
+// Else
+// If K < -10 then
+// Y_lo := Y_hi + Y_lo
+// Y_hi := -2^(-K)
+// Else
+// Y_hi := Y_hi - 2^(-K)
+// End If
+// End If
//
-// API
-//*********************************************************************
-// float expm1f(float)
-//
-// Overview of operation
-//*********************************************************************
-// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
-//
-// 2. |x| < 2^-40
-// Result = x, computed by x + x*x to handle appropriate flags and rounding
-//
-// 3. 2^-40 <= |x| < 2^-2
-// Result determined by 8th order Taylor series polynomial
-// expm1f(x) = x + A2*x^2 + ... + A8*x^8
-//
-// 4. x < -24.0
-// Here we know result is essentially -1 + eps, where eps only affects
-// rounded result. Set I.
-//
-// 5. x >= 88.7228
-// Result overflows. Set I, O, and call error support
-//
-// 6. 2^-2 <= x < 88.7228 or -24.0 <= x < -2^-2
-// This is the main path. The algorithm is described below:
-
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 64/log2
-// NJ = int(w)
-// x = NJ*log2/64 + R
-
-// NJ = 64*n + j
-// x = n*log2 + (log2/64)*j + R
-//
-// So, exp(x) = 2^n * 2^(j/64)* exp(R)
-//
-// T = 2^n * 2^(j/64)
-// Construct 2^n
-// Get 2^(j/64) table
-// actually all the entries of 2^(j/64) table are stored in DP and
-// with exponent bits set to 0 -> multiplication on 2^n can be
-// performed by doing logical "or" operation with bits presenting 2^n
-
-// exp(R) = 1 + (exp(R) - 1)
-// P = exp(R) - 1 approximated by Taylor series of 3rd degree
-// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
-//
-
-// The final result is reconstructed as follows
-// expm1f(x) = T*P + (T - 1.0)
-
-// Special values
-//*********************************************************************
-// expm1f(+0) = +0.0
-// expm1f(-0) = -0.0
-
-// expm1f(+qnan) = +qnan
-// expm1f(-qnan) = -qnan
-// expm1f(+snan) = +qnan
-// expm1f(-snan) = -qnan
-
-// expm1f(-inf) = -1.0
-// expm1f(+inf) = +inf
-
-// Overflow and Underflow
-//*********************************************************************
-// expm1f(x) = largest single normal when
-// x = 88.7228 = 0x42b17217
-//
-// Underflow is handled as described in case 2 above.
-
-
-// Registers used
-//*********************************************************************
-// Floating Point registers used:
-// f8, input
-// f6,f7, f9 -> f15, f32 -> f45
-
-// General registers used:
-// r3, r20 -> r38
-
-// Predicate registers used:
-// p9 -> p15
-
-// Assembly macros
-//*********************************************************************
-// integer registers used
-// scratch
-rNJ = r3
-
-rExp_half = r20
-rSignexp_x = r21
-rExp_x = r22
-rExp_mask = r23
-rExp_bias = r24
-rTmp = r25
-rM1_lim = r25
-rGt_ln = r25
-rJ = r26
-rN = r27
-rTblAddr = r28
-rLn2Div64 = r29
-rRightShifter = r30
-r64DivLn2 = r31
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
-
-// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-// scratch
-fRightShifter = f6
-f64DivLn2 = f7
-fNormX = f9
-fNint = f10
-fN = f11
-fR = f12
-fLn2Div64 = f13
-fA2 = f14
-fA3 = f15
-// stacked
-fP = f32
-fX3 = f33
-fT = f34
-fMIN_SGL_OFLOW_ARG = f35
-fMAX_SGL_NORM_ARG = f36
-fMAX_SGL_MINUS_1_ARG = f37
-fA4 = f38
-fA43 = f38
-fA432 = f38
-fRSqr = f39
-fA5 = f40
-fTmp = f41
-fGt_pln = f41
-fXsq = f41
-fA7 = f42
-fA6 = f43
-fA65 = f43
-fTm1 = f44
-fA8 = f45
-fA87 = f45
-fA8765 = f45
-fA8765432 = f45
-fWre_urm_f8 = f45
-
-RODATA
-.align 16
-LOCAL_OBJECT_START(_expf_table)
-data8 0x3efa01a01a01a01a // A8 = 1/8!
-data8 0x3f2a01a01a01a01a // A7 = 1/7!
-data8 0x3f56c16c16c16c17 // A6 = 1/6!
-data8 0x3f81111111111111 // A5 = 1/5!
-data8 0x3fa5555555555555 // A4 = 1/4!
-data8 0x3fc5555555555555 // A3 = 1/3!
-//
-data4 0x42b17218 // Smallest sgl arg to overflow sgl result
-data4 0x42b17217 // Largest sgl arg to give sgl result
-//
-// 2^(j/64) table, j goes from 0 to 63
-data8 0x0000000000000000 // 2^(0/64)
-data8 0x00002C9A3E778061 // 2^(1/64)
-data8 0x000059B0D3158574 // 2^(2/64)
-data8 0x0000874518759BC8 // 2^(3/64)
-data8 0x0000B5586CF9890F // 2^(4/64)
-data8 0x0000E3EC32D3D1A2 // 2^(5/64)
-data8 0x00011301D0125B51 // 2^(6/64)
-data8 0x0001429AAEA92DE0 // 2^(7/64)
-data8 0x000172B83C7D517B // 2^(8/64)
-data8 0x0001A35BEB6FCB75 // 2^(9/64)
-data8 0x0001D4873168B9AA // 2^(10/64)
-data8 0x0002063B88628CD6 // 2^(11/64)
-data8 0x0002387A6E756238 // 2^(12/64)
-data8 0x00026B4565E27CDD // 2^(13/64)
-data8 0x00029E9DF51FDEE1 // 2^(14/64)
-data8 0x0002D285A6E4030B // 2^(15/64)
-data8 0x000306FE0A31B715 // 2^(16/64)
-data8 0x00033C08B26416FF // 2^(17/64)
-data8 0x000371A7373AA9CB // 2^(18/64)
-data8 0x0003A7DB34E59FF7 // 2^(19/64)
-data8 0x0003DEA64C123422 // 2^(20/64)
-data8 0x0004160A21F72E2A // 2^(21/64)
-data8 0x00044E086061892D // 2^(22/64)
-data8 0x000486A2B5C13CD0 // 2^(23/64)
-data8 0x0004BFDAD5362A27 // 2^(24/64)
-data8 0x0004F9B2769D2CA7 // 2^(25/64)
-data8 0x0005342B569D4F82 // 2^(26/64)
-data8 0x00056F4736B527DA // 2^(27/64)
-data8 0x0005AB07DD485429 // 2^(28/64)
-data8 0x0005E76F15AD2148 // 2^(29/64)
-data8 0x0006247EB03A5585 // 2^(30/64)
-data8 0x0006623882552225 // 2^(31/64)
-data8 0x0006A09E667F3BCD // 2^(32/64)
-data8 0x0006DFB23C651A2F // 2^(33/64)
-data8 0x00071F75E8EC5F74 // 2^(34/64)
-data8 0x00075FEB564267C9 // 2^(35/64)
-data8 0x0007A11473EB0187 // 2^(36/64)
-data8 0x0007E2F336CF4E62 // 2^(37/64)
-data8 0x00082589994CCE13 // 2^(38/64)
-data8 0x000868D99B4492ED // 2^(39/64)
-data8 0x0008ACE5422AA0DB // 2^(40/64)
-data8 0x0008F1AE99157736 // 2^(41/64)
-data8 0x00093737B0CDC5E5 // 2^(42/64)
-data8 0x00097D829FDE4E50 // 2^(43/64)
-data8 0x0009C49182A3F090 // 2^(44/64)
-data8 0x000A0C667B5DE565 // 2^(45/64)
-data8 0x000A5503B23E255D // 2^(46/64)
-data8 0x000A9E6B5579FDBF // 2^(47/64)
-data8 0x000AE89F995AD3AD // 2^(48/64)
-data8 0x000B33A2B84F15FB // 2^(49/64)
-data8 0x000B7F76F2FB5E47 // 2^(50/64)
-data8 0x000BCC1E904BC1D2 // 2^(51/64)
-data8 0x000C199BDD85529C // 2^(52/64)
-data8 0x000C67F12E57D14B // 2^(53/64)
-data8 0x000CB720DCEF9069 // 2^(54/64)
-data8 0x000D072D4A07897C // 2^(55/64)
-data8 0x000D5818DCFBA487 // 2^(56/64)
-data8 0x000DA9E603DB3285 // 2^(57/64)
-data8 0x000DFC97337B9B5F // 2^(58/64)
-data8 0x000E502EE78B3FF6 // 2^(59/64)
-data8 0x000EA4AFA2A490DA // 2^(60/64)
-data8 0x000EFA1BEE615A27 // 2^(61/64)
-data8 0x000F50765B6E4540 // 2^(62/64)
-data8 0x000FA7C1819E90D8 // 2^(63/64)
-LOCAL_OBJECT_END(_expf_table)
+#include "libm_support.h"
+
+
+GR_SAVE_B0 = r60
+GR_SAVE_PFS = r59
+GR_SAVE_GP = r61
+
+GR_Parameter_X = r62
+GR_Parameter_Y = r63
+GR_Parameter_RESULT = r64
+GR_Parameter_TAG = r65
+
+FR_X = f9
+FR_Y = f1
+FR_RESULT = f99
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+.align 64
+Constants_exp_64_Arg:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Arg,@object)
+data4 0x5C17F0BC,0xB8AA3B29,0x0000400B,0x00000000
+data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000
+data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000
+// /* Inv_L, L_hi, L_lo */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Arg)
+
+.align 64
+Constants_exp_64_Exponents:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Exponents,@object)
+data4 0x0000007E,0x00000000,0xFFFFFF83,0xFFFFFFFF
+data4 0x000003FE,0x00000000,0xFFFFFC03,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0xFFFFFFE2,0xFFFFFFFF,0xFFFFFFC4,0xFFFFFFFF
+data4 0xFFFFFFBA,0xFFFFFFFF,0xFFFFFFBA,0xFFFFFFFF
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Exponents)
+
+.align 64
+Constants_exp_64_A:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_A,@object)
+data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000
+data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000
+data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_A)
+
+.align 64
+Constants_exp_64_P:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_P,@object)
+data4 0x43914A8A,0xD00D6C81,0x00003FF2,0x00000000
+data4 0x30304B30,0xB60BC4AC,0x00003FF5,0x00000000
+data4 0x7474C518,0x88888888,0x00003FF8,0x00000000
+data4 0x8DAE729D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAAF61,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x000004C7,0x80000000,0x00003FFE,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_P)
+
+.align 64
+Constants_exp_64_Q:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Q,@object)
+data4 0xA49EF6CA,0xD00D56F7,0x00003FEF,0x00000000
+data4 0x1C63493D,0xD00D59AB,0x00003FF2,0x00000000
+data4 0xFB50CDD2,0xB60B60B5,0x00003FF5,0x00000000
+data4 0x7BA68DC8,0x88888888,0x00003FF8,0x00000000
+data4 0xAAAAAC8D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAACCA,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x00000000,0x80000000,0x00003FFE,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Q)
+
+.align 64
+Constants_exp_64_T1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T1,@object)
+data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
+data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
+data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
+data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
+data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
+data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
+data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
+data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
+data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
+data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
+data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
+data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
+data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
+data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
+data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
+data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T1)
+
+.align 64
+Constants_exp_64_T2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T2,@object)
+data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
+data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
+data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
+data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
+data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
+data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
+data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
+data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
+data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
+data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
+data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
+data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
+data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
+data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
+data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
+data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T2)
+
+.align 64
+Constants_exp_64_W1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W1,@object)
+data4 0x00000000,0x00000000,0x171EC4B4,0xBE384454
+data4 0x4AA72766,0xBE694741,0xD42518F8,0xBE5D32B6
+data4 0x3A319149,0x3E68D96D,0x62415F36,0xBE68F4DA
+data4 0xC9C86A3B,0xBE6DDA2F,0xF49228FE,0x3E6B2E50
+data4 0x1188B886,0xBE49C0C2,0x1A4C2F1F,0x3E64BFC2
+data4 0x2CB98B54,0xBE6A2FBB,0x9A55D329,0x3E5DC5DE
+data4 0x39A7AACE,0x3E696490,0x5C66DBA5,0x3E54728B
+data4 0xBA1C7D7D,0xBE62B0DB,0x09F1AF5F,0x3E576E04
+data4 0x1A0DD6A1,0x3E612500,0x795FBDEF,0xBE66A419
+data4 0xE1BD41FC,0xBE5CDE8C,0xEA54964F,0xBE621376
+data4 0x476E76EE,0x3E6370BE,0x3427EB92,0x3E390D1A
+data4 0x2BF82BF8,0x3E1336DE,0xD0F7BD9E,0xBE5FF1CB
+data4 0x0CEB09DD,0xBE60A355,0x0980F30D,0xBE5CA37E
+data4 0x4C082D25,0xBE5C541B,0x3B467D29,0xBE5BBECA
+data4 0xB9D946C5,0xBE400D8A,0x07ED374A,0xBE5E2A08
+data4 0x365C8B0A,0xBE66CB28,0xD3403BCA,0x3E3AAD5B
+data4 0xC7EA21E0,0x3E526055,0xE72880D6,0xBE442C75
+data4 0x85222A43,0x3E58B2BB,0x522C42BF,0xBE5AAB79
+data4 0x469DC2BC,0xBE605CB4,0xA48C40DC,0xBE589FA7
+data4 0x1AA42614,0xBE51C214,0xC37293F4,0xBE48D087
+data4 0xA2D673E0,0x3E367A1C,0x114F7A38,0xBE51BEBB
+data4 0x661A4B48,0xBE6348E5,0x1D3B9962,0xBDF52643
+data4 0x35A78A53,0x3E3A3B5E,0x1CECD788,0xBE46C46C
+data4 0x7857D689,0xBE60B7EC,0xD14F1AD7,0xBE594D3D
+data4 0x4C9A8F60,0xBE4F9C30,0x02DFF9D2,0xBE521873
+data4 0x55E6D68F,0xBE5E4C88,0x667F3DC4,0xBE62140F
+data4 0x3BF88747,0xBE36961B,0xC96EC6AA,0x3E602861
+data4 0xD57FD718,0xBE3B5151,0xFC4A627B,0x3E561CD0
+data4 0xCA913FEA,0xBE3A5217,0x9A5D193A,0x3E40A3CC
+data4 0x10A9C312,0xBE5AB713,0xC5F57719,0x3E4FDADB
+data4 0xDBDF59D5,0x3E361428,0x61B4180D,0x3E5DB5DB
+data4 0x7408D856,0xBE42AD5F,0x31B2B707,0x3E2A3148
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W1)
+
+.align 64
+Constants_exp_64_W2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W2,@object)
+data4 0x00000000,0x00000000,0x37A3D7A2,0xBE641F25
+data4 0xAD028C40,0xBE68DD57,0xF212B1B6,0xBE5C77D8
+data4 0x1BA5B070,0x3E57878F,0x2ECAE6FE,0xBE55A36A
+data4 0x569DFA3B,0xBE620608,0xA6D300A3,0xBE53B50E
+data4 0x223F8F2C,0x3E5B5EF2,0xD6DE0DF4,0xBE56A0D9
+data4 0xEAE28F51,0xBE64EEF3,0x367EA80B,0xBE5E5AE2
+data4 0x5FCBC02D,0x3E47CB1A,0x9BDAFEB7,0xBE656BA0
+data4 0x805AFEE7,0x3E6E70C6,0xA3415EBA,0xBE6E0509
+data4 0x49BFF529,0xBE56856B,0x00508651,0x3E66DD33
+data4 0xC114BC13,0x3E51165F,0xC453290F,0x3E53333D
+data4 0x05539FDA,0x3E6A072B,0x7C0A7696,0xBE47CD87
+data4 0xEB05C6D9,0xBE668BF4,0x6AE86C93,0xBE67C3E3
+data4 0xD0B3E84B,0xBE533904,0x556B53CE,0x3E63E8D9
+data4 0x63A98DC8,0x3E212C89,0x032A7A22,0xBE33138F
+data4 0xBC584008,0x3E530FA9,0xCCB93C97,0xBE6ADF82
+data4 0x8370EA39,0x3E5F9113,0xFB6A05D8,0x3E5443A4
+data4 0x181FEE7A,0x3E63DACD,0xF0F67DEC,0xBE62B29D
+data4 0x3DDE6307,0x3E65C483,0xD40A24C1,0x3E5BF030
+data4 0x14E437BE,0x3E658B8F,0xED98B6C7,0xBE631C29
+data4 0x04CF7C71,0x3E6335D2,0xE954A79D,0x3E529EED
+data4 0xF64A2FB8,0x3E5D9257,0x854ED06C,0xBE6BED1B
+data4 0xD71405CB,0x3E5096F6,0xACB9FDF5,0xBE3D4893
+data4 0x01B68349,0xBDFEB158,0xC6A463B9,0x3E628D35
+data4 0xADE45917,0xBE559725,0x042FC476,0xBE68C29C
+data4 0x01E511FA,0xBE67593B,0x398801ED,0xBE4A4313
+data4 0xDA7C3300,0x3E699571,0x08062A9E,0x3E5349BE
+data4 0x755BB28E,0x3E5229C4,0x77A1F80D,0x3E67E426
+data4 0x6B69C352,0xBE52B33F,0x084DA57F,0xBE6B3550
+data4 0xD1D09A20,0xBE6DB03F,0x2161B2C1,0xBE60CBC4
+data4 0x78A2B771,0x3E56ED9C,0x9D0FA795,0xBE508E31
+data4 0xFD1A54E9,0xBE59482A,0xB07FD23E,0xBE2A17CE
+data4 0x17365712,0x3E68BF5C,0xB3785569,0x3E3956F9
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W2)
.section .text
-GLOBAL_IEEE754_ENTRY(expm1f)
+.proc expm1f#
+.global expm1f#
+.align 64
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
-}
-{ .mlx
- addl rTblAddr = @ltoff(_expf_table),gp
- movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
+expm1f:
+#ifdef _LIBC
+.global __expm1f#
+__expm1f:
+#endif
+
+
+{ .mii
+ alloc r32 = ar.pfs,0,30,4,0
+(p0) add r33 = 1, r0
+(p0) cmp.eq.unc p7, p0 = r0, r0
}
;;
+//
+// Set p7 true for expm1
+// Set Flag = r33 = 1 for expm1
+// These are really no longer necesary, but are a remnant
+// when this file had multiple entry points.
+// They should be carefully removed
+
+
{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- fclass.m p14, p0 = f8 , 0x22 // test for -INF
- mov rExp_mask = 0x1ffff // Exponent mask
+(p0) add r32 = 0,r0
+(p0) fnorm.s1 f9 = f8
+ nop.i 0
}
+
{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // normalized x
- nop.i 0
+ nop.m 0
+//
+// Set p7 false for exp
+// Set Flag = r33 = 0 for exp
+//
+(p0) fclass.m.unc p6, p8 = f8, 0x1E7
+ nop.i 0 ;;
}
-;;
{ .mfi
- setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
- fclass.m p9, p0 = f8 , 0x0b // test for x unorm
- mov rExp_bias = 0xffff // Exponent bias
+ nop.m 999
+(p0) fclass.nm.unc p9, p0 = f8, 0x1FF
+ nop.i 0
+}
+
+{ .mfi
+ nop.m 999
+(p0) mov f36 = f1
+ nop.i 999 ;;
+}
+
+//
+// Identify NatVals, NaNs, Infs, and Zeros.
+// Identify EM unsupporteds.
+// Save special input registers
+//
+// Create FR_X_cor = 0.0
+// GR_Flag = 0
+// GR_Expo_Range = 0 (r32) for single precision
+// FR_Scale = 1.0
+//
+
+{ .mfb
+ nop.m 999
+(p0) mov f32 = f0
+(p6) br.cond.spnt EXPF_64_SPECIAL ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt EXPF_64_UNSUPPORTED ;;
+}
+
+//
+// Branch out for special input values
+//
+
+{ .mfi
+(p0) cmp.ne.unc p12, p13 = 0x01, r33
+(p0) fcmp.lt.unc.s0 p9,p0 = f8, f0
+(p0) cmp.eq.unc p15, p0 = r0, r0
}
+
+//
+// Raise possible denormal operand exception
+// Normalize x
+//
+// This function computes expf( x + x_cor)
+// Input FR 1: FR_X
+// Input FR 2: FR_X_cor
+// Input GR 1: GR_Flag
+// Input GR 2: GR_Expo_Range
+// Output FR 3: FR_Y_hi
+// Output FR 4: FR_Y_lo
+// Output FR 5: FR_Scale
+// Output PR 1: PR_Safe
+
+//
+// Prepare to load constants
+// Set Safe = True
+//
+
+{ .mmi
+(p0) addl r34 = @ltoff(Constants_exp_64_Arg#),gp
+(p0) addl r40 = @ltoff(Constants_exp_64_W1#),gp
+(p0) addl r41 = @ltoff(Constants_exp_64_W2#),gp
+};;
+
+{ .mmi
+ ld8 r34 = [r34]
+ ld8 r40 = [r40]
+(p0) addl r50 = @ltoff(Constants_exp_64_T1#), gp
+}
+;;
+{ .mmi
+ ld8 r41 = [r41]
+(p0) ldfe f37 = [r34],16
+(p0) addl r51 = @ltoff(Constants_exp_64_T2#), gp
+}
+;;
+//
+// N = fcvt.fx(float_N)
+// Set p14 if -6 > expo_X
+//
+//
+// Bias = 0x0FFFF
+// expo_X = expo_X and Mask
+//
+
+{ .mmi
+ ld8 r50 = [r50]
+(p0) ldfe f40 = [r34],16
+ nop.i 999
+}
+;;
+
+{ .mlx
+ nop.m 999
+(p0) movl r58 = 0x0FFFF
+};;
+
+//
+// Load W2_ptr
+// Branch to SMALL is expo_X < -6
+//
+//
+// float_N = X * L_Inv
+// expo_X = exponent of X
+// Mask = 0x1FFFF
+//
+
+{ .mmi
+ ld8 r51 = [r51]
+(p0) ldfe f41 = [r34],16
+//
+// float_N = X * L_Inv
+// expo_X = exponent of X
+// Mask = 0x1FFFF
+//
+ nop.i 0
+};;
+
{ .mlx
- // load Right Shifter to FP reg
- setf.d fRightShifter = rRightShifter
- movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#), gp
+(p0) movl r39 = 0x1FFFF
}
;;
+{ .mmi
+ ld8 r34 = [r34]
+(p0) getf.exp r37 = f9
+ nop.i 999
+}
+;;
+
+{ .mii
+ nop.m 999
+ nop.i 999
+(p0) and r37 = r37, r39 ;;
+}
+
+{ .mmi
+(p0) sub r37 = r37, r58 ;;
+(p0) cmp.gt.unc p14, p0 = -6, r37
+(p0) cmp.lt.unc p10, p0 = 14, r37 ;;
+}
+
{ .mfi
- ldfpd fA8, fA7 = [rTblAddr], 16
- fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
- mov rExp_half = 0xfffe
+ nop.m 999
+//
+// Load L_inv
+// Set p12 true for Flag = 0 (exp)
+// Set p13 true for Flag = 1 (expm1)
+//
+(p0) fmpy.s1 f38 = f9, f37
+ nop.i 999 ;;
}
+
{ .mfb
- setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
- nop.f 0
-(p9) br.cond.spnt EXPM1_UNORM // Branch if x unorm
+ nop.m 999
+//
+// Load L_hi
+// expo_X = expo_X - Bias
+// get W1_ptr
+//
+(p0) fcvt.fx.s1 f39 = f38
+(p14) br.cond.spnt EXPF_SMALL ;;
}
-;;
-EXPM1_COMMON:
-{ .mfb
- ldfpd fA6, fA5 = [rTblAddr], 16
-(p14) fms.s.s0 f8 = f0, f0, f1 // result if x = -inf
-(p14) br.ret.spnt b0 // exit here if x = -inf
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt EXPF_HUGE ;;
+}
+
+{ .mmi
+(p0) shladd r34 = r32,4,r34
+(p0) addl r35 = @ltoff(Constants_exp_64_A#),gp
+ nop.i 999
}
;;
-{ .mfb
- ldfpd fA4, fA3 = [rTblAddr], 16
- fclass.m p15, p0 = f8 , 0x1e1 // test for NaT,NaN,+Inf
-(p13) br.ret.spnt b0 // exit here if x =0.0, result is x
+{ .mmi
+ ld8 r35 = [r35]
+ nop.m 999
+ nop.i 999
}
;;
+//
+// Load T_1,T_2
+//
+
+{ .mmb
+(p0) ldfe f51 = [r35],16
+(p0) ld8 r45 = [r34],8
+ nop.b 999 ;;
+}
+//
+// Set Safe = True if k >= big_expo_neg
+// Set Safe = False if k < big_expo_neg
+//
+
+{ .mmb
+(p0) ldfe f49 = [r35],16
+(p0) ld8 r48 = [r34],0
+ nop.b 999 ;;
+}
+
{ .mfi
- // overflow thresholds
- ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
- fma.s1 fXsq = fNormX, fNormX, f0 // x^2 for small path
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+ nop.m 999
+//
+// Branch to HUGE is expo_X > 14
+//
+(p0) fcvt.xf f38 = f39
+ nop.i 999 ;;
}
-{ .mlx
- nop.m 0
- movl rM1_lim = 0xc1c00000 // Minus -1 limit (-24.0), SP
+
+{ .mfi
+(p0) getf.sig r52 = f39
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) extr.u r43 = r52, 6, 6 ;;
+//
+// r = r - float_N * L_lo
+// K = extr(N_fix,12,52)
+//
+(p0) shladd r40 = r43,3,r40 ;;
}
-;;
{ .mfi
- setf.exp fA2 = rExp_half
- // x*(64/ln(2)) + Right Shifter
- fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
+(p0) shladd r50 = r43,2,r50
+(p0) fnma.s1 f42 = f40, f38, f9
+//
+// float_N = float(N)
+// N_fix = signficand N
+//
+(p0) extr.u r42 = r52, 0, 6
}
-{ .mfb
- nop.m 0
-(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf
-(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf
+
+{ .mmi
+(p0) ldfd f43 = [r40],0 ;;
+(p0) shladd r41 = r42,3,r41
+(p0) shladd r51 = r42,2,r51
+}
+//
+// W_1_p1 = 1 + W_1
+//
+
+{ .mmi
+(p0) ldfs f44 = [r50],0 ;;
+(p0) ldfd f45 = [r41],0
+//
+// M_2 = extr(N_fix,0,6)
+// M_1 = extr(N_fix,6,6)
+// r = X - float_N * L_hi
+//
+(p0) extr r44 = r52, 12, 52
+}
+
+{ .mmi
+(p0) ldfs f46 = [r51],0 ;;
+(p0) sub r46 = r58, r44
+(p0) cmp.gt.unc p8, p15 = r44, r45
+}
+//
+// W = W_1 + W_1_p1*W_2
+// Load A_2
+// Bias_m_K = Bias - K
+//
+
+{ .mii
+(p0) ldfe f40 = [r35],16
+//
+// load A_1
+// poly = A_2 + r*A_3
+// rsq = r * r
+// neg_2_mK = exponent of Bias_m_k
+//
+(p0) add r47 = r58, r44 ;;
+//
+// Set Safe = True if k <= big_expo_pos
+// Set Safe = False if k > big_expo_pos
+// Load A_3
+//
+(p15) cmp.lt p8,p15 = r44,r48 ;;
+}
+
+{ .mmf
+(p0) setf.exp f61 = r46
+//
+// Bias_p + K = Bias + K
+// T = T_1 * T_2
+//
+(p0) setf.exp f36 = r47
+(p0) fnma.s1 f42 = f41, f38, f42 ;;
}
-;;
{ .mfi
- setf.s fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0
- nop.f 0
- cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)
+ nop.m 999
+//
+// Load W_1,W_2
+// Load big_exp_pos, load big_exp_neg
+//
+(p0) fadd.s1 f47 = f43, f1
+ nop.i 999 ;;
}
-;;
{ .mfi
-(p7) cmp.gt.unc p6, p7 = -40, rExp_x // Test |x| < 2^(-40)
- fma.s1 fA87 = fA8, fNormX, fA7 // Small path, A8*x+A7
- nop.i 0
+ nop.m 999
+(p0) fma.s1 f52 = f42, f51, f49
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- fma.s1 fA65 = fA6, fNormX, fA5 // Small path, A6*x+A5
- nop.i 0
+ nop.m 999
+(p0) fmpy.s1 f48 = f42, f42
+ nop.i 999 ;;
}
-;;
-{ .mfb
- nop.m 0
-(p6) fma.s.s0 f8 = f8, f8, f8 // If x < 2^-40, result=x+x*x
-(p6) br.ret.spnt b0 // Exit if x < 2^-40
+{ .mfi
+ nop.m 999
+(p0) fmpy.s1 f53 = f44, f46
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // check for overflow
- fcmp.gt.s1 p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG
- nop.i 0
+ nop.m 999
+(p0) fma.s1 f54 = f45, f47, f43
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- fms.s1 fN = fNint, f1, fRightShifter // n in FP register
- nop.i 0
+ nop.m 999
+(p0) fneg f61 = f61
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p7) fma.s1 fA43 = fA4, fNormX, fA3 // Small path, A4*x+A3
- nop.i 0
+ nop.m 999
+(p0) fma.s1 f52 = f42, f52, f40
+ nop.i 999 ;;
}
-;;
{ .mfi
- getf.sig rNJ = fNint // bits of n, j
-(p7) fma.s1 fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65
- nop.i 0
+ nop.m 999
+(p0) fadd.s1 f55 = f54, f1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// W + Wp1 * poly
+//
+(p0) mov f34 = f53
+ nop.i 999 ;;
}
+
+{ .mfi
+ nop.m 999
+//
+// A_1 + r * poly
+// Scale = setf_expf(Bias_p_k)
+//
+(p0) fma.s1 f52 = f48, f52, f42
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly = r + rsq(A_1 + r*poly)
+// Wp1 = 1 + W
+// neg_2_mK = -neg_2_mK
+//
+(p0) fma.s1 f35 = f55, f52, f54
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 0
-(p7) fma.s1 fX3 = fXsq, fNormX, f0 // Small path, x^3
- // branch out if overflow
-(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW
+ nop.m 999
+(p0) fmpy.s1 f35 = f35, f53
+//
+// Y_hi = T
+// Y_lo = T * (W + Wp1*poly)
+//
+(p12) br.cond.sptk EXPF_MAIN ;;
}
-;;
+//
+// Branch if expf(x)
+// Continue for expf(x-1)
+//
+
+{ .mii
+(p0) cmp.lt.unc p12, p13 = 10, r44
+ nop.i 999 ;;
+//
+// Set p12 if 10 < K, Else p13
+//
+(p13) cmp.gt.unc p13, p14 = -10, r44 ;;
+}
+//
+// K > 10: Y_lo = Y_lo + neg_2_mK
+// K <=10: Set p13 if -10 > K, Else set p14
+//
{ .mfi
- addl rN = 0xffff-63, rNJ // biased and shifted n
- fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
- extr.u rJ = rNJ , 0 , 6 // bits of j
+(p13) cmp.eq p15, p0 = r0, r0
+(p14) fadd.s1 f34 = f61, f34
+ nop.i 999 ;;
}
-;;
{ .mfi
- shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
- // check for certain -1
- fcmp.le.s1 p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG
- shr rN = rN, 6 // biased n
+ nop.m 999
+(p12) fadd.s1 f35 = f35, f61
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
-(p7) fma.s1 fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2
- nop.i 0
+ nop.m 999
+(p13) fadd.s1 f35 = f35, f34
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+//
+// K <= 10 and K < -10, Set Safe = True
+// K <= 10 and K < 10, Y_lo = Y_hi + Y_lo
+// K <= 10 and K > =-10, Y_hi = Y_hi + neg_2_mk
+//
+(p13) mov f34 = f61
+(p0) br.cond.sptk EXPF_MAIN ;;
+}
+EXPF_SMALL:
+{ .mmi
+(p12) addl r35 = @ltoff(Constants_exp_64_P#), gp
+(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#), gp
+ nop.i 999
}
;;
-{ .mfi
- ld8 rJ = [rJ]
- nop.f 0
- shl rN = rN , 52 // 2^n bits in DP format
+{ .mmi
+(p12) ld8 r35 = [r35]
+ ld8 r34 = [r34]
+ nop.i 999
}
;;
+
{ .mmi
- or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
-(p13) mov rTmp = 1 // Make small value for -1 path
- nop.i 0
+(p13) addl r35 = @ltoff(Constants_exp_64_Q#), gp
+ nop.m 999
+ nop.i 999
}
;;
+
+//
+// Return
+// K <= 10 and K < 10, Y_hi = neg_2_mk
+//
+// /*******************************************************/
+// /*********** Branch EXP_SMALL *************************/
+// /*******************************************************/
+
{ .mfi
- setf.d fT = rN // 2^n
- // check for possible overflow (only happens if input higher precision)
-(p14) fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG
- nop.i 0
+(p13) ld8 r35 = [r35]
+(p0) mov f42 = f9
+(p0) add r34 = 0x48,r34
}
+;;
+
+//
+// Flag = 0
+// r4 = rsq * rsq
+//
+
{ .mfi
- nop.m 0
-(p7) fma.s1 fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432
- nop.i 0
+(p0) ld8 r49 =[r34],0
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Flag = 1
+//
+(p0) cmp.lt.unc p14, p0 = r37, r49 ;;
}
-;;
{ .mfi
-(p13) setf.exp fTmp = rTmp // Make small value for -1 path
- fma.s1 fP = fA3, fR, fA2 // A3*R + A2
- nop.i 0
+ nop.m 999
+//
+// r = X
+//
+(p0) fmpy.s1 f48 = f42, f42
+ nop.i 999 ;;
}
+
{ .mfb
- nop.m 0
- fma.s1 fRSqr = fR, fR, f0 // R^2
-(p13) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0
+ nop.m 999
+//
+// rsq = r * r
+//
+(p0) fmpy.s1 f50 = f48, f48
+//
+// Is input very small?
+//
+(p14) br.cond.spnt EXPF_VERY_SMALL ;;
}
-;;
+//
+// Flag_not1: Y_hi = 1.0
+// Flag is 1: r6 = rsq * r4
+//
-{ .mfb
- nop.m 0
-(p7) fma.s.s0 f8 = fA8765432, fXsq, fNormX // Small path,
- // result=xsq*A8765432+x
-(p7) br.ret.spnt b0 // Exit if 2^-40 <= |x| < 2^-2
+{ .mfi
+(p12) ldfe f52 = [r35],16
+(p12) mov f34 = f1
+(p0) add r53 = 0x1,r0 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R
- nop.i 0
+(p13) ldfe f51 = [r35],16
+//
+// Flag_not_1: Y_lo = poly_hi + r4 * poly_lo
+//
+(p13) mov f34 = f9
+ nop.i 999 ;;
+}
+
+{ .mmf
+(p12) ldfe f53 = [r35],16
+//
+// For Flag_not_1, Y_hi = X
+// Scale = 1
+// Create 0x000...01
+//
+(p0) setf.sig f37 = r53
+(p0) mov f36 = f1 ;;
+}
+
+{ .mmi
+(p13) ldfe f52 = [r35],16 ;;
+(p12) ldfe f54 = [r35],16
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p13) ldfe f53 = [r35],16
+(p13) fmpy.s1 f58 = f48, f50
+ nop.i 999 ;;
+}
+//
+// Flag_not1: poly_lo = P_5 + r*P_6
+// Flag_1: poly_lo = Q_6 + r*Q_7
+//
+
+{ .mmi
+(p13) ldfe f54 = [r35],16 ;;
+(p12) ldfe f55 = [r35],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p12) ldfe f56 = [r35],16 ;;
+(p13) ldfe f55 = [r35],16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p12) ldfe f57 = [r35],0 ;;
+(p13) ldfe f56 = [r35],16
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p13) ldfe f57 = [r35],0
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// For Flag_not_1, load p5,p6,p1,p2
+// Else load p5,p6,p1,p2
+//
+(p12) fma.s1 f60 = f52, f42, f53
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p13) fma.s1 f60 = f51, f42, f52
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 f60 = f60, f42, f54
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 f59 = f56, f42, f57
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p13) fma.s1 f60 = f42, f60, f53
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 f59 = f59, f48, f42
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_1: poly_lo = Q_5 + r*(Q_6 + r*Q_7)
+// Flag_not1: poly_lo = P_4 + r*(P_5 + r*P_6)
+// Flag_not1: poly_hi = (P_1 + r*P_2)
+//
+(p13) fmpy.s1 f60 = f60, f58
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 f60 = f60, f42, f55
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_1: poly_lo = r6 *(Q_5 + ....)
+// Flag_not1: poly_hi = r + rsq *(P_1 + r*P_2)
+//
+(p12) fma.s1 f35 = f60, f50, f59
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p13) fma.s1 f59 = f54, f42, f55
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_not1: Y_lo = rsq* poly_hi + poly_lo
+// Flag_1: poly_lo = rsq* poly_hi + poly_lo
+//
+(p13) fma.s1 f59 = f59, f42, f56
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_not_1: (P_1 + r*P_2)
+//
+(p13) fma.s1 f59 = f59, f42, f57
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Flag_not_1: poly_hi = r + rsq * (P_1 + r*P_2)
+//
+(p13) fma.s1 f35 = f59, f48, f60
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Create 0.000...01
+//
+(p0) for f37 = f35, f37
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- fms.s1 fTm1 = fT, f1, f1 // T - 1.0
-(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW
+ nop.m 999
+//
+// Set lsb of Y_lo to 1
+//
+(p0) fmerge.se f35 = f35,f37
+(p0) br.cond.sptk EXPF_MAIN ;;
+}
+EXPF_VERY_SMALL:
+
+{ .mmi
+ nop.m 999
+(p13) addl r34 = @ltoff(Constants_exp_64_Exponents#),gp
+ nop.i 999;;
+}
+
+{ .mfi
+(p13) ld8 r34 = [r34];
+(p12) mov f35 = f9
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fP, fT, fTm1
- br.ret.sptk b0 // Result for main path
- // minus_one_limit < x < -2^-2
- // and +2^-2 <= x < overflow_limit
+ nop.m 999
+(p12) mov f34 = f1
+(p12) br.cond.sptk EXPF_MAIN ;;
+}
+
+{ .mlx
+(p13) add r34 = 8,r34
+(p13) movl r39 = 0x0FFFE ;;
+}
+//
+// Load big_exp_neg
+// Create 1/2's exponent
+//
+
+{ .mii
+(p13) setf.exp f56 = r39
+(p13) shladd r34 = r32,4,r34 ;;
+ nop.i 999
+}
+//
+// Negative exponents are stored after positive
+//
+
+{ .mfi
+(p13) ld8 r45 = [r34],0
+//
+// Y_hi = x
+// Scale = 1
+//
+(p13) fmpy.s1 f35 = f9, f9
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Reset Safe if necessary
+// Create 1/2
+//
+(p13) mov f34 = f9
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p13) cmp.lt.unc p0, p15 = r37, r45
+(p13) mov f36 = f1
+ nop.i 999 ;;
}
-;;
-// Here if x unorm
-EXPM1_UNORM:
{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk EXPM1_COMMON
+ nop.m 999
+//
+// Y_lo = x * x
+//
+(p13) fmpy.s1 f35 = f35, f56
+//
+// Y_lo = x*x/2
+//
+(p13) br.cond.sptk EXPF_MAIN ;;
+}
+EXPF_HUGE:
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.gt.unc.s1 p14, p0 = f9, f0
+ nop.i 999
+}
+
+{ .mlx
+ nop.m 999
+(p0) movl r39 = 0x15DC0 ;;
+}
+
+{ .mfi
+(p14) setf.exp f34 = r39
+(p14) mov f35 = f1
+(p14) cmp.eq p0, p15 = r0, r0 ;;
}
-;;
-// here if result will be -1 and inexact, x <= -24.0
-EXPM1_CERTAIN_MINUS_ONE:
{ .mfb
- nop.m 0
- fms.s.s0 f8 = fTmp, fTmp, f1 // Result -1, and Inexact set
- br.ret.sptk b0
+ nop.m 999
+(p14) mov f36 = f34
+//
+// If x > 0, Set Safe = False
+// If x > 0, Y_hi = 2**(24,000)
+// If x > 0, Y_lo = 1.0
+// If x > 0, Scale = 2**(24,000)
+//
+(p14) br.cond.sptk EXPF_MAIN ;;
}
-;;
-EXPM1_POSSIBLE_OVERFLOW:
+{ .mlx
+ nop.m 999
+(p12) movl r39 = 0xA240
+}
+
+{ .mlx
+ nop.m 999
+(p12) movl r38 = 0xA1DC ;;
+}
-// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
-// This cannot happen if input is a single, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+{ .mmb
+(p13) cmp.eq p15, p14 = r0, r0
+(p12) setf.exp f34 = r39
+ nop.b 999 ;;
+}
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest single, then we have
-// overflow
+{ .mlx
+(p12) setf.exp f35 = r38
+(p13) movl r39 = 0xFF9C
+}
{ .mfi
- mov rGt_ln = 0x1007f // Exponent for largest sgl + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
+ nop.m 999
+(p13) fsub.s1 f34 = f0, f1
+ nop.i 999 ;;
}
-;;
{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
- fma.s.s2 fWre_urm_f8 = fP, fT, fTm1 // Result with wre set
- nop.i 0
+ nop.m 999
+(p12) mov f36 = f34
+(p12) cmp.eq p0, p15 = r0, r0 ;;
}
-;;
{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
+(p13) setf.exp f35 = r39
+(p13) mov f36 = f1
+ nop.i 999 ;;
}
-;;
+EXPF_MAIN:
{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
+(p0) cmp.ne.unc p12, p0 = 0x01, r33
+(p0) fmpy.s1 f101 = f36, f35
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow
+ nop.m 999
+(p0) fma.s.s0 f99 = f34, f36, f101
+(p15) br.cond.sptk EXPF_64_RETURN ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x01
+ nop.i 999
+}
+
+{ .mlx
+ nop.m 999
+(p0) movl r50 = 0x0000000001007F ;;
+}
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + RZ + TD (Underflows)
+//
+//
+// If (Safe) is true, then
+// Compute result using user supplied status field.
+// No overflow or underflow here, but perhaps inexact.
+// Return
+// Else
+// Determine if overflow or underflow was raised.
+// Fetch +/- overflow threshold for IEEE single, double,
+// double extended
+//
+
+{ .mfi
+(p0) setf.exp f60 = r50
+(p0) fma.s.s3 f102 = f34, f36, f101
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x40
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// For Safe, no need to check for over/under.
+// For expm1, handle errors like exp.
+//
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s.s2 f100 = f34, f36, f101
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x40
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p12, p0 = f102, 0x00F
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = f102, 0x00F
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fcmp.ge.unc.s1 p10, p0 = f100, f60
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// Create largest double exponent + 1.
+// Create smallest double exponent - 1.
+//
+(p0) fcmp.ge.unc.s1 p8, p0 = f100, f60
+ nop.i 999 ;;
+}
+//
+// fcmp: resultS2 >= + overflow threshold -> set (a) if true
+// fcmp: resultS2 <= - overflow threshold -> set (b) if true
+// fclass: resultS3 is denorm/unorm/0 -> set (d) if true
+//
+
+{ .mib
+(p10) mov GR_Parameter_TAG = 43
+ nop.i 999
+(p10) br.cond.sptk __libm_error_region ;;
+}
+
+{ .mib
+(p8) mov GR_Parameter_TAG = 16
+ nop.i 999
+(p8) br.cond.sptk __libm_error_region ;;
+}
+//
+// Report that exp overflowed
+//
+
+{ .mib
+(p12) mov GR_Parameter_TAG = 44
+ nop.i 999
+(p12) br.cond.sptk __libm_error_region ;;
+}
+
+{ .mib
+(p11) mov GR_Parameter_TAG = 17
+ nop.i 999
+(p11) br.cond.sptk __libm_error_region ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Report that exp underflowed
+//
+(p0) br.cond.sptk EXPF_64_RETURN ;;
+}
+EXPF_64_SPECIAL:
+
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = f8, 0x0c3
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p13, p8 = f8, 0x007
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p14, p0 = f8, 0x007
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p12, p9 = f8, 0x021
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = f8, 0x022
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fclass.m.unc p10, p0 = f8, 0x022
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Identify +/- 0, Inf, or -Inf
+// Generate the right kind of NaN.
+//
+(p13) fadd.s.s0 f99 = f0, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p14) mov f99 = f8
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- fma.s.s0 f8 = fP, fT, fTm1
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 999
+(p6) fadd.s.s0 f99 = f8, f1
+//
+// expf(+/-0) = 1
+// expm1f(+/-0) = +/-0
+// No exceptions raised
+//
+(p6) br.cond.sptk EXPF_64_RETURN ;;
}
-;;
-// here if overflow
-EXPM1_CERTAIN_OVERFLOW:
-{ .mmi
- addl rTmp = 0x1FFFE, r0;;
- setf.exp fTmp = rTmp
- nop.i 999
+{ .mib
+ nop.m 999
+ nop.i 999
+(p14) br.cond.sptk EXPF_64_RETURN ;;
}
-;;
{ .mfi
- alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
- fmerge.s FR_X = fNormX,fNormX
- nop.i 0
+ nop.m 999
+(p11) mov f99 = f0
+ nop.i 999 ;;
}
+
{ .mfb
- mov GR_Parameter_TAG = 43
- fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p10) fsub.s.s1 f99 = f0, f1
+//
+// expf(-Inf) = 0
+// expm1f(-Inf) = -1
+// No exceptions raised.
+//
+(p10) br.cond.sptk EXPF_64_RETURN ;;
+}
+
+{ .mfb
+ nop.m 999
+(p12) fmpy.s.s1 f99 = f8, f1
+//
+// expf(+Inf) = Inf
+// No exceptions raised.
+//
+(p0) br.cond.sptk EXPF_64_RETURN ;;
+}
+EXPF_64_UNSUPPORTED:
+
+{ .mfb
+ nop.m 999
+(p0) fmpy.s.s0 f99 = f8, f0
+ nop.b 0;;
}
-;;
-GLOBAL_IEEE754_END(expm1f)
+EXPF_64_RETURN:
+{ .mfb
+ nop.m 999
+(p0) mov f8 = f99
+(p0) br.ret.sptk b0
+}
+.endp expm1f
+ASM_SIZE_DIRECTIVE(expm1f)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 999
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
-{ .mfi
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- nop.f 0
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+{ .mib
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
diff --git a/sysdeps/ia64/fpu/s_expm1l.S b/sysdeps/ia64/fpu/s_expm1l.S
index 5f135faf67..e53d3c8d7c 100644
--- a/sysdeps/ia64/fpu/s_expm1l.S
+++ b/sysdeps/ia64/fpu/s_expm1l.S
@@ -1,10 +1,10 @@
-.file "expl_m1.s"
+.file "exp_m1l.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,23 +35,15 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial Version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 07/07/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 03/11/03 Improved accuracy and performance, corrected missing inexact flags
-// 04/17/03 Eliminated misplaced and unused data label
-// 12/15/03 Eliminated call to error support on expm1l underflow
//
-//*********************************************************************
+// *********************************************************************
//
// Function: Combined expl(x) and expm1l(x), where
// x
@@ -59,20 +51,20 @@
// x
// expm1l(x) = e - 1 for double-extended precision x values
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
-// f9-f15,f32-f77
+// f9,f32-f61, f99-f102
//
// General Purpose Registers:
-// r14-r38
-// r35-r38 (Used to pass arguments to error handling routine)
+// r32-r61
+// r62-r65 (Used to pass arguments to error handling routine)
//
// Predicate Registers: p6-p15
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
@@ -82,37 +74,39 @@
// (Error Handling Routine called for overflow and Underflow)
// Inexact raised when appropriate by algorithm
//
-// exp(inf) = inf
-// exp(-inf) = +0
-// exp(SNaN) = QNaN
-// exp(QNaN) = QNaN
-// exp(0) = 1
-// exp(EM_special Values) = QNaN
-// exp(inf) = inf
-// expm1(-inf) = -1
-// expm1(SNaN) = QNaN
-// expm1(QNaN) = QNaN
-// expm1(0) = 0
-// expm1(EM_special Values) = QNaN
+// expl(inf) = inf
+// expl(-inf) = +0
+// expl(SNaN) = QNaN
+// expl(QNaN) = QNaN
+// expl(0) = 1
+// expl(EM_special Values) = QNaN
+// expl(inf) = inf
+// expm1l(-inf) = -1
+// expm1l(SNaN) = QNaN
+// expm1l(QNaN) = QNaN
+// expm1l(0) = 0
+// expm1l(EM_special Values) = QNaN
//
-//*********************************************************************
+// *********************************************************************
//
// Implementation and Algorithm Notes:
//
// ker_exp_64( in_FR : X,
+// in_GR : Flag,
+// in_GR : Expo_Range
// out_FR : Y_hi,
// out_FR : Y_lo,
// out_FR : scale,
// out_PR : Safe )
//
-// On input, X is in register format
-// p6 for exp,
-// p7 for expm1,
+// On input, X is in register format and
+// Flag = 0 for exp,
+// Flag = 1 for expm1,
//
-// On output,
+// On output, provided X and X_cor are real numbers, then
//
-// scale*(Y_hi + Y_lo) approximates exp(X) if exp
-// scale*(Y_hi + Y_lo) approximates exp(X)-1 if expm1
+// scale*(Y_hi + Y_lo) approximates expl(X) if Flag is 0
+// scale*(Y_hi + Y_lo) approximates expl(X)-1 if Flag is 1
//
// The accuracy is sufficient for a highly accurate 64 sig.
// bit implementation. Safe is set if there is no danger of
@@ -128,36 +122,36 @@
// The method consists of three cases.
//
// If |X| < Tiny use case exp_tiny;
-// else if |X| < 2^(-m) use case exp_small; m=12 for exp, m=7 for expm1
+// else if |X| < 2^(-6) use case exp_small;
// else use case exp_regular;
//
// Case exp_tiny:
//
-// 1 + X can be used to approximate exp(X)
-// X + X^2/2 can be used to approximate exp(X) - 1
+// 1 + X can be used to approximate expl(X) or expl(X+X_cor);
+// X + X^2/2 can be used to approximate expl(X) - 1
//
// Case exp_small:
//
-// Here, exp(X) and exp(X) - 1 can all be
+// Here, expl(X), expl(X+X_cor), and expl(X) - 1 can all be
// appproximated by a relatively simple polynomial.
//
// This polynomial resembles the truncated Taylor series
//
-// exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
+// expl(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
//
// Case exp_regular:
//
// Here we use a table lookup method. The basic idea is that in
-// order to compute exp(X), we accurately decompose X into
+// order to compute expl(X), we accurately decompose X into
//
// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
//
// Hence
//
-// exp(X) = 2^( N / 2^12 ) * exp(r).
+// expl(X) = 2^( N / 2^12 ) * expl(r).
//
// The value 2^( N / 2^12 ) is obtained by simple combinations
-// of values calculated beforehand and stored in table; exp(r)
+// of values calculated beforehand and stored in table; expl(r)
// is approximated by a short polynomial because |r| is small.
//
// We elaborate this method in 4 steps.
@@ -184,9 +178,13 @@
// as a double-precision number; L_lo has 64 significant bits and
// stored as a double-extended number.
//
+// In the case Flag = 2, we further modify r by
+//
+// r := r + X_cor.
+//
// Step 2: Approximation
//
-// exp(r) - 1 is approximated by a short polynomial of the form
+// expl(r) - 1 is approximated by a short polynomial of the form
//
// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
//
@@ -215,19 +213,19 @@
// Define two mathematical values, delta_1 and delta_2, implicitly
// such that
//
-// T_1 = exp( [M_1 log(2)/2^6] - delta_1 )
-// T_2 = exp( [M_2 log(2)/2^12] - delta_2 )
+// T_1 = expl( [M_1 log(2)/2^6] - delta_1 )
+// T_2 = expl( [M_2 log(2)/2^12] - delta_2 )
//
// are representable as 24 significant bits. To illustrate the idea,
// we show how we define delta_1:
//
-// T_1 := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
+// T_1 := round_to_24_bits( expl( M_1 log(2)/2^6 ) )
// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
//
// The last equality means mathematical equality. We then tabulate
//
-// W_1 := exp(delta_1) - 1
-// W_2 := exp(delta_2) - 1
+// W_1 := expl(delta_1) - 1
+// W_2 := expl(delta_2) - 1
//
// Both in double precision.
//
@@ -237,13 +235,13 @@
// T := T_1 * T_2 ...exactly
// W := W_1 + (1 + W_1)*W_2
//
-// W approximates exp( delta ) - 1 where delta = delta_1 + delta_2.
+// W approximates expl( delta ) - 1 where delta = delta_1 + delta_2.
// The mathematical product of T and (W+1) is an accurate representation
// of 2^(M_1/2^6) * 2^(M_2/2^12).
//
// Step 4. Reconstruction
//
-// Finally, we can reconstruct exp(X), exp(X) - 1.
+// Finally, we can reconstruct expl(X), expl(X) - 1.
// Because
//
// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
@@ -251,18 +249,18 @@
// + delta_1 + delta_2 + r ...accurately
// We have
//
-// exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
-// ~=~ 2^K * ( T + T*[exp(delta + r) - 1] )
-// ~=~ 2^K * ( T + T*[(exp(delta)-1)
-// + exp(delta)*(exp(r)-1)] )
+// expl(X) ~=~ 2^K * ( T + T*[expl(delta_1+delta_2+r) - 1] )
+// ~=~ 2^K * ( T + T*[expl(delta + r) - 1] )
+// ~=~ 2^K * ( T + T*[(expl(delta)-1)
+// + expl(delta)*(expl(r)-1)] )
// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
// ~=~ 2^K * ( Y_hi + Y_lo )
//
// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
//
-// For exp(X)-1, we have
+// For expl(X)-1, we have
//
-// exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
+// expl(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
//
// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
@@ -280,7 +278,7 @@
// different rounding directions and a correct setting of the SAFE
// flag.
//
-// If expm1 is 1, then
+// If Flag is 1, then
// SAFE := False ...possibility of underflow
// Scale := 1.0
// Y_hi := X
@@ -298,25 +296,26 @@
//
// Let r = X
//
-// If exp ...i.e. exp( argument )
+// If Flag is not 1 ...i.e. expl( argument )
//
// rsq := r * r;
// r4 := rsq*rsq
// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
// poly_hi := r + rsq*(P_1 + r*P_2)
// Y_lo := poly_hi + r4 * poly_lo
+// set lsb(Y_lo) to 1
// Y_hi := 1.0
// Scale := 1.0
//
-// Else ...i.e. exp( argument ) - 1
+// Else ...i.e. expl( argument ) - 1
//
// rsq := r * r
// r4 := rsq * rsq
-// poly_lo := Q_7 + r*(Q_8 + r*Q_9))
-// poly_med:= Q_3 + r*Q_4 + rsq*(Q_5 + r*Q_6)
-// poly_med:= poly_med + r4*poly_lo
-// poly_hi := Q_1 + r*Q_2
-// Y_lo := rsq*(poly_hi + rsq*poly_lo)
+// r6 := rsq * r4
+// poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
+// poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
+// Y_lo := rsq*poly_hi + poly_lo
+// set lsb(Y_lo) to 1
// Y_hi := X
// Scale := 1.0
//
@@ -326,14 +325,14 @@
//
// The previous description contain enough information except the
// computation of poly and the final Y_hi and Y_lo in the case for
-// exp(X)-1.
+// expl(X)-1.
//
// The computation of poly for Step 2:
//
// rsq := r*r
// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
//
-// For the case exp(X) - 1, we need to incorporate 2^(-K) into
+// For the case expl(X) - 1, we need to incorporate 2^(-K) into
// Y_hi and Y_lo at the end of Step 4.
//
// If K > 10 then
@@ -347,197 +346,72 @@
// End If
// End If
//
-//=======================================================
-// General Purpose Registers
-//
-GR_ad_Arg = r14
-GR_ad_A = r15
-GR_sig_inv_ln2 = r15
-GR_rshf_2to51 = r16
-GR_ad_PQ = r16
-GR_ad_Q = r16
-GR_signexp_x = r17
-GR_exp_x = r17
-GR_small_exp = r18
-GR_rshf = r18
-GR_exp_mask = r19
-GR_ad_W1 = r20
-GR_exp_2tom51 = r20
-GR_ad_W2 = r21
-GR_exp_underflow = r21
-GR_M2 = r22
-GR_huge_exp = r22
-GR_M1 = r23
-GR_huge_signif = r23
-GR_K = r24
-GR_one = r24
-GR_minus_one = r24
-GR_exp_bias = r25
-GR_ad_Limits = r26
-GR_N_fix = r26
-GR_exp_2_mk = r26
-GR_ad_P = r27
-GR_exp_2_k = r27
-GR_big_expo_neg = r28
-GR_very_small_exp = r29
-GR_exp_half = r29
-GR_ad_T1 = r30
-GR_ad_T2 = r31
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
+#include "libm_support.h"
-// Floating Point Registers
-//
-FR_norm_x = f9
-FR_RSHF_2TO51 = f10
-FR_INV_LN2_2TO63 = f11
-FR_W_2TO51_RSH = f12
-FR_2TOM51 = f13
-FR_RSHF = f14
-FR_Y_hi = f34
-FR_Y_lo = f35
-FR_scale = f36
-FR_tmp = f37
-FR_float_N = f38
-FR_N_signif = f39
-FR_L_hi = f40
-FR_L_lo = f41
-FR_r = f42
-FR_W1 = f43
-FR_T1 = f44
-FR_W2 = f45
-FR_T2 = f46
-FR_W1_p1 = f47
-FR_rsq = f48
-FR_A2 = f49
-FR_r4 = f50
-FR_A3 = f51
-FR_poly = f52
-FR_T = f53
-FR_W = f54
-FR_Wp1 = f55
-FR_p21 = f59
-FR_p210 = f59
-FR_p65 = f60
-FR_p654 = f60
-FR_p6543 = f60
-FR_2_mk = f61
-FR_P4Q7 = f61
-FR_P4 = f61
-FR_Q7 = f61
-FR_P3Q6 = f62
-FR_P3 = f62
-FR_Q6 = f62
-FR_q65 = f62
-FR_q6543 = f62
-FR_P2Q5 = f63
-FR_P2 = f63
-FR_Q5 = f63
-FR_P1Q4 = f64
-FR_P1 = f64
-FR_Q4 = f64
-FR_q43 = f64
-FR_Q3 = f65
-FR_Q2 = f66
-FR_q21 = f66
-FR_Q1 = f67
-FR_A1 = f68
-FR_P6Q9 = f68
-FR_P6 = f68
-FR_Q9 = f68
-FR_P5Q8 = f69
-FR_P5 = f69
-FR_Q8 = f69
-FR_q987 = f69
-FR_q98 = f69
-FR_q9876543 = f69
-FR_min_oflow_x = f70
-FR_huge_exp = f70
-FR_zero_uflow_x = f71
-FR_huge_signif = f71
-FR_huge = f72
-FR_small = f72
-FR_half = f73
-FR_T_scale = f74
-FR_result_lo = f75
-FR_W_T_scale = f76
-FR_Wp1_T_scale = f77
-FR_ftz = f77
-FR_half_x = f77
-//
-
-FR_X = f9
-FR_Y = f0
-FR_RESULT = f15
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 2^12/ln(2) is needed for the computation of N. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*2^12/ln2 into the rightmost bits of the significand.
-// The result of this fma is N_signif.
-// 2. RSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from N_signif * 2^(-51) to give
-// the integer part of N, N_fix, as a floating-point number.
-// The result of this fms is float_N.
-
-RODATA
.align 64
-LOCAL_OBJECT_START(Constants_exp_64_Arg)
-//data8 0xB8AA3B295C17F0BC,0x0000400B // Inv_L = 2^12/log(2)
-data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
-data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
-LOCAL_OBJECT_END(Constants_exp_64_Arg)
+Constants_exp_64_Arg:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Arg,@object)
+data4 0x5C17F0BC,0xB8AA3B29,0x0000400B,0x00000000
+data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000
+data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000
+// /* Inv_L, L_hi, L_lo */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Arg)
-LOCAL_OBJECT_START(Constants_exp_64_Limits)
-data8 0xb17217f7d1cf79ac,0x0000400c // Smallest long dbl oflow x
-data8 0xb220000000000000,0x0000c00c // Small long dbl uflow zero x
-LOCAL_OBJECT_END(Constants_exp_64_Limits)
+.align 64
+Constants_exp_64_Exponents:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Exponents,@object)
+data4 0x0000007E,0x00000000,0xFFFFFF83,0xFFFFFFFF
+data4 0x000003FE,0x00000000,0xFFFFFC03,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
+data4 0xFFFFFFE2,0xFFFFFFFF,0xFFFFFFC4,0xFFFFFFFF
+data4 0xFFFFFFBA,0xFFFFFFFF,0xFFFFFFBA,0xFFFFFFFF
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Exponents)
-LOCAL_OBJECT_START(Constants_exp_64_A)
-data8 0xAAAAAAABB1B736A0,0x00003FFA // A3
-data8 0xAAAAAAAB90CD6327,0x00003FFC // A2
-data8 0xFFFFFFFFFFFFFFFF,0x00003FFD // A1
-LOCAL_OBJECT_END(Constants_exp_64_A)
+.align 64
+Constants_exp_64_A:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_A,@object)
+data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000
+data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000
+data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_A)
-LOCAL_OBJECT_START(Constants_exp_64_P)
-data8 0xD00D6C8143914A8A,0x00003FF2 // P6
-data8 0xB60BC4AC30304B30,0x00003FF5 // P5
-data8 0x888888887474C518,0x00003FF8 // P4
-data8 0xAAAAAAAA8DAE729D,0x00003FFA // P3
-data8 0xAAAAAAAAAAAAAF61,0x00003FFC // P2
-data8 0x80000000000004C7,0x00003FFE // P1
-LOCAL_OBJECT_END(Constants_exp_64_P)
+.align 64
+Constants_exp_64_P:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_P,@object)
+data4 0x43914A8A,0xD00D6C81,0x00003FF2,0x00000000
+data4 0x30304B30,0xB60BC4AC,0x00003FF5,0x00000000
+data4 0x7474C518,0x88888888,0x00003FF8,0x00000000
+data4 0x8DAE729D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAAF61,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x000004C7,0x80000000,0x00003FFE,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_P)
-LOCAL_OBJECT_START(Constants_exp_64_Q)
-data8 0x93F2AC5F7471F32E, 0x00003FE9 // Q9
-data8 0xB8DA0F3550B3E764, 0x00003FEC // Q8
-data8 0xD00D00D0028E89C4, 0x00003FEF // Q7
-data8 0xD00D00DAEB8C4E91, 0x00003FF2 // Q6
-data8 0xB60B60B60B60B6F5, 0x00003FF5 // Q5
-data8 0x888888888886CC23, 0x00003FF8 // Q4
-data8 0xAAAAAAAAAAAAAAAB, 0x00003FFA // Q3
-data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // Q2
-data8 0x8000000000000000, 0x00003FFE // Q1
-LOCAL_OBJECT_END(Constants_exp_64_Q)
+.align 64
+Constants_exp_64_Q:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_Q,@object)
+data4 0xA49EF6CA,0xD00D56F7,0x00003FEF,0x00000000
+data4 0x1C63493D,0xD00D59AB,0x00003FF2,0x00000000
+data4 0xFB50CDD2,0xB60B60B5,0x00003FF5,0x00000000
+data4 0x7BA68DC8,0x88888888,0x00003FF8,0x00000000
+data4 0xAAAAAC8D,0xAAAAAAAA,0x00003FFA,0x00000000
+data4 0xAAAAACCA,0xAAAAAAAA,0x00003FFC,0x00000000
+data4 0x00000000,0x80000000,0x00003FFE,0x00000000
+// /* Reversed */
+ASM_SIZE_DIRECTIVE(Constants_exp_64_Q)
-LOCAL_OBJECT_START(Constants_exp_64_T1)
+.align 64
+Constants_exp_64_T1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T1,@object)
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
@@ -554,9 +428,11 @@ data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
-LOCAL_OBJECT_END(Constants_exp_64_T1)
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T1)
-LOCAL_OBJECT_START(Constants_exp_64_T2)
+.align 64
+Constants_exp_64_T2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_T2,@object)
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
@@ -573,812 +449,1124 @@ data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
-LOCAL_OBJECT_END(Constants_exp_64_T2)
+ASM_SIZE_DIRECTIVE(Constants_exp_64_T2)
-LOCAL_OBJECT_START(Constants_exp_64_W1)
-data8 0x0000000000000000, 0xBE384454171EC4B4
-data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
-data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
-data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
-data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
-data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
-data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
-data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
-data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
-data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
-data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
-data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
-data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
-data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
-data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
-data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
-data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
-data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
-data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
-data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
-data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
-data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
-data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
-data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
-data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
-data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
-data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
-data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
-data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
-data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
-data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
-data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
-LOCAL_OBJECT_END(Constants_exp_64_W1)
+.align 64
+Constants_exp_64_W1:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W1,@object)
+data4 0x00000000,0x00000000,0x171EC4B4,0xBE384454
+data4 0x4AA72766,0xBE694741,0xD42518F8,0xBE5D32B6
+data4 0x3A319149,0x3E68D96D,0x62415F36,0xBE68F4DA
+data4 0xC9C86A3B,0xBE6DDA2F,0xF49228FE,0x3E6B2E50
+data4 0x1188B886,0xBE49C0C2,0x1A4C2F1F,0x3E64BFC2
+data4 0x2CB98B54,0xBE6A2FBB,0x9A55D329,0x3E5DC5DE
+data4 0x39A7AACE,0x3E696490,0x5C66DBA5,0x3E54728B
+data4 0xBA1C7D7D,0xBE62B0DB,0x09F1AF5F,0x3E576E04
+data4 0x1A0DD6A1,0x3E612500,0x795FBDEF,0xBE66A419
+data4 0xE1BD41FC,0xBE5CDE8C,0xEA54964F,0xBE621376
+data4 0x476E76EE,0x3E6370BE,0x3427EB92,0x3E390D1A
+data4 0x2BF82BF8,0x3E1336DE,0xD0F7BD9E,0xBE5FF1CB
+data4 0x0CEB09DD,0xBE60A355,0x0980F30D,0xBE5CA37E
+data4 0x4C082D25,0xBE5C541B,0x3B467D29,0xBE5BBECA
+data4 0xB9D946C5,0xBE400D8A,0x07ED374A,0xBE5E2A08
+data4 0x365C8B0A,0xBE66CB28,0xD3403BCA,0x3E3AAD5B
+data4 0xC7EA21E0,0x3E526055,0xE72880D6,0xBE442C75
+data4 0x85222A43,0x3E58B2BB,0x522C42BF,0xBE5AAB79
+data4 0x469DC2BC,0xBE605CB4,0xA48C40DC,0xBE589FA7
+data4 0x1AA42614,0xBE51C214,0xC37293F4,0xBE48D087
+data4 0xA2D673E0,0x3E367A1C,0x114F7A38,0xBE51BEBB
+data4 0x661A4B48,0xBE6348E5,0x1D3B9962,0xBDF52643
+data4 0x35A78A53,0x3E3A3B5E,0x1CECD788,0xBE46C46C
+data4 0x7857D689,0xBE60B7EC,0xD14F1AD7,0xBE594D3D
+data4 0x4C9A8F60,0xBE4F9C30,0x02DFF9D2,0xBE521873
+data4 0x55E6D68F,0xBE5E4C88,0x667F3DC4,0xBE62140F
+data4 0x3BF88747,0xBE36961B,0xC96EC6AA,0x3E602861
+data4 0xD57FD718,0xBE3B5151,0xFC4A627B,0x3E561CD0
+data4 0xCA913FEA,0xBE3A5217,0x9A5D193A,0x3E40A3CC
+data4 0x10A9C312,0xBE5AB713,0xC5F57719,0x3E4FDADB
+data4 0xDBDF59D5,0x3E361428,0x61B4180D,0x3E5DB5DB
+data4 0x7408D856,0xBE42AD5F,0x31B2B707,0x3E2A3148
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W1)
-LOCAL_OBJECT_START(Constants_exp_64_W2)
-data8 0x0000000000000000, 0xBE641F2537A3D7A2
-data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
-data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
-data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
-data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
-data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
-data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
-data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
-data8 0xBE56856B49BFF529, 0x3E66DD3300508651
-data8 0x3E51165FC114BC13, 0x3E53333DC453290F
-data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
-data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
-data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
-data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
-data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
-data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
-data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
-data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
-data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
-data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
-data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
-data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
-data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
-data8 0xBE559725ADE45917, 0xBE68C29C042FC476
-data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
-data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
-data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
-data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
-data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
-data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
-data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
-data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
-LOCAL_OBJECT_END(Constants_exp_64_W2)
+.align 64
+Constants_exp_64_W2:
+ASM_TYPE_DIRECTIVE(Constants_exp_64_W2,@object)
+data4 0x00000000,0x00000000,0x37A3D7A2,0xBE641F25
+data4 0xAD028C40,0xBE68DD57,0xF212B1B6,0xBE5C77D8
+data4 0x1BA5B070,0x3E57878F,0x2ECAE6FE,0xBE55A36A
+data4 0x569DFA3B,0xBE620608,0xA6D300A3,0xBE53B50E
+data4 0x223F8F2C,0x3E5B5EF2,0xD6DE0DF4,0xBE56A0D9
+data4 0xEAE28F51,0xBE64EEF3,0x367EA80B,0xBE5E5AE2
+data4 0x5FCBC02D,0x3E47CB1A,0x9BDAFEB7,0xBE656BA0
+data4 0x805AFEE7,0x3E6E70C6,0xA3415EBA,0xBE6E0509
+data4 0x49BFF529,0xBE56856B,0x00508651,0x3E66DD33
+data4 0xC114BC13,0x3E51165F,0xC453290F,0x3E53333D
+data4 0x05539FDA,0x3E6A072B,0x7C0A7696,0xBE47CD87
+data4 0xEB05C6D9,0xBE668BF4,0x6AE86C93,0xBE67C3E3
+data4 0xD0B3E84B,0xBE533904,0x556B53CE,0x3E63E8D9
+data4 0x63A98DC8,0x3E212C89,0x032A7A22,0xBE33138F
+data4 0xBC584008,0x3E530FA9,0xCCB93C97,0xBE6ADF82
+data4 0x8370EA39,0x3E5F9113,0xFB6A05D8,0x3E5443A4
+data4 0x181FEE7A,0x3E63DACD,0xF0F67DEC,0xBE62B29D
+data4 0x3DDE6307,0x3E65C483,0xD40A24C1,0x3E5BF030
+data4 0x14E437BE,0x3E658B8F,0xED98B6C7,0xBE631C29
+data4 0x04CF7C71,0x3E6335D2,0xE954A79D,0x3E529EED
+data4 0xF64A2FB8,0x3E5D9257,0x854ED06C,0xBE6BED1B
+data4 0xD71405CB,0x3E5096F6,0xACB9FDF5,0xBE3D4893
+data4 0x01B68349,0xBDFEB158,0xC6A463B9,0x3E628D35
+data4 0xADE45917,0xBE559725,0x042FC476,0xBE68C29C
+data4 0x01E511FA,0xBE67593B,0x398801ED,0xBE4A4313
+data4 0xDA7C3300,0x3E699571,0x08062A9E,0x3E5349BE
+data4 0x755BB28E,0x3E5229C4,0x77A1F80D,0x3E67E426
+data4 0x6B69C352,0xBE52B33F,0x084DA57F,0xBE6B3550
+data4 0xD1D09A20,0xBE6DB03F,0x2161B2C1,0xBE60CBC4
+data4 0x78A2B771,0x3E56ED9C,0x9D0FA795,0xBE508E31
+data4 0xFD1A54E9,0xBE59482A,0xB07FD23E,0xBE2A17CE
+data4 0x17365712,0x3E68BF5C,0xB3785569,0x3E3956F9
+ASM_SIZE_DIRECTIVE(Constants_exp_64_W2)
+
+GR_SAVE_PFS = r59
+GR_SAVE_B0 = r60
+GR_SAVE_GP = r61
+GR_Parameter_X = r62
+GR_Parameter_Y = r63
+GR_Parameter_RESULT = r64
+GR_Parameter_TAG = r65
+FR_X = f9
+FR_Y = f9
+FR_RESULT = f99
.section .text
-
-GLOBAL_IEEE754_ENTRY(expm1l)
-
-//
-// Set p7 true for expm1, p6 false
-//
-
-{ .mlx
- getf.exp GR_signexp_x = f8 // Get sign and exponent of x, redo if unorm
- movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
+.proc expm1l#
+.global expm1l#
+.align 64
+expm1l:
+#ifdef _LIBC
+.global __expm1l#
+__expm1l:
+#endif
+{ .mii
+alloc r32 = ar.pfs,0,30,4,0
+(p0) add r33 = 1, r0
+(p0) cmp.eq.unc p7, p0 = r0, r0
}
-{ .mlx
- addl GR_ad_Arg = @ltoff(Constants_exp_64_Arg#),gp
- movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
+{ .mbb
+ nop.m 999
+(p0) br.cond.sptk exp_continue
+ nop.b 999 ;;
}
-;;
-{ .mfi
- ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
- fclass.m p8, p0 = f8, 0x1E7 // Test x for natval, nan, inf, zero
- cmp.eq p7, p6 = r0, r0
-}
-{ .mfb
- mov GR_exp_half = 0x0FFFE // Exponent of 0.5, for very small path
- fnorm.s1 FR_norm_x = f8 // Normalize x
- br.cond.sptk exp_continue
-}
-;;
+//
+// Set p7 true for expm1
+// Set Flag = r33 = 1 for expm1
+//
-GLOBAL_IEEE754_END(expm1l)
+.endp expm1l
+ASM_SIZE_DIRECTIVE(expm1l)
+#ifdef _LIBC
+libm_hidden_def (__expm1l)
+#endif
-GLOBAL_IEEE754_ENTRY(expl)
-//
-// Set p7 false for exp, p6 true
-//
-{ .mlx
- getf.exp GR_signexp_x = f8 // Get sign and exponent of x, redo if unorm
- movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
-}
-{ .mlx
- addl GR_ad_Arg = @ltoff(Constants_exp_64_Arg#),gp
- movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
+.section .text
+.proc expl#
+.global expl#
+.align 64
+expl:
+#ifdef _LIBC
+.global __ieee754_expl#
+__ieee754_expl:
+#endif
+{ .mii
+alloc r32 = ar.pfs,0,30,4,0
+(p0) add r33 = r0, r0
+(p0) cmp.eq.unc p0, p7 = r0, r0 ;;
}
-;;
-
+exp_continue:
{ .mfi
- ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
- fclass.m p8, p0 = f8, 0x1E7 // Test x for natval, nan, inf, zero
- cmp.eq p6, p7 = r0, r0
+(p0) add r32 = 2,r0
+(p0) fnorm.s1 f9 = f8
+ nop.i 0
}
{ .mfi
- mov GR_exp_half = 0x0FFFE // Exponent of 0.5, for very small path
- fnorm.s1 FR_norm_x = f8 // Normalize x
- nop.i 999
+(p0) nop.m 0
+//
+// Set p7 false for exp
+// Set Flag = r33 = 0 for exp
+//
+(p0) fclass.m.unc p6, p8 = f8, 0x1E7
+ nop.i 0;;
}
-;;
-
-exp_continue:
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
-
{ .mfi
- setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
- fclass.nm.unc p9, p0 = f8, 0x1FF // Test x for unsupported
- mov GR_exp_2tom51 = 0xffff-51
-}
-{ .mlx
- setf.d FR_RSHF_2TO51 = GR_rshf_2to51 // Form const 1.1000 * 2^(63+51)
- movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
+ nop.m 999
+(p0) fclass.nm.unc p9, p0 = f8, 0x1FF
+ nop.i 0
}
-;;
-
{ .mfi
- setf.exp FR_half = GR_exp_half // Form 0.5 for very small path
- fma.s1 FR_scale = f1,f1,f0 // Scale = 1.0
- mov GR_exp_bias = 0x0FFFF // Set exponent bias
+ nop.m 999
+(p0) mov f36 = f1
+ nop.i 999 ;;
}
-{ .mib
- add GR_ad_Limits = 0x20, GR_ad_Arg // Point to Limits table
- mov GR_exp_mask = 0x1FFFF // Form exponent mask
-(p8) br.cond.spnt EXP_64_SPECIAL // Branch if natval, nan, inf, zero
-}
-;;
-
-{ .mfi
- setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
- nop.f 999
- add GR_ad_A = 0x40, GR_ad_Arg // Point to A table
+{ .mfb
+ nop.m 999
+//
+// Identify NatVals, NaNs, Infs, and Zeros.
+// Identify EM unsupporteds.
+// Save special input registers
+(p0) mov f32 = f0
+//
+// Create FR_X_cor = 0.0
+// GR_Flag = 0
+// GR_Expo_Range = 2 (r32) for double-extended precision
+// FR_Scale = 1.0
+//
+(p6) br.cond.spnt EXPL_64_SPECIAL ;;
}
{ .mib
- setf.d FR_RSHF = GR_rshf // Form right shift const 1.1000 * 2^63
- add GR_ad_T1 = 0x160, GR_ad_Arg // Point to T1 table
-(p9) br.cond.spnt EXP_64_UNSUPPORTED // Branch if unsupported
+ nop.m 999
+ nop.i 999
+(p9) br.cond.spnt EXPL_64_UNSUPPORTED ;;
}
-;;
-
-.pred.rel "mutex",p6,p7
{ .mfi
- ldfe FR_L_hi = [GR_ad_Arg],16 // Get L_hi
- fcmp.eq.s0 p9,p0 = f8, f0 // Dummy op to flag denormals
-(p6) add GR_ad_PQ = 0x30, GR_ad_A // Point to P table for exp
+(p0) cmp.ne.unc p12, p13 = 0x01, r33
+//
+// Branch out for special input values
+//
+(p0) fcmp.lt.unc.s0 p9,p0 = f8, f0
+(p0) cmp.eq.unc p15, p0 = r0, r0
}
-{ .mfi
- ldfe FR_min_oflow_x = [GR_ad_Limits],16 // Get min x to cause overflow
- fmpy.s1 FR_rsq = f8, f8 // rsq = x * x for small path
-(p7) add GR_ad_PQ = 0x90, GR_ad_A // Point to Q table for expm1
+{ .mmi
+ nop.m 999
+//
+// Raise possible denormal operand exception
+// Normalize x
+//
+// This function computes expl( x + x_cor)
+// Input FR 1: FR_X
+// Input FR 2: FR_X_cor
+// Input GR 1: GR_Flag
+// Input GR 2: GR_Expo_Range
+// Output FR 3: FR_Y_hi
+// Output FR 4: FR_Y_lo
+// Output FR 5: FR_Scale
+// Output PR 1: PR_Safe
+(p0) addl r34 = @ltoff(Constants_exp_64_Arg#),gp
+(p0) addl r40 = @ltoff(Constants_exp_64_W1#),gp
};;
+//
+// Prepare to load constants
+// Set Safe = True
+//
{ .mmi
- ldfe FR_L_lo = [GR_ad_Arg],16 // Get L_lo
- ldfe FR_zero_uflow_x = [GR_ad_Limits],16 // Get x for zero uflow result
- add GR_ad_W1 = 0x200, GR_ad_T1 // Point to W1 table
-}
-;;
+ ld8 r34 = [r34]
+ ld8 r40 = [r40]
+(p0) addl r41 = @ltoff(Constants_exp_64_W2#),gp
+};;
-{ .mfi
- ldfe FR_P6Q9 = [GR_ad_PQ],16 // P6(exp) or Q9(expm1) for small path
- mov FR_r = FR_norm_x // r = X for small path
- mov GR_very_small_exp = -60 // Exponent of x for very small path
-}
-{ .mfi
- add GR_ad_W2 = 0x400, GR_ad_T1 // Point to W2 table
- nop.f 999
-(p7) mov GR_small_exp = -7 // Exponent of x for small path expm1
+{ .mmi
+(p0) ldfe f37 = [r34],16
+(p0) ld8 r41 = [r41] ;;
}
-;;
+//
+// N = fcvt.fx(float_N)
+// Set p14 if -6 > expo_X
+//
+//
+// Bias = 0x0FFFF
+// expo_X = expo_X and Mask
+//
+
+{ .mmi
+(p0) ldfe f40 = [r34],16
+ nop.m 999
+//
+// Load L_lo
+// Set p10 if 14 < expo_X
+//
+(p0) addl r50 = @ltoff(Constants_exp_64_T1#),gp
+}
{ .mmi
- ldfe FR_P5Q8 = [GR_ad_PQ],16 // P5(exp) or Q8(expm1) for small path
- and GR_exp_x = GR_signexp_x, GR_exp_mask
-(p6) mov GR_small_exp = -12 // Exponent of x for small path exp
+ nop.m 999
+ nop.m 999
+(p0) addl r51 = @ltoff(Constants_exp_64_T2#),gp ;;
}
-;;
+//
+// Load W2_ptr
+// Branch to SMALL is expo_X < -6
+//
-// N_signif = X * Inv_log2_by_2^12
-// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
-// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
-{ .mfi
- ldfe FR_P4Q7 = [GR_ad_PQ],16 // P4(exp) or Q7(expm1) for small path
- fma.s1 FR_N_signif = FR_norm_x, FR_INV_LN2_2TO63, FR_RSHF_2TO51
- nop.i 999
+{.mmi
+(p0) ld8 r50 = [r50]
+(p0) ld8 r51 = [r51]
+};;
+
+{ .mlx
+(p0) ldfe f41 = [r34],16
+//
+// float_N = X * L_Inv
+// expo_X = exponent of X
+// Mask = 0x1FFFF
+//
+(p0) movl r58 = 0x0FFFF
}
-{ .mfi
- sub GR_exp_x = GR_exp_x, GR_exp_bias // Get exponent
- fmpy.s1 FR_r4 = FR_rsq, FR_rsq // Form r4 for small path
- cmp.eq.unc p15, p0 = r0, r0 // Set Safe as default
+{ .mlx
+ nop.m 999
+(p0) movl r39 = 0x1FFFF ;;
}
-;;
-
{ .mmi
- ldfe FR_P3Q6 = [GR_ad_PQ],16 // P3(exp) or Q6(expm1) for small path
- cmp.lt p14, p0 = GR_exp_x, GR_very_small_exp // Is |x| < 2^-60?
- nop.i 999
+(p0) getf.exp r37 = f9
+ nop.m 999
+(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#),gp ;;
}
-;;
-
-{ .mfi
- ldfe FR_P2Q5 = [GR_ad_PQ],16 // P2(exp) or Q5(expm1) for small path
- fmpy.s1 FR_half_x = FR_half, FR_norm_x // 0.5 * x for very small path
- cmp.lt p13, p0 = GR_exp_x, GR_small_exp // Is |x| < 2^-m?
+{ .mii
+(p0) ld8 r34 = [r34]
+ nop.i 999
+(p0) and r37 = r37, r39 ;;
}
-{ .mib
- nop.m 999
- nop.i 999
-(p14) br.cond.spnt EXP_VERY_SMALL // Branch if |x| < 2^-60
+{ .mmi
+(p0) sub r37 = r37, r58 ;;
+(p0) cmp.gt.unc p14, p0 = -6, r37
+(p0) cmp.lt.unc p10, p0 = 14, r37 ;;
}
-;;
-
{ .mfi
- ldfe FR_A3 = [GR_ad_A],16 // Get A3 for normal path
- fcmp.ge.s1 p10,p0 = FR_norm_x, FR_min_oflow_x // Will result overflow?
- mov GR_big_expo_neg = -16381 // -0x3ffd
+(p0) nop.m 0
+//
+// Load L_inv
+// Set p12 true for Flag = 0 (exp)
+// Set p13 true for Flag = 1 (expm1)
+//
+(p0) fmpy.s1 f38 = f9, f37
+ nop.i 999 ;;
}
{ .mfb
- ldfe FR_P1Q4 = [GR_ad_PQ],16 // P1(exp) or Q4(expm1) for small path
- nop.f 999
-(p13) br.cond.spnt EXP_SMALL // Branch if |x| < 2^-m
- // m=12 for exp, m=7 for expm1
-}
-;;
-
-// Now we are on the main path for |x| >= 2^-m, m=12 for exp, m=7 for expm1
+ nop.m 999
//
-// float_N = round_int(N_signif)
-// The signficand of N_signif contains the rounded integer part of X * 2^12/ln2,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into GR_N.
-
-// Since N_signif is scaled by 2^51, it must be multiplied by 2^-51
-// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
-// Thus, float_N contains the floating point version of N
-
-
-{ .mfi
- ldfe FR_A2 = [GR_ad_A],16 // Get A2 for main path
- fcmp.lt.s1 p11,p0 = FR_norm_x, FR_zero_uflow_x // Certain zero, uflow?
- add GR_ad_T2 = 0x100, GR_ad_T1 // Point to T2 table
+// Load L_hi
+// expo_X = expo_X - Bias
+// get W1_ptr
+//
+(p0) fcvt.fx.s1 f39 = f38
+(p14) br.cond.spnt EXPL_SMALL ;;
}
-{ .mfi
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt EXPL_HUGE ;;
+}
+{ .mmi
+(p0) shladd r34 = r32,4,r34
nop.m 999
- fms.s1 FR_float_N = FR_N_signif, FR_2TOM51, FR_RSHF // Form float_N
- nop.i 999
+(p0) addl r35 = @ltoff(Constants_exp_64_A#),gp ;;
}
-;;
-
-{ .mbb
- getf.sig GR_N_fix = FR_N_signif // Get N from significand
-(p10) br.cond.spnt EXP_OVERFLOW // Branch if result will overflow
-(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW_ZERO // Branch if certain zero, uflow
+//
+// Load T_1,T_2
+//
+{ .mmi
+ nop.m 999
+ ld8 r35 =[r35]
+ nop.i 99
+};;
+{ .mmb
+(p0) ldfe f51 = [r35],16
+(p0) ld8 r45 = [r34],8
+ nop.b 999 ;;
}
-;;
-
-{ .mfi
- ldfe FR_A1 = [GR_ad_A],16 // Get A1 for main path
- fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_norm_x // r = -L_hi * float_N + x
- extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
+//
+// Set Safe = True if k >= big_expo_neg
+// Set Safe = False if k < big_expo_neg
+//
+{ .mmb
+(p0) ldfe f49 = [r35],16
+(p0) ld8 r48 = [r34],0
+ nop.b 999 ;;
}
{ .mfi
- and GR_M2 = 0x3f, GR_N_fix // Extract index M_2
- nop.f 999
- nop.i 999
+ nop.m 999
+//
+// Branch to HUGE is expo_X > 14
+//
+(p0) fcvt.xf f38 = f39
+ nop.i 999 ;;
}
-;;
-
-// N_fix is only correct up to 50 bits because of our right shift technique.
-// Actually in the normal path we will have restricted K to about 14 bits.
-// Somewhat arbitrarily we extract 32 bits.
{ .mfi
- shladd GR_ad_W1 = GR_M1,3,GR_ad_W1 // Point to W1
- nop.f 999
- extr GR_K = GR_N_fix, 12, 32 // Extract limited range K
+(p0) getf.sig r52 = f39
+ nop.f 999
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+(p0) extr.u r43 = r52, 6, 6 ;;
+//
+// r = r - float_N * L_lo
+// K = extr(N_fix,12,52)
+//
+(p0) shladd r40 = r43,3,r40 ;;
}
{ .mfi
- shladd GR_ad_T1 = GR_M1,2,GR_ad_T1 // Point to T1
- nop.f 999
- shladd GR_ad_T2 = GR_M2,2,GR_ad_T2 // Point to T2
+(p0) shladd r50 = r43,2,r50
+(p0) fnma.s1 f42 = f40, f38, f9
+//
+// float_N = float(N)
+// N_fix = signficand N
+//
+(p0) extr.u r42 = r52, 0, 6
}
-;;
-
{ .mmi
- ldfs FR_T1 = [GR_ad_T1],0 // Get T1
- ldfd FR_W1 = [GR_ad_W1],0 // Get W1
- add GR_exp_2_k = GR_exp_bias, GR_K // Form exponent of 2^k
+(p0) ldfd f43 = [r40],0 ;;
+(p0) shladd r41 = r42,3,r41
+(p0) shladd r51 = r42,2,r51
+}
+//
+// W_1_p1 = 1 + W_1
+//
+{ .mmi
+(p0) ldfs f44 = [r50],0 ;;
+(p0) ldfd f45 = [r41],0
+//
+// M_2 = extr(N_fix,0,6)
+// M_1 = extr(N_fix,6,6)
+// r = X - float_N * L_hi
+//
+(p0) extr r44 = r52, 12, 52
}
-;;
-
{ .mmi
- ldfs FR_T2 = [GR_ad_T2],0 // Get T2
- shladd GR_ad_W2 = GR_M2,3,GR_ad_W2 // Point to W2
- sub GR_exp_2_mk = GR_exp_bias, GR_K // Form exponent of 2^-k
+(p0) ldfs f46 = [r51],0 ;;
+(p0) sub r46 = r58, r44
+(p0) cmp.gt.unc p8, p15 = r44, r45
+}
+//
+// W = W_1 + W_1_p1*W_2
+// Load A_2
+// Bias_m_K = Bias - K
+//
+{ .mii
+(p0) ldfe f40 = [r35],16
+//
+// load A_1
+// poly = A_2 + r*A_3
+// rsq = r * r
+// neg_2_mK = exponent of Bias_m_k
+//
+(p0) add r47 = r58, r44 ;;
+//
+// Set Safe = True if k <= big_expo_pos
+// Set Safe = False if k > big_expo_pos
+// Load A_3
+//
+(p15) cmp.lt p8,p15 = r44,r48 ;;
}
-;;
-
{ .mmf
- ldfd FR_W2 = [GR_ad_W2],0 // Get W2
- setf.exp FR_scale = GR_exp_2_k // Set scale = 2^k
- fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r // r = -L_lo * float_N + r
+(p0) setf.exp f61 = r46
+//
+// Bias_p + K = Bias + K
+// T = T_1 * T_2
+//
+(p0) setf.exp f36 = r47
+(p0) fnma.s1 f42 = f41, f38, f42 ;;
}
-;;
-
{ .mfi
- setf.exp FR_2_mk = GR_exp_2_mk // Form 2^-k
- fma.s1 FR_poly = FR_r, FR_A3, FR_A2 // poly = r * A3 + A2
- cmp.lt p8,p15 = GR_K,GR_big_expo_neg // Set Safe if K > big_expo_neg
+ nop.m 999
+//
+// Load W_1,W_2
+// Load big_exp_pos, load big_exp_neg
+//
+(p0) fadd.s1 f47 = f43, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 999
+ nop.m 999
+(p0) fma.s1 f52 = f42, f51, f49
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s1 FR_T = FR_T1, FR_T2 // T = T1 * T2
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 f48 = f42, f42
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fadd.s1 FR_W1_p1 = FR_W1, f1 // W1_p1 = W1 + 1.0
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 f53 = f44, f46
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p7) cmp.lt.unc p8, p9 = 10, GR_K // If expm1, set p8 if K > 10
- fma.s1 FR_poly = FR_r, FR_poly, FR_A1 // poly = r * poly + A1
- nop.i 999
+ nop.m 999
+(p0) fma.s1 f54 = f45, f47, f43
+ nop.i 999
}
-;;
-
{ .mfi
-(p7) cmp.eq p15, p0 = r0, r0 // If expm1, set Safe flag
- fma.s1 FR_T_scale = FR_T, FR_scale, f0 // T_scale = T * scale
-(p9) cmp.gt.unc p9, p10 = -10, GR_K // If expm1, set p9 if K < -10
- // If expm1, set p10 if -10<=K<=10
+ nop.m 999
+(p0) fneg f61 = f61
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_W = FR_W2, FR_W1_p1, FR_W1 // W = W2 * (W1+1.0) + W1
- nop.i 999
+ nop.m 999
+(p0) fma.s1 f52 = f42, f52, f40
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- mov FR_Y_hi = FR_T // Assume Y_hi = T
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 f55 = f54, f1
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_poly = FR_rsq, FR_poly, FR_r // poly = rsq * poly + r
- nop.i 999
+ nop.m 999
+//
+// W + Wp1 * poly
+//
+(p0) mov f34 = f53
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s1 FR_Wp1_T_scale = FR_W, FR_T_scale, FR_T_scale // (W+1)*T*scale
- nop.i 999
+ nop.m 999
+//
+// A_1 + r * poly
+// Scale = setf_expl(Bias_p_k)
+//
+(p0) fma.s1 f52 = f48, f52, f42
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 FR_W_T_scale = FR_W, FR_T_scale, f0 // W*T*scale
- nop.i 999
+ nop.m 999
+//
+// poly = r + rsq(A_1 + r*poly)
+// Wp1 = 1 + W
+// neg_2_mK = -neg_2_mK
+//
+(p0) fma.s1 f35 = f55, f52, f54
+ nop.i 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
+(p0) fmpy.s1 f35 = f35, f53
+//
+// Y_hi = T
+// Y_lo = T * (W + Wp1*poly)
+//
+(p12) br.cond.sptk EXPL_MAIN ;;
+}
+//
+// Branch if expl(x)
+// Continue for expl(x-1)
+//
+{ .mii
+(p0) cmp.lt.unc p12, p13 = 10, r44
+ nop.i 999 ;;
+//
+// Set p12 if 10 < K, Else p13
+//
+(p13) cmp.gt.unc p13, p14 = -10, r44 ;;
+}
+//
+// K > 10: Y_lo = Y_lo + neg_2_mK
+// K <=10: Set p13 if -10 > K, Else set p14
+//
{ .mfi
- nop.m 999
-(p9) fsub.s1 FR_Y_hi = f0, FR_2_mk // If expm1, if K < -10 set Y_hi
- nop.i 999
+(p13) cmp.eq p15, p0 = r0, r0
+(p14) fadd.s1 f34 = f61, f34
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fsub.s1 FR_Y_hi = FR_T, FR_2_mk // If expm1, if |K|<=10 set Y_hi
- nop.i 999
+ nop.m 999
+(p12) fadd.s1 f35 = f35, f61
+ nop.i 999 ;;
}
-;;
-
{ .mfi
+ nop.m 999
+(p13) fadd.s1 f35 = f35, f34
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+//
+// K <= 10 and K < -10, Set Safe = True
+// K <= 10 and K < 10, Y_lo = Y_hi + Y_lo
+// K <= 10 and K > =-10, Y_hi = Y_hi + neg_2_mk
+//
+(p13) mov f34 = f61
+(p0) br.cond.sptk EXPL_MAIN ;;
+}
+EXPL_SMALL:
+{ .mmi
nop.m 999
- fma.s1 FR_result_lo = FR_Wp1_T_scale, FR_poly, FR_W_T_scale
- nop.i 999
+(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#),gp
+(p12) addl r35 = @ltoff(Constants_exp_64_P#),gp ;;
}
-;;
-
-.pred.rel "mutex",p8,p9
-// If K > 10 adjust result_lo = result_lo - scale * 2^-k
-// If |K| <= 10 adjust result_lo = result_lo + scale * T
+.pred.rel "mutex",p12,p13
+{ .mmi
+(p12) ld8 r35=[r35]
+nop.m 999
+(p13) addl r35 = @ltoff(Constants_exp_64_Q#),gp
+};;
+{ .mmi
+(p13) ld8 r35=[r35]
+(p0) ld8 r34=[r34]
+nop.i 999
+};;
{ .mfi
- nop.m 999
-(p8) fnma.s1 FR_result_lo = FR_scale, FR_2_mk, FR_result_lo // If K > 10
- nop.i 999
+(p0) add r34 = 0x48,r34
+//
+// Return
+// K <= 10 and K < 10, Y_hi = neg_2_mk
+//
+// /*******************************************************/
+// /*********** Branch EXPL_SMALL ************************/
+// /*******************************************************/
+(p0) mov f42 = f9
+ nop.i 999 ;;
}
+//
+// Flag = 0
+// r4 = rsq * rsq
+//
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_result_lo = FR_T_scale, f1, FR_result_lo // If |K| <= 10
- nop.i 999
+(p0) ld8 r49 =[r34],0
+ nop.f 999
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Flag = 1
+//
+(p0) cmp.lt.unc p14, p0 = r37, r49 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s0 FR_tmp = FR_A1, FR_A1 // Dummy op to set inexact
- nop.i 999
+ nop.m 999
+//
+// r = X
+//
+(p0) fmpy.s1 f48 = f42, f42
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p15) fma.s0 f8 = FR_Y_hi, FR_scale, FR_result_lo // Safe result
-(p15) br.ret.sptk b0 // Safe exit for normal path
+ nop.m 999
+//
+// rsq = r * r
+//
+(p0) fmpy.s1 f50 = f48, f48
+//
+// Is input very small?
+//
+(p14) br.cond.spnt EXPL_VERY_SMALL ;;
}
-;;
-
-// Here if unsafe, will only be here for exp with K < big_expo_neg
-{ .mfb
- nop.m 999
- fma.s0 FR_RESULT = FR_Y_hi, FR_scale, FR_result_lo // Prelim result
- br.cond.sptk EXP_POSSIBLE_UNDERFLOW // Branch to unsafe code
+//
+// Flag_not1: Y_hi = 1.0
+// Flag is 1: r6 = rsq * r4
+//
+{ .mfi
+(p12) ldfe f52 = [r35],16
+(p12) mov f34 = f1
+(p0) add r53 = 0x1,r0 ;;
}
-;;
-
-
-EXP_SMALL:
-// Here if 2^-60 < |x| < 2^-m, m=12 for exp, m=7 for expm1
{ .mfi
-(p7) ldfe FR_Q3 = [GR_ad_Q],16 // Get Q3 for small path, if expm1
-(p6) fma.s1 FR_p65 = FR_P6, FR_r, FR_P5 // If exp, p65 = P6 * r + P5
- nop.i 999
+(p13) ldfe f51 = [r35],16
+//
+// Flag_not_1: Y_lo = poly_hi + r4 * poly_lo
+//
+(p13) mov f34 = f9
+ nop.i 999 ;;
+}
+{ .mmf
+(p12) ldfe f53 = [r35],16
+//
+// For Flag_not_1, Y_hi = X
+// Scale = 1
+// Create 0x000...01
+//
+(p0) setf.sig f37 = r53
+(p0) mov f36 = f1 ;;
+}
+{ .mmi
+(p13) ldfe f52 = [r35],16 ;;
+(p12) ldfe f54 = [r35],16
+ nop.i 999 ;;
}
{ .mfi
- mov GR_minus_one = -1
-(p7) fma.s1 FR_q98 = FR_Q9, FR_r, FR_Q8 // If expm1, q98 = Q9 * r + Q8
- nop.i 999
+(p13) ldfe f53 = [r35],16
+(p13) fmpy.s1 f58 = f48, f50
+ nop.i 999 ;;
+}
+//
+// Flag_not1: poly_lo = P_5 + r*P_6
+// Flag_1: poly_lo = Q_6 + r*Q_7
+//
+{ .mmi
+(p13) ldfe f54 = [r35],16 ;;
+(p12) ldfe f55 = [r35],16
+ nop.i 999 ;;
+}
+{ .mmi
+(p12) ldfe f56 = [r35],16 ;;
+(p13) ldfe f55 = [r35],16
+ nop.i 999 ;;
+}
+{ .mmi
+(p12) ldfe f57 = [r35],0 ;;
+(p13) ldfe f56 = [r35],16
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p7) ldfe FR_Q2 = [GR_ad_Q],16 // Get Q2 for small path, if expm1
-(p7) fma.s1 FR_q65 = FR_Q6, FR_r, FR_Q5 // If expm1, q65 = Q6 * r + Q5
- nop.i 999
+(p13) ldfe f57 = [r35],0
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- setf.sig FR_tmp = GR_minus_one // Create value to force inexact
-(p6) fma.s1 FR_p21 = FR_P2, FR_r, FR_P1 // If exp, p21 = P2 * r + P1
- nop.i 999
+ nop.m 999
+//
+// For Flag_not_1, load p5,p6,p1,p2
+// Else load p5,p6,p1,p2
+//
+(p12) fma.s1 f60 = f52, f42, f53
+ nop.i 999 ;;
}
{ .mfi
-(p7) ldfe FR_Q1 = [GR_ad_Q],16 // Get Q1 for small path, if expm1
-(p7) fma.s1 FR_q43 = FR_Q4, FR_r, FR_Q3 // If expm1, q43 = Q4 * r + Q3
- nop.i 999
+ nop.m 999
+(p13) fma.s1 f60 = f51, f42, f52
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fma.s1 FR_p654 = FR_p65, FR_r, FR_P4 // If exp, p654 = p65 * r + P4
- nop.i 999
+ nop.m 999
+(p12) fma.s1 f60 = f60, f42, f54
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_q987 = FR_q98, FR_r, FR_Q7 // If expm1, q987 = q98 * r + Q7
- nop.i 999
+ nop.m 999
+(p12) fma.s1 f59 = f56, f42, f57
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_q21 = FR_Q2, FR_r, FR_Q1 // If expm1, q21 = Q2 * r + Q1
- nop.i 999
+ nop.m 999
+(p13) fma.s1 f60 = f42, f60, f53
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fma.s1 FR_p210 = FR_p21, FR_rsq, FR_r // If exp, p210 = p21 * r + P0
- nop.i 999
+ nop.m 999
+(p12) fma.s1 f59 = f59, f48, f42
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_q6543 = FR_q65, FR_rsq, FR_q43 // If expm1, q6543 = q65*r2+q43
- nop.i 999
+ nop.m 999
+//
+// Flag_1: poly_lo = Q_5 + r*(Q_6 + r*Q_7)
+// Flag_not1: poly_lo = P_4 + r*(P_5 + r*P_6)
+// Flag_not1: poly_hi = (P_1 + r*P_2)
+//
+(p13) fmpy.s1 f60 = f60, f58
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fma.s1 FR_p6543 = FR_p654, FR_r, FR_P3 // If exp, p6543 = p654 * r + P3
- nop.i 999
+ nop.m 999
+(p12) fma.s1 f60 = f60, f42, f55
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_q9876543 = FR_q987, FR_r4, FR_q6543 // If expm1, q9876543 = ...
- nop.i 999
+ nop.m 999
+//
+// Flag_1: poly_lo = r6 *(Q_5 + ....)
+// Flag_not1: poly_hi = r + rsq *(P_1 + r*P_2)
+//
+(p12) fma.s1 f35 = f60, f50, f59
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fma.s1 FR_Y_lo = FR_p6543, FR_r4, FR_p210 // If exp, form Y_lo
- nop.i 999
+ nop.m 999
+(p13) fma.s1 f59 = f54, f42, f55
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fma.s1 FR_Y_lo = FR_q9876543, FR_rsq, FR_q21 // If expm1, form Y_lo
- nop.i 999
+ nop.m 999
+//
+// Flag_not1: Y_lo = rsq* poly_hi + poly_lo
+// Flag_1: poly_lo = rsq* poly_hi + poly_lo
+//
+(p13) fma.s1 f59 = f59, f42, f56
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fmpy.s0 FR_tmp = FR_tmp, FR_tmp // Dummy op to set inexact
- nop.i 999
+ nop.m 999
+//
+// Flag_not_1: (P_1 + r*P_2)
+//
+(p13) fma.s1 f59 = f59, f42, f57
+ nop.i 999 ;;
}
-;;
-
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 999
-(p6) fma.s0 f8 = FR_Y_lo, f1, f1 // If exp, result = 1 + Y_lo
- nop.i 999
+ nop.m 999
+//
+// Flag_not_1: poly_hi = r + rsq * (P_1 + r*P_2)
+//
+(p13) fma.s1 f35 = f59, f48, f60
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Create 0.000...01
+//
+(p0) for f37 = f35, f37
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p7) fma.s0 f8 = FR_Y_lo, FR_rsq, FR_norm_x // If expm1, result = Y_lo*r2+x
- br.ret.sptk b0 // Exit for 2^-60 <= |x| < 2^-m
- // m=12 for exp, m=7 for expm1
+ nop.m 999
+//
+// Set lsb of Y_lo to 1
+//
+(p0) fmerge.se f35 = f35,f37
+(p0) br.cond.sptk EXPL_MAIN ;;
+}
+EXPL_VERY_SMALL:
+{ .mmi
+ nop.m 999
+ nop.m 999
+(p13) addl r34 = @ltoff(Constants_exp_64_Exponents#),gp
+}
+{ .mfi
+ nop.m 999
+(p12) mov f35 = f9
+ nop.i 999 ;;
+}
+{ .mfb
+(p13) ld8 r34 = [r34]
+(p12) mov f34 = f1
+(p12) br.cond.sptk EXPL_MAIN ;;
+}
+{ .mlx
+(p13) add r34 = 8,r34
+(p13) movl r39 = 0x0FFFE ;;
}
-;;
-
-
-EXP_VERY_SMALL:
//
-// Here if 0 < |x| < 2^-60
-// If exp, result = 1.0 + x
-// If expm1, result = x +x*x/2, but have to check for possible underflow
+// Load big_exp_neg
+// Create 1/2's exponent
+//
+{ .mii
+(p13) setf.exp f56 = r39
+(p13) shladd r34 = r32,4,r34 ;;
+ nop.i 999
+}
+//
+// Negative exponents are stored after positive
//
-
{ .mfi
-(p7) mov GR_exp_underflow = -16381 // Exponent for possible underflow
-(p6) fadd.s0 f8 = f1, FR_norm_x // If exp, result = 1+x
- nop.i 999
+(p13) ld8 r45 = [r34],0
+//
+// Y_hi = x
+// Scale = 1
+//
+(p13) fmpy.s1 f35 = f9, f9
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p7) fmpy.s1 FR_result_lo = FR_half_x, FR_norm_x // If expm1 result_lo = x*x/2
- nop.i 999
+ nop.m 999
+//
+// Reset Safe if necessary
+// Create 1/2
+//
+(p13) mov f34 = f9
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p7) cmp.lt.unc p0, p8 = GR_exp_x, GR_exp_underflow // Unsafe if expm1 x small
-(p7) mov FR_Y_hi = FR_norm_x // If expm1, Y_hi = x
-(p7) cmp.lt p0, p15 = GR_exp_x, GR_exp_underflow // Unsafe if expm1 x small
+(p13) cmp.lt.unc p0, p15 = r37, r45
+(p13) mov f36 = f1
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
-(p8) fma.s0 f8 = FR_norm_x, f1, FR_result_lo // If expm1, result=x+x*x/2
-(p15) br.ret.sptk b0 // If Safe, exit
+ nop.m 999
+//
+// Y_lo = x * x
+//
+(p13) fmpy.s1 f35 = f35, f56
+//
+// Y_lo = x*x/2
+//
+(p13) br.cond.sptk EXPL_MAIN ;;
+}
+EXPL_HUGE:
+{ .mfi
+ nop.m 999
+(p0) fcmp.gt.unc.s1 p14, p0 = f9, f0
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl r39 = 0x15DC0 ;;
+}
+{ .mfi
+(p14) setf.exp f34 = r39
+(p14) mov f35 = f1
+(p14) cmp.eq p0, p15 = r0, r0 ;;
}
-;;
-
-// Here if expm1 and 0 < |x| < 2^-16381; may be possible underflow
{ .mfb
- nop.m 999
- fma.s0 FR_RESULT = FR_Y_hi, FR_scale, FR_result_lo // Prelim result
- br.cond.sptk EXP_POSSIBLE_UNDERFLOW // Branch to unsafe code
+ nop.m 999
+(p14) mov f36 = f34
+//
+// If x > 0, Set Safe = False
+// If x > 0, Y_hi = 2**(24,000)
+// If x > 0, Y_lo = 1.0
+// If x > 0, Scale = 2**(24,000)
+//
+(p14) br.cond.sptk EXPL_MAIN ;;
}
-;;
-
-EXP_CERTAIN_UNDERFLOW_ZERO:
-// Here if x < zero_uflow_x
-// For exp, set result to tiny+0.0 and set I, U, and branch to error handling
-// For expm1, set result to tiny-1.0 and set I, and exit
-{ .mmi
- alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
- nop.m 999
- mov GR_one = 1
+{ .mlx
+ nop.m 999
+(p12) movl r39 = 0xA240
}
-;;
-
-{ .mmi
- setf.exp FR_small = GR_one // Form small value
- nop.m 999
-(p6) mov GR_Parameter_TAG = 13 // Error tag for exp underflow
+{ .mlx
+ nop.m 999
+(p12) movl r38 = 0xA1DC ;;
+}
+{ .mmb
+(p13) cmp.eq p15, p14 = r0, r0
+(p12) setf.exp f34 = r39
+ nop.b 999 ;;
+}
+{ .mlx
+(p12) setf.exp f35 = r38
+(p13) movl r39 = 0xFF9C
}
-;;
-
{ .mfi
- nop.m 999
- fmerge.s FR_X = f8,f8 // Save x for error call
- nop.i 999
+ nop.m 999
+(p13) fsub.s1 f34 = f0, f1
+ nop.i 999 ;;
}
-;;
-
-.pred.rel "mutex",p6,p7
-{ .mfb
- nop.m 999
-(p6) fma.s0 FR_RESULT = FR_small, FR_small, f0 // If exp, set I,U, tiny result
-(p6) br.cond.sptk __libm_error_region // If exp, go to error handling
+{ .mfi
+ nop.m 999
+(p12) mov f36 = f34
+(p12) cmp.eq p0, p15 = r0, r0 ;;
+}
+{ .mfi
+(p13) setf.exp f35 = r39
+(p13) mov f36 = f1
+ nop.i 999 ;;
+}
+EXPL_MAIN:
+{ .mfi
+(p0) cmp.ne.unc p12, p0 = 0x01, r33
+(p0) fmpy.s1 f101 = f36, f35
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
-(p7) fms.s0 f8 = FR_small, FR_small, f1 // If expm1, set I, result -1.0
-(p7) br.ret.sptk b0 // If expm1, exit
-}
-;;
-
-
-EXP_OVERFLOW:
-// Here if x >= min_oflow_x
-{ .mmi
- alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
- mov GR_huge_exp = 0x1fffe
- nop.i 999
+ nop.m 999
+(p0) fma.s0 f99 = f34, f36, f101
+(p15) br.cond.sptk EXPL_64_RETURN ;;
}
{ .mfi
- mov GR_huge_signif = -0x1
- nop.f 999
-(p6) mov GR_Parameter_TAG = 12 // Error tag for exp overflow
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x01
+ nop.i 999
}
-;;
-
-{ .mmf
- setf.exp FR_huge_exp = GR_huge_exp // Create huge value
- setf.sig FR_huge_signif = GR_huge_signif // Create huge value
- fmerge.s FR_X = f8,f8 // Save x for error call
+{ .mlx
+ nop.m 999
+(p0) movl r50 = 0x00000000013FFF ;;
}
-;;
-
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + RZ + TD (Underflows)
+//
+//
+// If (Safe) is true, then
+// Compute result using user supplied status field.
+// No overflow or underflow here, but perhaps inexact.
+// Return
+// Else
+// Determine if overflow or underflow was raised.
+// Fetch +/- overflow threshold for IEEE single, double,
+// double extended
+//
{ .mfi
- nop.m 999
- fmerge.se FR_huge = FR_huge_exp, FR_huge_signif
-(p7) mov GR_Parameter_TAG = 39 // Error tag for expm1 overflow
+(p0) setf.exp f60 = r50
+(p0) fma.s3 f102 = f34, f36, f101
+ nop.i 999
}
-;;
-
-{ .mfb
- nop.m 999
- fma.s0 FR_RESULT = FR_huge, FR_huge, FR_huge // Force I, O, and Inf
- br.cond.sptk __libm_error_region // Branch to error handling
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x40
+ nop.i 999 ;;
}
-;;
-
-
-
-EXP_POSSIBLE_UNDERFLOW:
-// Here if exp and zero_uflow_x < x < about -11356 [where k < -16381]
-// Here if expm1 and |x| < 2^-16381
{ .mfi
- alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
- fsetc.s2 0x7F,0x41 // Set FTZ and disable traps
- nop.i 999
+ nop.m 999
+//
+// For Safe, no need to check for over/under.
+// For expm1, handle errors like exp.
+//
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999;;
}
-;;
-
{ .mfi
- nop.m 999
- fma.s2 FR_ftz = FR_Y_hi, FR_scale, FR_result_lo // Result with FTZ
- nop.i 999
+ nop.m 999
+(p0) fma.s2 f100 = f34, f36, f101
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x40 // Disable traps (set s2 default)
- nop.i 999
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x40
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fclass.m.unc p11, p0 = FR_ftz, 0x00F // If exp, FTZ result denorm or zero?
- nop.i 999
+ nop.m 999
+(p7) fclass.m.unc p12, p0 = f102, 0x00F
+ nop.i 999
}
-;;
-
-{ .mfb
-(p11) mov GR_Parameter_TAG = 13 // exp underflow
- fmerge.s FR_X = f8,f8 // Save x for error call
-(p11) br.cond.spnt __libm_error_region // Branch on exp underflow
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = f102, 0x00F
+ nop.i 999 ;;
}
-;;
-
-{ .mfb
- nop.m 999
- mov f8 = FR_RESULT // Was safe after all
- br.ret.sptk b0
+{ .mfi
+ nop.m 999
+(p7) fcmp.ge.unc.s1 p10, p0 = f100, f60
+ nop.i 999
}
-;;
-
-
-EXP_64_SPECIAL:
-// Here if x natval, nan, inf, zero
-// If x natval, +inf, or if expm1 and x zero, just return x.
-// The other cases must be tested for, and results set.
-// These cases do not generate exceptions.
{ .mfi
- nop.m 999
- fclass.m p8, p0 = f8, 0x0c3 // Is x nan?
- nop.i 999
+ nop.m 999
+//
+// Create largest double exponent + 1.
+// Create smallest double exponent - 1.
+//
+(p0) fcmp.ge.unc.s1 p8, p0 = f100, f60
+ nop.i 999 ;;
}
-;;
-
+//
+// fcmp: resultS2 >= + overflow threshold -> set (a) if true
+// fcmp: resultS2 <= - overflow threshold -> set (b) if true
+// fclass: resultS3 is denorm/unorm/0 -> set (d) if true
+//
+{ .mib
+(p10) mov GR_Parameter_TAG = 39
+ nop.i 999
+(p10) br.cond.sptk __libm_error_region ;;
+}
+{ .mib
+(p8) mov GR_Parameter_TAG = 12
+ nop.i 999
+(p8) br.cond.sptk __libm_error_region ;;
+}
+//
+// Report that exp overflowed
+//
+{ .mib
+(p12) mov GR_Parameter_TAG = 40
+ nop.i 999
+(p12) br.cond.sptk __libm_error_region ;;
+}
+{ .mib
+(p11) mov GR_Parameter_TAG = 13
+ nop.i 999
+(p11) br.cond.sptk __libm_error_region ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Report that exp underflowed
+//
+(p0) br.cond.sptk EXPL_64_RETURN ;;
+}
+EXPL_64_SPECIAL:
{ .mfi
- nop.m 999
-(p6) fclass.m.unc p13, p0 = f8, 0x007 // If exp, is x zero?
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = f8, 0x0c3
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p6) fclass.m.unc p11, p0 = f8, 0x022 // If exp, is x -inf?
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p13, p8 = f8, 0x007
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fadd.s0 f8 = f8, f1 // If x nan, result quietized x
- nop.i 999
+ nop.m 999
+(p7) fclass.m.unc p14, p0 = f8, 0x007
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p7) fclass.m.unc p10, p0 = f8, 0x022 // If expm1, is x -inf?
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p12, p9 = f8, 0x021
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p13) fadd.s0 f8 = f0, f1 // If exp and x zero, result 1.0
- nop.i 999
+ nop.m 999
+(p0) fclass.m.unc p11, p0 = f8, 0x022
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p11) mov f8 = f0 // If exp and x -inf, result 0
- nop.i 999
+ nop.m 999
+(p7) fclass.m.unc p10, p0 = f8, 0x022
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Identify +/- 0, Inf, or -Inf
+// Generate the right kind of NaN.
+//
+(p13) fadd.s0 f99 = f0, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p14) mov f99 = f8
+ nop.i 999 ;;
}
-;;
-
{ .mfb
- nop.m 999
-(p10) fsub.s1 f8 = f0, f1 // If expm1, x -inf, result -1.0
- br.ret.sptk b0 // Exit special cases
+ nop.m 999
+(p6) fadd.s0 f99 = f8, f1
+//
+// expl(+/-0) = 1
+// expm1l(+/-0) = +/-0
+// No exceptions raised
+//
+(p6) br.cond.sptk EXPL_64_RETURN ;;
}
-;;
-
-
-EXP_64_UNSUPPORTED:
-// Here if x unsupported type
+{ .mib
+ nop.m 999
+ nop.i 999
+(p14) br.cond.sptk EXPL_64_RETURN ;;
+}
+{ .mfi
+ nop.m 999
+(p11) mov f99 = f0
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p10) fsub.s1 f99 = f0, f1
+//
+// expl(-Inf) = 0
+// expm1l(-Inf) = -1
+// No exceptions raised.
+//
+(p10) br.cond.sptk EXPL_64_RETURN ;;
+}
+{ .mfb
+ nop.m 999
+(p12) fmpy.s1 f99 = f8, f1
+//
+// expl(+Inf) = Inf
+// No exceptions raised.
+//
+(p0) br.cond.sptk EXPL_64_RETURN ;;
+}
+EXPL_64_UNSUPPORTED:
+{ .mfb
+ nop.m 999
+(p0) fmpy.s0 f99 = f8, f0
+(p0) br.cond.sptk EXPL_64_RETURN ;;
+}
+EXPL_64_RETURN:
{ .mfb
nop.m 999
- fmpy.s0 f8 = f8, f0 // Return nan
- br.ret.sptk b0
+(p0) mov f8 = f99
+(p0) br.ret.sptk b0
}
-;;
-
-GLOBAL_IEEE754_END(expl)
+.endp
+ASM_SIZE_DIRECTIVE(expl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -1410,9 +1598,9 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
@@ -1425,7 +1613,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_fabs.S b/sysdeps/ia64/fpu/s_fabs.S
index 3434389a3c..ea3908dbc3 100644
--- a/sysdeps/ia64/fpu/s_fabs.S
+++ b/sysdeps/ia64/fpu/s_fabs.S
@@ -1,82 +1,34 @@
-.file "fabs.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 02/07/02 Added __libm_fabs entry point to test in case compiler inlines
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// double fabs (double x)
-//
-// Overview of operation
-//==============================================================
-// returns absolute value of x
-
-// floating-point registers used: 1
-// f8, input
-
-.section .text
-.global __libm_fabs#
-
-.proc __libm_fabs#
-__libm_fabs:
-.endp __libm_fabs#
-
-GLOBAL_IEEE754_ENTRY(fabs)
-
-// set invalid or denormal flags and take fault if
-// necessary
-
-{ .mfi
- nop.m 999
- fcmp.eq.unc.s0 p6,p7 = f8,f1
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f0,f8
- br.ret.sptk b0 ;;
-}
-
-GLOBAL_IEEE754_END(fabs)
+/* Copyright (C) 2000 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <sysdep.h>
+#undef ret
+
+ENTRY (__fabs)
+{
+ fabs fret0 = farg0
+ br.ret.sptk.many rp
+}
+END (__fabs)
+
+strong_alias (__fabs, __fabsf)
+strong_alias (__fabs, __fabsl)
+
+weak_alias (__fabs, fabs)
+weak_alias (__fabsf, fabsf)
+weak_alias (__fabsl, fabsl)
diff --git a/sysdeps/ia64/fpu/s_fabsf.S b/sysdeps/ia64/fpu/s_fabsf.S
index 71bb6da882..7e5abde625 100644
--- a/sysdeps/ia64/fpu/s_fabsf.S
+++ b/sysdeps/ia64/fpu/s_fabsf.S
@@ -1,82 +1 @@
-.file "fabsf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 02/07/02 Added __libm_fabsf entry point to test in case compiler inlines
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// float fabsf (float x)
-//
-// Overview of operation
-//==============================================================
-// returns absolute value of x
-
-// floating-point registers used: 1
-// f8, input
-
-.section .text
-.global __libm_fabsf#
-
-.proc __libm_fabsf#
-__libm_fabsf:
-.endp __libm_fabsf#
-
-GLOBAL_IEEE754_ENTRY(fabsf)
-
-// set invalid or denormal flags and take fault if
-// necessary
-
-{ .mfi
- nop.m 999
- fcmp.eq.unc.s0 p6,p7 = f8,f1
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f0,f8
- br.ret.sptk b0 ;;
-}
-
-GLOBAL_IEEE754_END(fabsf)
+/* __fabsf is in s_fabs.S. */
diff --git a/sysdeps/ia64/fpu/s_fabsl.S b/sysdeps/ia64/fpu/s_fabsl.S
index a048949147..3d7a41fe2b 100644
--- a/sysdeps/ia64/fpu/s_fabsl.S
+++ b/sysdeps/ia64/fpu/s_fabsl.S
@@ -1,82 +1 @@
-.file "fabsl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 02/07/02 Added __libm_fabsl entry point to test in case compiler inlines
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double fabsl (long double x)
-//
-// Overview of operation
-//==============================================================
-// returns absolute value of x
-
-// floating-point registers used: 1
-// f8, input
-
-.section .text
-.global __libm_fabsl#
-
-.proc __libm_fabsl#
-__libm_fabsl:
-.endp __libm_fabsl#
-
-GLOBAL_IEEE754_ENTRY(fabsl)
-
-// set invalid or denormal flags and take fault if
-// necessary
-
-{ .mfi
- nop.m 999
- fcmp.eq.unc.s0 p6,p7 = f8,f1
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f0,f8
- br.ret.sptk b0 ;;
-}
-
-GLOBAL_IEEE754_END(fabsl)
+/* __fabsl is in s_fabs.S. */
diff --git a/sysdeps/ia64/fpu/s_fdim.S b/sysdeps/ia64/fpu/s_fdim.S
deleted file mode 100644
index eff290c593..0000000000
--- a/sysdeps/ia64/fpu/s_fdim.S
+++ /dev/null
@@ -1,228 +0,0 @@
-.file "fdim.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 06/08/01 Initial version
-// 08/23/01 Corrected error tag number
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//
-// API
-//==============================================================
-// double fdim( double x, double y );
-// input floating point f8, f9
-// output floating point f8
-//
-//
-// Overview of operation
-//==============================================================
-// fdim determines the positive difference between the arguments
-// Result = x - y if x > y
-// = +0 if x <= y
-//
-// Error support is called if x-y overflows for x > y
-//
-
-// Registers used
-//==============================================================
-// General purpose registers: r14, r32 - r39
-
-rExpBig = r14
-
-// r36-39 parameters for libm_error_support
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-// Floating-point registers: f8 - f12
-
-f_tmp_result = f10
-fBig = f11
-fNormX = f12
-
-// Predicate registers: p6 - p10
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(fdim)
-
-{ .mfi
- mov rExpBig = 0x103ff // Exponent to indicate overflow
- fcmp.le.s1 p6,p7 = f8, f9 // Is x <= y?
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // Save x
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.exp fBig = rExpBig // Constant to test for overflow
- fcmp.eq.s0 p8,p0 = f8, f9 // Dummy op to set Denormal or Invalid
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p9,p10 = f8, 0x1e3 // Test for x natval, nan, inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p6) fmerge.s f8 = f0, f0 // Result is +0 if x <= y
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fms.d.s0 f8 = f8, f1, f9 // Result is x - y if x > y
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p10) fclass.m p9,p10 = f9, 0x1e3 // Test for y natval, nan, inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p10) fcmp.ge.s1 p8,p0 = f8, fBig // Test result for overflow
- nop.i 0
-}
-;;
-
-{ .mbb
-(p9) cmp.ne p8,p0 = r0,r0 // Clear p8 if x or y natval,nan,inf
-(p8) br.cond.spnt FDIM_OVERFLOW // Branch if result overflows
- br.ret.sptk b0 // Normal return
-}
-;;
-
-
-// Here if result will overflow
-FDIM_OVERFLOW:
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- fms.d.s0 f_tmp_result = f8,f1,f9 // Normalize result force overflow
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 196 // Error code
- nop.f 0
- br.cond.sptk __libm_error_region // Branch to error code
-}
-;;
-
-GLOBAL_LIBM_END(fdim)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-// Call error support to report possible range error
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfd [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfd [GR_Parameter_X] = fNormX // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = f_tmp_result // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_fdimf.S b/sysdeps/ia64/fpu/s_fdimf.S
deleted file mode 100644
index 76d69d1cc9..0000000000
--- a/sysdeps/ia64/fpu/s_fdimf.S
+++ /dev/null
@@ -1,228 +0,0 @@
-.file "fdimf.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 06/08/01 Initial version
-// 08/23/01 Corrected error tag number
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance; fixed parameters for call to error routine
-//
-// API
-//==============================================================
-// float fdimf( float x, float y );
-// input floating point f8, f9
-// output floating point f8
-//
-//
-// Overview of operation
-//==============================================================
-// fdimf determines the positive difference between the arguments
-// Result = x - y if x > y
-// = +0 if x <= y
-//
-// Error support is called if x-y overflows for x > y
-//
-
-// Registers used
-//==============================================================
-// General purpose registers: r14, r32 - r39
-
-rExpBig = r14
-
-// r36-39 parameters for libm_error_support
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-// Floating-point registers: f8 - f12
-
-f_tmp_result = f10
-fBig = f11
-fNormX = f12
-
-// Predicate registers: p6 - p10
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(fdimf)
-
-{ .mfi
- mov rExpBig = 0x1007f // Exponent to indicate overflow
- fcmp.le.s1 p6,p7 = f8, f9 // Is x <= y?
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // Save x
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.exp fBig = rExpBig // Constant to test for overflow
- fcmp.eq.s0 p8,p0 = f8, f9 // Dummy op to set Denormal or Invalid
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p9,p10 = f8, 0x1e3 // Test for x natval, nan, inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p6) fmerge.s f8 = f0, f0 // Result is +0 if x <= y
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fms.s.s0 f8 = f8, f1, f9 // Result is x - y if x > y
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p10) fclass.m p9,p10 = f9, 0x1e3 // Test for y natval, nan, inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p10) fcmp.ge.s1 p8,p0 = f8, fBig // Test result for overflow
- nop.i 0
-}
-;;
-
-{ .mbb
-(p9) cmp.ne p8,p0 = r0,r0 // Clear p8 if x or y natval,nan,inf
-(p8) br.cond.spnt FDIM_OVERFLOW // Branch if result overflows
- br.ret.sptk b0 // Normal return
-}
-;;
-
-
-// Here if result will overflow
-FDIM_OVERFLOW:
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- fms.s.s0 f_tmp_result = f8,f1,f9 // Normalize result force overflow
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 197 // Error code
- nop.f 0
- br.cond.sptk __libm_error_region // Branch to error code
-}
-;;
-
-GLOBAL_LIBM_END(fdimf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-// Call error support to report possible range error
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfs [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfs [GR_Parameter_X] = fNormX // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = f_tmp_result // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_fdiml.S b/sysdeps/ia64/fpu/s_fdiml.S
deleted file mode 100644
index 2227debdb3..0000000000
--- a/sysdeps/ia64/fpu/s_fdiml.S
+++ /dev/null
@@ -1,228 +0,0 @@
-.file "fdiml.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 06/08/01 Initial version
-// 08/23/01 Corrected error tag number
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance; fixed parameters for call to error routine
-//
-// API
-//==============================================================
-// long double fdiml( long double x, long double y );
-// input floating point f8, f9
-// output floating point f8
-//
-//
-// Overview of operation
-//==============================================================
-// fdiml determines the positive difference between the arguments
-// Result = x - y if x > y
-// = +0 if x <= y
-//
-// Error support is called if x-y overflows for x > y
-//
-
-// Registers used
-//==============================================================
-// General purpose registers: r14, r32 - r39
-
-rExpBig = r14
-
-// r36-39 parameters for libm_error_support
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_SAVE_PFS = r35
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-// Floating-point registers: f8 - f12
-
-f_tmp_result = f10
-fBig = f11
-fNormX = f12
-
-// Predicate registers: p6 - p10
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(fdiml)
-
-{ .mfi
- mov rExpBig = 0x13fff // Exponent to indicate overflow
- fcmp.le.s1 p6,p7 = f8, f9 // Is x <= y?
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // Save x
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.exp fBig = rExpBig // Constant to test for overflow
- fcmp.eq.s0 p8,p0 = f8, f9 // Dummy op to set Denormal or Invalid
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fclass.m p9,p10 = f8, 0x1e3 // Test for x natval, nan, inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p6) fmerge.s f8 = f0, f0 // Result is +0 if x <= y
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fms.s0 f8 = f8, f1, f9 // Result is x - y if x > y
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p10) fclass.m p9,p10 = f9, 0x1e3 // Test for y natval, nan, inf
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p10) fcmp.ge.s1 p8,p0 = f8, fBig // Test result for overflow
- nop.i 0
-}
-;;
-
-{ .mbb
-(p9) cmp.ne p8,p0 = r0,r0 // Clear p8 if x or y natval,nan,inf
-(p8) br.cond.spnt FDIM_OVERFLOW // Branch if result overflows
- br.ret.sptk b0 // Normal return
-}
-;;
-
-
-// Here if result will overflow
-FDIM_OVERFLOW:
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- fms.s0 f_tmp_result = f8,f1,f9 // Normalize result force overflow
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 195 // Error code
- nop.f 0
- br.cond.sptk __libm_error_region // Branch to error code
-}
-;;
-
-GLOBAL_LIBM_END(fdiml)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-// Call error support to report possible range error
-.prologue
-
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-{ .mmi
- stfe [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-{ .mib
- stfe [GR_Parameter_X] = fNormX // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = f_tmp_result // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_floor.S b/sysdeps/ia64/fpu/s_floor.S
index 9ed9d6dcdb..438b0fa867 100644
--- a/sysdeps/ia64/fpu/s_floor.S
+++ b/sysdeps/ia64/fpu/s_floor.S
@@ -1,10 +1,10 @@
.file "floor.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,68 +20,86 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+.align 32
+.global floor#
+
+.section .text
+.proc floor#
+.align 32
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 03/22/00 Updated to improve performance
-// 06/13/00 Improved speed, fixed setting of inexact flag
-// 06/27/00 Eliminated incorrect invalid flag setting
-// 02/07/01 Corrected sign of zero result in round to -inf mode
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//==============================================================
+// 2/02/00: Initial version
+// 3/22/00: Updated to improve performance
+// 6/13/00: Improved speed, fixed setting of inexact flag
+// 6/27/00: Eliminated incorrect invalid flag setting
+// 2/07/01: Corrected sign of zero result in round to -inf mode
// API
//==============================================================
// double floor(double x)
-//==============================================================
-// general input registers:
-// r14 - r18
+// general input registers:
+
+floor_GR_FFFF = r14
+floor_GR_signexp = r15
+floor_GR_exponent = r16
+floor_GR_expmask = r17
+floor_GR_bigexp = r18
+
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
+// predicate registers used:
-// floating-point registers:
-// f8 - f13
+// p6 ==> Input is NaN, infinity, zero
+// p7 ==> Input is denormal
+// p8 ==> Input is <0
+// p9 ==> Input is >=0
+// p10 ==> Input is already an integer (bigger than largest integer)
+// p11 ==> Input is not a large integer
+// p12 ==> Input is a smaller integer
+// p13 ==> Input is not an even integer, so inexact must be set
-fXInt = f9
-fNormX = f10
-fTmp = f11
-fAdj = f12
-fPreResult = f13
-// predicate registers used:
-// p6 - p9
+// floating-point registers used:
+
+FLOOR_NORM_f8 = f9
+FLOOR_FFFF = f10
+FLOOR_INEXACT = f11
+FLOOR_FLOAT_INT_f8 = f12
+FLOOR_INT_f8 = f13
+FLOOR_adj = f14
// Overview of operation
//==============================================================
+
// double floor(double x)
-// Return an integer value (represented as a double) that is the largest
+// Return an integer value (represented as a double) that is the largest
// value not greater than x
// This is x rounded toward -infinity to an integral value.
// Inexact is set if x != floor(x)
-//==============================================================
+// **************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
@@ -102,115 +120,121 @@ fPreResult = f13
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
-.section .text
-GLOBAL_IEEE754_ENTRY(floor)
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+#include "libm_support.h"
+
+floor:
+#ifdef _LIBC
+.global __floor
+__floor:
+#endif
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10033, r0 // Set exponent at which is integer
+ getf.exp floor_GR_signexp = f8
+ fcvt.fx.trunc.s1 FLOOR_INT_f8 = f8
+ addl floor_GR_bigexp = 0x10033, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
+ addl floor_GR_FFFF = -1,r0
+ fcmp.lt.s1 p8,p9 = f8,f0
+ mov floor_GR_expmask = 0x1FFFF ;;
}
-;;
+// p7 ==> denorm
{ .mfi
- nop.m 0
- fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
- nop.i 0
+ setf.sig FLOOR_FFFF = floor_GR_FFFF
+ fclass.m p7,p0 = f8, 0x0b
+ nop.i 999
}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt FLOOR_UNORM // Branch if x unorm
+{ .mfi
+ nop.m 999
+ fnorm.s1 FLOOR_NORM_f8 = f8
+ nop.i 999 ;;
}
-;;
-FLOOR_COMMON:
-// Return here from FLOOR_UNORM
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
- nop.i 0
+// p6 ==> NAN, INF, ZERO
+{ .mfb
+ nop.m 999
+ fclass.m p6,p10 = f8, 0xe7
+(p7) br.cond.spnt L(FLOOR_DENORM) ;;
}
-;;
+L(FLOOR_COMMON):
.pred.rel "mutex",p8,p9
+// Set adjustment to subtract from trunc(x) for result
+// If x<0, adjustment is -1.0
+// If x>=0, adjustment is 0.0
{ .mfi
- nop.m 0
-(p8) fnma.s1 fAdj = f1, f1, f0 // If x < 0, adjustment is -1
- nop.i 0
+ and floor_GR_exponent = floor_GR_signexp, floor_GR_expmask
+(p8) fnma.s1 FLOOR_adj = f1,f1,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fAdj = f0, f0, f0 // If x > 0, adjustment is 0
- nop.i 0
+ nop.m 999
+(p9) fadd.s1 FLOOR_adj = f0,f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcvt.xf fPreResult = fXInt // trunc(x)
- nop.i 0
+ nop.m 999
+ fcmp.eq.s0 p12,p0 = f8,f0 // Dummy op to set denormal and invalid flag
+ nop.i 999
}
-{ .mfb
- nop.m 0
-(p6) fma.d.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
+{ .mfi
+(p10) cmp.ge.unc p10,p11 = floor_GR_exponent, floor_GR_bigexp
+(p6) fnorm.d f8 = f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rExp = rSignexp, rExpMask // Get biased exponent
-;;
- cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^52?
- nop.i 0
+{ .mfi
+ nop.m 999
+(p11) fcvt.xf FLOOR_FLOAT_INT_f8 = FLOOR_INT_f8
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fma.d.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^52
- nop.i 0
+ nop.m 999
+(p10) fnorm.d f8 = FLOOR_NORM_f8
+ nop.i 999 ;;
}
+
+
{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^52
- nop.i 0
+ nop.m 999
+(p11) fadd.d f8 = FLOOR_FLOAT_INT_f8,FLOOR_adj
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
- nop.i 0
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p12,p13 = FLOOR_FLOAT_INT_f8, FLOOR_NORM_f8
+ nop.i 999 ;;
}
-;;
+// Set inexact if result not equal to input
{ .mfi
- nop.m 0
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
+ nop.m 999
+(p13) fmpy.s0 FLOOR_INEXACT = FLOOR_FFFF,FLOOR_FFFF
+ nop.i 999
}
+// Set result to input if integer
{ .mfb
- nop.m 0
-(p8) fma.d.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
- br.ret.sptk b0 // Exit main path, 0 < |x| < 2^52
+ nop.m 999
+(p12) fnorm.d f8 = FLOOR_NORM_f8
+ br.ret.sptk b0 ;;
}
-;;
-
-FLOOR_UNORM:
-// Here if x unorm
+// Here if input denorm
+L(FLOOR_DENORM):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk FLOOR_COMMON // Return to main path
+ getf.exp floor_GR_signexp = FLOOR_NORM_f8
+ fcvt.fx.trunc.s1 FLOOR_INT_f8 = FLOOR_NORM_f8
+ br.cond.sptk L(FLOOR_COMMON) ;;
}
-;;
-GLOBAL_IEEE754_END(floor)
+.endp floor
+ASM_SIZE_DIRECTIVE(floor)
diff --git a/sysdeps/ia64/fpu/s_floorf.S b/sysdeps/ia64/fpu/s_floorf.S
index a3f2095931..15b2bbd31d 100644
--- a/sysdeps/ia64/fpu/s_floorf.S
+++ b/sysdeps/ia64/fpu/s_floorf.S
@@ -1,10 +1,10 @@
.file "floorf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +20,85 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+.align 32
+.global floorf#
+
+.section .text
+.proc floorf#
+.align 32
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/13/00 Improved speed
-// 06/27/00 Eliminated incorrect invalid flag setting
-// 02/07/01 Corrected sign of zero result in round to -inf mode
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//==============================================================
+// 2/02/00: Initial version
+// 6/13/00: Improved speed
+// 6/27/00: Eliminated incorrect invalid flag setting
+// 2/07/01: Corrected sign of zero result in round to -inf mode
// API
//==============================================================
// float floorf(float x)
-//==============================================================
-// general input registers:
-// r14 - r18
+// general input registers:
+
+floor_GR_FFFF = r14
+floor_GR_signexp = r15
+floor_GR_exponent = r16
+floor_GR_expmask = r17
+floor_GR_bigexp = r18
+
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
+// predicate registers used:
-// floating-point registers:
-// f8 - f13
+// p6 ==> Input is NaN, infinity, zero
+// p7 ==> Input is denormal
+// p8 ==> Input is <0
+// p9 ==> Input is >=0
+// p10 ==> Input is already an integer (bigger than largest integer)
+// p11 ==> Input is not a large integer
+// p12 ==> Input is a smaller integer
+// p13 ==> Input is not an even integer, so inexact must be set
-fXInt = f9
-fNormX = f10
-fTmp = f11
-fAdj = f12
-fPreResult = f13
-// predicate registers used:
-// p6 - p9
+// floating-point registers used:
+
+FLOOR_NORM_f8 = f9
+FLOOR_FFFF = f10
+FLOOR_INEXACT = f11
+FLOOR_FLOAT_INT_f8 = f12
+FLOOR_INT_f8 = f13
+FLOOR_adj = f14
// Overview of operation
//==============================================================
+
// float floorf(float x)
-// Return an integer value (represented as a float) that is the largest
+// Return an integer value (represented as a float) that is the largest
// value not greater than x
// This is x rounded toward -infinity to an integral value.
// Inexact is set if x != floorf(x)
-//==============================================================
+// **************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
@@ -101,115 +119,119 @@ fPreResult = f13
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
-.section .text
-GLOBAL_IEEE754_ENTRY(floorf)
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+#include "libm_support.h"
+
+floorf:
+#ifdef _LIBC
+.global __floorf
+__floorf:
+#endif
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10016, r0 // Set exponent at which is integer
+ getf.exp floor_GR_signexp = f8
+ fcvt.fx.trunc.s1 FLOOR_INT_f8 = f8
+ addl floor_GR_bigexp = 0x10016, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
+ addl floor_GR_FFFF = -1,r0
+ fcmp.lt.s1 p8,p9 = f8,f0
+ mov floor_GR_expmask = 0x1FFFF ;;
}
-;;
+// p7 ==> denorm
{ .mfi
- nop.m 0
- fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
- nop.i 0
+ setf.sig FLOOR_FFFF = floor_GR_FFFF
+ fclass.m p7,p0 = f8, 0x0b
+ nop.i 999
}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt FLOOR_UNORM // Branch if x unorm
+{ .mfi
+ nop.m 999
+ fnorm.s1 FLOOR_NORM_f8 = f8
+ nop.i 999 ;;
}
-;;
-FLOOR_COMMON:
-// Return here from FLOOR_UNORM
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
- nop.i 0
+// p6 ==> NAN, INF, ZERO
+{ .mfb
+ nop.m 999
+ fclass.m p6,p10 = f8, 0xe7
+(p7) br.cond.spnt L(FLOOR_DENORM) ;;
}
-;;
+L(FLOOR_COMMON):
.pred.rel "mutex",p8,p9
+// Set adjustment to subtract from trunc(x) for result
+// If x<0, adjustment is -1.0
+// If x>=0, adjustment is 0.0
{ .mfi
- nop.m 0
-(p8) fnma.s1 fAdj = f1, f1, f0 // If x < 0, adjustment is -1
- nop.i 0
+ and floor_GR_exponent = floor_GR_signexp, floor_GR_expmask
+(p8) fnma.s1 FLOOR_adj = f1,f1,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fAdj = f0, f0, f0 // If x > 0, adjustment is 0
- nop.i 0
+ nop.m 999
+(p9) fadd.s1 FLOOR_adj = f0,f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcvt.xf fPreResult = fXInt // trunc(x)
- nop.i 0
+ nop.m 999
+ fcmp.eq.s0 p12,p0 = f8,f0 // Dummy op to set denormal and invalid flag
+ nop.i 999
}
-{ .mfb
- nop.m 0
-(p6) fma.s.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
+{ .mfi
+(p10) cmp.ge.unc p10,p11 = floor_GR_exponent, floor_GR_bigexp
+(p6) fnorm.s f8 = f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rExp = rSignexp, rExpMask // Get biased exponent
-;;
- cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^23?
- nop.i 0
+{ .mfi
+ nop.m 999
+(p11) fcvt.xf FLOOR_FLOAT_INT_f8 = FLOOR_INT_f8
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fma.s.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^23
- nop.i 0
+ nop.m 999
+(p10) fnorm.s f8 = FLOOR_NORM_f8
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^23
- nop.i 0
+ nop.m 999
+(p11) fadd.s f8 = FLOOR_FLOAT_INT_f8,FLOOR_adj
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 0
-(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
- nop.i 0
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p12,p13 = FLOOR_FLOAT_INT_f8, FLOOR_NORM_f8
+ nop.i 999 ;;
}
-;;
+// Set inexact if result not equal to input
{ .mfi
- nop.m 0
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
+ nop.m 999
+(p13) fmpy.s0 FLOOR_INEXACT = FLOOR_FFFF,FLOOR_FFFF
+ nop.i 999
}
+// Set result to input if integer
{ .mfb
- nop.m 0
-(p8) fma.s.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
- br.ret.sptk b0 // Exit main path, 0 < |x| < 2^23
+ nop.m 999
+(p12) fnorm.s f8 = FLOOR_NORM_f8
+ br.ret.sptk b0 ;;
}
-;;
-
-FLOOR_UNORM:
-// Here if x unorm
+// Here if input denorm
+L(FLOOR_DENORM):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk FLOOR_COMMON // Return to main path
+ getf.exp floor_GR_signexp = FLOOR_NORM_f8
+ fcvt.fx.trunc.s1 FLOOR_INT_f8 = FLOOR_NORM_f8
+ br.cond.sptk L(FLOOR_COMMON) ;;
}
-;;
-GLOBAL_IEEE754_END(floorf)
+.endp floorf
+ASM_SIZE_DIRECTIVE(floorf)
diff --git a/sysdeps/ia64/fpu/s_floorl.S b/sysdeps/ia64/fpu/s_floorl.S
index 345c4f30dd..294578e1a7 100644
--- a/sysdeps/ia64/fpu/s_floorl.S
+++ b/sysdeps/ia64/fpu/s_floorl.S
@@ -1,10 +1,10 @@
.file "floorl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +20,85 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+.align 32
+.global floorl#
+
+.section .text
+.proc floorl#
+.align 32
+
// History
//==============================================================
-// 02/02/00 Initial version
-// 06/13/00 Improved speed
-// 06/27/00 Eliminated incorrect invalid flag setting
-// 02/07/01 Corrected sign of zero result in round to -inf mode
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/28/03 Improved performance
-//==============================================================
+// 2/02/00: Initial version
+// 6/13/00: Improved speed
+// 6/27/00: Eliminated incorrect invalid flag setting
+// 2/07/01: Corrected sign of zero result in round to -inf mode
// API
//==============================================================
// long double floorl(long double x)
-//==============================================================
-// general input registers:
-// r14 - r18
+// general input registers:
+
+floor_GR_FFFF = r14
+floor_GR_signexp = r15
+floor_GR_exponent = r16
+floor_GR_expmask = r17
+floor_GR_bigexp = r18
+
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
+// predicate registers used:
-// floating-point registers:
-// f8 - f13
+// p6 ==> Input is NaN, infinity, zero
+// p7 ==> Input is denormal
+// p8 ==> Input is <0
+// p9 ==> Input is >=0
+// p10 ==> Input is already an integer (bigger than largest integer)
+// p11 ==> Input is not a large integer
+// p12 ==> Input is a smaller integer
+// p13 ==> Input is not an even integer, so inexact must be set
-fXInt = f9
-fNormX = f10
-fTmp = f11
-fAdj = f12
-fPreResult = f13
-// predicate registers used:
-// p6 - p9
+// floating-point registers used:
+
+FLOOR_NORM_f8 = f9
+FLOOR_FFFF = f10
+FLOOR_INEXACT = f11
+FLOOR_FLOAT_INT_f8 = f12
+FLOOR_INT_f8 = f13
+FLOOR_adj = f14
// Overview of operation
//==============================================================
+
// long double floorl(long double x)
-// Return an integer value (represented as a long double) that is the largest
+// Return an integer value (represented as a long double) that is the largest
// value not greater than x
// This is x rounded toward -infinity to an integral value.
// Inexact is set if x != floorl(x)
-//==============================================================
+// **************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
@@ -101,115 +119,119 @@ fPreResult = f13
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
-.section .text
-GLOBAL_IEEE754_ENTRY(floorl)
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+#include "libm_support.h"
+
+floorl:
+#ifdef _LIBC
+.global __floorl
+__floorl:
+#endif
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x1003e, r0 // Set exponent at which is integer
+ getf.exp floor_GR_signexp = f8
+ fcvt.fx.trunc.s1 FLOOR_INT_f8 = f8
+ addl floor_GR_bigexp = 0x1003e, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
+ addl floor_GR_FFFF = -1,r0
+ fcmp.lt.s1 p8,p9 = f8,f0
+ mov floor_GR_expmask = 0x1FFFF ;;
}
-;;
+// p7 ==> denorm
{ .mfi
- nop.m 0
- fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
- nop.i 0
+ setf.sig FLOOR_FFFF = floor_GR_FFFF
+ fclass.m p7,p0 = f8, 0x0b
+ nop.i 999
}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt FLOOR_UNORM // Branch if x unorm
+{ .mfi
+ nop.m 999
+ fnorm.s1 FLOOR_NORM_f8 = f8
+ nop.i 999 ;;
}
-;;
-FLOOR_COMMON:
-// Return here from FLOOR_UNORM
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
- nop.i 0
+// p6 ==> NAN, INF, ZERO
+{ .mfb
+ nop.m 999
+ fclass.m p6,p10 = f8, 0xe7
+(p7) br.cond.spnt L(FLOOR_DENORM) ;;
}
-;;
+L(FLOOR_COMMON):
.pred.rel "mutex",p8,p9
+// Set adjustment to subtract from trunc(x) for result
+// If x<0, adjustment is -1.0
+// If x>=0, adjustment is 0.0
{ .mfi
- nop.m 0
-(p8) fnma.s1 fAdj = f1, f1, f0 // If x < 0, adjustment is -1
- nop.i 0
+ and floor_GR_exponent = floor_GR_signexp, floor_GR_expmask
+(p8) fnma.s1 FLOOR_adj = f1,f1,f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fAdj = f0, f0, f0 // If x > 0, adjustment is 0
- nop.i 0
+ nop.m 999
+(p9) fadd.s1 FLOOR_adj = f0,f0
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fcvt.xf fPreResult = fXInt // trunc(x)
- nop.i 0
+ nop.m 999
+ fcmp.eq.s0 p12,p0 = f8,f0 // Dummy op to set denormal and invalid flag
+ nop.i 999
}
-{ .mfb
- nop.m 0
-(p6) fma.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
+{ .mfi
+(p10) cmp.ge.unc p10,p11 = floor_GR_exponent, floor_GR_bigexp
+(p6) fnorm f8 = f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- and rExp = rSignexp, rExpMask // Get biased exponent
-;;
- cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^63?
- nop.i 0
+{ .mfi
+ nop.m 999
+(p11) fcvt.xf FLOOR_FLOAT_INT_f8 = FLOOR_INT_f8
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p6) fma.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^63
- nop.i 0
+ nop.m 999
+(p10) fnorm f8 = FLOOR_NORM_f8
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 0
-(p7) fma.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^63
- nop.i 0
+ nop.m 999
+(p11) fadd f8 = FLOOR_FLOAT_INT_f8,FLOOR_adj
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 0
-(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
- nop.i 0
+ nop.m 999
+(p11) fcmp.eq.unc.s1 p12,p13 = FLOOR_FLOAT_INT_f8, FLOOR_NORM_f8
+ nop.i 999 ;;
}
-;;
+// Set inexact if result not equal to input
{ .mfi
- nop.m 0
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
+ nop.m 999
+(p13) fmpy.s0 FLOOR_INEXACT = FLOOR_FFFF,FLOOR_FFFF
+ nop.i 999
}
+// Set result to input if integer
{ .mfb
- nop.m 0
-(p8) fma.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
- br.ret.sptk b0 // Exit main path, 0 < |x| < 2^63
+ nop.m 999
+(p12) fnorm f8 = FLOOR_NORM_f8
+ br.ret.sptk b0 ;;
}
-;;
-
-FLOOR_UNORM:
-// Here if x unorm
+// Here if input denorm
+L(FLOOR_DENORM):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk FLOOR_COMMON // Return to main path
+ getf.exp floor_GR_signexp = FLOOR_NORM_f8
+ fcvt.fx.trunc.s1 FLOOR_INT_f8 = FLOOR_NORM_f8
+ br.cond.sptk L(FLOOR_COMMON) ;;
}
-;;
-GLOBAL_IEEE754_END(floorl)
+.endp floorl
+ASM_SIZE_DIRECTIVE(floorl)
diff --git a/sysdeps/ia64/fpu/s_fma.S b/sysdeps/ia64/fpu/s_fma.S
deleted file mode 100644
index 7798790d50..0000000000
--- a/sysdeps/ia64/fpu/s_fma.S
+++ /dev/null
@@ -1,71 +0,0 @@
-.file "fma.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 06/07/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// double fma (double x, double y, double z)
-//
-// Overview of operation
-//==============================================================
-// returns x * y + z with one rounding error
-
-// All the special cases are handled by the fma instruction itself
-
-// floating-point registers used: 3
-// f8, input x, output
-// f9, input y
-// f10, input z
-
-.section .text
-GLOBAL_LIBM_ENTRY(fma)
-
-{ .mfb
- nop.m 999
- fma.d.s0 f8 = f8, f9, f10 // Result = x * y + z
- br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(fma)
diff --git a/sysdeps/ia64/fpu/s_fmaf.S b/sysdeps/ia64/fpu/s_fmaf.S
deleted file mode 100644
index db112b2a6c..0000000000
--- a/sysdeps/ia64/fpu/s_fmaf.S
+++ /dev/null
@@ -1,71 +0,0 @@
-.file "fmaf.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 06/07/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// float fmaf (float x, float y, float z)
-//
-// Overview of operation
-//==============================================================
-// returns x * y + z with one rounding error
-
-// All the special cases are handled by the fma instruction itself
-
-// floating-point registers used: 3
-// f8, input x, output
-// f9, input y
-// f10, input z
-
-.section .text
-GLOBAL_LIBM_ENTRY(fmaf)
-
-{ .mfb
- nop.m 999
- fma.s.s0 f8 = f8, f9, f10 // Result = x * y + z
- br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(fmaf)
diff --git a/sysdeps/ia64/fpu/s_fmal.S b/sysdeps/ia64/fpu/s_fmal.S
deleted file mode 100644
index 2bdef0b3ed..0000000000
--- a/sysdeps/ia64/fpu/s_fmal.S
+++ /dev/null
@@ -1,71 +0,0 @@
-.file "fmal.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 06/07/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double fmal (long double x, long double y, long double z)
-//
-// Overview of operation
-//==============================================================
-// returns x * y + z with one rounding error
-
-// All the special cases are handled by the fma instruction itself
-
-// floating-point registers used: 3
-// f8, input x, output
-// f9, input y
-// f10, input z
-
-.section .text
-GLOBAL_LIBM_ENTRY(fmal)
-
-{ .mfb
- nop.m 999
- fma.s0 f8 = f8, f9, f10 // Result = x * y + z
- br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(fmal)
diff --git a/sysdeps/ia64/fpu/s_fmax.S b/sysdeps/ia64/fpu/s_fmax.S
deleted file mode 100644
index 6fd38dfe9d..0000000000
--- a/sysdeps/ia64/fpu/s_fmax.S
+++ /dev/null
@@ -1,114 +0,0 @@
-.file "fmax.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 05/31/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// double fmax (double x, double y)
-//
-// Overview of operation
-//==============================================================
-// returns the algebraic maximum of 2 input values
-//
-// Special cases:
-// fmax(x, nan) returns x if x is numeric // Must special case this one
-// fmax(nan, y) returns y if y is numeric
-// fmax(nan1, nan2) returns quietized nan2
-// fmax(+0,+0) returns +0
-// fmax(-0,+0) returns +0
-// fmax(-0,-0) returns -0
-// fmax(+0,-0) returns +0 // Must special case this one
-//
-// SNaN causes invalid to be set
-
-// floating-point registers used: 2
-// f8, input x, output
-// f9, input y
-
-.section .text
-GLOBAL_LIBM_ENTRY(fmax)
-
-{ .mfi
- nop.m 999
- fcmp.unord.s0 p6,p7 = f8, f9 // Is x or y a nan? Raise invalid or denormal
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p7) fclass.m.unc p8,p9 = f9, 0x06 // If no nan, is y=-0?
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p6) fclass.m.unc p10,p0 = f8, 0xc3 // Is x nan?
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fmax.s0 f8 = f8, f9 // Normal case, no nan and y not -0
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fmax.s0 f8 = f9, f8 // No nan and y -0
- nop.i 999
-}
-;;
-
-{ .mfb
- nop.m 999
-(p10) fmerge.s f8 = f9, f9 // If x nan, return y, else do nothing (returns x)
- br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(fmax)
diff --git a/sysdeps/ia64/fpu/s_fmaxf.S b/sysdeps/ia64/fpu/s_fmaxf.S
deleted file mode 100644
index cac283c66a..0000000000
--- a/sysdeps/ia64/fpu/s_fmaxf.S
+++ /dev/null
@@ -1,114 +0,0 @@
-.file "fmaxf.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 05/31/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// float fmaxf (float x, float y)
-//
-// Overview of operation
-//==============================================================
-// returns the algebraic maximum of 2 input values
-//
-// Special cases:
-// fmaxf(x, nan) returns x if x is numeric // Must special case this one
-// fmaxf(nan, y) returns y if y is numeric
-// fmaxf(nan1, nan2) returns quietized nan2
-// fmaxf(+0,+0) returns +0
-// fmaxf(-0,+0) returns +0
-// fmaxf(-0,-0) returns -0
-// fmaxf(+0,-0) returns +0 // Must special case this one
-//
-// SNaN causes invalid to be set
-
-// floating-point registers used: 2
-// f8, input x, output
-// f9, input y
-
-.section .text
-GLOBAL_LIBM_ENTRY(fmaxf)
-
-{ .mfi
- nop.m 999
- fcmp.unord.s0 p6,p7 = f8, f9 // Is x or y a nan? Raise invalid or denormal
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p7) fclass.m.unc p8,p9 = f9, 0x06 // If no nan, is y=-0?
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p6) fclass.m.unc p10,p0 = f8, 0xc3 // Is x nan?
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fmax.s0 f8 = f8, f9 // Normal case, no nan and y not -0
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fmax.s0 f8 = f9, f8 // No nan and y -0
- nop.i 999
-}
-;;
-
-{ .mfb
- nop.m 999
-(p10) fmerge.s f8 = f9, f9 // If x nan, return y, else do nothing (returns x)
- br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(fmaxf)
diff --git a/sysdeps/ia64/fpu/s_fmaxl.S b/sysdeps/ia64/fpu/s_fmaxl.S
deleted file mode 100644
index fb8861dcdf..0000000000
--- a/sysdeps/ia64/fpu/s_fmaxl.S
+++ /dev/null
@@ -1,114 +0,0 @@
-.file "fmaxl.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 05/31/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double fmaxl (long double x, long double y)
-//
-// Overview of operation
-//==============================================================
-// returns the algebraic maximum of 2 input values
-//
-// Special cases:
-// fmaxl(x, nan) returns x if x is numeric // Must special case this one
-// fmaxl(nan, y) returns y if y is numeric
-// fmaxl(nan1, nan2) returns quietized nan2
-// fmaxl(+0,+0) returns +0
-// fmaxl(-0,+0) returns +0
-// fmaxl(-0,-0) returns -0
-// fmaxl(+0,-0) returns +0 // Must special case this one
-//
-// SNaN causes invalid to be set
-
-// floating-point registers used: 2
-// f8, input x, output
-// f9, input y
-
-.section .text
-GLOBAL_LIBM_ENTRY(fmaxl)
-
-{ .mfi
- nop.m 999
- fcmp.unord.s0 p6,p7 = f8, f9 // Is x or y a nan? Raise invalid or denormal
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p7) fclass.m.unc p8,p9 = f9, 0x06 // If no nan, is y=-0?
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p6) fclass.m.unc p10,p0 = f8, 0xc3 // Is x nan?
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fmax.s0 f8 = f8, f9 // Normal case, no nan and y not -0
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fmax.s0 f8 = f9, f8 // No nan and y -0
- nop.i 999
-}
-;;
-
-{ .mfb
- nop.m 999
-(p10) fmerge.s f8 = f9, f9 // If x nan, return y, else do nothing (returns x)
- br.ret.sptk b0
-}
-;;
-
-GLOBAL_LIBM_END(fmaxl)
diff --git a/sysdeps/ia64/fpu/s_frexp.c b/sysdeps/ia64/fpu/s_frexp.c
index 7d90213d63..98349bca47 100644
--- a/sysdeps/ia64/fpu/s_frexp.c
+++ b/sysdeps/ia64/fpu/s_frexp.c
@@ -1,10 +1,9 @@
-/* file: frexp.c */
-
-
-// Copyright (c) 2000-2002, Intel Corporation
+//
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,15 +19,14 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
@@ -36,30 +34,22 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
+// http://developer.intel.com/opensource.
//
-// History
-//=====================================================================
-// 2/02/00 Initial version
-// 1/23/02 Calls kernel with parameter to specify 32- or 64-bit int
//
-//=====================================================================
#include "libm_support.h"
-double __libm_frexp(double, int*, int);
-
double frexp(double x, int *y)
{
-#ifdef SIZE_INT_64
- return( __libm_frexp(x, y, 1) );
+#ifdef SIZE_INT_64
+ return( __libm_frexp_8(x, y) );
#else
-#ifdef SIZE_INT_32
- return( __libm_frexp(x, y, 0) );
+#ifdef SIZE_INT_32
+ return( _GI___libm_frexp_4(x, y) );
#endif
#endif
diff --git a/sysdeps/ia64/fpu/s_frexpf.c b/sysdeps/ia64/fpu/s_frexpf.c
index 920f09d4a4..f666304147 100644
--- a/sysdeps/ia64/fpu/s_frexpf.c
+++ b/sysdeps/ia64/fpu/s_frexpf.c
@@ -1,10 +1,9 @@
-/* file: frexpf.c */
-
-
-// Copyright (c) 2000-2002, Intel Corporation
+//
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,15 +19,14 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
@@ -36,30 +34,22 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
+// http://developer.intel.com/opensource.
//
-// History
-//=====================================================================
-// 2/02/00 Initial version
-// 1/23/02 Calls kernel with parameter to specify 32- or 64-bit int
//
-//=====================================================================
#include "libm_support.h"
-float __libm_frexpf(float, int*, int);
-
float frexpf(float x, int *y)
{
-#ifdef SIZE_INT_64
- return( __libm_frexpf(x, y, 1) );
+#ifdef SIZE_INT_64
+ return( __libm_frexp_8f(x, y) );
#else
-#ifdef SIZE_INT_32
- return( __libm_frexpf(x, y, 0) );
+#ifdef SIZE_INT_32
+ return( _GI___libm_frexp_4f(x, y) );
#endif
#endif
diff --git a/sysdeps/ia64/fpu/s_frexpl.c b/sysdeps/ia64/fpu/s_frexpl.c
index 968cc3269c..3edc971e3f 100644
--- a/sysdeps/ia64/fpu/s_frexpl.c
+++ b/sysdeps/ia64/fpu/s_frexpl.c
@@ -1,10 +1,9 @@
-/* file: frexpl.c */
-
-
-// Copyright (c) 2000-2002, Intel Corporation
+//
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,15 +19,14 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
@@ -36,30 +34,22 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
+// http://developer.intel.com/opensource.
//
-// History
-//=====================================================================
-// 2/02/00 Initial version
-// 1/23/02 Calls kernel with parameter to specify 32- or 64-bit int
//
-//=====================================================================
#include "libm_support.h"
-long double __libm_frexpl(long double, int*, int);
-
long double frexpl(long double x, int *y)
{
-#ifdef SIZE_INT_64
- return( __libm_frexpl(x, y, 1) );
+#ifdef SIZE_INT_64
+ return( __libm_frexp_8l(x, y) );
#else
-#ifdef SIZE_INT_32
- return( __libm_frexpl(x, y, 0) );
+#ifdef SIZE_INT_32
+ return( _GI___libm_frexp_4l(x, y) );
#endif
#endif
diff --git a/sysdeps/ia64/fpu/s_ilogb.S b/sysdeps/ia64/fpu/s_ilogb.S
index 0102370cd6..61975dd941 100644
--- a/sysdeps/ia64/fpu/s_ilogb.S
+++ b/sysdeps/ia64/fpu/s_ilogb.S
@@ -1,10 +1,10 @@
.file "ilogb.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,249 +20,234 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/03/00 Initial version
-// 05/26/00 Fix bug when x a double-extended denormal;
+// 2/03/00 Initial version
+// 5/26/00 Fix bug when x a double-extended denormal;
// if x=0 call error routine, per C9X
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 01/20/01 Fixed result for x=0, corrected error tag value.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
-//
+// 1/20/01 Fixed result for x=0, corrected error tag value.
+
+.align 32
+.global ilogb#
+
+.section .text
+.proc ilogb#
+.align 32
+
// API
//==============================================================
-// int ilogb( double x );
-//
+// int = ilogb(double)
+
// Overview of operation
//==============================================================
-// The ilogb function extracts the exponent of x as an integer
+// ilogb computes log2(x) as an int
// and returns it in r8
-//
-// ilogb is similar to logb but differs in the following ways:
+
+// ilogb is similar to logb but differs in the following ways:
// +-inf
// ilogb: returns INT_MAX
// logb: returns +inf
-// Nan returns FP_LOGBNAN (which is either INT_MAX or INT_MIN)
+// Nan returns FP_ILOGBNAN (which is either INT_MAX or INT_MIN)
// ilogb: returns INT_MAX (7fffffff)
-// logb: returns QNAN (quietized SNAN)
+// logb: returns QNAN (quieted SNAN)
// 0 returns FP_ILOGB0 (which is either INT_MIN or -INT_MAX)
-// ilogb: returns -INT_MAX (80000001)
-// logb: returns -inf, raises the divide-by-zero exception,
-// and calls libm_error_support to set domain error
-//
+// ilogb: returns INT_MIN (80000000)
+// logb: returns -inf
+
// Registers used
//==============================================================
-// general registers used:
-// r26 -> r39
-// r36 -> r39 used as parameters to error path
-//
-// predicate registers used:
-// p6 -> p10
-// floating-point registers used:
-// f9, f10, f11
-// f8, input
-rExpBias = r26
-rExpMask = r27
-rSignexp_x = r28
-rExp_x = r29
-rIntMax = r30
-rExp_2to64 = r31
+// general local registers:
+// ar.pfs r32
+// r33 -> r37
+// r38 -> r41 used as parameters to error path
+
+// predicate registers used:
+// p6 - x nan, inf
+// p7 - x 0
+// p8 - x norm, unorm
+// p9 - x unorm
+
+// floating-point registers used:
+// f8 - f10
+
+#include "libm_support.h"
GR_SAVE_PFS = r32
-rTrialResult = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
+GR_Parameter_X = r38
+GR_Parameter_Y = r39
+GR_Parameter_RESULT = r40
+GR_Parameter_TAG = r41
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
+FR_X = f8
+FR_Y = f0
+FR_RESULT = f0
-fTmp = f9
-fNorm_x = f10
-f2to64 = f11
-.section .text
-GLOBAL_LIBM_ENTRY(ilogb)
+ilogb:
-// X NORMAL
-// TrueExp_x = exp(f8) - 0xffff
-// r8 = TrueExp_x
-{ .mfi
- getf.exp rSignexp_x = f8
- fclass.m p8,p0 = f8, 0x0b // Test for x unorm
- mov rExpBias = 0xffff // Exponent bias
+// Form signexp of 2^64 in case need to scale denormal
+{ .mmf
+ alloc r32=ar.pfs,1,5,4,0
+(p0) mov r37 = 0x1003f
+(p0) fnorm f9 = f8 ;;
}
+
+// Form 2^64 in case need to scale denormal
{ .mfi
- nop.m 0
- fnorm.s1 fNorm_x = f8
- mov rExpMask = 0x1ffff // Exponent mask
+(p0) setf.exp f10 = r37
+(p0) fclass.m.unc p7, p8 = f8, 0xe3
+(p0) mov r34 = 0xffff ;;
}
-;;
-// Form signexp of 2^64 in case need to scale denormal
-{ .mfb
- mov rExp_2to64 = 0x1003f
- fclass.m p6,p9 = f8, 0x1e3 // Test x natval, nan, inf
-(p8) br.cond.spnt ILOGB_DENORM // Branch if x unorm
-}
-;;
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+// X ZERO, returns INT_MIN
+// X INF or NAN, returns INT_MAX
-ILOGB_COMMON:
-// Return here from ILOGB_DENORM
{ .mfi
- and rExp_x = rSignexp_x, rExpMask // Get biased exponent
- fclass.m p7,p10 = f8, 0x07 // Test x zero
- nop.i 0
+(p0) mov r35 = 0x1ffff
+(p8) fclass.m.unc p6, p8 = f8, 0x07
+ nop.i 999 ;;
}
{ .mlx
- nop.m 0
- movl rIntMax = 0x000000007fffffff // Form INT_MAX
+ nop.m 999
+(p7) movl r8 = 0x000000007fffffff ;;
}
-;;
-.pred.rel "mutex",p6,p9
-{ .mfi
-(p9) sub r8 = rExp_x, rExpBias // Get true exponent for normal path
-(p6) fma.s0 fTmp = f8, f8, f0 // Dummy to set Invalid flag
-(p6) mov r8 = rIntMax // If nan, inf, return INT_MAX
-}
-{ .mbb
- nop.m 0
-(p7) br.cond.spnt ILOGB_ZERO // Branch if x zero
-(p10) br.ret.sptk b0 // Exit if x not zero
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(ILOGB_ZERO) ;;
}
-;;
-
-ILOGB_DENORM:
-// Form 2^64 in case need to scale denormal
-// Check to see if double-extended denormal
+// Test for denormal
{ .mfi
- setf.exp f2to64 = rExp_2to64
- fclass.m p8,p0 = fNorm_x, 0x0b
- nop.i 0
+ nop.m 999
+(p8) fclass.m.unc p9, p0 = f9, 0x0b
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+L(ILOGB_COMMON):
+// X NORMAL returns true exponent
+{ .mmi
+ nop.m 999
+(p8) getf.exp r33 = f9
+ nop.i 999 ;;
}
-;;
-// If double-extended denormal add 64 to exponent bias for scaling
-// If double-extended denormal form x * 2^64 which is normal
-{ .mfi
-(p8) add rExpBias = 64, rExpBias
-(p8) fmpy.s1 fNorm_x = fNorm_x, f2to64
- nop.i 0
+// If denormal add 64 to exponent bias for scaling
+{ .mfb
+(p9) add r34 = 64, r34
+ nop.f 999
+(p9) br.cond.spnt L(ILOGB_DENORM) ;;
}
-;;
-// Logic is the same as normal path but use normalized input
-{ .mib
- getf.exp rSignexp_x = fNorm_x
- nop.i 0
- br.cond.sptk ILOGB_COMMON // Return to main path
+{ .mmi
+(p8) and r36 = r35, r33
+ nop.m 999
+ nop.i 999 ;;
}
-;;
-ILOGB_ZERO:
-// Here if x zero
-// Return INT_MIN, call error support
-
-{ .mlx
- alloc r32=ar.pfs,1,3,4,0
- movl rTrialResult = 0x0000000080000000
-}
{ .mib
- mov GR_Parameter_TAG = 157 // Error code
- nop.i 0
- br.cond.sptk __libm_error_region // Call error support
+(p8) sub r8 = r36, r34
+ nop.i 999
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(ilogb)
+L(ILOGB_DENORM):
+// Here if x denormal
+// Form x * 2^64 which is normal
+// Return to common code
+{ .mfb
+ cmp.eq p8,p9 = r0,r0
+ fmpy f9 = f9, f10
+ br.cond.sptk L(ILOGB_COMMON) ;;
+}
+// X ZERO
+// return INT_MIN, call error support
+L(ILOGB_ZERO):
+{.mlx
+ mov GR_Parameter_TAG = 157
+(p6) movl r33 = 0x0000000080000000 ;;
+};;
+.endp ilogb
+ASM_SIZE_DIRECTIVE(ilogb)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
-
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfd [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
{ .mib
- stfd [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfd [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
+ stfd [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
- mov r8 = rTrialResult
+ mov r8 = r33 // Store result
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_ilogbf.S b/sysdeps/ia64/fpu/s_ilogbf.S
index 9e971bc634..ffa6d3b672 100644
--- a/sysdeps/ia64/fpu/s_ilogbf.S
+++ b/sysdeps/ia64/fpu/s_ilogbf.S
@@ -1,10 +1,10 @@
.file "ilogbf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,249 +20,234 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/03/00 Initial version
-// 05/26/00 Fix bug when x a double-extended denormal;
+// 2/03/00 Initial version
+// 5/26/00 Fix bug when x a double-extended denormal;
// if x=0 call error routine, per C9X
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 01/20/01 Fixed result for x=0
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
-//
+// 1/20/01 Fixed result for x=0
+
+.align 32
+.global ilogbf#
+
+.section .text
+.proc ilogbf#
+.align 32
+
// API
//==============================================================
-// int ilogbf( float x );
-//
+// int = ilogbf(float)
+
// Overview of operation
//==============================================================
-// The ilogbf function extracts the exponent of x as an integer
+// ilogbf computes log2(x) as an int
// and returns it in r8
-//
-// ilogbf is similar to logbf but differs in the following ways:
+
+// ilogbf is similar to logbf but differs in the following ways:
// +-inf
// ilogbf: returns INT_MAX
// logbf: returns +inf
-// Nan returns FP_LOGBNAN (which is either INT_MAX or INT_MIN)
+// Nan returns FP_ILOGBNAN (which is either INT_MAX or INT_MIN)
// ilogbf: returns INT_MAX (7fffffff)
-// logbf: returns QNAN (quietized SNAN)
+// logbf: returns QNAN (quieted SNAN)
// 0 returns FP_ILOGB0 (which is either INT_MIN or -INT_MAX)
-// ilogbf: returns -INT_MAX (80000001)
-// logbf: returns -inf, raises the divide-by-zero exception,
-// and calls libm_error_support to set domain error
-//
+// ilogbf: returns INT_MIN (80000000)
+// logbf: returns -inf
+
// Registers used
//==============================================================
-// general registers used:
-// r26 -> r39
-// r36 -> r39 used as parameters to error path
-//
-// predicate registers used:
-// p6 -> p10
-// floating-point registers used:
-// f9, f10, f11
-// f8, input
-rExpBias = r26
-rExpMask = r27
-rSignexp_x = r28
-rExp_x = r29
-rIntMax = r30
-rExp_2to64 = r31
+// general local registers:
+// ar.pfs r32
+// r33 -> r37
+// r38 -> r41 used as parameters to error path
+
+// predicate registers used:
+// p6 - x nan, inf
+// p7 - x 0
+// p8 - x norm, unorm
+// p9 - x unorm
+
+// floating-point registers used:
+// f8 - f10
+
+#include "libm_support.h"
GR_SAVE_PFS = r32
-rTrialResult = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
+GR_Parameter_X = r38
+GR_Parameter_Y = r39
+GR_Parameter_RESULT = r40
+GR_Parameter_TAG = r41
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
+FR_X = f8
+FR_Y = f0
+FR_RESULT = f0
-fTmp = f9
-fNorm_x = f10
-f2to64 = f11
-.section .text
-GLOBAL_LIBM_ENTRY(ilogbf)
+ilogbf:
-// X NORMAL
-// TrueExp_x = exp(f8) - 0xffff
-// r8 = TrueExp_x
-{ .mfi
- getf.exp rSignexp_x = f8
- fclass.m p8,p0 = f8, 0x0b // Test for x unorm
- mov rExpBias = 0xffff // Exponent bias
+// Form signexp of 2^64 in case need to scale denormal
+{ .mmf
+ alloc r32=ar.pfs,1,5,4,0
+(p0) mov r37 = 0x1003f
+(p0) fnorm f9 = f8 ;;
}
+
+// Form 2^64 in case need to scale denormal
{ .mfi
- nop.m 0
- fnorm.s1 fNorm_x = f8
- mov rExpMask = 0x1ffff // Exponent mask
+(p0) setf.exp f10 = r37
+(p0) fclass.m.unc p7, p8 = f8, 0xe3
+(p0) mov r34 = 0xffff ;;
}
-;;
-// Form signexp of 2^64 in case need to scale denormal
-{ .mfb
- mov rExp_2to64 = 0x1003f
- fclass.m p6,p9 = f8, 0x1e3 // Test x natval, nan, inf
-(p8) br.cond.spnt ILOGB_DENORM // Branch if x unorm
-}
-;;
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+// X ZERO, returns INT_MIN
+// X INF or NAN, returns INT_MAX
-ILOGB_COMMON:
-// Return here from ILOGB_DENORM
{ .mfi
- and rExp_x = rSignexp_x, rExpMask // Get biased exponent
- fclass.m p7,p10 = f8, 0x07 // Test x zero
- nop.i 0
+(p0) mov r35 = 0x1ffff
+(p8) fclass.m.unc p6, p8 = f8, 0x07
+ nop.i 999 ;;
}
{ .mlx
- nop.m 0
- movl rIntMax = 0x000000007fffffff // Form INT_MAX
+ nop.m 999
+(p7) movl r8 = 0x000000007fffffff ;;
}
-;;
-.pred.rel "mutex",p6,p9
-{ .mfi
-(p9) sub r8 = rExp_x, rExpBias // Get true exponent for normal path
-(p6) fma.s0 fTmp = f8, f8, f0 // Dummy to set Invalid flag
-(p6) mov r8 = rIntMax // If nan, inf, return INT_MAX
-}
-{ .mbb
- nop.m 0
-(p7) br.cond.spnt ILOGB_ZERO // Branch if x zero
-(p10) br.ret.sptk b0 // Exit if x not zero
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(ILOGB_ZERO) ;;
}
-;;
-
-ILOGB_DENORM:
-// Form 2^64 in case need to scale denormal
-// Check to see if double-extended denormal
+// Test for denormal
{ .mfi
- setf.exp f2to64 = rExp_2to64
- fclass.m p8,p0 = fNorm_x, 0x0b
- nop.i 0
+ nop.m 999
+(p8) fclass.m.unc p9, p0 = f9, 0x0b
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+L(ILOGB_COMMON):
+// X NORMAL returns true exponent
+{ .mmi
+ nop.m 999
+(p8) getf.exp r33 = f9
+ nop.i 999 ;;
}
-;;
-// If double-extended denormal add 64 to exponent bias for scaling
-// If double-extended denormal form x * 2^64 which is normal
-{ .mfi
-(p8) add rExpBias = 64, rExpBias
-(p8) fmpy.s1 fNorm_x = fNorm_x, f2to64
- nop.i 0
+// If denormal add 64 to exponent bias for scaling
+{ .mfb
+(p9) add r34 = 64, r34
+ nop.f 999
+(p9) br.cond.spnt L(ILOGB_DENORM) ;;
}
-;;
-// Logic is the same as normal path but use normalized input
-{ .mib
- getf.exp rSignexp_x = fNorm_x
- nop.i 0
- br.cond.sptk ILOGB_COMMON // Return to main path
+{ .mmi
+(p8) and r36 = r35, r33
+ nop.m 999
+ nop.i 999 ;;
}
-;;
-ILOGB_ZERO:
-// Here if x zero
-// Return INT_MIN, call error support
-
-{ .mlx
- alloc r32=ar.pfs,1,3,4,0
- movl rTrialResult = 0x0000000080000000
-}
{ .mib
- mov GR_Parameter_TAG = 158 // Error code
- nop.i 0
- br.cond.sptk __libm_error_region // Call error support
+(p8) sub r8 = r36, r34
+ nop.i 999
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(ilogbf)
+L(ILOGB_DENORM):
+// Here if x denormal
+// Form x * 2^64 which is normal
+// Return to common code
+{ .mfb
+ cmp.eq p8,p9 = r0,r0
+ fmpy f9 = f9, f10
+ br.cond.sptk L(ILOGB_COMMON) ;;
+}
+// X ZERO
+// return INT_MIN, call error support
+L(ILOGB_ZERO):
+{.mlx
+ mov GR_Parameter_TAG = 158
+(p6) movl r33 = 0x0000000080000000 ;;
+};;
+.endp ilogbf
+ASM_SIZE_DIRECTIVE(ilogbf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
-
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- stfs [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
{ .mib
- stfs [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfs [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
- mov r8 = rTrialResult
+ mov r8 = r33 // Store result
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_ilogbl.S b/sysdeps/ia64/fpu/s_ilogbl.S
index 8a6c9dc710..240da060bf 100644
--- a/sysdeps/ia64/fpu/s_ilogbl.S
+++ b/sysdeps/ia64/fpu/s_ilogbl.S
@@ -1,10 +1,10 @@
.file "ilogbl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,249 +20,234 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/03/00 Initial version
-// 05/26/00 Fix bug when x a double-extended denormal;
+// 2/03/00 Initial version
+// 5/26/00 Fix bug when x a double-extended denormal;
// if x=0 call error routine, per C9X
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 01/20/01 Fixed result for x=0
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
-//
+// 1/20/01 Fixed result for x=0
+
+.align 32
+.global ilogbl#
+
+.section .text
+.proc ilogbl#
+.align 32
+
// API
//==============================================================
-// int ilogbl( long double x );
-//
+// int = ilogbl(double_extended)
+
// Overview of operation
//==============================================================
-// The ilogbl function extracts the exponent of x as an integer
+// ilogbl computes log2(x) as an int
// and returns it in r8
-//
-// ilogbl is similar to logbl but differs in the following ways:
+
+// ilogbl is similar to logbl but differs in the following ways:
// +-inf
// ilogbl: returns INT_MAX
// logbl: returns +inf
-// Nan returns FP_LOGBNAN (which is either INT_MAX or INT_MIN)
+// Nan returns FP_ILOGBNAN (which is either INT_MAX or INT_MIN)
// ilogbl: returns INT_MAX (7fffffff)
-// logbl: returns QNAN (quietized SNAN)
+// logbl: returns QNAN (quieted SNAN)
// 0 returns FP_ILOGB0 (which is either INT_MIN or -INT_MAX)
-// ilogbl: returns -INT_MAX (80000001)
-// logbl: returns -inf, raises the divide-by-zero exception,
-// and calls libm_error_support to set domain error
-//
+// ilogbl: returns INT_MIN (80000000)
+// logbl: returns -inf
+
// Registers used
//==============================================================
-// general registers used:
-// r26 -> r39
-// r36 -> r39 used as parameters to error path
-//
-// predicate registers used:
-// p6 -> p10
-// floating-point registers used:
-// f9, f10, f11
-// f8, input
-rExpBias = r26
-rExpMask = r27
-rSignexp_x = r28
-rExp_x = r29
-rIntMax = r30
-rExp_2to64 = r31
+// general local registers:
+// ar.pfs r32
+// r33 -> r37
+// r38 -> r41 used as parameters to error path
+
+// predicate registers used:
+// p6 - x nan, inf
+// p7 - x 0
+// p8 - x norm, unorm
+// p9 - x unorm
+
+// floating-point registers used:
+// f8 - f10
+
+#include "libm_support.h"
GR_SAVE_PFS = r32
-rTrialResult = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
+GR_Parameter_X = r38
+GR_Parameter_Y = r39
+GR_Parameter_RESULT = r40
+GR_Parameter_TAG = r41
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
+FR_X = f8
+FR_Y = f0
+FR_RESULT = f0
-fTmp = f9
-fNorm_x = f10
-f2to64 = f11
-.section .text
-GLOBAL_LIBM_ENTRY(ilogbl)
+ilogbl:
-// X NORMAL
-// TrueExp_x = exp(f8) - 0xffff
-// r8 = TrueExp_x
-{ .mfi
- getf.exp rSignexp_x = f8
- fclass.m p8,p0 = f8, 0x0b // Test for x unorm
- mov rExpBias = 0xffff // Exponent bias
+// Form signexp of 2^64 in case need to scale denormal
+{ .mmf
+ alloc r32=ar.pfs,1,5,4,0
+(p0) mov r37 = 0x1003f
+(p0) fnorm f9 = f8 ;;
}
+
+// Form 2^64 in case need to scale denormal
{ .mfi
- nop.m 0
- fnorm.s1 fNorm_x = f8
- mov rExpMask = 0x1ffff // Exponent mask
+(p0) setf.exp f10 = r37
+(p0) fclass.m.unc p7, p8 = f8, 0xe3
+(p0) mov r34 = 0xffff ;;
}
-;;
-// Form signexp of 2^64 in case need to scale denormal
-{ .mfb
- mov rExp_2to64 = 0x1003f
- fclass.m p6,p9 = f8, 0x1e3 // Test x natval, nan, inf
-(p8) br.cond.spnt ILOGB_DENORM // Branch if x unorm
-}
-;;
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+// X ZERO, returns INT_MIN
+// X INF or NAN, returns INT_MAX
-ILOGB_COMMON:
-// Return here from ILOGB_DENORM
{ .mfi
- and rExp_x = rSignexp_x, rExpMask // Get biased exponent
- fclass.m p7,p10 = f8, 0x07 // Test x zero
- nop.i 0
+(p0) mov r35 = 0x1ffff
+(p8) fclass.m.unc p6, p8 = f8, 0x07
+ nop.i 999 ;;
}
{ .mlx
- nop.m 0
- movl rIntMax = 0x000000007fffffff // Form INT_MAX
+ nop.m 999
+(p7) movl r8 = 0x000000007fffffff ;;
}
-;;
-.pred.rel "mutex",p6,p9
-{ .mfi
-(p9) sub r8 = rExp_x, rExpBias // Get true exponent for normal path
-(p6) fma.s0 fTmp = f8, f8, f0 // Dummy to set Invalid flag
-(p6) mov r8 = rIntMax // If nan, inf, return INT_MAX
-}
-{ .mbb
- nop.m 0
-(p7) br.cond.spnt ILOGB_ZERO // Branch if x zero
-(p10) br.ret.sptk b0 // Exit if x not zero
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(ILOGB_ZERO) ;;
}
-;;
-
-ILOGB_DENORM:
-// Form 2^64 in case need to scale denormal
-// Check to see if double-extended denormal
+// Test for denormal
{ .mfi
- setf.exp f2to64 = rExp_2to64
- fclass.m p8,p0 = fNorm_x, 0x0b
- nop.i 0
+ nop.m 999
+(p8) fclass.m.unc p9, p0 = f9, 0x0b
+ nop.i 999 ;;
}
-;;
-{ .mfi
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+L(ILOGB_COMMON):
+// X NORMAL returns true exponent
+{ .mmi
+ nop.m 999
+(p8) getf.exp r33 = f9
+ nop.i 999 ;;
}
-;;
-// If double-extended denormal add 64 to exponent bias for scaling
-// If double-extended denormal form x * 2^64 which is normal
-{ .mfi
-(p8) add rExpBias = 64, rExpBias
-(p8) fmpy.s1 fNorm_x = fNorm_x, f2to64
- nop.i 0
+// If denormal add 64 to exponent bias for scaling
+{ .mfb
+(p9) add r34 = 64, r34
+ nop.f 999
+(p9) br.cond.spnt L(ILOGB_DENORM) ;;
}
-;;
-// Logic is the same as normal path but use normalized input
-{ .mib
- getf.exp rSignexp_x = fNorm_x
- nop.i 0
- br.cond.sptk ILOGB_COMMON // Return to main path
+{ .mmi
+(p8) and r36 = r35, r33
+ nop.m 999
+ nop.i 999 ;;
}
-;;
-ILOGB_ZERO:
-// Here if x zero
-// Return INT_MIN, call error support
-
-{ .mlx
- alloc r32=ar.pfs,1,3,4,0
- movl rTrialResult = 0x0000000080000000
-}
{ .mib
- mov GR_Parameter_TAG = 156 // Error code
- nop.i 0
- br.cond.sptk __libm_error_region // Call error support
+(p8) sub r8 = r36, r34
+ nop.i 999
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(ilogbl)
+L(ILOGB_DENORM):
+// Here if x denormal
+// Form x * 2^64 which is normal
+// Return to common code
+{ .mfb
+ cmp.eq p8,p9 = r0,r0
+ fmpy f9 = f9, f10
+ br.cond.sptk L(ILOGB_COMMON) ;;
+}
+// X ZERO
+// return INT_MIN, call error support
+L(ILOGB_ZERO):
+{.mlx
+ mov GR_Parameter_TAG = 156
+(p6) movl r33 = 0x0000000080000000 ;;
+};;
+.endp ilogbl
+ASM_SIZE_DIRECTIVE(ilogbl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
-
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
{ .mib
- stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
+ stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
- mov r8 = rTrialResult
+ mov r8 = r33 // Store result
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_ldexp.S b/sysdeps/ia64/fpu/s_ldexp.S
new file mode 100644
index 0000000000..4dcd671c9f
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_ldexp.S
@@ -0,0 +1,380 @@
+.file "ldexp.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00 Initial version
+// 1/26/01 ldex pcompletely reworked and now standalone version
+//
+// API
+//==============================================================
+// double = ldexp (double x, int n)
+// input floating point f8 and int n (r33)
+// output floating point f8
+//
+// Returns x* 2**n using an fma and detects overflow
+// and underflow.
+//
+//
+
+#include "libm_support.h"
+
+FR_Big = f6
+FR_NBig = f7
+FR_Floating_X = f8
+FR_Result = f8
+FR_Result2 = f9
+FR_Result3 = f11
+FR_Norm_X = f12
+FR_Two_N = f14
+FR_Two_to_Big = f15
+
+GR_N_Biased = r15
+GR_Big = r16
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
+GR_Bias = r20
+GR_N_as_int = r21
+
+GR_SAVE_B0 = r32
+GR_SAVE_GP = r33
+GR_SAVE_PFS = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Tag = r38
+
+.align 32
+.global ldexp
+
+.section .text
+.proc ldexp
+.align 32
+
+ldexp:
+
+//
+// Is x NAN, INF, ZERO, +-?
+// Build the exponent Bias
+//
+{ .mfi
+ alloc r32=ar.pfs,1,2,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Bias = 0x0FFFF,r0
+}
+
+//
+// Sign extend input
+// Is N zero?
+// Normalize x
+//
+{ .mfi
+ cmp.eq.unc p6,p0 = r33,r0
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ sxt4 GR_N_as_int = r33
+}
+;;
+
+//
+// Normalize x
+// Branch and return special values.
+// Create -35000
+// Create 35000
+//
+{ .mfi
+ addl GR_Big = 35000,r0
+ nop.f 0
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+}
+{ .mfb
+ addl GR_NBig = -35000,r0
+(p7) fma.d.s0 FR_Result = FR_Floating_X,f1, f0
+(p7) br.ret.spnt b0
+};;
+
+//
+// Build the exponent Bias
+// Return x when N = 0
+//
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.f 0
+ addl GR_Scratch1 = 0x063BF,r0
+}
+{ .mfb
+ addl GR_Scratch = 0x019C3F,r0
+(p6) fma.d.s0 FR_Result = FR_Floating_X,f1, f0
+(p6) br.ret.spnt b0
+};;
+
+//
+// Create 2*big
+// Create 2**-big
+// Is N > 35000
+// Is N < -35000
+// Raise Denormal operand flag with compare
+// Main path, create 2**N
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch1
+ nop.f 0
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+}
+{ .mfi
+ setf.exp FR_Big = GR_Scratch
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+};;
+
+//
+// Adjust 2**N if N was very small or very large
+//
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x00000000000303FF
+};;
+
+
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x00000000000103FF
+};;
+
+// Set up necessary status fields
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
+
+//
+// Do final operation
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch
+ fma.d.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.d.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.d.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+
+//
+// Check for overflow or underflow.
+// Restore s3
+// Restore s2
+//
+{ .mfi
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
+}
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
+
+//
+// Is the result zero?
+//
+{ .mfi
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
+{ .mfi
+ addl GR_Tag = 146, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
+
+//
+// Detect masked underflow - Tiny + Inexact Only
+//
+{ .mfi
+ nop.m 999
+(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
+ nop.i 999
+};;
+
+//
+// Is result bigger the allowed range?
+// Branch out for underflow
+//
+{ .mfb
+(p6) addl GR_Tag = 147, r0
+(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
+(p6) br.cond.spnt L(LDEXP_UNDERFLOW)
+};;
+
+//
+// Branch out for overflow
+//
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(LDEXP_OVERFLOW)
+(p9) br.cond.spnt L(LDEXP_OVERFLOW)
+};;
+
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
+}
+
+.endp ldexp
+ASM_SIZE_DIRECTIVE(ldexp)
+.proc __libm_error_region
+__libm_error_region:
+
+L(LDEXP_OVERFLOW):
+L(LDEXP_UNDERFLOW):
+
+//
+// Get stack address of N
+//
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+//
+// Adjust sp
+//
+{ .mfi
+.fframe 64
+ add sp=-64,sp
+ nop.f 0
+ mov GR_SAVE_GP=gp
+};;
+
+//
+// Store N on stack in correct position
+// Locate the address of x on stack
+//
+{ .mmi
+ st8 [GR_Parameter_Y] = GR_N_as_int,16
+ add GR_Parameter_X = 16,sp
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+};;
+
+//
+// Store x on the stack.
+// Get address for result on stack.
+//
+.body
+{ .mib
+ stfd [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0
+}
+{ .mib
+ stfd [GR_Parameter_Y] = FR_Result
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support#
+};;
+
+//
+// Get location of result on stack
+//
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+//
+// Get the new result
+//
+{ .mmi
+ ldfd FR_Result = [GR_Parameter_RESULT]
+.restore sp
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
+};;
+
+//
+// Restore gp, ar.pfs and return
+//
+{ .mib
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_ldexp.c b/sysdeps/ia64/fpu/s_ldexp.c
deleted file mode 100644
index a0bc14c295..0000000000
--- a/sysdeps/ia64/fpu/s_ldexp.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: ldexp.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-double __libm_ldexp(double, int, int);
-
-
-double ldexp(double x, int n)
-{
-
-#ifdef SIZE_INT_64
- return __libm_ldexp(x,n,1);
-#else
-
-#ifdef SIZE_INT_32
- return __libm_ldexp(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_ldexpf.S b/sysdeps/ia64/fpu/s_ldexpf.S
new file mode 100644
index 0000000000..36f0111fe1
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_ldexpf.S
@@ -0,0 +1,379 @@
+//.file "ldexpf.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00 Initial version
+// 1/26/01 ldexpf completely reworked and now standalone version
+//
+// API
+//==============================================================
+// float = ldexpf (float x, int n)
+// input floating point f8 and int n (r33)
+// output floating point f8
+//
+// Returns x* 2**n using an fma and detects overflow
+// and underflow.
+//
+//
+
+#include "libm_support.h"
+
+FR_Big = f6
+FR_NBig = f7
+FR_Floating_X = f8
+FR_Result = f8
+FR_Result2 = f9
+FR_Result3 = f11
+FR_Norm_X = f12
+FR_Two_N = f14
+FR_Two_to_Big = f15
+
+GR_N_Biased = r15
+GR_Big = r16
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
+GR_Bias = r20
+GR_N_as_int = r21
+
+GR_SAVE_B0 = r32
+GR_SAVE_GP = r33
+GR_SAVE_PFS = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Tag = r38
+
+.align 32
+.global ldexpf
+
+.section .text
+.proc ldexpf
+.align 32
+
+ldexpf:
+
+//
+// Is x NAN, INF, ZERO, +-?
+// Build the exponent Bias
+//
+{ .mfi
+ alloc r32=ar.pfs,1,2,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Bias = 0x0FFFF,r0
+}
+
+//
+// Sign extend input
+// Is N zero?
+// Normalize x
+//
+{ .mfi
+ cmp.eq.unc p6,p0 = r33,r0
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ sxt4 GR_N_as_int = r33
+}
+;;
+
+//
+// Normalize x
+// Branch and return special values.
+// Create -35000
+// Create 35000
+//
+{ .mfi
+ addl GR_Big = 35000,r0
+ nop.f 0
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+}
+{ .mfb
+ addl GR_NBig = -35000,r0
+(p7) fma.s.s0 FR_Result = FR_Floating_X,f1, f0
+(p7) br.ret.spnt b0
+};;
+
+//
+// Build the exponent Bias
+// Return x when N = 0
+//
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.f 0
+ addl GR_Scratch1 = 0x063BF,r0
+}
+{ .mfb
+ addl GR_Scratch = 0x019C3F,r0
+(p6) fma.s.s0 FR_Result = FR_Floating_X,f1, f0
+(p6) br.ret.spnt b0
+};;
+
+//
+// Create 2*big
+// Create 2**-big
+// Is N > 35000
+// Is N < -35000
+// Raise Denormal operand flag with compare
+// Main path, create 2**N
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch1
+ nop.f 0
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+}
+{ .mfi
+ setf.exp FR_Big = GR_Scratch
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+};;
+
+//
+// Adjust 2**N if N was very small or very large
+//
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x000000000003007F
+};;
+
+
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x000000000001007F
+};;
+
+// Set up necessary status fields
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
+
+//
+// Do final operation
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch
+ fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+
+// Check for overflow or underflow.
+// Restore s3
+// Restore s2
+//
+{ .mfi
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
+}
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
+
+//
+// Is the result zero?
+//
+{ .mfi
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
+{ .mfi
+ addl GR_Tag = 148, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
+
+//
+// Detect masked underflow - Tiny + Inexact Only
+//
+{ .mfi
+ nop.m 999
+(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
+ nop.i 999
+};;
+
+//
+// Is result bigger the allowed range?
+// Branch out for underflow
+//
+{ .mfb
+(p6) addl GR_Tag = 149, r0
+(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
+(p6) br.cond.spnt L(ldexpf_UNDERFLOW)
+};;
+
+//
+// Branch out for overflow
+//
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(ldexpf_OVERFLOW)
+(p9) br.cond.spnt L(ldexpf_OVERFLOW)
+};;
+
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
+}
+
+.endp ldexpf
+ASM_SIZE_DIRECTIVE(ldexpf)
+.proc __libm_error_region
+__libm_error_region:
+
+L(ldexpf_OVERFLOW):
+L(ldexpf_UNDERFLOW):
+
+//
+// Get stack address of N
+//
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+//
+// Adjust sp
+//
+{ .mfi
+.fframe 64
+ add sp=-64,sp
+ nop.f 0
+ mov GR_SAVE_GP=gp
+};;
+
+//
+// Store N on stack in correct position
+// Locate the address of x on stack
+//
+{ .mmi
+ st8 [GR_Parameter_Y] = GR_N_as_int,16
+ add GR_Parameter_X = 16,sp
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+};;
+
+//
+// Store x on the stack.
+// Get address for result on stack.
+//
+.body
+{ .mib
+ stfs [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0
+}
+{ .mib
+ stfs [GR_Parameter_Y] = FR_Result
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support#
+};;
+
+//
+// Get location of result on stack
+//
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+//
+// Get the new result
+//
+{ .mmi
+ ldfs FR_Result = [GR_Parameter_RESULT]
+.restore sp
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
+};;
+
+//
+// Restore gp, ar.pfs and return
+//
+{ .mib
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_ldexpf.c b/sysdeps/ia64/fpu/s_ldexpf.c
deleted file mode 100644
index ad083fa1c5..0000000000
--- a/sysdeps/ia64/fpu/s_ldexpf.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: ldexpf.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-float __libm_ldexpf(float, int, int);
-
-
-float ldexpf(float x, int n)
-{
-
-#ifdef SIZE_INT_64
- return __libm_ldexpf(x,n,1);
-#else
-
-#ifdef SIZE_INT_32
- return __libm_ldexpf(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_ldexpl.S b/sysdeps/ia64/fpu/s_ldexpl.S
new file mode 100644
index 0000000000..fb5d3fd452
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_ldexpl.S
@@ -0,0 +1,379 @@
+//.file "ldexpl.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00 Initial version
+// 1/26/01 ldexpl completely reworked and now standalone version
+//
+// API
+//==============================================================
+// double-extended = ldexpl (double-extended x, int n)
+// input floating point f8 and int n (r34)
+// output floating point f8
+//
+// Returns x* 2**n using an fma and detects overflow
+// and underflow.
+//
+//
+
+#include "libm_support.h"
+
+FR_Big = f6
+FR_NBig = f7
+FR_Floating_X = f8
+FR_Result = f8
+FR_Result2 = f9
+FR_Result3 = f11
+FR_Norm_X = f12
+FR_Two_N = f14
+FR_Two_to_Big = f15
+
+GR_N_Biased = r15
+GR_Big = r16
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
+GR_Bias = r20
+GR_N_as_int = r21
+
+GR_SAVE_B0 = r32
+GR_SAVE_GP = r33
+GR_SAVE_PFS = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Tag = r38
+
+.align 32
+.global ldexpl
+
+.section .text
+.proc ldexpl
+.align 32
+
+ldexpl:
+
+//
+// Is x NAN, INF, ZERO, +-?
+// Build the exponent Bias
+//
+{ .mfi
+ alloc r32=ar.pfs,2,1,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Bias = 0x0FFFF,r0
+}
+
+//
+// Sign extend input
+// Is N zero?
+// Normalize x
+//
+{ .mfi
+ cmp.eq.unc p6,p0 = r34,r0
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ sxt4 GR_N_as_int = r34
+}
+;;
+
+//
+// Normalize x
+// Branch and return special values.
+// Create -35000
+// Create 35000
+//
+{ .mfi
+ addl GR_Big = 35000,r0
+ nop.f 0
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+}
+{ .mfb
+ addl GR_NBig = -35000,r0
+(p7) fma.s0 FR_Result = FR_Floating_X,f1, f0
+(p7) br.ret.spnt b0
+};;
+
+//
+// Build the exponent Bias
+// Return x when N = 0
+//
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.f 0
+ addl GR_Scratch1 = 0x063BF,r0
+}
+{ .mfb
+ addl GR_Scratch = 0x019C3F,r0
+(p6) fma.s0 FR_Result = FR_Floating_X,f1, f0
+(p6) br.ret.spnt b0
+};;
+
+//
+// Create 2*big
+// Create 2**-big
+// Is N > 35000
+// Is N < -35000
+// Raise Denormal operand flag with compare
+// Main path, create 2**N
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch1
+ nop.f 0
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+}
+{ .mfi
+ setf.exp FR_Big = GR_Scratch
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+};;
+
+//
+// Adjust 2**N if N was very small or very large
+//
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x0000000000033FFF
+};;
+
+
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x0000000000013FFF
+};;
+
+// Set up necessary status fields
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
+
+//
+// Do final operation
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch
+ fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+
+// Check for overflow or underflow.
+// Restore s3
+// Restore s2
+//
+{ .mfi
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
+}
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
+
+//
+// Is the result zero?
+//
+{ .mfi
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
+{ .mfi
+ addl GR_Tag = 144, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
+
+//
+// Detect masked underflow - Tiny + Inexact Only
+//
+{ .mfi
+ nop.m 999
+(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
+ nop.i 999
+};;
+
+//
+// Is result bigger the allowed range?
+// Branch out for underflow
+//
+{ .mfb
+(p6) addl GR_Tag = 145, r0
+(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
+(p6) br.cond.spnt L(ldexpl_UNDERFLOW)
+};;
+
+//
+// Branch out for overflow
+//
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(ldexpl_OVERFLOW)
+(p9) br.cond.spnt L(ldexpl_OVERFLOW)
+};;
+
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
+}
+
+.endp ldexpl
+ASM_SIZE_DIRECTIVE(ldexpl)
+.proc __libm_error_region
+__libm_error_region:
+
+L(ldexpl_OVERFLOW):
+L(ldexpl_UNDERFLOW):
+
+//
+// Get stack address of N
+//
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+//
+// Adjust sp
+//
+{ .mfi
+.fframe 64
+ add sp=-64,sp
+ nop.f 0
+ mov GR_SAVE_GP=gp
+};;
+
+//
+// Store N on stack in correct position
+// Locate the address of x on stack
+//
+{ .mmi
+ st8 [GR_Parameter_Y] = GR_N_as_int,16
+ add GR_Parameter_X = 16,sp
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+};;
+
+//
+// Store x on the stack.
+// Get address for result on stack.
+//
+.body
+{ .mib
+ stfe [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0
+}
+{ .mib
+ stfe [GR_Parameter_Y] = FR_Result
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support#
+};;
+
+//
+// Get location of result on stack
+//
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+//
+// Get the new result
+//
+{ .mmi
+ ldfe FR_Result = [GR_Parameter_RESULT]
+.restore sp
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
+};;
+
+//
+// Restore gp, ar.pfs and return
+//
+{ .mib
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_ldexpl.c b/sysdeps/ia64/fpu/s_ldexpl.c
deleted file mode 100644
index 61dfd21f13..0000000000
--- a/sysdeps/ia64/fpu/s_ldexpl.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: ldexpl.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-long double __libm_ldexpl(long double, int, int);
-
-
-long double ldexpl(long double x, int n)
-{
-
-#ifdef SIZE_INT_64
- return __libm_ldexpl(x,n,1);
-#else
-
-#ifdef SIZE_INT_32
- return __libm_ldexpl(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_libm_ldexp.S b/sysdeps/ia64/fpu/s_libm_ldexp.S
deleted file mode 100644
index 2aaf2c35fd..0000000000
--- a/sysdeps/ia64/fpu/s_libm_ldexp.S
+++ /dev/null
@@ -1,452 +0,0 @@
-.file "libm_ldexp.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 ldexp completely reworked and now standalone version
-// 01/04/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/04/03 Improved performance
-//
-// API
-//==============================================================
-// double __libm_ldexp (double x, int n, int int_type)
-// input floating point f8 and int n (r33), int int_type (r34)
-// output floating point f8
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x103fe -> Certain overflow
-// exp_Result = 0x103fe -> Possible overflow
-// 0x0fc01 <= exp_Result < 0x103fe -> No over/underflow (main path)
-// 0x0fc01 - 52 <= exp_Result < 0x0fc01 -> Possible underflow
-// exp_Result < 0x0fc01 - 52 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_ldexp)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r34,r0
-}
-;;
-
-// Sign extend N if int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r33 // Copy N if int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r33 // Sign extend N if int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x103fe // Exponent of maximum double
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0fc01 // Exponent of minimum double
-(p9) br.cond.spnt LDEXP_UNORM // Branch if x=unorm
-}
-;;
-
-LDEXP_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r33,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x103ff // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0fc01 - 52 // Exponent of min denorm dble
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.d.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x303ff // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.d.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt LDEXP_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt LDEXP_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt LDEXP_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt LDEXP_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0fc01-52 <= exp_Result < 0x0fc01
-LDEXP_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x103fe = exp_Result
-LDEXP_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.d.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.d.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt LDEXP_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt LDEXP_OVERFLOW
-(p9) br.cond.spnt LDEXP_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-LDEXP_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 146, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-LDEXP_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 147, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-LDEXP_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk LDEXP_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_ldexp)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfd FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_libm_ldexpf.S b/sysdeps/ia64/fpu/s_libm_ldexpf.S
deleted file mode 100644
index 1326a14c2d..0000000000
--- a/sysdeps/ia64/fpu/s_libm_ldexpf.S
+++ /dev/null
@@ -1,452 +0,0 @@
-.file "libm_ldexpf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 ldexpf completely reworked and now standalone version
-// 01/04/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/04/03 Improved performance
-//
-// API
-//==============================================================
-// float __libm_ldexpf (float x, int n, int int_type)
-// input floating point f8 and int n (r33), int int_type (r34)
-// output floating point f8
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x1007e -> Certain overflow
-// exp_Result = 0x1007e -> Possible overflow
-// 0x0ff81 <= exp_Result < 0x1007e -> No over/underflow (main path)
-// 0x0ff81 - 23 <= exp_Result < 0x0ff81 -> Possible underflow
-// exp_Result < 0x0ff81 - 23 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_ldexpf)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r34,r0
-}
-;;
-
-// Sign extend N if int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r33 // Copy N if int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r33 // Sign extend N if int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x1007e // Exponent of maximum float
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0ff81 // Exponent of minimum float
-(p9) br.cond.spnt LDEXPF_UNORM // Branch if x=unorm
-}
-;;
-
-LDEXPF_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r33,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x1007f // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0ff81 - 23 // Exponent of min denorm float
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.s.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x3007f // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt LDEXPF_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt LDEXPF_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt LDEXPF_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt LDEXPF_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0ff81-23 <= exp_Result < 0x0ff81
-LDEXPF_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x1007e = exp_Result
-LDEXPF_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt LDEXPF_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt LDEXPF_OVERFLOW
-(p9) br.cond.spnt LDEXPF_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-LDEXPF_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 148, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-LDEXPF_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 149, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-LDEXPF_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk LDEXPF_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_ldexpf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfs FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_libm_ldexpl.S b/sysdeps/ia64/fpu/s_libm_ldexpl.S
deleted file mode 100644
index fffda9e55a..0000000000
--- a/sysdeps/ia64/fpu/s_libm_ldexpl.S
+++ /dev/null
@@ -1,452 +0,0 @@
-.file "libm_ldexpl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 ldexpl completely reworked and now standalone version
-// 01/04/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/04/03 Improved performance
-//
-// API
-//==============================================================
-// long double __libm_ldexpl (long double x, int n, int int_type)
-// input floating point f8 and int n (r34), int int_type (r35)
-// output floating point f8
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x13ffe -> Certain overflow
-// exp_Result = 0x13ffe -> Possible overflow
-// 0x0c001 <= exp_Result < 0x13ffe -> No over/underflow (main path)
-// 0x0c001 - 63 <= exp_Result < 0x0c001 -> Possible underflow
-// exp_Result < 0x0c001 - 63 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_ldexpl)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r35,r0
-}
-;;
-
-// Sign extend N if int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r34 // Copy N if int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r34 // Sign extend N if int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x13ffe // Exponent of maximum long double
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0c001 // Exponent of minimum long double
-(p9) br.cond.spnt LDEXPL_UNORM // Branch if x=unorm
-}
-;;
-
-LDEXPL_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r34,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x13fff // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0c001 - 63 // Exp of min denorm long dble
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x33fff // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt LDEXPL_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt LDEXPL_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt LDEXPL_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt LDEXPL_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0c001-63 <= exp_Result < 0x0c001
-LDEXPL_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x13ffe = exp_Result
-LDEXPL_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt LDEXPL_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt LDEXPL_OVERFLOW
-(p9) br.cond.spnt LDEXPL_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-LDEXPL_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 144, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-LDEXPL_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 145, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-LDEXPL_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk LDEXPL_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_ldexpl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfe FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_libm_scalbn.S b/sysdeps/ia64/fpu/s_libm_scalbn.S
deleted file mode 100644
index eaccb7de7a..0000000000
--- a/sysdeps/ia64/fpu/s_libm_scalbn.S
+++ /dev/null
@@ -1,452 +0,0 @@
-.file "libm_scalbn.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 Scalbn completely reworked and now standalone version
-// 01/04/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/04/03 Improved performance
-//
-// API
-//==============================================================
-// double __libm_scalbn (double x, int n, int int_type)
-// input floating point f8 and int n (r33), int int_type (r34)
-// output floating point f8
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x103fe -> Certain overflow
-// exp_Result = 0x103fe -> Possible overflow
-// 0x0fc01 <= exp_Result < 0x103fe -> No over/underflow (main path)
-// 0x0fc01 - 52 <= exp_Result < 0x0fc01 -> Possible underflow
-// exp_Result < 0x0fc01 - 52 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_scalbn)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r34,r0
-}
-;;
-
-// Sign extend N if int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r33 // Copy N if int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r33 // Sign extend N if int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x103fe // Exponent of maximum double
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0fc01 // Exponent of minimum double
-(p9) br.cond.spnt SCALBN_UNORM // Branch if x=unorm
-}
-;;
-
-SCALBN_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r33,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x103ff // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0fc01 - 52 // Exponent of min denorm dble
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.d.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x303ff // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.d.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt SCALBN_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt SCALBN_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALBN_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALBN_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0fc01-52 <= exp_Result < 0x0fc01
-SCALBN_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x103fe = exp_Result
-SCALBN_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.d.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.d.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALBN_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt SCALBN_OVERFLOW
-(p9) br.cond.spnt SCALBN_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALBN_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 176, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-SCALBN_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 177, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-SCALBN_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALBN_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_scalbn)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfd FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_libm_scalbnf.S b/sysdeps/ia64/fpu/s_libm_scalbnf.S
deleted file mode 100644
index e00997aba7..0000000000
--- a/sysdeps/ia64/fpu/s_libm_scalbnf.S
+++ /dev/null
@@ -1,452 +0,0 @@
-.file "libm_scalbnf.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 Scalbnf completely reworked and now standalone version
-// 01/04/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/04/03 Improved performance
-//
-// API
-//==============================================================
-// float __libm_scalbnf (float x, int n, int int_type)
-// input floating point f8 and int n (r33), int int_type (r34)
-// output floating point f8
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x1007e -> Certain overflow
-// exp_Result = 0x1007e -> Possible overflow
-// 0x0ff81 <= exp_Result < 0x1007e -> No over/underflow (main path)
-// 0x0ff81 - 23 <= exp_Result < 0x0ff81 -> Possible underflow
-// exp_Result < 0x0ff81 - 23 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_scalbnf)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r34,r0
-}
-;;
-
-// Sign extend N if int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r33 // Copy N if int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r33 // Sign extend N if int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x1007e // Exponent of maximum float
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0ff81 // Exponent of minimum float
-(p9) br.cond.spnt SCALBNF_UNORM // Branch if x=unorm
-}
-;;
-
-SCALBNF_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r33,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x1007f // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0ff81 - 23 // Exponent of min denorm float
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.s.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x3007f // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt SCALBNF_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt SCALBNF_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALBNF_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALBNF_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0ff81-23 <= exp_Result < 0x0ff81
-SCALBNF_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x1007e = exp_Result
-SCALBNF_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALBNF_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt SCALBNF_OVERFLOW
-(p9) br.cond.spnt SCALBNF_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALBNF_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 178, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-SCALBNF_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 179, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-SCALBNF_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALBNF_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_scalbnf)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfs FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_libm_scalbnl.S b/sysdeps/ia64/fpu/s_libm_scalbnl.S
deleted file mode 100644
index 1edf9a05d3..0000000000
--- a/sysdeps/ia64/fpu/s_libm_scalbnl.S
+++ /dev/null
@@ -1,452 +0,0 @@
-.file "libm_scalbnl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 01/26/01 Scalbnl completely reworked and now standalone version
-// 01/04/02 Added handling for int 32 or 64 bits
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/04/03 Improved performance
-//
-// API
-//==============================================================
-// long double __libm_scalbnl (long double x, int n, int int_type)
-// input floating point f8 and int n (r34), int int_type (r35)
-// output floating point f8
-//
-// int_type = 0 if int is 32 bits
-// int_type = 1 if int is 64 bits
-//
-// Returns x* 2**n using an fma and detects overflow
-// and underflow.
-//
-//
-// Strategy:
-// Compute biased exponent of result exp_Result = N + exp_X
-// Break into ranges:
-// exp_Result > 0x13ffe -> Certain overflow
-// exp_Result = 0x13ffe -> Possible overflow
-// 0x0c001 <= exp_Result < 0x13ffe -> No over/underflow (main path)
-// 0x0c001 - 63 <= exp_Result < 0x0c001 -> Possible underflow
-// exp_Result < 0x0c001 - 63 -> Certain underflow
-
-FR_Big = f6
-FR_NBig = f7
-FR_Floating_X = f8
-FR_Result = f8
-FR_Result2 = f9
-FR_Result3 = f10
-FR_Norm_X = f11
-FR_Two_N = f12
-
-GR_neg_ov_limit= r14
-GR_N_Biased = r15
-GR_Big = r16
-GR_NBig = r17
-GR_exp_Result = r18
-GR_pos_ov_limit= r19
-GR_Bias = r20
-GR_N_as_int = r21
-GR_signexp_X = r22
-GR_exp_X = r23
-GR_exp_mask = r24
-GR_max_exp = r25
-GR_min_exp = r26
-GR_min_den_exp = r27
-
-GR_SAVE_B0 = r32
-GR_SAVE_GP = r33
-GR_SAVE_PFS = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Tag = r38
-
-.section .text
-GLOBAL_LIBM_ENTRY(__libm_scalbnl)
-
-//
-// Is x NAN, INF, ZERO, +-?
-// Build the exponent Bias
-//
-{ .mfi
- getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
- fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
- mov GR_Bias = 0x0ffff
-}
-//
-// Normalize x
-// Is integer type 32 bits?
-//
-{ .mfi
- mov GR_Big = 35000 // If N this big then certain overflow
- fnorm.s1 FR_Norm_X = FR_Floating_X
- cmp.eq p8,p9 = r35,r0
-}
-;;
-
-// Sign extend N if int is 32 bits
-{ .mfi
-(p9) mov GR_N_as_int = r34 // Copy N if int is 64 bits
- fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
-(p8) sxt4 GR_N_as_int = r34 // Sign extend N if int is 32 bits
-}
-{ .mfi
- mov GR_NBig = -35000 // If N this small then certain underflow
- nop.f 0
- mov GR_max_exp = 0x13ffe // Exponent of maximum long double
-}
-;;
-
-// Create biased exponent for 2**N
-{ .mfi
- add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
-}
-{ .mib
- cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
- mov GR_min_exp = 0x0c001 // Exponent of minimum long double
-(p9) br.cond.spnt SCALBNL_UNORM // Branch if x=unorm
-}
-;;
-
-SCALBNL_COMMON:
-// Main path continues. Also return here from x=unorm path.
-// Create 2**N
-.pred.rel "mutex",p7,p8
-{ .mfi
- setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
-(p7) mov GR_N_as_int = GR_Big // Limit max N
-}
-{ .mfi
-(p8) mov GR_N_as_int = GR_NBig // Limit min N
- nop.f 0
-(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
-}
-;;
-
-//
-// Create biased exponent for 2**N for N big
-// Is N zero?
-//
-{ .mfi
-(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
- nop.f 0
- cmp.eq.or p6,p0 = r34,r0
-}
-{ .mfi
- mov GR_pos_ov_limit = 0x13fff // Exponent for positive overflow
- nop.f 0
- mov GR_exp_mask = 0x1ffff // Exponent mask
-}
-;;
-
-//
-// Create 2**N for N big
-// Return x when N = 0 or X = Nan, Inf, Zero
-//
-{ .mfi
-(p7) setf.exp FR_Two_N = GR_N_Biased
- nop.f 0
- mov GR_min_den_exp = 0x0c001 - 63 // Exp of min denorm long dble
-}
-{ .mfb
- and GR_exp_X = GR_exp_mask, GR_signexp_X
-(p6) fma.s0 FR_Result = FR_Floating_X, f1, f0
-(p6) br.ret.spnt b0
-}
-;;
-
-//
-// Raise Denormal operand flag with compare
-// Compute biased result exponent
-//
-{ .mfi
- add GR_exp_Result = GR_exp_X, GR_N_as_int
- fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
- mov GR_neg_ov_limit = 0x33fff // Exponent for negative overflow
-}
-;;
-
-//
-// Do final operation
-//
-{ .mfi
- cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
- fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
- cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p9) br.cond.spnt SCALBNL_UNDERFLOW // Branch if certain underflow
-}
-;;
-
-{ .mib
-(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
-(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
-(p7) br.ret.sptk b0 // Return from main path
-}
-;;
-
-{ .bbb
-(p6) br.cond.spnt SCALBNL_OVERFLOW // Branch if certain overflow
-(p8) br.cond.spnt SCALBNL_POSSIBLE_OVERFLOW // Branch if possible overflow
-(p9) br.cond.spnt SCALBNL_POSSIBLE_UNDERFLOW // Branch if possible underflow
-}
-;;
-
-// Here if possible underflow.
-// Resulting exponent: 0x0c001-63 <= exp_Result < 0x0c001
-SCALBNL_POSSIBLE_UNDERFLOW:
-//
-// Here if possible overflow.
-// Resulting exponent: 0x13ffe = exp_Result
-SCALBNL_POSSIBLE_OVERFLOW:
-
-// Set up necessary status fields
-//
-// S0 user supplied status
-// S2 user supplied status + WRE + TD (Overflows)
-// S3 user supplied status + FZ + TD (Underflows)
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x41
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x42
- nop.i 0
-}
-;;
-
-//
-// Do final operation with s2 and s3
-//
-{ .mfi
- setf.exp FR_NBig = GR_neg_ov_limit
- fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-{ .mfi
- setf.exp FR_Big = GR_pos_ov_limit
- fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
- nop.i 0
-}
-;;
-
-// Check for overflow or underflow.
-// Restore s3
-// Restore s2
-//
-{ .mfi
- nop.m 0
- fsetc.s3 0x7F,0x40
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40
- nop.i 0
-}
-;;
-
-//
-// Is the result zero?
-//
-{ .mfi
- nop.m 0
- fclass.m p6, p0 = FR_Result3, 0x007
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
- nop.i 0
-}
-;;
-
-//
-// Detect masked underflow - Tiny + Inexact Only
-//
-{ .mfi
- nop.m 0
-(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
- nop.i 0
-}
-;;
-
-//
-// Is result bigger the allowed range?
-// Branch out for underflow
-//
-{ .mfb
- nop.m 0
-(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
-(p6) br.cond.spnt SCALBNL_UNDERFLOW
-}
-;;
-
-//
-// Branch out for overflow
-//
-{ .bbb
-(p7) br.cond.spnt SCALBNL_OVERFLOW
-(p9) br.cond.spnt SCALBNL_OVERFLOW
- br.ret.sptk b0 // Return from main path.
-}
-;;
-
-// Here if result overflows
-SCALBNL_OVERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 174, r0 // Set error tag for overflow
- br.cond.sptk __libm_error_region // Call error support for overflow
-}
-;;
-
-// Here if result underflows
-SCALBNL_UNDERFLOW:
-{ .mib
- alloc r32=ar.pfs,3,0,4,0
- addl GR_Tag = 175, r0 // Set error tag for underflow
- br.cond.sptk __libm_error_region // Call error support for underflow
-}
-;;
-
-// Here if x=unorm
-SCALBNL_UNORM:
-{ .mib
- getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
- nop.i 0
- br.cond.sptk SCALBNL_COMMON // Return to main path
-}
-;;
-
-
-GLOBAL_LIBM_END(__libm_scalbnl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
-
-//
-// Get stack address of N
-//
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
-}
-//
-// Adjust sp
-//
-{ .mfi
-.fframe 64
- add sp=-64,sp
- nop.f 0
- mov GR_SAVE_GP=gp
-};;
-
-//
-// Store N on stack in correct position
-// Locate the address of x on stack
-//
-{ .mmi
- st8 [GR_Parameter_Y] = GR_N_as_int,16
- add GR_Parameter_X = 16,sp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
-};;
-
-//
-// Store x on the stack.
-// Get address for result on stack.
-//
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_Norm_X
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_Result
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support#
-};;
-
-//
-// Get location of result on stack
-//
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-//
-// Get the new result
-//
-{ .mmi
- ldfe FR_Result = [GR_Parameter_RESULT]
-.restore sp
- add sp = 64,sp
- mov b0 = GR_SAVE_B0
-};;
-
-//
-// Restore gp, ar.pfs and return
-//
-{ .mib
- mov gp = GR_SAVE_GP
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_log1p.S b/sysdeps/ia64/fpu/s_log1p.S
index e1e6dcc80b..0d96c14a55 100644
--- a/sysdeps/ia64/fpu/s_log1p.S
+++ b/sysdeps/ia64/fpu/s_log1p.S
@@ -1,10 +1,10 @@
-.file "log1p.s"
+.file "log1p.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,1084 +20,1608 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 06/29/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 10/02/02 Improved performance by basing on log algorithm
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/18/03 Eliminate possible WAW dependency warning
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// double log1p(double)
//
-// log1p(x) = log(x+1)
+// *********************************************************************
//
-// Overview of operation
-//==============================================================
-// Background
-// ----------
+// Function: log1p(x) = ln(x+1), for double precision x values
//
-// This algorithm is based on fact that
-// log1p(x) = log(1+x) and
-// log(a b) = log(a) + log(b).
-// In our case we have 1+x = 2^N f, where 1 <= f < 2.
-// So
-// log(1+x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
+// *********************************************************************
//
-// To calculate log(f) we do following
-// log(f) = log(f * frcpa(f) / frcpa(f)) =
-// = log(f * frcpa(f)) + log(1/frcpa(f))
+// Accuracy: Very accurate for double precision values
//
-// According to definition of IA-64's frcpa instruction it's a
-// floating point that approximates 1/f using a lookup on the
-// top of 8 bits of the input number's + 1 significand with relative
-// error < 2^(-8.886). So we have following
+// *********************************************************************
//
-// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
+// Resources Used:
//
-// and
+// Floating-Point Registers: f8 (Input and Return Value)
+// f9,f33-f55,f99
//
-// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
-// = log(1 + r) + T
+// General Purpose Registers:
+// r32-r53
+// r54-r57 (Used to pass arguments to error handling routine)
//
-// The first value can be computed by polynomial P(r) approximating
-// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
-// value defined by top 8 bit of f.
+// Predicate Registers: p6-p15
//
-// Finally we have that log(1+x) ~ (N*log(2) + T) + P(r)
+// *********************************************************************
//
-// Note that if input argument is close to 0.0 (in our case it means
-// that |x| < 1/256) we can use just polynomial approximation
-// because 1+x = 2^0 * f = f = 1 + r and
-// log(1+x) = log(1 + r) ~ P(r)
+// IEEE Special Conditions:
//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions cannot occur
+// Underflow exceptions raised when appropriate for log1p
+// (Error Handling Routine called for underflow)
+// Inexact raised when appropriate by algorithm
//
-// Implementation
-// --------------
+// log1p(inf) = inf
+// log1p(-inf) = QNaN
+// log1p(+/-0) = +/-0
+// log1p(-1) = -inf
+// log1p(SNaN) = QNaN
+// log1p(QNaN) = QNaN
+// log1p(EM_special Values) = QNaN
//
-// 1. |x| >= 2^(-8), and x > -1
-// InvX = frcpa(x+1)
-// r = InvX*(x+1) - 1
-// P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
-// all coefficients are calcutated in quad and rounded to double
-// precision. A7,A6,A5,A4 are stored in memory whereas A3 and A2
-// created with setf.
+// *********************************************************************
//
-// N = float(n) where n is true unbiased exponent of x
+// Computation is based on the following kernel.
//
-// T is tabular value of log(1/frcpa(x)) calculated in quad precision
-// and represented by two floating-point numbers 64-bit Thi and 32-bit Tlo.
-// To load Thi,Tlo we get bits from 55 to 62 of register format significand
-// as index and calculate two addresses
-// ad_Thi = Thi_table_base_addr + 8 * index
-// ad_Tlo = Tlo_table_base_addr + 4 * index
+// ker_log_64( in_FR : X,
+// in_FR : E,
+// in_FR : Em1,
+// in_GR : Expo_Range,
+// out_FR : Y_hi,
+// out_FR : Y_lo,
+// out_FR : Scale,
+// out_PR : Safe )
+//
+// Overview
//
-// L1 (log(2)) is calculated in quad
-// precision and represented by two floating-point 64-bit numbers L1hi,L1lo
-// stored in memory.
+// The method consists of three cases.
//
-// And final result = ((L1hi*N + Thi) + (N*L1lo + Tlo)) + P(r)
+// If |X+Em1| < 2^(-80) use case log1p_small;
+// elseif |X+Em1| < 2^(-7) use case log_near1;
+// else use case log_regular;
//
+// Case log1p_small:
//
-// 2. 2^(-80) <= |x| < 2^(-8)
-// r = x
-// P(r) = r*((r*A3 - A2) + r^4*((A4 + r*A5) + r^2*(A6 + r*A7)),
-// A7,A6,A5,A4,A3,A2 are the same as in case |x| >= 1/256
+// log( 1 + (X+Em1) ) can be approximated by (X+Em1).
//
-// And final results
-// log(1+x) = P(r)
+// Case log_near1:
//
-// 3. 0 < |x| < 2^(-80)
-// Although log1p(x) is basically x, we would like to preserve the inexactness
-// nature as well as consistent behavior under different rounding modes.
-// We can do this by computing the result as
+// log( 1 + (X+Em1) ) can be approximated by a simple polynomial
+// in W = X+Em1. This polynomial resembles the truncated Taylor
+// series W - W^/2 + W^3/3 - ...
+//
+// Case log_regular:
//
-// log1p(x) = x - x*x
+// Here we use a table lookup method. The basic idea is that in
+// order to compute log(Arg) for an argument Arg in [1,2), we
+// construct a value G such that G*Arg is close to 1 and that
+// log(1/G) is obtainable easily from a table of values calculated
+// beforehand. Thus
//
+// log(Arg) = log(1/G) + log(G*Arg)
+// = log(1/G) + log(1 + (G*Arg - 1))
//
-// Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
-// filtered and processed on special branches.
+// Because |G*Arg - 1| is small, the second term on the right hand
+// side can be approximated by a short polynomial. We elaborate
+// this method in four steps.
//
-
+// Step 0: Initialization
//
-// Special values
-//==============================================================
+// We need to calculate log( E + X ). Obtain N, S_hi, S_lo such that
//
-// log1p(-1) = -inf // Call error support
+// E + X = 2^N * ( S_hi + S_lo ) exactly
//
-// log1p(+qnan) = +qnan
-// log1p(-qnan) = -qnan
-// log1p(+snan) = +qnan
-// log1p(-snan) = -qnan
+// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
+// that |S_lo| <= ulp(S_hi).
//
-// log1p(x),x<-1= QNAN Indefinite // Call error support
-// log1p(-inf) = QNAN Indefinite
-// log1p(+inf) = +inf
-// log1p(+/-0) = +/-0
+// Step 1: Argument Reduction
//
+// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f7 -> f15, f32 -> f40
+// G := G_1 * G_2 * G_3
+// r := (G * S_hi - 1) + G * S_lo
+//
+// These G_j's have the property that the product is exactly
+// representable and that |r| < 2^(-12) as a result.
+//
+// Step 2: Approximation
+//
+//
+// log(1 + r) is approximated by a short polynomial poly(r).
+//
+// Step 3: Reconstruction
+//
+//
+// Finally, log( E + X ) is given by
+//
+// log( E + X ) = log( 2^N * (S_hi + S_lo) )
+// ~=~ N*log(2) + log(1/G) + log(1 + r)
+// ~=~ N*log(2) + log(1/G) + poly(r).
+//
+// **** Algorithm ****
+//
+// Case log1p_small:
+//
+// Although log(1 + (X+Em1)) is basically X+Em1, we would like to
+// preserve the inexactness nature as well as consistent behavior
+// under different rounding modes. Note that this case can only be
+// taken if E is set to be 1.0. In this case, Em1 is zero, and that
+// X can be very tiny and thus the final result can possibly underflow.
+// Thus, we compare X against a threshold that is dependent on the
+// input Expo_Range. If |X| is smaller than this threshold, we set
+// SAFE to be FALSE.
+//
+// The result is returned as Y_hi, Y_lo, and in the case of SAFE
+// is FALSE, an additional value Scale is also returned.
+//
+// W := X + Em1
+// Threshold := Threshold_Table( Expo_Range )
+// Tiny := Tiny_Table( Expo_Range )
+//
+// If ( |W| > Threshold ) then
+// Y_hi := W
+// Y_lo := -W*W
+// Else
+// Y_hi := W
+// Y_lo := -Tiny
+// Scale := 2^(-100)
+// Safe := FALSE
+// EndIf
+//
+//
+// One may think that Y_lo should be -W*W/2; however, it does not matter
+// as Y_lo will be rounded off completely except for the correct effect in
+// directed rounding. Clearly -W*W is simplier to compute. Moreover,
+// because of the difference in exponent value, Y_hi + Y_lo or
+// Y_hi + Scale*Y_lo is always inexact.
+//
+// Case log_near1:
+//
+// Here we compute a simple polynomial. To exploit parallelism, we split
+// the polynomial into two portions.
+//
+// W := X + Em1
+// Wsq := W * W
+// W4 := Wsq*Wsq
+// W6 := W4*Wsq
+// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
+// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+// set lsb(Y_lo) to be 1
+//
+// Case log_regular:
+//
+// We present the algorithm in four steps.
+//
+// Step 0. Initialization
+// ----------------------
+//
+// Z := X + E
+// N := unbaised exponent of Z
+// S_hi := 2^(-N) * Z
+// S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
+//
+// Note that S_lo is always 0 for the case E = 0.
+//
+// Step 1. Argument Reduction
+// --------------------------
+//
+// Let
+//
+// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
+//
+// We obtain G_1, G_2, G_3 by the following steps.
+//
+//
+// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
+// from S_hi.
+//
+// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
+// to lsb = 2^(-4).
+//
+// Define index_1 := [ d_1 d_2 d_3 d_4 ].
+//
+// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
+// fixed point lsb = 2^(-15).
+// Z_1 looks like z_0.z_1 z_2 ... z_15
+// Note that the fetching is done using index_1.
+// A_1 is actually not needed in the implementation
+// and is used here only to explain how is the value
+// Z_1 defined.
+//
+// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
+// floating pt. Again, fetching is done using index_1. A_1
+// explains how G_1 is defined.
+//
+// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
+// = 1.0 0 0 0 d_5 ... d_14
+// This is accomplised by integer multiplication.
+// It is proved that X_1 indeed always begin
+// with 1.0000 in fixed point.
+//
+//
+// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
+// truncated to lsb = 2^(-8). Similar to A_1,
+// A_2 is not needed in actual implementation. It
+// helps explain how some of the values are defined.
+//
+// Define index_2 := [ d_5 d_6 d_7 d_8 ].
+//
+// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
+// fixed point lsb = 2^(-15). Fetch done using index_2.
+// Z_2 looks like z_0.z_1 z_2 ... z_15
+//
+// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
+// floating pt.
+//
+// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
+// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
+// This is accomplised by integer multiplication.
+// It is proved that X_2 indeed always begin
+// with 1.00000000 in fixed point.
+//
+//
+// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
+// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
+//
+// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
+//
+// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
+// floating pt. Fetch is done using index_3.
//
-// General registers used:
-// r8 -> r11
-// r14 -> r20
+// Compute G := G_1 * G_2 * G_3.
+//
+// This is done exactly since each of G_j only has 21 sig. bits.
+//
+// Compute
+//
+// r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
+//
+// thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of
+// rounding errors.
+//
+//
+// Step 2. Approximation
+// ---------------------
+//
+// This step computes an approximation to log( 1 + r ) where r is the
+// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
+// thus log(1+r) can be approximated by a short polynomial:
+//
+// log(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
+//
+//
+// Step 3. Reconstruction
+// ----------------------
+//
+// This step computes the desired result of log(X+E):
+//
+// log(X+E) = log( 2^N * (S_hi + S_lo) )
+// = N*log(2) + log( S_hi + S_lo )
+// = N*log(2) + log(1/G) +
+// log(1 + C*(S_hi+S_lo) - 1 )
+//
+// log(2), log(1/G_j) are stored as pairs of (single,double) numbers:
+// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
+// single-precision numbers and the low parts are double precision
+// numbers. These have the property that
+//
+// N*log2_hi + SUM ( log1byGj_hi )
+//
+// is computable exactly in double-extended precision (64 sig. bits).
+// Finally
+//
+// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
+// Y_lo := poly_hi + [ poly_lo +
+// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+// set lsb(Y_lo) to be 1
//
-// Predicate registers used:
-// p6 -> p12
-// Assembly macros
-//==============================================================
-GR_TAG = r8
-GR_ad_1 = r8
-GR_ad_2 = r9
-GR_Exp = r10
-GR_N = r11
+#include "libm_support.h"
-GR_signexp_x = r14
-GR_exp_mask = r15
-GR_exp_bias = r16
-GR_05 = r17
-GR_A3 = r18
-GR_Sig = r19
-GR_Ind = r19
-GR_exp_x = r20
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+// P_7, P_6, P_5, P_4, P_3, P_2, and P_1
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
+.align 64
+Constants_P:
+ASM_TYPE_DIRECTIVE(Constants_P,@object)
+data4 0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
+data4 0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
+data4 0x73282DB0,0x9249248C,0x00003FFC,0x00000000
+data4 0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
+data4 0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
+data4 0x00067ED5,0x80000000,0x0000BFFD,0x00000000
+data4 0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_P)
+
+// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
+.align 64
+Constants_Q:
+ASM_TYPE_DIRECTIVE(Constants_Q,@object)
+data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
+data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Q)
+
+// Z1 - 16 bit fixed, G1 and H1 - IEEE single
+
+.align 64
+Constants_Z_G_H_h1:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
+data4 0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
+data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
+data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
+data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
+data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
+data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
+data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
+data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
+data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
+data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
+data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
+data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
+data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
+data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
+data4 0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
+
+// Z2 - 16 bit fixed, G2 and H2 - IEEE single
+.align 64
+Constants_Z_G_H_h2:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
+data4 0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
+data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
+data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
+data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
+data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
+data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
+data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
+data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
+data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
+data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
+data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
+data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
+data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
+data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
+data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
+
+// G3 and H3 - IEEE single and h3 -IEEE double
+.align 64
+Constants_Z_G_H_h3:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
+data4 0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
+data4 0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
+data4 0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
+data4 0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
+data4 0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
+data4 0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
+data4 0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
+data4 0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
+data4 0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
+data4 0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
+data4 0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
+data4 0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
+data4 0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
+data4 0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
+data4 0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
+data4 0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
+data4 0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
+data4 0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
+data4 0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
+data4 0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
+data4 0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
+data4 0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
+data4 0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
+data4 0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
+data4 0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
+data4 0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
+data4 0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
+data4 0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
+data4 0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
+data4 0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
+data4 0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
+data4 0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
+
+//
+// Exponent Thresholds and Tiny Thresholds
+// for 8, 11, 15, and 17 bit exponents
+//
+// Expo_Range Value
+//
+// 0 (8 bits) 2^(-126)
+// 1 (11 bits) 2^(-1022)
+// 2 (15 bits) 2^(-16382)
+// 3 (17 bits) 2^(-16382)
+//
+// Tiny_Table
+// ----------
+// Expo_Range Value
+//
+// 0 (8 bits) 2^(-16382)
+// 1 (11 bits) 2^(-16382)
+// 2 (15 bits) 2^(-16382)
+// 3 (17 bits) 2^(-16382)
+//
-FR_NormX = f7
-FR_RcpX = f9
-FR_r = f10
-FR_r2 = f11
-FR_r4 = f12
-FR_N = f13
-FR_Ln2hi = f14
-FR_Ln2lo = f15
+.align 64
+Constants_Threshold:
+ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
+data4 0x00000000,0x80000000,0x00003F81,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00003C01,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Threshold)
-FR_A7 = f32
-FR_A6 = f33
-FR_A5 = f34
-FR_A4 = f35
-FR_A3 = f36
-FR_A2 = f37
+.align 64
+Constants_1_by_LN10:
+ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
+data4 0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
+data4 0xACCF70C8,0xD56EAABE,0x00003FBD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)
-FR_Thi = f38
-FR_NxLn2hipThi = f38
-FR_NxLn2pT = f38
-FR_Tlo = f39
-FR_NxLn2lopTlo = f39
+FR_Input_X = f8
+FR_Neg_One = f9
+FR_E = f33
+FR_Em1 = f34
+FR_Y_hi = f34
+// Shared with Em1
+FR_Y_lo = f35
+FR_Scale = f36
+FR_X_Prime = f37
+FR_Z = f38
+FR_S_hi = f38
+// Shared with Z
+FR_W = f39
+FR_G = f40
+FR_wsq = f40
+// Shared with G
+FR_H = f41
+FR_w4 = f41
+// Shared with H
+FR_h = f42
+FR_w6 = f42
+// Shared with h
+FR_G_tmp = f43
+FR_poly_lo = f43
+// Shared with G_tmp
+FR_P8 = f43
+// Shared with G_tmp
+FR_H_tmp = f44
+FR_poly_hi = f44
+ // Shared with H_tmp
+FR_P7 = f44
+// Shared with H_tmp
+FR_h_tmp = f45
+FR_rsq = f45
+// Shared with h_tmp
+FR_P6 = f45
+// Shared with h_tmp
+FR_abs_W = f46
+FR_r = f46
+// Shared with abs_W
+FR_AA = f47
+FR_log2_hi = f47
+// Shared with AA
+FR_BB = f48
+FR_log2_lo = f48
+// Shared with BB
+FR_S_lo = f49
+FR_two_negN = f50
+FR_float_N = f51
+FR_Q4 = f52
+FR_dummy = f52
+// Shared with Q4
+FR_P4 = f52
+// Shared with Q4
+FR_Threshold = f52
+// Shared with Q4
+FR_Q3 = f53
+FR_P3 = f53
+// Shared with Q3
+FR_Tiny = f53
+// Shared with Q3
+FR_Q2 = f54
+FR_P2 = f54
+// Shared with Q2
+FR_1LN10_hi = f54
+// Shared with Q2
+FR_Q1 = f55
+FR_P1 = f55
+// Shared with Q1
+FR_1LN10_lo = f55
+// Shared with Q1
+FR_P5 = f98
+FR_SCALE = f98
+FR_Output_X_tmp = f99
-FR_Xp1 = f40
+GR_Expo_Range = r32
+GR_Table_Base = r34
+GR_Table_Base1 = r35
+GR_Table_ptr = r36
+GR_Index2 = r37
+GR_signif = r38
+GR_X_0 = r39
+GR_X_1 = r40
+GR_X_2 = r41
+GR_Z_1 = r42
+GR_Z_2 = r43
+GR_N = r44
+GR_Bias = r45
+GR_M = r46
+GR_ScaleN = r47
+GR_Index3 = r48
+GR_Perturb = r49
+GR_Table_Scale = r50
-FR_Y = f1
-FR_X = f10
-FR_RESULT = f8
+GR_SAVE_PFS = r51
+GR_SAVE_B0 = r52
+GR_SAVE_GP = r53
+GR_Parameter_X = r54
+GR_Parameter_Y = r55
+GR_Parameter_RESULT = r56
+
+GR_Parameter_TAG = r57
-// Data
-//==============================================================
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(log_data)
-// coefficients of polynomial approximation
-data8 0x3FC2494104381A8E // A7
-data8 0xBFC5556D556BBB69 // A6
-data8 0x3FC999999988B5E9 // A5
-data8 0xBFCFFFFFFFF6FFF5 // A4
-//
-// hi parts of ln(1/frcpa(1+i/256)), i=0...255
-data8 0x3F60040155D5889D // 0
-data8 0x3F78121214586B54 // 1
-data8 0x3F841929F96832EF // 2
-data8 0x3F8C317384C75F06 // 3
-data8 0x3F91A6B91AC73386 // 4
-data8 0x3F95BA9A5D9AC039 // 5
-data8 0x3F99D2A8074325F3 // 6
-data8 0x3F9D6B2725979802 // 7
-data8 0x3FA0C58FA19DFAA9 // 8
-data8 0x3FA2954C78CBCE1A // 9
-data8 0x3FA4A94D2DA96C56 // 10
-data8 0x3FA67C94F2D4BB58 // 11
-data8 0x3FA85188B630F068 // 12
-data8 0x3FAA6B8ABE73AF4C // 13
-data8 0x3FAC441E06F72A9E // 14
-data8 0x3FAE1E6713606D06 // 15
-data8 0x3FAFFA6911AB9300 // 16
-data8 0x3FB0EC139C5DA600 // 17
-data8 0x3FB1DBD2643D190B // 18
-data8 0x3FB2CC7284FE5F1C // 19
-data8 0x3FB3BDF5A7D1EE64 // 20
-data8 0x3FB4B05D7AA012E0 // 21
-data8 0x3FB580DB7CEB5701 // 22
-data8 0x3FB674F089365A79 // 23
-data8 0x3FB769EF2C6B568D // 24
-data8 0x3FB85FD927506A47 // 25
-data8 0x3FB9335E5D594988 // 26
-data8 0x3FBA2B0220C8E5F4 // 27
-data8 0x3FBB0004AC1A86AB // 28
-data8 0x3FBBF968769FCA10 // 29
-data8 0x3FBCCFEDBFEE13A8 // 30
-data8 0x3FBDA727638446A2 // 31
-data8 0x3FBEA3257FE10F79 // 32
-data8 0x3FBF7BE9FEDBFDE5 // 33
-data8 0x3FC02AB352FF25F3 // 34
-data8 0x3FC097CE579D204C // 35
-data8 0x3FC1178E8227E47B // 36
-data8 0x3FC185747DBECF33 // 37
-data8 0x3FC1F3B925F25D41 // 38
-data8 0x3FC2625D1E6DDF56 // 39
-data8 0x3FC2D1610C868139 // 40
-data8 0x3FC340C59741142E // 41
-data8 0x3FC3B08B6757F2A9 // 42
-data8 0x3FC40DFB08378003 // 43
-data8 0x3FC47E74E8CA5F7C // 44
-data8 0x3FC4EF51F6466DE4 // 45
-data8 0x3FC56092E02BA516 // 46
-data8 0x3FC5D23857CD74D4 // 47
-data8 0x3FC6313A37335D76 // 48
-data8 0x3FC6A399DABBD383 // 49
-data8 0x3FC70337DD3CE41A // 50
-data8 0x3FC77654128F6127 // 51
-data8 0x3FC7E9D82A0B022D // 52
-data8 0x3FC84A6B759F512E // 53
-data8 0x3FC8AB47D5F5A30F // 54
-data8 0x3FC91FE49096581B // 55
-data8 0x3FC981634011AA75 // 56
-data8 0x3FC9F6C407089664 // 57
-data8 0x3FCA58E729348F43 // 58
-data8 0x3FCABB55C31693AC // 59
-data8 0x3FCB1E104919EFD0 // 60
-data8 0x3FCB94EE93E367CA // 61
-data8 0x3FCBF851C067555E // 62
-data8 0x3FCC5C0254BF23A5 // 63
-data8 0x3FCCC000C9DB3C52 // 64
-data8 0x3FCD244D99C85673 // 65
-data8 0x3FCD88E93FB2F450 // 66
-data8 0x3FCDEDD437EAEF00 // 67
-data8 0x3FCE530EFFE71012 // 68
-data8 0x3FCEB89A1648B971 // 69
-data8 0x3FCF1E75FADF9BDE // 70
-data8 0x3FCF84A32EAD7C35 // 71
-data8 0x3FCFEB2233EA07CD // 72
-data8 0x3FD028F9C7035C1C // 73
-data8 0x3FD05C8BE0D9635A // 74
-data8 0x3FD085EB8F8AE797 // 75
-data8 0x3FD0B9C8E32D1911 // 76
-data8 0x3FD0EDD060B78080 // 77
-data8 0x3FD122024CF0063F // 78
-data8 0x3FD14BE2927AECD4 // 79
-data8 0x3FD180618EF18ADF // 80
-data8 0x3FD1B50BBE2FC63B // 81
-data8 0x3FD1DF4CC7CF242D // 82
-data8 0x3FD214456D0EB8D4 // 83
-data8 0x3FD23EC5991EBA49 // 84
-data8 0x3FD2740D9F870AFB // 85
-data8 0x3FD29ECDABCDFA03 // 86
-data8 0x3FD2D46602ADCCEE // 87
-data8 0x3FD2FF66B04EA9D4 // 88
-data8 0x3FD335504B355A37 // 89
-data8 0x3FD360925EC44F5C // 90
-data8 0x3FD38BF1C3337E74 // 91
-data8 0x3FD3C25277333183 // 92
-data8 0x3FD3EDF463C1683E // 93
-data8 0x3FD419B423D5E8C7 // 94
-data8 0x3FD44591E0539F48 // 95
-data8 0x3FD47C9175B6F0AD // 96
-data8 0x3FD4A8B341552B09 // 97
-data8 0x3FD4D4F39089019F // 98
-data8 0x3FD501528DA1F967 // 99
-data8 0x3FD52DD06347D4F6 // 100
-data8 0x3FD55A6D3C7B8A89 // 101
-data8 0x3FD5925D2B112A59 // 102
-data8 0x3FD5BF406B543DB1 // 103
-data8 0x3FD5EC433D5C35AD // 104
-data8 0x3FD61965CDB02C1E // 105
-data8 0x3FD646A84935B2A1 // 106
-data8 0x3FD6740ADD31DE94 // 107
-data8 0x3FD6A18DB74A58C5 // 108
-data8 0x3FD6CF31058670EC // 109
-data8 0x3FD6F180E852F0B9 // 110
-data8 0x3FD71F5D71B894EF // 111
-data8 0x3FD74D5AEFD66D5C // 112
-data8 0x3FD77B79922BD37D // 113
-data8 0x3FD7A9B9889F19E2 // 114
-data8 0x3FD7D81B037EB6A6 // 115
-data8 0x3FD8069E33827230 // 116
-data8 0x3FD82996D3EF8BCA // 117
-data8 0x3FD85855776DCBFA // 118
-data8 0x3FD8873658327CCE // 119
-data8 0x3FD8AA75973AB8CE // 120
-data8 0x3FD8D992DC8824E4 // 121
-data8 0x3FD908D2EA7D9511 // 122
-data8 0x3FD92C59E79C0E56 // 123
-data8 0x3FD95BD750EE3ED2 // 124
-data8 0x3FD98B7811A3EE5B // 125
-data8 0x3FD9AF47F33D406B // 126
-data8 0x3FD9DF270C1914A7 // 127
-data8 0x3FDA0325ED14FDA4 // 128
-data8 0x3FDA33440224FA78 // 129
-data8 0x3FDA57725E80C382 // 130
-data8 0x3FDA87D0165DD199 // 131
-data8 0x3FDAAC2E6C03F895 // 132
-data8 0x3FDADCCC6FDF6A81 // 133
-data8 0x3FDB015B3EB1E790 // 134
-data8 0x3FDB323A3A635948 // 135
-data8 0x3FDB56FA04462909 // 136
-data8 0x3FDB881AA659BC93 // 137
-data8 0x3FDBAD0BEF3DB164 // 138
-data8 0x3FDBD21297781C2F // 139
-data8 0x3FDC039236F08818 // 140
-data8 0x3FDC28CB1E4D32FC // 141
-data8 0x3FDC4E19B84723C1 // 142
-data8 0x3FDC7FF9C74554C9 // 143
-data8 0x3FDCA57B64E9DB05 // 144
-data8 0x3FDCCB130A5CEBAF // 145
-data8 0x3FDCF0C0D18F326F // 146
-data8 0x3FDD232075B5A201 // 147
-data8 0x3FDD490246DEFA6B // 148
-data8 0x3FDD6EFA918D25CD // 149
-data8 0x3FDD9509707AE52F // 150
-data8 0x3FDDBB2EFE92C554 // 151
-data8 0x3FDDEE2F3445E4AE // 152
-data8 0x3FDE148A1A2726CD // 153
-data8 0x3FDE3AFC0A49FF3F // 154
-data8 0x3FDE6185206D516D // 155
-data8 0x3FDE882578823D51 // 156
-data8 0x3FDEAEDD2EAC990C // 157
-data8 0x3FDED5AC5F436BE2 // 158
-data8 0x3FDEFC9326D16AB8 // 159
-data8 0x3FDF2391A21575FF // 160
-data8 0x3FDF4AA7EE03192C // 161
-data8 0x3FDF71D627C30BB0 // 162
-data8 0x3FDF991C6CB3B379 // 163
-data8 0x3FDFC07ADA69A90F // 164
-data8 0x3FDFE7F18EB03D3E // 165
-data8 0x3FE007C053C5002E // 166
-data8 0x3FE01B942198A5A0 // 167
-data8 0x3FE02F74400C64EA // 168
-data8 0x3FE04360BE7603AC // 169
-data8 0x3FE05759AC47FE33 // 170
-data8 0x3FE06B5F1911CF51 // 171
-data8 0x3FE078BF0533C568 // 172
-data8 0x3FE08CD9687E7B0E // 173
-data8 0x3FE0A10074CF9019 // 174
-data8 0x3FE0B5343A234476 // 175
-data8 0x3FE0C974C89431CD // 176
-data8 0x3FE0DDC2305B9886 // 177
-data8 0x3FE0EB524BAFC918 // 178
-data8 0x3FE0FFB54213A475 // 179
-data8 0x3FE114253DA97D9F // 180
-data8 0x3FE128A24F1D9AFF // 181
-data8 0x3FE1365252BF0864 // 182
-data8 0x3FE14AE558B4A92D // 183
-data8 0x3FE15F85A19C765B // 184
-data8 0x3FE16D4D38C119FA // 185
-data8 0x3FE18203C20DD133 // 186
-data8 0x3FE196C7BC4B1F3A // 187
-data8 0x3FE1A4A738B7A33C // 188
-data8 0x3FE1B981C0C9653C // 189
-data8 0x3FE1CE69E8BB106A // 190
-data8 0x3FE1DC619DE06944 // 191
-data8 0x3FE1F160A2AD0DA3 // 192
-data8 0x3FE2066D7740737E // 193
-data8 0x3FE2147DBA47A393 // 194
-data8 0x3FE229A1BC5EBAC3 // 195
-data8 0x3FE237C1841A502E // 196
-data8 0x3FE24CFCE6F80D9A // 197
-data8 0x3FE25B2C55CD5762 // 198
-data8 0x3FE2707F4D5F7C40 // 199
-data8 0x3FE285E0842CA383 // 200
-data8 0x3FE294294708B773 // 201
-data8 0x3FE2A9A2670AFF0C // 202
-data8 0x3FE2B7FB2C8D1CC0 // 203
-data8 0x3FE2C65A6395F5F5 // 204
-data8 0x3FE2DBF557B0DF42 // 205
-data8 0x3FE2EA64C3F97654 // 206
-data8 0x3FE3001823684D73 // 207
-data8 0x3FE30E97E9A8B5CC // 208
-data8 0x3FE32463EBDD34E9 // 209
-data8 0x3FE332F4314AD795 // 210
-data8 0x3FE348D90E7464CF // 211
-data8 0x3FE35779F8C43D6D // 212
-data8 0x3FE36621961A6A99 // 213
-data8 0x3FE37C299F3C366A // 214
-data8 0x3FE38AE2171976E7 // 215
-data8 0x3FE399A157A603E7 // 216
-data8 0x3FE3AFCCFE77B9D1 // 217
-data8 0x3FE3BE9D503533B5 // 218
-data8 0x3FE3CD7480B4A8A2 // 219
-data8 0x3FE3E3C43918F76C // 220
-data8 0x3FE3F2ACB27ED6C6 // 221
-data8 0x3FE4019C2125CA93 // 222
-data8 0x3FE4181061389722 // 223
-data8 0x3FE42711518DF545 // 224
-data8 0x3FE436194E12B6BF // 225
-data8 0x3FE445285D68EA69 // 226
-data8 0x3FE45BCC464C893A // 227
-data8 0x3FE46AED21F117FC // 228
-data8 0x3FE47A1527E8A2D3 // 229
-data8 0x3FE489445EFFFCCB // 230
-data8 0x3FE4A018BCB69835 // 231
-data8 0x3FE4AF5A0C9D65D7 // 232
-data8 0x3FE4BEA2A5BDBE87 // 233
-data8 0x3FE4CDF28F10AC46 // 234
-data8 0x3FE4DD49CF994058 // 235
-data8 0x3FE4ECA86E64A683 // 236
-data8 0x3FE503C43CD8EB68 // 237
-data8 0x3FE513356667FC57 // 238
-data8 0x3FE522AE0738A3D7 // 239
-data8 0x3FE5322E26867857 // 240
-data8 0x3FE541B5CB979809 // 241
-data8 0x3FE55144FDBCBD62 // 242
-data8 0x3FE560DBC45153C6 // 243
-data8 0x3FE5707A26BB8C66 // 244
-data8 0x3FE587F60ED5B8FF // 245
-data8 0x3FE597A7977C8F31 // 246
-data8 0x3FE5A760D634BB8A // 247
-data8 0x3FE5B721D295F10E // 248
-data8 0x3FE5C6EA94431EF9 // 249
-data8 0x3FE5D6BB22EA86F5 // 250
-data8 0x3FE5E6938645D38F // 251
-data8 0x3FE5F673C61A2ED1 // 252
-data8 0x3FE6065BEA385926 // 253
-data8 0x3FE6164BFA7CC06B // 254
-data8 0x3FE62643FECF9742 // 255
-//
-// two parts of ln(2)
-data8 0x3FE62E42FEF00000,0x3DD473DE6AF278ED
-//
-// lo parts of ln(1/frcpa(1+i/256)), i=0...255
-data4 0x20E70672 // 0
-data4 0x1F60A5D0 // 1
-data4 0x218EABA0 // 2
-data4 0x21403104 // 3
-data4 0x20E9B54E // 4
-data4 0x21EE1382 // 5
-data4 0x226014E3 // 6
-data4 0x2095E5C9 // 7
-data4 0x228BA9D4 // 8
-data4 0x22932B86 // 9
-data4 0x22608A57 // 10
-data4 0x220209F3 // 11
-data4 0x212882CC // 12
-data4 0x220D46E2 // 13
-data4 0x21FA4C28 // 14
-data4 0x229E5BD9 // 15
-data4 0x228C9838 // 16
-data4 0x2311F954 // 17
-data4 0x221365DF // 18
-data4 0x22BD0CB3 // 19
-data4 0x223D4BB7 // 20
-data4 0x22A71BBE // 21
-data4 0x237DB2FA // 22
-data4 0x23194C9D // 23
-data4 0x22EC639E // 24
-data4 0x2367E669 // 25
-data4 0x232E1D5F // 26
-data4 0x234A639B // 27
-data4 0x2365C0E0 // 28
-data4 0x234646C1 // 29
-data4 0x220CBF9C // 30
-data4 0x22A00FD4 // 31
-data4 0x2306A3F2 // 32
-data4 0x23745A9B // 33
-data4 0x2398D756 // 34
-data4 0x23DD0B6A // 35
-data4 0x23DE338B // 36
-data4 0x23A222DF // 37
-data4 0x223164F8 // 38
-data4 0x23B4E87B // 39
-data4 0x23D6CCB8 // 40
-data4 0x220C2099 // 41
-data4 0x21B86B67 // 42
-data4 0x236D14F1 // 43
-data4 0x225A923F // 44
-data4 0x22748723 // 45
-data4 0x22200D13 // 46
-data4 0x23C296EA // 47
-data4 0x2302AC38 // 48
-data4 0x234B1996 // 49
-data4 0x2385E298 // 50
-data4 0x23175BE5 // 51
-data4 0x2193F482 // 52
-data4 0x23BFEA90 // 53
-data4 0x23D70A0C // 54
-data4 0x231CF30A // 55
-data4 0x235D9E90 // 56
-data4 0x221AD0CB // 57
-data4 0x22FAA08B // 58
-data4 0x23D29A87 // 59
-data4 0x20C4B2FE // 60
-data4 0x2381B8B7 // 61
-data4 0x23F8D9FC // 62
-data4 0x23EAAE7B // 63
-data4 0x2329E8AA // 64
-data4 0x23EC0322 // 65
-data4 0x2357FDCB // 66
-data4 0x2392A9AD // 67
-data4 0x22113B02 // 68
-data4 0x22DEE901 // 69
-data4 0x236A6D14 // 70
-data4 0x2371D33E // 71
-data4 0x2146F005 // 72
-data4 0x23230B06 // 73
-data4 0x22F1C77D // 74
-data4 0x23A89FA3 // 75
-data4 0x231D1241 // 76
-data4 0x244DA96C // 77
-data4 0x23ECBB7D // 78
-data4 0x223E42B4 // 79
-data4 0x23801BC9 // 80
-data4 0x23573263 // 81
-data4 0x227C1158 // 82
-data4 0x237BD749 // 83
-data4 0x21DDBAE9 // 84
-data4 0x23401735 // 85
-data4 0x241D9DEE // 86
-data4 0x23BC88CB // 87
-data4 0x2396D5F1 // 88
-data4 0x23FC89CF // 89
-data4 0x2414F9A2 // 90
-data4 0x2474A0F5 // 91
-data4 0x24354B60 // 92
-data4 0x23C1EB40 // 93
-data4 0x2306DD92 // 94
-data4 0x24353B6B // 95
-data4 0x23CD1701 // 96
-data4 0x237C7A1C // 97
-data4 0x245793AA // 98
-data4 0x24563695 // 99
-data4 0x23C51467 // 100
-data4 0x24476B68 // 101
-data4 0x212585A9 // 102
-data4 0x247B8293 // 103
-data4 0x2446848A // 104
-data4 0x246A53F8 // 105
-data4 0x246E496D // 106
-data4 0x23ED1D36 // 107
-data4 0x2314C258 // 108
-data4 0x233244A7 // 109
-data4 0x245B7AF0 // 110
-data4 0x24247130 // 111
-data4 0x22D67B38 // 112
-data4 0x2449F620 // 113
-data4 0x23BBC8B8 // 114
-data4 0x237D3BA0 // 115
-data4 0x245E8F13 // 116
-data4 0x2435573F // 117
-data4 0x242DE666 // 118
-data4 0x2463BC10 // 119
-data4 0x2466587D // 120
-data4 0x2408144B // 121
-data4 0x2405F0E5 // 122
-data4 0x22381CFF // 123
-data4 0x24154F9B // 124
-data4 0x23A4E96E // 125
-data4 0x24052967 // 126
-data4 0x2406963F // 127
-data4 0x23F7D3CB // 128
-data4 0x2448AFF4 // 129
-data4 0x24657A21 // 130
-data4 0x22FBC230 // 131
-data4 0x243C8DEA // 132
-data4 0x225DC4B7 // 133
-data4 0x23496EBF // 134
-data4 0x237C2B2B // 135
-data4 0x23A4A5B1 // 136
-data4 0x2394E9D1 // 137
-data4 0x244BC950 // 138
-data4 0x23C7448F // 139
-data4 0x2404A1AD // 140
-data4 0x246511D5 // 141
-data4 0x24246526 // 142
-data4 0x23111F57 // 143
-data4 0x22868951 // 144
-data4 0x243EB77F // 145
-data4 0x239F3DFF // 146
-data4 0x23089666 // 147
-data4 0x23EBFA6A // 148
-data4 0x23C51312 // 149
-data4 0x23E1DD5E // 150
-data4 0x232C0944 // 151
-data4 0x246A741F // 152
-data4 0x2414DF8D // 153
-data4 0x247B5546 // 154
-data4 0x2415C980 // 155
-data4 0x24324ABD // 156
-data4 0x234EB5E5 // 157
-data4 0x2465E43E // 158
-data4 0x242840D1 // 159
-data4 0x24444057 // 160
-data4 0x245E56F0 // 161
-data4 0x21AE30F8 // 162
-data4 0x23FB3283 // 163
-data4 0x247A4D07 // 164
-data4 0x22AE314D // 165
-data4 0x246B7727 // 166
-data4 0x24EAD526 // 167
-data4 0x24B41DC9 // 168
-data4 0x24EE8062 // 169
-data4 0x24A0C7C4 // 170
-data4 0x24E8DA67 // 171
-data4 0x231120F7 // 172
-data4 0x24401FFB // 173
-data4 0x2412DD09 // 174
-data4 0x248C131A // 175
-data4 0x24C0A7CE // 176
-data4 0x243DD4C8 // 177
-data4 0x24457FEB // 178
-data4 0x24DEEFBB // 179
-data4 0x243C70AE // 180
-data4 0x23E7A6FA // 181
-data4 0x24C2D311 // 182
-data4 0x23026255 // 183
-data4 0x2437C9B9 // 184
-data4 0x246BA847 // 185
-data4 0x2420B448 // 186
-data4 0x24C4CF5A // 187
-data4 0x242C4981 // 188
-data4 0x24DE1525 // 189
-data4 0x24F5CC33 // 190
-data4 0x235A85DA // 191
-data4 0x24A0B64F // 192
-data4 0x244BA0A4 // 193
-data4 0x24AAF30A // 194
-data4 0x244C86F9 // 195
-data4 0x246D5B82 // 196
-data4 0x24529347 // 197
-data4 0x240DD008 // 198
-data4 0x24E98790 // 199
-data4 0x2489B0CE // 200
-data4 0x22BC29AC // 201
-data4 0x23F37C7A // 202
-data4 0x24987FE8 // 203
-data4 0x22AFE20B // 204
-data4 0x24C8D7C2 // 205
-data4 0x24B28B7D // 206
-data4 0x23B6B271 // 207
-data4 0x24C77CB6 // 208
-data4 0x24EF1DCA // 209
-data4 0x24A4F0AC // 210
-data4 0x24CF113E // 211
-data4 0x2496BBAB // 212
-data4 0x23C7CC8A // 213
-data4 0x23AE3961 // 214
-data4 0x2410A895 // 215
-data4 0x23CE3114 // 216
-data4 0x2308247D // 217
-data4 0x240045E9 // 218
-data4 0x24974F60 // 219
-data4 0x242CB39F // 220
-data4 0x24AB8D69 // 221
-data4 0x23436788 // 222
-data4 0x24305E9E // 223
-data4 0x243E71A9 // 224
-data4 0x23C2A6B3 // 225
-data4 0x23FFE6CF // 226
-data4 0x2322D801 // 227
-data4 0x24515F21 // 228
-data4 0x2412A0D6 // 229
-data4 0x24E60D44 // 230
-data4 0x240D9251 // 231
-data4 0x247076E2 // 232
-data4 0x229B101B // 233
-data4 0x247B12DE // 234
-data4 0x244B9127 // 235
-data4 0x2499EC42 // 236
-data4 0x21FC3963 // 237
-data4 0x23E53266 // 238
-data4 0x24CE102D // 239
-data4 0x23CC45D2 // 240
-data4 0x2333171D // 241
-data4 0x246B3533 // 242
-data4 0x24931129 // 243
-data4 0x24405FFA // 244
-data4 0x24CF464D // 245
-data4 0x237095CD // 246
-data4 0x24F86CBD // 247
-data4 0x24E2D84B // 248
-data4 0x21ACBB44 // 249
-data4 0x24F43A8C // 250
-data4 0x249DB931 // 251
-data4 0x24A385EF // 252
-data4 0x238B1279 // 253
-data4 0x2436213E // 254
-data4 0x24F18A3B // 255
-LOCAL_OBJECT_END(log_data)
-
-
-// Code
-//==============================================================
.section .text
-GLOBAL_IEEE754_ENTRY(log1p)
+.proc log1p#
+.global log1p#
+.align 64
+log1p:
+#ifdef _LIBC
+.global __log1p
+__log1p:
+#endif
+
{ .mfi
- getf.exp GR_signexp_x = f8 // if x is unorm then must recompute
- fadd.s1 FR_Xp1 = f8, f1 // Form 1+x
- mov GR_05 = 0xfffe
+alloc r32 = ar.pfs,0,22,4,0
+(p0) fsub.s1 FR_Neg_One = f0,f1
+(p0) cmp.eq.unc p7, p0 = r0, r0
}
-{ .mlx
- addl GR_ad_1 = @ltoff(log_data),gp
- movl GR_A3 = 0x3fd5555555555557 // double precision memory
- // representation of A3
+
+{ .mfi
+(p0) cmp.ne.unc p14, p0 = r0, r0
+(p0) fnorm.s1 FR_X_Prime = FR_Input_X
+(p0) cmp.eq.unc p15, p0 = r0, r0 ;;
}
-;;
{ .mfi
- ld8 GR_ad_1 = [GR_ad_1]
- fclass.m p8,p0 = f8,0xb // Is x unorm?
- mov GR_exp_mask = 0x1ffff
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = FR_Input_X, 0x1E3
+ nop.i 999
}
+;;
+
{ .mfi
- nop.m 0
- fnorm.s1 FR_NormX = f8 // Normalize x
- mov GR_exp_bias = 0xffff
+ nop.m 999
+(p0) fclass.nm.unc p10, p0 = FR_Input_X, 0x1FF
+ nop.i 999
}
;;
{ .mfi
- setf.exp FR_A2 = GR_05 // create A2 = 0.5
- fclass.m p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
- nop.i 0
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p9, p0 = FR_Input_X, f0
+ nop.i 999
}
-{ .mib
- setf.d FR_A3 = GR_A3 // create A3
- add GR_ad_2 = 16,GR_ad_1 // address of A5,A4
-(p8) br.cond.spnt log1p_unorm // Branch if x=unorm
+
+{ .mfi
+ nop.m 999
+(p0) fadd FR_Em1 = f0,f0
+ nop.i 999 ;;
}
-;;
-log1p_common:
{ .mfi
- nop.m 0
- frcpa.s1 FR_RcpX,p0 = f1,FR_Xp1
- nop.i 0
+ nop.m 999
+(p0) fadd FR_E = f0,f1
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p9) fma.d.s0 f8 = f8,f1,f0 // set V-flag
-(p9) br.ret.spnt b0 // exit for NaN, NaT and +Inf
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p8, p0 = FR_Input_X, FR_Neg_One
+ nop.i 999
}
-;;
{ .mfi
- getf.exp GR_Exp = FR_Xp1 // signexp of x+1
- fclass.m p10,p0 = FR_Xp1,0x3A // is 1+x < 0?
- and GR_exp_x = GR_exp_mask, GR_signexp_x // biased exponent of x
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p13, p0 = FR_Input_X, FR_Neg_One
+ nop.i 999
}
+
+
+L(LOG_BEGIN):
+
{ .mfi
- ldfpd FR_A7,FR_A6 = [GR_ad_1]
- nop.f 0
- nop.i 0
+ nop.m 999
+(p0) fadd.s1 FR_Z = FR_X_Prime, FR_E
+ nop.i 999
+}
+
+{ .mlx
+ nop.m 999
+(p0) movl GR_Table_Scale = 0x0000000000000018 ;;
+}
+
+{ .mmi
+ nop.m 999
+//
+// Create E = 1 and Em1 = 0
+// Check for X == 0, meaning log(1+0)
+// Check for X < -1, meaning log(negative)
+// Check for X == -1, meaning log(0)
+// Normalize x
+// Identify NatVals, NaNs, Infs.
+// Identify EM unsupporteds.
+// Identify Negative values - us S1 so as
+// not to raise denormal operand exception
+// Set p15 to true for log1p
+// Set p14 to false for log1p
+// Set p7 true for log and log1p
+//
+(p0) addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
+ nop.i 999
}
-;;
{ .mfi
- getf.sig GR_Sig = FR_Xp1 // get significand to calculate index
- // for Thi,Tlo if |x| >= 2^-8
- fcmp.eq.s1 p12,p0 = f8,f0 // is x equal to 0?
- sub GR_exp_x = GR_exp_x, GR_exp_bias // true exponent of x
+ nop.m 999
+(p0) fmax.s1 FR_AA = FR_X_Prime, FR_E
+ nop.i 999 ;;
}
-;;
{ .mfi
- sub GR_N = GR_Exp,GR_exp_bias // true exponent of x+1
- fcmp.eq.s1 p11,p0 = FR_Xp1,f0 // is x = -1?
- cmp.gt p6,p7 = -8, GR_exp_x // Is |x| < 2^-8
+ ld8 GR_Table_Base = [GR_Table_Base]
+(p0) fmin.s1 FR_BB = FR_X_Prime, FR_E
+ nop.i 999
}
+
{ .mfb
- ldfpd FR_A5,FR_A4 = [GR_ad_2],16
- nop.f 0
-(p10) br.cond.spnt log1p_lt_minus_1 // jump if x < -1
+ nop.m 999
+(p0) fadd.s1 FR_W = FR_X_Prime, FR_Em1
+//
+// Begin load of constants base
+// FR_Z = Z = |x| + E
+// FR_W = W = |x| + Em1
+// AA = fmax(|x|,E)
+// BB = fmin(|x|,E)
+//
+(p6) br.cond.spnt L(LOG_64_special) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt L(LOG_64_unsupported) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p13) br.cond.spnt L(LOG_64_negative) ;;
+}
+
+{ .mib
+(p0) getf.sig GR_signif = FR_Z
+ nop.i 999
+(p9) br.cond.spnt L(LOG_64_one) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(LOG_64_zero) ;;
}
-;;
-// p6 is true if |x| < 1/256
-// p7 is true if |x| >= 1/256
-.pred.rel "mutex",p6,p7
{ .mfi
-(p7) add GR_ad_1 = 0x820,GR_ad_1 // address of log(2) parts
-(p6) fms.s1 FR_r = f8,f1,f0 // range reduction for |x|<1/256
-(p6) cmp.gt.unc p10,p0 = -80, GR_exp_x // Is |x| < 2^-80
+(p0) getf.exp GR_N = FR_Z
+//
+// Raise possible denormal operand exception
+// Create Bias
+//
+// This function computes ln( x + e )
+// Input FR 1: FR_X = FR_Input_X
+// Input FR 2: FR_E = FR_E
+// Input FR 3: FR_Em1 = FR_Em1
+// Input GR 1: GR_Expo_Range = GR_Expo_Range = 1
+// Output FR 4: FR_Y_hi
+// Output FR 5: FR_Y_lo
+// Output FR 6: FR_Scale
+// Output PR 7: PR_Safe
+//
+(p0) fsub.s1 FR_S_lo = FR_AA, FR_Z
+//
+// signif = getf.sig(Z)
+// abs_W = fabs(w)
+//
+(p0) extr.u GR_Table_ptr = GR_signif, 59, 4 ;;
}
-{ .mfb
-(p7) setf.sig FR_N = GR_N // copy unbiased exponent of x to the
- // significand field of FR_N
-(p7) fms.s1 FR_r = FR_RcpX,FR_Xp1,f1 // range reduction for |x|>=1/256
-(p12) br.ret.spnt b0 // exit for x=0, return x
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.se FR_S_hi = f1,FR_Z
+(p0) extr.u GR_X_0 = GR_signif, 49, 15
+}
+
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp
+ nop.i 999
}
;;
+{ .mlx
+ ld8 GR_Table_Base1 = [GR_Table_Base1]
+(p0) movl GR_Bias = 0x000000000000FFFF ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fabs FR_abs_W = FR_W
+(p0) pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0
+}
+
+{ .mfi
+ nop.m 999
+//
+// Branch out for special input values
+//
+(p0) fcmp.lt.unc.s0 p8, p0 = FR_Input_X, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// X_0 = extr.u(signif,49,15)
+// Index1 = extr.u(signif,59,4)
+//
+(p0) fadd.s1 FR_S_lo = FR_S_lo, FR_BB
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Offset_to_Z1 = 24 * Index1
+// For performance, don't use result
+// for 3 or 4 cycles.
+//
+(p0) add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;;
+}
+//
+// Add Base to Offset for Z1
+// Create Bias
+
+{ .mmi
+(p0) ld4 GR_Z_1 = [GR_Table_ptr],4 ;;
+(p0) ldfs FR_G = [GR_Table_ptr],4
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfs FR_H = [GR_Table_ptr],8 ;;
+(p0) ldfd FR_h = [GR_Table_ptr],0
+(p0) pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
+}
+//
+// Load Z_1
+// Get Base of Table2
+//
+
+{ .mfi
+(p0) getf.exp GR_M = FR_abs_W
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// M = getf.exp(abs_W)
+// S_lo = AA - Z
+// X_1 = pmpyshr2(X_0,Z_1,15)
+//
+(p0) sub GR_M = GR_M, GR_Bias ;;
+}
+//
+// M = M - Bias
+// Load G1
+// N = getf.exp(Z)
+//
+
+{ .mii
+(p0) cmp.gt.unc p11, p0 = -80, GR_M
+(p0) cmp.gt.unc p12, p0 = -7, GR_M ;;
+(p0) extr.u GR_Index2 = GR_X_1, 6, 4 ;;
+}
+
+{ .mib
+ nop.m 999
+//
+// if -80 > M, set p11
+// Index2 = extr.u(X_1,6,4)
+// if -7 > M, set p12
+// Load H1
+//
+(p0) pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0
+(p11) br.cond.spnt L(log1p_small) ;;
+}
+
{ .mib
-(p7) ldfpd FR_Ln2hi,FR_Ln2lo = [GR_ad_1],16
-(p7) extr.u GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
-(p11) br.cond.spnt log1p_eq_minus_1 // jump if x = -1
+ nop.m 999
+ nop.i 999
+(p12) br.cond.spnt L(log1p_near) ;;
}
-;;
-{ .mmf
-(p7) shladd GR_ad_2 = GR_Ind,3,GR_ad_2 // address of Thi
-(p7) shladd GR_ad_1 = GR_Ind,2,GR_ad_1 // address of Tlo
-(p10) fnma.d.s0 f8 = f8,f8,f8 // If |x| very small, result=x-x*x
+{ .mii
+(p0) sub GR_N = GR_N, GR_Bias
+//
+// poly_lo = r * poly_lo
+//
+(p0) add GR_Perturb = 0x1, r0 ;;
+(p0) sub GR_ScaleN = GR_Bias, GR_N
}
-;;
+
+{ .mii
+(p0) setf.sig FR_float_N = GR_N
+ nop.i 999 ;;
+//
+// Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
+// Load h1
+// S_lo = S_lo + BB
+// Branch for -80 > M
+//
+(p0) add GR_Index2 = GR_Index2, GR_Table_Base1
+}
+
+{ .mmi
+(p0) setf.exp FR_two_negN = GR_ScaleN
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp
+};;
+
+//
+// Index2 points to Z2
+// Branch for -7 > M
+//
{ .mmb
-(p7) ldfd FR_Thi = [GR_ad_2]
-(p7) ldfs FR_Tlo = [GR_ad_1]
-(p10) br.ret.spnt b0 // Exit if |x| < 2^(-80)
+(p0) ld4 GR_Z_2 = [GR_Index2],4
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.b 999 ;;
}
-;;
+(p0) nop.i 999
+//
+// Load Z_2
+// N = N - Bias
+// Tablebase points to Table3
+//
+
+{ .mmi
+(p0) ldfs FR_G_tmp = [GR_Index2],4 ;;
+//
+// Load G_2
+// pmpyshr2 X_2= (X_1,Z_2,15)
+// float_N = setf.sig(N)
+// ScaleN = Bias - N
+//
+(p0) ldfs FR_H_tmp = [GR_Index2],8
+ nop.i 999 ;;
+}
+//
+// Load H_2
+// two_negN = setf.exp(scaleN)
+// G = G_1 * G_2
+//
{ .mfi
- nop.m 0
- fma.s1 FR_r2 = FR_r,FR_r,f0 // r^2
- nop.i 0
+(p0) ldfd FR_h_tmp = [GR_Index2],0
+ nop.f 999
+(p0) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;;
+}
+
+{ .mii
+ nop.m 999
+(p0) extr.u GR_Index3 = GR_X_2, 1, 5 ;;
+//
+// Load h_2
+// H = H_1 + H_2
+// h = h_1 + h_2
+// Index3 = extr.u(X_2,1,5)
+//
+(p0) shladd GR_Index3 = GR_Index3,4,GR_Table_Base
+}
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+//
+// float_N = fcvt.xf(float_N)
+// load G3
+//
+(p0) addl GR_Table_Base = @ltoff(Constants_Q#),gp ;;
}
+
{ .mfi
- nop.m 0
- fms.s1 FR_A2 = FR_A3,FR_r,FR_A2 // A3*r+A2
- nop.i 0
+ld8 GR_Table_Base = [GR_Table_Base]
+nop.f 999
+nop.i 999
+} ;;
+
+{ .mfi
+(p0) ldfe FR_log2_hi = [GR_Table_Base],16
+(p0) fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+//
+// G = G3 * G
+// Load h3
+// Load log2_hi
+// H = H + H3
+//
+(p0) ldfe FR_log2_lo = [GR_Table_Base],16
+(p0) fmpy.s1 FR_G = FR_G, FR_G_tmp ;;
+}
+
+{ .mmf
+(p0) ldfs FR_G_tmp = [GR_Index3],4
+//
+// h = h + h3
+// r = G * S_hi + 1
+// Load log2_lo
+//
+(p0) ldfe FR_Q4 = [GR_Table_Base],16
+(p0) fadd.s1 FR_h = FR_h, FR_h_tmp ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 FR_A6 = FR_A7,FR_r,FR_A6 // A7*r+A6
- nop.i 0
+(p0) ldfe FR_Q3 = [GR_Table_Base],16
+(p0) fadd.s1 FR_H = FR_H, FR_H_tmp
+ nop.i 999 ;;
}
+
+{ .mmf
+(p0) ldfs FR_H_tmp = [GR_Index3],4
+(p0) ldfe FR_Q2 = [GR_Table_Base],16
+//
+// Comput Index for Table3
+// S_lo = S_lo * two_negN
+//
+(p0) fcvt.xf FR_float_N = FR_float_N ;;
+}
+//
+// If S_lo == 0, set p8 false
+// Load H3
+// Load ptr to table of polynomial coeff.
+//
+
+{ .mmf
+(p0) ldfd FR_h_tmp = [GR_Index3],0
+(p0) ldfe FR_Q1 = [GR_Table_Base],0
+(p0) fcmp.eq.unc.s1 p0, p8 = FR_S_lo, f0 ;;
+}
+
{ .mfi
- nop.m 0
- fma.s1 FR_A4 = FR_A5,FR_r,FR_A4 // A5*r+A4
- nop.i 0
+ nop.m 999
+(p0) fmpy.s1 FR_G = FR_G, FR_G_tmp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p7) fcvt.xf FR_N = FR_N
- nop.i 0
+ nop.m 999
+(p0) fadd.s1 FR_H = FR_H, FR_H_tmp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- fma.s1 FR_r4 = FR_r2,FR_r2,f0 // r^4
- nop.i 0
+ nop.m 999
+(p0) fms.s1 FR_r = FR_G, FR_S_hi, f1
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- // (A3*r+A2)*r^2+r
- fma.s1 FR_A2 = FR_A2,FR_r2,FR_r
- nop.i 0
+ nop.m 999
+(p0) fadd.s1 FR_h = FR_h, FR_h_tmp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // (A7*r+A6)*r^2+(A5*r+A4)
- fma.s1 FR_A4 = FR_A6,FR_r2,FR_A4
- nop.i 0
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // N*Ln2hi+Thi
-(p7) fma.s1 FR_NxLn2hipThi = FR_N,FR_Ln2hi,FR_Thi
- nop.i 0
+ nop.m 999
+//
+// Load Q4
+// Load Q3
+// Load Q2
+// Load Q1
+//
+(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r
+ nop.i 999
}
+
{ .mfi
- nop.m 0
- // N*Ln2lo+Tlo
-(p7) fma.s1 FR_NxLn2lopTlo = FR_N,FR_Ln2lo,FR_Tlo
- nop.i 0
+ nop.m 999
+//
+// poly_lo = r * Q4 + Q3
+// rsq = r* r
+//
+(p0) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
-(p7) fma.s1 f8 = FR_A4,FR_r4,FR_A2 // P(r) if |x| >= 1/256
- nop.i 0
+ nop.m 999
+//
+// If (S_lo!=0) r = s_lo * G + r
+//
+(p0) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
+ nop.i 999
}
+//
+// Create a 0x00000....01
+// poly_lo = poly_lo * rsq + h
+//
+
{ .mfi
- nop.m 0
- // (N*Ln2hi+Thi) + (N*Ln2lo+Tlo)
-(p7) fma.s1 FR_NxLn2pT = FR_NxLn2hipThi,f1,FR_NxLn2lopTlo
- nop.i 0
+(p0) setf.sig FR_dummy = GR_Perturb
+(p0) fmpy.s1 FR_rsq = FR_r, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// h = N * log2_lo + h
+// Y_hi = n * log2_hi + H
+//
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = r * poly_o + Q2
+// poly_hi = Q1 * rsq + r
+//
+(p0) fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 0
-(p6) fma.d.s0 f8 = FR_A4,FR_r4,FR_A2 // result if 2^(-80) <= |x| < 1/256
- nop.i 0
+ nop.m 999
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h
+ nop.i 999 ;;
}
+
{ .mfb
- nop.m 0
-(p7) fma.d.s0 f8 = f8,f1,FR_NxLn2pT // result if |x| >= 1/256
- br.ret.sptk b0 // Exit if |x| >= 2^(-80)
+ nop.m 999
+(p0) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo
+//
+// Create the FR for a binary "or"
+// Y_lo = poly_hi + poly_lo
+//
+// (p0) for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+// Turn the lsb of Y_lo ON
+//
+// (p0) fmerge.se FR_Y_lo = FR_Y_lo,FR_dummy ;;
+//
+// Merge the new lsb into Y_lo, for alone doesn't
+//
+(p0) br.cond.sptk L(LOG_main) ;;
+}
+
+
+L(log1p_near):
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+// /*******************************************************/
+// /*********** Branch log1p_near ************************/
+// /*******************************************************/
+(p0) addl GR_Table_Base = @ltoff(Constants_P#),gp ;;
+}
+//
+// Load base address of poly. coeff.
+//
+{.mmi
+ nop.m 999
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.i 999
+};;
+
+{ .mmb
+(p0) add GR_Table_ptr = 0x40,GR_Table_Base
+//
+// Address tables with separate pointers
+//
+(p0) ldfe FR_P8 = [GR_Table_Base],16
+ nop.b 999 ;;
+}
+
+{ .mmb
+(p0) ldfe FR_P4 = [GR_Table_ptr],16
+//
+// Load P4
+// Load P8
+//
+(p0) ldfe FR_P7 = [GR_Table_Base],16
+ nop.b 999 ;;
+}
+
+{ .mmf
+(p0) ldfe FR_P3 = [GR_Table_ptr],16
+//
+// Load P3
+// Load P7
+//
+(p0) ldfe FR_P6 = [GR_Table_Base],16
+(p0) fmpy.s1 FR_wsq = FR_W, FR_W ;;
+}
+
+{ .mfi
+(p0) ldfe FR_P2 = [GR_Table_ptr],16
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3
+ nop.i 999
+}
+//
+// Load P2
+// Load P6
+// Wsq = w * w
+// Y_hi = p4 * w + p3
+//
+
+{ .mfi
+(p0) ldfe FR_P5 = [GR_Table_Base],16
+(p0) fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p0) ldfe FR_P1 = [GR_Table_ptr],16
+//
+// Load P1
+// Load P5
+// Y_lo = p8 * w + P7
+//
+(p0) fmpy.s1 FR_w4 = FR_wsq, FR_wsq
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6
+(p0) add GR_Perturb = 0x1, r0 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// w4 = w2 * w2
+// Y_hi = y_hi * w + p2
+// Y_lo = y_lo * w + p6
+// Create perturbation bit
+//
+(p0) fmpy.s1 FR_w6 = FR_w4, FR_wsq
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1
+ nop.i 999
+}
+//
+// Y_hi = y_hi * w + p1
+// w6 = w4 * w2
+//
+
+{ .mfi
+(p0) setf.sig FR_Q4 = GR_Perturb
+(p0) fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_wsq,FR_Y_hi, FR_W
+ nop.i 999
}
-;;
-.align 32
-log1p_unorm:
-// Here if x=unorm
{ .mfb
- getf.exp GR_signexp_x = FR_NormX // recompute biased exponent
- nop.f 0
- br.cond.sptk log1p_common
+ nop.m 999
+//
+// Y_hi = y_hi * wsq + w
+// Y_lo = y_lo * w + p5
+//
+(p0) fmpy.s1 FR_Y_lo = FR_w6, FR_Y_lo
+//
+// Y_lo = y_lo * w6
+//
+// (p0) for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+// Set lsb on: Taken out to improve performance
+//
+// (p0) fmerge.se FR_Y_lo = FR_Y_lo,FR_dummy ;;
+//
+// Make sure it's on in Y_lo also. Taken out to improve
+// performance
+//
+(p0) br.cond.sptk L(LOG_main) ;;
+}
+
+
+L(log1p_small):
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+// /*******************************************************/
+// /*********** Branch log1p_small ***********************/
+// /*******************************************************/
+(p0) addl GR_Table_Base = @ltoff(Constants_Threshold#),gp
}
-;;
-.align 32
-log1p_eq_minus_1:
-// Here if x=-1
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8 // keep input argument for subsequent
- // call of __libm_error_support#
- nop.i 0
+ nop.m 999
+(p0) mov FR_Em1 = FR_W
+(p0) cmp.eq.unc p7, p0 = r0, r0 ;;
+}
+
+{ .mlx
+ ld8 GR_Table_Base = [GR_Table_Base]
+(p0) movl GR_Expo_Range = 0x0000000000000002 ;;
+}
+//
+// Set Safe to true
+// Set Expo_Range = 0 for single
+// Set Expo_Range = 2 for double
+// Set Expo_Range = 4 for double-extended
+//
+
+{ .mmi
+(p0) shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;;
+(p0) ldfe FR_Threshold = [GR_Table_Base],16
+ nop.i 999
+}
+
+{ .mlx
+ nop.m 999
+(p0) movl GR_Bias = 0x000000000000FF9B ;;
}
-;;
{ .mfi
- mov GR_TAG = 140 // set libm error in case of log1p(-1).
- frcpa.s0 f8,p0 = f8,f0 // log1p(-1) should be equal to -INF.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of f8/f0.
- nop.i 0
+(p0) ldfe FR_Tiny = [GR_Table_Base],0
+ nop.f 999
+ nop.i 999 ;;
}
-{ .mib
- nop.m 0
- nop.i 0
- br.cond.sptk log_libm_err
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.gt.unc.s1 p13, p12 = FR_abs_W, FR_Threshold
+ nop.i 999 ;;
}
-;;
-.align 32
-log1p_lt_minus_1:
-// Here if x < -1
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p13) fadd FR_SCALE = f0, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny
+(p12) cmp.ne.unc p7, p0 = r0, r0
}
-;;
{ .mfi
- mov GR_TAG = 141 // set libm error in case of x < -1.
- frcpa.s0 f8,p0 = f0,f0 // log1p(x) x < -1 should be equal to NaN.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of f0/f0 i.e. NaN.
- nop.i 0
+(p12) setf.exp FR_SCALE = GR_Bias
+ nop.f 999
+ nop.i 999 ;;
+}
+
+//
+// Set p7 to SAFE = FALSE
+// Set Scale = 2^-100
+//
+{ .mfb
+ nop.m 999
+(p0) fma.d.s0 FR_Input_X = FR_Y_lo,FR_SCALE,FR_Y_hi
+(p0) br.ret.sptk b0
}
;;
-.align 32
-log_libm_err:
-{ .mmi
- alloc r32 = ar.pfs,1,4,4,0
- mov GR_Parameter_TAG = GR_TAG
- nop.i 0
+L(LOG_64_one):
+
+{ .mfb
+ nop.m 999
+(p0) fmpy.d.s0 FR_Input_X = FR_Input_X, f0
+(p0) br.ret.sptk b0
}
;;
-GLOBAL_IEEE754_END(log1p)
+//
+// Raise divide by zero for +/-0 input.
+//
+L(LOG_64_zero):
+{ .mfi
+(p0) mov GR_Parameter_TAG = 140
+//
+// If we have log1p(0), return -Inf.
+//
+(p0) fsub.s0 FR_Output_X_tmp = f0, f1
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p0) frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
+(p0) br.cond.sptk L(LOG_ERROR_Support) ;;
+}
+
+L(LOG_64_special):
-LOCAL_LIBM_ENTRY(__libm_error_region)
+{ .mfi
+ nop.m 999
+//
+// Return -Inf or value from handler.
+//
+(p0) fclass.m.unc p7, p0 = FR_Input_X, 0x1E1
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+//
+// Check for Natval, QNan, SNaN, +Inf
+//
+(p7) fmpy.d.s0 f8 = FR_Input_X, f1
+//
+// For SNaN raise invalid and return QNaN.
+// For QNaN raise invalid and return QNaN.
+// For +Inf return +Inf.
+//
+(p7) br.ret.sptk b0
+}
+;;
+
+//
+// For -Inf raise invalid and return QNaN.
+//
+
+{ .mfb
+(p0) mov GR_Parameter_TAG = 141
+(p0) fmpy.d.s0 FR_Output_X_tmp = FR_Input_X, f0
+(p0) br.cond.sptk L(LOG_ERROR_Support) ;;
+}
+
+//
+// Report that log1p(-Inf) computed
+//
+
+L(LOG_64_unsupported):
+
+//
+// Return generated NaN or other value .
+//
+
+{ .mfb
+ nop.m 999
+(p0) fmpy.d.s0 FR_Input_X = FR_Input_X, f0
+(p0) br.ret.sptk b0 ;;
+}
+
+L(LOG_64_negative):
+
+{ .mfi
+ nop.m 999
+//
+// Deal with x < 0 in a special way
+//
+(p0) frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
+//
+// Deal with x < 0 in a special way - raise
+// invalid and produce QNaN indefinite.
+//
+(p0) mov GR_Parameter_TAG = 141
+}
+
+.endp log1p#
+ASM_SIZE_DIRECTIVE(log1p)
+
+.proc __libm_error_region
+__libm_error_region:
+L(LOG_ERROR_Support):
.prologue
+
+// (1)
{ .mfi
- add GR_Parameter_Y = -32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp = -64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP = gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+
+// (2)
{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+// (3)
{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfd [GR_Parameter_X] =FR_Input_X // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = FR_Output_X_tmp // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+
+// (4)
{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfd FR_Input_X = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0
};;
-LOCAL_LIBM_END(__libm_error_region)
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.proc __libm_LOG_main
+__libm_LOG_main:
+L(LOG_main):
+
+//
+// kernel_log_64 computes ln(X + E)
+//
+
+{ .mfi
+ nop.m 999
+(p7) fadd.d.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
+ nop.i 999
+}
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;;
+}
+
+{ .mmi
+ nop.m 999
+(p14) ld8 GR_Table_Base = [GR_Table_Base]
+ nop.i 999
+};;
+
+{ .mmi
+(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;;
+(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p14) fma.s1 FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p14) fma.d.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
+(p0) br.ret.sptk b0 ;;
+}
+.endp __libm_LOG_main
+ASM_SIZE_DIRECTIVE(__libm_LOG_main)
+
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_log1pf.S b/sysdeps/ia64/fpu/s_log1pf.S
index 77e79c39df..8aff9b895a 100644
--- a/sysdeps/ia64/fpu/s_log1pf.S
+++ b/sysdeps/ia64/fpu/s_log1pf.S
@@ -1,10 +1,10 @@
-.file "log1pf.s"
+.file "log1pf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,770 +20,1610 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 06/29/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 10/02/02 Improved performance by basing on log algorithm
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/18/03 Eliminate possible WAW dependency warning
-// 12/16/03 Fixed parameter passing to/from error handling routine
-//
-// API
-//==============================================================
-// float log1pf(float)
//
-// log1p(x) = log(x+1)
+// *********************************************************************
//
-// Overview of operation
-//==============================================================
-// Background
-// ----------
+// Function: log1pf(x) = ln(x+1), for single precision values
//
-// This algorithm is based on fact that
-// log1p(x) = log(1+x) and
-// log(a b) = log(a) + log(b).
-// In our case we have 1+x = 2^N f, where 1 <= f < 2.
-// So
-// log(1+x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
+// *********************************************************************
//
-// To calculate log(f) we do following
-// log(f) = log(f * frcpa(f) / frcpa(f)) =
-// = log(f * frcpa(f)) + log(1/frcpa(f))
+// Accuracy: Very accurate for single precision values
//
-// According to definition of IA-64's frcpa instruction it's a
-// floating point that approximates 1/f using a lookup on the
-// top of 8 bits of the input number's + 1 significand with relative
-// error < 2^(-8.886). So we have following
+// *********************************************************************
//
-// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
+// Resources Used:
//
-// and
+// Floating-Point Registers: f8 (Input and Return Value)
+// f9,f33-f55,f99
//
-// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
-// = log(1 + r) + T
+// General Purpose Registers:
+// r32-r53
+// r54-r57 (Used to pass arguments to error handling routine)
//
-// The first value can be computed by polynomial P(r) approximating
-// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
-// value defined by top 8 bit of f.
+// Predicate Registers: p6-p15
//
-// Finally we have that log(1+x) ~ (N*log(2) + T) + P(r)
+// *********************************************************************
//
-// Note that if input argument is close to 0.0 (in our case it means
-// that |x| < 1/256) we can use just polynomial approximation
-// because 1+x = 2^0 * f = f = 1 + r and
-// log(1+x) = log(1 + r) ~ P(r)
+// IEEE Special Conditions:
//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions cannot occur
+// Underflow exceptions raised when appropriate for log1pf
+// (Error Handling Routine called for underflow)
+// Inexact raised when appropriate by algorithm
//
-// Implementation
-// --------------
+// log1pf(inf) = inf
+// log1pf(-inf) = QNaN
+// log1pf(+/-0) = +/-0
+// log1pf(-1) = -inf
+// log1pf(SNaN) = QNaN
+// log1pf(QNaN) = QNaN
+// log1pf(EM_special Values) = QNaN
//
-// 1. |x| >= 2^(-8), and x > -1
-// InvX = frcpa(x+1)
-// r = InvX*(x+1) - 1
-// P(r) = r*((1 - A2*4) + r^2*(A3 - A4*r)) = r*P2(r),
-// A4,A3,A2 are created with setf instruction.
-// We use Taylor series and so A4 = 1/4, A3 = 1/3,
-// A2 = 1/2 rounded to double.
+// *********************************************************************
//
-// N = float(n) where n is true unbiased exponent of x
+// Computation is based on the following kernel.
//
-// T is tabular value of log(1/frcpa(x)) calculated in quad precision
-// and rounded to double. To load T we get bits from 55 to 62 of register
-// format significand as index and calculate address
-// ad_T = table_base_addr + 8 * index
+// ker_log_64( in_FR : X,
+// in_FR : E,
+// in_FR : Em1,
+// in_GR : Expo_Range,
+// out_FR : Y_hi,
+// out_FR : Y_lo,
+// out_FR : Scale,
+// out_PR : Safe )
+//
+// Overview
//
-// L1 (log(2)) is calculated in quad precision and rounded to double;
-// it's created with setf
+// The method consists of three cases.
//
-// And final result = P2(r)*r + (T + N*L1)
+// If |X+Em1| < 2^(-80) use case log1pf_small;
+// elseif |X+Em1| < 2^(-7) use case log_near1;
+// else use case log_regular;
//
+// Case log1pf_small:
//
-// 2. 2^(-40) <= |x| < 2^(-8)
-// r = x
-// P(r) = r*((1 - A2*4) + r^2*(A3 - A4*r)) = r*P2(r),
-// A4,A3,A2 are the same as in case |x| >= 1/256
+// log( 1 + (X+Em1) ) can be approximated by (X+Em1).
//
-// And final result = P2(r)*r
+// Case log_near1:
//
-// 3. 0 < |x| < 2^(-40)
-// Although log1p(x) is basically x, we would like to preserve the inexactness
-// nature as well as consistent behavior under different rounding modes.
-// We can do this by computing the result as
+// log( 1 + (X+Em1) ) can be approximated by a simple polynomial
+// in W = X+Em1. This polynomial resembles the truncated Taylor
+// series W - W^/2 + W^3/3 - ...
+//
+// Case log_regular:
//
-// log1p(x) = x - x*x
+// Here we use a table lookup method. The basic idea is that in
+// order to compute log(Arg) for an argument Arg in [1,2), we
+// construct a value G such that G*Arg is close to 1 and that
+// log(1/G) is obtainable easily from a table of values calculated
+// beforehand. Thus
//
+// log(Arg) = log(1/G) + log(G*Arg)
+// = log(1/G) + log(1 + (G*Arg - 1))
//
-// Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
-// filtered and processed on special branches.
+// Because |G*Arg - 1| is small, the second term on the right hand
+// side can be approximated by a short polynomial. We elaborate
+// this method in four steps.
//
-
+// Step 0: Initialization
//
-// Special values
-//==============================================================
+// We need to calculate log( E + X ). Obtain N, S_hi, S_lo such that
//
-// log1p(-1) = -inf // Call error support
+// E + X = 2^N * ( S_hi + S_lo ) exactly
//
-// log1p(+qnan) = +qnan
-// log1p(-qnan) = -qnan
-// log1p(+snan) = +qnan
-// log1p(-snan) = -qnan
+// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
+// that |S_lo| <= ulp(S_hi).
//
-// log1p(x),x<-1= QNAN Indefinite // Call error support
-// log1p(-inf) = QNAN Indefinite
-// log1p(+inf) = +inf
-// log1p(+/-0) = +/-0
+// Step 1: Argument Reduction
//
+// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f7 -> f15, f32 -> f36
+// G := G_1 * G_2 * G_3
+// r := (G * S_hi - 1) + G * S_lo
+//
+// These G_j's have the property that the product is exactly
+// representable and that |r| < 2^(-12) as a result.
+//
+// Step 2: Approximation
+//
+//
+// log(1 + r) is approximated by a short polynomial poly(r).
+//
+// Step 3: Reconstruction
+//
+//
+// Finally, log( E + X ) is given by
+//
+// log( E + X ) = log( 2^N * (S_hi + S_lo) )
+// ~=~ N*log(2) + log(1/G) + log(1 + r)
+// ~=~ N*log(2) + log(1/G) + poly(r).
+//
+// **** Algorithm ****
+//
+// Case log1pf_small:
+//
+// Although log(1 + (X+Em1)) is basically X+Em1, we would like to
+// preserve the inexactness nature as well as consistent behavior
+// under different rounding modes. Note that this case can only be
+// taken if E is set to be 1.0. In this case, Em1 is zero, and that
+// X can be very tiny and thus the final result can possibly underflow.
+// Thus, we compare X against a threshold that is dependent on the
+// input Expo_Range. If |X| is smaller than this threshold, we set
+// SAFE to be FALSE.
+//
+// The result is returned as Y_hi, Y_lo, and in the case of SAFE
+// is FALSE, an additional value Scale is also returned.
+//
+// W := X + Em1
+// Threshold := Threshold_Table( Expo_Range )
+// Tiny := Tiny_Table( Expo_Range )
+//
+// If ( |W| > Threshold ) then
+// Y_hi := W
+// Y_lo := -W*W
+// Else
+// Y_hi := W
+// Y_lo := -Tiny
+// Scale := 2^(-100)
+// Safe := FALSE
+// EndIf
+//
+//
+// One may think that Y_lo should be -W*W/2; however, it does not matter
+// as Y_lo will be rounded off completely except for the correct effect in
+// directed rounding. Clearly -W*W is simplier to compute. Moreover,
+// because of the difference in exponent value, Y_hi + Y_lo or
+// Y_hi + Scale*Y_lo is always inexact.
+//
+// Case log_near1:
+//
+// Here we compute a simple polynomial. To exploit parallelism, we split
+// the polynomial into two portions.
+//
+// W := X + Em1
+// Wsq := W * W
+// W4 := Wsq*Wsq
+// W6 := W4*Wsq
+// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
+// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+// set lsb(Y_lo) to be 1
+//
+// Case log_regular:
+//
+// We present the algorithm in four steps.
+//
+// Step 0. Initialization
+// ----------------------
+//
+// Z := X + E
+// N := unbaised exponent of Z
+// S_hi := 2^(-N) * Z
+// S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
+//
+// Note that S_lo is always 0 for the case E = 0.
+//
+// Step 1. Argument Reduction
+// --------------------------
+//
+// Let
+//
+// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
+//
+// We obtain G_1, G_2, G_3 by the following steps.
+//
+//
+// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
+// from S_hi.
+//
+// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
+// to lsb = 2^(-4).
+//
+// Define index_1 := [ d_1 d_2 d_3 d_4 ].
+//
+// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
+// fixed point lsb = 2^(-15).
+// Z_1 looks like z_0.z_1 z_2 ... z_15
+// Note that the fetching is done using index_1.
+// A_1 is actually not needed in the implementation
+// and is used here only to explain how is the value
+// Z_1 defined.
+//
+// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
+// floating pt. Again, fetching is done using index_1. A_1
+// explains how G_1 is defined.
+//
+// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
+// = 1.0 0 0 0 d_5 ... d_14
+// This is accomplised by integer multiplication.
+// It is proved that X_1 indeed always begin
+// with 1.0000 in fixed point.
+//
+//
+// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
+// truncated to lsb = 2^(-8). Similar to A_1,
+// A_2 is not needed in actual implementation. It
+// helps explain how some of the values are defined.
+//
+// Define index_2 := [ d_5 d_6 d_7 d_8 ].
+//
+// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
+// fixed point lsb = 2^(-15). Fetch done using index_2.
+// Z_2 looks like z_0.z_1 z_2 ... z_15
+//
+// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
+// floating pt.
+//
+// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
+// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
+// This is accomplised by integer multiplication.
+// It is proved that X_2 indeed always begin
+// with 1.00000000 in fixed point.
+//
+//
+// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
+// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
+//
+// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
+//
+// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
+// floating pt. Fetch is done using index_3.
+//
+// Compute G := G_1 * G_2 * G_3.
+//
+// This is done exactly since each of G_j only has 21 sig. bits.
//
-// General registers used:
-// r8 -> r11
-// r14 -> r22
+// Compute
+//
+// r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
+//
+// thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of
+// rounding errors.
+//
+//
+// Step 2. Approximation
+// ---------------------
+//
+// This step computes an approximation to log( 1 + r ) where r is the
+// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
+// thus log(1+r) can be approximated by a short polynomial:
+//
+// log(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
+//
+//
+// Step 3. Reconstruction
+// ----------------------
+//
+// This step computes the desired result of log(X+E):
+//
+// log(X+E) = log( 2^N * (S_hi + S_lo) )
+// = N*log(2) + log( S_hi + S_lo )
+// = N*log(2) + log(1/G) +
+// log(1 + C*(S_hi+S_lo) - 1 )
+//
+// log(2), log(1/G_j) are stored as pairs of (single,double) numbers:
+// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
+// single-precision numbers and the low parts are double precision
+// numbers. These have the property that
+//
+// N*log2_hi + SUM ( log1byGj_hi )
+//
+// is computable exactly in double-extended precision (64 sig. bits).
+// Finally
+//
+// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
+// Y_lo := poly_hi + [ poly_lo +
+// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+// set lsb(Y_lo) to be 1
//
-// Predicate registers used:
-// p6 -> p12
-// Assembly macros
-//==============================================================
-GR_TAG = r8
-GR_ad_T = r9
-GR_Exp = r10
-GR_N = r11
+#include "libm_support.h"
-GR_signexp_x = r14
-GR_exp_mask = r15
-GR_exp_bias = r16
-GR_05 = r17
-GR_A3 = r18
-GR_Sig = r19
-GR_Ind = r19
-GR_exp_x = r20
-GR_Ln2 = r21
-GR_025 = r22
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+// P_7, P_6, P_5, P_4, P_3, P_2, and P_1
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
+.align 64
+Constants_P:
+ASM_TYPE_DIRECTIVE(Constants_P,@object)
+data4 0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
+data4 0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
+data4 0x73282DB0,0x9249248C,0x00003FFC,0x00000000
+data4 0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
+data4 0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
+data4 0x00067ED5,0x80000000,0x0000BFFD,0x00000000
+data4 0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_P)
+
+// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
+.align 64
+Constants_Q:
+ASM_TYPE_DIRECTIVE(Constants_Q,@object)
+data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
+data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Q)
+
+// Z1 - 16 bit fixed, G1 and H1 - IEEE single
+
+.align 64
+Constants_Z_G_H_h1:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
+data4 0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
+data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
+data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
+data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
+data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
+data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
+data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
+data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
+data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
+data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
+data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
+data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
+data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
+data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
+data4 0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
+
+// Z2 - 16 bit fixed, G2 and H2 - IEEE single
+.align 64
+Constants_Z_G_H_h2:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
+data4 0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
+data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
+data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
+data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
+data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
+data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
+data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
+data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
+data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
+data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
+data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
+data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
+data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
+data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
+data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
+
+// G3 and H3 - IEEE single and h3 -IEEE double
+.align 64
+Constants_Z_G_H_h3:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
+data4 0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
+data4 0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
+data4 0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
+data4 0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
+data4 0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
+data4 0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
+data4 0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
+data4 0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
+data4 0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
+data4 0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
+data4 0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
+data4 0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
+data4 0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
+data4 0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
+data4 0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
+data4 0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
+data4 0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
+data4 0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
+data4 0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
+data4 0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
+data4 0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
+data4 0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
+data4 0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
+data4 0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
+data4 0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
+data4 0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
+data4 0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
+data4 0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
+data4 0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
+data4 0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
+data4 0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
+data4 0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
+
+//
+// Exponent Thresholds and Tiny Thresholds
+// for 8, 11, 15, and 17 bit exponents
+//
+// Expo_Range Value
+//
+// 0 (8 bits) 2^(-126)
+// 1 (11 bits) 2^(-1022)
+// 2 (15 bits) 2^(-16382)
+// 3 (17 bits) 2^(-16382)
+//
+// Tiny_Table
+// ----------
+// Expo_Range Value
+//
+// 0 (8 bits) 2^(-16382)
+// 1 (11 bits) 2^(-16382)
+// 2 (15 bits) 2^(-16382)
+// 3 (17 bits) 2^(-16382)
+//
-FR_NormX = f7
-FR_RcpX = f9
-FR_r = f10
-FR_r2 = f11
-FR_r4 = f12
-FR_N = f13
-FR_Ln2 = f14
-FR_Xp1 = f15
+.align 64
+Constants_Threshold:
+ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
+data4 0x00000000,0x80000000,0x00003F81,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00003C01,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Threshold)
-FR_A4 = f33
-FR_A3 = f34
-FR_A2 = f35
+.align 64
+Constants_1_by_LN10:
+ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
+data4 0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
+data4 0xACCF70C8,0xD56EAABE,0x00003FBD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)
-FR_T = f36
-FR_NxLn2pT = f36
+FR_Input_X = f8
+FR_Neg_One = f9
+FR_E = f33
+FR_Em1 = f34
+FR_Y_hi = f34
+// Shared with Em1
+FR_Y_lo = f35
+FR_Scale = f36
+FR_X_Prime = f37
+FR_Z = f38
+FR_S_hi = f38
+// Shared with Z
+FR_W = f39
+FR_G = f40
+FR_wsq = f40
+// Shared with G
+FR_H = f41
+FR_w4 = f41
+// Shared with H
+FR_h = f42
+FR_w6 = f42
+// Shared with h
+FR_G_tmp = f43
+FR_poly_lo = f43
+// Shared with G_tmp
+FR_P8 = f43
+// Shared with G_tmp
+FR_H_tmp = f44
+FR_poly_hi = f44
+ // Shared with H_tmp
+FR_P7 = f44
+// Shared with H_tmp
+FR_h_tmp = f45
+FR_rsq = f45
+// Shared with h_tmp
+FR_P6 = f45
+// Shared with h_tmp
+FR_abs_W = f46
+FR_r = f46
+// Shared with abs_W
+FR_AA = f47
+FR_log2_hi = f47
+// Shared with AA
+FR_BB = f48
+FR_log2_lo = f48
+// Shared with BB
+FR_S_lo = f49
+FR_two_negN = f50
+FR_float_N = f51
+FR_Q4 = f52
+FR_dummy = f52
+// Shared with Q4
+FR_P4 = f52
+// Shared with Q4
+FR_Threshold = f52
+// Shared with Q4
+FR_Q3 = f53
+FR_P3 = f53
+// Shared with Q3
+FR_Tiny = f53
+// Shared with Q3
+FR_Q2 = f54
+FR_P2 = f54
+// Shared with Q2
+FR_1LN10_hi = f54
+// Shared with Q2
+FR_Q1 = f55
+FR_P1 = f55
+// Shared with Q1
+FR_1LN10_lo = f55
+// Shared with Q1
+FR_P5 = f98
+FR_SCALE = f98
+FR_Output_X_tmp = f99
+GR_Expo_Range = r32
+GR_Table_Base = r34
+GR_Table_Base1 = r35
+GR_Table_ptr = r36
+GR_Index2 = r37
+GR_signif = r38
+GR_X_0 = r39
+GR_X_1 = r40
+GR_X_2 = r41
+GR_Z_1 = r42
+GR_Z_2 = r43
+GR_N = r44
+GR_Bias = r45
+GR_M = r46
+GR_ScaleN = r47
+GR_Index3 = r48
+GR_Perturb = r49
+GR_Table_Scale = r50
-FR_Y = f1
-FR_X = f10
-FR_RESULT = f8
+GR_SAVE_PFS = r51
+GR_SAVE_B0 = r52
+GR_SAVE_GP = r53
+GR_Parameter_X = r54
+GR_Parameter_Y = r55
+GR_Parameter_RESULT = r56
+
+GR_Parameter_TAG = r57
-// Data
-//==============================================================
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(log_data)
-// ln(1/frcpa(1+i/256)), i=0...255
-data8 0x3F60040155D5889E // 0
-data8 0x3F78121214586B54 // 1
-data8 0x3F841929F96832F0 // 2
-data8 0x3F8C317384C75F06 // 3
-data8 0x3F91A6B91AC73386 // 4
-data8 0x3F95BA9A5D9AC039 // 5
-data8 0x3F99D2A8074325F4 // 6
-data8 0x3F9D6B2725979802 // 7
-data8 0x3FA0C58FA19DFAAA // 8
-data8 0x3FA2954C78CBCE1B // 9
-data8 0x3FA4A94D2DA96C56 // 10
-data8 0x3FA67C94F2D4BB58 // 11
-data8 0x3FA85188B630F068 // 12
-data8 0x3FAA6B8ABE73AF4C // 13
-data8 0x3FAC441E06F72A9E // 14
-data8 0x3FAE1E6713606D07 // 15
-data8 0x3FAFFA6911AB9301 // 16
-data8 0x3FB0EC139C5DA601 // 17
-data8 0x3FB1DBD2643D190B // 18
-data8 0x3FB2CC7284FE5F1C // 19
-data8 0x3FB3BDF5A7D1EE64 // 20
-data8 0x3FB4B05D7AA012E0 // 21
-data8 0x3FB580DB7CEB5702 // 22
-data8 0x3FB674F089365A7A // 23
-data8 0x3FB769EF2C6B568D // 24
-data8 0x3FB85FD927506A48 // 25
-data8 0x3FB9335E5D594989 // 26
-data8 0x3FBA2B0220C8E5F5 // 27
-data8 0x3FBB0004AC1A86AC // 28
-data8 0x3FBBF968769FCA11 // 29
-data8 0x3FBCCFEDBFEE13A8 // 30
-data8 0x3FBDA727638446A2 // 31
-data8 0x3FBEA3257FE10F7A // 32
-data8 0x3FBF7BE9FEDBFDE6 // 33
-data8 0x3FC02AB352FF25F4 // 34
-data8 0x3FC097CE579D204D // 35
-data8 0x3FC1178E8227E47C // 36
-data8 0x3FC185747DBECF34 // 37
-data8 0x3FC1F3B925F25D41 // 38
-data8 0x3FC2625D1E6DDF57 // 39
-data8 0x3FC2D1610C86813A // 40
-data8 0x3FC340C59741142E // 41
-data8 0x3FC3B08B6757F2A9 // 42
-data8 0x3FC40DFB08378003 // 43
-data8 0x3FC47E74E8CA5F7C // 44
-data8 0x3FC4EF51F6466DE4 // 45
-data8 0x3FC56092E02BA516 // 46
-data8 0x3FC5D23857CD74D5 // 47
-data8 0x3FC6313A37335D76 // 48
-data8 0x3FC6A399DABBD383 // 49
-data8 0x3FC70337DD3CE41B // 50
-data8 0x3FC77654128F6127 // 51
-data8 0x3FC7E9D82A0B022D // 52
-data8 0x3FC84A6B759F512F // 53
-data8 0x3FC8AB47D5F5A310 // 54
-data8 0x3FC91FE49096581B // 55
-data8 0x3FC981634011AA75 // 56
-data8 0x3FC9F6C407089664 // 57
-data8 0x3FCA58E729348F43 // 58
-data8 0x3FCABB55C31693AD // 59
-data8 0x3FCB1E104919EFD0 // 60
-data8 0x3FCB94EE93E367CB // 61
-data8 0x3FCBF851C067555F // 62
-data8 0x3FCC5C0254BF23A6 // 63
-data8 0x3FCCC000C9DB3C52 // 64
-data8 0x3FCD244D99C85674 // 65
-data8 0x3FCD88E93FB2F450 // 66
-data8 0x3FCDEDD437EAEF01 // 67
-data8 0x3FCE530EFFE71012 // 68
-data8 0x3FCEB89A1648B971 // 69
-data8 0x3FCF1E75FADF9BDE // 70
-data8 0x3FCF84A32EAD7C35 // 71
-data8 0x3FCFEB2233EA07CD // 72
-data8 0x3FD028F9C7035C1C // 73
-data8 0x3FD05C8BE0D9635A // 74
-data8 0x3FD085EB8F8AE797 // 75
-data8 0x3FD0B9C8E32D1911 // 76
-data8 0x3FD0EDD060B78081 // 77
-data8 0x3FD122024CF0063F // 78
-data8 0x3FD14BE2927AECD4 // 79
-data8 0x3FD180618EF18ADF // 80
-data8 0x3FD1B50BBE2FC63B // 81
-data8 0x3FD1DF4CC7CF242D // 82
-data8 0x3FD214456D0EB8D4 // 83
-data8 0x3FD23EC5991EBA49 // 84
-data8 0x3FD2740D9F870AFB // 85
-data8 0x3FD29ECDABCDFA04 // 86
-data8 0x3FD2D46602ADCCEE // 87
-data8 0x3FD2FF66B04EA9D4 // 88
-data8 0x3FD335504B355A37 // 89
-data8 0x3FD360925EC44F5D // 90
-data8 0x3FD38BF1C3337E75 // 91
-data8 0x3FD3C25277333184 // 92
-data8 0x3FD3EDF463C1683E // 93
-data8 0x3FD419B423D5E8C7 // 94
-data8 0x3FD44591E0539F49 // 95
-data8 0x3FD47C9175B6F0AD // 96
-data8 0x3FD4A8B341552B09 // 97
-data8 0x3FD4D4F3908901A0 // 98
-data8 0x3FD501528DA1F968 // 99
-data8 0x3FD52DD06347D4F6 // 100
-data8 0x3FD55A6D3C7B8A8A // 101
-data8 0x3FD5925D2B112A59 // 102
-data8 0x3FD5BF406B543DB2 // 103
-data8 0x3FD5EC433D5C35AE // 104
-data8 0x3FD61965CDB02C1F // 105
-data8 0x3FD646A84935B2A2 // 106
-data8 0x3FD6740ADD31DE94 // 107
-data8 0x3FD6A18DB74A58C5 // 108
-data8 0x3FD6CF31058670EC // 109
-data8 0x3FD6F180E852F0BA // 110
-data8 0x3FD71F5D71B894F0 // 111
-data8 0x3FD74D5AEFD66D5C // 112
-data8 0x3FD77B79922BD37E // 113
-data8 0x3FD7A9B9889F19E2 // 114
-data8 0x3FD7D81B037EB6A6 // 115
-data8 0x3FD8069E33827231 // 116
-data8 0x3FD82996D3EF8BCB // 117
-data8 0x3FD85855776DCBFB // 118
-data8 0x3FD8873658327CCF // 119
-data8 0x3FD8AA75973AB8CF // 120
-data8 0x3FD8D992DC8824E5 // 121
-data8 0x3FD908D2EA7D9512 // 122
-data8 0x3FD92C59E79C0E56 // 123
-data8 0x3FD95BD750EE3ED3 // 124
-data8 0x3FD98B7811A3EE5B // 125
-data8 0x3FD9AF47F33D406C // 126
-data8 0x3FD9DF270C1914A8 // 127
-data8 0x3FDA0325ED14FDA4 // 128
-data8 0x3FDA33440224FA79 // 129
-data8 0x3FDA57725E80C383 // 130
-data8 0x3FDA87D0165DD199 // 131
-data8 0x3FDAAC2E6C03F896 // 132
-data8 0x3FDADCCC6FDF6A81 // 133
-data8 0x3FDB015B3EB1E790 // 134
-data8 0x3FDB323A3A635948 // 135
-data8 0x3FDB56FA04462909 // 136
-data8 0x3FDB881AA659BC93 // 137
-data8 0x3FDBAD0BEF3DB165 // 138
-data8 0x3FDBD21297781C2F // 139
-data8 0x3FDC039236F08819 // 140
-data8 0x3FDC28CB1E4D32FD // 141
-data8 0x3FDC4E19B84723C2 // 142
-data8 0x3FDC7FF9C74554C9 // 143
-data8 0x3FDCA57B64E9DB05 // 144
-data8 0x3FDCCB130A5CEBB0 // 145
-data8 0x3FDCF0C0D18F326F // 146
-data8 0x3FDD232075B5A201 // 147
-data8 0x3FDD490246DEFA6B // 148
-data8 0x3FDD6EFA918D25CD // 149
-data8 0x3FDD9509707AE52F // 150
-data8 0x3FDDBB2EFE92C554 // 151
-data8 0x3FDDEE2F3445E4AF // 152
-data8 0x3FDE148A1A2726CE // 153
-data8 0x3FDE3AFC0A49FF40 // 154
-data8 0x3FDE6185206D516E // 155
-data8 0x3FDE882578823D52 // 156
-data8 0x3FDEAEDD2EAC990C // 157
-data8 0x3FDED5AC5F436BE3 // 158
-data8 0x3FDEFC9326D16AB9 // 159
-data8 0x3FDF2391A2157600 // 160
-data8 0x3FDF4AA7EE03192D // 161
-data8 0x3FDF71D627C30BB0 // 162
-data8 0x3FDF991C6CB3B379 // 163
-data8 0x3FDFC07ADA69A910 // 164
-data8 0x3FDFE7F18EB03D3E // 165
-data8 0x3FE007C053C5002E // 166
-data8 0x3FE01B942198A5A1 // 167
-data8 0x3FE02F74400C64EB // 168
-data8 0x3FE04360BE7603AD // 169
-data8 0x3FE05759AC47FE34 // 170
-data8 0x3FE06B5F1911CF52 // 171
-data8 0x3FE078BF0533C568 // 172
-data8 0x3FE08CD9687E7B0E // 173
-data8 0x3FE0A10074CF9019 // 174
-data8 0x3FE0B5343A234477 // 175
-data8 0x3FE0C974C89431CE // 176
-data8 0x3FE0DDC2305B9886 // 177
-data8 0x3FE0EB524BAFC918 // 178
-data8 0x3FE0FFB54213A476 // 179
-data8 0x3FE114253DA97D9F // 180
-data8 0x3FE128A24F1D9AFF // 181
-data8 0x3FE1365252BF0865 // 182
-data8 0x3FE14AE558B4A92D // 183
-data8 0x3FE15F85A19C765B // 184
-data8 0x3FE16D4D38C119FA // 185
-data8 0x3FE18203C20DD133 // 186
-data8 0x3FE196C7BC4B1F3B // 187
-data8 0x3FE1A4A738B7A33C // 188
-data8 0x3FE1B981C0C9653D // 189
-data8 0x3FE1CE69E8BB106B // 190
-data8 0x3FE1DC619DE06944 // 191
-data8 0x3FE1F160A2AD0DA4 // 192
-data8 0x3FE2066D7740737E // 193
-data8 0x3FE2147DBA47A394 // 194
-data8 0x3FE229A1BC5EBAC3 // 195
-data8 0x3FE237C1841A502E // 196
-data8 0x3FE24CFCE6F80D9A // 197
-data8 0x3FE25B2C55CD5762 // 198
-data8 0x3FE2707F4D5F7C41 // 199
-data8 0x3FE285E0842CA384 // 200
-data8 0x3FE294294708B773 // 201
-data8 0x3FE2A9A2670AFF0C // 202
-data8 0x3FE2B7FB2C8D1CC1 // 203
-data8 0x3FE2C65A6395F5F5 // 204
-data8 0x3FE2DBF557B0DF43 // 205
-data8 0x3FE2EA64C3F97655 // 206
-data8 0x3FE3001823684D73 // 207
-data8 0x3FE30E97E9A8B5CD // 208
-data8 0x3FE32463EBDD34EA // 209
-data8 0x3FE332F4314AD796 // 210
-data8 0x3FE348D90E7464D0 // 211
-data8 0x3FE35779F8C43D6E // 212
-data8 0x3FE36621961A6A99 // 213
-data8 0x3FE37C299F3C366A // 214
-data8 0x3FE38AE2171976E7 // 215
-data8 0x3FE399A157A603E7 // 216
-data8 0x3FE3AFCCFE77B9D1 // 217
-data8 0x3FE3BE9D503533B5 // 218
-data8 0x3FE3CD7480B4A8A3 // 219
-data8 0x3FE3E3C43918F76C // 220
-data8 0x3FE3F2ACB27ED6C7 // 221
-data8 0x3FE4019C2125CA93 // 222
-data8 0x3FE4181061389722 // 223
-data8 0x3FE42711518DF545 // 224
-data8 0x3FE436194E12B6BF // 225
-data8 0x3FE445285D68EA69 // 226
-data8 0x3FE45BCC464C893A // 227
-data8 0x3FE46AED21F117FC // 228
-data8 0x3FE47A1527E8A2D3 // 229
-data8 0x3FE489445EFFFCCC // 230
-data8 0x3FE4A018BCB69835 // 231
-data8 0x3FE4AF5A0C9D65D7 // 232
-data8 0x3FE4BEA2A5BDBE87 // 233
-data8 0x3FE4CDF28F10AC46 // 234
-data8 0x3FE4DD49CF994058 // 235
-data8 0x3FE4ECA86E64A684 // 236
-data8 0x3FE503C43CD8EB68 // 237
-data8 0x3FE513356667FC57 // 238
-data8 0x3FE522AE0738A3D8 // 239
-data8 0x3FE5322E26867857 // 240
-data8 0x3FE541B5CB979809 // 241
-data8 0x3FE55144FDBCBD62 // 242
-data8 0x3FE560DBC45153C7 // 243
-data8 0x3FE5707A26BB8C66 // 244
-data8 0x3FE587F60ED5B900 // 245
-data8 0x3FE597A7977C8F31 // 246
-data8 0x3FE5A760D634BB8B // 247
-data8 0x3FE5B721D295F10F // 248
-data8 0x3FE5C6EA94431EF9 // 249
-data8 0x3FE5D6BB22EA86F6 // 250
-data8 0x3FE5E6938645D390 // 251
-data8 0x3FE5F673C61A2ED2 // 252
-data8 0x3FE6065BEA385926 // 253
-data8 0x3FE6164BFA7CC06B // 254
-data8 0x3FE62643FECF9743 // 255
-LOCAL_OBJECT_END(log_data)
-
-
-// Code
-//==============================================================
.section .text
-GLOBAL_IEEE754_ENTRY(log1pf)
+.proc log1pf#
+.global log1pf#
+.align 64
+log1pf:
+#ifdef _LIBC
+.global __log1pf
+__log1pf:
+#endif
+
{ .mfi
- getf.exp GR_signexp_x = f8 // if x is unorm then must recompute
- fadd.s1 FR_Xp1 = f8, f1 // Form 1+x
- mov GR_05 = 0xfffe
+alloc r32 = ar.pfs,0,22,4,0
+(p0) fsub.s1 FR_Neg_One = f0,f1
+(p0) cmp.eq.unc p7, p0 = r0, r0
}
-{ .mlx
- addl GR_ad_T = @ltoff(log_data),gp
- movl GR_A3 = 0x3fd5555555555555 // double precision memory
- // representation of A3
+
+{ .mfi
+(p0) cmp.ne.unc p14, p0 = r0, r0
+(p0) fnorm.s1 FR_X_Prime = FR_Input_X
+(p0) cmp.eq.unc p15, p0 = r0, r0 ;;
}
-;;
{ .mfi
- ld8 GR_ad_T = [GR_ad_T]
- fclass.m p8,p0 = f8,0xb // Is x unorm?
- mov GR_exp_mask = 0x1ffff
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = FR_Input_X, 0x1E3
+ nop.i 999
}
+;;
+
{ .mfi
- mov GR_025 = 0xfffd // Exponent of 0.25
- fnorm.s1 FR_NormX = f8 // Normalize x
- mov GR_exp_bias = 0xffff
+ nop.m 999
+(p0) fclass.nm.unc p10, p0 = FR_Input_X, 0x1FF
+ nop.i 999
}
;;
{ .mfi
- setf.exp FR_A2 = GR_05 // create A2 = 0.5
- fclass.m p9,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
- nop.i 0
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p9, p0 = FR_Input_X, f0
+ nop.i 999
}
-{ .mib
- setf.d FR_A3 = GR_A3 // create A3
- nop.i 0
-(p8) br.cond.spnt log1p_unorm // Branch if x=unorm
+
+{ .mfi
+ nop.m 999
+(p0) fadd FR_Em1 = f0,f0
+ nop.i 999 ;;
}
-;;
-log1p_common:
{ .mfi
- setf.exp FR_A4 = GR_025 // create A4 = 0.25
- frcpa.s1 FR_RcpX,p0 = f1,FR_Xp1
- nop.i 0
+ nop.m 999
+(p0) fadd FR_E = f0,f1
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
-(p9) fma.s.s0 f8 = f8,f1,f0 // set V-flag
-(p9) br.ret.spnt b0 // exit for NaN, NaT and +Inf
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p8, p0 = FR_Input_X, FR_Neg_One
+ nop.i 999
}
-;;
{ .mfi
- getf.exp GR_Exp = FR_Xp1 // signexp of x+1
- fclass.m p10,p0 = FR_Xp1,0x3A // is 1+x < 0?
- and GR_exp_x = GR_exp_mask, GR_signexp_x // biased exponent of x
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p13, p0 = FR_Input_X, FR_Neg_One
+ nop.i 999
+}
+
+
+L(LOG_BEGIN):
+
+{ .mfi
+ nop.m 999
+(p0) fadd.s1 FR_Z = FR_X_Prime, FR_E
+ nop.i 999
}
+
{ .mlx
- nop.m 0
- movl GR_Ln2 = 0x3FE62E42FEFA39EF // double precision memory
- // representation of log(2)
+ nop.m 999
+(p0) movl GR_Table_Scale = 0x0000000000000018 ;;
+}
+
+{ .mmi
+ nop.m 999
+//
+// Create E = 1 and Em1 = 0
+// Check for X == 0, meaning log(1+0)
+// Check for X < -1, meaning log(negative)
+// Check for X == -1, meaning log(0)
+// Normalize x
+// Identify NatVals, NaNs, Infs.
+// Identify EM unsupporteds.
+// Identify Negative values - us S1 so as
+// not to raise denormal operand exception
+// Set p15 to true for log1pf
+// Set p14 to false for log1pf
+// Set p7 true for log and log1pf
+//
+(p0) addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
+ nop.i 999
}
-;;
{ .mfi
- getf.sig GR_Sig = FR_Xp1 // get significand to calculate index
- // for T if |x| >= 2^-8
- fcmp.eq.s1 p12,p0 = f8,f0 // is x equal to 0?
- sub GR_exp_x = GR_exp_x, GR_exp_bias // true exponent of x
+ nop.m 999
+(p0) fmax.s1 FR_AA = FR_X_Prime, FR_E
+ nop.i 999 ;;
}
-;;
{ .mfi
- sub GR_N = GR_Exp,GR_exp_bias // true exponent of x+1
- fcmp.eq.s1 p11,p0 = FR_Xp1,f0 // is x = -1?
- cmp.gt p6,p7 = -8, GR_exp_x // Is |x| < 2^-8
+ ld8 GR_Table_Base = [GR_Table_Base]
+(p0) fmin.s1 FR_BB = FR_X_Prime, FR_E
+ nop.i 999
}
+
{ .mfb
- nop.m 0
- nop.f 0
-(p10) br.cond.spnt log1p_lt_minus_1 // jump if x < -1
+ nop.m 999
+(p0) fadd.s1 FR_W = FR_X_Prime, FR_Em1
+//
+// Begin load of constants base
+// FR_Z = Z = |x| + E
+// FR_W = W = |x| + Em1
+// AA = fmax(|x|,E)
+// BB = fmin(|x|,E)
+//
+(p6) br.cond.spnt L(LOG_64_special) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt L(LOG_64_unsupported) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p13) br.cond.spnt L(LOG_64_negative) ;;
+}
+
+{ .mib
+(p0) getf.sig GR_signif = FR_Z
+ nop.i 999
+(p9) br.cond.spnt L(LOG_64_one) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(LOG_64_zero) ;;
}
-;;
-// p6 is true if |x| < 1/256
-// p7 is true if |x| >= 1/256
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 0
-(p6) fms.s1 FR_r = f8,f1,f0 // range reduction for |x|<1/256
-(p6) cmp.gt.unc p10,p0 = -40, GR_exp_x // Is |x| < 2^-40
+(p0) getf.exp GR_N = FR_Z
+//
+// Raise possible denormal operand exception
+// Create Bias
+//
+// This function computes ln( x + e )
+// Input FR 1: FR_X = FR_Input_X
+// Input FR 2: FR_E = FR_E
+// Input FR 3: FR_Em1 = FR_Em1
+// Input GR 1: GR_Expo_Range = GR_Expo_Range = 1
+// Output FR 4: FR_Y_hi
+// Output FR 5: FR_Y_lo
+// Output FR 6: FR_Scale
+// Output PR 7: PR_Safe
+//
+(p0) fsub.s1 FR_S_lo = FR_AA, FR_Z
+//
+// signif = getf.sig(Z)
+// abs_W = fabs(w)
+//
+(p0) extr.u GR_Table_ptr = GR_signif, 59, 4 ;;
}
-{ .mfb
-(p7) setf.sig FR_N = GR_N // copy unbiased exponent of x to the
- // significand field of FR_N
-(p7) fms.s1 FR_r = FR_RcpX,FR_Xp1,f1 // range reduction for |x|>=1/256
-(p12) br.ret.spnt b0 // exit for x=0, return x
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.se FR_S_hi = f1,FR_Z
+(p0) extr.u GR_X_0 = GR_signif, 49, 15
+}
+
+{ .mmi
+ nop.m 999
+(p0) addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp
+ nop.i 999
}
;;
+{ .mlx
+ ld8 GR_Table_Base1 = [GR_Table_Base1]
+(p0) movl GR_Bias = 0x000000000000FFFF ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fabs FR_abs_W = FR_W
+(p0) pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0
+}
+
+{ .mfi
+ nop.m 999
+//
+// Branch out for special input values
+//
+(p0) fcmp.lt.unc.s0 p8, p0 = FR_Input_X, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// X_0 = extr.u(signif,49,15)
+// Index1 = extr.u(signif,59,4)
+//
+(p0) fadd.s1 FR_S_lo = FR_S_lo, FR_BB
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Offset_to_Z1 = 24 * Index1
+// For performance, don't use result
+// for 3 or 4 cycles.
+//
+(p0) add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;;
+}
+//
+// Add Base to Offset for Z1
+// Create Bias
+
+{ .mmi
+(p0) ld4 GR_Z_1 = [GR_Table_ptr],4 ;;
+(p0) ldfs FR_G = [GR_Table_ptr],4
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p0) ldfs FR_H = [GR_Table_ptr],8 ;;
+(p0) ldfd FR_h = [GR_Table_ptr],0
+(p0) pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
+}
+//
+// Load Z_1
+// Get Base of Table2
+//
+
+{ .mfi
+(p0) getf.exp GR_M = FR_abs_W
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// M = getf.exp(abs_W)
+// S_lo = AA - Z
+// X_1 = pmpyshr2(X_0,Z_1,15)
+//
+(p0) sub GR_M = GR_M, GR_Bias ;;
+}
+//
+// M = M - Bias
+// Load G1
+// N = getf.exp(Z)
+//
+
+{ .mii
+(p0) cmp.gt.unc p11, p0 = -80, GR_M
+(p0) cmp.gt.unc p12, p0 = -7, GR_M ;;
+(p0) extr.u GR_Index2 = GR_X_1, 6, 4 ;;
+}
+
{ .mib
- setf.d FR_Ln2 = GR_Ln2 // create log(2)
-(p7) extr.u GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
-(p11) br.cond.spnt log1p_eq_minus_1 // jump if x = -1
+ nop.m 999
+//
+// if -80 > M, set p11
+// Index2 = extr.u(X_1,6,4)
+// if -7 > M, set p12
+// Load H1
+//
+(p0) pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0
+(p11) br.cond.spnt L(log1pf_small) ;;
}
-;;
-{ .mmf
-(p7) shladd GR_ad_T = GR_Ind,3,GR_ad_T // address of T
- nop.m 0
-(p10) fnma.s.s0 f8 = f8,f8,f8 // If |x| very small, result=x-x*x
+{ .mib
+ nop.m 999
+ nop.i 999
+(p12) br.cond.spnt L(log1pf_near) ;;
}
-;;
+
+{ .mii
+(p0) sub GR_N = GR_N, GR_Bias
+//
+// poly_lo = r * poly_lo
+//
+(p0) add GR_Perturb = 0x1, r0 ;;
+(p0) sub GR_ScaleN = GR_Bias, GR_N
+}
+
+{ .mii
+(p0) setf.sig FR_float_N = GR_N
+ nop.i 999 ;;
+//
+// Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
+// Load h1
+// S_lo = S_lo + BB
+// Branch for -80 > M
+//
+(p0) add GR_Index2 = GR_Index2, GR_Table_Base1
+}
+
+{ .mmi
+(p0) setf.exp FR_two_negN = GR_ScaleN
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp
+};;
+
+//
+// Index2 points to Z2
+// Branch for -7 > M
+//
{ .mmb
-(p7) ldfd FR_T = [GR_ad_T]
- nop.m 0
-(p10) br.ret.spnt b0 // Exit if |x| < 2^-40
+(p0) ld4 GR_Z_2 = [GR_Index2],4
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.b 999 ;;
}
-;;
+(p0) nop.i 999
+//
+// Load Z_2
+// N = N - Bias
+// Tablebase points to Table3
+//
+
+{ .mmi
+(p0) ldfs FR_G_tmp = [GR_Index2],4 ;;
+//
+// Load G_2
+// pmpyshr2 X_2= (X_1,Z_2,15)
+// float_N = setf.sig(N)
+// ScaleN = Bias - N
+//
+(p0) ldfs FR_H_tmp = [GR_Index2],8
+ nop.i 999 ;;
+}
+//
+// Load H_2
+// two_negN = setf.exp(scaleN)
+// G = G_1 * G_2
+//
{ .mfi
- nop.m 0
- fma.s1 FR_r2 = FR_r,FR_r,f0 // r^2
- nop.i 0
+(p0) ldfd FR_h_tmp = [GR_Index2],0
+ nop.f 999
+(p0) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;;
}
+
+{ .mii
+ nop.m 999
+(p0) extr.u GR_Index3 = GR_X_2, 1, 5 ;;
+//
+// Load h_2
+// H = H_1 + H_2
+// h = h_1 + h_2
+// Index3 = extr.u(X_2,1,5)
+//
+(p0) shladd GR_Index3 = GR_Index3,4,GR_Table_Base
+}
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+//
+// float_N = fcvt.xf(float_N)
+// load G3
+//
+(p0) addl GR_Table_Base = @ltoff(Constants_Q#),gp ;;
+}
+
{ .mfi
- nop.m 0
- fnma.s1 FR_A2 = FR_A2,FR_r,f1 // 1.0 - A2*r
- nop.i 0
+ld8 GR_Table_Base = [GR_Table_Base]
+nop.f 999
+nop.i 999
+} ;;
+
+{ .mfi
+(p0) ldfe FR_log2_hi = [GR_Table_Base],16
+(p0) fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+//
+// G = G3 * G
+// Load h3
+// Load log2_hi
+// H = H + H3
+//
+(p0) ldfe FR_log2_lo = [GR_Table_Base],16
+(p0) fmpy.s1 FR_G = FR_G, FR_G_tmp ;;
+}
+
+{ .mmf
+(p0) ldfs FR_G_tmp = [GR_Index3],4
+//
+// h = h + h3
+// r = G * S_hi + 1
+// Load log2_lo
+//
+(p0) ldfe FR_Q4 = [GR_Table_Base],16
+(p0) fadd.s1 FR_h = FR_h, FR_h_tmp ;;
}
-;;
{ .mfi
- nop.m 0
- fnma.s1 FR_A3 = FR_A4,FR_r,FR_A3 // A3 - A4*r
- nop.i 0
+(p0) ldfe FR_Q3 = [GR_Table_Base],16
+(p0) fadd.s1 FR_H = FR_H, FR_H_tmp
+ nop.i 999 ;;
+}
+
+{ .mmf
+(p0) ldfs FR_H_tmp = [GR_Index3],4
+(p0) ldfe FR_Q2 = [GR_Table_Base],16
+//
+// Comput Index for Table3
+// S_lo = S_lo * two_negN
+//
+(p0) fcvt.xf FR_float_N = FR_float_N ;;
+}
+//
+// If S_lo == 0, set p8 false
+// Load H3
+// Load ptr to table of polynomial coeff.
+//
+
+{ .mmf
+(p0) ldfd FR_h_tmp = [GR_Index3],0
+(p0) ldfe FR_Q1 = [GR_Table_Base],0
+(p0) fcmp.eq.unc.s1 p0, p8 = FR_S_lo, f0 ;;
}
-;;
{ .mfi
- nop.m 0
-(p7) fcvt.xf FR_N = FR_N
- nop.i 0
+ nop.m 999
+(p0) fmpy.s1 FR_G = FR_G, FR_G_tmp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // (A3*r+A2)*r^2+r
- fma.s1 FR_A2 = FR_A3,FR_r2,FR_A2 // (A4*r+A3)*r^2+(A2*r+1)
- nop.i 0
+ nop.m 999
+(p0) fadd.s1 FR_H = FR_H, FR_H_tmp
+ nop.i 999 ;;
}
-;;
{ .mfi
- nop.m 0
- // N*Ln2hi+T
-(p7) fma.s1 FR_NxLn2pT = FR_N,FR_Ln2,FR_T
- nop.i 0
+ nop.m 999
+(p0) fms.s1 FR_r = FR_G, FR_S_hi, f1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fadd.s1 FR_h = FR_h, FR_h_tmp
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Load Q4
+// Load Q3
+// Load Q2
+// Load Q1
+//
+(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = r * Q4 + Q3
+// rsq = r* r
+//
+(p0) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// If (S_lo!=0) r = s_lo * G + r
+//
+(p0) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
+ nop.i 999
+}
+//
+// Create a 0x00000....01
+// poly_lo = poly_lo * rsq + h
+//
+
+{ .mfi
+(p0) setf.sig FR_dummy = GR_Perturb
+(p0) fmpy.s1 FR_rsq = FR_r, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// h = N * log2_lo + h
+// Y_hi = n * log2_hi + H
+//
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = r * poly_o + Q2
+// poly_hi = Q1 * rsq + r
+//
+(p0) fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex",p6,p7
{ .mfi
- nop.m 0
-(p6) fma.s.s0 f8 = FR_A2,FR_r,f0 // result if 2^(-40) <= |x| < 1/256
- nop.i 0
+ nop.m 999
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h
+ nop.i 999 ;;
}
+
{ .mfb
- nop.m 0
-(p7) fma.s.s0 f8 = FR_A2,FR_r,FR_NxLn2pT // result if |x| >= 1/256
- br.ret.sptk b0 // Exit if |x| >= 2^(-40)
+ nop.m 999
+(p0) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo
+//
+// Create the FR for a binary "or"
+// Y_lo = poly_hi + poly_lo
+//
+// (p0) for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+// Turn the lsb of Y_lo ON
+//
+// (p0) fmerge.se FR_Y_lo = FR_Y_lo,FR_dummy ;;
+//
+// Merge the new lsb into Y_lo, for alone doesn't
+//
+(p0) br.cond.sptk L(LOG_main) ;;
+}
+
+
+L(log1pf_near):
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+// /*******************************************************/
+// /*********** Branch log1pf_near ************************/
+// /*******************************************************/
+(p0) addl GR_Table_Base = @ltoff(Constants_P#),gp ;;
+}
+//
+// Load base address of poly. coeff.
+//
+{.mmi
+ nop.m 999
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.i 999
+};;
+
+{ .mmb
+(p0) add GR_Table_ptr = 0x40,GR_Table_Base
+//
+// Address tables with separate pointers
+//
+(p0) ldfe FR_P8 = [GR_Table_Base],16
+ nop.b 999 ;;
+}
+
+{ .mmb
+(p0) ldfe FR_P4 = [GR_Table_ptr],16
+//
+// Load P4
+// Load P8
+//
+(p0) ldfe FR_P7 = [GR_Table_Base],16
+ nop.b 999 ;;
+}
+
+{ .mmf
+(p0) ldfe FR_P3 = [GR_Table_ptr],16
+//
+// Load P3
+// Load P7
+//
+(p0) ldfe FR_P6 = [GR_Table_Base],16
+(p0) fmpy.s1 FR_wsq = FR_W, FR_W ;;
+}
+
+{ .mfi
+(p0) ldfe FR_P2 = [GR_Table_ptr],16
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3
+ nop.i 999
+}
+//
+// Load P2
+// Load P6
+// Wsq = w * w
+// Y_hi = p4 * w + p3
+//
+
+{ .mfi
+(p0) ldfe FR_P5 = [GR_Table_Base],16
+(p0) fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7
+ nop.i 999 ;;
+}
+
+{ .mfi
+(p0) ldfe FR_P1 = [GR_Table_ptr],16
+//
+// Load P1
+// Load P5
+// Y_lo = p8 * w + P7
+//
+(p0) fmpy.s1 FR_w4 = FR_wsq, FR_wsq
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6
+(p0) add GR_Perturb = 0x1, r0 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// w4 = w2 * w2
+// Y_hi = y_hi * w + p2
+// Y_lo = y_lo * w + p6
+// Create perturbation bit
+//
+(p0) fmpy.s1 FR_w6 = FR_w4, FR_wsq
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1
+ nop.i 999
+}
+//
+// Y_hi = y_hi * w + p1
+// w6 = w4 * w2
+//
+
+{ .mfi
+(p0) setf.sig FR_Q4 = GR_Perturb
+(p0) fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_wsq,FR_Y_hi, FR_W
+ nop.i 999
}
-;;
-.align 32
-log1p_unorm:
-// Here if x=unorm
{ .mfb
- getf.exp GR_signexp_x = FR_NormX // recompute biased exponent
- nop.f 0
- br.cond.sptk log1p_common
+ nop.m 999
+//
+// Y_hi = y_hi * wsq + w
+// Y_lo = y_lo * w + p5
+//
+(p0) fmpy.s1 FR_Y_lo = FR_w6, FR_Y_lo
+//
+// Y_lo = y_lo * w6
+//
+// (p0) for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+// Set lsb on: Taken out to improve performance
+//
+// (p0) fmerge.se FR_Y_lo = FR_Y_lo,FR_dummy ;;
+//
+// Make sure it's on in Y_lo also. Taken out to improve
+// performance
+//
+(p0) br.cond.sptk L(LOG_main) ;;
+}
+
+
+L(log1pf_small):
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+// /*******************************************************/
+// /*********** Branch log1pf_small ***********************/
+// /*******************************************************/
+(p0) addl GR_Table_Base = @ltoff(Constants_Threshold#),gp
}
-;;
-.align 32
-log1p_eq_minus_1:
-// Here if x=-1
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8 // keep input argument for subsequent
- // call of __libm_error_support#
- nop.i 0
+ nop.m 999
+(p0) mov FR_Em1 = FR_W
+(p0) cmp.eq.unc p7, p0 = r0, r0 ;;
+}
+
+{ .mlx
+ ld8 GR_Table_Base = [GR_Table_Base]
+(p0) movl GR_Expo_Range = 0x0000000000000002 ;;
+}
+//
+// Set Safe to true
+// Set Expo_Range = 0 for single
+// Set Expo_Range = 2 for double
+// Set Expo_Range = 4 for double-extended
+//
+
+{ .mmi
+(p0) shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;;
+(p0) ldfe FR_Threshold = [GR_Table_Base],16
+ nop.i 999
+}
+
+{ .mlx
+ nop.m 999
+(p0) movl GR_Bias = 0x000000000000FF9B ;;
}
-;;
{ .mfi
- mov GR_TAG = 142 // set libm error in case of log1p(-1).
- frcpa.s0 f8,p0 = f8,f0 // log1p(-1) should be equal to -INF.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of f8/f0.
- nop.i 0
+(p0) ldfe FR_Tiny = [GR_Table_Base],0
+ nop.f 999
+ nop.i 999 ;;
}
-{ .mib
- nop.m 0
- nop.i 0
- br.cond.sptk log_libm_err
+
+{ .mfi
+ nop.m 999
+(p0) fcmp.gt.unc.s1 p13, p12 = FR_abs_W, FR_Threshold
+ nop.i 999 ;;
}
-;;
-.align 32
-log1p_lt_minus_1:
-// Here if x < -1
{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- nop.i 0
+ nop.m 999
+(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p13) fadd FR_SCALE = f0, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny
+(p12) cmp.ne.unc p7, p0 = r0, r0
}
-;;
{ .mfi
- mov GR_TAG = 143 // set libm error in case of x < -1.
- frcpa.s0 f8,p0 = f0,f0 // log1p(x) x < -1 should be equal to NaN.
- // We can get it using frcpa because it
- // sets result to the IEEE-754 mandated
- // quotient of f0/f0 i.e. NaN.
- nop.i 0
+(p12) setf.exp FR_SCALE = GR_Bias
+ nop.f 999
+ nop.i 999 ;;
+}
+
+//
+// Set p7 to SAFE = FALSE
+// Set Scale = 2^-100
+//
+{ .mfb
+ nop.m 999
+(p0) fma.s.s0 FR_Input_X = FR_Y_lo,FR_SCALE,FR_Y_hi
+(p0) br.ret.sptk b0
}
;;
-.align 32
-log_libm_err:
-{ .mmi
- alloc r32 = ar.pfs,1,4,4,0
- mov GR_Parameter_TAG = GR_TAG
- nop.i 0
+L(LOG_64_one):
+
+{ .mfb
+ nop.m 999
+(p0) fmpy.s.s0 FR_Input_X = FR_Input_X, f0
+(p0) br.ret.sptk b0
}
;;
+//
+// Raise divide by zero for +/-0 input.
+//
+
+L(LOG_64_zero):
+
+{ .mfi
+(p0) mov GR_Parameter_TAG = 142
+//
+// If we have log1pf(0), return -Inf.
+//
+(p0) fsub.s0 FR_Output_X_tmp = f0, f1
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p0) frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
+(p0) br.cond.sptk L(LOG_ERROR_Support) ;;
+}
-GLOBAL_IEEE754_END(log1pf)
+L(LOG_64_special):
+{ .mfi
+ nop.m 999
+//
+// Return -Inf or value from handler.
+//
+(p0) fclass.m.unc p7, p0 = FR_Input_X, 0x1E1
+ nop.i 999 ;;
+}
-LOCAL_LIBM_ENTRY(__libm_error_region)
+{ .mfb
+ nop.m 999
+//
+// Check for Natval, QNan, SNaN, +Inf
+//
+(p7) fmpy.s.s0 f8 = FR_Input_X, f1
+//
+// For SNaN raise invalid and return QNaN.
+// For QNaN raise invalid and return QNaN.
+// For +Inf return +Inf.
+//
+(p7) br.ret.sptk b0
+}
+;;
+
+//
+// For -Inf raise invalid and return QNaN.
+//
+
+{ .mfb
+(p0) mov GR_Parameter_TAG = 143
+(p0) fmpy.s.s0 FR_Output_X_tmp = FR_Input_X, f0
+(p0) br.cond.sptk L(LOG_ERROR_Support) ;;
+}
+
+//
+// Report that log1pf(-Inf) computed
+//
+
+L(LOG_64_unsupported):
+
+//
+// Return generated NaN or other value .
+//
+
+{ .mfb
+ nop.m 999
+(p0) fmpy.s.s0 FR_Input_X = FR_Input_X, f0
+(p0) br.ret.sptk b0 ;;
+}
+
+L(LOG_64_negative):
+
+{ .mfi
+ nop.m 999
+//
+// Deal with x < 0 in a special way
+//
+(p0) frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
+//
+// Deal with x < 0 in a special way - raise
+// invalid and produce QNaN indefinite.
+//
+(p0) mov GR_Parameter_TAG = 143;;
+}
+
+.endp log1pf#
+ASM_SIZE_DIRECTIVE(log1pf)
+
+.proc __libm_error_region
+__libm_error_region:
+L(LOG_ERROR_Support):
.prologue
+
+// (1)
{ .mfi
- add GR_Parameter_Y = -32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp = -64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP = gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+
+// (2)
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ stfs [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
+
.body
+// (3)
{ .mib
- stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfs [GR_Parameter_X] =FR_Input_X // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ stfs [GR_Parameter_Y] = FR_Output_X_tmp // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+
+// (4)
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs FR_Input_X = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0
};;
-LOCAL_LIBM_END(__libm_error_region)
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+
+.proc __libm_LOG_main
+__libm_LOG_main:
+L(LOG_main):
+
+//
+// kernel_log_64 computes ln(X + E)
+//
+
+{ .mfi
+ nop.m 999
+(p7) fadd.s.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
+ nop.i 999
+}
+
+{ .mmi
+ nop.m 999
+ nop.m 999
+(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;;
+}
+
+{ .mmi
+ nop.m 999
+(p14) ld8 GR_Table_Base = [GR_Table_Base]
+ nop.i 999
+};;
+
+{ .mmi
+(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;;
+(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p14) fma.s1 FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p14) fma.s.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
+(p0) br.ret.sptk b0 ;;
+}
+.endp __libm_LOG_main
+ASM_SIZE_DIRECTIVE(__libm_LOG_main)
+
.type __libm_error_support#,@function
.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_log1pl.S b/sysdeps/ia64/fpu/s_log1pl.S
index 9654265004..7cd3f7834c 100644
--- a/sysdeps/ia64/fpu/s_log1pl.S
+++ b/sysdeps/ia64/fpu/s_log1pl.S
@@ -1,10 +1,10 @@
.file "log1pl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,49 +35,55 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
// History:
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 hand-optimized
+// 4/04/00 Unwind support added
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/21/01 Removed logl and log10l, putting them in a separate file
-// 06/29/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
//
-//*********************************************************************
+// *********************************************************************
//
-//*********************************************************************
+// *********************************************************************
//
-// Function: log1pl(x) = ln(x+1), for double-extended precision x values
+// Function: Combined logl(x), log1pl(x), and log10l(x) where
+// logl(x) = ln(x), for double-extended precision x values
+// log1pl(x) = ln(x+1), for double-extended precision x values
+// log10l(x) = log (x), for double-extended precision x values
+// 10
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
-// f34-f82
+// f9,f33-f55,f99
//
// General Purpose Registers:
-// r32-r56
-// r53-r56 (Used to pass arguments to error handling routine)
+// r32-r53
+// r54-r57 (Used to pass arguments to error handling routine)
//
-// Predicate Registers: p6-p13
+// Predicate Registers: p6-p15
//
-//*********************************************************************
+// *********************************************************************
//
// IEEE Special Conditions:
//
-// Denormal fault raised on denormal inputs
+// Denormal fault raised on denormal inputs
// Overflow exceptions cannot occur
// Underflow exceptions raised when appropriate for log1p
+// (Error Handling Routine called for underflow)
// Inexact raised when appropriate by algorithm
//
+// logl(inf) = inf
+// logl(-inf) = QNaN
+// logl(+/-0) = -inf
+// logl(SNaN) = QNaN
+// logl(QNaN) = QNaN
+// logl(EM_special Values) = QNaN
// log1pl(inf) = inf
// log1pl(-inf) = QNaN
// log1pl(+/-0) = +/-0
@@ -85,37 +91,54 @@
// log1pl(SNaN) = QNaN
// log1pl(QNaN) = QNaN
// log1pl(EM_special Values) = QNaN
-//
-//*********************************************************************
-//
+// log10l(inf) = inf
+// log10l(-inf) = QNaN
+// log10l(+/-0) = -inf
+// log10l(SNaN) = QNaN
+// log10l(QNaN) = QNaN
+// log10l(EM_special Values) = QNaN
+//
+// *********************************************************************
+//
+// Computation is based on the following kernel.
+//
+// ker_log_64( in_FR : X,
+// in_FR : E,
+// in_FR : Em1,
+// in_GR : Expo_Range,
+// out_FR : Y_hi,
+// out_FR : Y_lo,
+// out_FR : Scale,
+// out_PR : Safe )
+//
// Overview
//
// The method consists of three cases.
//
-// If |X| < 2^(-80) use case log1p_small;
-// else |X| < 2^(-7) use case log_near1;
-// else use case log_regular;
+// If |X+Em1| < 2^(-80) use case log1pl_small;
+// elseif |X+Em1| < 2^(-7) use case log_near1;
+// else use case log_regular;
//
-// Case log1p_small:
+// Case log1pl_small:
//
-// log1pl( X ) = logl( X+1 ) can be approximated by X
+// logl( 1 + (X+Em1) ) can be approximated by (X+Em1).
//
// Case log_near1:
//
-// log1pl( X ) = log( X+1 ) can be approximated by a simple polynomial
-// in W = X. This polynomial resembles the truncated Taylor
+// logl( 1 + (X+Em1) ) can be approximated by a simple polynomial
+// in W = X+Em1. This polynomial resembles the truncated Taylor
// series W - W^/2 + W^3/3 - ...
//
// Case log_regular:
//
// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) = log1pl (Arg-1) for an argument Arg in [1,2),
-// we construct a value G such that G*Arg is close to 1 and that
+// order to compute logl(Arg) for an argument Arg in [1,2), we
+// construct a value G such that G*Arg is close to 1 and that
// logl(1/G) is obtainable easily from a table of values calculated
// beforehand. Thus
//
-// logl(Arg) = logl(1/G) + logl(G*Arg)
-// = logl(1/G) + logl(1 + (G*Arg - 1))
+// logl(Arg) = logl(1/G) + logl(G*Arg)
+// = logl(1/G) + logl(1 + (G*Arg - 1))
//
// Because |G*Arg - 1| is small, the second term on the right hand
// side can be approximated by a short polynomial. We elaborate
@@ -123,9 +146,9 @@
//
// Step 0: Initialization
//
-// We need to calculate logl( X+1 ). Obtain N, S_hi such that
+// We need to calculate logl( E + X ). Obtain N, S_hi, S_lo such that
//
-// X+1 = 2^N * ( S_hi + S_lo ) exactly
+// E + X = 2^N * ( S_hi + S_lo ) exactly
//
// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
// that |S_lo| <= ulp(S_hi).
@@ -134,8 +157,8 @@
//
// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1) + G * S_lo
+// G := G_1 * G_2 * G_3
+// r := (G * S_hi - 1) + G * S_lo
//
// These G_j's have the property that the product is exactly
// representable and that |r| < 2^(-12) as a result.
@@ -148,34 +171,61 @@
// Step 3: Reconstruction
//
//
-// Finally, log1pl( X ) = logl( X+1 ) is given by
+// Finally, logl( E + X ) is given by
//
-// logl( X+1 ) = logl( 2^N * (S_hi + S_lo) )
+// logl( E + X ) = logl( 2^N * (S_hi + S_lo) )
// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
// ~=~ N*logl(2) + logl(1/G) + poly(r).
//
// **** Algorithm ****
//
-// Case log1p_small:
-//
-// Although log1pl(X) is basically X, we would like to preserve the inexactness
-// nature as well as consistent behavior under different rounding modes.
-// We can do this by computing the result as
-//
-// log1pl(X) = X - X*X
-//
+// Case log1pl_small:
+//
+// Although logl(1 + (X+Em1)) is basically X+Em1, we would like to
+// preserve the inexactness nature as well as consistent behavior
+// under different rounding modes. Note that this case can only be
+// taken if E is set to be 1.0. In this case, Em1 is zero, and that
+// X can be very tiny and thus the final result can possibly underflow.
+// Thus, we compare X against a threshold that is dependent on the
+// input Expo_Range. If |X| is smaller than this threshold, we set
+// SAFE to be FALSE.
+//
+// The result is returned as Y_hi, Y_lo, and in the case of SAFE
+// is FALSE, an additional value Scale is also returned.
+//
+// W := X + Em1
+// Threshold := Threshold_Table( Expo_Range )
+// Tiny := Tiny_Table( Expo_Range )
+//
+// If ( |W| > Threshold ) then
+// Y_hi := W
+// Y_lo := -W*W
+// Else
+// Y_hi := W
+// Y_lo := -Tiny
+// Scale := 2^(-100)
+// Safe := FALSE
+// EndIf
+//
+//
+// One may think that Y_lo should be -W*W/2; however, it does not matter
+// as Y_lo will be rounded off completely except for the correct effect in
+// directed rounding. Clearly -W*W is simplier to compute. Moreover,
+// because of the difference in exponent value, Y_hi + Y_lo or
+// Y_hi + Scale*Y_lo is always inexact.
//
// Case log_near1:
//
// Here we compute a simple polynomial. To exploit parallelism, we split
// the polynomial into two portions.
//
-// W := X
-// Wsq := W * W
-// W4 := Wsq*Wsq
-// W6 := W4*Wsq
-// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
-// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+// W := X + Em1
+// Wsq := W * W
+// W4 := Wsq*Wsq
+// W6 := W4*Wsq
+// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
+// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+// set lsb(Y_lo) to be 1
//
// Case log_regular:
//
@@ -184,87 +234,89 @@
// Step 0. Initialization
// ----------------------
//
-// Z := X + 1
+// Z := X + E
// N := unbaised exponent of Z
// S_hi := 2^(-N) * Z
-// S_lo := 2^(-N) * { (max(X,1)-Z) + min(X,1) }
+// S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
+//
+// Note that S_lo is always 0 for the case E = 0.
//
// Step 1. Argument Reduction
// --------------------------
//
// Let
//
-// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
+// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
//
// We obtain G_1, G_2, G_3 by the following steps.
//
//
-// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
-// from S_hi.
+// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
+// from S_hi.
//
-// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
-// to lsb = 2^(-4).
+// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
+// to lsb = 2^(-4).
//
-// Define index_1 := [ d_1 d_2 d_3 d_4 ].
+// Define index_1 := [ d_1 d_2 d_3 d_4 ].
//
-// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
-// fixed point lsb = 2^(-15).
-// Z_1 looks like z_0.z_1 z_2 ... z_15
-// Note that the fetching is done using index_1.
-// A_1 is actually not needed in the implementation
-// and is used here only to explain how is the value
-// Z_1 defined.
+// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
+// fixed point lsb = 2^(-15).
+// Z_1 looks like z_0.z_1 z_2 ... z_15
+// Note that the fetching is done using index_1.
+// A_1 is actually not needed in the implementation
+// and is used here only to explain how is the value
+// Z_1 defined.
//
-// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
-// floating pt. Again, fetching is done using index_1. A_1
-// explains how G_1 is defined.
+// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
+// floating pt. Again, fetching is done using index_1. A_1
+// explains how G_1 is defined.
//
-// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 d_5 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_1 indeed always begin
-// with 1.0000 in fixed point.
+// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
+// = 1.0 0 0 0 d_5 ... d_14
+// This is accomplised by integer multiplication.
+// It is proved that X_1 indeed always begin
+// with 1.0000 in fixed point.
//
//
-// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
-// truncated to lsb = 2^(-8). Similar to A_1,
-// A_2 is not needed in actual implementation. It
-// helps explain how some of the values are defined.
+// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
+// truncated to lsb = 2^(-8). Similar to A_1,
+// A_2 is not needed in actual implementation. It
+// helps explain how some of the values are defined.
//
-// Define index_2 := [ d_5 d_6 d_7 d_8 ].
+// Define index_2 := [ d_5 d_6 d_7 d_8 ].
//
-// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
-// fixed point lsb = 2^(-15). Fetch done using index_2.
-// Z_2 looks like z_0.z_1 z_2 ... z_15
+// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
+// fixed point lsb = 2^(-15). Fetch done using index_2.
+// Z_2 looks like z_0.z_1 z_2 ... z_15
//
-// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
-// floating pt.
+// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
+// floating pt.
//
-// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_2 indeed always begin
-// with 1.00000000 in fixed point.
+// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
+// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
+// This is accomplised by integer multiplication.
+// It is proved that X_2 indeed always begin
+// with 1.00000000 in fixed point.
//
//
-// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
-// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
+// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
+// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
//
-// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
+// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
//
-// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
-// floating pt. Fetch is done using index_3.
+// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
+// floating pt. Fetch is done using index_3.
//
-// Compute G := G_1 * G_2 * G_3.
+// Compute G := G_1 * G_2 * G_3.
//
-// This is done exactly since each of G_j only has 21 sig. bits.
+// This is done exactly since each of G_j only has 21 sig. bits.
//
-// Compute
+// Compute
//
-// r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
+// r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
//
-// Thus r approximates G*(S_hi + S_lo) - 1 to within a couple of
-// rounding errors.
+// thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of
+// rounding errors.
//
//
// Step 2. Approximation
@@ -274,879 +326,1258 @@
// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
// thus logl(1+r) can be approximated by a short polynomial:
//
-// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
+// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
//
//
// Step 3. Reconstruction
// ----------------------
//
-// This step computes the desired result of logl(X+1):
+// This step computes the desired result of logl(X+E):
//
-// logl(X+1) = logl( 2^N * (S_hi + S_lo) )
-// = N*logl(2) + logl( S_hi + S_lo) )
-// = N*logl(2) + logl(1/G) +
-// logl(1 + G * ( S_hi + S_lo ) - 1 )
+// logl(X+E) = logl( 2^N * (S_hi + S_lo) )
+// = N*logl(2) + logl( S_hi + S_lo )
+// = N*logl(2) + logl(1/G) +
+// logl(1 + C*(S_hi+S_lo) - 1 )
//
// logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
// single-precision numbers and the low parts are double precision
// numbers. These have the property that
//
-// N*log2_hi + SUM ( log1byGj_hi )
+// N*log2_hi + SUM ( log1byGj_hi )
//
// is computable exactly in double-extended precision (64 sig. bits).
// Finally
//
-// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
-// Y_lo := poly_hi + [ poly_lo +
-// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
+// Y_lo := poly_hi + [ poly_lo +
+// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+// set lsb(Y_lo) to be 1
//
-RODATA
-.align 64
-
-// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
+#include "libm_support.h"
-// P_8, P_7, P_6, P_5, P_4, P_3, P_2, and P_1
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
-LOCAL_OBJECT_START(Constants_P)
-//data4 0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
-//data4 0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
-//data4 0x73282DB0,0x9249248C,0x00003FFC,0x00000000
-//data4 0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
-//data4 0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
-//data4 0x00067ED5,0x80000000,0x0000BFFD,0x00000000
-//data4 0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
-//data4 0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
-data8 0xE3936754EFD62B15,0x00003FFB
-data8 0x8003B271A5E56381,0x0000BFFC
-data8 0x9249248C73282DB0,0x00003FFC
-data8 0xAAAAAA9F47305052,0x0000BFFC
-data8 0xCCCCCCCCCCD17FC9,0x00003FFC
-data8 0x8000000000067ED5,0x0000BFFD
-data8 0xAAAAAAAAAAAAAAAA,0x00003FFD
-data8 0xFFFFFFFFFFFFFFFE,0x0000BFFD
-LOCAL_OBJECT_END(Constants_P)
+// P_7, P_6, P_5, P_4, P_3, P_2, and P_1
+.align 64
+Constants_P:
+ASM_TYPE_DIRECTIVE(Constants_P,@object)
+data4 0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
+data4 0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
+data4 0x73282DB0,0x9249248C,0x00003FFC,0x00000000
+data4 0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
+data4 0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
+data4 0x00067ED5,0x80000000,0x0000BFFD,0x00000000
+data4 0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_P)
+
// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
-LOCAL_OBJECT_START(Constants_Q)
-//data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
-//data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-//data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
-//data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
-//data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
-//data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
-data8 0xB172180000000000,0x00003FFE
-data8 0x82E308654361C4C6,0x0000BFE2
-data8 0xCCCCCAF2328833CB,0x00003FFC
-data8 0x80000077A9D4BAFB,0x0000BFFD
-data8 0xAAAAAAAAAAABE3D2,0x00003FFD
-data8 0xFFFFFFFFFFFFDAB7,0x0000BFFD
-LOCAL_OBJECT_END(Constants_Q)
-
-// 1/ln10_hi, 1/ln10_lo
-
-LOCAL_OBJECT_START(Constants_1_by_LN10)
-//data4 0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
-//data4 0xACCF70C8,0xD56EAABE,0x00003FBB,0x00000000
-data8 0xDE5BD8A937287195,0x00003FFD
-data8 0xD56EAABEACCF70C8,0x00003FBB
-LOCAL_OBJECT_END(Constants_1_by_LN10)
-
-
-// Z1 - 16 bit fixed
+.align 64
+Constants_Q:
+ASM_TYPE_DIRECTIVE(Constants_Q,@object)
+data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
+data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Q)
-LOCAL_OBJECT_START(Constants_Z_1)
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F70F0F0,0x3D785196
-data8 0x3DA163A6617D741C
-data4 0x3F638E38,0x3DF13843
-data8 0x3E2C55E6CBD3D5BB
-data4 0x3F579430,0x3E2FF9A0
-data8 0xBE3EB0BFD86EA5E7
-data4 0x3F4CCCC8,0x3E647FD6
-data8 0x3E2E6A8C86B12760
-data4 0x3F430C30,0x3E8B3AE7
-data8 0x3E47574C5C0739BA
-data4 0x3F3A2E88,0x3EA30C68
-data8 0x3E20E30F13E8AF2F
-data4 0x3F321640,0x3EB9CEC8
-data8 0xBE42885BF2C630BD
-data4 0x3F2AAAA8,0x3ECF9927
-data8 0x3E497F3497E577C6
-data4 0x3F23D708,0x3EE47FC5
-data8 0x3E3E6A6EA6B0A5AB
-data4 0x3F1D89D8,0x3EF8947D
-data8 0xBDF43E3CD328D9BE
-data4 0x3F17B420,0x3F05F3A1
-data8 0x3E4094C30ADB090A
-data4 0x3F124920,0x3F0F4303
-data8 0xBE28FBB2FC1FE510
-data4 0x3F0D3DC8,0x3F183EBF
-data8 0x3E3A789510FDE3FA
-data4 0x3F088888,0x3F20EC80
-data8 0x3E508CE57CC8C98F
-data4 0x3F042108,0x3F29516A
-data8 0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-
-LOCAL_OBJECT_START(Constants_Z_2)
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F7F00F8,0x3B7F875D
-data8 0x3DB5A11622C42273
-data4 0x3F7E03F8,0x3BFF015B
-data8 0x3DE620CF21F86ED3
-data4 0x3F7D08E0,0x3C3EE393
-data8 0xBDAFA07E484F34ED
-data4 0x3F7C0FC0,0x3C7E0586
-data8 0xBDFE07F03860BCF6
-data4 0x3F7B1880,0x3C9E75D2
-data8 0x3DEA370FA78093D6
-data4 0x3F7A2328,0x3CBDC97A
-data8 0x3DFF579172A753D0
-data4 0x3F792FB0,0x3CDCFE47
-data8 0x3DFEBE6CA7EF896B
-data4 0x3F783E08,0x3CFC15D0
-data8 0x3E0CF156409ECB43
-data4 0x3F774E38,0x3D0D874D
-data8 0xBE0B6F97FFEF71DF
-data4 0x3F766038,0x3D1CF49B
-data8 0xBE0804835D59EEE8
-data4 0x3F757400,0x3D2C531D
-data8 0x3E1F91E9A9192A74
-data4 0x3F748988,0x3D3BA322
-data8 0xBE139A06BF72A8CD
-data4 0x3F73A0D0,0x3D4AE46F
-data8 0x3E1D9202F8FBA6CF
-data4 0x3F72B9D0,0x3D5A1756
-data8 0xBE1DCCC4BA796223
-data4 0x3F71D488,0x3D693B9D
-data8 0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4 0x3F7FFC00,0x38800100
-data8 0x3D355595562224CD
-data4 0x3F7FF400,0x39400480
-data8 0x3D8200A206136FF6
-data4 0x3F7FEC00,0x39A00640
-data8 0x3DA4D68DE8DE9AF0
-data4 0x3F7FE400,0x39E00C41
-data8 0xBD8B4291B10238DC
-data4 0x3F7FDC00,0x3A100A21
-data8 0xBD89CCB83B1952CA
-data4 0x3F7FD400,0x3A300F22
-data8 0xBDB107071DC46826
-data4 0x3F7FCC08,0x3A4FF51C
-data8 0x3DB6FCB9F43307DB
-data4 0x3F7FC408,0x3A6FFC1D
-data8 0xBD9B7C4762DC7872
-data4 0x3F7FBC10,0x3A87F20B
-data8 0xBDC3725E3F89154A
-data4 0x3F7FB410,0x3A97F68B
-data8 0xBD93519D62B9D392
-data4 0x3F7FAC18,0x3AA7EB86
-data8 0x3DC184410F21BD9D
-data4 0x3F7FA420,0x3AB7E101
-data8 0xBDA64B952245E0A6
-data4 0x3F7F9C20,0x3AC7E701
-data8 0x3DB4B0ECAABB34B8
-data4 0x3F7F9428,0x3AD7DD7B
-data8 0x3D9923376DC40A7E
-data4 0x3F7F8C30,0x3AE7D474
-data8 0x3DC6E17B4F2083D3
-data4 0x3F7F8438,0x3AF7CBED
-data8 0x3DAE314B811D4394
-data4 0x3F7F7C40,0x3B03E1F3
-data8 0xBDD46F21B08F2DB1
-data4 0x3F7F7448,0x3B0BDE2F
-data8 0xBDDC30A46D34522B
-data4 0x3F7F6C50,0x3B13DAAA
-data8 0x3DCB0070B1F473DB
-data4 0x3F7F6458,0x3B1BD766
-data8 0xBDD65DDC6AD282FD
-data4 0x3F7F5C68,0x3B23CC5C
-data8 0xBDCDAB83F153761A
-data4 0x3F7F5470,0x3B2BC997
-data8 0xBDDADA40341D0F8F
-data4 0x3F7F4C78,0x3B33C711
-data8 0x3DCD1BD7EBC394E8
-data4 0x3F7F4488,0x3B3BBCC6
-data8 0xBDC3532B52E3E695
-data4 0x3F7F3C90,0x3B43BAC0
-data8 0xBDA3961EE846B3DE
-data4 0x3F7F34A0,0x3B4BB0F4
-data8 0xBDDADF06785778D4
-data4 0x3F7F2CA8,0x3B53AF6D
-data8 0x3DCC3ED1E55CE212
-data4 0x3F7F24B8,0x3B5BA620
-data8 0xBDBA31039E382C15
-data4 0x3F7F1CC8,0x3B639D12
-data8 0x3D635A0B5C5AF197
-data4 0x3F7F14D8,0x3B6B9444
-data8 0xBDDCCB1971D34EFC
-data4 0x3F7F0CE0,0x3B7393BC
-data8 0x3DC7450252CD7ADA
-data4 0x3F7F04F0,0x3B7B8B6D
-data8 0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-
-// Floating Point Registers
-
-FR_Input_X = f8
-
-FR_Y_hi = f34
-FR_Y_lo = f35
-
-FR_Scale = f36
-FR_X_Prime = f37
-FR_S_hi = f38
-FR_W = f39
-FR_G = f40
-
-FR_H = f41
-FR_wsq = f42
-FR_w4 = f43
-FR_h = f44
-FR_w6 = f45
-
-FR_G2 = f46
-FR_H2 = f47
-FR_poly_lo = f48
-FR_P8 = f49
-FR_poly_hi = f50
-
-FR_P7 = f51
-FR_h2 = f52
-FR_rsq = f53
-FR_P6 = f54
-FR_r = f55
-
-FR_log2_hi = f56
-FR_log2_lo = f57
-FR_p87 = f58
-FR_p876 = f58
-FR_p8765 = f58
-FR_float_N = f59
-FR_Q4 = f60
+// Z1 - 16 bit fixed, G1 and H1 - IEEE single
+
+.align 64
+Constants_Z_G_H_h1:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
+data4 0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
+data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
+data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
+data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
+data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
+data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
+data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
+data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
+data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
+data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
+data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
+data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
+data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
+data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
+data4 0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
+
+// Z2 - 16 bit fixed, G2 and H2 - IEEE single
+
+.align 64
+Constants_Z_G_H_h2:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
+data4 0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
+data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
+data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
+data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
+data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
+data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
+data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
+data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
+data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
+data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
+data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
+data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
+data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
+data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
+data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
+
+// G3 and H3 - IEEE single and h3 -IEEE double
+
+.align 64
+Constants_Z_G_H_h3:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
+data4 0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
+data4 0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
+data4 0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
+data4 0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
+data4 0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
+data4 0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
+data4 0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
+data4 0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
+data4 0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
+data4 0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
+data4 0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
+data4 0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
+data4 0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
+data4 0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
+data4 0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
+data4 0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
+data4 0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
+data4 0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
+data4 0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
+data4 0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
+data4 0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
+data4 0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
+data4 0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
+data4 0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
+data4 0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
+data4 0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
+data4 0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
+data4 0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
+data4 0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
+data4 0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
+data4 0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
+data4 0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
+
+//
+// Exponent Thresholds and Tiny Thresholds
+// for 8, 11, 15, and 17 bit exponents
+//
+// Expo_Range Value
+//
+// 0 (8 bits) 2^(-126)
+// 1 (11 bits) 2^(-1022)
+// 2 (15 bits) 2^(-16382)
+// 3 (17 bits) 2^(-16382)
+//
+// Tiny_Table
+// ----------
+// Expo_Range Value
+//
+// 0 (8 bits) 2^(-16382)
+// 1 (11 bits) 2^(-16382)
+// 2 (15 bits) 2^(-16382)
+// 3 (17 bits) 2^(-16382)
+//
-FR_p43 = f61
-FR_p432 = f61
-FR_p4321 = f61
-FR_P4 = f62
-FR_G3 = f63
-FR_H3 = f64
-FR_h3 = f65
+.align 64
+Constants_Threshold:
+ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
+data4 0x00000000,0x80000000,0x00003F81,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00003C01,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+data4 0x00000000,0x80000000,0x00000001,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Threshold)
-FR_Q3 = f66
-FR_P3 = f67
-FR_Q2 = f68
-FR_P2 = f69
-FR_1LN10_hi = f70
+.align 64
+Constants_1_by_LN10:
+ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
+data4 0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
+data4 0xACCF70C8,0xD56EAABE,0x00003FBB,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)
+
+FR_Input_X = f8
+FR_Neg_One = f9
+FR_E = f33
+FR_Em1 = f34
+FR_Y_hi = f34
+// Shared with Em1
+FR_Y_lo = f35
+FR_Scale = f36
+FR_X_Prime = f37
+FR_Z = f38
+FR_S_hi = f38
+// Shared with Z
+FR_W = f39
+FR_G = f40
+FR_wsq = f40
+// Shared with G
+FR_H = f41
+FR_w4 = f41
+// Shared with H
+FR_h = f42
+FR_w6 = f42
+// Shared with h
+FR_G_tmp = f43
+FR_poly_lo = f43
+// Shared with G_tmp
+FR_P8 = f43
+// Shared with G_tmp
+FR_H_tmp = f44
+FR_poly_hi = f44
+ // Shared with H_tmp
+FR_P7 = f44
+// Shared with H_tmp
+FR_h_tmp = f45
+FR_rsq = f45
+// Shared with h_tmp
+FR_P6 = f45
+// Shared with h_tmp
+FR_abs_W = f46
+FR_r = f46
+// Shared with abs_W
+FR_AA = f47
+FR_log2_hi = f47
+// Shared with AA
+FR_BB = f48
+FR_log2_lo = f48
+// Shared with BB
+FR_S_lo = f49
+FR_two_negN = f50
+FR_float_N = f51
+FR_Q4 = f52
+FR_dummy = f52
+// Shared with Q4
+FR_P4 = f52
+// Shared with Q4
+FR_Threshold = f52
+// Shared with Q4
+FR_Q3 = f53
+FR_P3 = f53
+// Shared with Q3
+FR_Tiny = f53
+// Shared with Q3
+FR_Q2 = f54
+FR_P2 = f54
+// Shared with Q2
+FR_1LN10_hi = f54
+// Shared with Q2
+FR_Q1 = f55
+FR_P1 = f55
+// Shared with Q1
+FR_1LN10_lo = f55
+// Shared with Q1
+FR_P5 = f98
+FR_SCALE = f98
+FR_Output_X_tmp = f99
+
+GR_Expo_Range = r32
+GR_Table_Base = r34
+GR_Table_Base1 = r35
+GR_Table_ptr = r36
+GR_Index2 = r37
+GR_signif = r38
+GR_X_0 = r39
+GR_X_1 = r40
+GR_X_2 = r41
+GR_Z_1 = r42
+GR_Z_2 = r43
+GR_N = r44
+GR_Bias = r45
+GR_M = r46
+GR_ScaleN = r47
+GR_Index3 = r48
+GR_Perturb = r49
+GR_Table_Scale = r50
-FR_Q1 = f71
-FR_P1 = f72
-FR_1LN10_lo = f73
-FR_P5 = f74
-FR_rcub = f75
+//
+// Added for unwind support
+//
-FR_Output_X_tmp = f76
-FR_Neg_One = f77
-FR_Z = f78
-FR_AA = f79
-FR_BB = f80
-FR_S_lo = f81
-FR_2_to_minus_N = f82
+GR_SAVE_PFS = r51
+GR_SAVE_B0 = r52
+GR_SAVE_GP = r53
+GR_Parameter_X = r54
+GR_Parameter_Y = r55
+GR_Parameter_RESULT = r56
+GR_Parameter_TAG = r57
FR_X = f8
FR_Y = f0
-FR_RESULT = f76
-
+FR_RESULT = f99
-// General Purpose Registers
+.section .text
+.proc logl#
+.global logl#
+.align 64
+logl:
+#ifdef _LIBC
+.global __ieee754_logl
+__ieee754_logl:
+#endif
+{ .mfi
+alloc r32 = ar.pfs,0,22,4,0
+(p0) fnorm.s1 FR_X_Prime = FR_Input_X
+(p0) cmp.eq.unc p7, p0 = r0, r0
+}
+{ .mfi
+(p0) cmp.ne.unc p14, p0 = r0, r0
+(p0) fclass.m.unc p6, p0 = FR_Input_X, 0x1E3
+(p0) cmp.ne.unc p15, p0 = r0, r0 ;;
+}
+{ .mfi
+ nop.m 0
+(p0) fclass.nm.unc p10, p0 = FR_Input_X, 0x1FF
+ nop.i 0
+}
+{ .mfi
+nop.m 999
+(p0) fcmp.eq.unc.s1 p8, p0 = FR_Input_X, f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p13, p0 = FR_Input_X, f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p9, p0 = FR_Input_X, f1
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fsub.s1 FR_Em1 = f0,f1
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p0) fadd FR_E = f0,f0
+//
+// Create E = 0 and Em1 = -1
+// Check for X == 1, meaning logl(1)
+// Check for X < 0, meaning logl(negative)
+// Check for X == 0, meaning logl(0)
+// Identify NatVals, NaNs, Infs.
+// Identify EM unsupporteds.
+// Identify Negative values - us S1 so as
+// not to raise denormal operand exception
+// Set p15 to false for log
+// Set p14 to false for log
+// Set p7 true for log and log1p
+//
+(p0) br.cond.sptk L(LOGL_BEGIN) ;;
+}
-GR_ad_p = r33
-GR_Index1 = r34
-GR_Index2 = r35
-GR_signif = r36
-GR_X_0 = r37
-GR_X_1 = r38
-GR_X_2 = r39
-GR_minus_N = r39
-GR_Z_1 = r40
-GR_Z_2 = r41
-GR_N = r42
-GR_Bias = r43
-GR_M = r44
-GR_Index3 = r45
-GR_exp_2tom80 = r45
-GR_ad_p2 = r46
-GR_exp_mask = r47
-GR_exp_2tom7 = r48
-GR_ad_ln10 = r49
-GR_ad_tbl_1 = r50
-GR_ad_tbl_2 = r51
-GR_ad_tbl_3 = r52
-GR_ad_q = r53
-GR_ad_z_1 = r54
-GR_ad_z_2 = r55
-GR_ad_z_3 = r56
-GR_minus_N = r39
+.endp logl
+ASM_SIZE_DIRECTIVE(logl)
-//
-// Added for unwind support
-//
+.section .text
+.proc log10l#
+.global log10l#
+.align 64
+log10l:
+#ifdef _LIBC
+.global __ieee754_log10l
+__ieee754_log10l:
+#endif
+{ .mfi
+alloc r32 = ar.pfs,0,22,4,0
+(p0) fadd FR_E = f0,f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+(p0) fsub.s1 FR_Em1 = f0,f1
+ nop.i 0
+}
+{ .mfi
+(p0) cmp.ne.unc p15, p0 = r0, r0
+(p0) fcmp.eq.unc.s1 p9, p0 = FR_Input_X, f1
+ nop.i 0
+}
+{ .mfi
+(p0) cmp.eq.unc p14, p0 = r0, r0
+(p0) fcmp.lt.unc.s1 p13, p0 = FR_Input_X, f0
+(p0) cmp.ne.unc p7, p0 = r0, r0 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p8, p0 = FR_Input_X, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fclass.nm.unc p10, p0 = FR_Input_X, 0x1FF
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fclass.m.unc p6, p0 = FR_Input_X, 0x1E3
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p0) fnorm.s1 FR_X_Prime = FR_Input_X
+//
+// Create E = 0 and Em1 = -1
+// Check for X == 1, meaning logl(1)
+// Check for X < 0, meaning logl(negative)
+// Check for X == 0, meaning logl(0)
+// Identify NatVals, NaNs, Infs.
+// Identify EM unsupporteds.
+// Identify Negative values - us S1 so as
+// Identify Negative values - us S1 so as
+// not to raise denormal operand exception
+// Set p15 to false for log10
+// Set p14 to true for log10
+// Set p7 to false for log10
+//
+(p0) br.cond.sptk L(LOGL_BEGIN) ;;
+}
-GR_SAVE_PFS = r50
-GR_SAVE_B0 = r51
-GR_SAVE_GP = r52
-GR_Parameter_X = r53
-GR_Parameter_Y = r54
-GR_Parameter_RESULT = r55
-GR_Parameter_TAG = r56
+.endp log10l
+ASM_SIZE_DIRECTIVE(log10l)
.section .text
-GLOBAL_IEEE754_ENTRY(log1pl)
+.proc log1pl#
+.global log1pl#
+.align 64
+log1pl:
+#ifdef _LIBC
+.global __log1pl
+__log1pl:
+#endif
{ .mfi
- alloc r32 = ar.pfs,0,21,4,0
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
- nop.i 999
+alloc r32 = ar.pfs,0,22,4,0
+(p0) fsub.s1 FR_Neg_One = f0,f1
+(p0) cmp.eq.unc p7, p0 = r0, r0
}
{ .mfi
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- fma.s1 FR_Z = FR_Input_X, f1, f1 // x+1
- nop.i 999
+(p0) cmp.ne.unc p14, p0 = r0, r0
+(p0) fnorm.s1 FR_X_Prime = FR_Input_X
+(p0) cmp.eq.unc p15, p0 = r0, r0 ;;
+}
+{ .mfi
+ nop.m 0
+(p0) fclass.m.unc p6, p0 = FR_Input_X, 0x1E3
+ nop.i 0
}
-;;
-
{ .mfi
nop.m 999
- fmerge.ns FR_Neg_One = f1, f1 // Form -1.0
- nop.i 999
+(p0) fclass.nm.unc p10, p0 = FR_Input_X, 0x1FF
+ nop.i 0
}
{ .mfi
nop.m 999
- fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
- nop.i 999
+(p0) fcmp.eq.unc.s1 p9, p0 = FR_Input_X, f0
+ nop.i 0
}
-;;
-
{ .mfi
- ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
- nop.f 999
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
+ nop.m 999
+(p0) fadd FR_Em1 = f0,f0
+ nop.i 999 ;;
}
-;;
-
-{ .mfb
- getf.sig GR_signif = FR_Z // Get significand of x+1
- fcmp.eq.s1 p9, p0 = FR_Input_X, f0 // Test for x=0
-(p6) br.cond.spnt LOG1P_special // Branch for nan, inf, natval
+{ .mfi
+ nop.m 999
+(p0) fadd FR_E = f0,f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
- fcmp.lt.s1 p13, p0 = FR_X_Prime, FR_Neg_One // Test for x<-1
- add GR_ad_p = -0x100, GR_ad_z_1 // Point to Constants_P
+ nop.m 999
+(p0) fcmp.eq.unc.s1 p8, p0 = FR_Input_X, FR_Neg_One
+ nop.i 999
}
{ .mfi
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
- nop.f 999
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
+ nop.m 999
+(p0) fcmp.lt.unc.s1 p13, p0 = FR_Input_X, FR_Neg_One
+ nop.i 999
}
-;;
-
+L(LOGL_BEGIN):
{ .mfi
- add GR_ad_q = 0x080, GR_ad_p // Point to Constants_Q
- fcmp.eq.s1 p8, p0 = FR_X_Prime, FR_Neg_One // Test for x=-1
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
+ nop.m 999
+(p0) fadd.s1 FR_Z = FR_X_Prime, FR_E
+ nop.i 999
}
-{ .mfb
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
- nop.f 999
-(p9) br.ret.spnt b0 // Exit if x=0, return input
+{ .mlx
+ nop.m 999
+(p0) movl GR_Table_Scale = 0x0000000000000018 ;;
}
-;;
-
-{ .mfi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- fclass.nm p10, p0 = FR_Input_X, 0x1FF // Test for unsupported
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of significand
+{ .mmi
+ nop.m 999
+ nop.m 999
+//
+// Create E = 1 and Em1 = 0
+// Check for X == 0, meaning logl(1+0)
+// Check for X < -1, meaning logl(negative)
+// Check for X == -1, meaning logl(0)
+// Normalize x
+// Identify NatVals, NaNs, Infs.
+// Identify EM unsupporteds.
+// Identify Negative values - us S1 so as
+// not to raise denormal operand exception
+// Set p15 to true for log1p
+// Set p14 to false for log1p
+// Set p7 true for log and log1p
+//
+(p0) addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
}
{ .mfi
- ldfe FR_P8 = [GR_ad_p],16 // Load P_8 for near1 path
- fsub.s1 FR_W = FR_X_Prime, f0 // W = x
- add GR_ad_ln10 = 0x060, GR_ad_q // Point to Constants_1_by_LN10
+ nop.m 999
+(p0) fmax.s1 FR_AA = FR_X_Prime, FR_E
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- fmax.s1 FR_AA = FR_X_Prime, f1 // For S_lo, form AA = max(X,1.0)
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
+ ld8 GR_Table_Base = [GR_Table_Base]
+(p0) fmin.s1 FR_BB = FR_X_Prime, FR_E
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p0) fadd.s1 FR_W = FR_X_Prime, FR_Em1
+//
+// Begin load of constants base
+// FR_Z = Z = |x| + E
+// FR_W = W = |x| + Em1
+// AA = fmax(|x|,E)
+// BB = fmin(|x|,E)
+//
+(p6) br.cond.spnt L(LOGL_64_special) ;;
}
{ .mib
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- mov GR_Bias = 0x0FFFF // Create exponent bias
-(p13) br.cond.spnt LOG1P_LT_Minus_1 // Branch if x<-1
+ nop.m 999
+ nop.i 999
+(p10) br.cond.spnt L(LOGL_64_unsupported) ;;
}
-;;
-
-{ .mfb
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- fmerge.se FR_S_hi = f1,FR_Z // Form |x+1|
-(p8) br.cond.spnt LOG1P_EQ_Minus_1 // Branch if x=-1
+{ .mib
+ nop.m 999
+ nop.i 999
+(p13) br.cond.spnt L(LOGL_64_negative) ;;
}
-;;
-
-{ .mmb
- getf.exp GR_N = FR_Z // Get N = exponent of x+1
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
-(p10) br.cond.spnt LOG1P_unsupported // Branch for unsupported type
+{ .mib
+(p0) getf.sig GR_signif = FR_Z
+ nop.i 999
+(p9) br.cond.spnt L(LOGL_64_one) ;;
}
-;;
-
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- fcmp.eq.s0 p8, p0 = FR_Input_X, f0 // Dummy op to flag denormals
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(LOGL_64_zero) ;;
}
-;;
-
+{ .mfi
+(p0) getf.exp GR_N = FR_Z
+//
+// Raise possible denormal operand exception
+// Create Bias
+//
+// This function computes ln( x + e )
+// Input FR 1: FR_X = FR_Input_X
+// Input FR 2: FR_E = FR_E
+// Input FR 3: FR_Em1 = FR_Em1
+// Input GR 1: GR_Expo_Range = GR_Expo_Range = 1
+// Output FR 4: FR_Y_hi
+// Output FR 5: FR_Y_lo
+// Output FR 6: FR_Scale
+// Output PR 7: PR_Safe
//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
+(p0) fsub.s1 FR_S_lo = FR_AA, FR_Z
//
+// signif = getf.sig(Z)
+// abs_W = fabs(w)
+//
+(p0) extr.u GR_Table_ptr = GR_signif, 59, 4 ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fmerge.se FR_S_hi = f1,FR_Z
+(p0) extr.u GR_X_0 = GR_signif, 49, 15
+}
{ .mmi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
- sub GR_N = GR_N, GR_Bias
- mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
+ nop.m 999
+ nop.m 999
+(p0) addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp ;;
+}
+{ .mlx
+ ld8 GR_Table_Base1 = [GR_Table_Base1]
+(p0) movl GR_Bias = 0x000000000000FFFF ;;
}
-;;
-
{ .mfi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
- fms.s1 FR_S_lo = FR_AA, f1, FR_Z // Form S_lo = AA - Z
- sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
+ nop.m 999
+(p0) fabs FR_abs_W = FR_W
+(p0) pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0
}
-;;
-
-{ .mmf
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- setf.sig FR_float_N = GR_N // Put integer N into rightmost significand
- fmin.s1 FR_BB = FR_X_Prime, f1 // For S_lo, form BB = min(X,1.0)
+{ .mfi
+ nop.m 999
+//
+// Branch out for special input values
+//
+(p0) fcmp.lt.unc.s0 p8, p0 = FR_Input_X, f0
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
+//
+// X_0 = extr.u(signif,49,15)
+// Index1 = extr.u(signif,59,4)
+//
+(p0) fadd.s1 FR_S_lo = FR_S_lo, FR_BB
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// Offset_to_Z1 = 24 * Index1
+// For performance, don't use result
+// for 3 or 4 cycles.
+//
+(p0) add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;;
+}
+//
+// Add Base to Offset for Z1
+// Create Bias
{ .mmi
- getf.exp GR_M = FR_W // Get signexp of w = x
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
+(p0) ld4 GR_Z_1 = [GR_Table_ptr],4 ;;
+(p0) ldfs FR_G = [GR_Table_ptr],4
+ nop.i 999 ;;
}
-;;
-
{ .mmi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- add GR_ad_p2 = 0x30,GR_ad_p // Point to P_4
+(p0) ldfs FR_H = [GR_Table_ptr],8 ;;
+(p0) ldfd FR_h = [GR_Table_ptr],0
+(p0) pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15
+}
+//
+// Load Z_1
+// Get Base of Table2
+//
+{ .mfi
+(p0) getf.exp GR_M = FR_abs_W
+ nop.f 999
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+//
+// M = getf.exp(abs_W)
+// S_lo = AA - Z
+// X_1 = pmpyshr2(X_0,Z_1,15)
+//
+(p0) sub GR_M = GR_M, GR_Bias ;;
+}
+//
+// M = M - Bias
+// Load G1
+// N = getf.exp(Z)
+//
+{ .mii
+(p0) cmp.gt.unc p11, p0 = -80, GR_M
+(p0) cmp.gt.unc p12, p0 = -7, GR_M ;;
+(p0) extr.u GR_Index2 = GR_X_1, 6, 4 ;;
+}
+{ .mib
+ nop.m 999
+//
+// if -80 > M, set p11
+// Index2 = extr.u(X_1,6,4)
+// if -7 > M, set p12
+// Load H1
+//
+(p0) pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0
+(p11) br.cond.spnt L(log1pl_small) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p12) br.cond.spnt L(log1pl_near) ;;
+}
+{ .mii
+(p0) sub GR_N = GR_N, GR_Bias
+//
+// poly_lo = r * poly_lo
+//
+(p0) add GR_Perturb = 0x1, r0 ;;
+(p0) sub GR_ScaleN = GR_Bias, GR_N
+}
+{ .mii
+(p0) setf.sig FR_float_N = GR_N
+ nop.i 999 ;;
+//
+// Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
+// Load h1
+// S_lo = S_lo + BB
+// Branch for -80 > M
+//
+(p0) add GR_Index2 = GR_Index2, GR_Table_Base1
}
-;;
-
{ .mmi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- and GR_M = GR_exp_mask, GR_M // Get exponent of w = x
+(p0) setf.exp FR_two_negN = GR_ScaleN
+ nop.m 999
+(p0) addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp ;;
}
-;;
-
+//
+// Index2 points to Z2
+// Branch for -7 > M
+//
+{ .mmb
+(p0) ld4 GR_Z_2 = [GR_Index2],4
+(p0) ld8 GR_Table_Base = [GR_Table_Base]
+ nop.b 999 ;;
+}
+(p0) nop.i 999
+//
+// Load Z_2
+// N = N - Bias
+// Tablebase points to Table3
+//
{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- cmp.lt p8, p9 = GR_M, GR_exp_2tom7 // Test |x| < 2^-7
- cmp.lt p7, p0 = GR_M, GR_exp_2tom80 // Test |x| < 2^-80
+(p0) ldfs FR_G_tmp = [GR_Index2],4 ;;
+//
+// Load G_2
+// pmpyshr2 X_2= (X_1,Z_2,15)
+// float_N = setf.sig(N)
+// ScaleN = Bias - N
+//
+(p0) ldfs FR_H_tmp = [GR_Index2],8
+ nop.i 999 ;;
}
-;;
-
-// Small path is separate code
-// p7 is for the small path: |x| < 2^-80
-// near1 and regular paths are merged.
-// p8 is for the near1 path: |x| < 2^-7
-// p9 is for regular path: |x| >= 2^-7
-
+//
+// Load H_2
+// two_negN = setf.exp(scaleN)
+// G = G_1 * G_2
+//
{ .mfi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.f 999
- nop.i 999
+(p0) ldfd FR_h_tmp = [GR_Index2],0
+ nop.f 999
+(p0) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;;
}
-{ .mfb
-(p9) setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
-(p7) fnma.s0 f8 = FR_X_Prime, FR_X_Prime, FR_X_Prime // Result x - x*x
-(p7) br.ret.spnt b0 // Branch if |x| < 2^-80
+{ .mii
+ nop.m 999
+(p0) extr.u GR_Index3 = GR_X_2, 1, 5 ;;
+//
+// Load h_2
+// H = H_1 + H_2
+// h = h_1 + h_2
+// Index3 = extr.u(X_2,1,5)
+//
+(p0) shladd GR_Index3 = GR_Index3,4,GR_Table_Base
}
-;;
-
{ .mmi
-(p8) ldfe FR_P7 = [GR_ad_p],16 // Load P_7 for near1 path
-(p8) ldfe FR_P4 = [GR_ad_p2],16 // Load P_4 for near1 path
-(p9) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
+ nop.m 999
+ nop.m 999
+//
+// float_N = fcvt.xf(float_N)
+// load G3
+//
+(p0) addl GR_Table_Base = @ltoff(Constants_Q#),gp ;;
}
-;;
+{ .mmi
+ nop.m 999
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.i 999
+};;
+{ .mfi
+(p0) ldfe FR_log2_hi = [GR_Table_Base],16
+(p0) fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN
+ nop.i 999 ;;
+}
+{ .mmf
+ nop.m 999
//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
+// G = G3 * G
+// Load h3
+// Load log2_hi
+// H = H + H3
//
+(p0) ldfe FR_log2_lo = [GR_Table_Base],16
+(p0) fmpy.s1 FR_G = FR_G, FR_G_tmp ;;
+}
{ .mmf
-(p8) ldfe FR_P6 = [GR_ad_p],16 // Load P_6 for near1 path
-(p8) ldfe FR_P3 = [GR_ad_p2],16 // Load P_3 for near1 path
-(p9) fma.s1 FR_S_lo = FR_S_lo, f1, FR_BB // S_lo = S_lo + BB
+(p0) ldfs FR_G_tmp = [GR_Index3],4
+//
+// h = h + h3
+// r = G * S_hi + 1
+// Load log2_lo
+//
+(p0) ldfe FR_Q4 = [GR_Table_Base],16
+(p0) fadd.s1 FR_h = FR_h, FR_h_tmp ;;
+}
+{ .mfi
+(p0) ldfe FR_Q3 = [GR_Table_Base],16
+(p0) fadd.s1 FR_H = FR_H, FR_H_tmp
+ nop.i 999 ;;
}
-;;
-
{ .mmf
-(p8) ldfe FR_P5 = [GR_ad_p],16 // Load P_5 for near1 path
-(p8) ldfe FR_P2 = [GR_ad_p2],16 // Load P_2 for near1 path
-(p8) fmpy.s1 FR_wsq = FR_W, FR_W // wsq = w * w for near1 path
+(p0) ldfs FR_H_tmp = [GR_Index3],4
+(p0) ldfe FR_Q2 = [GR_Table_Base],16
+//
+// Comput Index for Table3
+// S_lo = S_lo * two_negN
+//
+(p0) fcvt.xf FR_float_N = FR_float_N ;;
}
-;;
-
-{ .mmi
-(p8) ldfe FR_P1 = [GR_ad_p2],16 ;; // Load P_1 for near1 path
- nop.m 999
-(p9) extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
+//
+// If S_lo == 0, set p8 false
+// Load H3
+// Load ptr to table of polynomial coeff.
+//
+{ .mmf
+(p0) ldfd FR_h_tmp = [GR_Index3],0
+(p0) ldfe FR_Q1 = [GR_Table_Base],0
+(p0) fcmp.eq.unc.s1 p0, p8 = FR_S_lo, f0 ;;
}
-;;
-
{ .mfi
-(p9) shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
-(p9) fcvt.xf FR_float_N = FR_float_N
- nop.i 999
+ nop.m 999
+(p0) fmpy.s1 FR_G = FR_G, FR_G_tmp
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p9) ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- nop.f 999
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 FR_H = FR_H, FR_H_tmp
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p9) ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
-(p9) fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 999
+ nop.m 999
+(p0) fms.s1 FR_r = FR_G, FR_S_hi, f1
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 999
+ nop.m 999
+(p0) fadd.s1 FR_h = FR_h, FR_h_tmp
+ nop.i 999 ;;
}
-;;
-
-{ .mmf
- nop.m 999
- nop.m 999
-(p9) fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
+{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p8) fmpy.s1 FR_w4 = FR_wsq, FR_wsq // w4 = w^4 for near1 path
- nop.i 999
+ nop.m 999
+//
+// Load Q4
+// Load Q3
+// Load Q2
+// Load Q1
+//
+(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p87 = FR_W, FR_P8, FR_P7 // p87 = w * P8 + P7
- nop.i 999
+ nop.m 999
+//
+// poly_lo = r * Q4 + Q3
+// rsq = r* r
+//
+(p0) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_S_lo = FR_S_lo, FR_2_to_minus_N, f0 // S_lo = S_lo * 2^(-N)
- nop.i 999
+ nop.m 999
+//
+// If (S_lo!=0) r = s_lo * G + r
+//
+(p0) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3
+ nop.i 999
}
+//
+// Create a 0x00000....01
+// poly_lo = poly_lo * rsq + h
+//
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p43 = FR_W, FR_P4, FR_P3 // p43 = w * P4 + P3
- nop.i 999
+(p0) setf.sig FR_dummy = GR_Perturb
+(p0) fmpy.s1 FR_rsq = FR_r, FR_r
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 999
+ nop.m 999
+//
+// h = N * log2_lo + h
+// Y_hi = n * log2_hi + H
+//
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 999
+ nop.m 999
+//
+// poly_lo = r * poly_o + Q2
+// poly_hi = Q1 * rsq + r
+//
+(p0) fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r
+ nop.i 999 ;;
}
{ .mfi
+ nop.m 999
+(p0) fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p0) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo
+//
+// Create the FR for a binary "or"
+// Y_lo = poly_hi + poly_lo
+//
+// (p0) for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+// Turn the lsb of Y_lo ON
+//
+// (p0) fmerge.se FR_Y_lo = FR_Y_lo,FR_dummy ;;
+//
+// Merge the new lsb into Y_lo, for alone doesn't
+//
+(p0) br.cond.sptk LOGL_main ;;
+}
+L(log1pl_near):
+{ .mmi
+ nop.m 999
+ nop.m 999
+// /*******************************************************/
+// /*********** Branch log1pl_near ************************/
+// /*******************************************************/
+(p0) addl GR_Table_Base = @ltoff(Constants_P#),gp ;;
+}
+{ .mmi
nop.m 999
-(p8) fmpy.s1 FR_w6 = FR_w4, FR_wsq // w6 = w^6 for near1 path
+ ld8 GR_Table_Base = [GR_Table_Base]
nop.i 999
+};;
+//
+// Load base address of poly. coeff.
+//
+{ .mmb
+(p0) add GR_Table_ptr = 0x40,GR_Table_Base
+//
+// Address tables with separate pointers
+//
+(p0) ldfe FR_P8 = [GR_Table_Base],16
+ nop.b 999 ;;
+}
+{ .mmb
+(p0) ldfe FR_P4 = [GR_Table_ptr],16
+//
+// Load P4
+// Load P8
+//
+(p0) ldfe FR_P7 = [GR_Table_Base],16
+ nop.b 999 ;;
+}
+{ .mmf
+(p0) ldfe FR_P3 = [GR_Table_ptr],16
+//
+// Load P3
+// Load P7
+//
+(p0) ldfe FR_P6 = [GR_Table_Base],16
+(p0) fmpy.s1 FR_wsq = FR_W, FR_W ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p432 = FR_W, FR_p43, FR_P2 // p432 = w * p43 + P2
- nop.i 999
+(p0) ldfe FR_P2 = [GR_Table_ptr],16
+ nop.f 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p876 = FR_W, FR_p87, FR_P6 // p876 = w * p87 + P6
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3
+ nop.i 999
}
-;;
-
+//
+// Load P2
+// Load P6
+// Wsq = w * w
+// Y_hi = p4 * w + p3
+//
{ .mfi
- nop.m 999
-(p9) fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 999
+(p0) ldfe FR_P5 = [GR_Table_Base],16
+(p0) fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi = N * log2_hi + H
- nop.i 999
+(p0) ldfe FR_P1 = [GR_Table_ptr],16
+//
+// Load P1
+// Load P5
+// Y_lo = p8 * w + P7
+//
+(p0) fmpy.s1 FR_w4 = FR_wsq, FR_wsq
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N * log2_lo + h
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r = G * S_lo + (G * S_hi - 1)
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6
+(p0) add GR_Perturb = 0x1, r0 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p4321 = FR_W, FR_p432, FR_P1 // p4321 = w * p432 + P1
- nop.i 999
+ nop.m 999
+//
+// w4 = w2 * w2
+// Y_hi = y_hi * w + p2
+// Y_lo = y_lo * w + p6
+// Create perturbation bit
+//
+(p0) fmpy.s1 FR_w6 = FR_w4, FR_wsq
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p8765 = FR_W, FR_p876, FR_P5 // p8765 = w * p876 + P5
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1
+ nop.i 999
}
-;;
-
+//
+// Y_hi = y_hi * w + p1
+// w6 = w4 * w2
+//
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 999
+(p0) setf.sig FR_Q4 = GR_Perturb
+(p0) fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p9) fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_dummy = FR_wsq,FR_Y_hi, f0
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_lo = FR_wsq, FR_p4321, f0 // Y_lo = wsq * p4321
- nop.i 999
+ nop.m 999
+(p0) fma.s1 FR_Y_hi = FR_W,f1,f0
+ nop.i 999
+};;
+{ .mfb
+ nop.m 999
+//
+// Y_hi = w
+// Y_lo = y_lo * w + p5
+//
+(p0) fma.s1 FR_Y_lo = FR_w6, FR_Y_lo,FR_dummy
+//
+// Y_lo = y_lo * w6 + y_high order part.
+//
+// performance
+//
+(p0) br.cond.sptk LOGL_main ;;
+}
+L(log1pl_small):
+{ .mmi
+ nop.m 999
+// /*******************************************************/
+// /*********** Branch log1pl_small ***********************/
+// /*******************************************************/
+(p0) addl GR_Table_Base = @ltoff(Constants_Threshold#),gp
}
{ .mfi
nop.m 999
-(p8) fma.s1 FR_Y_hi = FR_W, f1, f0 // Y_hi = w for near1 path
- nop.i 999
+(p0) mov FR_Em1 = FR_W
+(p0) cmp.eq.unc p7, p0 = r0, r0 ;;
+}
+{ .mlx
+ ld8 GR_Table_Base = [GR_Table_Base]
+(p0) movl GR_Expo_Range = 0x0000000000000004 ;;
+}
+//
+// Set Safe to true
+// Set Expo_Range = 0 for single
+// Set Expo_Range = 2 for double
+// Set Expo_Range = 4 for double-extended
+//
+{ .mmi
+(p0) shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;;
+(p0) ldfe FR_Threshold = [GR_Table_Base],16
+ nop.i 999
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Bias = 0x000000000000FF9B ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo = poly_lo * r + Q2
- nop.i 999
+(p0) ldfe FR_Tiny = [GR_Table_Base],0
+ nop.f 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 999
+ nop.m 999
+(p0) fcmp.gt.unc.s1 p13, p12 = FR_abs_W, FR_Threshold
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_lo = FR_w6, FR_p8765,FR_Y_lo // Y_lo = w6 * p8765 + w2 * p4321
- nop.i 999
+ nop.m 999
+(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W
+ nop.i 999
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1 * rsq + r
- nop.i 999
+ nop.m 999
+(p13) fadd FR_SCALE = f0, f1
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h // poly_lo = poly_lo*r^3 + h
- nop.i 999
+ nop.m 999
+(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny
+(p12) cmp.ne.unc p7, p0 = r0, r0
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo = poly_hi + poly_lo
- nop.i 999
+(p12) setf.exp FR_SCALE = GR_Bias
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
-// Remainder of code is common for near1 and regular paths
{ .mfb
- nop.m 999
- fadd.s0 f8 = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
- br.ret.sptk b0 // Common exit for 2^-80 < x < inf
+ nop.m 999
+//
+// Set p7 to SAFE = FALSE
+// Set Scale = 2^-100
+//
+(p0) fma.s0 f8 = FR_Y_lo,FR_SCALE,FR_Y_hi
+(p0) br.ret.sptk b0 ;;
}
-;;
-
-
-// Here if x=-1
-LOG1P_EQ_Minus_1:
+L(LOGL_64_one):
+{ .mfb
+ nop.m 999
+(p0) fmpy.s0 f8 = FR_Input_X, f0
+(p0) br.ret.sptk b0 ;;
+}
+//
+// Raise divide by zero for +/-0 input.
+//
+L(LOGL_64_zero):
+{ .mfi
+(p0) mov GR_Parameter_TAG = 0
//
-// If x=-1 raise divide by zero and return -inf
+// If we have logl(1), log10l(1) or log1pl(0), return 0.
//
-{ .mfi
- mov GR_Parameter_TAG = 138
- fsub.s1 FR_Output_X_tmp = f0, f1
- nop.i 999
+(p0) fsub.s0 FR_Output_X_tmp = f0, f1
+ nop.i 999 ;;
+}
+{ .mii
+(p14) mov GR_Parameter_TAG = 6
+ nop.i 999 ;;
+(p15) mov GR_Parameter_TAG = 138 ;;
}
-;;
-
{ .mfb
- nop.m 999
- frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p0) frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
+(p0) br.cond.sptk __libm_error_region ;;
+}
+{ .mfb
+ nop.m 999
+//
+// Report that logl(0) computed
+// { .mfb
+(p0) mov FR_Input_X = FR_Output_X_tmp
+(p0) br.ret.sptk b0 ;;
}
-;;
-LOG1P_special:
+L(LOGL_64_special):
{ .mfi
- nop.m 999
- fclass.m.unc p8, p0 = FR_Input_X, 0x1E1 // Test for natval, nan, +inf
- nop.i 999
+ nop.m 999
+//
+// Return -Inf or value from handler.
+//
+(p0) fclass.m.unc p7, p0 = FR_Input_X, 0x1E1
+ nop.i 999 ;;
}
-;;
-
+{ .mfb
+ nop.m 999
+//
+// Check for Natval, QNan, SNaN, +Inf
+//
+(p7) fmpy.s0 f8 = FR_Input_X, f1
//
// For SNaN raise invalid and return QNaN.
// For QNaN raise invalid and return QNaN.
// For +Inf return +Inf.
//
-{ .mfb
- nop.m 999
-(p8) fmpy.s0 f8 = FR_Input_X, f1
-(p8) br.ret.sptk b0 // Return for natval, nan, +inf
+(p7) br.ret.sptk b0 ;;
}
-;;
-
//
// For -Inf raise invalid and return QNaN.
//
+{ .mii
+(p0) mov GR_Parameter_TAG = 1
+ nop.i 999 ;;
+(p14) mov GR_Parameter_TAG = 7 ;;
+}
+{ .mfi
+(p15) mov GR_Parameter_TAG = 139
+ nop.f 999
+ nop.i 999 ;;
+}
{ .mfb
- mov GR_Parameter_TAG = 139
- fmpy.s0 FR_Output_X_tmp = FR_Input_X, f0
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p0) fmpy.s0 FR_Output_X_tmp = FR_Input_X, f0
+(p0) br.cond.sptk __libm_error_region ;;
}
-;;
-
-
-LOG1P_unsupported:
+//
+// Report that logl(-Inf) computed
+// Report that log10l(-Inf) computed
+// Report that log1p(-Inf) computed
+//
+{ .mfb
+ nop.m 0
+(p0) mov FR_Input_X = FR_Output_X_tmp
+(p0) br.ret.sptk b0 ;;
+}
+L(LOGL_64_unsupported):
+{ .mfb
+ nop.m 999
//
-// Return generated NaN or other value.
+// Return generated NaN or other value .
//
-{ .mfb
- nop.m 999
- fmpy.s0 f8 = FR_Input_X, f0
- br.ret.sptk b0
+(p0) fmpy.s0 f8 = FR_Input_X, f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-
-// Here if -inf < x < -1
-LOG1P_LT_Minus_1:
+L(LOGL_64_negative):
+{ .mfi
+ nop.m 999
+//
+// Deal with x < 0 in a special way
+//
+(p0) frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
//
-// Deal with x < -1 in a special way - raise
+// Deal with x < 0 in a special way - raise
// invalid and produce QNaN indefinite.
//
-{ .mfb
- mov GR_Parameter_TAG = 139
- frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
- br.cond.sptk __libm_error_region
+(p0) mov GR_Parameter_TAG = 1 ;;
}
-;;
-
-
-GLOBAL_IEEE754_END(log1pl)
+{ .mii
+(p14) mov GR_Parameter_TAG = 7
+ nop.i 999 ;;
+(p15) mov GR_Parameter_TAG = 139
+}
+.endp log1pl
+ASM_SIZE_DIRECTIVE(log1pl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
@@ -1178,8 +1609,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- nop.m 999
- nop.m 999
+ nop.m 0
+ nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
@@ -1194,7 +1625,52 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.proc LOGL_main
+LOGL_main:
+{ .mfi
+ nop.m 999
+//
+// kernel_log_64 computes ln(X + E)
+//
+(p7) fadd.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
+ nop.i 0
+}
+{ .mmi
+ nop.m 999
+ nop.m 999
+(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;;
+}
+{ .mmi
+ nop.m 999
+(p14) ld8 GR_Table_Base = [GR_Table_Base]
+ nop.i 999
+};;
+
+{ .mmi
+(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;;
+(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p14) fma.s1 FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
+ nop.i 999 ;;
+}
+{ .mfb
+ nop.m 999
+(p14) fma.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
+(p0) br.ret.sptk b0 ;;
+}
+.endp LOGL_main
+ASM_SIZE_DIRECTIVE(LOGL_main)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_logb.S b/sysdeps/ia64/fpu/s_logb.S
index 7ee898712b..76c4fe778e 100644
--- a/sysdeps/ia64/fpu/s_logb.S
+++ b/sysdeps/ia64/fpu/s_logb.S
@@ -1,10 +1,10 @@
.file "logb.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,43 +20,41 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/16/00 Modified to conform to C9X
-// 03/16/00 Improved speed
-// 04/04/00 Unwind support added
-// 05/30/00 Fixed bug when x double-extended denormal
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 2/16/00 Modified to conform to C9X
+// 3/16/00 Improved speed
+// 4/04/00 Unwind support added
+// 5/30/00 Fixed bug when x double-extended denormal
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
//
// API
//==============================================================
-// double logb( double x );
+// double logb( double x);
//
// Overview of operation
//==============================================================
-// The logb function extracts the exponent of x as an integer in
-// floating-point format.
+// The logb function extracts the exponent of x as an integer in
+// floating-point format.
// logb computes log2 of x as a double
//
// logb is similar to ilogb but differs in the following ways:
@@ -73,169 +71,217 @@
//
// Registers used
//==============================================================
-// general registers used:
-// r26 -> r38
-// r35 -> r38 used as parameters to error path
+// general registers used:
+// ar.pfs r32
+// r33 -> r37
+// r38 -> r41 used as parameters to error path
//
-// predicate registers used:
+// predicate registers used:
// p6, p7, p8
-// floating-point registers used:
+// floating-point registers used:
// f9, f10, f11
// f8, input
-rExpBias = r26
-rExpMask = r27
-rSignexp_x = r28
-rExp_x = r29
-rTrueExp_x = r30
-rExp_2to64 = r31
+#include "libm_support.h"
+GR_SAVE_B0 = r34
+GR_SAVE_GP = r35
GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
+GR_Parameter_X = r38
+GR_Parameter_Y = r39
+GR_Parameter_RESULT = r40
-fExp_in_signif = f9
-fNorm_x = f10
-fFloat_Exp = f10
-f2to64 = f11
+.align 32
+.global logb#
.section .text
-GLOBAL_LIBM_ENTRY(logb)
+.proc logb#
+.align 32
+
+logb:
+
+// qnan snan inf norm unorm 0 -+
+// 0 0 0 0 1 0 11
+// 0 b
+{ .mfi
+ alloc r32=ar.pfs,1,5,4,0
+(p0) fclass.m.unc p8,p0 = f8, 0x0b
+ nop.i 999
+}
// X NORMAL
-// TrueExp_x = exp(f8) - 0xffff
-// sig = TrueExp_x
+// r37 = exp(f8) - - 0xffff
+// sig(f8) = r37
// f8 = convert_to_fp (sig))
{ .mfi
- getf.exp rSignexp_x = f8
- fclass.m p8,p0 = f8, 0x0b // Test for x unorm
- mov rExpBias = 0xffff // Exponent bias
+(p0) getf.exp r35 = f8
+(p0) fnorm f10=f8
+ nop.i 999 ;;
}
-{ .mfi
- nop.m 0
- fnorm.s1 fNorm_x = f8
- mov rExpMask = 0x1ffff // Exponent mask
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+{ .mmf
+(p0) mov r33 = 0xffff
+(p0) mov r34 = 0x1ffff
+(p0) fclass.m.unc p6,p0 = f8, 0xe3 ;;
}
-;;
-// Form signexp of 2^64 in case need to scale denormal
{ .mfb
- mov rExp_2to64 = 0x1003f
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p8) br.cond.spnt LOGB_DENORM // Branch if x unorm
+(p0) and r36 = r35, r34
+(p0) fclass.m.unc p7,p0 = f8, 0x07
+(p8) br.cond.spnt L(LOGB_DENORM) ;;
}
-;;
-LOGB_COMMON:
-// Return here from LOGB_DENORM
-{ .mfi
- and rExp_x = rSignexp_x, rExpMask // Get biased exponent
- fclass.m p7,p0 = f8, 0x07 // Test x zero
- nop.i 0
-}
-;;
-
-// X NAN or INFINITY, return f8 * f8
-{ .mfb
- sub rTrueExp_x = rExp_x, rExpBias // Get true exponent
-(p6) fma.d.s0 f8= f8,f8,f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
+{ .mib
+(p0) sub r37 = r36, r33
+ nop.i 999
+(p6) br.cond.spnt L(LOGB_NAN_INF) ;;
}
-;;
{ .mib
- setf.sig fExp_in_signif = rTrueExp_x // Exponent as integer in fp
+(p0) setf.sig f9 = r37
nop.i 999
-(p7) br.cond.spnt LOGB_ZERO
+(p7) br.cond.spnt L(LOGB_ZERO) ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcvt.xf f10 = f9
+ nop.i 999 ;;
}
-;;
-// Result can be represented in less than 24 bits, so no precision completer
-// is needed.
{ .mfb
- nop.m 0
- fcvt.xf f8 = fExp_in_signif
- br.ret.sptk b0 // Exit main path, 0 < |x| < inf
+ nop.m 999
+(p0) fnorm.d f8 = f10
+(p0) br.ret.sptk b0 ;;
}
-;;
-LOGB_DENORM:
-// Form 2^64 in case need to scale denormal
+L(LOGB_DENORM):
+// Form signexp of 2^64 in case need to scale denormal
// Check to see if double-extended denormal
{ .mfi
- setf.exp f2to64 = rExp_2to64
- fclass.m p8,p0 = fNorm_x, 0x0b
- nop.i 0
+(p0) mov r38 = 0x1003f
+(p0) fclass.m.unc p8,p0 = f10, 0x0b
+ nop.i 999 ;;
}
-;;
+// Form 2^64 in case need to scale denormal
{ .mfi
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+(p0) setf.exp f11 = r38
+ nop.f 999
+ nop.i 999 ;;
}
-;;
// If double-extended denormal add 64 to exponent bias for scaling
// If double-extended denormal form x * 2^64 which is normal
{ .mfi
-(p8) add rExpBias = 64, rExpBias
-(p8) fmpy.s1 fNorm_x = fNorm_x, f2to64
- nop.i 0
+(p8) add r33 = 64, r33
+(p8) fmpy f10 = f10, f11
+ nop.i 999 ;;
}
-;;
// Logic is the same as normal path but use normalized input
-{ .mib
- getf.exp rSignexp_x = fNorm_x
- nop.i 0
- br.cond.sptk LOGB_COMMON // Return to main path
+{ .mmi
+(p0) getf.exp r35 = f10 ;;
+ nop.m 999
+ nop.i 999 ;;
}
-;;
-LOGB_ZERO:
-// Here if x zero
-// f10 = -|f8|
-// f9 = 1.0/f10 = -1.0/|f8| = -inf
+{ .mmi
+(p0) and r36 = r35, r34 ;;
+(p0) sub r37 = r36, r33
+ nop.i 999 ;;
+}
-{ .mmf
- alloc r32=ar.pfs,1,2,4,0
- mov GR_Parameter_TAG = 151 // Error code
- fmerge.ns f10 = f0,f8
+{ .mmi
+(p0) setf.sig f9 = r37
+ nop.m 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcvt.xf f10 = f9
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- frcpa.s0 f9,p6 = f1,f10 // Produce -inf, Z flag
- br.cond.sptk __libm_error_region // Call error support
+ nop.m 999
+(p0) fnorm.d f8 = f10
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(logb)
+L(LOGB_NAN_INF):
+
+// X NAN or INFINITY, return f8 * f8
+{ .mfb
+ nop.m 999
+(p0) fma.d f8= f8,f8,f0
+(p0) br.ret.sptk b0 ;;
+}
+.endp logb#
+ASM_SIZE_DIRECTIVE(logb)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+// Stack operations when calling error support.
+// (1) (2) (3) (call) (4)
+// sp -> + psp -> + psp -> + sp -> +
+// | | | |
+// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
+// | | | |
+// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
+// | | | |
+// | | <- GR_X X1 ->| |
+// | | | |
+// sp-64 -> + sp -> + sp -> + +
+// save ar.pfs save b0 restore gp
+// save gp restore ar.pfs
+
+
+
+.proc __libm_error_region
+__libm_error_region:
+L(LOGB_ZERO):
.prologue
+// f9 = |f8|
+// f10 = -f9 = -|f8|
+// f9 = 1.0/f10 = -1.0/-|f8|
+
+{ .mfi
+ mov r41 = 151 // Error code
+(p0) fmerge.s f9 = f0,f8
+ nop.i 999
+}
+;;
+
+
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ nop.m 999
+ fmerge.ns f10 = f0,f9
+ nop.i 999
+}
+;;
+
+// (1)
+{ .mfi
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ frcpa f9,p6 = f1,f10
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
+
+// (2)
{ .mmi
stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
@@ -244,38 +290,38 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
};;
.body
+// (3)
{ .mib
stfd [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
+// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_logbf.S b/sysdeps/ia64/fpu/s_logbf.S
index eefa270db9..f2f671f892 100644
--- a/sysdeps/ia64/fpu/s_logbf.S
+++ b/sysdeps/ia64/fpu/s_logbf.S
@@ -1,10 +1,10 @@
.file "logbf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,46 +20,44 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/16/00 Modified to conform to C9X
-// 03/16/00 Improved speed
-// 04/04/00 Unwind support added
-// 05/30/00 Fixed bug when x double-extended denormal
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 2/16/00 Modified to conform to C9X
+// 3/16/00 Improved speed
+// 4/04/00 Unwind support added
+// 5/30/00 Fixed bug when x double-extended denormal
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
//
// API
//==============================================================
-// float logbf( float x );
+// float logbf( float x);
//
// Overview of operation
//==============================================================
-// The logbf function extracts the exponent of x as an integer in
-// floating-point format.
+// The logbf function extracts the exponent of x as an integer in
+// floating-point format.
// logbf computes log2 of x as a float
-//
-// logbf is similar to ilogbf but differs in the following ways:
+
+// logbf is similar to ilogbf but differs in the following ways:
// +-inf
// ilogbf: returns INT_MAX
// logbf: returns +inf
@@ -73,208 +71,243 @@
//
// Registers used
//==============================================================
-// general registers used:
-// r26 -> r38
-// r35 -> r38 used as parameters to error path
+// general registers used:
+// ar.pfs r32
+// r33 -> r37
+// r38 -> r41 used as parameters to error path
//
-// predicate registers used:
+// predicate registers used:
// p6, p7, p8
-// floating-point registers used:
+//
+// floating-point registers used:
// f9, f10, f11
// f8, input
-rExpBias = r26
-rExpMask = r27
-rSignexp_x = r28
-rExp_x = r29
-rTrueExp_x = r30
-rExp_2to64 = r31
+#include "libm_support.h"
+
+GR_SAVE_B0 = r34
+// r40 is address of table of coefficients
+GR_SAVE_PFS = r32
+GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
+GR_Parameter_X = r38
+GR_Parameter_Y = r39
+GR_Parameter_RESULT = r40
+GR_Parameter_TAG = r41
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
+FR_X = f8
+FR_Y = f0
+FR_RESULT = f10
-fExp_in_signif = f9
-fNorm_x = f10
-fFloat_Exp = f10
-f2to64 = f11
+
+.align 32
+.global logbf#
.section .text
-GLOBAL_LIBM_ENTRY(logbf)
+.proc logbf#
+.align 32
-// X NORMAL
-// TrueExp_x = exp(f8) - 0xffff
-// sig = TrueExp_x
-// f8 = convert_to_fp (sig))
+
+logbf:
+
+// qnan snan inf norm unorm 0 -+
+// 0 0 0 0 1 0 11
+// 0 b
{ .mfi
- getf.exp rSignexp_x = f8
- fclass.m p8,p0 = f8, 0x0b // Test for x unorm
- mov rExpBias = 0xffff // Exponent bias
+ alloc r32=ar.pfs,1,5,4,0
+(p0) fclass.m.unc p8,p0 = f8, 0x0b
+ nop.i 999
}
+// X NORMAL
+// r37 = exp(f8) - - 0xffff
+// sig(f8) = r37
+// f8 = convert_to_fp (sig))
{ .mfi
- nop.m 0
- fnorm.s1 fNorm_x = f8
- mov rExpMask = 0x1ffff // Exponent mask
+(p0) getf.exp r35 = f8
+(p0) fnorm f10=f8
+ nop.i 999 ;;
}
-;;
-// Form signexp of 2^64 in case need to scale denormal
-{ .mfb
- mov rExp_2to64 = 0x1003f
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p8) br.cond.spnt LOGB_DENORM // Branch if x unorm
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+{ .mmf
+(p0) mov r33 = 0xffff
+(p0) mov r34 = 0x1ffff
+(p0) fclass.m.unc p6,p0 = f8, 0xe3 ;;
}
-;;
-LOGB_COMMON:
-// Return here from LOGB_DENORM
-{ .mfi
- and rExp_x = rSignexp_x, rExpMask // Get biased exponent
- fclass.m p7,p0 = f8, 0x07 // Test x zero
- nop.i 0
+{ .mfb
+(p0) and r36 = r35, r34
+(p0) fclass.m.unc p7,p0 = f8, 0x07
+(p8) br.cond.spnt L(LOGB_DENORM) ;;
}
-;;
-// X NAN or INFINITY, return f8 * f8
-{ .mfb
- sub rTrueExp_x = rExp_x, rExpBias // Get true exponent
-(p6) fma.s.s0 f8= f8,f8,f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
+{ .mib
+(p0) sub r37 = r36, r33
+ nop.i 999
+(p6) br.cond.spnt L(LOGB_NAN_INF) ;;
}
-;;
{ .mib
- setf.sig fExp_in_signif = rTrueExp_x // Exponent as integer in fp
+(p0) setf.sig f9 = r37
nop.i 999
-(p7) br.cond.spnt LOGB_ZERO
+(p7) br.cond.spnt L(LOGB_ZERO) ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcvt.xf f10 = f9
+ nop.i 999 ;;
}
-;;
-// Result can be represented in less than 24 bits, so no precision completer
-// is needed.
{ .mfb
- nop.m 0
- fcvt.xf f8 = fExp_in_signif
- br.ret.sptk b0 // Exit main path, 0 < |x| < inf
+ nop.m 999
+(p0) fnorm.s f8 = f10
+(p0) br.ret.sptk b0 ;;
}
-;;
-LOGB_DENORM:
-// Form 2^64 in case need to scale denormal
+L(LOGB_DENORM):
+// Form signexp of 2^64 in case need to scale denormal
// Check to see if double-extended denormal
{ .mfi
- setf.exp f2to64 = rExp_2to64
- fclass.m p8,p0 = fNorm_x, 0x0b
- nop.i 0
+(p0) mov r38 = 0x1003f
+(p0) fclass.m.unc p8,p0 = f10, 0x0b
+ nop.i 999 ;;
}
-;;
+// Form 2^64 in case need to scale denormal
{ .mfi
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+(p0) setf.exp f11 = r38
+ nop.f 999
+ nop.i 999 ;;
}
-;;
// If double-extended denormal add 64 to exponent bias for scaling
// If double-extended denormal form x * 2^64 which is normal
{ .mfi
-(p8) add rExpBias = 64, rExpBias
-(p8) fmpy.s1 fNorm_x = fNorm_x, f2to64
- nop.i 0
+(p8) add r33 = 64, r33
+(p8) fmpy f10 = f10, f11
+ nop.i 999 ;;
}
-;;
// Logic is the same as normal path but use normalized input
-{ .mib
- getf.exp rSignexp_x = fNorm_x
- nop.i 0
- br.cond.sptk LOGB_COMMON // Return to main path
+{ .mmi
+(p0) getf.exp r35 = f10 ;;
+ nop.m 999
+ nop.i 999 ;;
}
-;;
-LOGB_ZERO:
-// Here if x zero
-// f10 = -|f8|
-// f9 = 1.0/f10 = -1.0/|f8| = -inf
+{ .mmi
+(p0) and r36 = r35, r34 ;;
+(p0) sub r37 = r36, r33
+ nop.i 999 ;;
+}
-{ .mmf
- alloc r32=ar.pfs,1,2,4,0
- mov GR_Parameter_TAG = 152 // Error code
- fmerge.ns f10 = f0,f8
+{ .mmi
+(p0) setf.sig f9 = r37
+ nop.m 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcvt.xf f10 = f9
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- frcpa.s0 f9,p6 = f1,f10 // Produce -inf, Z flag
- br.cond.sptk __libm_error_region // Call error support
+ nop.m 999
+(p0) fnorm.s f8 = f10
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(logbf)
+L(LOGB_NAN_INF):
+// X NAN or INFINITY, return f8 * f8
+{ .mfb
+ nop.m 999
+(p0) fma.s f8= f8,f8,f0
+(p0) br.ret.sptk b0 ;;
+}
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
+L(LOGB_ZERO):
+// X ZERO
+// return -1.0/fabs(f8)=-inf, set divide-by-zero flag, call error support
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ nop.m 999
+(p0) fmerge.s f9 = f0,f8
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fmerge.ns f10 = f0,f9
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) frcpa f10,p6 = f1,f10
+ nop.i 999 ;;
+}
+
+.endp logbf
+ASM_SIZE_DIRECTIVE(logbf)
+
+
+.proc __libm_error_region
+__libm_error_region:
+.prologue
+{ .mii
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+(p0) mov GR_Parameter_TAG = 152
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- stfs [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
{ .mib
- stfs [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfs [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
+ mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0
-};;
+ br.ret.sptk b0 // Return
+};;
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
diff --git a/sysdeps/ia64/fpu/s_logbl.S b/sysdeps/ia64/fpu/s_logbl.S
index e312c1b438..38b131f3aa 100644
--- a/sysdeps/ia64/fpu/s_logbl.S
+++ b/sysdeps/ia64/fpu/s_logbl.S
@@ -1,10 +1,10 @@
.file "logbl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,46 +20,44 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/16/00 Modified to conform to C9X
-// 03/16/00 Improved speed
-// 04/04/00 Unwind support added
-// 05/30/00 Fixed bug when x double-extended denormal
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00 Initial version
+// 2/16/00 Modified to conform to C9X
+// 3/16/00 Improved speed
+// 4/04/00 Unwind support added
+// 5/30/00 Fixed bug when x double-extended denormal
+// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
//
// API
//==============================================================
-// long double logbl( long double x );
+// long double logbl( long double x);
//
// Overview of operation
//==============================================================
-// The logbl function extracts the exponent of x as an integer in
-// floating-point format.
+// The logbl function extracts the exponent of x as an integer in
+// floating-point format.
// logbl computes log2 of x as a long double
//
-// logbl is similar to ilogbl but differs in the following ways:
+// logbl is similar to ilogbl but differs in the following ways:
// +-inf
// ilogbl: returns INT_MAX
// logbl: returns +inf
@@ -73,209 +71,229 @@
//
// Registers used
//==============================================================
-// general registers used:
-// r26 -> r38
-// r35 -> r38 used as parameters to error path
+// general registers used:
+// ar.pfs r32
+// r33 -> r37
+// r38 -> r41 used as parameters to error path
//
-// predicate registers used:
+// predicate registers used:
// p6, p7, p8
-// floating-point registers used:
+//
+// floating-point registers used:
// f9, f10, f11
// f8, input
-rExpBias = r26
-rExpMask = r27
-rSignexp_x = r28
-rExp_x = r29
-rTrueExp_x = r30
-rExp_2to64 = r31
+#include "libm_support.h"
GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
+GR_SAVE_B0 = r34
+GR_SAVE_GP = r35
+GR_Parameter_X = r38
+GR_Parameter_Y = r39
+GR_Parameter_RESULT = r40
+GR_Parameter_TAG = r41
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
+FR_X = f8
+FR_Y = f0
+FR_RESULT = f10
-fExp_in_signif = f9
-fNorm_x = f10
-fFloat_Exp = f10
-f2to64 = f11
+.align 32
+.global logbl#
.section .text
-GLOBAL_LIBM_ENTRY(logbl)
+.proc logbl#
+.align 32
-// X NORMAL
-// TrueExp_x = exp(f8) - 0xffff
-// sig = TrueExp_x
-// f8 = convert_to_fp (sig))
+
+logbl:
+
+// qnan snan inf norm unorm 0 -+
+// 0 0 0 0 1 0 11
+// 0 b
{ .mfi
- getf.exp rSignexp_x = f8
- fclass.m p8,p0 = f8, 0x0b // Test for x unorm
- mov rExpBias = 0xffff // Exponent bias
+ alloc r32=ar.pfs,1,5,4,0
+(p0) fclass.m.unc p8,p0 = f8, 0x0b
+ nop.i 999
}
+// X NORMAL
+// r37 = exp(f8) - - 0xffff
+// sig(f8) = r37
+// f8 = convert_to_fp (sig))
{ .mfi
- nop.m 0
- fnorm.s1 fNorm_x = f8
- mov rExpMask = 0x1ffff // Exponent mask
+(p0) getf.exp r35 = f8
+(p0) fnorm f10=f8
+ nop.i 999 ;;
}
-;;
-// Form signexp of 2^64 in case need to scale denormal
-{ .mfb
- mov rExp_2to64 = 0x1003f
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p8) br.cond.spnt LOGB_DENORM // Branch if x unorm
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 0 11
+// e 3
+{ .mmf
+(p0) mov r33 = 0xffff
+(p0) mov r34 = 0x1ffff
+(p0) fclass.m.unc p6,p0 = f8, 0xe3 ;;
}
-;;
-LOGB_COMMON:
-// Return here from LOGB_DENORM
-{ .mfi
- and rExp_x = rSignexp_x, rExpMask // Get biased exponent
- fclass.m p7,p0 = f8, 0x07 // Test x zero
- nop.i 0
+{ .mfb
+(p0) and r36 = r35, r34
+(p0) fclass.m.unc p7,p0 = f8, 0x07
+(p8) br.cond.spnt L(LOGB_DENORM) ;;
}
-;;
-// X NAN or INFINITY, return f8 * f8
-{ .mfb
- sub rTrueExp_x = rExp_x, rExpBias // Get true exponent
-(p6) fma.s0 f8= f8,f8,f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
+{ .mib
+(p0) sub r37 = r36, r33
+ nop.i 999
+(p6) br.cond.spnt L(LOGB_NAN_INF) ;;
}
-;;
{ .mib
- setf.sig fExp_in_signif = rTrueExp_x // Exponent as integer in fp
+(p0) setf.sig f9 = r37
nop.i 999
-(p7) br.cond.spnt LOGB_ZERO
+(p7) br.cond.spnt L(LOGB_ZERO) ;;
+}
+{ .mfi
+ nop.m 999
+(p0) fcvt.xf f10 = f9
+ nop.i 999 ;;
}
-;;
-// Result can be represented in less than 24 bits, so no precision completer
-// is needed.
{ .mfb
- nop.m 0
- fcvt.xf f8 = fExp_in_signif
- br.ret.sptk b0 // Exit main path, 0 < |x| < inf
+ nop.m 999
+(p0) fnorm f8 = f10
+(p0) br.ret.sptk b0 ;;
}
-;;
-LOGB_DENORM:
-// Form 2^64 in case need to scale denormal
+L(LOGB_DENORM):
+// Form signexp of 2^64 in case need to scale denormal
// Check to see if double-extended denormal
{ .mfi
- setf.exp f2to64 = rExp_2to64
- fclass.m p8,p0 = fNorm_x, 0x0b
- nop.i 0
+(p0) mov r38 = 0x1003f
+(p0) fclass.m.unc p8,p0 = f10, 0x0b
+ nop.i 999 ;;
}
-;;
+// Form 2^64 in case need to scale denormal
{ .mfi
- nop.m 0
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+(p0) setf.exp f11 = r38
+ nop.f 999
+ nop.i 999 ;;
}
-;;
// If double-extended denormal add 64 to exponent bias for scaling
// If double-extended denormal form x * 2^64 which is normal
{ .mfi
-(p8) add rExpBias = 64, rExpBias
-(p8) fmpy.s1 fNorm_x = fNorm_x, f2to64
- nop.i 0
+(p8) add r33 = 64, r33
+(p8) fmpy f10 = f10, f11
+ nop.i 999 ;;
}
-;;
// Logic is the same as normal path but use normalized input
-{ .mib
- getf.exp rSignexp_x = fNorm_x
- nop.i 0
- br.cond.sptk LOGB_COMMON // Return to main path
+{ .mmi
+(p0) getf.exp r35 = f10 ;;
+ nop.m 999
+ nop.i 999 ;;
}
-;;
-LOGB_ZERO:
-// Here if x zero
-// f10 = -|f8|
-// f9 = 1.0/f10 = -1.0/|f8| = -inf
+{ .mmi
+(p0) and r36 = r35, r34 ;;
+(p0) sub r37 = r36, r33
+ nop.i 999 ;;
+}
-{ .mmf
- alloc r32=ar.pfs,1,2,4,0
- mov GR_Parameter_TAG = 150 // Error code
- fmerge.ns f10 = f0,f8
+{ .mmi
+(p0) setf.sig f9 = r37
+ nop.m 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p0) fcvt.xf f10 = f9
+ nop.i 999 ;;
}
-;;
{ .mfb
- nop.m 0
- frcpa.s0 f9,p6 = f1,f10 // Produce -inf, Z flag
- br.cond.sptk __libm_error_region // Call error support
+ nop.m 999
+(p0) fnorm f8 = f10
+(p0) br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(logbl)
+L(LOGB_NAN_INF):
+
+// X NAN or INFINITY, return f8 * f8
+{ .mfb
+ nop.m 999
+(p0) fma f8= f8,f8,f0
+(p0) br.ret.sptk b0 ;;
+}
+L(LOGB_ZERO):
+{.mfi
+ nop.m 0
+(p0) frcpa.s0 f10,p6 = f1,f0
+ nop.i 0
+};;
+{.mfi
+ mov GR_Parameter_TAG = 150
+(p0) fms.s1 f10 = f0,f0,f10
+ nop.i 0
+};;
+// X ZERO
+// return -1.0/fabs(f8)=-inf, set divide-by-zero flag, call error support
+.endp logbl
+ASM_SIZE_DIRECTIVE(logbl)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
.prologue
-
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
{ .mmi
- stfe [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
{ .mib
- stfe [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0 // Parameter 3 address
}
{ .mib
- stfe [GR_Parameter_Y] = f9 // Store Parameter 3 on stack
+ stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
-
{ .mmi
- add GR_Parameter_RESULT = 48,sp
nop.m 0
- nop.i 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
};;
-
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
-
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0
+ br.ret.sptk b0 // Return
};;
-LOCAL_LIBM_END(__libm_error_region)
-
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_modf.S b/sysdeps/ia64/fpu/s_modf.S
index 2008bbfc5c..e8e672adfe 100644
--- a/sysdeps/ia64/fpu/s_modf.S
+++ b/sysdeps/ia64/fpu/s_modf.S
@@ -1,10 +1,10 @@
.file "modf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,16 +35,14 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Improved speed, corrected result for NaN input
+// 2/02/00: Initial version
+// 4/04/00: Improved speed, corrected result for NaN input
// 12/22/00 Fixed so inexact flag is never set, and invalid is not set for
// qnans nor for inputs larger than 2^63.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
@@ -99,6 +97,8 @@
// p13 --------------------------------------------------->|
//
+#include "libm_support.h"
+
// floating-point registers used:
MODF_NORM_F8 = f9
MODF_FRACTION_PART = f10
@@ -115,17 +115,23 @@ modf_exp = r18
// r33 = iptr
+.align 32
+.global modf#
+
.section .text
-GLOBAL_LIBM_ENTRY(modf)
+.proc modf#
+.align 32
+
// Main path is p9, p11, p8 FALSE and p12 TRUE
// Assume input is normalized and get signexp
// Normalize input just in case
// Form exponent bias
+modf:
{ .mfi
getf.exp modf_signexp = f8
- fnorm.s0 MODF_NORM_F8 = f8
+ fnorm MODF_NORM_F8 = f8
addl modf_GR_FFFF = 0xffff, r0
}
// Get integer part of input
@@ -170,10 +176,10 @@ GLOBAL_LIBM_ENTRY(modf)
{ .mfb
(p10) cmp.ge.unc p9,p12 = modf_exp, modf_GR_no_frac
(p6) fclass.m.unc p6,p7 = f8, 0x23
-(p8) br.cond.spnt MODF_DENORM ;;
+(p8) br.cond.spnt L(MODF_DENORM) ;;
}
-MODF_COMMON:
+L(MODF_COMMON):
// For HUGE set fraction to signed 0
{ .mfi
nop.m 999
@@ -183,7 +189,7 @@ MODF_COMMON:
// For HUGE set integer part to normalized input
{ .mfi
nop.m 999
-(p9) fnorm.d.s0 MODF_INTEGER_PART = MODF_NORM_F8
+(p9) fnorm.d MODF_INTEGER_PART = MODF_NORM_F8
nop.i 999 ;;
}
@@ -195,7 +201,7 @@ MODF_COMMON:
}
{ .mfi
nop.m 999
-(p11) fnorm.d.s0 f8 = MODF_NORM_F8
+(p11) fnorm.d f8 = MODF_NORM_F8
nop.i 999 ;;
}
@@ -236,7 +242,7 @@ MODF_COMMON:
// For NORMAL test if fraction part is zero; if so append correct sign
{ .mfi
nop.m 999
-(p12) fcmp.eq.unc.s0 p7,p0 = MODF_NORM_F8, MODF_INTEGER_PART
+(p12) fcmp.eq.unc p7,p0 = MODF_NORM_F8, MODF_INTEGER_PART
nop.i 999 ;;
}
@@ -253,7 +259,7 @@ MODF_COMMON:
br.ret.sptk b0 ;;
}
-MODF_DENORM:
+L(MODF_DENORM):
// If x unorm get signexp from normalized input
// If x unorm get integer part from normalized input
{ .mfi
@@ -272,7 +278,8 @@ MODF_DENORM:
{ .mfb
(p10) cmp.ge.unc p9,p12 = modf_exp, modf_GR_no_frac
nop.f 999
- br.cond.spnt MODF_COMMON ;;
+ br.cond.spnt L(MODF_COMMON) ;;
}
-GLOBAL_LIBM_END(modf)
+.endp modf
+ASM_SIZE_DIRECTIVE(modf)
diff --git a/sysdeps/ia64/fpu/s_modff.S b/sysdeps/ia64/fpu/s_modff.S
index edc1120971..6aa43c884d 100644
--- a/sysdeps/ia64/fpu/s_modff.S
+++ b/sysdeps/ia64/fpu/s_modff.S
@@ -1,10 +1,10 @@
.file "modff.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,16 +35,14 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Improved speed, corrected result for NaN input
+// 2/02/00: Initial version
+// 4/04/00: Improved speed, corrected result for NaN input
// 12/22/00 Fixed so inexact flag is never set, and invalid is not set for
// qnans nor for inputs larger than 2^63.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
@@ -99,6 +97,8 @@
// p13 --------------------------------------------------->|
//
+#include "libm_support.h"
+
// floating-point registers used:
MODF_NORM_F8 = f9
MODF_FRACTION_PART = f10
@@ -115,17 +115,23 @@ modf_exp = r18
// r33 = iptr
+.align 32
+.global modff#
+
.section .text
-GLOBAL_LIBM_ENTRY(modff)
+.proc modff#
+.align 32
+
// Main path is p9, p11, p8 FALSE and p12 TRUE
// Assume input is normalized and get signexp
// Normalize input just in case
// Form exponent bias
+modff:
{ .mfi
getf.exp modf_signexp = f8
- fnorm.s0 MODF_NORM_F8 = f8
+ fnorm MODF_NORM_F8 = f8
addl modf_GR_FFFF = 0xffff, r0
}
// Get integer part of input
@@ -170,10 +176,10 @@ GLOBAL_LIBM_ENTRY(modff)
{ .mfb
(p10) cmp.ge.unc p9,p12 = modf_exp, modf_GR_no_frac
(p6) fclass.m.unc p6,p7 = f8, 0x23
-(p8) br.cond.spnt MODF_DENORM ;;
+(p8) br.cond.spnt L(MODF_DENORM) ;;
}
-MODF_COMMON:
+L(MODF_COMMON):
// For HUGE set fraction to signed 0
{ .mfi
nop.m 999
@@ -183,7 +189,7 @@ MODF_COMMON:
// For HUGE set integer part to normalized input
{ .mfi
nop.m 999
-(p9) fnorm.s.s0 MODF_INTEGER_PART = MODF_NORM_F8
+(p9) fnorm.s MODF_INTEGER_PART = MODF_NORM_F8
nop.i 999 ;;
}
@@ -195,7 +201,7 @@ MODF_COMMON:
}
{ .mfi
nop.m 999
-(p11) fnorm.s.s0 f8 = MODF_NORM_F8
+(p11) fnorm.s f8 = MODF_NORM_F8
nop.i 999 ;;
}
@@ -236,7 +242,7 @@ MODF_COMMON:
// For NORMAL test if fraction part is zero; if so append correct sign
{ .mfi
nop.m 999
-(p12) fcmp.eq.unc.s0 p7,p0 = MODF_NORM_F8, MODF_INTEGER_PART
+(p12) fcmp.eq.unc p7,p0 = MODF_NORM_F8, MODF_INTEGER_PART
nop.i 999 ;;
}
@@ -253,7 +259,7 @@ MODF_COMMON:
br.ret.sptk b0 ;;
}
-MODF_DENORM:
+L(MODF_DENORM):
// If x unorm get signexp from normalized input
// If x unorm get integer part from normalized input
{ .mfi
@@ -272,7 +278,8 @@ MODF_DENORM:
{ .mfb
(p10) cmp.ge.unc p9,p12 = modf_exp, modf_GR_no_frac
nop.f 999
- br.cond.spnt MODF_COMMON ;;
+ br.cond.spnt L(MODF_COMMON) ;;
}
-GLOBAL_LIBM_END(modff)
+.endp modff
+ASM_SIZE_DIRECTIVE(modff)
diff --git a/sysdeps/ia64/fpu/s_modfl.S b/sysdeps/ia64/fpu/s_modfl.S
index eaf410cb6c..b5eb509adf 100644
--- a/sysdeps/ia64/fpu/s_modfl.S
+++ b/sysdeps/ia64/fpu/s_modfl.S
@@ -1,10 +1,10 @@
.file "modfl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,17 +35,15 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Improved speed, corrected result for NaN input
-// 05/30/00 Fixed bug for exponent 0x1003e
+// 2/02/00: Initial version
+// 4/04/00: Improved speed, corrected result for NaN input
+// 5/30/00 Fixed bug for exponent 0x1003e
// 12/22/00 Fixed so inexact flag is never set, and invalid is not set for
// qnans nor for inputs larger than 2^63.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
@@ -94,6 +92,8 @@
// p13 --------------------------------------------------->|
//
+#include "libm_support.h"
+
// floating-point registers used:
MODF_NORM_F8 = f9
MODF_FRACTION_PART = f10
@@ -110,17 +110,23 @@ modf_exp = r18
// r34 = iptr
+.align 32
+.global modfl#
+
.section .text
-GLOBAL_LIBM_ENTRY(modfl)
+.proc modfl#
+.align 32
+
// Main path is p9, p11, p8 FALSE and p12 TRUE
// Assume input is normalized and get signexp
// Normalize input just in case
// Form exponent bias
+modfl:
{ .mfi
getf.exp modf_signexp = f8
- fnorm.s0 MODF_NORM_F8 = f8
+ fnorm MODF_NORM_F8 = f8
addl modf_GR_FFFF = 0xffff, r0
}
// Get integer part of input
@@ -165,10 +171,10 @@ GLOBAL_LIBM_ENTRY(modfl)
{ .mfb
(p10) cmp.ge.unc p9,p12 = modf_exp, modf_GR_no_frac
(p6) fclass.m.unc p6,p7 = f8, 0x23
-(p8) br.cond.spnt MODF_DENORM ;;
+(p8) br.cond.spnt L(MODF_DENORM) ;;
}
-MODF_COMMON:
+L(MODF_COMMON):
// For HUGE set fraction to signed 0
{ .mfi
nop.m 999
@@ -178,7 +184,7 @@ MODF_COMMON:
// For HUGE set integer part to normalized input
{ .mfi
nop.m 999
-(p9) fnorm.s0 MODF_INTEGER_PART = MODF_NORM_F8
+(p9) fnorm MODF_INTEGER_PART = MODF_NORM_F8
nop.i 999 ;;
}
@@ -190,7 +196,7 @@ MODF_COMMON:
}
{ .mfi
nop.m 999
-(p11) fnorm.s0 f8 = MODF_NORM_F8
+(p11) fnorm f8 = MODF_NORM_F8
nop.i 999 ;;
}
@@ -231,7 +237,7 @@ MODF_COMMON:
// For NORMAL test if fraction part is zero; if so append correct sign
{ .mfi
nop.m 999
-(p12) fcmp.eq.unc.s0 p7,p0 = MODF_NORM_F8, MODF_INTEGER_PART
+(p12) fcmp.eq.unc p7,p0 = MODF_NORM_F8, MODF_INTEGER_PART
nop.i 999 ;;
}
@@ -248,7 +254,7 @@ MODF_COMMON:
br.ret.sptk b0 ;;
}
-MODF_DENORM:
+L(MODF_DENORM):
// If x unorm get signexp from normalized input
// If x unorm get integer part from normalized input
{ .mfi
@@ -267,7 +273,8 @@ MODF_DENORM:
{ .mfb
(p10) cmp.ge.unc p9,p12 = modf_exp, modf_GR_no_frac
nop.f 999
- br.cond.spnt MODF_COMMON ;;
+ br.cond.spnt L(MODF_COMMON) ;;
}
-GLOBAL_LIBM_END(modfl)
+.endp modfl
+ASM_SIZE_DIRECTIVE(modfl)
diff --git a/sysdeps/ia64/fpu/s_nearbyint.S b/sysdeps/ia64/fpu/s_nearbyint.S
index ec1ff22dbc..6ee01ea260 100644
--- a/sysdeps/ia64/fpu/s_nearbyint.S
+++ b/sysdeps/ia64/fpu/s_nearbyint.S
@@ -1,10 +1,11 @@
.file "nearbyint.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 10/19/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +21,72 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 10/19/00 Created
-// 02/08/01 Corrected behavior for all rounding modes.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 07/25/03 Improved performance
+// 10/19/2000: Created
+// 2/08/01 Corrected behavior for all rounding modes.
//==============================================================
-
+//
// API
//==============================================================
// double nearbyint(double x)
-//==============================================================
-// general input registers:
-// r14 - r21
+#include "libm_support.h"
+
+//
+// general registers used:
+//
+
+nearbyint_GR_signexp = r14
+nearbyint_GR_exponent = r15
+nearbyint_GR_17ones = r16
+nearbyint_GR_10033 = r17
+nearbyint_GR_fpsr = r18
+nearbyint_GR_rcs0 = r19
+nearbyint_GR_rcs0_mask = r20
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rFpsr = r19
-rRcs0 = r20
-rRcs0Mask = r21
-// floating-point registers:
-// f8 - f10
+// predicate registers used:
+// p6-11
-fXInt = f9
-fNormX = f10
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+NEARBYINT_NORM_f8 = f9
+NEARBYINT_FLOAT_INT_f8 = f10
+NEARBYINT_INT_f8 = f11
// Overview of operation
//==============================================================
+
// double nearbyint(double x)
-// Return an integer value (represented as a double) that is x
-// rounded to integer in current rounding mode
-// Inexact is not set, otherwise result identical with rint.
-//==============================================================
+// Return an integer value (represented as a double) that is x rounded to integer in current
+// rounding mode
+// *******************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
+// if the exponent is >= 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
@@ -93,125 +99,136 @@ fNormX = f10
// So input is an integer value already.
// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
+// if the exponent is >= 10016 => 17(true) = 23(decimal)
+// we have a significand of 53 bits 1.52-bits. (implicit 1)
+// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+
+.align 32
+.global nearbyint#
+
.section .text
-GLOBAL_LIBM_ENTRY(nearbyint)
+.proc nearbyint#
+.align 32
+
+
+nearbyint:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10033, r0 // Set exponent at which is integer
+ mov nearbyint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0
+ fcvt.fx.s1 NEARBYINT_INT_f8 = f8
+ addl nearbyint_GR_10033 = 0x10033, r0
}
{ .mfi
- nop.m 0
- fcvt.fx.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
+ nop.m 999
+ fnorm.s1 NEARBYINT_NORM_f8 = f8
+ mov nearbyint_GR_17ones = 0x1FFFF
;;
+}
{ .mfi
- mov rFpsr = ar40 // Read fpsr -- check rc.s0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt RINT_UNORM // Branch if x unorm
-}
+ nop.m 999
+ fclass.m.unc p6,p0 = f8, 0xe7
+ mov nearbyint_GR_rcs0_mask = 0x0c00
;;
+}
-
-RINT_COMMON:
-// Return here from RINT_UNORM
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.d.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
+ nop.m 999
+(p6) fnorm.d f8 = f8
+(p6) br.ret.spnt b0 // Exit if x nan, inf, zero
;;
-
-{ .mfi
- mov rRcs0Mask = 0x0c00 // Mask for rc.s0
- fcvt.xf f8 = fXInt // Result assume |x| < 2^52
- cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^52?
}
-;;
-// We must correct result if |x| >= 2^52
{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = fNormX, f1, f0 // If |x| >= 2^52, result x
- nop.i 0
-}
+ nop.m 999
+ fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8
+ nop.i 999
;;
-
-{ .mfi
- nop.m 0
-(p8) fmerge.s f8 = fNormX, f8 // Make sign nearbyint(x) = sign x
- nop.i 0
}
-;;
{ .mfi
-(p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
- nop.f 0
- nop.i 0
-}
+ getf.exp nearbyint_GR_signexp = NEARBYINT_NORM_f8
+ fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal
+ nop.i 999
;;
-
-// If |x| < 2^52 we must test for other rounding modes
-{ .mbb
-(p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
-(p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
- br.ret.sptk b0 // Exit main path if round nearest
}
+
+
+{ .mii
+ nop.m 999
+ nop.i 999
+ and nearbyint_GR_exponent = nearbyint_GR_signexp, nearbyint_GR_17ones
;;
+}
+{ .mmi
+ cmp.ge.unc p7,p6 = nearbyint_GR_exponent, nearbyint_GR_10033
+ and nearbyint_GR_rcs0 = nearbyint_GR_rcs0_mask, nearbyint_GR_fpsr
+ nop.i 999
+;;
+}
-RINT_UNORM:
-// Here if x unorm
+// Check to see if s0 rounding mode is round to nearest. If not then set s2
+// rounding mode to that of s0 and repeat conversions.
+L(NEARBYINT_COMMON):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk RINT_COMMON // Return to main path
-}
+ cmp.ne p11,p0 = nearbyint_GR_rcs0, r0
+(p6) fclass.m.unc p9,p10 = NEARBYINT_FLOAT_INT_f8, 0x07 // Test for result=0
+(p11) br.cond.spnt L(NEARBYINT_NOT_ROUND_NEAREST) // Branch if not round to nearest
;;
+}
-RINT_NOT_ROUND_NEAREST:
-// Here if not round to nearest, and |x| < 2^52
-// Set rounding mode of s2 to that of s0, and repeat the conversion using s2
{ .mfi
- nop.m 0
- fsetc.s2 0x7f, 0x40
- nop.i 0
-}
+ nop.m 999
+(p7) fnorm.d.s0 f8 = f8
+ nop.i 999
;;
+}
+// If result is zero, merge sign of input
{ .mfi
- nop.m 0
- fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
- nop.i 0
+ nop.m 999
+(p9) fmerge.s f8 = f8, NEARBYINT_FLOAT_INT_f8
+ nop.i 999
}
-;;
+{ .mfb
+ nop.m 999
+(p10) fnorm.d f8 = NEARBYINT_FLOAT_INT_f8
+ br.ret.sptk b0
+;;
+}
+
+L(NEARBYINT_NOT_ROUND_NEAREST):
+// Set rounding mode of s2 to that of s0
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXInt // Expected result
- nop.i 0
+ mov nearbyint_GR_rcs0 = r0 // Clear so we don't come back here
+ fsetc.s2 0x7f, 0x40
+ nop.i 999
+;;
}
+
+{ .mfi
+ nop.m 999
+ fcvt.fx.s2 NEARBYINT_INT_f8 = f8
+ nop.i 999
;;
+}
-// Be sure sign of result = sign of input. Fixes cases where result is 0.
{ .mfb
- nop.m 0
- fmerge.s f8 = fNormX, f8
- br.ret.sptk b0 // Exit main path
-}
+ nop.m 999
+ fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8
+ br.cond.sptk L(NEARBYINT_COMMON)
;;
+}
+
-GLOBAL_LIBM_END(nearbyint)
+.endp nearbyint
+ASM_SIZE_DIRECTIVE(nearbyint)
diff --git a/sysdeps/ia64/fpu/s_nearbyintf.S b/sysdeps/ia64/fpu/s_nearbyintf.S
index aac7b5c126..7050ddc52c 100644
--- a/sysdeps/ia64/fpu/s_nearbyintf.S
+++ b/sysdeps/ia64/fpu/s_nearbyintf.S
@@ -1,10 +1,11 @@
.file "nearbyintf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 10/19/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +21,72 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 10/19/00 Created
-// 02/08/01 Corrected behavior for all rounding modes.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 07/25/03 Improved performance
+// 10/19/2000: Created
+// 2/08/01 Corrected behavior for all rounding modes.
//==============================================================
-
+//
// API
//==============================================================
// float nearbyintf(float x)
-//==============================================================
-// general input registers:
-// r14 - r21
+#include "libm_support.h"
+
+//
+// general registers used:
+//
+
+nearbyint_GR_signexp = r14
+nearbyint_GR_exponent = r15
+nearbyint_GR_17ones = r16
+nearbyint_GR_10033 = r17
+nearbyint_GR_fpsr = r18
+nearbyint_GR_rcs0 = r19
+nearbyint_GR_rcs0_mask = r20
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rFpsr = r19
-rRcs0 = r20
-rRcs0Mask = r21
-// floating-point registers:
-// f8 - f10
+// predicate registers used:
+// p6-11
-fXInt = f9
-fNormX = f10
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+NEARBYINT_NORM_f8 = f9
+NEARBYINT_FLOAT_INT_f8 = f10
+NEARBYINT_INT_f8 = f11
// Overview of operation
//==============================================================
+
// float nearbyintf(float x)
-// Return an integer value (represented as a float) that is x
-// rounded to integer in current rounding mode
-// Inexact is not set, otherwise result identical with rint.
-//==============================================================
+// Return an integer value (represented as a float) that is x rounded to integer in current
+// rounding mode
+// *******************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
+// if the exponent is >= 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
@@ -93,125 +99,136 @@ fNormX = f10
// So input is an integer value already.
// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
+// if the exponent is >= 10016 => 17(true) = 23(decimal)
+// we have a significand of 53 bits 1.52-bits. (implicit 1)
+// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+
+.align 32
+.global nearbyintf#
+
.section .text
-GLOBAL_LIBM_ENTRY(nearbyintf)
+.proc nearbyintf#
+.align 32
+
+
+nearbyintf:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10016, r0 // Set exponent at which is integer
+ mov nearbyint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0
+ fcvt.fx.s1 NEARBYINT_INT_f8 = f8
+ addl nearbyint_GR_10033 = 0x10016, r0
}
{ .mfi
- nop.m 0
- fcvt.fx.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
+ nop.m 999
+ fnorm.s1 NEARBYINT_NORM_f8 = f8
+ mov nearbyint_GR_17ones = 0x1FFFF
;;
+}
{ .mfi
- mov rFpsr = ar40 // Read fpsr -- check rc.s0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt RINT_UNORM // Branch if x unorm
-}
+ nop.m 999
+ fclass.m.unc p6,p0 = f8, 0xe7
+ mov nearbyint_GR_rcs0_mask = 0x0c00
;;
+}
-
-RINT_COMMON:
-// Return here from RINT_UNORM
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.s.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
+ nop.m 999
+(p6) fnorm.s f8 = f8
+(p6) br.ret.spnt b0 // Exit if x nan, inf, zero
;;
-
-{ .mfi
- mov rRcs0Mask = 0x0c00 // Mask for rc.s0
- fcvt.xf f8 = fXInt // Result assume |x| < 2^23
- cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^23?
}
-;;
-// We must correct result if |x| >= 2^23
{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = fNormX, f1, f0 // If |x| >= 2^23, result x
- nop.i 0
-}
+ nop.m 999
+ fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8
+ nop.i 999
;;
-
-{ .mfi
- nop.m 0
-(p8) fmerge.s f8 = fNormX, f8 // Make sign nearbyintf(x)= sign x
- nop.i 0
}
-;;
{ .mfi
-(p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
- nop.f 0
- nop.i 0
-}
+ getf.exp nearbyint_GR_signexp = NEARBYINT_NORM_f8
+ fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal
+ nop.i 999
;;
-
-// If |x| < 2^23 we must test for other rounding modes
-{ .mbb
-(p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
-(p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
- br.ret.sptk b0 // Exit main path if round nearest
}
+
+
+{ .mii
+ nop.m 999
+ nop.i 999
+ and nearbyint_GR_exponent = nearbyint_GR_signexp, nearbyint_GR_17ones
;;
+}
+{ .mmi
+ cmp.ge.unc p7,p6 = nearbyint_GR_exponent, nearbyint_GR_10033
+ and nearbyint_GR_rcs0 = nearbyint_GR_rcs0_mask, nearbyint_GR_fpsr
+ nop.i 999
+;;
+}
-RINT_UNORM:
-// Here if x unorm
+// Check to see if s0 rounding mode is round to nearest. If not then set s2
+// rounding mode to that of s0 and repeat conversions.
+L(NEARBYINT_COMMON):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk RINT_COMMON // Return to main path
-}
+ cmp.ne p11,p0 = nearbyint_GR_rcs0, r0
+(p6) fclass.m.unc p9,p10 = NEARBYINT_FLOAT_INT_f8, 0x07 // Test for result=0
+(p11) br.cond.spnt L(NEARBYINT_NOT_ROUND_NEAREST) // Branch if not round to nearest
;;
+}
-RINT_NOT_ROUND_NEAREST:
-// Here if not round to nearest, and |x| < 2^23
-// Set rounding mode of s2 to that of s0, and repeat the conversion using s2
{ .mfi
- nop.m 0
- fsetc.s2 0x7f, 0x40
- nop.i 0
-}
+ nop.m 999
+(p7) fnorm.s.s0 f8 = f8
+ nop.i 999
;;
+}
+// If result is zero, merge sign of input
{ .mfi
- nop.m 0
- fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
- nop.i 0
+ nop.m 999
+(p9) fmerge.s f8 = f8, NEARBYINT_FLOAT_INT_f8
+ nop.i 999
}
+{ .mfb
+ nop.m 999
+(p10) fnorm.s f8 = NEARBYINT_FLOAT_INT_f8
+ br.ret.sptk b0
;;
+}
+
+L(NEARBYINT_NOT_ROUND_NEAREST):
+// Set rounding mode of s2 to that of s0
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXInt // Expected result
- nop.i 0
+ mov nearbyint_GR_rcs0 = r0 // Clear so we don't come back here
+ fsetc.s2 0x7f, 0x40
+ nop.i 999
+;;
}
+
+{ .mfi
+ nop.m 999
+ fcvt.fx.s2 NEARBYINT_INT_f8 = f8
+ nop.i 999
;;
+}
-// Be sure sign of result = sign of input. Fixes cases where result is 0.
{ .mfb
- nop.m 0
- fmerge.s f8 = fNormX, f8
- br.ret.sptk b0 // Exit main path
-}
+ nop.m 999
+ fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8
+ br.cond.sptk L(NEARBYINT_COMMON)
;;
+}
+
-GLOBAL_LIBM_END(nearbyintf)
+.endp nearbyintf
+ASM_SIZE_DIRECTIVE(nearbyintf)
diff --git a/sysdeps/ia64/fpu/s_nearbyintl.S b/sysdeps/ia64/fpu/s_nearbyintl.S
index ee6159c67c..95ba6ab260 100644
--- a/sysdeps/ia64/fpu/s_nearbyintl.S
+++ b/sysdeps/ia64/fpu/s_nearbyintl.S
@@ -1,10 +1,11 @@
.file "nearbyintl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 10/19/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,67 +21,73 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 10/19/00 Created
-// 02/08/01 Corrected behavior for all rounding modes.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 07/25/03 Improved performance
+// 10/19/2000: Created
+// 2/08/01 Corrected behavior for all rounding modes.
//==============================================================
-
+//
// API
//==============================================================
// long double nearbyintl(long double x)
-//==============================================================
-// general input registers:
-// r14 - r21
+#include "libm_support.h"
+
+//
+// general registers used:
+//
+
+nearbyint_GR_signexp = r14
+nearbyint_GR_exponent = r15
+nearbyint_GR_17ones = r16
+nearbyint_GR_10033 = r17
+nearbyint_GR_fpsr = r18
+nearbyint_GR_rcs0 = r19
+nearbyint_GR_rcs0_mask = r20
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rFpsr = r19
-rRcs0 = r20
-rRcs0Mask = r21
-// floating-point registers:
-// f8 - f10
+// predicate registers used:
+// p6-11
-fXInt = f9
-fNormX = f10
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+NEARBYINT_NORM_f8 = f9
+NEARBYINT_FLOAT_INT_f8 = f10
+NEARBYINT_INT_f8 = f11
+NEARBYINT_SIGNED_FLOAT_INT_f8 = f12
// Overview of operation
//==============================================================
+
// long double nearbyintl(long double x)
-// Return an integer value (represented as a long double) that is x
-// rounded to integer in current rounding mode
-// Inexact is not set, otherwise result identical with rint.
-//==============================================================
+// Return an integer value (represented as a long double) that is
+// x rounded to integer in current rounding mode
+// *******************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
+// if the exponent is >= 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
@@ -93,125 +100,132 @@ fNormX = f10
// So input is an integer value already.
// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
+// if the exponent is >= 10016 => 17(true) = 23(decimal)
+// we have a significand of 53 bits 1.52-bits. (implicit 1)
+// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+
+.align 32
+.global nearbyintl#
+
.section .text
-GLOBAL_LIBM_ENTRY(nearbyintl)
+.proc nearbyintl#
+.align 32
+
+
+nearbyintl:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x1003e, r0 // Set exponent at which is integer
+ mov nearbyint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0
+ fcvt.fx.s1 NEARBYINT_INT_f8 = f8
+ addl nearbyint_GR_10033 = 0x1003e, r0
}
{ .mfi
- nop.m 0
- fcvt.fx.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
+ nop.m 999
+ fnorm.s1 NEARBYINT_NORM_f8 = f8
+ mov nearbyint_GR_17ones = 0x1FFFF
;;
+}
{ .mfi
- mov rFpsr = ar40 // Read fpsr -- check rc.s0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt RINT_UNORM // Branch if x unorm
-}
+ nop.m 999
+ fclass.m.unc p6,p0 = f8, 0xe7
+ mov nearbyint_GR_rcs0_mask = 0x0c00
;;
+}
-
-RINT_COMMON:
-// Return here from RINT_UNORM
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
+ nop.m 999
+(p6) fnorm f8 = f8
+(p6) br.ret.spnt b0 // Exit if x nan, inf, zero
;;
-
-{ .mfi
- mov rRcs0Mask = 0x0c00 // Mask for rc.s0
- fcvt.xf f8 = fXInt // Result assume |x| < 2^63
- cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^63?
}
-;;
-// We must correct result if |x| >= 2^63
{ .mfi
- nop.m 0
-(p7) fma.s0 f8 = fNormX, f1, f0 // If |x| >= 2^63, result x
- nop.i 0
-}
+ nop.m 999
+ fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8
+ nop.i 999
;;
-
-{ .mfi
- nop.m 0
-(p8) fmerge.s f8 = fNormX, f8 // Make sign nearbyintl(x)= sign x
- nop.i 0
}
-;;
{ .mfi
-(p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
- nop.f 0
- nop.i 0
-}
+ getf.exp nearbyint_GR_signexp = NEARBYINT_NORM_f8
+ fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal
+ nop.i 999
;;
-
-// If |x| < 2^63 we must test for other rounding modes
-{ .mbb
-(p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
-(p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
- br.ret.sptk b0 // Exit main path if round nearest
}
+
+
+{ .mii
+ nop.m 999
+ nop.i 999
+ and nearbyint_GR_exponent = nearbyint_GR_signexp, nearbyint_GR_17ones
;;
+}
+{ .mmi
+ cmp.ge.unc p7,p6 = nearbyint_GR_exponent, nearbyint_GR_10033
+ and nearbyint_GR_rcs0 = nearbyint_GR_rcs0_mask, nearbyint_GR_fpsr
+ nop.i 999
+;;
+}
-RINT_UNORM:
-// Here if x unorm
+// Check to see if s0 rounding mode is round to nearest. If not then set s2
+// rounding mode to that of s0 and repeat conversions.
+// Must merge the original sign for cases where the result is zero or the input
+// is the largest that still has a fraction (0x1007dfffffffffff)
+L(NEARBYINT_COMMON):
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk RINT_COMMON // Return to main path
-}
+ cmp.ne p11,p0 = nearbyint_GR_rcs0, r0
+(p6) fmerge.s NEARBYINT_SIGNED_FLOAT_INT_f8 = f8, NEARBYINT_FLOAT_INT_f8
+(p11) br.cond.spnt L(NEARBYINT_NOT_ROUND_NEAREST) // Branch if not round to nearest
;;
+}
-RINT_NOT_ROUND_NEAREST:
-// Here if not round to nearest, and |x| < 2^63
-// Set rounding mode of s2 to that of s0, and repeat the conversion using s2
{ .mfi
- nop.m 0
- fsetc.s2 0x7f, 0x40
- nop.i 0
+ nop.m 999
+(p7) fnorm.s0 f8 = f8
+ nop.i 999
+;;
}
+
+{ .mfb
+ nop.m 999
+(p6) fnorm f8 = NEARBYINT_SIGNED_FLOAT_INT_f8
+ br.ret.sptk b0
;;
+}
+
+L(NEARBYINT_NOT_ROUND_NEAREST):
+// Set rounding mode of s2 to that of s0
{ .mfi
- nop.m 0
- fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
- nop.i 0
-}
+ mov nearbyint_GR_rcs0 = r0 // Clear so we don't come back here
+ fsetc.s2 0x7f, 0x40
+ nop.i 999
;;
+}
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXInt // Expected result
- nop.i 0
-}
+ nop.m 999
+ fcvt.fx.s2 NEARBYINT_INT_f8 = f8
+ nop.i 999
;;
+}
-// Be sure sign of result = sign of input. Fixes cases where result is 0.
{ .mfb
- nop.m 0
- fmerge.s f8 = fNormX, f8
- br.ret.sptk b0 // Exit main path
-}
+ nop.m 999
+ fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8
+ br.cond.sptk L(NEARBYINT_COMMON)
;;
+}
+
-GLOBAL_LIBM_END(nearbyintl)
+.endp nearbyintl
+ASM_SIZE_DIRECTIVE(nearbyintl)
diff --git a/sysdeps/ia64/fpu/s_nextafter.S b/sysdeps/ia64/fpu/s_nextafter.S
deleted file mode 100644
index 6635a31df6..0000000000
--- a/sysdeps/ia64/fpu/s_nextafter.S
+++ /dev/null
@@ -1,498 +0,0 @@
-.file "nextafter.s"
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 03/03/00 Modified to conform to C9X, and improve speed of main path
-// 03/14/00 Fixed case where x is a power of 2, and x > y, improved speed
-// 04/04/00 Unwind support added
-// 05/12/00 Fixed erroneous denormal flag setting for exponent change cases 1,3
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [the previously overwritten] GR_Parameter_RESULT.
-// 09/09/00 Updated fcmp so that qnans do not raise invalid
-// 12/15/00 Corrected behavior when both args are zero to conform to C99, and
-// fixed flag settings for several cases
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 12/14/04 Added error handling on underflow.
-//
-// API
-//==============================================================
-// double nextafter( double x, double y );
-// input floating point f8, f9
-// output floating point f8
-//
-// Registers used
-//==============================================================
-GR_max_pexp = r14
-GR_min_pexp = r15
-GR_exp = r16
-GR_sig = r17
-GR_lnorm_sig = r18
-GR_sign_mask = r19
-GR_exp_mask = r20
-GR_sden_sig = r21
-GR_new_sig = r22
-GR_new_exp = r23
-GR_lden_sig = r24
-GR_snorm_sig = r25
-GR_exp1 = r26
-GR_x_exp = r27
-GR_min_den_rexp = r28
-// r36-39 parameters for libm_error_support
-
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-FR_lnorm_sig = f10
-FR_lnorm_exp = f11
-FR_lnorm = f12
-FR_sden_sig = f13
-FR_sden_exp = f14
-FR_sden = f15
-FR_save_f8 = f33
-FR_new_exp = f34
-FR_new_sig = f35
-FR_lden_sig = f36
-FR_snorm_sig = f37
-FR_exp1 = f38
-FR_tmp = f39
-
-//
-// Overview of operation
-//==============================================================
-// nextafter determines the next representable value
-// after x in the direction of y.
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(nextafter)
-
-// Extract signexp from x
-// Is x < y ? p10 if yes, p11 if no
-// Form smallest denormal significand = ulp size
-{ .mfi
- getf.exp GR_exp = f8
- fcmp.lt.s1 p10,p11 = f8, f9
- addl GR_sden_sig = 0x800, r0
-}
-// Form largest normal significand 0xfffffffffffff800
-// Form smallest normal exponent
-{ .mfi
- addl GR_lnorm_sig = -0x800,r0
- nop.f 999
- addl GR_min_pexp = 0x0fc01, r0 ;;
-}
-// Extract significand from x
-// Is x=y?
-// Form largest normal exponent
-{ .mfi
- getf.sig GR_sig = f8
- fcmp.eq.s0 p6,p0 = f8, f9
- addl GR_max_pexp = 0x103fe, r0
-}
-// Move largest normal significand to fp reg for special cases
-{ .mfi
- setf.sig FR_lnorm_sig = GR_lnorm_sig
- nop.f 999
- addl GR_sign_mask = 0x20000, r0 ;;
-}
-
-// Move smallest denormal significand and signexp to fp regs
-// Is x=nan?
-// Set p12 and p13 based on whether significand increases or decreases
-// It increases (p12 set) if x<y and x>=0 or if x>y and x<0
-// It decreases (p13 set) if x<y and x<0 or if x>y and x>=0
-{ .mfi
- setf.sig FR_sden_sig = GR_sden_sig
- fclass.m p8,p0 = f8, 0xc3
-(p10) cmp.lt p12,p13 = GR_exp, GR_sign_mask
-}
-{ .mfi
- setf.exp FR_sden_exp = GR_min_pexp
-(p11) cmp.ge p12,p13 = GR_exp, GR_sign_mask ;;
-}
-
-.pred.rel "mutex",p12,p13
-
-// Form expected new significand, adding or subtracting 1 ulp increment
-// If x=y set result to y
-// Form smallest normal significand and largest denormal significand
-{ .mfi
-(p12) add GR_new_sig = GR_sig, GR_sden_sig
-(p6) fmerge.s f8=f9,f9
- dep.z GR_snorm_sig = 1,63,1 // 0x8000000000000000
-}
-{ .mlx
-(p13) sub GR_new_sig = GR_sig, GR_sden_sig
- movl GR_lden_sig = 0x7ffffffffffff800 ;;
-}
-
-// Move expected result significand and signexp to fp regs
-// Is y=nan?
-// Form new exponent in case result exponent needs incrementing or decrementing
-{ .mfi
- setf.exp FR_new_exp = GR_exp
- fclass.m p9,p0 = f9, 0xc3
-(p12) add GR_exp1 = 1, GR_exp
-}
-{ .mib
- setf.sig FR_new_sig = GR_new_sig
-(p13) add GR_exp1 = -1, GR_exp
-(p6) br.ret.spnt b0 ;; // Exit if x=y
-}
-
-// Move largest normal signexp to fp reg for special cases
-// Is x=zero?
-{ .mfi
- setf.exp FR_lnorm_exp = GR_max_pexp
- fclass.m p7,p0 = f8, 0x7
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p8) fma.s0 f8 = f8,f1,f9
-(p8) br.ret.spnt b0 ;; // Exit if x=nan
-}
-
-// Move exp+-1 and smallest normal significand to fp regs for special cases
-// Is x=inf?
-{ .mfi
- setf.exp FR_exp1 = GR_exp1
- fclass.m p6,p0 = f8, 0x23
- addl GR_exp_mask = 0x1ffff, r0
-}
-{ .mfb
- setf.sig FR_snorm_sig = GR_snorm_sig
-(p9) fma.s0 f8 = f8,f1,f9
-(p9) br.ret.spnt b0 ;; // Exit if y=nan
-}
-
-// Move largest denormal significand to fp regs for special cases
-// Save x
-{ .mfb
- setf.sig FR_lden_sig = GR_lden_sig
- mov FR_save_f8 = f8
-(p7) br.cond.spnt NEXT_ZERO ;; // Exit if x=0
-}
-
-// Mask off the sign to get x_exp
-{ .mfb
- and GR_x_exp = GR_exp_mask, GR_exp
- nop.f 999
-(p6) br.cond.spnt NEXT_INF ;; // Exit if x=inf
-}
-
-// Check 6 special cases when significand rolls over:
-// 1 sig size incr, x_sig=max_sig, x_exp < max_exp
-// Set p6, result is sig=min_sig, exp++
-// 2 sig size incr, x_sig=max_sig, x_exp >= max_exp
-// Set p7, result is inf, signal overflow
-// 3 sig size decr, x_sig=min_sig, x_exp > min_exp
-// Set p8, result is sig=max_sig, exp--
-// 4 sig size decr, x_sig=min_sig, x_exp = min_exp
-// Set p9, result is sig=max_den_sig, exp same, signal underflow and inexact
-// 5 sig size decr, x_sig=min_den_sig, x_exp = min_exp
-// Set p10, result is zero, sign of x, signal underflow and inexact
-// 6 sig size decr, x_sig=min_sig, x_exp < min_exp
-// Set p14, result is zero, sign of x, signal underflow and inexact
-//
-// Form exponent of smallest double denormal (if normalized register format)
-{ .mmi
- adds GR_min_den_rexp = -52, GR_min_pexp
-(p12) cmp.eq.unc p6,p0 = GR_new_sig, r0
-(p13) cmp.eq.unc p8,p10 = GR_new_sig, GR_lden_sig ;;
-}
-
-{ .mmi
-(p6) cmp.lt.unc p6,p7 = GR_x_exp, GR_max_pexp
-(p8) cmp.gt.unc p8,p9 = GR_x_exp, GR_min_pexp
-(p10) cmp.eq.unc p10,p0 = GR_new_sig, r0 ;;
-}
-
-// Create small normal in case need to generate underflow flag
-{ .mfi
-(p10) cmp.le.unc p10,p0 = GR_x_exp, GR_min_pexp
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
-(p9) cmp.gt.unc p9,p14 = GR_x_exp, GR_min_den_rexp
-}
-// Branch if cases 1, 2, 3
-{ .bbb
-(p6) br.cond.spnt NEXT_EXPUP
-(p7) br.cond.spnt NEXT_OVERFLOW
-(p8) br.cond.spnt NEXT_EXPDOWN ;;
-}
-
-// Branch if cases 4, 5, 6
-{ .bbb
-(p9) br.cond.spnt NEXT_NORM_TO_DENORM
-(p10) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO
-(p14) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO ;;
-}
-
-// Here if no special cases
-// Set p6 if result will be a denormal, so can force underflow flag
-// Case 1: x_exp=min_exp, x_sig=unnormalized
-// Case 2: x_exp<min_exp
-{ .mfi
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_new_exp, FR_new_sig
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- nop.f 999
-(p7) tbit.z p6,p0 = GR_new_sig, 63 ;;
-}
-
-NEXT_COMMON_FINISH:
-// Force underflow and inexact if denormal result
-{ .mfi
- nop.m 999
-(p6) fma.d.s0 FR_tmp = FR_tmp,FR_tmp,f0
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fnorm.d.s0 f8 = f8 // Final normalization to result precision
-(p6) br.cond.spnt NEXT_UNDERFLOW ;;
-}
-
-{ .mfb
- nop.m 999
- nop.f 999
- br.ret.sptk b0;;
-}
-
-//Special cases
-NEXT_EXPUP:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_snorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_EXPDOWN:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_lnorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_NORM_TO_DENORM:
-{ .mfi
- nop.m 999
- fmerge.se f8 = FR_new_exp, FR_lden_sig
- nop.i 999
-}
-// Force underflow and inexact if denormal result
-{ .mfb
- nop.m 999
- fma.d.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW_TO_ZERO:
-{ .mfb
- cmp.eq p6,p0 = r0,r0
- fmerge.s f8 = FR_save_f8,f0
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_INF:
-// Here if f8 is +- infinity
-// INF
-// if f8 is +inf, no matter what y is return largest double
-// if f8 is -inf, no matter what y is return -largest double
-
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f8,FR_lnorm
- br.ret.sptk b0 ;;
-}
-
-NEXT_ZERO:
-
-// Here if f8 is +- zero
-// ZERO
-// if f8 is zero and y is +, return + smallest double denormal
-// if f8 is zero and y is -, return - smallest double denormal
-
-{ .mfi
- nop.m 999
- fmerge.se FR_sden = FR_sden_exp,FR_sden_sig
- nop.i 999 ;;
-}
-
-// Create small normal to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Add correct sign from direction arg
-{ .mfi
- nop.m 999
- fmerge.s f8 = f9,FR_sden
- nop.i 999 ;;
-}
-
-// Force underflow and inexact flags
-{ .mfb
- nop.m 999
- fma.d.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW:
-// Here if result is a denorm, or input is finite and result is zero
-// Call error support to report possible range error
-{ .mib
- alloc r32=ar.pfs,2,2,4,0
- mov GR_Parameter_TAG = 268 // Error code
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-NEXT_OVERFLOW:
-// Here if input is finite, but result will be infinite
-// Use frcpa to generate infinity of correct sign
-// Call error support to report possible range error
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- frcpa.s1 f8,p6 = FR_save_f8, f0
- nop.i 999 ;;
-}
-
-// Create largest double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Force overflow and inexact flags to be set
-{ .mfb
- mov GR_Parameter_TAG = 154 // Error code
- fma.d.s0 FR_tmp = FR_lnorm,FR_lnorm,f0
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-GLOBAL_LIBM_END(nextafter)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-
-// (2)
-{ .mmi
- stfd [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfd [GR_Parameter_X] = FR_save_f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_nextafterf.S b/sysdeps/ia64/fpu/s_nextafterf.S
deleted file mode 100644
index 0c269eca9e..0000000000
--- a/sysdeps/ia64/fpu/s_nextafterf.S
+++ /dev/null
@@ -1,504 +0,0 @@
-.file "nextafterf.s"
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 03/03/00 Modified to conform to C9X, and improve speed of main path
-// 03/14/00 Fixed case where x is a power of 2, and x > y, improved speed
-// 04/04/00 Unwind support added
-// 05/12/00 Fixed erroneous denormal flag setting for exponent change cases 1,3
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [the previously overwritten] GR_Parameter_RESULT.
-// 09/09/00 Updated fcmp so that qnans do not raise invalid
-// 12/15/00 Corrected behavior when both args are zero to conform to C99, and
-// fixed flag settings for several cases
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 12/14/04 Added error handling on underflow.
-//
-// API
-//==============================================================
-// float nextafterf( float x, float y );
-// input floating point f8, f9
-// output floating point f8
-//
-// Registers used
-//==============================================================
-GR_max_pexp = r14
-GR_min_pexp = r15
-GR_exp = r16
-GR_sig = r17
-GR_lnorm_sig = r18
-GR_sign_mask = r19
-GR_exp_mask = r20
-GR_sden_sig = r21
-GR_new_sig = r22
-GR_new_exp = r23
-GR_lden_sig = r24
-GR_snorm_sig = r25
-GR_exp1 = r26
-GR_x_exp = r27
-GR_min_den_rexp = r28
-// r36-39 parameters for libm_error_support
-
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-FR_lnorm_sig = f10
-FR_lnorm_exp = f11
-FR_lnorm = f12
-FR_sden_sig = f13
-FR_sden_exp = f14
-FR_sden = f15
-FR_save_f8 = f33
-FR_new_exp = f34
-FR_new_sig = f35
-FR_lden_sig = f36
-FR_snorm_sig = f37
-FR_exp1 = f38
-FR_tmp = f39
-
-//
-// Overview of operation
-//==============================================================
-// nextafterf determines the next representable value
-// after x in the direction of y.
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(nextafterf)
-
-// Extract signexp from x
-// Form smallest denormal significand = ulp size
-{ .mlx
- getf.exp GR_exp = f8
- movl GR_sden_sig = 0x0000010000000000
-}
-// Form largest normal exponent
-// Is x < y ? p10 if yes, p11 if no
-// Form smallest normal exponent
-{ .mfi
- addl GR_max_pexp = 0x1007e, r0
- fcmp.lt.s1 p10,p11 = f8, f9
- addl GR_min_pexp = 0x0ff81, r0 ;;
-}
-
-// Is x=y?
-{ .mfi
- getf.sig GR_sig = f8
- fcmp.eq.s0 p6,p0 = f8, f9
- nop.i 0
-}
-// Extract significand from x
-// Form largest normal significand
-{ .mlx
- nop.m 0
- movl GR_lnorm_sig = 0xffffff0000000000 ;;
-}
-
-// Move largest normal significand to fp reg for special cases
-{ .mfi
- setf.sig FR_lnorm_sig = GR_lnorm_sig
- nop.f 0
- addl GR_sign_mask = 0x20000, r0 ;;
-}
-
-// Move smallest denormal significand and signexp to fp regs
-// Is x=nan?
-// Set p12 and p13 based on whether significand increases or decreases
-// It increases (p12 set) if x<y and x>=0 or if x>y and x<0
-// It decreases (p13 set) if x<y and x<0 or if x>y and x>=0
-{ .mfi
- setf.sig FR_sden_sig = GR_sden_sig
- fclass.m p8,p0 = f8, 0xc3
-(p10) cmp.lt p12,p13 = GR_exp, GR_sign_mask
-}
-{ .mfi
- setf.exp FR_sden_exp = GR_min_pexp
- nop.f 999
-(p11) cmp.ge p12,p13 = GR_exp, GR_sign_mask ;;
-}
-
-.pred.rel "mutex",p12,p13
-
-// Form expected new significand, adding or subtracting 1 ulp increment
-// If x=y set result to y
-// Form smallest normal significand and largest denormal significand
-{ .mfi
-(p12) add GR_new_sig = GR_sig, GR_sden_sig
-(p6) fmerge.s f8=f9,f9
- dep.z GR_snorm_sig = 1,63,1 // 0x8000000000000000
-}
-{ .mlx
-(p13) sub GR_new_sig = GR_sig, GR_sden_sig
- movl GR_lden_sig = 0x7fffff0000000000 ;;
-}
-
-// Move expected result significand and signexp to fp regs
-// Is y=nan?
-// Form new exponent in case result exponent needs incrementing or decrementing
-{ .mfi
- setf.exp FR_new_exp = GR_exp
- fclass.m p9,p0 = f9, 0xc3
-(p12) add GR_exp1 = 1, GR_exp
-}
-{ .mib
- setf.sig FR_new_sig = GR_new_sig
-(p13) add GR_exp1 = -1, GR_exp
-(p6) br.ret.spnt b0 ;; // Exit if x=y
-}
-
-// Move largest normal signexp to fp reg for special cases
-// Is x=zero?
-{ .mfi
- setf.exp FR_lnorm_exp = GR_max_pexp
- fclass.m p7,p0 = f8, 0x7
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p8) fma.s0 f8 = f8,f1,f9
-(p8) br.ret.spnt b0 ;; // Exit if x=nan
-}
-
-// Move exp+-1 and smallest normal significand to fp regs for special cases
-// Is x=inf?
-{ .mfi
- setf.exp FR_exp1 = GR_exp1
- fclass.m p6,p0 = f8, 0x23
- addl GR_exp_mask = 0x1ffff, r0
-}
-{ .mfb
- setf.sig FR_snorm_sig = GR_snorm_sig
-(p9) fma.s0 f8 = f8,f1,f9
-(p9) br.ret.spnt b0 ;; // Exit if y=nan
-}
-
-// Move largest denormal significand to fp regs for special cases
-// Save x
-{ .mfb
- setf.sig FR_lden_sig = GR_lden_sig
- mov FR_save_f8 = f8
-(p7) br.cond.spnt NEXT_ZERO ;; // Exit if x=0
-}
-
-// Mask off the sign to get x_exp
-{ .mfb
- and GR_x_exp = GR_exp_mask, GR_exp
- nop.f 999
-(p6) br.cond.spnt NEXT_INF ;; // Exit if x=inf
-}
-
-// Check 6 special cases when significand rolls over:
-// 1 sig size incr, x_sig=max_sig, x_exp < max_exp
-// Set p6, result is sig=min_sig, exp++
-// 2 sig size incr, x_sig=max_sig, x_exp >= max_exp
-// Set p7, result is inf, signal overflow
-// 3 sig size decr, x_sig=min_sig, x_exp > min_exp
-// Set p8, result is sig=max_sig, exp--
-// 4 sig size decr, x_sig=min_sig, x_exp = min_exp
-// Set p9, result is sig=max_den_sig, exp same, signal underflow and inexact
-// 5 sig size decr, x_sig=min_den_sig, x_exp = min_exp
-// Set p10, result is zero, sign of x, signal underflow and inexact
-// 6 sig size decr, x_sig=min_sig, x_exp < min_exp
-// Set p14, result is zero, sign of x, signal underflow and inexact
-//
-// Form exponent of smallest float denormal (if normalized register format)
-{ .mmi
- adds GR_min_den_rexp = -23, GR_min_pexp
-(p12) cmp.eq.unc p6,p0 = GR_new_sig, r0
-(p13) cmp.eq.unc p8,p10 = GR_new_sig, GR_lden_sig ;;
-}
-
-{ .mmi
-(p6) cmp.lt.unc p6,p7 = GR_x_exp, GR_max_pexp
-(p8) cmp.gt.unc p8,p9 = GR_x_exp, GR_min_pexp
-(p10) cmp.eq.unc p10,p0 = GR_new_sig, r0 ;;
-}
-
-// Create small normal in case need to generate underflow flag
-{ .mfi
-(p10) cmp.le.unc p10,p0 = GR_x_exp, GR_min_pexp
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
-(p9) cmp.gt.unc p9,p14 = GR_x_exp, GR_min_den_rexp
-}
-// Branch if cases 1, 2, 3
-{ .bbb
-(p6) br.cond.spnt NEXT_EXPUP
-(p7) br.cond.spnt NEXT_OVERFLOW
-(p8) br.cond.spnt NEXT_EXPDOWN ;;
-}
-
-// Branch if cases 4, 5, 6
-{ .bbb
-(p9) br.cond.spnt NEXT_NORM_TO_DENORM
-(p10) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO
-(p14) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO ;;
-}
-
-// Here if no special cases
-// Set p6 if result will be a denormal, so can force underflow flag
-// Case 1: x_exp=min_exp, x_sig=unnormalized
-// Case 2: x_exp<min_exp
-{ .mfi
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_new_exp, FR_new_sig
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- nop.f 999
-(p7) tbit.z p6,p0 = GR_new_sig, 63 ;;
-}
-
-NEXT_COMMON_FINISH:
-// Force underflow and inexact if denormal result
-{ .mfi
- nop.m 999
-(p6) fma.s.s0 FR_tmp = FR_tmp,FR_tmp,f0
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fnorm.s.s0 f8 = f8 // Final normalization to result precision
-(p6) br.cond.spnt NEXT_UNDERFLOW ;;
-}
-
-{ .mfb
- nop.m 999
- nop.f 999
- br.ret.sptk b0;;
-}
-
-//Special cases
-NEXT_EXPUP:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_snorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_EXPDOWN:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_lnorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_NORM_TO_DENORM:
-{ .mfi
- nop.m 999
- fmerge.se f8 = FR_new_exp, FR_lden_sig
- nop.i 999
-}
-// Force underflow and inexact
-{ .mfb
- nop.m 999
- fma.s.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW_TO_ZERO:
-{ .mfb
- cmp.eq p6,p0 = r0,r0
- fmerge.s f8 = FR_save_f8,f0
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_INF:
-// Here if f8 is +- infinity
-// INF
-// if f8 is +inf, no matter what y is return largest float
-// if f8 is -inf, no matter what y is return -largest float
-
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f8,FR_lnorm
- br.ret.sptk b0 ;;
-}
-
-NEXT_ZERO:
-
-// Here if f8 is +- zero
-// ZERO
-// if f8 is zero and y is +, return + smallest float denormal
-// if f8 is zero and y is -, return - smallest float denormal
-
-{ .mfi
- nop.m 999
- fmerge.se FR_sden = FR_sden_exp,FR_sden_sig
- nop.i 999 ;;
-}
-
-// Create small normal to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Add correct sign from direction arg
-{ .mfi
- nop.m 999
- fmerge.s f8 = f9,FR_sden
- nop.i 999 ;;
-}
-
-// Force underflow and inexact flags
-{ .mfb
- nop.m 999
- fma.s.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW:
-// Here if result is a denorm, or input is finite and result is zero
-// Call error support to report possible range error
-{ .mib
- alloc r32=ar.pfs,2,2,4,0
- mov GR_Parameter_TAG = 269 // Error code
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-NEXT_OVERFLOW:
-// Here if input is finite, but result will be infinite
-// Use frcpa to generate infinity of correct sign
-// Call error support to report possible range error
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- frcpa.s1 f8,p6 = FR_save_f8, f0
- nop.i 999 ;;
-}
-
-// Create largest double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Force overflow and inexact flags to be set
-{ .mfb
- mov GR_Parameter_TAG = 155 // Error code
- fma.s.s0 FR_tmp = FR_lnorm,FR_lnorm,f0
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-GLOBAL_LIBM_END(nextafterf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-
-// (2)
-{ .mmi
- stfs [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfs [GR_Parameter_X] = FR_save_f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_nextafterl.S b/sysdeps/ia64/fpu/s_nextafterl.S
deleted file mode 100644
index 20c927b1cc..0000000000
--- a/sysdeps/ia64/fpu/s_nextafterl.S
+++ /dev/null
@@ -1,503 +0,0 @@
-.file "nextafterl.s"
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 03/03/00 Modified to conform to C9X, and improve speed of main path
-// 03/14/00 Fixed case where x is a power of 2, and x > y, improved speed
-// 04/04/00 Unwind support added
-// 05/12/00 Fixed erroneous denormal flag setting for exponent change cases 1,3
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [the previously overwritten] GR_Parameter_RESULT.
-// 09/09/00 Updated fcmp so that qnans do not raise invalid.
-// 12/15/00 Fixed case of smallest long double normal to largest denormal,
-// now adhere to C99 for two zero args, and fixed flag settings
-// for several cases
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 12/14/04 Added error handling on underflow.
-//
-// API
-//==============================================================
-// long double nextafterl( long double x, long double y );
-// input floating point f8, f9
-// output floating point f8
-//
-// Registers used
-//==============================================================
-GR_max_pexp = r14
-GR_min_pexp = r15
-GR_exp = r16
-GR_sig = r17
-GR_lnorm_sig = r18
-GR_sign_mask = r19
-GR_exp_mask = r20
-GR_sden_sig = r21
-GR_new_sig = r22
-GR_new_exp = r23
-GR_lden_sig = r24
-GR_snorm_sig = r25
-GR_exp1 = r26
-GR_x_exp = r27
-// r36-39 parameters for libm_error_support
-
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-FR_lnorm_sig = f10
-FR_lnorm_exp = f11
-FR_lnorm = f12
-FR_sden_sig = f13
-FR_den_exp = f14
-FR_sden = f15
-FR_snorm_exp = f32
-FR_save_f8 = f33
-FR_new_exp = f34
-FR_new_sig = f35
-FR_lden_sig = f36
-FR_snorm_sig = f37
-FR_exp1 = f38
-FR_tmp = f39
-
-//
-// Overview of operation
-//==============================================================
-// nextafterl determines the next representable value
-// after x in the direction of y.
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(nextafterl)
-
-// Extract signexp from x
-// Is x < y ? p10 if yes, p11 if no
-// Form smallest denormal significand = ulp size
-{ .mfi
- getf.exp GR_exp = f8
- fcmp.lt.s1 p10,p11 = f8, f9
- addl GR_sden_sig = 0x1, r0
-}
-// Form largest normal significand 0xffffffffffffffff
-// Form smallest normal exponent
-{ .mfi
- addl GR_lnorm_sig = -0x1,r0
- nop.f 999
- addl GR_min_pexp = 0x0c001, r0 ;;
-}
-
-// Extract significand from x
-// Is x=y? This fcmp also sets Invalid and Denormal if required
-// Form largest normal exponent
-{ .mfi
- getf.sig GR_sig = f8
- fcmp.eq.s0 p6,p0 = f8, f9
- addl GR_max_pexp = 0x13ffe, r0
-}
-// Move largest normal significand to fp reg for special cases
-{ .mfi
- setf.sig FR_lnorm_sig = GR_lnorm_sig
- nop.f 999
- addl GR_sign_mask = 0x20000, r0 ;;
-}
-
-// Move smallest denormal significand and exp to fp regs
-// Is x=nan?
-// Set p12 and p13 based on whether significand increases or decreases
-// It increases (p12 set) if x<y and x>=0 or if x>y and x<0
-// It decreases (p13 set) if x<y and x<0 or if x>y and x>=0
-{ .mfi
- setf.sig FR_sden_sig = GR_sden_sig
- fclass.m p8,p0 = f8, 0xc3
-(p10) cmp.lt p12,p13 = GR_exp, GR_sign_mask
-}
-// Move smallest normal exp to fp regs
-{ .mfi
- setf.exp FR_snorm_exp = GR_min_pexp
- nop.f 999
-(p11) cmp.ge p12,p13 = GR_exp, GR_sign_mask ;;
-}
-
-.pred.rel "mutex",p12,p13
-
-// Form expected new significand, adding or subtracting 1 ulp increment
-// If x=y set result to y
-// Form smallest normal significand and largest denormal significand
-{ .mfi
-(p12) add GR_new_sig = GR_sig, GR_sden_sig
-(p6) fmerge.s f8=f9,f9
- dep.z GR_snorm_sig = 1,63,1 // 0x8000000000000000
-}
-{ .mlx
-(p13) sub GR_new_sig = GR_sig, GR_sden_sig
- movl GR_lden_sig = 0x7fffffffffffffff ;;
-}
-
-// Move expected result significand and signexp to fp regs
-// Is y=nan?
-// Form new exponent in case result exponent needs incrementing or decrementing
-{ .mfi
- setf.exp FR_new_exp = GR_exp
- fclass.m p9,p0 = f9, 0xc3
-(p12) add GR_exp1 = 1, GR_exp
-}
-{ .mib
- setf.sig FR_new_sig = GR_new_sig
-(p13) add GR_exp1 = -1, GR_exp
-(p6) br.ret.spnt b0 ;; // Exit if x=y
-}
-
-// Move largest normal signexp to fp reg for special cases
-// Is x=zero?
-{ .mfi
- setf.exp FR_lnorm_exp = GR_max_pexp
- fclass.m p7,p0 = f8, 0x7
- nop.i 999
-}
-{ .mfb
- setf.exp FR_den_exp = GR_min_pexp
-(p8) fma.s0 f8 = f8,f1,f9
-(p8) br.ret.spnt b0 ;; // Exit if x=nan
-}
-
-// Move exp+-1 and smallest normal significand to fp regs for special cases
-// Is x=inf?
-{ .mfi
- setf.exp FR_exp1 = GR_exp1
- fclass.m p6,p0 = f8, 0x23
- addl GR_exp_mask = 0x1ffff, r0
-}
-{ .mfb
- setf.sig FR_snorm_sig = GR_snorm_sig
-(p9) fma.s0 f8 = f8,f1,f9
-(p9) br.ret.spnt b0 ;; // Exit if y=nan
-}
-
-// Move largest denormal significand to fp regs for special cases
-// Save x
-{ .mfb
- setf.sig FR_lden_sig = GR_lden_sig
- mov FR_save_f8 = f8
-(p7) br.cond.spnt NEXT_ZERO ;; // Exit if x=0
-}
-
-// Mask off the sign to get x_exp
-{ .mfb
- and GR_x_exp = GR_exp_mask, GR_exp
- nop.f 999
-(p6) br.cond.spnt NEXT_INF ;; // Exit if x=inf
-}
-
-// Check 5 special cases when significand rolls over:
-// 1 sig size incr, x_sig=max_sig, x_exp < max_exp
-// Set p6, result is sig=min_sig, exp++
-// 2 sig size incr, x_sig=max_sig, x_exp >= max_exp
-// Set p7, result is inf, signal overflow
-// 3 sig size decr, x_sig=min_sig, x_exp > min_exp
-// Set p8, result is sig=max_sig, exp--
-// 4 sig size decr, x_sig=min_sig, x_exp = min_exp
-// Set p9, result is sig=max_den_sig, exp same, signal underflow and inexact
-// 5 sig size decr, x_sig=min_den_sig, x_exp = min_exp
-// Set p10, result is zero, sign of x, signal underflow and inexact
-//
-{ .mmi
-(p12) cmp.eq.unc p6,p0 = GR_new_sig, r0
-(p13) cmp.eq.unc p9,p10 = GR_new_sig, GR_lden_sig
- nop.i 999
-;;
-}
-
-{ .mmi
-(p6) cmp.lt.unc p6,p7 = GR_x_exp, GR_max_pexp
-(p10) cmp.eq.unc p10,p0 = GR_new_sig, r0
-(p9) cmp.le.unc p9,p8 = GR_x_exp, GR_min_pexp
-;;
-}
-
-// Create small normal in case need to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_snorm_exp, FR_lnorm_sig
- nop.i 999
-}
-// Branch if cases 1, 2, 3
-{ .bbb
-(p6) br.cond.spnt NEXT_EXPUP
-(p7) br.cond.spnt NEXT_OVERFLOW
-(p8) br.cond.spnt NEXT_EXPDOWN ;;
-}
-
-// Branch if cases 4, 5
-{ .mbb
- nop.m 999
-(p9) br.cond.spnt NEXT_NORM_TO_DENORM
-(p10) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO
-;;
-}
-
-// Here if no special cases
-// Set p6 if result will be a denormal, so can force underflow flag
-// Case 1: x_exp=min_exp, x_sig=unnormalized
-// Case 2: x_exp<min_exp
-{ .mfi
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_new_exp, FR_new_sig
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- nop.f 999
-(p6) tbit.z p6,p0 = GR_new_sig, 63 ;;
-}
-
-NEXT_COMMON_FINISH:
-// Force underflow and inexact if denormal result
-{ .mfi
- nop.m 999
-(p6) fma.s0 FR_tmp = FR_tmp,FR_tmp,f0
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fnorm.s0 f8 = f8 // Final normalization to result precision
-(p6) br.cond.spnt NEXT_UNDERFLOW ;;
-}
-
-{ .mfb
- nop.m 999
- nop.f 999
- br.ret.sptk b0;;
-}
-
-//Special cases
-NEXT_EXPUP:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_snorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_EXPDOWN:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_lnorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_NORM_TO_DENORM:
-{ .mfi
- nop.m 999
- fmerge.se f8 = FR_exp1, FR_lden_sig
- nop.i 999
-}
-// Force underflow and inexact
-{ .mfb
- nop.m 999
- fma.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW_TO_ZERO:
-{ .mfb
- cmp.eq p6,p0 = r0,r0
- fmerge.s f8 = FR_save_f8,f0
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_INF:
-// Here if f8 is +- infinity
-// INF
-// if f8 is +inf, no matter what y is return largest long double
-// if f8 is -inf, no matter what y is return -largest long double
-
-// Create largest long double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f8,FR_lnorm
- br.ret.sptk b0 ;;
-}
-
-NEXT_ZERO:
-
-// Here if f8 is +- zero
-// ZERO
-// if f8 is zero and y is +, return + smallest long double denormal
-// if f8 is zero and y is -, return - smallest long double denormal
-
-{ .mfi
- nop.m 999
- fmerge.se FR_sden = f0,FR_sden_sig
- nop.i 999 ;;
-}
-
-// Create small normal to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_snorm_exp, FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Add correct sign from direction arg
-{ .mfi
- nop.m 999
- fmerge.s f8 = f9,FR_sden
- nop.i 999 ;;
-}
-
-// Force underflow and inexact flags
-{ .mfb
- nop.m 999
- fma.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW:
-// Here if result is a denorm, or input is finite and result is zero
-// Call error support to report possible range error
-{ .mib
- alloc r32=ar.pfs,2,2,4,0
- mov GR_Parameter_TAG = 267 // Error code
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-NEXT_OVERFLOW:
-// Here if input is finite, but result will be infinite
-// Use frcpa to generate infinity of correct sign
-// Call error support to report possible range error
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- frcpa.s1 f8,p6 = FR_save_f8, f0
- nop.i 999 ;;
-}
-
-// Create largest double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Force overflow and inexact flags to be set
-{ .mfb
- mov GR_Parameter_TAG = 153 // Error code
- fma.s0 FR_tmp = FR_lnorm,FR_lnorm,f0
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-GLOBAL_LIBM_END(nextafterl)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-
-// (2)
-{ .mmi
- stfe [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfe [GR_Parameter_X] = FR_save_f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_nextafterl.c b/sysdeps/ia64/fpu/s_nextafterl.c
new file mode 100644
index 0000000000..f59f16848f
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_nextafterl.c
@@ -0,0 +1 @@
+#include <sysdeps/i386/fpu/s_nextafterl.c>
diff --git a/sysdeps/ia64/fpu/s_nexttoward.S b/sysdeps/ia64/fpu/s_nexttoward.S
deleted file mode 100644
index 741fea02b0..0000000000
--- a/sysdeps/ia64/fpu/s_nexttoward.S
+++ /dev/null
@@ -1,490 +0,0 @@
-.file "nexttoward.s"
-
-
-// Copyright (c) 2001 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/15/01 Initial version
-// 08/23/01 Corrected error tag number
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 12/14/04 Added error handling on underflow.
-//
-// API
-//==============================================================
-// double nexttoward( double x, long double y );
-// input floating point f8, f9
-// output floating point f8
-//
-// Registers used
-//==============================================================
-GR_max_pexp = r14
-GR_min_pexp = r15
-GR_exp = r16
-GR_sig = r17
-GR_lnorm_sig = r18
-GR_sign_mask = r19
-GR_exp_mask = r20
-GR_sden_sig = r21
-GR_new_sig = r22
-GR_new_exp = r23
-GR_lden_sig = r24
-GR_snorm_sig = r25
-GR_exp1 = r26
-GR_x_exp = r27
-GR_min_den_rexp = r28
-// r36-39 parameters for libm_error_support
-
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-FR_lnorm_sig = f10
-FR_lnorm_exp = f11
-FR_lnorm = f12
-FR_sden_sig = f13
-FR_sden_exp = f14
-FR_sden = f15
-FR_save_f8 = f33
-FR_new_exp = f34
-FR_new_sig = f35
-FR_lden_sig = f36
-FR_snorm_sig = f37
-FR_exp1 = f38
-FR_tmp = f39
-
-//
-// Overview of operation
-//==============================================================
-// nexttoward determines the next representable value
-// after x in the direction of y.
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(nexttoward)
-
-// Extract signexp from x
-// Is x < y ? p10 if yes, p11 if no
-// Form smallest denormal significand = ulp size
-{ .mfi
- getf.exp GR_exp = f8
- fcmp.lt.s1 p10,p11 = f8, f9
- addl GR_sden_sig = 0x800, r0
-}
-// Form largest normal significand 0xfffffffffffff800
-// Form smallest normal exponent
-{ .mfi
- addl GR_lnorm_sig = -0x800,r0
- nop.f 999
- addl GR_min_pexp = 0x0fc01, r0 ;;
-}
-// Extract significand from x
-// Is x=y?
-// Form largest normal exponent
-{ .mfi
- getf.sig GR_sig = f8
- fcmp.eq.s0 p6,p0 = f8, f9
- addl GR_max_pexp = 0x103fe, r0
-}
-// Move largest normal significand to fp reg for special cases
-{ .mfi
- setf.sig FR_lnorm_sig = GR_lnorm_sig
- nop.f 999
- addl GR_sign_mask = 0x20000, r0 ;;
-}
-
-// Move smallest denormal significand and signexp to fp regs
-// Is x=nan?
-// Set p12 and p13 based on whether significand increases or decreases
-// It increases (p12 set) if x<y and x>=0 or if x>y and x<0
-// It decreases (p13 set) if x<y and x<0 or if x>y and x>=0
-{ .mfi
- setf.sig FR_sden_sig = GR_sden_sig
- fclass.m p8,p0 = f8, 0xc3
-(p10) cmp.lt p12,p13 = GR_exp, GR_sign_mask
-}
-{ .mfi
- setf.exp FR_sden_exp = GR_min_pexp
-(p11) cmp.ge p12,p13 = GR_exp, GR_sign_mask ;;
-}
-
-.pred.rel "mutex",p12,p13
-
-// Form expected new significand, adding or subtracting 1 ulp increment
-// If x=y set result to y
-// Form smallest normal significand and largest denormal significand
-{ .mfi
-(p12) add GR_new_sig = GR_sig, GR_sden_sig
-(p6) fnorm.d.s0 f8=f9 //Normalise
- dep.z GR_snorm_sig = 1,63,1 // 0x8000000000000000
-}
-{ .mlx
-(p13) sub GR_new_sig = GR_sig, GR_sden_sig
- movl GR_lden_sig = 0x7ffffffffffff800 ;;
-}
-
-// Move expected result significand and signexp to fp regs
-// Is y=nan?
-// Form new exponent in case result exponent needs incrementing or decrementing
-{ .mfi
- setf.exp FR_new_exp = GR_exp
- fclass.m p9,p0 = f9, 0xc3
-(p12) add GR_exp1 = 1, GR_exp
-}
-{ .mib
- setf.sig FR_new_sig = GR_new_sig
-(p13) add GR_exp1 = -1, GR_exp
-(p6) br.ret.spnt b0 ;; // Exit if x=y
-}
-
-// Move largest normal signexp to fp reg for special cases
-// Is x=zero?
-{ .mfi
- setf.exp FR_lnorm_exp = GR_max_pexp
- fclass.m p7,p0 = f8, 0x7
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p8) fma.s0 f8 = f8,f1,f9
-(p8) br.ret.spnt b0 ;; // Exit if x=nan
-}
-
-// Move exp+-1 and smallest normal significand to fp regs for special cases
-// Is x=inf?
-{ .mfi
- setf.exp FR_exp1 = GR_exp1
- fclass.m p6,p0 = f8, 0x23
- addl GR_exp_mask = 0x1ffff, r0
-}
-{ .mfb
- setf.sig FR_snorm_sig = GR_snorm_sig
-(p9) fma.s0 f8 = f8,f1,f9
-(p9) br.ret.spnt b0 ;; // Exit if y=nan
-}
-
-// Move largest denormal significand to fp regs for special cases
-// Save x
-{ .mfb
- setf.sig FR_lden_sig = GR_lden_sig
- mov FR_save_f8 = f8
-(p7) br.cond.spnt NEXT_ZERO ;; // Exit if x=0
-}
-
-// Mask off the sign to get x_exp
-{ .mfb
- and GR_x_exp = GR_exp_mask, GR_exp
- nop.f 999
-(p6) br.cond.spnt NEXT_INF ;; // Exit if x=inf
-}
-
-// Check 6 special cases when significand rolls over:
-// 1 sig size incr, x_sig=max_sig, x_exp < max_exp
-// Set p6, result is sig=min_sig, exp++
-// 2 sig size incr, x_sig=max_sig, x_exp >= max_exp
-// Set p7, result is inf, signal overflow
-// 3 sig size decr, x_sig=min_sig, x_exp > min_exp
-// Set p8, result is sig=max_sig, exp--
-// 4 sig size decr, x_sig=min_sig, x_exp = min_exp
-// Set p9, result is sig=max_den_sig, exp same, signal underflow and inexact
-// 5 sig size decr, x_sig=min_den_sig, x_exp = min_exp
-// Set p10, result is zero, sign of x, signal underflow and inexact
-// 6 sig size decr, x_sig=min_sig, x_exp < min_exp
-// Set p14, result is zero, sign of x, signal underflow and inexact
-//
-// Form exponent of smallest double denormal (if normalized register format)
-{ .mmi
- adds GR_min_den_rexp = -52, GR_min_pexp
-(p12) cmp.eq.unc p6,p0 = GR_new_sig, r0
-(p13) cmp.eq.unc p8,p10 = GR_new_sig, GR_lden_sig ;;
-}
-
-{ .mmi
-(p6) cmp.lt.unc p6,p7 = GR_x_exp, GR_max_pexp
-(p8) cmp.gt.unc p8,p9 = GR_x_exp, GR_min_pexp
-(p10) cmp.eq.unc p10,p0 = GR_new_sig, r0 ;;
-}
-
-// Create small normal in case need to generate underflow flag
-{ .mfi
-(p10) cmp.le.unc p10,p0 = GR_x_exp, GR_min_pexp
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
-(p9) cmp.gt.unc p9,p14 = GR_x_exp, GR_min_den_rexp
-}
-// Branch if cases 1, 2, 3
-{ .bbb
-(p6) br.cond.spnt NEXT_EXPUP
-(p7) br.cond.spnt NEXT_OVERFLOW
-(p8) br.cond.spnt NEXT_EXPDOWN ;;
-}
-
-// Branch if cases 4, 5, 6
-{ .bbb
-(p9) br.cond.spnt NEXT_NORM_TO_DENORM
-(p10) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO
-(p14) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO ;;
-}
-
-// Here if no special cases
-// Set p6 if result will be a denormal, so can force underflow flag
-// Case 1: x_exp=min_exp, x_sig=unnormalized
-// Case 2: x_exp<min_exp
-{ .mfi
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_new_exp, FR_new_sig
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- nop.f 999
-(p7) tbit.z p6,p0 = GR_new_sig, 63 ;;
-}
-
-NEXT_COMMON_FINISH:
-// Force underflow and inexact if denormal result
-{ .mfi
- nop.m 999
-(p6) fma.d.s0 FR_tmp = FR_tmp,FR_tmp,f0
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fnorm.d.s0 f8 = f8 // Final normalization to result precision
-(p6) br.cond.spnt NEXT_UNDERFLOW ;;
-}
-
-{ .mfb
- nop.m 999
- nop.f 999
- br.ret.sptk b0;;
-}
-
-//Special cases
-NEXT_EXPUP:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_snorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_EXPDOWN:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_lnorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_NORM_TO_DENORM:
-{ .mfi
- nop.m 999
- fmerge.se f8 = FR_new_exp, FR_lden_sig
- nop.i 999
-}
-// Force underflow and inexact if denormal result
-{ .mfb
- nop.m 999
- fma.d.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW_TO_ZERO:
-{ .mfb
- cmp.eq p6,p0 = r0,r0
- fmerge.s f8 = FR_save_f8,f0
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_INF:
-// Here if f8 is +- infinity
-// INF
-// if f8 is +inf, no matter what y is return largest double
-// if f8 is -inf, no matter what y is return -largest double
-
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f8,FR_lnorm
- br.ret.sptk b0 ;;
-}
-
-NEXT_ZERO:
-
-// Here if f8 is +- zero
-// ZERO
-// if f8 is zero and y is +, return + smallest double denormal
-// if f8 is zero and y is -, return - smallest double denormal
-
-{ .mfi
- nop.m 999
- fmerge.se FR_sden = FR_sden_exp,FR_sden_sig
- nop.i 999 ;;
-}
-
-// Create small normal to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Add correct sign from direction arg
-{ .mfi
- nop.m 999
- fmerge.s f8 = f9,FR_sden
- nop.i 999 ;;
-}
-
-// Force underflow and inexact flags
-{ .mfb
- nop.m 999
- fma.d.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW:
-// Here if result is a denorm, or input is finite and result is zero
-// Call error support to report possible range error
-{ .mib
- alloc r32=ar.pfs,2,2,4,0
- mov GR_Parameter_TAG = 271 // Error code
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-NEXT_OVERFLOW:
-// Here if input is finite, but result will be infinite
-// Use frcpa to generate infinity of correct sign
-// Call error support to report possible range error
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- frcpa.s1 f8,p6 = FR_save_f8, f0
- nop.i 999 ;;
-}
-
-// Create largest double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Force overflow and inexact flags to be set
-{ .mfb
- mov GR_Parameter_TAG = 199 // Error code
- fma.d.s0 FR_tmp = FR_lnorm,FR_lnorm,f0
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-GLOBAL_LIBM_END(nexttoward)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-
-// (2)
-{ .mmi
- stfd [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfd [GR_Parameter_X] = FR_save_f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_nexttoward.c b/sysdeps/ia64/fpu/s_nexttoward.c
new file mode 100644
index 0000000000..aee2bb5895
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_nexttoward.c
@@ -0,0 +1 @@
+#include <sysdeps/i386/fpu/s_nexttoward.c>
diff --git a/sysdeps/ia64/fpu/s_nexttowardf.S b/sysdeps/ia64/fpu/s_nexttowardf.S
deleted file mode 100644
index b8b976271a..0000000000
--- a/sysdeps/ia64/fpu/s_nexttowardf.S
+++ /dev/null
@@ -1,496 +0,0 @@
-.file "nexttowardf.s"
-
-
-// Copyright (c) 2001 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/15/01 Initial version
-// 08/23/01 Corrected error tag number
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 12/14/04 Added error handling on underflow.
-//
-// API
-//==============================================================
-// float nexttowardf( float x, long double y );
-// input floating point f8, f9
-// output floating point f8
-//
-// Registers used
-//==============================================================
-GR_max_pexp = r14
-GR_min_pexp = r15
-GR_exp = r16
-GR_sig = r17
-GR_lnorm_sig = r18
-GR_sign_mask = r19
-GR_exp_mask = r20
-GR_sden_sig = r21
-GR_new_sig = r22
-GR_new_exp = r23
-GR_lden_sig = r24
-GR_snorm_sig = r25
-GR_exp1 = r26
-GR_x_exp = r27
-GR_min_den_rexp = r28
-// r36-39 parameters for libm_error_support
-
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-FR_lnorm_sig = f10
-FR_lnorm_exp = f11
-FR_lnorm = f12
-FR_sden_sig = f13
-FR_sden_exp = f14
-FR_sden = f15
-FR_save_f8 = f33
-FR_new_exp = f34
-FR_new_sig = f35
-FR_lden_sig = f36
-FR_snorm_sig = f37
-FR_exp1 = f38
-FR_tmp = f39
-
-//
-// Overview of operation
-//==============================================================
-// nexttowardf determines the next representable value
-// after x in the direction of y.
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(nexttowardf)
-
-// Extract signexp from x
-// Form smallest denormal significand = ulp size
-{ .mlx
- getf.exp GR_exp = f8
- movl GR_sden_sig = 0x0000010000000000
-}
-// Form largest normal exponent
-// Is x < y ? p10 if yes, p11 if no
-// Form smallest normal exponent
-{ .mfi
- addl GR_max_pexp = 0x1007e, r0
- fcmp.lt.s1 p10,p11 = f8, f9
- addl GR_min_pexp = 0x0ff81, r0 ;;
-}
-
-// Is x=y?
-{ .mfi
- getf.sig GR_sig = f8
- fcmp.eq.s0 p6,p0 = f8, f9
- nop.i 0
-}
-// Extract significand from x
-// Form largest normal significand
-{ .mlx
- nop.m 0
- movl GR_lnorm_sig = 0xffffff0000000000 ;;
-}
-
-// Move largest normal significand to fp reg for special cases
-{ .mfi
- setf.sig FR_lnorm_sig = GR_lnorm_sig
- nop.f 0
- addl GR_sign_mask = 0x20000, r0 ;;
-}
-
-// Move smallest denormal significand and signexp to fp regs
-// Is x=nan?
-// Set p12 and p13 based on whether significand increases or decreases
-// It increases (p12 set) if x<y and x>=0 or if x>y and x<0
-// It decreases (p13 set) if x<y and x<0 or if x>y and x>=0
-{ .mfi
- setf.sig FR_sden_sig = GR_sden_sig
- fclass.m p8,p0 = f8, 0xc3
-(p10) cmp.lt p12,p13 = GR_exp, GR_sign_mask
-}
-{ .mfi
- setf.exp FR_sden_exp = GR_min_pexp
- nop.f 999
-(p11) cmp.ge p12,p13 = GR_exp, GR_sign_mask ;;
-}
-
-.pred.rel "mutex",p12,p13
-
-// Form expected new significand, adding or subtracting 1 ulp increment
-// If x=y set result to y
-// Form smallest normal significand and largest denormal significand
-{ .mfi
-(p12) add GR_new_sig = GR_sig, GR_sden_sig
-(p6) fnorm.s.s0 f8=f9 //Normalise
- dep.z GR_snorm_sig = 1,63,1 // 0x8000000000000000
-}
-{ .mlx
-(p13) sub GR_new_sig = GR_sig, GR_sden_sig
- movl GR_lden_sig = 0x7fffff0000000000 ;;
-}
-
-// Move expected result significand and signexp to fp regs
-// Is y=nan?
-// Form new exponent in case result exponent needs incrementing or decrementing
-{ .mfi
- setf.exp FR_new_exp = GR_exp
- fclass.m p9,p0 = f9, 0xc3
-(p12) add GR_exp1 = 1, GR_exp
-}
-{ .mib
- setf.sig FR_new_sig = GR_new_sig
-(p13) add GR_exp1 = -1, GR_exp
-(p6) br.ret.spnt b0 ;; // Exit if x=y
-}
-
-// Move largest normal signexp to fp reg for special cases
-// Is x=zero?
-{ .mfi
- setf.exp FR_lnorm_exp = GR_max_pexp
- fclass.m p7,p0 = f8, 0x7
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p8) fma.s0 f8 = f8,f1,f9
-(p8) br.ret.spnt b0 ;; // Exit if x=nan
-}
-
-// Move exp+-1 and smallest normal significand to fp regs for special cases
-// Is x=inf?
-{ .mfi
- setf.exp FR_exp1 = GR_exp1
- fclass.m p6,p0 = f8, 0x23
- addl GR_exp_mask = 0x1ffff, r0
-}
-{ .mfb
- setf.sig FR_snorm_sig = GR_snorm_sig
-(p9) fma.s0 f8 = f8,f1,f9
-(p9) br.ret.spnt b0 ;; // Exit if y=nan
-}
-
-// Move largest denormal significand to fp regs for special cases
-// Save x
-{ .mfb
- setf.sig FR_lden_sig = GR_lden_sig
- mov FR_save_f8 = f8
-(p7) br.cond.spnt NEXT_ZERO ;; // Exit if x=0
-}
-
-// Mask off the sign to get x_exp
-{ .mfb
- and GR_x_exp = GR_exp_mask, GR_exp
- nop.f 999
-(p6) br.cond.spnt NEXT_INF ;; // Exit if x=inf
-}
-
-// Check 6 special cases when significand rolls over:
-// 1 sig size incr, x_sig=max_sig, x_exp < max_exp
-// Set p6, result is sig=min_sig, exp++
-// 2 sig size incr, x_sig=max_sig, x_exp >= max_exp
-// Set p7, result is inf, signal overflow
-// 3 sig size decr, x_sig=min_sig, x_exp > min_exp
-// Set p8, result is sig=max_sig, exp--
-// 4 sig size decr, x_sig=min_sig, x_exp = min_exp
-// Set p9, result is sig=max_den_sig, exp same, signal underflow and inexact
-// 5 sig size decr, x_sig=min_den_sig, x_exp = min_exp
-// Set p10, result is zero, sign of x, signal underflow and inexact
-// 6 sig size decr, x_sig=min_sig, x_exp < min_exp
-// Set p14, result is zero, sign of x, signal underflow and inexact
-//
-// Form exponent of smallest float denormal (if normalized register format)
-{ .mmi
- adds GR_min_den_rexp = -23, GR_min_pexp
-(p12) cmp.eq.unc p6,p0 = GR_new_sig, r0
-(p13) cmp.eq.unc p8,p10 = GR_new_sig, GR_lden_sig ;;
-}
-
-{ .mmi
-(p6) cmp.lt.unc p6,p7 = GR_x_exp, GR_max_pexp
-(p8) cmp.gt.unc p8,p9 = GR_x_exp, GR_min_pexp
-(p10) cmp.eq.unc p10,p0 = GR_new_sig, r0 ;;
-}
-
-// Create small normal in case need to generate underflow flag
-{ .mfi
-(p10) cmp.le.unc p10,p0 = GR_x_exp, GR_min_pexp
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
-(p9) cmp.gt.unc p9,p14 = GR_x_exp, GR_min_den_rexp
-}
-// Branch if cases 1, 2, 3
-{ .bbb
-(p6) br.cond.spnt NEXT_EXPUP
-(p7) br.cond.spnt NEXT_OVERFLOW
-(p8) br.cond.spnt NEXT_EXPDOWN ;;
-}
-
-// Branch if cases 4, 5, 6
-{ .bbb
-(p9) br.cond.spnt NEXT_NORM_TO_DENORM
-(p10) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO
-(p14) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO ;;
-}
-
-// Here if no special cases
-// Set p6 if result will be a denormal, so can force underflow flag
-// Case 1: x_exp=min_exp, x_sig=unnormalized
-// Case 2: x_exp<min_exp
-{ .mfi
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_new_exp, FR_new_sig
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- nop.f 999
-(p7) tbit.z p6,p0 = GR_new_sig, 63 ;;
-}
-
-NEXT_COMMON_FINISH:
-// Force underflow and inexact if denormal result
-{ .mfi
- nop.m 999
-(p6) fma.s.s0 FR_tmp = FR_tmp,FR_tmp,f0
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fnorm.s.s0 f8 = f8 // Final normalization to result precision
-(p6) br.cond.spnt NEXT_UNDERFLOW ;;
-}
-
-{ .mfb
- nop.m 999
- nop.f 999
- br.ret.sptk b0;;
-}
-
-//Special cases
-NEXT_EXPUP:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_snorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_EXPDOWN:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_lnorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_NORM_TO_DENORM:
-{ .mfi
- nop.m 999
- fmerge.se f8 = FR_new_exp, FR_lden_sig
- nop.i 999
-}
-// Force underflow and inexact
-{ .mfb
- nop.m 999
- fma.s.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW_TO_ZERO:
-{ .mfb
- cmp.eq p6,p0 = r0,r0
- fmerge.s f8 = FR_save_f8,f0
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_INF:
-// Here if f8 is +- infinity
-// INF
-// if f8 is +inf, no matter what y is return largest float
-// if f8 is -inf, no matter what y is return -largest float
-
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f8,FR_lnorm
- br.ret.sptk b0 ;;
-}
-
-NEXT_ZERO:
-
-// Here if f8 is +- zero
-// ZERO
-// if f8 is zero and y is +, return + smallest float denormal
-// if f8 is zero and y is -, return - smallest float denormal
-
-{ .mfi
- nop.m 999
- fmerge.se FR_sden = FR_sden_exp,FR_sden_sig
- nop.i 999 ;;
-}
-
-// Create small normal to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_sden_exp, FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Add correct sign from direction arg
-{ .mfi
- nop.m 999
- fmerge.s f8 = f9,FR_sden
- nop.i 999 ;;
-}
-
-// Force underflow and inexact flags
-{ .mfb
- nop.m 999
- fma.s.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW:
-// Here if result is a denorm, or input is finite and result is zero
-// Call error support to report possible range error
-{ .mib
- alloc r32=ar.pfs,2,2,4,0
- mov GR_Parameter_TAG = 272 // Error code
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-NEXT_OVERFLOW:
-// Here if input is finite, but result will be infinite
-// Use frcpa to generate infinity of correct sign
-// Call error support to report possible range error
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- frcpa.s1 f8,p6 = FR_save_f8, f0
- nop.i 999 ;;
-}
-
-// Create largest double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Force overflow and inexact flags to be set
-{ .mfb
- mov GR_Parameter_TAG = 200 // Error code
- fma.s.s0 FR_tmp = FR_lnorm,FR_lnorm,f0
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-GLOBAL_LIBM_END(nexttowardf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-
-// (2)
-{ .mmi
- stfs [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfs [GR_Parameter_X] = FR_save_f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_nexttowardf.c b/sysdeps/ia64/fpu/s_nexttowardf.c
new file mode 100644
index 0000000000..55e95f6916
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_nexttowardf.c
@@ -0,0 +1 @@
+#include <sysdeps/i386/fpu/s_nexttowardf.c>
diff --git a/sysdeps/ia64/fpu/s_nexttowardl.S b/sysdeps/ia64/fpu/s_nexttowardl.S
deleted file mode 100644
index fa2db125a8..0000000000
--- a/sysdeps/ia64/fpu/s_nexttowardl.S
+++ /dev/null
@@ -1,494 +0,0 @@
-.file "nexttowardl.s"
-
-
-// Copyright (c) 2001 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 08/15/01 Initial version
-// 08/23/01 Corrected error tag number
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 12/14/04 Added error handling on underflow.
-//
-// API
-//==============================================================
-// long double nexttowardl( long double x, long double y );
-// input floating point f8, f9
-// output floating point f8
-//
-// Registers used
-//==============================================================
-GR_max_pexp = r14
-GR_min_pexp = r15
-GR_exp = r16
-GR_sig = r17
-GR_lnorm_sig = r18
-GR_sign_mask = r19
-GR_exp_mask = r20
-GR_sden_sig = r21
-GR_new_sig = r22
-GR_new_exp = r23
-GR_lden_sig = r24
-GR_snorm_sig = r25
-GR_exp1 = r26
-GR_x_exp = r27
-// r36-39 parameters for libm_error_support
-
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_PFS = r32
-
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_TAG = r39
-
-FR_lnorm_sig = f10
-FR_lnorm_exp = f11
-FR_lnorm = f12
-FR_sden_sig = f13
-FR_den_exp = f14
-FR_sden = f15
-FR_snorm_exp = f32
-FR_save_f8 = f33
-FR_new_exp = f34
-FR_new_sig = f35
-FR_lden_sig = f36
-FR_snorm_sig = f37
-FR_exp1 = f38
-FR_tmp = f39
-
-//
-// Overview of operation
-//==============================================================
-// nexttowardl determines the next representable value
-// after x in the direction of y.
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(nexttowardl)
-
-// Extract signexp from x
-// Is x < y ? p10 if yes, p11 if no
-// Form smallest denormal significand = ulp size
-{ .mfi
- getf.exp GR_exp = f8
- fcmp.lt.s1 p10,p11 = f8, f9
- addl GR_sden_sig = 0x1, r0
-}
-// Form largest normal significand 0xffffffffffffffff
-// Form smallest normal exponent
-{ .mfi
- addl GR_lnorm_sig = -0x1,r0
- nop.f 999
- addl GR_min_pexp = 0x0c001, r0 ;;
-}
-
-// Extract significand from x
-// Is x=y? This fcmp also sets Invalid and Denormal if required
-// Form largest normal exponent
-{ .mfi
- getf.sig GR_sig = f8
- fcmp.eq.s0 p6,p0 = f8, f9
- addl GR_max_pexp = 0x13ffe, r0
-}
-// Move largest normal significand to fp reg for special cases
-{ .mfi
- setf.sig FR_lnorm_sig = GR_lnorm_sig
- nop.f 999
- addl GR_sign_mask = 0x20000, r0 ;;
-}
-
-// Move smallest denormal significand and exp to fp regs
-// Is x=nan?
-// Set p12 and p13 based on whether significand increases or decreases
-// It increases (p12 set) if x<y and x>=0 or if x>y and x<0
-// It decreases (p13 set) if x<y and x<0 or if x>y and x>=0
-{ .mfi
- setf.sig FR_sden_sig = GR_sden_sig
- fclass.m p8,p0 = f8, 0xc3
-(p10) cmp.lt p12,p13 = GR_exp, GR_sign_mask
-}
-// Move smallest normal exp to fp regs
-{ .mfi
- setf.exp FR_snorm_exp = GR_min_pexp
- nop.f 999
-(p11) cmp.ge p12,p13 = GR_exp, GR_sign_mask ;;
-}
-
-.pred.rel "mutex",p12,p13
-
-// Form expected new significand, adding or subtracting 1 ulp increment
-// If x=y set result to y
-// Form smallest normal significand and largest denormal significand
-{ .mfi
-(p12) add GR_new_sig = GR_sig, GR_sden_sig
-(p6) fmerge.s f8=f9,f9
- dep.z GR_snorm_sig = 1,63,1 // 0x8000000000000000
-}
-{ .mlx
-(p13) sub GR_new_sig = GR_sig, GR_sden_sig
- movl GR_lden_sig = 0x7fffffffffffffff ;;
-}
-
-// Move expected result significand and signexp to fp regs
-// Is y=nan?
-// Form new exponent in case result exponent needs incrementing or decrementing
-{ .mfi
- setf.exp FR_new_exp = GR_exp
- fclass.m p9,p0 = f9, 0xc3
-(p12) add GR_exp1 = 1, GR_exp
-}
-{ .mib
- setf.sig FR_new_sig = GR_new_sig
-(p13) add GR_exp1 = -1, GR_exp
-(p6) br.ret.spnt b0 ;; // Exit if x=y
-}
-
-// Move largest normal signexp to fp reg for special cases
-// Is x=zero?
-{ .mfi
- setf.exp FR_lnorm_exp = GR_max_pexp
- fclass.m p7,p0 = f8, 0x7
- nop.i 999
-}
-{ .mfb
- setf.exp FR_den_exp = GR_min_pexp
-(p8) fma.s0 f8 = f8,f1,f9
-(p8) br.ret.spnt b0 ;; // Exit if x=nan
-}
-
-// Move exp+-1 and smallest normal significand to fp regs for special cases
-// Is x=inf?
-{ .mfi
- setf.exp FR_exp1 = GR_exp1
- fclass.m p6,p0 = f8, 0x23
- addl GR_exp_mask = 0x1ffff, r0
-}
-{ .mfb
- setf.sig FR_snorm_sig = GR_snorm_sig
-(p9) fma.s0 f8 = f8,f1,f9
-(p9) br.ret.spnt b0 ;; // Exit if y=nan
-}
-
-// Move largest denormal significand to fp regs for special cases
-// Save x
-{ .mfb
- setf.sig FR_lden_sig = GR_lden_sig
- mov FR_save_f8 = f8
-(p7) br.cond.spnt NEXT_ZERO ;; // Exit if x=0
-}
-
-// Mask off the sign to get x_exp
-{ .mfb
- and GR_x_exp = GR_exp_mask, GR_exp
- nop.f 999
-(p6) br.cond.spnt NEXT_INF ;; // Exit if x=inf
-}
-
-// Check 5 special cases when significand rolls over:
-// 1 sig size incr, x_sig=max_sig, x_exp < max_exp
-// Set p6, result is sig=min_sig, exp++
-// 2 sig size incr, x_sig=max_sig, x_exp >= max_exp
-// Set p7, result is inf, signal overflow
-// 3 sig size decr, x_sig=min_sig, x_exp > min_exp
-// Set p8, result is sig=max_sig, exp--
-// 4 sig size decr, x_sig=min_sig, x_exp = min_exp
-// Set p9, result is sig=max_den_sig, exp same, signal underflow and inexact
-// 5 sig size decr, x_sig=min_den_sig, x_exp = min_exp
-// Set p10, result is zero, sign of x, signal underflow and inexact
-//
-{ .mmi
-(p12) cmp.eq.unc p6,p0 = GR_new_sig, r0
-(p13) cmp.eq.unc p9,p10 = GR_new_sig, GR_lden_sig
- nop.i 999
-;;
-}
-
-{ .mmi
-(p6) cmp.lt.unc p6,p7 = GR_x_exp, GR_max_pexp
-(p10) cmp.eq.unc p10,p0 = GR_new_sig, r0
-(p9) cmp.le.unc p9,p8 = GR_x_exp, GR_min_pexp
-;;
-}
-
-// Create small normal in case need to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_snorm_exp, FR_lnorm_sig
- nop.i 999
-}
-// Branch if cases 1, 2, 3
-{ .bbb
-(p6) br.cond.spnt NEXT_EXPUP
-(p7) br.cond.spnt NEXT_OVERFLOW
-(p8) br.cond.spnt NEXT_EXPDOWN ;;
-}
-
-// Branch if cases 4, 5
-{ .mbb
- nop.m 999
-(p9) br.cond.spnt NEXT_NORM_TO_DENORM
-(p10) br.cond.spnt NEXT_UNDERFLOW_TO_ZERO
-;;
-}
-
-// Here if no special cases
-// Set p6 if result will be a denormal, so can force underflow flag
-// Case 1: x_exp=min_exp, x_sig=unnormalized
-// Case 2: x_exp<min_exp
-{ .mfi
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_new_exp, FR_new_sig
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- nop.f 999
-(p6) tbit.z p6,p0 = GR_new_sig, 63 ;;
-}
-
-NEXT_COMMON_FINISH:
-// Force underflow and inexact if denormal result
-{ .mfi
- nop.m 999
-(p6) fma.s0 FR_tmp = FR_tmp,FR_tmp,f0
- nop.i 999
-}
-{ .mfb
- nop.m 999
- fnorm.s0 f8 = f8 // Final normalization to result precision
-(p6) br.cond.spnt NEXT_UNDERFLOW ;;
-}
-
-{ .mfb
- nop.m 999
- nop.f 999
- br.ret.sptk b0;;
-}
-
-//Special cases
-NEXT_EXPUP:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_snorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_EXPDOWN:
-{ .mfb
- cmp.lt p6,p7 = GR_x_exp, GR_min_pexp
- fmerge.se f8 = FR_exp1, FR_lnorm_sig
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_NORM_TO_DENORM:
-{ .mfi
- nop.m 999
- fmerge.se f8 = FR_exp1, FR_lden_sig
- nop.i 999
-}
-// Force underflow and inexact
-{ .mfb
- nop.m 999
- fma.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW_TO_ZERO:
-{ .mfb
- cmp.eq p6,p0 = r0,r0
- fmerge.s f8 = FR_save_f8,f0
- br.cond.sptk NEXT_COMMON_FINISH ;;
-}
-
-NEXT_INF:
-// Here if f8 is +- infinity
-// INF
-// if f8 is +inf, no matter what y is return largest long double
-// if f8 is -inf, no matter what y is return -largest long double
-
-// Create largest long double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
- fmerge.s f8 = f8,FR_lnorm
- br.ret.sptk b0 ;;
-}
-
-NEXT_ZERO:
-
-// Here if f8 is +- zero
-// ZERO
-// if f8 is zero and y is +, return + smallest long double denormal
-// if f8 is zero and y is -, return - smallest long double denormal
-
-{ .mfi
- nop.m 999
- fmerge.se FR_sden = f0,FR_sden_sig
- nop.i 999 ;;
-}
-
-// Create small normal to generate underflow flag
-{ .mfi
- nop.m 999
- fmerge.se FR_tmp = FR_snorm_exp, FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Add correct sign from direction arg
-{ .mfi
- nop.m 999
- fmerge.s f8 = f9,FR_sden
- nop.i 999 ;;
-}
-
-// Force underflow and inexact flags
-{ .mfb
- nop.m 999
- fma.s0 FR_tmp = FR_tmp,FR_tmp,f0
- br.cond.sptk NEXT_UNDERFLOW ;;
-}
-
-NEXT_UNDERFLOW:
-// Here if result is a denorm, or input is finite and result is zero
-// Call error support to report possible range error
-{ .mib
- alloc r32=ar.pfs,2,2,4,0
- mov GR_Parameter_TAG = 270 // Error code
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-NEXT_OVERFLOW:
-// Here if input is finite, but result will be infinite
-// Use frcpa to generate infinity of correct sign
-// Call error support to report possible range error
-{ .mfi
- alloc r32=ar.pfs,2,2,4,0
- frcpa.s1 f8,p6 = FR_save_f8, f0
- nop.i 999 ;;
-}
-
-// Create largest double
-{ .mfi
- nop.m 999
- fmerge.se FR_lnorm = FR_lnorm_exp,FR_lnorm_sig
- nop.i 999 ;;
-}
-
-// Force overflow and inexact flags to be set
-{ .mfb
- mov GR_Parameter_TAG = 198 // Error code
- fma.s0 FR_tmp = FR_lnorm,FR_lnorm,f0
- br.cond.sptk __libm_error_region // Branch to error call
-}
-;;
-
-GLOBAL_LIBM_END(nexttowardl)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-
-// (2)
-{ .mmi
- stfe [GR_Parameter_Y] = f9,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfe [GR_Parameter_X] = FR_save_f8 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfe [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/s_rint.S b/sysdeps/ia64/fpu/s_rint.S
index 1735d9b498..d04f06a31f 100644
--- a/sysdeps/ia64/fpu/s_rint.S
+++ b/sysdeps/ia64/fpu/s_rint.S
@@ -1,10 +1,10 @@
.file "rint.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,68 +20,74 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/08/01 Corrected behavior for all rounding modes.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
-//==============================================================
-
+// 2/02/00: Initial version
+// 2/08/01 Corrected behavior for all rounding modes.
+//
// API
//==============================================================
// double rint(double x)
-//==============================================================
-// general input registers:
-// r14 - r21
+#include "libm_support.h"
+
+//
+// general registers used:
+//
+rint_GR_FFFF = r14
+rint_GR_signexp = r15
+rint_GR_exponent = r16
+rint_GR_17ones = r17
+rint_GR_10033 = r18
+rint_GR_fpsr = r19
+rint_GR_rcs0 = r20
+rint_GR_rcs0_mask = r21
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
-rFpsr = r19
-rRcs0 = r20
-rRcs0Mask = r21
-// floating-point registers:
-// f8 - f11
+// predicate registers used:
+// p6-11
-fXInt = f9
-fNormX = f10
-fTmp = f11
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+RINT_NORM_f8 = f9
+RINT_FFFF = f10
+RINT_INEXACT = f11
+RINT_FLOAT_INT_f8 = f12
+RINT_INT_f8 = f13
// Overview of operation
//==============================================================
+
// double rint(double x)
-// Return an integer value (represented as a double) that is x
-// rounded to integer in current rounding mode
+// Return an integer value (represented as a double) that is x rounded to integer in current
+// rounding mode
// Inexact is set if x != rint(x)
-//==============================================================
+// *******************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
+// if the exponent is >= 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
@@ -94,136 +100,155 @@ fTmp = f11
// So input is an integer value already.
// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
+// if the exponent is >= 10016 => 17(true) = 23(decimal)
+// we have a significand of 53 bits 1.52-bits. (implicit 1)
+// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+
+.align 32
+.global rint#
+
.section .text
-GLOBAL_IEEE754_ENTRY(rint)
+.proc rint#
+.align 32
+
+
+rint:
+#ifdef _LIBC
+.global __rint
+.type __rint,@function
+__rint:
+#endif
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10033, r0 // Set exponent at which is integer
+ mov rint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0
+ fcvt.fx.s1 RINT_INT_f8 = f8
+ addl rint_GR_10033 = 0x10033, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
+ mov rint_GR_FFFF = -1
+ fnorm.s1 RINT_NORM_f8 = f8
+ mov rint_GR_17ones = 0x1FFFF
;;
+}
{ .mfi
- mov rFpsr = ar40 // Read fpsr -- check rc.s0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
- nop.i 0
-}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt RINT_UNORM // Branch if x unorm
-}
+ setf.sig RINT_FFFF = rint_GR_FFFF
+ fclass.m.unc p6,p0 = f8, 0xe7
+ mov rint_GR_rcs0_mask = 0x0c00
;;
+}
-
-RINT_COMMON:
-// Return here from RINT_UNORM
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.d.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
+ nop.m 999
+(p6) fnorm.d f8 = f8
+(p6) br.ret.spnt b0 // Exit if x nan, inf, zero
;;
+}
{ .mfi
- mov rRcs0Mask = 0x0c00 // Mask for rc.s0
- fcvt.xf f8 = fXInt // Result assume |x| < 2^52
- cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^52?
-}
+ nop.m 999
+ fcvt.xf RINT_FLOAT_INT_f8 = RINT_INT_f8
+ nop.i 999
;;
+}
-// We must correct result if |x| >= 2^52
{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = fNormX, f1, f0 // If |x| >= 2^52, result x
- nop.i 0
-}
+ getf.exp rint_GR_signexp = RINT_NORM_f8
+ fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal
+ nop.i 999
;;
+}
-{ .mfi
- nop.m 0
- fcmp.eq.unc.s1 p0, p9 = f8, fNormX // Is result = x ?
- nop.i 0
+
+{ .mii
+ nop.m 999
+ nop.i 999
+ and rint_GR_exponent = rint_GR_signexp, rint_GR_17ones
+;;
}
-{ .mfi
- nop.m 0
-(p8) fmerge.s f8 = fNormX, f8 // Make sure sign rint(x) = sign x
- nop.i 0
+
+{ .mmi
+ cmp.ge.unc p7,p6 = rint_GR_exponent, rint_GR_10033
+ and rint_GR_rcs0 = rint_GR_rcs0_mask, rint_GR_fpsr
+ nop.i 999
+;;
}
+
+// Check to see if s0 rounding mode is round to nearest. If not then set s2
+// rounding mode to that of s0 and repeat conversions.
+L(RINT_COMMON):
+{ .mfb
+ cmp.ne p11,p0 = rint_GR_rcs0, r0
+(p6) fclass.m.unc p9,p10 = RINT_FLOAT_INT_f8, 0x07 // Test for result=0
+(p11) br.cond.spnt L(RINT_NOT_ROUND_NEAREST) // Branch if not round to nearest
;;
+}
{ .mfi
-(p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
- nop.f 0
- nop.i 0
+ nop.m 999
+(p6) fcmp.eq.unc.s1 p0,p8 = RINT_FLOAT_INT_f8, RINT_NORM_f8
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+(p7) fnorm.d.s0 f8 = f8
+ nop.i 999
;;
+}
-// If |x| < 2^52 we must test for other rounding modes
+// If result is zero, merge sign of input
{ .mfi
-(p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
-}
-{ .mbb
- nop.m 0
-(p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
- br.ret.sptk b0 // Exit main path if round nearest
+ nop.m 999
+(p9) fmerge.s f8 = f8, RINT_FLOAT_INT_f8
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+(p10) fnorm.d f8 = RINT_FLOAT_INT_f8
+ nop.i 999
;;
+}
-
-
-RINT_UNORM:
-// Here if x unorm
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk RINT_COMMON // Return to main path
-}
+ nop.m 999
+(p8) fmpy.s0 RINT_INEXACT = RINT_FFFF,RINT_FFFF // Dummy to set inexact
+ br.ret.sptk b0
;;
-
-RINT_NOT_ROUND_NEAREST:
-// Here if not round to nearest, and |x| < 2^52
-// Set rounding mode of s2 to that of s0, and repeat the conversion using s2
-{ .mfi
- nop.m 0
- fsetc.s2 0x7f, 0x40
- nop.i 0
}
-;;
+L(RINT_NOT_ROUND_NEAREST):
+// Set rounding mode of s2 to that of s0
{ .mfi
- nop.m 0
- fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
- nop.i 0
-}
+ mov rint_GR_rcs0 = r0 // Clear so we don't come back here
+ fsetc.s2 0x7f, 0x40
+ nop.i 999
;;
+}
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXInt // Expected result
- nop.i 0
-}
+ nop.m 999
+ fcvt.fx.s2 RINT_INT_f8 = f8
+ nop.i 999
;;
+}
-// Be sure sign of result = sign of input. Fixes cases where result is 0.
{ .mfb
- nop.m 0
- fmerge.s f8 = fNormX, f8
- br.ret.sptk b0 // Exit main path
-}
+ nop.m 999
+ fcvt.xf RINT_FLOAT_INT_f8 = RINT_INT_f8
+ br.cond.sptk L(RINT_COMMON)
;;
+}
+
-GLOBAL_IEEE754_END(rint)
+.endp rint
+ASM_SIZE_DIRECTIVE(rint)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__rint)
+#endif
diff --git a/sysdeps/ia64/fpu/s_rintf.S b/sysdeps/ia64/fpu/s_rintf.S
index 05d6b411f2..73cb98a048 100644
--- a/sysdeps/ia64/fpu/s_rintf.S
+++ b/sysdeps/ia64/fpu/s_rintf.S
@@ -1,10 +1,10 @@
.file "rintf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,68 +20,74 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/08/01 Corrected behavior for all rounding modes.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
-//==============================================================
-
+// 2/02/00: Initial version
+// 2/08/01 Corrected behavior for all rounding modes.
+//
// API
//==============================================================
// float rintf(float x)
-//==============================================================
-// general input registers:
-// r14 - r21
+#include "libm_support.h"
+
+//
+// general registers used:
+//
+rint_GR_FFFF = r14
+rint_GR_signexp = r15
+rint_GR_exponent = r16
+rint_GR_17ones = r17
+rint_GR_10033 = r18
+rint_GR_fpsr = r19
+rint_GR_rcs0 = r20
+rint_GR_rcs0_mask = r21
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
-rFpsr = r19
-rRcs0 = r20
-rRcs0Mask = r21
-// floating-point registers:
-// f8 - f11
+// predicate registers used:
+// p6-11
-fXInt = f9
-fNormX = f10
-fTmp = f11
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+RINT_NORM_f8 = f9
+RINT_FFFF = f10
+RINT_INEXACT = f11
+RINT_FLOAT_INT_f8 = f12
+RINT_INT_f8 = f13
// Overview of operation
//==============================================================
+
// float rintf(float x)
-// Return an integer value (represented as a float) that is x
-// rounded to integer in current rounding mode
-// Inexact is set if x != rint(x)
-//==============================================================
+// Return an integer value (represented as a float) that is x rounded to integer in current
+// rounding mode
+// Inexact is set if x != rintf(x)
+// *******************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
+// if the exponent is >= 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
@@ -94,136 +100,155 @@ fTmp = f11
// So input is an integer value already.
// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
+// if the exponent is >= 10016 => 17(true) = 23(decimal)
+// we have a significand of 53 bits 1.52-bits. (implicit 1)
+// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+
+.align 32
+.global rintf#
+
.section .text
-GLOBAL_IEEE754_ENTRY(rintf)
+.proc rintf#
+.align 32
+
+
+rintf:
+#ifdef _LIBC
+.global __rintf
+.type __rintf,@function
+__rintf:
+#endif
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x10016, r0 // Set exponent at which is integer
+ mov rint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0
+ fcvt.fx.s1 RINT_INT_f8 = f8
+ addl rint_GR_10033 = 0x10016, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
+ mov rint_GR_FFFF = -1
+ fnorm.s1 RINT_NORM_f8 = f8
+ mov rint_GR_17ones = 0x1FFFF
;;
+}
{ .mfi
- mov rFpsr = ar40 // Read fpsr -- check rc.s0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
- nop.i 0
-}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt RINT_UNORM // Branch if x unorm
-}
+ setf.sig RINT_FFFF = rint_GR_FFFF
+ fclass.m.unc p6,p0 = f8, 0xe7
+ mov rint_GR_rcs0_mask = 0x0c00
;;
+}
-
-RINT_COMMON:
-// Return here from RINT_UNORM
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.s.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
+ nop.m 999
+(p6) fnorm.s f8 = f8
+(p6) br.ret.spnt b0 // Exit if x nan, inf, zero
;;
+}
{ .mfi
- mov rRcs0Mask = 0x0c00 // Mask for rc.s0
- fcvt.xf f8 = fXInt // Result assume |x| < 2^23
- cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^23?
-}
+ nop.m 999
+ fcvt.xf RINT_FLOAT_INT_f8 = RINT_INT_f8
+ nop.i 999
;;
+}
-// We must correct result if |x| >= 2^23
{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = fNormX, f1, f0 // If |x| >= 2^23, result x
- nop.i 0
-}
+ getf.exp rint_GR_signexp = RINT_NORM_f8
+ fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal
+ nop.i 999
;;
+}
-{ .mfi
- nop.m 0
- fcmp.eq.unc.s1 p0, p9 = f8, fNormX // Is result = x ?
- nop.i 0
+
+{ .mii
+ nop.m 999
+ nop.i 999
+ and rint_GR_exponent = rint_GR_signexp, rint_GR_17ones
+;;
}
-{ .mfi
- nop.m 0
-(p8) fmerge.s f8 = fNormX, f8 // Make sure sign rint(x) = sign x
- nop.i 0
+
+{ .mmi
+ cmp.ge.unc p7,p6 = rint_GR_exponent, rint_GR_10033
+ and rint_GR_rcs0 = rint_GR_rcs0_mask, rint_GR_fpsr
+ nop.i 999
+;;
}
+
+// Check to see if s0 rounding mode is round to nearest. If not then set s2
+// rounding mode to that of s0 and repeat conversions.
+L(RINT_COMMON):
+{ .mfb
+ cmp.ne p11,p0 = rint_GR_rcs0, r0
+(p6) fclass.m.unc p9,p10 = RINT_FLOAT_INT_f8, 0x07 // Test for result=0
+(p11) br.cond.spnt L(RINT_NOT_ROUND_NEAREST) // Branch if not round to nearest
;;
+}
{ .mfi
-(p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
- nop.f 0
- nop.i 0
+ nop.m 999
+(p6) fcmp.eq.unc.s1 p0,p8 = RINT_FLOAT_INT_f8, RINT_NORM_f8
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+(p7) fnorm.s.s0 f8 = f8
+ nop.i 999
;;
+}
-// If |x| < 2^23 we must test for other rounding modes
+// If result is zero, merge sign of input
{ .mfi
-(p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
-}
-{ .mbb
- nop.m 0
-(p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
- br.ret.sptk b0 // Exit main path if round nearest
+ nop.m 999
+(p9) fmerge.s f8 = f8, RINT_FLOAT_INT_f8
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+(p10) fnorm.s f8 = RINT_FLOAT_INT_f8
+ nop.i 999
;;
+}
-
-
-RINT_UNORM:
-// Here if x unorm
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk RINT_COMMON // Return to main path
-}
+ nop.m 999
+(p8) fmpy.s0 RINT_INEXACT = RINT_FFFF,RINT_FFFF // Dummy to set inexact
+ br.ret.sptk b0
;;
-
-RINT_NOT_ROUND_NEAREST:
-// Here if not round to nearest, and |x| < 2^23
-// Set rounding mode of s2 to that of s0, and repeat the conversion using s2
-{ .mfi
- nop.m 0
- fsetc.s2 0x7f, 0x40
- nop.i 0
}
-;;
+L(RINT_NOT_ROUND_NEAREST):
+// Set rounding mode of s2 to that of s0
{ .mfi
- nop.m 0
- fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
- nop.i 0
-}
+ mov rint_GR_rcs0 = r0 // Clear so we don't come back here
+ fsetc.s2 0x7f, 0x40
+ nop.i 999
;;
+}
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXInt // Expected result
- nop.i 0
-}
+ nop.m 999
+ fcvt.fx.s2 RINT_INT_f8 = f8
+ nop.i 999
;;
+}
-// Be sure sign of result = sign of input. Fixes cases where result is 0.
{ .mfb
- nop.m 0
- fmerge.s f8 = fNormX, f8
- br.ret.sptk b0 // Exit main path
-}
+ nop.m 999
+ fcvt.xf RINT_FLOAT_INT_f8 = RINT_INT_f8
+ br.cond.sptk L(RINT_COMMON)
;;
+}
+
-GLOBAL_IEEE754_END(rintf)
+.endp rintf
+ASM_SIZE_DIRECTIVE(rintf)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__rintf)
+#endif
diff --git a/sysdeps/ia64/fpu/s_rintl.S b/sysdeps/ia64/fpu/s_rintl.S
index b5402149ec..857e8d5208 100644
--- a/sysdeps/ia64/fpu/s_rintl.S
+++ b/sysdeps/ia64/fpu/s_rintl.S
@@ -1,10 +1,10 @@
.file "rintl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,68 +20,76 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/08/01 Corrected behavior for all rounding modes.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance
-//==============================================================
-
+// 2/02/00: Initial version
+// 5/24/00 Fixed case of 2^63 - 1 + 0.5 (0x1007dffffffffffffffff)
+// 2/08/01 Corrected behavior for all rounding modes.
+//
// API
//==============================================================
// long double rintl(long double x)
-//==============================================================
-// general input registers:
-// r14 - r21
+#include "libm_support.h"
+
+//
+// general registers used:
+//
+rint_GR_FFFF = r14
+rint_GR_signexp = r15
+rint_GR_exponent = r16
+rint_GR_17ones = r17
+rint_GR_10033 = r18
+rint_GR_fpsr = r19
+rint_GR_rcs0 = r20
+rint_GR_rcs0_mask = r21
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rM1 = r18
-rFpsr = r19
-rRcs0 = r20
-rRcs0Mask = r21
-// floating-point registers:
-// f8 - f11
+// predicate registers used:
+// p6-11
-fXInt = f9
-fNormX = f10
-fTmp = f11
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+RINT_NORM_f8 = f9
+RINT_FFFF = f10
+RINT_INEXACT = f11
+RINT_FLOAT_INT_f8 = f12
+RINT_INT_f8 = f13
+RINT_SIGNED_FLOAT_INT_f8 = f14
// Overview of operation
//==============================================================
+
// long double rintl(long double x)
-// Return an integer value (represented as a long double) that is x
-// rounded to integer in current rounding mode
-// Inexact is set if x != rint(x)
-//==============================================================
+// Return an integer value (represented as a long double) that is x rounded to integer in current
+// rounding mode
+// Inexact is set if x != rintl(x)
+// *******************************************************************************
+
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
+
+// Is the input an integer value already?
// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
+// if the exponent is >= 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
@@ -94,136 +102,151 @@ fTmp = f11
// So input is an integer value already.
// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
+// if the exponent is >= 10016 => 17(true) = 23(decimal)
+// we have a significand of 53 bits 1.52-bits. (implicit 1)
+// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
+// If x is NAN, ZERO, or INFINITY, then return
+
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+
+
+.align 32
+.global rintl#
+
.section .text
-GLOBAL_IEEE754_ENTRY(rintl)
+.proc rintl#
+.align 32
+
+
+rintl:
+#ifdef _LIBC
+.global __rintl
+.type __rintl,@function
+__rintl:
+#endif
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- addl rBigexp = 0x1003e, r0 // Set exponent at which is integer
+ mov rint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0
+ fcvt.fx.s1 RINT_INT_f8 = f8
+ addl rint_GR_10033 = 0x1003e, r0
}
{ .mfi
- mov rM1 = -1 // Set all ones
- fcvt.fx.s1 fXInt = f8 // Convert to int in significand
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
+ mov rint_GR_FFFF = -1
+ fnorm.s1 RINT_NORM_f8 = f8
+ mov rint_GR_17ones = 0x1FFFF
;;
+}
{ .mfi
- mov rFpsr = ar40 // Read fpsr -- check rc.s0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
- nop.i 0
-}
-{ .mfb
- setf.sig fTmp = rM1 // Make const for setting inexact
- fnorm.s1 fNormX = f8 // Normalize input
-(p7) br.cond.spnt RINT_UNORM // Branch if x unorm
-}
+ setf.sig RINT_FFFF = rint_GR_FFFF
+ fclass.m.unc p6,p0 = f8, 0xe7
+ mov rint_GR_rcs0_mask = 0x0c00
;;
+}
-
-RINT_COMMON:
-// Return here from RINT_UNORM
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
+ nop.m 999
+(p6) fnorm f8 = f8
+(p6) br.ret.spnt b0 // Exit if x nan, inf, zero
;;
+}
{ .mfi
- mov rRcs0Mask = 0x0c00 // Mask for rc.s0
- fcvt.xf f8 = fXInt // Result assume |x| < 2^63
- cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^63?
-}
+ nop.m 999
+ fcvt.xf RINT_FLOAT_INT_f8 = RINT_INT_f8
+ nop.i 999
;;
+}
-// We must correct result if |x| >= 2^63
{ .mfi
- nop.m 0
-(p7) fma.s0 f8 = fNormX, f1, f0 // If |x| >= 2^63, result x
- nop.i 0
-}
+ getf.exp rint_GR_signexp = RINT_NORM_f8
+ fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal
+ nop.i 999
;;
+}
-{ .mfi
- nop.m 0
- fcmp.eq.unc.s1 p0, p9 = f8, fNormX // Is result = x ?
- nop.i 0
+
+{ .mii
+ nop.m 999
+ nop.i 999
+ and rint_GR_exponent = rint_GR_signexp, rint_GR_17ones
+;;
}
-{ .mfi
- nop.m 0
-(p8) fmerge.s f8 = fNormX, f8 // Make sure sign rint(x) = sign x
- nop.i 0
+
+{ .mmi
+ cmp.ge.unc p7,p6 = rint_GR_exponent, rint_GR_10033
+ and rint_GR_rcs0 = rint_GR_rcs0_mask, rint_GR_fpsr
+ nop.i 999
+;;
}
+
+// Check to see if s0 rounding mode is round to nearest. If not then set s2
+// rounding mode to that of s0 and repeat conversions.
+// Must merge the original sign for cases where the result is zero or the input
+// is the largest that still has a fraction (0x1007dfffffffffff)
+L(RINT_COMMON):
+{ .mfb
+ cmp.ne p11,p0 = rint_GR_rcs0, r0
+(p6) fmerge.s RINT_SIGNED_FLOAT_INT_f8 = f8, RINT_FLOAT_INT_f8
+(p11) br.cond.spnt L(RINT_NOT_ROUND_NEAREST) // Branch if not round to nearest
;;
+}
{ .mfi
-(p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0
- nop.f 0
- nop.i 0
+ nop.m 999
+(p6) fcmp.eq.unc.s1 p0,p8 = RINT_FLOAT_INT_f8, RINT_NORM_f8
+ nop.i 999
}
+{ .mfi
+ nop.m 999
+(p7) fnorm.s0 f8 = f8
+ nop.i 999
;;
+}
-// If |x| < 2^63 we must test for other rounding modes
{ .mfi
-(p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes
-(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
- nop.i 0
-}
-{ .mbb
- nop.m 0
-(p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest
- br.ret.sptk b0 // Exit main path if round nearest
-}
+ nop.m 999
+(p6) fnorm f8 = RINT_SIGNED_FLOAT_INT_f8
+ nop.i 999
;;
+}
-
-
-RINT_UNORM:
-// Here if x unorm
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk RINT_COMMON // Return to main path
-}
+ nop.m 999
+(p8) fmpy.s0 RINT_INEXACT = RINT_FFFF,RINT_FFFF // Dummy to set inexact
+ br.ret.sptk b0
;;
-
-RINT_NOT_ROUND_NEAREST:
-// Here if not round to nearest, and |x| < 2^63
-// Set rounding mode of s2 to that of s0, and repeat the conversion using s2
-{ .mfi
- nop.m 0
- fsetc.s2 0x7f, 0x40
- nop.i 0
}
-;;
+L(RINT_NOT_ROUND_NEAREST):
+// Set rounding mode of s2 to that of s0
{ .mfi
- nop.m 0
- fcvt.fx.s2 fXInt = fNormX // Convert to int in significand
- nop.i 0
-}
+ mov rint_GR_rcs0 = r0 // Clear so we don't come back here
+ fsetc.s2 0x7f, 0x40
+ nop.i 999
;;
+}
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXInt // Expected result
- nop.i 0
-}
+ nop.m 999
+ fcvt.fx.s2 RINT_INT_f8 = f8
+ nop.i 999
;;
+}
-// Be sure sign of result = sign of input. Fixes cases where result is 0.
{ .mfb
- nop.m 0
- fmerge.s f8 = fNormX, f8
- br.ret.sptk b0 // Exit main path
-}
+ nop.m 999
+ fcvt.xf RINT_FLOAT_INT_f8 = RINT_INT_f8
+ br.cond.sptk L(RINT_COMMON)
;;
+}
+
-GLOBAL_IEEE754_END(rintl)
+.endp rintl
+ASM_SIZE_DIRECTIVE(rintl)
+#ifdef _LIBC
+ASM_SIZE_DIRECTIVE(__rintl)
+#endif
diff --git a/sysdeps/ia64/fpu/s_round.S b/sysdeps/ia64/fpu/s_round.S
index ed5ffae205..b08ede1740 100644
--- a/sysdeps/ia64/fpu/s_round.S
+++ b/sysdeps/ia64/fpu/s_round.S
@@ -1,10 +1,11 @@
.file "round.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 10/25/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,214 +21,229 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 10/25/00 Initial version
-// 06/14/01 Changed cmp to an equivalent form
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance and reduced code size
-// 04/18/03 Eliminate possible WAW dependency warning
-// 09/03/03 Improved performance
+// 10/25/2000: Created
//==============================================================
-
+//
// API
//==============================================================
// double round(double x)
-//==============================================================
-
-// general input registers:
-// r14 - r18
+//
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rExpHalf = r18
+#include "libm_support.h"
-// floating-point registers:
-// f8 - f13
+// general input registers:
+//
+round_GR_half = r14
+round_GR_big = r15
+round_GR_expmask = r16
+round_GR_signexp = r17
+round_GR_exp = r18
+round_GR_expdiff = r19
+
+// predicate registers used:
+// p6 - p10
-fXtruncInt = f9
-fNormX = f10
-fHalf = f11
-fInc = f12
-fRem = f13
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+ROUND_NORM_f8 = f9
+ROUND_TRUNC_f8 = f10
+ROUND_RINT_f8 = f11
+ROUND_FLOAT_TRUNC_f8 = f12
+ROUND_FLOAT_RINT_f8 = f13
+ROUND_REMAINDER = f14
+ROUND_HALF = f15
// Overview of operation
//==============================================================
+
// double round(double x)
-// Return an integer value (represented as a double) that is x
-// rounded to nearest integer, halfway cases rounded away from
-// zero.
+// Return an integer value (represented as a double) that is x
+// rounded to nearest integer, halfway cases rounded away from
+// zero.
// if x>0 result = trunc(x+0.5)
// if x<0 result = trunc(x-0.5)
-//
-//==============================================================
+// *******************************************************************************
-// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
-// we have a significand of 64 bits 1.63-bits.
-// If we multiply by 2^63, we no longer have a fractional part
-// So input is an integer value already.
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
-// double
-// if the exponent is >= 10033 => 34(true) = 52(decimal)
-// 34 + 3ff = 433
-// we have a significand of 53 bits 1.52-bits. (implicit 1)
-// If we multiply by 2^52, we no longer have a fractional part
-// So input is an integer value already.
+// If x is NAN, ZERO, INFINITY, or >= 2^52 then return
-// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
-// So input is an integer value already.
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+.align 32
+.global round#
+
.section .text
-GLOBAL_LIBM_ENTRY(round)
+.proc round#
+.align 32
+
+round:
+
+// Get exponent for +0.5
+// Truncate x to integer
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fcvt.fx.trunc.s1 fXtruncInt = f8 // Convert to int in significand
- addl rBigexp = 0x10033, r0 // Set exponent at which is integer
-}
+ addl round_GR_half = 0x0fffe, r0
+ fcvt.fx.trunc.s1 ROUND_TRUNC_f8 = f8
+ nop.i 999
+}
+
+// Get signexp of x
+// Normalize input
+// Form exponent mask
{ .mfi
- mov rExpHalf = 0x0FFFE // Form sign and exponent of 0.5
- fnorm.s1 fNormX = f8 // Normalize input
- mov rExpMask = 0x1FFFF // Form exponent mask
+ getf.exp round_GR_signexp = f8
+ fnorm ROUND_NORM_f8 = f8
+ addl round_GR_expmask = 0x1ffff, r0 ;;
}
-;;
+// Form +0.5
+// Round x to integer
{ .mfi
- setf.exp fHalf = rExpHalf // Form 0.5
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p7) br.cond.spnt ROUND_UNORM // Branch if x unorm
+ setf.exp ROUND_HALF = round_GR_half
+ fcvt.fx.s1 ROUND_RINT_f8 = f8
+ nop.i 999 ;;
}
-;;
-
-ROUND_COMMON:
-// Return here from ROUND_UNORM
-{ .mfb
- nop.m 0
- fcmp.lt.s1 p8,p9 = f8, f0 // Test if x < 0
-(p6) br.cond.spnt ROUND_SPECIAL // Exit if x natval, nan, inf
+// Get exp of x
+// Test for NAN, INF, ZERO
+// Get exponent at which input has no fractional part
+{ .mfi
+ and round_GR_exp = round_GR_expmask, round_GR_signexp
+ fclass.m p8,p9 = f8,0xe7
+ addl round_GR_big = 0x10033, r0 ;;
}
-;;
+// Get exp-bigexp
+// If exp is so big there is no fractional part, then turn on p8, off p9
+{ .mmi
+ sub round_GR_expdiff = round_GR_exp, round_GR_big ;;
+#ifdef _LIBC
+(p9) cmp.lt.or.andcm p8,p9 = r0, round_GR_expdiff
+#else
+(p9) cmp.ge.or.andcm p8,p9 = round_GR_expdiff, r0
+#endif
+ nop.i 999 ;;
+}
+
+// Set p6 if x<0, else set p7
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXtruncInt // Pre-Result if 0.5 <= |x| < 2^52
- nop.i 0
+ nop.m 999
+(p9) fcmp.lt.unc p6,p7 = f8,f0
+ nop.i 999
}
-;;
-
+
+// If NAN, INF, ZERO, or no fractional part, result is just normalized input
{ .mfi
- and rExp = rSignexp, rExpMask // Get biased exponent
- fmerge.s fInc = fNormX, f1 // Form increment if |rem| >= 0.5
- nop.i 0
+ nop.m 999
+(p8) fnorm.d.s0 f8 = f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- cmp.lt p6,p0 = rExp, rExpHalf // Is |x| < 0.5?
- cmp.ge p7,p0 = rExp, rBigexp // Is |x| >= 2^52?
- cmp.lt p10,p0 = rExp, rExpHalf // Is |x| < 0.5?
+// Float the truncated integer
+{ .mfi
+ nop.m 999
+(p9) fcvt.xf ROUND_FLOAT_TRUNC_f8 = ROUND_TRUNC_f8
+ nop.i 999 ;;
}
-;;
-// We must correct result if |x| < 0.5, or |x| >= 2^52
-.pred.rel "mutex",p6,p7
+// Float the rounded integer to get preliminary result
{ .mfi
- nop.m 0
-(p6) fmerge.s f8 = fNormX, f0 // If |x| < 0.5, result sgn(x)*0
- nop.i 0
+ nop.m 999
+(p9) fcvt.xf ROUND_FLOAT_RINT_f8 = ROUND_RINT_f8
+ nop.i 999 ;;
+}
+
+// If x<0 and the difference of the truncated input minus the input is 0.5
+// then result = truncated input - 1.0
+// Else if x>0 and the difference of the input minus truncated input is 0.5
+// then result = truncated input + 1.0
+// Else
+// result = rounded input
+// Endif
+{ .mfi
+ nop.m 999
+(p6) fsub.s1 ROUND_REMAINDER = ROUND_FLOAT_TRUNC_f8, ROUND_NORM_f8
+ nop.i 999
}
-{ .mfb
-(p7) cmp.eq p10,p0 = r0, r0 // Also turn on p10 if |x| >= 2^52
-(p7) fma.d.s0 f8 = fNormX, f1, f0 // If |x| >= 2^52, result x
-(p10) br.ret.spnt b0 // Exit |x| < 0.5 or |x| >= 2^52
+
+{ .mfi
+ nop.m 999
+(p7) fsub.s1 ROUND_REMAINDER = ROUND_NORM_f8, ROUND_FLOAT_TRUNC_f8
+ nop.i 999 ;;
}
-;;
-// Here if 0.5 <= |x| < 2^52
+// Assume preliminary result is rounded integer
{ .mfi
- nop.m 0
-(p9) fms.s1 fRem = fNormX, f1, f8 // Get remainder = x - trunc(x)
- nop.i 0
+ nop.m 999
+(p9) fnorm.d.s0 f8 = ROUND_FLOAT_RINT_f8
+ nop.i 999
}
+
+// If x<0, test if result=0
{ .mfi
- nop.m 0
-(p8) fms.s1 fRem = f8, f1, fNormX // Get remainder = trunc(x) - x
- nop.i 0
+ nop.m 999
+(p6) fcmp.eq.unc p10,p0 = ROUND_FLOAT_RINT_f8,f0
+ nop.i 999 ;;
}
-;;
+// If x<0 and result=0, set result=-0
{ .mfi
- nop.m 0
- fcmp.ge.s1 p9,p0 = fRem, fHalf // Test |rem| >= 0.5
- nop.i 0
+ nop.m 999
+(p10) fmerge.ns f8 = f1,f8
+ nop.i 999
}
-;;
-
-// If x < 0 and remainder <= -0.5, then subtract 1 from result
-// If x > 0 and remainder >= +0.5, then add 1 to result
-{ .mfb
- nop.m 0
-(p9) fma.d.s0 f8 = f8, f1, fInc
- br.ret.sptk b0
+
+// If x<0, test if remainder=0.5
+{ .mfi
+ nop.m 999
+(p6) fcmp.eq.unc p6,p0 = ROUND_REMAINDER, ROUND_HALF
+ nop.i 999 ;;
}
-;;
-
-
-ROUND_SPECIAL:
-// Here if x natval, nan, inf
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = f8, f1, f0
- br.ret.sptk b0
+
+// If x>0, test if remainder=0.5
+{ .mfi
+ nop.m 999
+(p7) fcmp.eq.unc p7,p0 = ROUND_REMAINDER, ROUND_HALF
+ nop.i 999 ;;
}
-;;
-ROUND_UNORM:
-// Here if x unorm
+// If x<0 and remainder=0.5, result=truncated-1.0
+// If x>0 and remainder=0.5, result=truncated+1.0
+// Exit
+.pred.rel "mutex",p6,p7
{ .mfi
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+ nop.m 999
+(p6) fsub.d.s0 f8 = ROUND_FLOAT_TRUNC_f8,f1
+ nop.i 999
}
+
{ .mfb
- nop.m 0
- fcvt.fx.trunc.s1 fXtruncInt = fNormX // Convert to int in significand
- br.cond.sptk ROUND_COMMON // Return to main path
+ nop.m 999
+(p7) fadd.d.s0 f8 = ROUND_FLOAT_TRUNC_f8,f1
+ br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(round)
+.endp round
+ASM_SIZE_DIRECTIVE(round)
diff --git a/sysdeps/ia64/fpu/s_roundf.S b/sysdeps/ia64/fpu/s_roundf.S
index 7cec860aa1..42ee60b218 100644
--- a/sysdeps/ia64/fpu/s_roundf.S
+++ b/sysdeps/ia64/fpu/s_roundf.S
@@ -1,10 +1,11 @@
.file "roundf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 10/25/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,214 +21,229 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 10/25/00 Initial version
-// 06/14/01 Changed cmp to an equivalent form
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance and reduced code size
-// 04/18/03 Eliminate possible WAW dependency warning
-// 09/03/03 Improved performance
+// 10/25/2000: Created
//==============================================================
-
+//
// API
//==============================================================
// float roundf(float x)
-//==============================================================
-
-// general input registers:
-// r14 - r18
+//
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rExpHalf = r18
+#include "libm_support.h"
-// floating-point registers:
-// f8 - f13
+// general input registers:
+//
+roundf_GR_half = r14
+roundf_GR_big = r15
+roundf_GR_expmask = r16
+roundf_GR_signexp = r17
+roundf_GR_exp = r18
+roundf_GR_expdiff = r19
+
+// predicate registers used:
+// p6 - p10
-fXtruncInt = f9
-fNormX = f10
-fHalf = f11
-fInc = f12
-fRem = f13
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+ROUNDF_NORM_f8 = f9
+ROUNDF_TRUNC_f8 = f10
+ROUNDF_RINT_f8 = f11
+ROUNDF_FLOAT_TRUNC_f8 = f12
+ROUNDF_FLOAT_RINT_f8 = f13
+ROUNDF_REMAINDER = f14
+ROUNDF_HALF = f15
// Overview of operation
//==============================================================
+
// float roundf(float x)
-// Return an integer value (represented as a float) that is x
-// rounded to nearest integer, halfway cases rounded away from
-// zero.
+// Return an integer value (represented as a float) that is x
+// rounded to nearest integer, halfway cases rounded away from
+// zero.
// if x>0 result = trunc(x+0.5)
// if x<0 result = trunc(x-0.5)
-//
-//==============================================================
+// *******************************************************************************
-// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
-// we have a significand of 64 bits 1.63-bits.
-// If we multiply by 2^63, we no longer have a fractional part
-// So input is an integer value already.
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
-// double
-// if the exponent is >= 10033 => 34(true) = 52(decimal)
-// 34 + 3ff = 433
-// we have a significand of 53 bits 1.52-bits. (implicit 1)
-// If we multiply by 2^52, we no longer have a fractional part
-// So input is an integer value already.
+// If x is NAN, ZERO, INFINITY, or >= 2^23 then return
-// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
-// So input is an integer value already.
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+.align 32
+.global roundf#
+
.section .text
-GLOBAL_LIBM_ENTRY(roundf)
+.proc roundf#
+.align 32
+
+roundf:
+
+// Get exponent for +0.5
+// Truncate x to integer
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fcvt.fx.trunc.s1 fXtruncInt = f8 // Convert to int in significand
- addl rBigexp = 0x10016, r0 // Set exponent at which is integer
-}
+ addl roundf_GR_half = 0x0fffe, r0
+ fcvt.fx.trunc.s1 ROUNDF_TRUNC_f8 = f8
+ nop.i 999
+}
+
+// Get signexp of x
+// Normalize input
+// Form exponent mask
{ .mfi
- mov rExpHalf = 0x0FFFE // Form sign and exponent of 0.5
- fnorm.s1 fNormX = f8 // Normalize input
- mov rExpMask = 0x1FFFF // Form exponent mask
+ getf.exp roundf_GR_signexp = f8
+ fnorm ROUNDF_NORM_f8 = f8
+ addl roundf_GR_expmask = 0x1ffff, r0 ;;
}
-;;
+// Form +0.5
+// Round x to integer
{ .mfi
- setf.exp fHalf = rExpHalf // Form 0.5
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p7) br.cond.spnt ROUND_UNORM // Branch if x unorm
+ setf.exp ROUNDF_HALF = roundf_GR_half
+ fcvt.fx.s1 ROUNDF_RINT_f8 = f8
+ nop.i 999 ;;
}
-;;
-
-ROUND_COMMON:
-// Return here from ROUND_UNORM
-{ .mfb
- nop.m 0
- fcmp.lt.s1 p8,p9 = f8, f0 // Test if x < 0
-(p6) br.cond.spnt ROUND_SPECIAL // Exit if x natval, nan, inf
+// Get exp of x
+// Test for NAN, INF, ZERO
+// Get exponent at which input has no fractional part
+{ .mfi
+ and roundf_GR_exp = roundf_GR_expmask, roundf_GR_signexp
+ fclass.m p8,p9 = f8,0xe7
+ addl roundf_GR_big = 0x10016, r0 ;;
}
-;;
+// Get exp-bigexp
+// If exp is so big there is no fractional part, then turn on p8, off p9
+{ .mmi
+ sub roundf_GR_expdiff = roundf_GR_exp, roundf_GR_big ;;
+#ifdef _LIBC
+(p9) cmp.lt.or.andcm p8,p9 = r0, roundf_GR_expdiff
+#else
+(p9) cmp.ge.or.andcm p8,p9 = roundf_GR_expdiff, r0
+#endif
+ nop.i 999 ;;
+}
+
+// Set p6 if x<0, else set p7
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXtruncInt // Pre-Result if 0.5 <= |x| < 2^23
- nop.i 0
+ nop.m 999
+(p9) fcmp.lt.unc p6,p7 = f8,f0
+ nop.i 999
}
-;;
-
+
+// If NAN, INF, ZERO, or no fractional part, result is just normalized input
{ .mfi
- and rExp = rSignexp, rExpMask // Get biased exponent
- fmerge.s fInc = fNormX, f1 // Form increment if |rem| >= 0.5
- nop.i 0
+ nop.m 999
+(p8) fnorm.s.s0 f8 = f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- cmp.lt p6,p0 = rExp, rExpHalf // Is |x| < 0.5?
- cmp.ge p7,p0 = rExp, rBigexp // Is |x| >= 2^23?
- cmp.lt p10,p0 = rExp, rExpHalf // Is |x| < 0.5?
+// Float the truncated integer
+{ .mfi
+ nop.m 999
+(p9) fcvt.xf ROUNDF_FLOAT_TRUNC_f8 = ROUNDF_TRUNC_f8
+ nop.i 999 ;;
}
-;;
-// We must correct result if |x| < 0.5, or |x| >= 2^23
-.pred.rel "mutex",p6,p7
+// Float the rounded integer to get preliminary result
{ .mfi
- nop.m 0
-(p6) fmerge.s f8 = fNormX, f0 // If |x| < 0.5, result sgn(x)*0
- nop.i 0
+ nop.m 999
+(p9) fcvt.xf ROUNDF_FLOAT_RINT_f8 = ROUNDF_RINT_f8
+ nop.i 999 ;;
+}
+
+// If x<0 and the difference of the truncated input minus the input is 0.5
+// then result = truncated input - 1.0
+// Else if x>0 and the difference of the input minus truncated input is 0.5
+// then result = truncated input + 1.0
+// Else
+// result = rounded input
+// Endif
+{ .mfi
+ nop.m 999
+(p6) fsub.s1 ROUNDF_REMAINDER = ROUNDF_FLOAT_TRUNC_f8, ROUNDF_NORM_f8
+ nop.i 999
}
-{ .mfb
-(p7) cmp.eq p10,p0 = r0, r0 // Also turn on p10 if |x| >= 2^23
-(p7) fma.s.s0 f8 = fNormX, f1, f0 // If |x| >= 2^23, result x
-(p10) br.ret.spnt b0 // Exit |x| < 0.5 or |x| >= 2^23
+
+{ .mfi
+ nop.m 999
+(p7) fsub.s1 ROUNDF_REMAINDER = ROUNDF_NORM_f8, ROUNDF_FLOAT_TRUNC_f8
+ nop.i 999 ;;
}
-;;
-// Here if 0.5 <= |x| < 2^23
+// Assume preliminary result is rounded integer
{ .mfi
- nop.m 0
-(p9) fms.s1 fRem = fNormX, f1, f8 // Get remainder = x - trunc(x)
- nop.i 0
+ nop.m 999
+(p9) fnorm.s.s0 f8 = ROUNDF_FLOAT_RINT_f8
+ nop.i 999
}
+
+// If x<0, test if result=0
{ .mfi
- nop.m 0
-(p8) fms.s1 fRem = f8, f1, fNormX // Get remainder = trunc(x) - x
- nop.i 0
+ nop.m 999
+(p6) fcmp.eq.unc p10,p0 = ROUNDF_FLOAT_RINT_f8,f0
+ nop.i 999 ;;
}
-;;
+// If x<0 and result=0, set result=-0
{ .mfi
- nop.m 0
- fcmp.ge.s1 p9,p0 = fRem, fHalf // Test |rem| >= 0.5
- nop.i 0
+ nop.m 999
+(p10) fmerge.ns f8 = f1,f8
+ nop.i 999
}
-;;
-
-// If x < 0 and remainder <= -0.5, then subtract 1 from result
-// If x > 0 and remainder >= +0.5, then add 1 to result
-{ .mfb
- nop.m 0
-(p9) fma.s.s0 f8 = f8, f1, fInc
- br.ret.sptk b0
+
+// If x<0, test if remainder=0.5
+{ .mfi
+ nop.m 999
+(p6) fcmp.eq.unc p6,p0 = ROUNDF_REMAINDER, ROUNDF_HALF
+ nop.i 999 ;;
}
-;;
-
-
-ROUND_SPECIAL:
-// Here if x natval, nan, inf
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = f8, f1, f0
- br.ret.sptk b0
+
+// If x>0, test if remainder=0.5
+{ .mfi
+ nop.m 999
+(p7) fcmp.eq.unc p7,p0 = ROUNDF_REMAINDER, ROUNDF_HALF
+ nop.i 999 ;;
}
-;;
-ROUND_UNORM:
-// Here if x unorm
+// If x<0 and remainder=0.5, result=truncated-1.0
+// If x>0 and remainder=0.5, result=truncated+1.0
+// Exit
+.pred.rel "mutex",p6,p7
{ .mfi
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+ nop.m 999
+(p6) fsub.s.s0 f8 = ROUNDF_FLOAT_TRUNC_f8,f1
+ nop.i 999
}
+
{ .mfb
- nop.m 0
- fcvt.fx.trunc.s1 fXtruncInt = fNormX // Convert to int in significand
- br.cond.sptk ROUND_COMMON // Return to main path
+ nop.m 999
+(p7) fadd.s.s0 f8 = ROUNDF_FLOAT_TRUNC_f8,f1
+ br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(roundf)
+.endp roundf
+ASM_SIZE_DIRECTIVE(roundf)
diff --git a/sysdeps/ia64/fpu/s_roundl.S b/sysdeps/ia64/fpu/s_roundl.S
index da6cbfe228..b30f590917 100644
--- a/sysdeps/ia64/fpu/s_roundl.S
+++ b/sysdeps/ia64/fpu/s_roundl.S
@@ -1,10 +1,11 @@
.file "roundl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 10/25/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,214 +21,229 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 10/25/00 Initial version
-// 06/14/01 Changed cmp to an equivalent form
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance and reduced code size
-// 04/18/03 Eliminate possible WAW dependency warning
-// 09/03/03 Improved performance
+// 10/25/2000: Created
//==============================================================
-
+//
// API
//==============================================================
// long double roundl(long double x)
-//==============================================================
-
-// general input registers:
-// r14 - r18
+//
-rSignexp = r14
-rExp = r15
-rExpMask = r16
-rBigexp = r17
-rExpHalf = r18
+#include "libm_support.h"
-// floating-point registers:
-// f8 - f13
+// general input registers:
+//
+roundl_GR_half = r14
+roundl_GR_big = r15
+roundl_GR_expmask = r16
+roundl_GR_signexp = r17
+roundl_GR_exp = r18
+roundl_GR_expdiff = r19
+
+// predicate registers used:
+// p6 - p10
-fXtruncInt = f9
-fNormX = f10
-fHalf = f11
-fInc = f12
-fRem = f13
+// floating-point registers used:
-// predicate registers used:
-// p6 - p10
+ROUNDL_NORM_f8 = f9
+ROUNDL_TRUNC_f8 = f10
+ROUNDL_RINT_f8 = f11
+ROUNDL_FLOAT_TRUNC_f8 = f12
+ROUNDL_FLOAT_RINT_f8 = f13
+ROUNDL_REMAINDER = f14
+ROUNDL_HALF = f15
// Overview of operation
//==============================================================
+
// long double roundl(long double x)
-// Return an integer value (represented as a long double) that is x
-// rounded to nearest integer, halfway cases rounded away from
-// zero.
+// Return an integer value (represented as a long double) that is x
+// rounded to nearest integer, halfway cases rounded away from
+// zero.
// if x>0 result = trunc(x+0.5)
// if x<0 result = trunc(x-0.5)
-//
-//==============================================================
+// *******************************************************************************
-// double_extended
-// if the exponent is > 1003e => 3F(true) = 63(decimal)
-// we have a significand of 64 bits 1.63-bits.
-// If we multiply by 2^63, we no longer have a fractional part
-// So input is an integer value already.
+// Set denormal flag for denormal input and
+// and take denormal fault if necessary.
-// double
-// if the exponent is >= 10033 => 34(true) = 52(decimal)
-// 34 + 3ff = 433
-// we have a significand of 53 bits 1.52-bits. (implicit 1)
-// If we multiply by 2^52, we no longer have a fractional part
-// So input is an integer value already.
+// If x is NAN, ZERO, INFINITY, or >= 2^63 then return
-// single
-// if the exponent is > 10016 => 17(true) = 23(decimal)
-// we have a significand of 24 bits 1.23-bits. (implicit 1)
-// If we multiply by 2^23, we no longer have a fractional part
-// So input is an integer value already.
+// qnan snan inf norm unorm 0 -+
+// 1 1 1 0 0 1 11 0xe7
+.align 32
+.global roundl#
+
.section .text
-GLOBAL_LIBM_ENTRY(roundl)
+.proc roundl#
+.align 32
+
+roundl:
+
+// Get exponent for +0.5
+// Truncate x to integer
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fcvt.fx.trunc.s1 fXtruncInt = f8 // Convert to int in significand
- addl rBigexp = 0x1003e, r0 // Set exponent at which is integer
-}
+ addl roundl_GR_half = 0x0fffe, r0
+ fcvt.fx.trunc.s1 ROUNDL_TRUNC_f8 = f8
+ nop.i 999
+}
+
+// Get signexp of x
+// Normalize input
+// Form exponent mask
{ .mfi
- mov rExpHalf = 0x0FFFE // Form sign and exponent of 0.5
- fnorm.s1 fNormX = f8 // Normalize input
- mov rExpMask = 0x1FFFF // Form exponent mask
+ getf.exp roundl_GR_signexp = f8
+ fnorm ROUNDL_NORM_f8 = f8
+ addl roundl_GR_expmask = 0x1ffff, r0 ;;
}
-;;
+// Form +0.5
+// Round x to integer
{ .mfi
- setf.exp fHalf = rExpHalf // Form 0.5
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p7) br.cond.spnt ROUND_UNORM // Branch if x unorm
+ setf.exp ROUNDL_HALF = roundl_GR_half
+ fcvt.fx.s1 ROUNDL_RINT_f8 = f8
+ nop.i 999 ;;
}
-;;
-
-ROUND_COMMON:
-// Return here from ROUND_UNORM
-{ .mfb
- nop.m 0
- fcmp.lt.s1 p8,p9 = f8, f0 // Test if x < 0
-(p6) br.cond.spnt ROUND_SPECIAL // Exit if x natval, nan, inf
+// Get exp of x
+// Test for NAN, INF, ZERO
+// Get exponent at which input has no fractional part
+{ .mfi
+ and roundl_GR_exp = roundl_GR_expmask, roundl_GR_signexp
+ fclass.m p8,p9 = f8,0xe7
+ addl roundl_GR_big = 0x1003e, r0 ;;
}
-;;
+// Get exp-bigexp
+// If exp is so big there is no fractional part, then turn on p8, off p9
+{ .mmi
+ sub roundl_GR_expdiff = roundl_GR_exp, roundl_GR_big ;;
+#ifdef _LIBC
+(p9) cmp.lt.or.andcm p8,p9 = r0, roundl_GR_expdiff
+#else
+(p9) cmp.ge.or.andcm p8,p9 = roundl_GR_expdiff, r0
+#endif
+ nop.i 999 ;;
+}
+
+// Set p6 if x<0, else set p7
{ .mfi
- nop.m 0
- fcvt.xf f8 = fXtruncInt // Pre-Result if 0.5 <= |x| < 2^63
- nop.i 0
+ nop.m 999
+(p9) fcmp.lt.unc p6,p7 = f8,f0
+ nop.i 999
}
-;;
-
+
+// If NAN, INF, ZERO, or no fractional part, result is just normalized input
{ .mfi
- and rExp = rSignexp, rExpMask // Get biased exponent
- fmerge.s fInc = fNormX, f1 // Form increment if |rem| >= 0.5
- nop.i 0
+ nop.m 999
+(p8) fnorm.s0 f8 = f8
+ nop.i 999 ;;
}
-;;
-{ .mmi
- cmp.lt p6,p0 = rExp, rExpHalf // Is |x| < 0.5?
- cmp.ge p7,p0 = rExp, rBigexp // Is |x| >= 2^63?
- cmp.lt p10,p0 = rExp, rExpHalf // Is |x| < 0.5?
+// Float the truncated integer
+{ .mfi
+ nop.m 999
+(p9) fcvt.xf ROUNDL_FLOAT_TRUNC_f8 = ROUNDL_TRUNC_f8
+ nop.i 999 ;;
}
-;;
-// We must correct result if |x| < 0.5, or |x| >= 2^63
-.pred.rel "mutex",p6,p7
+// Float the rounded integer to get preliminary result
{ .mfi
- nop.m 0
-(p6) fmerge.s f8 = fNormX, f0 // If |x| < 0.5, result sgn(x)*0
- nop.i 0
+ nop.m 999
+(p9) fcvt.xf ROUNDL_FLOAT_RINT_f8 = ROUNDL_RINT_f8
+ nop.i 999 ;;
+}
+
+// If x<0 and the difference of the truncated input minus the input is 0.5
+// then result = truncated input - 1.0
+// Else if x>0 and the difference of the input minus truncated input is 0.5
+// then result = truncated input + 1.0
+// Else
+// result = rounded input
+// Endif
+{ .mfi
+ nop.m 999
+(p6) fsub.s1 ROUNDL_REMAINDER = ROUNDL_FLOAT_TRUNC_f8, ROUNDL_NORM_f8
+ nop.i 999
}
-{ .mfb
-(p7) cmp.eq p10,p0 = r0, r0 // Also turn on p10 if |x| >= 2^63
-(p7) fma.s0 f8 = fNormX, f1, f0 // If |x| >= 2^63, result x
-(p10) br.ret.spnt b0 // Exit |x| < 0.5 or |x| >= 2^63
+
+{ .mfi
+ nop.m 999
+(p7) fsub.s1 ROUNDL_REMAINDER = ROUNDL_NORM_f8, ROUNDL_FLOAT_TRUNC_f8
+ nop.i 999 ;;
}
-;;
-// Here if 0.5 <= |x| < 2^63
+// Assume preliminary result is rounded integer
{ .mfi
- nop.m 0
-(p9) fms.s1 fRem = fNormX, f1, f8 // Get remainder = x - trunc(x)
- nop.i 0
+ nop.m 999
+(p9) fnorm.s0 f8 = ROUNDL_FLOAT_RINT_f8
+ nop.i 999
}
+
+// If x<0, test if result=0
{ .mfi
- nop.m 0
-(p8) fms.s1 fRem = f8, f1, fNormX // Get remainder = trunc(x) - x
- nop.i 0
+ nop.m 999
+(p6) fcmp.eq.unc p10,p0 = ROUNDL_FLOAT_RINT_f8,f0
+ nop.i 999 ;;
}
-;;
+// If x<0 and result=0, set result=-0
{ .mfi
- nop.m 0
- fcmp.ge.s1 p9,p0 = fRem, fHalf // Test |rem| >= 0.5
- nop.i 0
+ nop.m 999
+(p10) fmerge.ns f8 = f1,f8
+ nop.i 999
}
-;;
-
-// If x < 0 and remainder <= -0.5, then subtract 1 from result
-// If x > 0 and remainder >= +0.5, then add 1 to result
-{ .mfb
- nop.m 0
-(p9) fma.s0 f8 = f8, f1, fInc
- br.ret.sptk b0
+
+// If x<0, test if remainder=0.5
+{ .mfi
+ nop.m 999
+(p6) fcmp.eq.unc p6,p0 = ROUNDL_REMAINDER, ROUNDL_HALF
+ nop.i 999 ;;
}
-;;
-
-
-ROUND_SPECIAL:
-// Here if x natval, nan, inf
-{ .mfb
- nop.m 0
- fma.s0 f8 = f8, f1, f0
- br.ret.sptk b0
+
+// If x>0, test if remainder=0.5
+{ .mfi
+ nop.m 999
+(p7) fcmp.eq.unc p7,p0 = ROUNDL_REMAINDER, ROUNDL_HALF
+ nop.i 999 ;;
}
-;;
-ROUND_UNORM:
-// Here if x unorm
+// If x<0 and remainder=0.5, result=truncated-1.0
+// If x>0 and remainder=0.5, result=truncated+1.0
+// Exit
+.pred.rel "mutex",p6,p7
{ .mfi
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- nop.i 0
+ nop.m 999
+(p6) fsub.s0 f8 = ROUNDL_FLOAT_TRUNC_f8,f1
+ nop.i 999
}
+
{ .mfb
- nop.m 0
- fcvt.fx.trunc.s1 fXtruncInt = fNormX // Convert to int in significand
- br.cond.sptk ROUND_COMMON // Return to main path
+ nop.m 999
+(p7) fadd.s0 f8 = ROUNDL_FLOAT_TRUNC_f8,f1
+ br.ret.sptk b0 ;;
}
-;;
-GLOBAL_LIBM_END(roundl)
+.endp roundl
+ASM_SIZE_DIRECTIVE(roundl)
diff --git a/sysdeps/ia64/fpu/s_scalblnf.c b/sysdeps/ia64/fpu/s_scalblnf.c
deleted file mode 100644
index 2fa51ba11b..0000000000
--- a/sysdeps/ia64/fpu/s_scalblnf.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: scalblnf.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-float __libm_scalblnf(float, long int, int);
-
-
-float scalblnf(float x, long int n)
-{
-
-#ifdef SIZE_LONG_INT_64
- return __libm_scalblnf(x,n,1);
-#else
-
-#ifdef SIZE_LONG_INT_32
- return __libm_scalblnf(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_scalbn.S b/sysdeps/ia64/fpu/s_scalbn.S
new file mode 100644
index 0000000000..50d14b4e30
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_scalbn.S
@@ -0,0 +1,379 @@
+.file "scalbn.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00 Initial version
+// 1/26/01 Scalbn completely reworked and now standalone version
+//
+// API
+//==============================================================
+// double = scalbn (double x, int n)
+// input floating point f8 and int n (r33)
+// output floating point f8
+//
+// Returns x* 2**n using an fma and detects overflow
+// and underflow.
+//
+//
+
+#include "libm_support.h"
+
+FR_Big = f6
+FR_NBig = f7
+FR_Floating_X = f8
+FR_Result = f8
+FR_Result2 = f9
+FR_Result3 = f11
+FR_Norm_X = f12
+FR_Two_N = f14
+FR_Two_to_Big = f15
+
+GR_N_Biased = r15
+GR_Big = r16
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
+GR_Bias = r20
+GR_N_as_int = r21
+
+GR_SAVE_B0 = r32
+GR_SAVE_GP = r33
+GR_SAVE_PFS = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Tag = r38
+
+.align 32
+.global scalbn
+
+.section .text
+.proc scalbn
+.align 32
+
+scalbn:
+
+//
+// Is x NAN, INF, ZERO, +-?
+// Build the exponent Bias
+//
+{ .mfi
+ alloc r32=ar.pfs,1,2,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Bias = 0x0FFFF,r0
+}
+
+//
+// Sign extend input
+// Is N zero?
+// Normalize x
+//
+{ .mfi
+ cmp.eq.unc p6,p0 = r33,r0
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ sxt4 GR_N_as_int = r33
+}
+;;
+
+//
+// Normalize x
+// Branch and return special values.
+// Create -35000
+// Create 35000
+//
+{ .mfi
+ addl GR_Big = 35000,r0
+ nop.f 0
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+}
+{ .mfb
+ addl GR_NBig = -35000,r0
+(p7) fma.d.s0 FR_Result = FR_Floating_X,f1, f0
+(p7) br.ret.spnt b0
+};;
+
+//
+// Build the exponent Bias
+// Return x when N = 0
+//
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.f 0
+ addl GR_Scratch1 = 0x063BF,r0
+}
+{ .mfb
+ addl GR_Scratch = 0x019C3F,r0
+(p6) fma.d.s0 FR_Result = FR_Floating_X,f1, f0
+(p6) br.ret.spnt b0
+};;
+
+//
+// Create 2*big
+// Create 2**-big
+// Is N > 35000
+// Is N < -35000
+// Raise Denormal operand flag with compare
+// Main path, create 2**N
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch1
+ nop.f 0
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+}
+{ .mfi
+ setf.exp FR_Big = GR_Scratch
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+};;
+
+//
+// Adjust 2**N if N was very small or very large
+//
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x00000000000303FF
+};;
+
+
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x00000000000103FF
+};;
+
+// Set up necessary status fields
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
+
+//
+// Do final operation
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch
+ fma.d.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.d.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.d.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+
+// Check for overflow or underflow.
+// Restore s3
+// Restore s2
+//
+{ .mfi
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
+}
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
+
+//
+// Is the result zero?
+//
+{ .mfi
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
+{ .mfi
+ addl GR_Tag = 176, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
+
+//
+// Detect masked underflow - Tiny + Inexact Only
+//
+{ .mfi
+ nop.m 999
+(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
+ nop.i 999
+};;
+
+//
+// Is result bigger the allowed range?
+// Branch out for underflow
+//
+{ .mfb
+(p6) addl GR_Tag = 177, r0
+(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
+(p6) br.cond.spnt L(SCALBN_UNDERFLOW)
+};;
+
+//
+// Branch out for overflow
+//
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(SCALBN_OVERFLOW)
+(p9) br.cond.spnt L(SCALBN_OVERFLOW)
+};;
+
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
+}
+
+.endp scalbn
+ASM_SIZE_DIRECTIVE(scalbn)
+.proc __libm_error_region
+__libm_error_region:
+
+L(SCALBN_OVERFLOW):
+L(SCALBN_UNDERFLOW):
+
+//
+// Get stack address of N
+//
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+//
+// Adjust sp
+//
+{ .mfi
+.fframe 64
+ add sp=-64,sp
+ nop.f 0
+ mov GR_SAVE_GP=gp
+};;
+
+//
+// Store N on stack in correct position
+// Locate the address of x on stack
+//
+{ .mmi
+ st8 [GR_Parameter_Y] = GR_N_as_int,16
+ add GR_Parameter_X = 16,sp
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+};;
+
+//
+// Store x on the stack.
+// Get address for result on stack.
+//
+.body
+{ .mib
+ stfd [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0
+}
+{ .mib
+ stfd [GR_Parameter_Y] = FR_Result
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support#
+};;
+
+//
+// Get location of result on stack
+//
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+//
+// Get the new result
+//
+{ .mmi
+ ldfd FR_Result = [GR_Parameter_RESULT]
+.restore sp
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
+};;
+
+//
+// Restore gp, ar.pfs and return
+//
+{ .mib
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(scalbn)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_scalbn.c b/sysdeps/ia64/fpu/s_scalbn.c
deleted file mode 100644
index 1f57141310..0000000000
--- a/sysdeps/ia64/fpu/s_scalbn.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: scalbn.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-double __libm_scalbn(double, int, int);
-
-
-double scalbn(double x, int n)
-{
-
-#ifdef SIZE_INT_64
- return __libm_scalbn(x,n,1);
-#else
-
-#ifdef SIZE_INT_32
- return __libm_scalbn(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_scalbnf.S b/sysdeps/ia64/fpu/s_scalbnf.S
new file mode 100644
index 0000000000..ff7d1ca637
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_scalbnf.S
@@ -0,0 +1,379 @@
+//.file "scalbnf.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00 Initial version
+// 1/26/01 scalbnf completely reworked and now standalone version
+//
+// API
+//==============================================================
+// float = scalbnf (float x, int n)
+// input floating point f8 and int n (r33)
+// output floating point f8
+//
+// Returns x* 2**n using an fma and detects overflow
+// and underflow.
+//
+//
+
+#include "libm_support.h"
+
+FR_Big = f6
+FR_NBig = f7
+FR_Floating_X = f8
+FR_Result = f8
+FR_Result2 = f9
+FR_Result3 = f11
+FR_Norm_X = f12
+FR_Two_N = f14
+FR_Two_to_Big = f15
+
+GR_N_Biased = r15
+GR_Big = r16
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
+GR_Bias = r20
+GR_N_as_int = r21
+
+GR_SAVE_B0 = r32
+GR_SAVE_GP = r33
+GR_SAVE_PFS = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Tag = r38
+
+.align 32
+.global scalbnf
+
+.section .text
+.proc scalbnf
+.align 32
+
+scalbnf:
+
+//
+// Is x NAN, INF, ZERO, +-?
+// Build the exponent Bias
+//
+{ .mfi
+ alloc r32=ar.pfs,1,2,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Bias = 0x0FFFF,r0
+}
+
+//
+// Sign extend input
+// Is N zero?
+// Normalize x
+//
+{ .mfi
+ cmp.eq.unc p6,p0 = r33,r0
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ sxt4 GR_N_as_int = r33
+}
+;;
+
+//
+// Normalize x
+// Branch and return special values.
+// Create -35000
+// Create 35000
+//
+{ .mfi
+ addl GR_Big = 35000,r0
+ nop.f 0
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+}
+{ .mfb
+ addl GR_NBig = -35000,r0
+(p7) fma.s.s0 FR_Result = FR_Floating_X,f1, f0
+(p7) br.ret.spnt b0
+};;
+
+//
+// Build the exponent Bias
+// Return x when N = 0
+//
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.f 0
+ addl GR_Scratch1 = 0x063BF,r0
+}
+{ .mfb
+ addl GR_Scratch = 0x019C3F,r0
+(p6) fma.s.s0 FR_Result = FR_Floating_X,f1, f0
+(p6) br.ret.spnt b0
+};;
+
+//
+// Create 2*big
+// Create 2**-big
+// Is N > 35000
+// Is N < -35000
+// Raise Denormal operand flag with compare
+// Main path, create 2**N
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch1
+ nop.f 0
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+}
+{ .mfi
+ setf.exp FR_Big = GR_Scratch
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+};;
+
+//
+// Adjust 2**N if N was very small or very large
+//
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x000000000003007F
+};;
+
+
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x000000000001007F
+};;
+
+// Set up necessary status fields
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
+
+//
+// Do final operation
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch
+ fma.s.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.s.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+
+// Check for overflow or underflow.
+// Restore s3
+// Restore s2
+//
+{ .mfi
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
+}
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
+
+//
+// Is the result zero?
+//
+{ .mfi
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
+{ .mfi
+ addl GR_Tag = 178, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
+
+//
+// Detect masked underflow - Tiny + Inexact Only
+//
+{ .mfi
+ nop.m 999
+(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
+ nop.i 999
+};;
+
+//
+// Is result bigger the allowed range?
+// Branch out for underflow
+//
+{ .mfb
+(p6) addl GR_Tag = 179, r0
+(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
+(p6) br.cond.spnt L(scalbnf_UNDERFLOW)
+};;
+
+//
+// Branch out for overflow
+//
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(scalbnf_OVERFLOW)
+(p9) br.cond.spnt L(scalbnf_OVERFLOW)
+};;
+
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
+}
+
+.endp scalbnf
+ASM_SIZE_DIRECTIVE(scalbnf)
+.proc __libm_error_region
+__libm_error_region:
+
+L(scalbnf_OVERFLOW):
+L(scalbnf_UNDERFLOW):
+
+//
+// Get stack address of N
+//
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+//
+// Adjust sp
+//
+{ .mfi
+.fframe 64
+ add sp=-64,sp
+ nop.f 0
+ mov GR_SAVE_GP=gp
+};;
+
+//
+// Store N on stack in correct position
+// Locate the address of x on stack
+//
+{ .mmi
+ st8 [GR_Parameter_Y] = GR_N_as_int,16
+ add GR_Parameter_X = 16,sp
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+};;
+
+//
+// Store x on the stack.
+// Get address for result on stack.
+//
+.body
+{ .mib
+ stfs [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0
+}
+{ .mib
+ stfs [GR_Parameter_Y] = FR_Result
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support#
+};;
+
+//
+// Get location of result on stack
+//
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+//
+// Get the new result
+//
+{ .mmi
+ ldfs FR_Result = [GR_Parameter_RESULT]
+.restore sp
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
+};;
+
+//
+// Restore gp, ar.pfs and return
+//
+{ .mib
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_scalbnf.c b/sysdeps/ia64/fpu/s_scalbnf.c
deleted file mode 100644
index 97c06da08a..0000000000
--- a/sysdeps/ia64/fpu/s_scalbnf.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: scalbnf.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-float __libm_scalbnf(float, int, int);
-
-
-float scalbnf(float x, int n)
-{
-
-#ifdef SIZE_INT_64
- return __libm_scalbnf(x,n,1);
-#else
-
-#ifdef SIZE_INT_32
- return __libm_scalbnf(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_scalbnl.S b/sysdeps/ia64/fpu/s_scalbnl.S
new file mode 100644
index 0000000000..9e54a2ec0a
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_scalbnl.S
@@ -0,0 +1,379 @@
+//.file "scalbnl.s"
+
+// Copyright (C) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00 Initial version
+// 1/26/01 scalbnl completely reworked and now standalone version
+//
+// API
+//==============================================================
+// double-extended = scalbnl (double-extended x, int n)
+// input floating point f8 and int n (r34)
+// output floating point f8
+//
+// Returns x* 2**n using an fma and detects overflow
+// and underflow.
+//
+//
+
+#include "libm_support.h"
+
+FR_Big = f6
+FR_NBig = f7
+FR_Floating_X = f8
+FR_Result = f8
+FR_Result2 = f9
+FR_Result3 = f11
+FR_Norm_X = f12
+FR_Two_N = f14
+FR_Two_to_Big = f15
+
+GR_N_Biased = r15
+GR_Big = r16
+GR_NBig = r17
+GR_Scratch = r18
+GR_Scratch1 = r19
+GR_Bias = r20
+GR_N_as_int = r21
+
+GR_SAVE_B0 = r32
+GR_SAVE_GP = r33
+GR_SAVE_PFS = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Tag = r38
+
+.align 32
+.global scalbnl
+
+.section .text
+.proc scalbnl
+.align 32
+
+scalbnl:
+
+//
+// Is x NAN, INF, ZERO, +-?
+// Build the exponent Bias
+//
+{ .mfi
+ alloc r32=ar.pfs,2,1,4,0
+ fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero
+ addl GR_Bias = 0x0FFFF,r0
+}
+
+//
+// Sign extend input
+// Is N zero?
+// Normalize x
+//
+{ .mfi
+ cmp.eq.unc p6,p0 = r34,r0
+ fnorm.s1 FR_Norm_X = FR_Floating_X
+ sxt4 GR_N_as_int = r34
+}
+;;
+
+//
+// Normalize x
+// Branch and return special values.
+// Create -35000
+// Create 35000
+//
+{ .mfi
+ addl GR_Big = 35000,r0
+ nop.f 0
+ add GR_N_Biased = GR_Bias,GR_N_as_int
+}
+{ .mfb
+ addl GR_NBig = -35000,r0
+(p7) fma.s0 FR_Result = FR_Floating_X,f1, f0
+(p7) br.ret.spnt b0
+};;
+
+//
+// Build the exponent Bias
+// Return x when N = 0
+//
+{ .mfi
+ setf.exp FR_Two_N = GR_N_Biased
+ nop.f 0
+ addl GR_Scratch1 = 0x063BF,r0
+}
+{ .mfb
+ addl GR_Scratch = 0x019C3F,r0
+(p6) fma.s0 FR_Result = FR_Floating_X,f1, f0
+(p6) br.ret.spnt b0
+};;
+
+//
+// Create 2*big
+// Create 2**-big
+// Is N > 35000
+// Is N < -35000
+// Raise Denormal operand flag with compare
+// Main path, create 2**N
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch1
+ nop.f 0
+ cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big
+}
+{ .mfi
+ setf.exp FR_Big = GR_Scratch
+ fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
+ cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig
+};;
+
+//
+// Adjust 2**N if N was very small or very large
+//
+{ .mfi
+ nop.m 0
+(p6) fma.s1 FR_Two_N = FR_Big,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch = 0x0000000000033FFF
+};;
+
+
+{ .mfi
+ nop.m 0
+(p8) fma.s1 FR_Two_N = FR_NBig,f1,f0
+ nop.i 0
+}
+{ .mlx
+ nop.m 999
+(p0) movl GR_Scratch1= 0x0000000000013FFF
+};;
+
+// Set up necessary status fields
+//
+// S0 user supplied status
+// S2 user supplied status + WRE + TD (Overflows)
+// S3 user supplied status + FZ + TD (Underflows)
+//
+{ .mfi
+ nop.m 999
+(p0) fsetc.s3 0x7F,0x41
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p0) fsetc.s2 0x7F,0x42
+ nop.i 999
+};;
+
+//
+// Do final operation
+//
+{ .mfi
+ setf.exp FR_NBig = GR_Scratch
+ fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+{ .mfi
+ setf.exp FR_Big = GR_Scratch1
+ fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
+ nop.i 999
+};;
+
+// Check for overflow or underflow.
+// Restore s3
+// Restore s2
+//
+{ .mfi
+ nop.m 0
+ fsetc.s3 0x7F,0x40
+ nop.i 999
+}
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40
+ nop.i 999
+};;
+
+//
+// Is the result zero?
+//
+{ .mfi
+ nop.m 999
+ fclass.m.unc p6, p0 = FR_Result3, 0x007
+ nop.i 999
+}
+{ .mfi
+ addl GR_Tag = 174, r0
+ fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big
+ nop.i 0
+};;
+
+//
+// Detect masked underflow - Tiny + Inexact Only
+//
+{ .mfi
+ nop.m 999
+(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
+ nop.i 999
+};;
+
+//
+// Is result bigger the allowed range?
+// Branch out for underflow
+//
+{ .mfb
+(p6) addl GR_Tag = 175, r0
+(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
+(p6) br.cond.spnt L(scalbnl_UNDERFLOW)
+};;
+
+//
+// Branch out for overflow
+//
+{ .mbb
+ nop.m 0
+(p7) br.cond.spnt L(scalbnl_OVERFLOW)
+(p9) br.cond.spnt L(scalbnl_OVERFLOW)
+};;
+
+//
+// Return from main path.
+//
+{ .mfb
+ nop.m 999
+ nop.f 0
+ br.ret.sptk b0;;
+}
+
+.endp scalbnl
+ASM_SIZE_DIRECTIVE(scalbnl)
+.proc __libm_error_region
+__libm_error_region:
+
+L(scalbnl_OVERFLOW):
+L(scalbnl_UNDERFLOW):
+
+//
+// Get stack address of N
+//
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+//
+// Adjust sp
+//
+{ .mfi
+.fframe 64
+ add sp=-64,sp
+ nop.f 0
+ mov GR_SAVE_GP=gp
+};;
+
+//
+// Store N on stack in correct position
+// Locate the address of x on stack
+//
+{ .mmi
+ st8 [GR_Parameter_Y] = GR_N_as_int,16
+ add GR_Parameter_X = 16,sp
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+};;
+
+//
+// Store x on the stack.
+// Get address for result on stack.
+//
+.body
+{ .mib
+ stfe [GR_Parameter_X] = FR_Norm_X
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y
+ nop.b 0
+}
+{ .mib
+ stfe [GR_Parameter_Y] = FR_Result
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support#
+};;
+
+//
+// Get location of result on stack
+//
+{ .mmi
+ nop.m 0
+ nop.m 0
+ add GR_Parameter_RESULT = 48,sp
+};;
+
+//
+// Get the new result
+//
+{ .mmi
+ ldfe FR_Result = [GR_Parameter_RESULT]
+.restore sp
+ add sp = 64,sp
+ mov b0 = GR_SAVE_B0
+};;
+
+//
+// Restore gp, ar.pfs and return
+//
+{ .mib
+ mov gp = GR_SAVE_GP
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.type __libm_error_support#,@function
+.global __libm_error_support#
diff --git a/sysdeps/ia64/fpu/s_scalbnl.c b/sysdeps/ia64/fpu/s_scalbnl.c
deleted file mode 100644
index d7a81dfc55..0000000000
--- a/sysdeps/ia64/fpu/s_scalbnl.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* file: scalbnl.c */
-
-
-// Copyright (c) 2000, 2001, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-#include "libm_support.h"
-
-long double __libm_scalbnl(long double, int, int);
-
-
-long double scalbnl(long double x, int n)
-{
-
-#ifdef SIZE_INT_64
- return __libm_scalbnl(x,n,1);
-#else
-
-#ifdef SIZE_INT_32
- return __libm_scalbnl(x,n,0);
-#endif
-
-#endif
-
-}
diff --git a/sysdeps/ia64/fpu/s_significand.S b/sysdeps/ia64/fpu/s_significand.S
index 720e043e5c..84141daf4d 100644
--- a/sysdeps/ia64/fpu/s_significand.S
+++ b/sysdeps/ia64/fpu/s_significand.S
@@ -1,10 +1,10 @@
.file "significand.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,15 +35,13 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 05/31/00 Fixed bug when x a double-extended denormal
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 2/02/00: Initial version
+// 4/04/00 Unwind support added
+// 5/31/00: Fixed bug when x a double-extended denormal
//
// API
//==============================================================
@@ -58,10 +56,18 @@
// p6, p7
//
// floating-point registers used:
-// f8, f9, f10
+// f8, f9, f10
+
+#include "libm_support.h"
+
+.align 32
+.global significand#
.section .text
-GLOBAL_LIBM_ENTRY(significand)
+.proc significand#
+.align 32
+
+significand:
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 1 11
@@ -69,19 +75,19 @@ GLOBAL_LIBM_ENTRY(significand)
// f10 gets f8(sign) with f1(exp,significand)
{ .mfi
nop.m 999
- fmerge.s f10 = f8,f1
+(p0) fmerge.s f10 = f8,f1
nop.i 999
}
{ .mfi
nop.m 999
- fnorm.s0 f9 = f8
+(p0) fnorm f9 = f8
nop.i 999 ;;
}
// Test for denormal input
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f8, 0x0b
+(p0) fclass.m.unc p7,p0 = f8, 0x0b
nop.i 999 ;;
}
@@ -91,14 +97,14 @@ GLOBAL_LIBM_ENTRY(significand)
// return sign(f8) exp(f8) significand(f8), normalized.
{ .mfi
nop.m 999
- fclass.m.unc p0,p6 = f8, 0xe7
+(p0) fclass.m.unc p0,p6 = f8, 0xe7
nop.i 999 ;;
}
{ .mmb
nop.m 999
nop.m 999
-(p7) br.cond.spnt SIGNIFICAND_DENORM ;; // Branch if x denormal
+(p7) br.cond.spnt L(SIGNIFICAND_DENORM) ;; // Branch if x denormal
}
{ .mfi
@@ -109,29 +115,29 @@ GLOBAL_LIBM_ENTRY(significand)
{ .mfb
nop.m 999
- fnorm.d.s0 f8 = f8
- br.ret.sptk b0 ;;
+(p0) fnorm.d f8 = f8
+(p0) br.ret.sptk b0 ;;
}
-SIGNIFICAND_DENORM:
+L(SIGNIFICAND_DENORM):
// Here if x denorm
{ .mfi
nop.m 999
- fmerge.se f8 = f10,f9
+(p0) fmerge.se f8 = f10,f9
nop.i 999 ;;
}
// Check if fnorm(x) still denormal, means x double-extended denormal
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x0b
+(p0) fclass.m.unc p7,p0 = f9, 0x0b
nop.i 999 ;;
}
// This will be the final result unless x double-extended denormal
{ .mfi
nop.m 999
- fnorm.d.s0 f8 = f8
+(p0) fnorm.d f8 = f8
nop.i 999 ;;
}
@@ -146,8 +152,9 @@ SIGNIFICAND_DENORM:
// Final normalization if x double-extended denorm
{ .mfb
nop.m 999
-(p7) fnorm.d.s0 f8 = f8
- br.ret.sptk b0 ;;
+(p7) fnorm.d f8 = f8
+(p0) br.ret.sptk b0 ;;
}
-GLOBAL_LIBM_END(significand)
+.endp significand
+ASM_SIZE_DIRECTIVE(significand)
diff --git a/sysdeps/ia64/fpu/s_significandf.S b/sysdeps/ia64/fpu/s_significandf.S
index 5c8299b944..d8cdc159f6 100644
--- a/sysdeps/ia64/fpu/s_significandf.S
+++ b/sysdeps/ia64/fpu/s_significandf.S
@@ -1,10 +1,10 @@
.file "significandf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,15 +35,13 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/03/00 Modified to improve speed
-// 05/31/00 Fixed bug when x a double-extended denormal
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 2/02/00: Initial version
+// 2/03/00: Modified to improve speed
+// 5/31/00: Fixed bug when x a double-extended denormal
//
// API
//==============================================================
@@ -57,10 +55,18 @@
// p6, p7
//
// floating-point registers used:
-// f8, f9, f10
+// f8, f9, f10
+
+#include "libm_support.h"
+
+.align 32
+.global significandf#
.section .text
-GLOBAL_LIBM_ENTRY(significandf)
+.proc significandf#
+.align 32
+
+significandf:
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 1 11
@@ -68,19 +74,19 @@ GLOBAL_LIBM_ENTRY(significandf)
// f10 gets f8(sign) with f1(exp,significand)
{ .mfi
nop.m 999
- fmerge.s f10 = f8,f1
+(p0) fmerge.s f10 = f8,f1
nop.i 999
}
{ .mfi
nop.m 999
- fnorm.s0 f9 = f8
+(p0) fnorm f9 = f8
nop.i 999 ;;
}
// Test for denormal input
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f8, 0x0b
+(p0) fclass.m.unc p7,p0 = f8, 0x0b
nop.i 999 ;;
}
@@ -90,14 +96,14 @@ GLOBAL_LIBM_ENTRY(significandf)
// return sign(f8) exp(f8) significand(f8), normalized.
{ .mfi
nop.m 999
- fclass.m.unc p0,p6 = f8, 0xe7
+(p0) fclass.m.unc p0,p6 = f8, 0xe7
nop.i 999 ;;
}
{ .mmb
nop.m 999
nop.m 999
-(p7) br.cond.spnt SIGNIFICAND_DENORM ;; // Branch if x denormal
+(p7) br.cond.spnt L(SIGNIFICAND_DENORM) ;; // Branch if x denormal
}
{ .mfi
@@ -108,29 +114,29 @@ GLOBAL_LIBM_ENTRY(significandf)
{ .mfb
nop.m 999
- fnorm.s.s0 f8 = f8
- br.ret.sptk b0 ;;
+(p0) fnorm.s f8 = f8
+(p0) br.ret.sptk b0 ;;
}
-SIGNIFICAND_DENORM:
+L(SIGNIFICAND_DENORM):
// Here if x denorm
{ .mfi
nop.m 999
- fmerge.se f8 = f10,f9
+(p0) fmerge.se f8 = f10,f9
nop.i 999 ;;
}
// Check if fnorm(x) still denormal, means x double-extended denormal
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x0b
+(p0) fclass.m.unc p7,p0 = f9, 0x0b
nop.i 999 ;;
}
// This will be the final result unless x double-extended denormal
{ .mfi
nop.m 999
- fnorm.s.s0 f8 = f8
+(p0) fnorm.s f8 = f8
nop.i 999 ;;
}
@@ -145,8 +151,9 @@ SIGNIFICAND_DENORM:
// Final normalization if x double-extended denorm
{ .mfb
nop.m 999
-(p7) fnorm.s.s0 f8 = f8
- br.ret.sptk b0 ;;
+(p7) fnorm.s f8 = f8
+(p0) br.ret.sptk b0 ;;
}
-GLOBAL_LIBM_END(significandf)
+.endp significandf
+ASM_SIZE_DIRECTIVE(significandf)
diff --git a/sysdeps/ia64/fpu/s_significandl.S b/sysdeps/ia64/fpu/s_significandl.S
index f62df4310c..268d3567d0 100644
--- a/sysdeps/ia64/fpu/s_significandl.S
+++ b/sysdeps/ia64/fpu/s_significandl.S
@@ -1,10 +1,10 @@
.file "significandl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,15 +35,13 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 02/03/00 Modified to improve speed
-// 05/31/00 Fixed bug when x a double-extended denormal
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 2/02/00: Initial version
+// 2/03/00: Modified to improve speed
+// 5/31/00: Fixed bug when x a double-extended denormal
//
// API
//==============================================================
@@ -58,10 +56,18 @@
// p6, p7
//
// floating-point registers used:
-// f8, f9, f10
+// f8, f9, f10
+
+#include "libm_support.h"
+
+.align 32
+.global significandl#
.section .text
-GLOBAL_LIBM_ENTRY(significandl)
+.proc significandl#
+.align 32
+
+significandl:
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 1 11
@@ -69,19 +75,19 @@ GLOBAL_LIBM_ENTRY(significandl)
// f10 gets f8(sign) with f1(exp,significand)
{ .mfi
nop.m 999
- fmerge.s f10 = f8,f1
+(p0) fmerge.s f10 = f8,f1
nop.i 999
}
{ .mfi
nop.m 999
- fnorm.s0 f9 = f8
+(p0) fnorm f9 = f8
nop.i 999 ;;
}
// Test for denormal input
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f8, 0x0b
+(p0) fclass.m.unc p7,p0 = f8, 0x0b
nop.i 999 ;;
}
@@ -91,14 +97,14 @@ GLOBAL_LIBM_ENTRY(significandl)
// return sign(f8) exp(f8) significand(f8), normalized.
{ .mfi
nop.m 999
- fclass.m.unc p0,p6 = f8, 0xe7
+(p0) fclass.m.unc p0,p6 = f8, 0xe7
nop.i 999 ;;
}
{ .mmb
nop.m 999
nop.m 999
-(p7) br.cond.spnt SIGNIFICAND_DENORM ;; // Branch if x denormal
+(p7) br.cond.spnt L(SIGNIFICAND_DENORM) ;; // Branch if x denormal
}
{ .mfi
@@ -109,29 +115,29 @@ GLOBAL_LIBM_ENTRY(significandl)
{ .mfb
nop.m 999
- fnorm.s0 f8 = f8
- br.ret.sptk b0 ;;
+(p0) fnorm f8 = f8
+(p0) br.ret.sptk b0 ;;
}
-SIGNIFICAND_DENORM:
+L(SIGNIFICAND_DENORM):
// Here if x denorm
{ .mfi
nop.m 999
- fmerge.se f8 = f10,f9
+(p0) fmerge.se f8 = f10,f9
nop.i 999 ;;
}
// Check if fnorm(x) still denormal, means x double-extended denormal
{ .mfi
nop.m 999
- fclass.m.unc p7,p0 = f9, 0x0b
+(p0) fclass.m.unc p7,p0 = f9, 0x0b
nop.i 999 ;;
}
// This will be the final result unless x double-extended denormal
{ .mfi
nop.m 999
- fnorm.s0 f8 = f8
+(p0) fnorm f8 = f8
nop.i 999 ;;
}
@@ -146,8 +152,9 @@ SIGNIFICAND_DENORM:
// Final normalization if x double-extended denorm
{ .mfb
nop.m 999
-(p7) fnorm.s0 f8 = f8
- br.ret.sptk b0 ;;
+(p7) fnorm f8 = f8
+(p0) br.ret.sptk b0 ;;
}
-GLOBAL_LIBM_END(significandl)
+.endp significandl
+ASM_SIZE_DIRECTIVE(significandl)
diff --git a/sysdeps/ia64/fpu/s_sincos.c b/sysdeps/ia64/fpu/s_sincos.c
index 41254ae60a..1ddbc2122a 100644
--- a/sysdeps/ia64/fpu/s_sincos.c
+++ b/sysdeps/ia64/fpu/s_sincos.c
@@ -1 +1,9 @@
-/* Not needed. */
+#include <math.h>
+
+void
+__sincos (double x, double *s, double *c)
+{
+ *s = sin (x);
+ *c = cos (x);
+}
+weak_alias (__sincos, sincos)
diff --git a/sysdeps/ia64/fpu/s_sincosf.c b/sysdeps/ia64/fpu/s_sincosf.c
index 41254ae60a..efd0fe3038 100644
--- a/sysdeps/ia64/fpu/s_sincosf.c
+++ b/sysdeps/ia64/fpu/s_sincosf.c
@@ -1 +1,9 @@
-/* Not needed. */
+#include <math.h>
+
+void
+__sincosf (float x, float *s, float *c)
+{
+ *s = sinf (x);
+ *c = cosf (x);
+}
+weak_alias (__sincosf, sincosf)
diff --git a/sysdeps/ia64/fpu/s_sincosl.c b/sysdeps/ia64/fpu/s_sincosl.c
index 41254ae60a..a835b772e2 100644
--- a/sysdeps/ia64/fpu/s_sincosl.c
+++ b/sysdeps/ia64/fpu/s_sincosl.c
@@ -1 +1,9 @@
-/* Not needed. */
+#include <math.h>
+
+void
+__sincosl (long double x, long double *s, long double *c)
+{
+ *s = sinl (x);
+ *c = cosl (x);
+}
+weak_alias (__sincosl, sincosl)
diff --git a/sysdeps/ia64/fpu/s_tan.S b/sysdeps/ia64/fpu/s_tan.S
index a2f80c8858..3a497fcf4c 100644
--- a/sysdeps/ia64/fpu/s_tan.S
+++ b/sysdeps/ia64/fpu/s_tan.S
@@ -1,10 +1,10 @@
-.file "tancot.s"
+.file "tan.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -32,24 +32,20 @@
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
+// 2/02/00: Initial version
+// 4/04/00 Unwind support added
// 12/27/00 Improved speed
-// 02/21/01 Updated to call tanl
-// 05/30/02 Added cot
-// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
-// double tan(double x);
-// double cot(double x);
+// double tan( double x);
//
// Overview of operation
//==============================================================
@@ -65,14 +61,11 @@
// Nfloat = round_int(tan_W)
//
// tan_r = x - Nfloat * (pi/2)_hi
-// a) tan_r = tan_r - Nfloat * (pi/2)_lo (for tan)
-// b) tan_r = Nfloat * (pi/2)_lo - tan_r (for cot)
+// tan_r = tan_r - Nfloat * (pi/2)_lo
//
// We have two paths: p8, when Nfloat is even and p9. when Nfloat is odd.
-// a) for tan: p8: tan(X) = tan(r)
-// p9: tan(X) = -cot(r)
-// b) for cot: p9: cot(X) = cot(r)
-// p8: cot(X) = -tan(r)
+// p8: tan(X) = tan(r)
+// p9: tan(X) = -cot(r)
//
// Each is evaluated as a series. The p9 path requires 1/r.
//
@@ -82,16 +75,19 @@
// Registers used
//==============================================================
//
-// predicate registers used:
-// p6-12
+// predicate registers used:
+// p6-10
//
-// floating-point registers used:
-// f10-15, f32-106
+// floating-point registers used:
+// f10-15, f32-105
// f8, input
//
// general registers used
-// r14-26, r32-39
+// r14-18, r32-43
//
+
+#include "libm_support.h"
+
// Assembly macros
//==============================================================
TAN_INV_PI_BY_2_2TO64 = f10
@@ -109,28 +105,28 @@ tan_Pi_by_2_lo = f34
tan_P0 = f35
tan_P1 = f36
tan_P2 = f37
-tan_P3 = f38
-tan_P4 = f39
-tan_P5 = f40
+tan_P3 = f38
+tan_P4 = f39
+tan_P5 = f40
tan_P6 = f41
tan_P7 = f42
-tan_P8 = f43
-tan_P9 = f44
-tan_P10 = f45
+tan_P8 = f43
+tan_P9 = f44
+tan_P10 = f45
tan_P11 = f46
-tan_P12 = f47
+tan_P12 = f47
tan_P13 = f48
tan_P14 = f49
tan_P15 = f50
-tan_Q0 = f51
-tan_Q1 = f52
-tan_Q2 = f53
-tan_Q3 = f54
-tan_Q4 = f55
-tan_Q5 = f56
-tan_Q6 = f57
-tan_Q7 = f58
+tan_Q0 = f51
+tan_Q1 = f52
+tan_Q2 = f53
+tan_Q3 = f54
+tan_Q4 = f55
+tan_Q5 = f56
+tan_Q6 = f57
+tan_Q7 = f58
tan_Q8 = f59
tan_Q9 = f60
tan_Q10 = f61
@@ -157,19 +153,19 @@ tan_v10 = f79
tan_v2 = f80
tan_v9 = f81
tan_v1 = f82
-tan_int_Nfloat = f83
-tan_Nfloat = f84
+tan_int_Nfloat = f83
+tan_Nfloat = f84
-tan_NORM_f8 = f85
+tan_NORM_f8 = f85
tan_W = f86
tan_y0 = f87
-tan_d = f88
-tan_y1 = f89
-tan_dsq = f90
-tan_y2 = f91
-tan_d4 = f92
-tan_inv_r = f93
+tan_d = f88
+tan_y1 = f89
+tan_dsq = f90
+tan_y2 = f91
+tan_d4 = f92
+tan_inv_r = f93
tan_z1 = f94
tan_z2 = f95
@@ -184,7 +180,6 @@ tan_z10 = f103
tan_z11 = f104
tan_z12 = f105
-arg_copy = f106
/////////////////////////////////////////////////////////////
@@ -193,33 +188,37 @@ tan_GR_rshf_2to64 = r15
tan_GR_exp_2tom64 = r16
tan_GR_n = r17
tan_GR_rshf = r18
-tan_AD = r19
-tan_GR_10009 = r20
-tan_GR_17_ones = r21
-tan_GR_N_odd_even = r22
-tan_GR_N = r23
-tan_signexp = r24
-tan_exp = r25
-tan_ADQ = r26
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_Tag = r39
-
-
-RODATA
+
+tan_AD = r33
+tan_GR_10009 = r34
+tan_GR_17_ones = r35
+tan_GR_N_odd_even = r36
+tan_GR_N = r37
+tan_signexp = r38
+tan_exp = r39
+tan_ADQ = r40
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
.align 16
-LOCAL_OBJECT_START(double_tan_constants)
+double_tan_constants:
+ASM_TYPE_DIRECTIVE(double_tan_constants,@object)
+// data8 0xA2F9836E4E44152A, 0x00003FFE // 2/pi
data8 0xC90FDAA22168C234, 0x00003FFF // pi/2 hi
- data8 0xBEEA54580DDEA0E1 // P14
+
+ data8 0xBEEA54580DDEA0E1 // P14
data8 0x3ED3021ACE749A59 // P15
- data8 0xBEF312BD91DC8DA1 // P12
+ data8 0xBEF312BD91DC8DA1 // P12
data8 0x3EFAE9AFC14C5119 // P13
data8 0x3F2F342BF411E769 // P8
data8 0x3F1A60FC9F3B0227 // P9
@@ -233,9 +232,10 @@ LOCAL_OBJECT_START(double_tan_constants)
data8 0x3FC11111111111C2 // P1
data8 0x3FABA1BA1BA0E850 // P2
data8 0x3F9664F4886725A7 // P3
-LOCAL_OBJECT_END(double_tan_constants)
+ASM_SIZE_DIRECTIVE(double_tan_constants)
-LOCAL_OBJECT_START(double_Q_tan_constants)
+double_Q_tan_constants:
+ASM_TYPE_DIRECTIVE(double_Q_tan_constants,@object)
data8 0xC4C6628B80DC1CD1, 0x00003FBF // pi/2 lo
data8 0x3E223A73BA576E48 // Q8
data8 0x3DF54AD8D1F2CA43 // Q9
@@ -248,47 +248,35 @@ LOCAL_OBJECT_START(double_Q_tan_constants)
data8 0x3F61566ABBFFB489 // Q2
data8 0x3F2BBD77945C1733 // Q3
data8 0x3D927FB33E2B0E04 // Q10
-LOCAL_OBJECT_END(double_Q_tan_constants)
+ASM_SIZE_DIRECTIVE(double_Q_tan_constants)
-.section .text
+
+.align 32
+.global tan#
+#ifdef _LIBC
+.global __tan#
+#endif
////////////////////////////////////////////////////////
-LOCAL_LIBM_ENTRY(cot)
-// The initial fnorm will take any unmasked faults and
-// normalize any single/double unorms
-
-{ .mlx
- cmp.eq p12, p11 = r0, r0 // set p12=1, p11=0 for cot
- movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi
-}
-{ .mlx
- addl tan_AD = @ltoff(double_tan_constants), gp
- movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)
-}
-;;
-
-{ .mlx
- mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64
- movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
-}
-{ .mfb
- ld8 tan_AD = [tan_AD]
- fnorm.s0 tan_NORM_f8 = f8
- br.cond.sptk COMMON_PATH
-}
-;;
-
-LOCAL_LIBM_END(cot)
-GLOBAL_IEEE754_ENTRY(tan)
+.section .text
+.proc tan#
+#ifdef _LIBC
+.proc __tan#
+#endif
+.align 32
+tan:
+#ifdef _LIBC
+__tan:
+#endif
// The initial fnorm will take any unmasked faults and
// normalize any single/double unorms
{ .mlx
- cmp.eq p11, p12 = r0, r0 // set p11=1, p12=0 for tan
+ alloc r32=ar.pfs,1,11,0,0
movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi
}
{ .mlx
@@ -297,20 +285,18 @@ GLOBAL_IEEE754_ENTRY(tan)
}
;;
-{ .mlx
- mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64
- movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
-}
{ .mfi
ld8 tan_AD = [tan_AD]
- fnorm.s0 tan_NORM_f8 = f8
- nop.i 0
+ fnorm tan_NORM_f8 = f8
+ mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64
+}
+{ .mlx
+ nop.m 999
+ movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
}
;;
-// Common path for both tan and cot
-COMMON_PATH:
// Form two constants we need
// 2/pi * 2^1 * 2^63, scaled by 2^64 since we just loaded the significand
// 1.1000...000 * 2^(63+63+1) to right shift int(W) into the significand
@@ -327,7 +313,7 @@ COMMON_PATH:
{ .mmf
setf.exp TAN_2TOM64 = tan_GR_exp_2tom64
adds tan_ADQ = double_Q_tan_constants - double_tan_constants, tan_AD
-(p11) fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0 (tan)
+ fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0
}
;;
@@ -337,79 +323,79 @@ COMMON_PATH:
// 1.1000...000 * 2^63, the right shift constant
{ .mmf
setf.d TAN_RSHF = tan_GR_rshf
- ldfe tan_Pi_by_2_hi = [tan_AD],16
+ ldfe tan_Pi_by_2_hi = [tan_AD],16
fclass.m.unc p7,p0 = f8, 0x23 // Test for x=inf
}
;;
{ .mfb
- ldfe tan_Pi_by_2_lo = [tan_ADQ],16
+ ldfe tan_Pi_by_2_lo = [tan_ADQ],16
fclass.m.unc p8,p0 = f8, 0xc3 // Test for x=nan
-(p6) br.ret.spnt b0 ;; // Exit for x=0 (tan only)
+(p6) br.ret.spnt b0 ;; // Exit for x=0
}
{ .mfi
- ldfpd tan_P14,tan_P15 = [tan_AD],16
+ ldfpd tan_P14,tan_P15 = [tan_AD],16
(p7) frcpa.s0 f8,p9=f0,f0 // Set qnan indef if x=inf
mov tan_GR_10009 = 0x10009
}
{ .mib
- ldfpd tan_Q8,tan_Q9 = [tan_ADQ],16
+ ldfpd tan_Q8,tan_Q9 = [tan_ADQ],16
nop.i 999
(p7) br.ret.spnt b0 ;; // Exit for x=inf
}
{ .mfi
- ldfpd tan_P12,tan_P13 = [tan_AD],16
-(p12) fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0 (cot)
+ ldfpd tan_P12,tan_P13 = [tan_AD],16
+(p8) fma.d f8=f8,f1,f8 // Set qnan if x=nan
nop.i 999
}
-{ .mfb
- ldfpd tan_Q4,tan_Q5 = [tan_ADQ],16
-(p8) fma.d.s0 f8=f8,f1,f8 // Set qnan if x=nan
+{ .mib
+ ldfpd tan_Q4,tan_Q5 = [tan_ADQ],16
+ nop.i 999
(p8) br.ret.spnt b0 ;; // Exit for x=nan
}
-{ .mmf
- getf.exp tan_signexp = tan_NORM_f8
- ldfpd tan_P8,tan_P9 = [tan_AD],16
- fmerge.s arg_copy = f8, f8 ;; // Save input for error call
+{ .mmi
+ getf.exp tan_signexp = tan_NORM_f8
+ ldfpd tan_P8,tan_P9 = [tan_AD],16
+ nop.i 999 ;;
}
-// Multiply x by scaled 2/pi and add large const to shift integer part of W to
+// Multiply x by scaled 2/pi and add large const to shift integer part of W to
// rightmost bits of significand
-{ .mmf
- alloc r32=ar.pfs,0,4,4,0
+{ .mfi
ldfpd tan_Q6,tan_Q7 = [tan_ADQ],16
fma.s1 TAN_W_2TO64_RSH = tan_NORM_f8,TAN_INV_PI_BY_2_2TO64,TAN_RSHF_2TO64
-};;
+ nop.i 999 ;;
+}
-{ .mmf
- ldfpd tan_P10,tan_P11 = [tan_AD],16
- and tan_exp = tan_GR_17_ones, tan_signexp
-(p6) frcpa.s0 f8, p0 = f1, f8 ;; // cot(+-0) = +-Inf
+{ .mmi
+ ldfpd tan_P10,tan_P11 = [tan_AD],16
+ nop.m 999
+ and tan_exp = tan_GR_17_ones, tan_signexp ;;
}
// p7 is true if we must call DBX TAN
// p7 is true if f8 exp is > 0x10009 (which includes all ones
// NAN or inf)
-{ .mmb
- ldfpd tan_Q0,tan_Q1 = [tan_ADQ],16
- cmp.ge.unc p7,p0 = tan_exp,tan_GR_10009
-(p7) br.cond.spnt TAN_DBX ;;
+{ .mmi
+ ldfpd tan_Q0,tan_Q1 = [tan_ADQ],16
+ cmp.ge.unc p7,p0 = tan_exp,tan_GR_10009
+ nop.i 999 ;;
}
{ .mmb
- ldfpd tan_P4,tan_P5 = [tan_AD],16
-(p6) mov GR_Parameter_Tag = 226 // (cot)
-(p6) br.cond.spnt __libm_error_region ;; // call error support if cot(+-0)
+ ldfpd tan_P4,tan_P5 = [tan_AD],16
+ nop.m 999
+(p7) br.cond.spnt L(TAN_DBX) ;;
}
{ .mmi
- ldfpd tan_Q2,tan_Q3 = [tan_ADQ],16
+ ldfpd tan_Q2,tan_Q3 = [tan_ADQ],16
nop.m 999
nop.i 999 ;;
}
@@ -418,8 +404,8 @@ COMMON_PATH:
// TAN_NFLOAT = Round_Int_Nearest(tan_W)
{ .mfi
- ldfpd tan_P6,tan_P7 = [tan_AD],16
- fms.s1 TAN_NFLOAT = TAN_W_2TO64_RSH,TAN_2TOM64,TAN_RSHF
+ ldfpd tan_P6,tan_P7 = [tan_AD],16
+ fms.s1 TAN_NFLOAT = TAN_W_2TO64_RSH,TAN_2TOM64,TAN_RSHF
nop.i 999 ;;
}
@@ -432,22 +418,22 @@ COMMON_PATH:
{ .mfi
- ldfpd tan_P0,tan_P1 = [tan_AD],16
+ ldfpd tan_P0,tan_P1 = [tan_AD],16
nop.f 999
nop.i 999 ;;
}
-{ .mmi
+{ .mfi
getf.sig tan_GR_n = TAN_W_2TO64_RSH
- ldfpd tan_P2,tan_P3 = [tan_AD]
+ nop.f 999
nop.i 999 ;;
}
// tan_r = -tan_Nfloat * tan_Pi_by_2_hi + x
{ .mfi
-(p12) add tan_GR_n = 0x1, tan_GR_n // N = N + 1 (for cot)
- fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_hi, tan_NORM_f8
+ ldfpd tan_P2,tan_P3 = [tan_AD]
+ fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_hi, tan_NORM_f8
nop.i 999 ;;
}
@@ -455,49 +441,42 @@ COMMON_PATH:
// p8 ==> even
// p9 ==> odd
{ .mmi
- and tan_GR_N_odd_even = 0x1, tan_GR_n ;;
+ and tan_GR_N_odd_even = 0x1, tan_GR_n ;;
nop.m 999
cmp.eq.unc p8,p9 = tan_GR_N_odd_even, r0 ;;
}
-.pred.rel "mutex", p11, p12
-// tan_r = tan_r -tan_Nfloat * tan_Pi_by_2_lo (tan)
+// tan_r = tan_r -tan_Nfloat * tan_Pi_by_2_lo
{ .mfi
nop.m 999
-(p11) fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_lo, tan_r
- nop.i 999
-}
-// tan_r = -(tan_r -tan_Nfloat * tan_Pi_by_2_lo) (cot)
-{ .mfi
- nop.m 999
-(p12) fms.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_lo, tan_r
+ fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_lo, tan_r
nop.i 999 ;;
}
{ .mfi
nop.m 999
- fma.s1 tan_rsq = tan_r, tan_r, f0
+ fma.s1 tan_rsq = tan_r, tan_r, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p9) frcpa.s1 tan_y0, p0 = f1,tan_r
+(p9) frcpa.s1 tan_y0, p10 = f1,tan_r
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v18 = tan_rsq, tan_P15, tan_P14
+(p8) fma.s1 tan_v18 = tan_rsq, tan_P15, tan_P14
nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v4 = tan_rsq, tan_P1, tan_P0
+(p8) fma.s1 tan_v4 = tan_rsq, tan_P1, tan_P0
nop.i 999 ;;
}
@@ -505,12 +484,12 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v16 = tan_rsq, tan_P13, tan_P12
- nop.i 999
+(p8) fma.s1 tan_v16 = tan_rsq, tan_P13, tan_P12
+ nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v17 = tan_rsq, tan_rsq, f0
+(p8) fma.s1 tan_v17 = tan_rsq, tan_rsq, f0
nop.i 999 ;;
}
@@ -518,12 +497,12 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v12 = tan_rsq, tan_P9, tan_P8
- nop.i 999
+(p8) fma.s1 tan_v12 = tan_rsq, tan_P9, tan_P8
+ nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v13 = tan_rsq, tan_P11, tan_P10
+(p8) fma.s1 tan_v13 = tan_rsq, tan_P11, tan_P10
nop.i 999 ;;
}
@@ -531,12 +510,12 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v7 = tan_rsq, tan_P5, tan_P4
- nop.i 999
+(p8) fma.s1 tan_v7 = tan_rsq, tan_P5, tan_P4
+ nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v8 = tan_rsq, tan_P7, tan_P6
+(p8) fma.s1 tan_v8 = tan_rsq, tan_P7, tan_P6
nop.i 999 ;;
}
@@ -544,12 +523,12 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p9) fnma.s1 tan_d = tan_r, tan_y0, f1
- nop.i 999
+(p9) fnma.s1 tan_d = tan_r, tan_y0, f1
+ nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v5 = tan_rsq, tan_P3, tan_P2
+(p8) fma.s1 tan_v5 = tan_rsq, tan_P3, tan_P2
nop.i 999 ;;
}
@@ -557,36 +536,36 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z11 = tan_rsq, tan_Q9, tan_Q8
+(p9) fma.s1 tan_z11 = tan_rsq, tan_Q9, tan_Q8
nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z12 = tan_rsq, tan_rsq, f0
+(p9) fma.s1 tan_z12 = tan_rsq, tan_rsq, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v15 = tan_v17, tan_v18, tan_v16
- nop.i 999
+(p8) fma.s1 tan_v15 = tan_v17, tan_v18, tan_v16
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z7 = tan_rsq, tan_Q5, tan_Q4
+(p9) fma.s1 tan_z7 = tan_rsq, tan_Q5, tan_Q4
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v11 = tan_v17, tan_v13, tan_v12
+(p8) fma.s1 tan_v11 = tan_v17, tan_v13, tan_v12
nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z8 = tan_rsq, tan_Q7, tan_Q6
+(p9) fma.s1 tan_z8 = tan_rsq, tan_Q7, tan_Q6
nop.i 999 ;;
}
@@ -594,13 +573,13 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v14 = tan_v17, tan_v17, f0
- nop.i 999
+(p8) fma.s1 tan_v14 = tan_v17, tan_v17, f0
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z3 = tan_rsq, tan_Q1, tan_Q0
- nop.i 999 ;;
+(p9) fma.s1 tan_z3 = tan_rsq, tan_Q1, tan_Q0
+ nop.i 999 ;;
}
@@ -608,12 +587,12 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v3 = tan_v17, tan_v5, tan_v4
+(p8) fma.s1 tan_v3 = tan_v17, tan_v5, tan_v4
nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v6 = tan_v17, tan_v8, tan_v7
+(p8) fma.s1 tan_v6 = tan_v17, tan_v8, tan_v7
nop.i 999 ;;
}
@@ -621,89 +600,89 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p9) fma.s1 tan_y1 = tan_y0, tan_d, tan_y0
- nop.i 999
+(p9) fma.s1 tan_y1 = tan_y0, tan_d, tan_y0
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_dsq = tan_d, tan_d, f0
- nop.i 999 ;;
+(p9) fma.s1 tan_dsq = tan_d, tan_d, f0
+ nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z10 = tan_z12, tan_Q10, tan_z11
- nop.i 999
+(p9) fma.s1 tan_z10 = tan_z12, tan_Q10, tan_z11
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z9 = tan_z12, tan_z12,f0
+(p9) fma.s1 tan_z9 = tan_z12, tan_z12,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z4 = tan_rsq, tan_Q3, tan_Q2
- nop.i 999
+(p9) fma.s1 tan_z4 = tan_rsq, tan_Q3, tan_Q2
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z6 = tan_z12, tan_z8, tan_z7
- nop.i 999 ;;
+(p9) fma.s1 tan_z6 = tan_z12, tan_z8, tan_z7
+ nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v10 = tan_v14, tan_v15, tan_v11
- nop.i 999 ;;
+(p8) fma.s1 tan_v10 = tan_v14, tan_v15, tan_v11
+ nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_y2 = tan_y1, tan_d, tan_y0
- nop.i 999
+(p9) fma.s1 tan_y2 = tan_y1, tan_d, tan_y0
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_d4 = tan_dsq, tan_dsq, tan_d
+(p9) fma.s1 tan_d4 = tan_dsq, tan_dsq, tan_d
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v2 = tan_v14, tan_v6, tan_v3
+(p8) fma.s1 tan_v2 = tan_v14, tan_v6, tan_v3
nop.i 999
}
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v9 = tan_v14, tan_v14, f0
+(p8) fma.s1 tan_v9 = tan_v14, tan_v14, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z2 = tan_z12, tan_z4, tan_z3
- nop.i 999
+(p9) fma.s1 tan_z2 = tan_z12, tan_z4, tan_z3
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z5 = tan_z9, tan_z10, tan_z6
+(p9) fma.s1 tan_z5 = tan_z9, tan_z10, tan_z6
nop.i 999 ;;
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_inv_r = tan_d4, tan_y2, tan_y0
- nop.i 999
+(p9) fma.s1 tan_inv_r = tan_d4, tan_y2, tan_y0
+ nop.i 999
}
{ .mfi
nop.m 999
@@ -715,12 +694,12 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.s1 tan_v1 = tan_v9, tan_v10, tan_v2
- nop.i 999
+(p8) fma.s1 tan_v1 = tan_v9, tan_v10, tan_v2
+ nop.i 999
}
{ .mfi
nop.m 999
-(p9) fma.s1 tan_z1 = tan_z9, tan_z5, tan_z2
+(p9) fma.s1 tan_z1 = tan_z9, tan_z5, tan_z2
nop.i 999 ;;
}
@@ -728,151 +707,64 @@ COMMON_PATH:
{ .mfi
nop.m 999
-(p8) fma.d.s0 f8 = tan_v1, tan_rcube, tan_r
- nop.i 999
+(p8) fma.d.s0 f8 = tan_v1, tan_rcube, tan_r
+ nop.i 999
}
{ .mfb
nop.m 999
-(p9) fms.d.s0 f8 = tan_r, tan_z1, tan_inv_r
- br.ret.sptk b0 ;;
+(p9) fms.d.s0 f8 = tan_r, tan_z1, tan_inv_r
+ br.ret.sptk b0 ;;
}
-GLOBAL_IEEE754_END(tan)
+.endp tan#
+ASM_SIZE_DIRECTIVE(tan)
-LOCAL_LIBM_ENTRY(__libm_callout)
-TAN_DBX:
+.proc __libm_callout
+__libm_callout:
+L(TAN_DBX):
.prologue
{ .mfi
- nop.m 0
- fmerge.s f9 = f0,f0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
+ nop.m 0
+ fmerge.s f9 = f0,f0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
}
;;
{ .mfi
- mov GR_SAVE_GP=gp
- nop.f 0
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
}
.body
-{ .mmb
- nop.m 999
+{ .mfb
nop.m 999
-(p11) br.cond.sptk.many call_tanl ;;
+ nop.f 999
+ br.call.sptk.many b0=__libm_tan# ;;
}
-// Here if we should call cotl
-{ .mmb
- nop.m 999
- nop.m 999
- br.call.sptk.many b0=__libm_cotl# ;;
-}
{ .mfi
- mov gp = GR_SAVE_GP
- fnorm.d.s0 f8 = f8
- mov b0 = GR_SAVE_B0
+ mov gp = GR_SAVE_GP
+ fnorm.d f8 = f8
+ mov b0 = GR_SAVE_B0
}
;;
-{ .mib
- nop.m 999
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-;;
-}
-
-// Here if we should call tanl
-call_tanl:
-{ .mmb
- nop.m 999
- nop.m 999
- br.call.sptk.many b0=__libm_tanl# ;;
-}
-
-{ .mfi
- mov gp = GR_SAVE_GP
- fnorm.d.s0 f8 = f8
- mov b0 = GR_SAVE_B0
-}
-;;
{ .mib
- nop.m 999
+ nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
;;
}
-LOCAL_LIBM_END(__libm_callout)
-
-.type __libm_tanl#,@function
-.global __libm_tanl#
-.type __libm_cotl#,@function
-.global __libm_cotl#
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-
-// (1)
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-
-// (2)
-{ .mmi
- stfd [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-// (3)
-{ .mib
- stfd [GR_Parameter_X] = arg_copy // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
+.endp __libm_callout
+ASM_SIZE_DIRECTIVE(__libm_callout)
+.type __libm_tan#,@function
+.global __libm_tan#
diff --git a/sysdeps/ia64/fpu/s_tanf.S b/sysdeps/ia64/fpu/s_tanf.S
index 193d7568a5..a84009e2fe 100644
--- a/sysdeps/ia64/fpu/s_tanf.S
+++ b/sysdeps/ia64/fpu/s_tanf.S
@@ -1,10 +1,10 @@
-.file "tancotf.s"
+.file "tanf.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -32,661 +32,739 @@
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
+// 2/02/00: Initial version
+// 4/04/00 Unwind support added
// 12/27/00 Improved speed
-// 02/21/01 Updated to call tanl
-// 05/30/02 Improved speed, added cotf.
-// 11/25/02 Added explicit completer on fnorm
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/17/03 Eliminated redundant stop bits
-// 03/31/05 Reformatted delimiters between data tables
//
-// APIs
+// API
//==============================================================
-// float tanf(float)
-// float cotf(float)
+// float tan( float x);
//
-// Algorithm Description for tanf
+// Overview of operation
//==============================================================
-// The tanf function computes the principle value of the tangent of x,
-// where x is radian argument.
-//
-// There are 5 paths:
-// 1. x = +/-0.0
-// Return tanf(x) = +/-0.0
+// If the input value in radians is |x| >= 1.xxxxx 2^10 call the
+// older slower version.
//
-// 2. x = [S,Q]NaN
-// Return tanf(x) = QNaN
+// The new algorithm is used when |x| <= 1.xxxxx 2^9.
//
-// 3. x = +/-Inf
-// Return tanf(x) = QNaN
+// Represent the input X as Nfloat * pi/2 + r
+// where r can be negative and |r| <= pi/4
//
-// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
-// Return tanf(x) = P19(r) = A1*r + A3*r^3 + A5*r^5 + ... + A19*r^19 =
-// = r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = r*P9(t), where t = r^2
+// tan_W = x * 2/pi
+// Nfloat = round_int(tan_W)
//
-// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
-// Return tanf(x) = -1/r + P11(r) = -1/r + B1*r + B3*r^3 + ... + B11*r^11 =
-// = -1/r + r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = -1/r + r*P11(t),
-// where t = r^2
-//
-// Algorithm Description for cotf
-//==============================================================
-// The cotf function computes the principle value of the cotangent of x,
-// where x is radian argument.
+// tan_r = x - Nfloat * (pi/2)_hi
+// tan_r = tan_r - Nfloat * (pi/2)_lo
//
-// There are 5 paths:
-// 1. x = +/-0.0
-// Return cotf(x) = +/-Inf and error handling is called
+// We have two paths: p8, when Nfloat is even and p9. when Nfloat is odd.
+// p8: tan(X) = tan(r)
+// p9: tan(X) = -cot(r)
//
-// 2. x = [S,Q]NaN
-// Return cotf(x) = QNaN
-//
-// 3. x = +/-Inf
-// Return cotf(x) = QNaN
-//
-// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
-// Return cotf(x) = P19(-r) = A1*(-r) + A3*(-r^3) + ... + A19*(-r^19) =
-// = -r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = -r*P9(t), where t = r^2
-//
-// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
-// Return cotf(x) = 1/r + P11(-r) = 1/r + B1*(-r) + ... + B11*(-r^11) =
-// = 1/r - r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = 1/r - r*P11(t),
-// where t = r^2
-//
-// We set p10 and clear p11 if computing tanf, vice versa for cotf.
+// Each is evaluated as a series. The p9 path requires 1/r.
//
+// The coefficients used in the series are stored in a table as
+// are the pi constants.
//
// Registers used
//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f80
//
-// General registers used:
-// r14 -> r23, r32 -> r39
+// predicate registers used:
+// p6-10
//
-// Predicate registers used:
-// p6 -> p13
+// floating-point registers used:
+// f10-15, f32-105
+// f8, input
+//
+// general registers used
+// r14-18, r32-43
//
-// Assembly macros
-//==============================================================
-// integer registers
-rExp = r14
-rSignMask = r15
-rRshf = r16
-rScFctrExp = r17
-rIntN = r18
-rSigRcpPiby2 = r19
-rScRshf = r20
-rCoeffA = r21
-rCoeffB = r22
-rExpCut = r23
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_Parameter_X = r36
-GR_Parameter_Y = r37
-GR_Parameter_RESULT = r38
-GR_Parameter_Tag = r39
-//==============================================================
-// floating point registers
-fScRcpPiby2 = f32
-fScRshf = f33
-fNormArg = f34
-fScFctr = f35
-fRshf = f36
-fShiftedN = f37
-fN = f38
-fR = f39
-fA01 = f40
-fA03 = f41
-fA05 = f42
-fA07 = f43
-fA09 = f44
-fA11 = f45
-fA13 = f46
-fA15 = f47
-fA17 = f48
-fA19 = f49
-fB01 = f50
-fB03 = f51
-fB05 = f52
-fB07 = f53
-fB09 = f54
-fB11 = f55
-fA03_01 = f56
-fA07_05 = f57
-fA11_09 = f58
-fA15_13 = f59
-fA19_17 = f60
-fA11_05 = f61
-fA19_13 = f62
-fA19_05 = f63
-fRbyA03_01 = f64
-fB03_01 = f65
-fB07_05 = f66
-fB11_09 = f67
-fB11_05 = f68
-fRbyB03_01 = f69
-fRbyB11_01 = f70
-fRp2 = f71
-fRp4 = f72
-fRp8 = f73
-fRp5 = f74
-fY0 = f75
-fY1 = f76
-fD = f77
-fDp2 = f78
-fInvR = f79
-fPiby2 = f80
-//==============================================================
+#include "libm_support.h"
+// Assembly macros
+//==============================================================
+TAN_INV_PI_BY_2_2TO64 = f10
+TAN_RSHF_2TO64 = f11
+TAN_2TOM64 = f12
+TAN_RSHF = f13
+TAN_W_2TO64_RSH = f14
+TAN_NFLOAT = f15
+
+tan_Inv_Pi_by_2 = f32
+tan_Pi_by_2_hi = f33
+tan_Pi_by_2_lo = f34
+
+
+tan_P0 = f35
+tan_P1 = f36
+tan_P2 = f37
+tan_P3 = f38
+tan_P4 = f39
+tan_P5 = f40
+tan_P6 = f41
+tan_P7 = f42
+tan_P8 = f43
+tan_P9 = f44
+tan_P10 = f45
+tan_P11 = f46
+tan_P12 = f47
+tan_P13 = f48
+tan_P14 = f49
+tan_P15 = f50
+
+tan_Q0 = f51
+tan_Q1 = f52
+tan_Q2 = f53
+tan_Q3 = f54
+tan_Q4 = f55
+tan_Q5 = f56
+tan_Q6 = f57
+tan_Q7 = f58
+tan_Q8 = f59
+tan_Q9 = f60
+tan_Q10 = f61
+
+tan_r = f62
+tan_rsq = f63
+tan_rcube = f64
+
+tan_v18 = f65
+tan_v16 = f66
+tan_v17 = f67
+tan_v12 = f68
+tan_v13 = f69
+tan_v7 = f70
+tan_v8 = f71
+tan_v4 = f72
+tan_v5 = f73
+tan_v15 = f74
+tan_v11 = f75
+tan_v14 = f76
+tan_v3 = f77
+tan_v6 = f78
+tan_v10 = f79
+tan_v2 = f80
+tan_v9 = f81
+tan_v1 = f82
+tan_int_Nfloat = f83
+tan_Nfloat = f84
+
+tan_NORM_f8 = f85
+tan_W = f86
+
+tan_y0 = f87
+tan_d = f88
+tan_y1 = f89
+tan_dsq = f90
+tan_y2 = f91
+tan_d4 = f92
+tan_inv_r = f93
+
+tan_z1 = f94
+tan_z2 = f95
+tan_z3 = f96
+tan_z4 = f97
+tan_z5 = f98
+tan_z6 = f99
+tan_z7 = f100
+tan_z8 = f101
+tan_z9 = f102
+tan_z10 = f103
+tan_z11 = f104
+tan_z12 = f105
+
+
+/////////////////////////////////////////////////////////////
+
+tan_GR_sig_inv_pi_by_2 = r14
+tan_GR_rshf_2to64 = r15
+tan_GR_exp_2tom64 = r16
+tan_GR_n = r17
+tan_GR_rshf = r18
+
+tan_AD = r33
+tan_GR_10009 = r34
+tan_GR_17_ones = r35
+tan_GR_N_odd_even = r36
+tan_GR_N = r37
+tan_signexp = r38
+tan_exp = r39
+tan_ADQ = r40
+
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
-RODATA
.align 16
-LOCAL_OBJECT_START(coeff_A)
-data8 0x3FF0000000000000 // A1 = 1.00000000000000000000e+00
-data8 0x3FD5555556BCE758 // A3 = 3.33333334641442641606e-01
-data8 0x3FC111105C2DAE48 // A5 = 1.33333249100689099175e-01
-data8 0x3FABA1F876341060 // A7 = 5.39701122561673229739e-02
-data8 0x3F965FB86D12A38D // A9 = 2.18495194027670719750e-02
-data8 0x3F8265F62415F9D6 // A11 = 8.98353860497717439465e-03
-data8 0x3F69E3AE64CCF58D // A13 = 3.16032468108912746342e-03
-data8 0x3F63920D09D0E6F6 // A15 = 2.38897844840557235331e-03
-LOCAL_OBJECT_END(coeff_A)
-
-LOCAL_OBJECT_START(coeff_B)
-data8 0xC90FDAA22168C235, 0x3FFF // pi/2
-data8 0x3FD55555555358DB // B1 = 3.33333333326107426583e-01
-data8 0x3F96C16C252F643F // B3 = 2.22222230621336129239e-02
-data8 0x3F61566243AB3C60 // B5 = 2.11638633968606896785e-03
-data8 0x3F2BC1169BD4438B // B7 = 2.11748132564551094391e-04
-data8 0x3EF611B4CEA056A1 // B9 = 2.10467959860990200942e-05
-data8 0x3EC600F9E32194BF // B11 = 2.62305891234274186608e-06
-data8 0xBF42BA7BCC177616 // A17 =-5.71546981685324877205e-04
-data8 0x3F4F2614BC6D3BB8 // A19 = 9.50584530849832782542e-04
-LOCAL_OBJECT_END(coeff_B)
+double_tan_constants:
+ASM_TYPE_DIRECTIVE(double_tan_constants,@object)
+// data8 0xA2F9836E4E44152A, 0x00003FFE // 2/pi
+ data8 0xC90FDAA22168C234, 0x00003FFF // pi/2 hi
+
+ data8 0xBEEA54580DDEA0E1 // P14
+ data8 0x3ED3021ACE749A59 // P15
+ data8 0xBEF312BD91DC8DA1 // P12
+ data8 0x3EFAE9AFC14C5119 // P13
+ data8 0x3F2F342BF411E769 // P8
+ data8 0x3F1A60FC9F3B0227 // P9
+ data8 0x3EFF246E78E5E45B // P10
+ data8 0x3F01D9D2E782875C // P11
+ data8 0x3F8226E34C4499B6 // P4
+ data8 0x3F6D6D3F12C236AC // P5
+ data8 0x3F57DA1146DCFD8B // P6
+ data8 0x3F43576410FE3D75 // P7
+ data8 0x3FD5555555555555 // P0
+ data8 0x3FC11111111111C2 // P1
+ data8 0x3FABA1BA1BA0E850 // P2
+ data8 0x3F9664F4886725A7 // P3
+ASM_SIZE_DIRECTIVE(double_tan_constants)
+
+double_Q_tan_constants:
+ASM_TYPE_DIRECTIVE(double_Q_tan_constants,@object)
+ data8 0xC4C6628B80DC1CD1, 0x00003FBF // pi/2 lo
+ data8 0x3E223A73BA576E48 // Q8
+ data8 0x3DF54AD8D1F2CA43 // Q9
+ data8 0x3EF66A8EE529A6AA // Q4
+ data8 0x3EC2281050410EE6 // Q5
+ data8 0x3E8D6BB992CC3CF5 // Q6
+ data8 0x3E57F88DE34832E4 // Q7
+ data8 0x3FD5555555555555 // Q0
+ data8 0x3F96C16C16C16DB8 // Q1
+ data8 0x3F61566ABBFFB489 // Q2
+ data8 0x3F2BBD77945C1733 // Q3
+ data8 0x3D927FB33E2B0E04 // Q10
+ASM_SIZE_DIRECTIVE(double_Q_tan_constants)
+
+
+
+.align 32
+.global tanf#
+#ifdef _LIBC
+.global __tanf#
+#endif
+
+////////////////////////////////////////////////////////
-.section .text
-LOCAL_LIBM_ENTRY(cotf)
+.section .text
+.proc tanf#
+#ifdef _LIBC
+.proc __tanf#
+#endif
+.align 32
+tanf:
+#ifdef _LIBC
+__tanf:
+#endif
+// The initial fnorm will take any unmasked faults and
+// normalize any single/double unorms
{ .mlx
- getf.exp rExp = f8 // ***** Get 2ˆ17 * s + E
- movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
+ alloc r32=ar.pfs,1,11,0,0
+ movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi
}
{ .mlx
- addl rCoeffA = @ltoff(coeff_A), gp
- movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
+ addl tan_AD = @ltoff(double_tan_constants), gp
+ movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)
}
;;
{ .mfi
- alloc r32 = ar.pfs, 0, 4, 4, 0
- fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
- cmp.eq p11, p10 = r0, r0 // if p11=1 we compute cotf
+ ld8 tan_AD = [tan_AD]
+ fnorm tan_NORM_f8 = f8
+ mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64
}
-{ .mib
- ld8 rCoeffA = [rCoeffA]
- mov rExpCut = 0x10009 // cutoff for exponent
- br.cond.sptk Common_Path
+{ .mlx
+ nop.m 999
+ movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
}
;;
-LOCAL_LIBM_END(cotf)
+// Form two constants we need
+// 2/pi * 2^1 * 2^63, scaled by 2^64 since we just loaded the significand
+// 1.1000...000 * 2^(63+63+1) to right shift int(W) into the significand
+{ .mmi
+ setf.sig TAN_INV_PI_BY_2_2TO64 = tan_GR_sig_inv_pi_by_2
+ setf.d TAN_RSHF_2TO64 = tan_GR_rshf_2to64
+ mov tan_GR_17_ones = 0x1ffff ;;
+}
-GLOBAL_IEEE754_ENTRY(tanf)
-{ .mlx
- getf.exp rExp = f8 // ***** Get 2ˆ17 * s + E
- movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
-}
-{ .mlx
- addl rCoeffA = @ltoff(coeff_A), gp
- movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
+// Form another constant
+// 2^-64 for scaling Nfloat
+// 1.1000...000 * 2^63, the right shift constant
+{ .mmf
+ setf.exp TAN_2TOM64 = tan_GR_exp_2tom64
+ adds tan_ADQ = double_Q_tan_constants - double_tan_constants, tan_AD
+ fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0
}
;;
-{ .mfi
- alloc r32 = ar.pfs, 0, 4, 4, 0
- fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
- cmp.eq p10, p11 = r0, r0 // if p10=1 we compute tandf
-}
-{ .mib
- ld8 rCoeffA = [rCoeffA]
- mov rExpCut = 0x10009 // cutoff for exponent
- nop.b 0
+
+// Form another constant
+// 2^-64 for scaling Nfloat
+// 1.1000...000 * 2^63, the right shift constant
+{ .mmf
+ setf.d TAN_RSHF = tan_GR_rshf
+ ldfe tan_Pi_by_2_hi = [tan_AD],16
+ fclass.m.unc p7,p0 = f8, 0x23 // Test for x=inf
}
;;
-// Below is common path for both tandf and cotdf
-Common_Path:
-{ .mfi
- setf.sig fScRcpPiby2 = rSigRcpPiby2 // 2^(63+1)*(2/Pi)
- fclass.m p8, p0 = f8, 0x23 // Test for x=inf
- mov rSignMask = 0x1ffff // mask for sign bit
-}
-{ .mlx
- setf.d fScRshf = rScRshf // 1.5*2^(63+63+1)
- movl rRshf = 0x43e8000000000000 // 1.5 2^63 for right shift
+{ .mfb
+ ldfe tan_Pi_by_2_lo = [tan_ADQ],16
+ fclass.m.unc p8,p0 = f8, 0xc3 // Test for x=nan
+(p6) br.ret.spnt b0 ;; // Exit for x=0
}
-;;
{ .mfi
- and rSignMask = rSignMask, rExp // clear sign bit
-(p10) fclass.m.unc p7, p0 = f8, 0x07 // Test for x=0 (for tanf)
- mov rScFctrExp = 0xffff-64 // exp of scaling factor
+ ldfpd tan_P14,tan_P15 = [tan_AD],16
+(p7) frcpa.s0 f8,p9=f0,f0 // Set qnan indef if x=inf
+ mov tan_GR_10009 = 0x10009
}
-{ .mfb
- adds rCoeffB = coeff_B - coeff_A, rCoeffA
-(p9) fma.s.s0 f8 = f8, f1, f8 // Set qnan if x=nan
-(p9) br.ret.spnt b0 // Exit for x=nan
+{ .mib
+ ldfpd tan_Q8,tan_Q9 = [tan_ADQ],16
+ nop.i 999
+(p7) br.ret.spnt b0 ;; // Exit for x=inf
}
-;;
{ .mfi
- cmp.ge p6, p0 = rSignMask, rExpCut // p6 = (E => 0x10009)
-(p8) frcpa.s0 f8, p0 = f0, f0 // Set qnan indef if x=inf
- mov GR_Parameter_Tag = 227 // (cotf)
+ ldfpd tan_P12,tan_P13 = [tan_AD],16
+(p8) fma.s f8=f8,f1,f8 // Set qnan if x=nan
+ nop.i 999
}
-{ .mbb
- ldfe fPiby2 = [rCoeffB], 16
-(p8) br.ret.spnt b0 // Exit for x=inf
-(p6) br.cond.spnt Huge_Argument // Branch if |x|>=2^10
+{ .mib
+ ldfpd tan_Q4,tan_Q5 = [tan_ADQ],16
+ nop.i 999
+(p8) br.ret.spnt b0 ;; // Exit for x=nan
}
-;;
-{ .mfi
- nop.m 0
-(p11) fclass.m.unc p6, p0 = f8, 0x07 // Test for x=0 (for cotf)
- nop.i 0
+{ .mmi
+ getf.exp tan_signexp = tan_NORM_f8
+ ldfpd tan_P8,tan_P9 = [tan_AD],16
+ nop.i 999 ;;
}
-{ .mfb
- nop.m 0
- fnorm.s0 fNormArg = f8
-(p7) br.ret.spnt b0 // Exit for x=0 (for tanf)
+
+// Multiply x by scaled 2/pi and add large const to shift integer part of W to
+// rightmost bits of significand
+{ .mfi
+ ldfpd tan_Q6,tan_Q7 = [tan_ADQ],16
+ fma.s1 TAN_W_2TO64_RSH = tan_NORM_f8,TAN_INV_PI_BY_2_2TO64,TAN_RSHF_2TO64
+ nop.i 999 ;;
}
-;;
-{ .mmf
- ldfpd fA01, fA03 = [rCoeffA], 16
- ldfpd fB01, fB03 = [rCoeffB], 16
- fmerge.s f10 = f8, f8 // Save input for error call
+{ .mmi
+ ldfpd tan_P10,tan_P11 = [tan_AD],16
+ nop.m 999
+ and tan_exp = tan_GR_17_ones, tan_signexp ;;
}
-;;
-{ .mmf
- setf.exp fScFctr = rScFctrExp // get as real
- setf.d fRshf = rRshf // get right shifter as real
-(p6) frcpa.s0 f8, p0 = f1, f8 // cotf(+-0) = +-Inf
+
+// p7 is true if we must call DBX TAN
+// p7 is true if f8 exp is > 0x10009 (which includes all ones
+// NAN or inf)
+{ .mmi
+ ldfpd tan_Q0,tan_Q1 = [tan_ADQ],16
+ cmp.ge.unc p7,p0 = tan_exp,tan_GR_10009
+ nop.i 999 ;;
}
-;;
+
{ .mmb
- ldfpd fA05, fA07 = [rCoeffA], 16
- ldfpd fB05, fB07 = [rCoeffB], 16
-(p6) br.cond.spnt __libm_error_region // call error support if cotf(+-0)
+ ldfpd tan_P4,tan_P5 = [tan_AD],16
+ nop.m 999
+(p7) br.cond.spnt L(TAN_DBX) ;;
}
-;;
+
{ .mmi
- ldfpd fA09, fA11 = [rCoeffA], 16
- ldfpd fB09, fB11 = [rCoeffB], 16
- nop.i 0
+ ldfpd tan_Q2,tan_Q3 = [tan_ADQ],16
+ nop.m 999
+ nop.i 999 ;;
}
-;;
+
+
+// TAN_NFLOAT = Round_Int_Nearest(tan_W)
{ .mfi
- nop.m 0
- fma.s1 fShiftedN = fNormArg,fScRcpPiby2,fScRshf // x*2^70*(2/Pi)+ScRshf
- nop.i 0
+ ldfpd tan_P6,tan_P7 = [tan_AD],16
+ fms.s1 TAN_NFLOAT = TAN_W_2TO64_RSH,TAN_2TOM64,TAN_RSHF
+ nop.i 999 ;;
}
-;;
+
{ .mfi
- nop.m 0
- fms.s1 fN = fShiftedN, fScFctr, fRshf // N = Y*2^(-70) - Rshf
- nop.i 0
+ ldfd tan_Q10 = [tan_ADQ]
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex", p10, p11
+
{ .mfi
- getf.sig rIntN = fShiftedN // get N as integer
-(p10) fnma.s1 fR = fN, fPiby2, fNormArg // R = x - (Pi/2)*N (tanf)
- nop.i 0
+ ldfpd tan_P0,tan_P1 = [tan_AD],16
+ nop.f 999
+ nop.i 999 ;;
}
+
+
{ .mfi
- nop.m 0
-(p11) fms.s1 fR = fN, fPiby2, fNormArg // R = (Pi/2)*N - x (cotf)
- nop.i 0
+ getf.sig tan_GR_n = TAN_W_2TO64_RSH
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-{ .mmi
- ldfpd fA13, fA15 = [rCoeffA], 16
- ldfpd fA17, fA19 = [rCoeffB], 16
- nop.i 0
+// tan_r = -tan_Nfloat * tan_Pi_by_2_hi + x
+{ .mfi
+ ldfpd tan_P2,tan_P3 = [tan_AD]
+ fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_hi, tan_NORM_f8
+ nop.i 999 ;;
}
-;;
-Return_From_Huges:
-{ .mfi
- nop.m 0
- fma.s1 fRp2 = fR, fR, f0 // R^2
-(p11) add rIntN = 0x1, rIntN // N = N + 1 (cotf)
+
+// p8 ==> even
+// p9 ==> odd
+{ .mmi
+ and tan_GR_N_odd_even = 0x1, tan_GR_n ;;
+ nop.m 999
+ cmp.eq.unc p8,p9 = tan_GR_N_odd_even, r0 ;;
}
-;;
+
+// tan_r = tan_r -tan_Nfloat * tan_Pi_by_2_lo
{ .mfi
- nop.m 0
- frcpa.s1 fY0, p0 = f1, fR // Y0 ~ 1/R
- tbit.z p8, p9 = rIntN, 0 // p8=1 if N is even
+ nop.m 999
+ fnma.s1 tan_r = TAN_NFLOAT, tan_Pi_by_2_lo, tan_r
+ nop.i 999 ;;
}
-;;
-// Below are mixed polynomial calculations (mixed for even and odd N)
+
{ .mfi
- nop.m 0
-(p9) fma.s1 fB03_01 = fRp2, fB03, fB01 // R^2*B3 + B1
- nop.i 0
+ nop.m 999
+ fma.s1 tan_rsq = tan_r, tan_r, f0
+ nop.i 999 ;;
}
+
+
{ .mfi
- nop.m 0
- fma.s1 fRp4 = fRp2, fRp2, f0 // R^4
- nop.i 0
+ nop.m 999
+(p9) frcpa.s1 tan_y0, p10 = f1,tan_r
+ nop.i 999 ;;
}
-;;
+
{ .mfi
- nop.m 0
-(p8) fma.s1 fA15_13 = fRp2, fA15, fA13 // R^2*A15 + A13
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v18 = tan_rsq, tan_P15, tan_P14
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p8) fma.s1 fA19_17 = fRp2, fA19, fA17 // R^2*A19 + A17
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v4 = tan_rsq, tan_P1, tan_P0
+ nop.i 999 ;;
}
-;;
+
+
{ .mfi
- nop.m 0
-(p8) fma.s1 fA07_05 = fRp2, fA07, fA05 // R^2*A7 + A5
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v16 = tan_rsq, tan_P13, tan_P12
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p8) fma.s1 fA11_09 = fRp2, fA11, fA09 // R^2*A11 + A9
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v17 = tan_rsq, tan_rsq, f0
+ nop.i 999 ;;
}
-;;
+
+
{ .mfi
- nop.m 0
-(p9) fma.s1 fB07_05 = fRp2, fB07, fB05 // R^2*B7 + B5
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v12 = tan_rsq, tan_P9, tan_P8
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fB11_09 = fRp2, fB11, fB09 // R^2*B11 + B9
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v13 = tan_rsq, tan_P11, tan_P10
+ nop.i 999 ;;
}
-;;
+
+
{ .mfi
- nop.m 0
-(p9) fnma.s1 fD = fR, fY0, f1 // D = 1 - R*Y0
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v7 = tan_rsq, tan_P5, tan_P4
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p8) fma.s1 fA03_01 = fRp2, fA03, fA01 // R^2*A3 + A1
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v8 = tan_rsq, tan_P7, tan_P6
+ nop.i 999 ;;
}
-;;
+
+
{ .mfi
- nop.m 0
- fma.s1 fRp8 = fRp4, fRp4, f0 // R^8
- nop.i 0
+ nop.m 999
+(p9) fnma.s1 tan_d = tan_r, tan_y0, f1
+ nop.i 999
}
{ .mfi
- nop.m 0
- fma.s1 fRp5 = fR, fRp4, f0 // R^5
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v5 = tan_rsq, tan_P3, tan_P2
+ nop.i 999 ;;
}
-;;
+
+
{ .mfi
- nop.m 0
-(p8) fma.s1 fA11_05 = fRp4, fA11_09, fA07_05 // R^4*(R^2*A11 + A9) + ...
- nop.i 0
+ nop.m 999
+(p9) fma.s1 tan_z11 = tan_rsq, tan_Q9, tan_Q8
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p8) fma.s1 fA19_13 = fRp4, fA19_17, fA15_13 // R^4*(R^2*A19 + A17) + ..
- nop.i 0
+ nop.m 999
+(p9) fma.s1 tan_z12 = tan_rsq, tan_rsq, f0
+ nop.i 999 ;;
}
-;;
+
{ .mfi
- nop.m 0
-(p9) fma.s1 fB11_05 = fRp4, fB11_09, fB07_05 // R^4*(R^2*B11 + B9) + ...
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v15 = tan_v17, tan_v18, tan_v16
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fRbyB03_01 = fR, fB03_01, f0 // R*(R^2*B3 + B1)
- nop.i 0
+ nop.m 999
+(p9) fma.s1 tan_z7 = tan_rsq, tan_Q5, tan_Q4
+ nop.i 999 ;;
}
-;;
+
{ .mfi
- nop.m 0
-(p9) fma.s1 fY1 = fY0, fD, fY0 // Y1 = Y0*D + Y0
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v11 = tan_v17, tan_v13, tan_v12
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p9) fma.s1 fDp2 = fD, fD, f0 // D^2
- nop.i 0
+ nop.m 999
+(p9) fma.s1 tan_z8 = tan_rsq, tan_Q7, tan_Q6
+ nop.i 999 ;;
}
-;;
+
+
{ .mfi
- nop.m 0
- // R^8*(R^6*A19 + R^4*A17 + R^2*A15 + A13) + R^6*A11 + R^4*A9 + R^2*A7 + A5
-(p8) fma.d.s1 fA19_05 = fRp8, fA19_13, fA11_05
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v14 = tan_v17, tan_v17, f0
+ nop.i 999
}
{ .mfi
- nop.m 0
-(p8) fma.d.s1 fRbyA03_01 = fR, fA03_01, f0 // R*(R^2*A3 + A1)
- nop.i 0
+ nop.m 999
+(p9) fma.s1 tan_z3 = tan_rsq, tan_Q1, tan_Q0
+ nop.i 999 ;;
}
-;;
+
+
+
{ .mfi
- nop.m 0
-(p9) fma.d.s1 fInvR = fY1, fDp2, fY1 // 1/R = Y1*D^2 + Y1
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v3 = tan_v17, tan_v5, tan_v4
+ nop.i 999
}
{ .mfi
- nop.m 0
- // R^5*(R^6*B11 + R^4*B9 + R^2*B7 + B5) + R^3*B3 + R*B1
-(p9) fma.d.s1 fRbyB11_01 = fRp5, fB11_05, fRbyB03_01
- nop.i 0
+ nop.m 999
+(p8) fma.s1 tan_v6 = tan_v17, tan_v8, tan_v7
+ nop.i 999 ;;
}
-;;
-.pred.rel "mutex", p8, p9
+
+
{ .mfi
- nop.m 0
- // Result = R^5*(R^14*A19 + R^12*A17 + R^10*A15 + ...) + R^3*A3 + R*A1
-(p8) fma.s.s0 f8 = fRp5, fA19_05, fRbyA03_01
- nop.i 0
+ nop.m 999
+(p9) fma.s1 tan_y1 = tan_y0, tan_d, tan_y0
+ nop.i 999
}
-{ .mfb
- nop.m 0
- // Result = -1/R + R^11*B11 + R^9*B9 + R^7*B7 + R^5*B5 + R^3*B3 + R*B1
-(p9) fnma.s.s0 f8 = f1, fInvR, fRbyB11_01
- br.ret.sptk b0 // exit for main path
+{ .mfi
+ nop.m 999
+(p9) fma.s1 tan_dsq = tan_d, tan_d, f0
+ nop.i 999 ;;
}
-;;
-GLOBAL_IEEE754_END(tanf)
+{ .mfi
+ nop.m 999
+(p9) fma.s1 tan_z10 = tan_z12, tan_Q10, tan_z11
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p9) fma.s1 tan_z9 = tan_z12, tan_z12,f0
+ nop.i 999 ;;
+}
-LOCAL_LIBM_ENTRY(__libm_callout)
-Huge_Argument:
-.prologue
{ .mfi
- nop.m 0
- fmerge.s f9 = f0,f0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs
+ nop.m 999
+(p9) fma.s1 tan_z4 = tan_rsq, tan_Q3, tan_Q2
+ nop.i 999
}
-;;
+{ .mfi
+ nop.m 999
+(p9) fma.s1 tan_z6 = tan_z12, tan_z8, tan_z7
+ nop.i 999 ;;
+}
+
+
{ .mfi
- mov GR_SAVE_GP=gp
- nop.f 0
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0
+ nop.m 999
+(p8) fma.s1 tan_v10 = tan_v14, tan_v15, tan_v11
+ nop.i 999 ;;
}
-.body
-{ .mmb
+
+
+{ .mfi
nop.m 999
+(p9) fma.s1 tan_y2 = tan_y1, tan_d, tan_y0
+ nop.i 999
+}
+{ .mfi
nop.m 999
-(p10) br.cond.sptk.many call_tanl ;;
+(p9) fma.s1 tan_d4 = tan_dsq, tan_dsq, tan_d
+ nop.i 999 ;;
}
-// Here if we should call cotl (p10=0, p11=1)
-{ .mmb
+
+{ .mfi
nop.m 999
+(p8) fma.s1 tan_v2 = tan_v14, tan_v6, tan_v3
+ nop.i 999
+}
+{ .mfi
nop.m 999
- br.call.sptk.many b0=__libm_cotl# ;;
+(p8) fma.s1 tan_v9 = tan_v14, tan_v14, f0
+ nop.i 999 ;;
}
+
{ .mfi
- mov gp = GR_SAVE_GP
- fnorm.s.s0 f8 = f8
- mov b0 = GR_SAVE_B0
+ nop.m 999
+(p9) fma.s1 tan_z2 = tan_z12, tan_z4, tan_z3
+ nop.i 999
}
-;;
-
-{ .mib
+{ .mfi
nop.m 999
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-;;
+(p9) fma.s1 tan_z5 = tan_z9, tan_z10, tan_z6
+ nop.i 999 ;;
}
-// Here if we should call tanl (p10=1, p11=0)
-call_tanl:
-{ .mmb
+
+{ .mfi
nop.m 999
+(p9) fma.s1 tan_inv_r = tan_d4, tan_y2, tan_y0
+ nop.i 999
+}
+{ .mfi
nop.m 999
- br.call.sptk.many b0=__libm_tanl# ;;
+(p8) fma.s1 tan_rcube = tan_rsq, tan_r, f0
+ nop.i 999 ;;
}
+
+
{ .mfi
- mov gp = GR_SAVE_GP
- fnorm.s.s0 f8 = f8
- mov b0 = GR_SAVE_B0
+ nop.m 999
+(p8) fma.s1 tan_v1 = tan_v9, tan_v10, tan_v2
+ nop.i 999
}
-;;
-
-{ .mib
+{ .mfi
nop.m 999
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0
-;;
+(p9) fma.s1 tan_z1 = tan_z9, tan_z5, tan_z2
+ nop.i 999 ;;
}
-LOCAL_LIBM_END(__libm_callout)
-.type __libm_tanl#,@function
-.global __libm_tanl#
-.type __libm_cotl#,@function
-.global __libm_cotl#
+
+{ .mfi
+ nop.m 999
+(p8) fma.s.s0 f8 = tan_v1, tan_rcube, tan_r
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+(p9) fms.s.s0 f8 = tan_r, tan_z1, tan_inv_r
+ br.ret.sptk b0 ;;
+}
+.endp tanf#
+ASM_SIZE_DIRECTIVE(tanf#)
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_callout
+__libm_callout:
+L(TAN_DBX):
.prologue
-// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ nop.m 0
+ fmerge.s f9 = f0,f0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs
}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
+;;
-// (2)
-{ .mmi
- stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+{ .mfi
+ mov GR_SAVE_GP=gp
+ nop.f 0
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
+ mov GR_SAVE_B0=b0
+}
.body
-// (3)
-{ .mib
- stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+{ .mfb
+ nop.m 999
+ nop.f 999
+ br.call.sptk.many b0=__libm_tan# ;;
}
-{ .mib
- stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-// (4)
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
+
+{ .mfi
+ mov gp = GR_SAVE_GP
+ fnorm.s f8 = f8
+ mov b0 = GR_SAVE_B0
+}
+;;
+
+
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
+ nop.m 999
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0
+;;
+}
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
+.endp __libm_callout
+ASM_SIZE_DIRECTIVE(__libm_callout)
+.type __libm_tan#,@function
+.global __libm_tan#
diff --git a/sysdeps/ia64/fpu/s_tanh.S b/sysdeps/ia64/fpu/s_tanh.S
deleted file mode 100644
index 9adbc9c461..0000000000
--- a/sysdeps/ia64/fpu/s_tanh.S
+++ /dev/null
@@ -1,986 +0,0 @@
-.file "tanh.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================================
-// 05/30/01 Initial version
-// 12/04/01 Rewritten version with erf-like algorithm.
-// Performance improved.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/14/02 Changed mli templates to mlx
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================================
-// double tanh(double)
-//
-// Overview of operation
-//==============================================================================
-//
-// Algorithm description
-// ---------------------
-//
-// There are 4 paths:
-//
-// 1. Special path: x = 0, Inf, NaNs, denormals
-// Return tanh(x) = +/-0.0 for zeros
-// Return tanh(x) = QNaN for NaNs
-// Return tanh(x) = sign(x)*1.0 for Inf
-// Return tanh(x) = x + x^2 for - denormals
-// Return tanh(x) = x - x^2 for + denormals
-//
-// 2. Near zero path: 0.0 < |x| < 0.25
-// Return tanh(x) = x + x^3*A3 + ... + x^19*A19
-//
-// 3. Main path: 0.25 <= |x| < 19.0625
-// For several ranges of 0.25 <= |x| < 19.0625
-// Return tanh(x) = sign(x)*(A0 + y*A1 + y^2*A2 +
-// + y^3*A3 + ... + y^19*A19)
-// where y = (|x|/a) - b
-//
-// For each range there is particular set of coefficients.
-// Below is the list of ranges:
-// 1/4 <= |x| < 1/2 a = 0.25, b = 1.0
-// 1/2 <= |x| < 1.0 a = 0.5, b = 1.0
-// 1.0 <= |x| < 2.0 a = 1.0, b = 1.0
-// 2.0 <= |x| < 3.25 a = 2.0, b = 1.0
-// 3.25 <= |x| < 4.0 a = 2.0, b = 2.0
-// 4.0 <= |x| < 6.5 a = 4.0, b = 1.0
-// 6.5 <= |x| < 8.0 a = 4.0, b = 2.0
-// 8.0 <= |x| < 13.0 a = 8.0, b = 1.0
-// 13.0 <= |x| < 16.0 a = 8.0, b = 2.0
-// 16.0 <= |x| < 19.0625 a = 16.0, b = 1.0
-// ( [3.25;4.0], [6.5;8.0], [13.0;16.0] subranges separated
-// for monotonicity issues resolve )
-//
-// 4. Saturation path: 19.0625 <= |x| < +INF
-// Return tanh(x) = sign(x)*(1.0 - tiny_value)
-// (tiny_value ~ 2^(-63))
-//
-// Registers used
-//==============================================================================
-// Floating Point registers used:
-// f8 = input, output
-// f32 -> f64
-//
-// General registers used:
-// r32 -> r51, r2, r3
-//
-// Predicate registers used:
-// p6, p8, p10, p11, p12, p14, p15
-// p6 arg is zero, denormal or special IEEE
-// p8 to filter out case when signd(x) > 1.625
-// p10 to filter out case when |x| < 0.25
-// p11 to filter out case when signd(x) <= 1.625
-// p12 to filter out case when |x| >= 19.0625
-// p14 set to 1 for positive x
-// p15 set to 1 for negative x
-
-// Assembly macros
-//==============================================================================
-rDataPtr = r2
-rDataPtr1 = r3
-
-rBias = r33
-rCoeffAddr3 = r34
-rThreeAndQ = r35
-rCoeffAddr2 = r36
-rMask = r37
-rArg = r38
-rSignBit = r39
-rAbsArg = r40
-rSaturation = r41
-rIndex = r42
-rCoeffAddr1 = r43
-rCoeffAddr4 = r44
-rShiftedArg = r45
-rShiftedArgMasked = r46
-rBiasedExpOf4 = r47
-rShiftedAbsArg = r48
-rArgSgnd = r49
-r1625Sgnd = r50
-rTwo = r51
-
-//==============================================================================
-fA0 = f32
-fA1 = f33
-fA2 = f34
-fA3 = f35
-fA4 = f36
-fA5 = f37
-fA6 = f38
-fA7 = f39
-fA8 = f40
-fA9 = f41
-fA10 = f42
-fA11 = f43
-fA12 = f44
-fA13 = f45
-fA14 = f46
-fA15 = f47
-fA16 = f48
-fA17 = f49
-fA18 = f50
-fA19 = f51
-fArgSqr = f52
-fArgAbsNorm = f53
-fSignumX = f54
-fRes = f55
-fThreeAndQ = f56
-fArgAbs = f57
-fTSqr = f58
-fTQuadr = f59
-fTDeg3 = f60
-fTDeg7 = f61
-fArgAbsNormSgn = f62
-fTQuadrSgn = f63
-fTwo = f64
-
-// Data tables
-//==============================================================================
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(tanh_data)
-// CAUTION: The order of these table coefficients shouldn't be changed!
-
-// Main path coefficients:
-// Coefficients ##0..15 ("main" coefficient tables)
-// Polynomial coefficients for the tanh(x), 0.25 <= |x| < 0.5
-data8 0xE9D218BC9A3FB55A, 0x00003FC7 //A19
-data8 0xC8C0D38687F36EBA, 0x00003FCE //A18
-data8 0xA2663E519FAC8A43, 0x0000BFD2 //A17
-data8 0xD913F0490674B0DF, 0x00003FD3 //A16
-data8 0xF75D84789DE0AE52, 0x00003FD6 //A15
-data8 0xACB3C40EEF3A06F0, 0x0000BFD9 //A14
-data8 0xEBD7F5DC02CFD5BA, 0x0000BFDB //A13
-data8 0x8B52CDF66D709E2A, 0x00003FDF //A12
-data8 0x9EC21F28E05C4A3E, 0x00003FE0 //A11
-data8 0xC412B44D0176F3ED, 0x0000BFE4 //A10
-data8 0x97BF35A34DD1EA4C, 0x0000BFE0 //A9
-data8 0xF89F5B39E3A3AA36, 0x00003FE9 //A8
-data8 0xF2BA654BCEEBA433, 0x0000BFEA //A7
-data8 0x8E1C15876AA589AD, 0x0000BFEF //A6
-data8 0x942226246A8C2A86, 0x00003FF1 //A5
-data8 0x8F06D9FF7DB47261, 0x00003FF4 //A4
-//
-// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
-data8 0xC4A7B8FB672A8520, 0x00003FDC //A19
-data8 0xA20724B847E13499, 0x0000BFE0 //A18
-data8 0xE17DB53F02E4D340, 0x00003FE2 //A17
-data8 0x90264A1012F4CA6F, 0x0000BFE4 //A16
-data8 0xEBEC9F776F0BF415, 0x0000BFE0 //A15
-data8 0x89AF912B305B45A4, 0x00003FE7 //A14
-data8 0xB4A960B81F5EC36A, 0x0000BFE7 //A13
-data8 0x969A4E95B2DA86B5, 0x0000BFEA //A12
-data8 0x8A3FC0EC082305CB, 0x00003FEC //A11
-data8 0x83D7795BCBE24373, 0x00003FEC //A10
-data8 0xDCBF42AEB82932EC, 0x0000BFEF //A9
-data8 0x83318E61ECAFD804, 0x00003FF0 //A8
-data8 0xEA4DE5746975A914, 0x00003FF2 //A7
-data8 0xCE63E8FA6B96480B, 0x0000BFF4 //A6
-data8 0xDF017BE0D4FE45D8, 0x0000BFF4 //A5
-data8 0xA8A0C6E2226DF3CD, 0x00003FF8 //A4
-//
-// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
-data8 0x8E89D2EBFDAA160B, 0x00003FE9 //A19
-data8 0xDD9226310A272046, 0x0000BFEC //A18
-data8 0xA038042D28B0D665, 0x00003FEF //A17
-data8 0x8C04796F03516306, 0x0000BFF1 //A16
-data8 0x9CD6A9CB4E90A2FD, 0x00003FF2 //A15
-data8 0xC8980E166F5A84FD, 0x0000BFF2 //A14
-data8 0x9ADFE65F56B7BCFD, 0x00003FED //A13
-data8 0x8B11FDFB5D0A7B96, 0x00003FF4 //A12
-data8 0x8209A125E829CBFA, 0x0000BFF5 //A11
-data8 0xCF38AAC17B85BD76, 0x00003FF1 //A10
-data8 0xD5C2E248D8AB99AB, 0x00003FF6 //A9
-data8 0xE12BE2785727F2D6, 0x0000BFF7 //A8
-data8 0x9FC9EF90F87BF1E2, 0x00003FF6 //A7
-data8 0x9B02FE0DAF42C08F, 0x00003FF9 //A6
-data8 0xBDACE06F531D9491, 0x0000BFFA //A5
-data8 0xE3048AD1DB2F648C, 0x00003FF9 //A4
-//
-// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 3.25
-data8 0x856EC3B0330A385A, 0x00003FEB //A19
-data8 0xC641D69DAE2D429C, 0x0000BFF2 //A18
-data8 0xC683EB0BE1343FFF, 0x00003FF5 //A17
-data8 0xC358954224E4E823, 0x0000BFF7 //A16
-data8 0xF813A8D6D396BC5F, 0x00003FF8 //A15
-data8 0xE0ECDFED078D37D6, 0x0000BFF9 //A14
-data8 0x950E4E619855E316, 0x00003FFA //A13
-data8 0x8453B8F93370FB58, 0x0000BFFA //A12
-data8 0xFDBA28430AEC95BA, 0x00003FF7 //A11
-data8 0x9371AAC1FDB1E664, 0x00003FFA //A10
-data8 0xAC972DA97782D88A, 0x0000BFFB //A9
-data8 0xE18F47B10B9CE1BC, 0x00003FFB //A8
-data8 0xAB7C81230BF13BC6, 0x0000BFFB //A7
-data8 0xA6CAAD4A3E31A7D5, 0x0000BFF8 //A6
-data8 0x9CABD76D1D5C3878, 0x00003FFC //A5
-data8 0x92906D077941CAA9, 0x0000BFFD //A4
-//
-// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 6.5
-data8 0x9232D19F71709AC9, 0x0000BFF5 //A19
-data8 0x819E31323F5DD3F8, 0x00003FF8 //A18
-data8 0xDA8E1CDB8D23DC29, 0x0000BFF9 //A17
-data8 0xE97C7CD8FC0486D8, 0x00003FFA //A16
-data8 0xB0C4AD234D88C9F2, 0x0000BFFB //A15
-data8 0xC5989BFB28FDE267, 0x00003FFB //A14
-data8 0x9B26520EC4EFEE8E, 0x0000BFFB //A13
-data8 0xC4B6F758AD21E574, 0x00003FF9 //A12
-data8 0xCC36E3FFA10D2CFF, 0x00003FFA //A11
-data8 0x8738696FB06A5CED, 0x0000BFFC //A10
-data8 0xD31981825BF39228, 0x00003FFC //A9
-data8 0x82C58FB9BEE43992, 0x0000BFFD //A8
-data8 0x88D5AAE49164B6F3, 0x00003FFD //A7
-data8 0xF4CA0B968AF2DDE2, 0x0000BFFC //A6
-data8 0xB99874B482BD17EE, 0x00003FFC //A5
-data8 0xE93FB2F99431DC1D, 0x0000BFFB //A4
-//
-// Polynomial coefficients for the tanh(x), 8.0 <= |x| < 13.0
-data8 0xAAA9EB7EADA85CEC, 0x00003FF5 //A19
-data8 0x980C80EE05A6BE78, 0x0000BFF8 //A18
-data8 0x818DA9F5396390A5, 0x00003FFA //A17
-data8 0x8D8CC21E23D8A6A2, 0x0000BFFB //A16
-data8 0xE0EC19E55A886765, 0x00003FFB //A15
-data8 0x8C11197A7E6244C5, 0x0000BFFC //A14
-data8 0x901D2BF203C2F7F3, 0x00003FFC //A13
-data8 0xFEACAEE66EE803E5, 0x0000BFFB //A12
-data8 0xC684E4925E318C3F, 0x00003FFB //A11
-data8 0x8A9D8A970565F28D, 0x0000BFFB //A10
-data8 0xAE34C61DE5CEA4D4, 0x00003FFA //A9
-data8 0xC44C5714BD6208A0, 0x0000BFF9 //A8
-data8 0xC4612F7D6C8BDB79, 0x00003FF8 //A7
-data8 0xABD91DCE40D5EECB, 0x0000BFF7 //A6
-data8 0x80E375C1B847B72F, 0x00003FF6 //A5
-data8 0xA11C7DD978CF700A, 0x0000BFF4 //A4
-//
-// Polynomial coefficients for the tanh(x), 16.0 <= |x| < 19.0625
-data8 0xE29D17C510F86F6B, 0x00003FF3 //A19
-data8 0x88FE52EB39A3A98C, 0x0000BFF5 //A18
-data8 0xA406547E50360693, 0x00003FF5 //A17
-data8 0x83E6260B71C6D7DE, 0x0000BFF5 //A16
-data8 0xA36AB5B0CBC97B85, 0x00003FF4 //A15
-data8 0xA94931E0B7BA6C14, 0x0000BFF3 //A14
-data8 0x9A4596DAF350AD63, 0x00003FF2 //A13
-data8 0xFE47643F375AECA5, 0x0000BFF0 //A12
-data8 0xBF8433C5ABEE63B1, 0x00003FEF //A11
-data8 0x83CEE05D7AE90A0A, 0x0000BFEE //A10
-data8 0xA4CC45480BCEB02D, 0x00003FEC //A9
-data8 0xB967CBDCBC16CB10, 0x0000BFEA //A8
-data8 0xB9681B214EDC098D, 0x00003FE8 //A7
-data8 0xA23B20D87B80DFA8, 0x0000BFE6 //A6
-data8 0xF358B2C46F10CBAF, 0x00003FE3 //A5
-data8 0x98176FD06229A385, 0x0000BFE1 //A4
-//
-// Binary subranges
-// Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4.0
-data8 0xEF2EE841288F6706, 0x00003FE9 //A19
-data8 0xE65D5B74B85F82A6, 0x00003FEB //A18
-data8 0xE495FC21E42A79FF, 0x00003FEA //A17
-data8 0xF99B267A913CF3E5, 0x00003FEC //A16
-data8 0xFE3D700F4A0A0FDE, 0x0000BFEC //A15
-data8 0x8F91BB4EE4E4EA52, 0x00003FEE //A14
-data8 0xBCA9F41A5C6EF8BA, 0x0000BFEE //A13
-data8 0xF93E00884027A9CF, 0x00003FED //A12
-data8 0xC4D4036A61BABC2F, 0x00003FEF //A11
-data8 0x86CC2AD1AD47C7D5, 0x0000BFF2 //A10
-data8 0xD3065DEF4CE9AD32, 0x00003FF3 //A9
-data8 0x82C44125F568D54E, 0x0000BFF5 //A8
-data8 0x88D588729BAF14CA, 0x00003FF6 //A7
-data8 0xF4CA0661307243C7, 0x0000BFF6 //A6
-data8 0xB998746D57061F74, 0x00003FF7 //A5
-data8 0xE93FB2F482327C19, 0x0000BFF7 //A4
-//
-// Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0
-data8 0xEB189B71ADC40BE2, 0x00003FEA //A19
-data8 0xA60B46F9FF6DC2DF, 0x00003FEA //A18
-data8 0xBB061CDD9F368B9D, 0x00003FEC //A17
-data8 0x841E08BDF5429991, 0x0000BFEC //A16
-data8 0xDD33990B433F25BE, 0x00003FED //A15
-data8 0xBA5DE6B870F0A2BB, 0x0000BFEE //A14
-data8 0xA71D489AAA6DACF0, 0x00003FEF //A13
-data8 0x874CCB2B8F3FBC0E, 0x0000BFF0 //A12
-data8 0xCB1D2E9754EA534A, 0x00003FF0 //A11
-data8 0x8BA5ABB53BA6ABCF, 0x0000BFF1 //A10
-data8 0xAE91FD1C2391A32B, 0x00003FF1 //A9
-data8 0xC465A74B798E5761, 0x0000BFF1 //A8
-data8 0xC4666152397D15C1, 0x00003FF1 //A7
-data8 0xABD9E63CA575B950, 0x0000BFF1 //A6
-data8 0x80E38B18E8D0F460, 0x00003FF1 //A5
-data8 0xA11C80E20AAFDD3C, 0x0000BFF0 //A4
-//
-// Polynomial coefficients for the tanh(x), 13.0 <= |x| < 16.0
-data8 0xBECD0AF7E22E5594, 0x00003FE9 //A19
-data8 0xE2834E2D68C1128C, 0x00003FEA //A18
-data8 0x97B117611B317379, 0x00003FEB //A17
-data8 0xEE91A0D39A772F6B, 0x00003FEA //A16
-data8 0x92F6EC377DCADA4F, 0x00003FEA //A15
-data8 0xD8FCCD6A3277FAB7, 0x00003FE8 //A14
-data8 0xC15AB9CB0C3DCFE0, 0x00003FE7 //A13
-data8 0xC3C659704A7147CD, 0x00003FE2 //A12
-data8 0xFA17F09D27C97912, 0x00003FE4 //A11
-data8 0xF664147182B94788, 0x0000BFE3 //A10
-data8 0xA6C89FA741464DA1, 0x00003FE3 //A9
-data8 0xB90FE464A825EFA8, 0x0000BFE2 //A8
-data8 0xB973AE0FD86EC024, 0x00003FE1 //A7
-data8 0xA23A087F96846951, 0x0000BFE0 //A6
-data8 0xF358D8A7FC012D5D, 0x00003FDE //A5
-data8 0x98176E2309B7C73A, 0x0000BFDD //A4
-//
-// Coefficients ##16..19 ("tail" coefficient tables)
-// Polynomial coefficients for the tanh(x), 0.25 <= |x| < 0.5
-data8 0x838F209ABB9BA7B3, 0x0000BFF7 //A3
-data8 0xEBC0AC78DA4FC500, 0x0000BFF8 //A2
-data8 0xF0A4D02960B60E69, 0x00003FFC //A1
-data8 0xFACBF534D0E42F8A, 0x00003FFC //A0
-//
-// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
-data8 0xC0ECBDC0A0D133A6, 0x0000BFF8 //A3
-data8 0xBA13A076BF8E812F, 0x0000BFFB //A2
-data8 0xC954A37D1A1CA070, 0x00003FFD //A1
-data8 0xEC9A9EBAB4579B29, 0x00003FFD //A0
-//
-// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
-data8 0xD42E9175A6EA1397, 0x00003FFB //A3
-data8 0xA3C361378A55CF56, 0x0000BFFD //A2
-data8 0xD706E07CC8622983, 0x00003FFD //A1
-data8 0xC2F7D5A8A79CA2AC, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 3.25
-data8 0xAC7A7F8776817C7E, 0x00003FFD //A3
-data8 0x8B7CE95E69FCFE9A, 0x0000BFFD //A2
-data8 0x90B161317028D995, 0x00003FFC //A1
-data8 0xF6CA82F0DE1E9E9A, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 6.5
-data8 0xE9E072407BC22DC6, 0x00003FFA //A3
-data8 0xAFA4A913D8E6BB4A, 0x0000BFF9 //A2
-data8 0xAFC2D6A885BAA875, 0x00003FF7 //A1
-data8 0xFFD40B84505A10B2, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 8.0 <= |x| < 13.0
-data8 0xA11C8A1FED168CD5, 0x00003FF2 //A3
-data8 0xF1AAD6B02063A5F5, 0x0000BFEF //A2
-data8 0xF1AADA46AD341C34, 0x00003FEC //A1
-data8 0xFFFFFC39548FC34B, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 16.0 <= |x| < 19.0625
-data8 0x98176FD1F0950C16, 0x00003FDE //A3
-data8 0xE42327BB09C8B2A5, 0x0000BFDA //A2
-data8 0xE42327BB0B154F13, 0x00003FD6 //A1
-data8 0xFFFFFFFFFFF8DEE7, 0x00003FFE //A0
-//
-// Binary subranges
-// Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4.0
-data8 0xE9E072404329293B, 0x00003FF7 //A3
-data8 0xAFA4A913D798300B, 0x0000BFF7 //A2
-data8 0xAFC2D6A885B48567, 0x00003FF6 //A1
-data8 0xFFD40B84505A10B4, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0
-data8 0xA11C8A63815F7A28, 0x00003FEF //A3
-data8 0xF1AAD6B65B0EBF53, 0x0000BFED //A2
-data8 0xF1AADA46E799831F, 0x00003FEB //A1
-data8 0xFFFFFC39548FC348, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 13.0 <= |x| < 16.0
-data8 0x98176FE982140A59, 0x00003FDB //A3
-data8 0xE42327B9B0D7202F, 0x0000BFD8 //A2
-data8 0xE42327BB13076BD6, 0x00003FD5 //A1
-data8 0xFFFFFFFFFFF8DEE7, 0x00003FFE //A0
-//
-// Polynomial coefficients for the tanh(x), 0.0 <= |x| < 0.25
-// ('tanh_near_zero' path)
-data8 0xBF2BA5D26E479D0C //A9
-data8 0x3F4336D96F81EE26 //A8
-data8 0xBF8226E34AE197B0 //A5
-data8 0x3F9664F488148657 //A4
-data8 0xAAAAAAAAAAAAAA99, 0x0000BFFD //A1
-data8 0xBF57D91925BB5EE2 //A7
-data8 0x3F6D6D36C3D5B7A1 //A6
-data8 0xBFABA1BA1BA19D32 //A3
-data8 0x3FC1111111111108 //A2
-//
-// 1.0 - 2^(-63)
-// ('tanh_saturation' path)
-data8 0xFFFFFFFFFFFFFFFF, 0x00003FFE
-LOCAL_OBJECT_END(tanh_data)
-
-// CAUTION: The order of table coefficients shouldn't be changed!
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(tanh)
-{ .mfi
- alloc r32 = ar.pfs, 0, 20, 0, 0
- fmerge.se fArgAbsNorm = f1, f8 // normalized x
- adds rSignBit = 0x1, r0 // Bit for sign removing
-}
-{ .mfi
- addl rDataPtr = @ltoff(tanh_data), gp // Data pointer
- fma.s1 fTwo = f1, f1, f1 // 2.0 construct
- addl rArgSgnd = 0xfff, r0 // mask for exponent
-};;
-
-{ .mfi
- getf.d rArg = f8 // x in GR
- fclass.m p6,p0 = f8, 0xEF // Filter 0, denormals and specials
- // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf
- shl rArgSgnd = rArgSgnd, 52 // mask for exponent
-}
-{ .mlx
- ld8 rDataPtr = [rDataPtr] // Real data pointer
- movl r1625Sgnd = 0xA000000000000 // 1.625 signd
- // 1.625 significand used to filter values greater than 3.25, 6.5, 13.0
- // to enter binary subranges
-};;
-
-{ .mfi
- addl rBias = 0x3FD00, r0 // bias of 0.25 << 8
- fma.s1 fArgSqr = f8, f8, f0 // x^2
- shl rSignBit = rSignBit, 63 // mask for sign bit
-}
-{ .mlx
- addl rMask = 0x7FF00, r0 // Mask for index bits
- movl rTwo = 0x4000000000000000 // 2.0
-};;
-
-{ .mfi
- andcm rArgSgnd = rArg, rArgSgnd // Remove exponent
- nop.f 0
- shr.u rShiftedArg = rArg, 44 // Select only necessary bits of arg
-}
-{ .mfb
- andcm rAbsArg = rArg, rSignBit // Remove sign
- nop.f 0
-(p6) br.cond.spnt _tanh_spec // Branch to zero, denorm & specs
-};;
-
-{ .mfi
- and rShiftedArgMasked = rShiftedArg, rMask // bias of x << 8
- fmerge.s fArgAbs = f1, f8 // |x|
- shr rShiftedAbsArg = rAbsArg, 44 // Select only necessary
- // bits of absolute arg
-}
-{ .mfi
- cmp.gt p8, p11 = rArgSgnd, r1625Sgnd // p8 = 1 if
- // signd(x) > 1.625 - to filter values greater than 3.25, 6.5, 13.0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- sub rIndex = rShiftedArgMasked, rBias // index << 8
- nop.f 0
- cmp.lt p10, p0 = rShiftedArgMasked, rBias // p10=1 if |x|<0.25
-}
-{ .mfb
-(p8) cmp.gt p8, p11 = rAbsArg, rTwo // If arg is greater than 2.0?
- // (then we should use binary subranges)
- nop.f 0
-(p10) br.cond.spnt tanh_near_zero // branch out if |x| < 0.25
-};;
-
-.pred.rel "mutex",p8,p11
-{ .mfi
-(p8) add rIndex = 0x400, rIndex // Make pointer to binary
- // subranges
-(p11) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f1 // |x|/b - 1.0
- addl rSaturation = 0x40331, r0 // shifted bits of 19.0625
-}
-{ .mfi
- nop.m 0
-(p8) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, fTwo // |x|/b - 2.0
- // this is only for binary subranges [3.25;4], [6.5;8], [13.0;16]
- nop.i 0
-}
-;;
-
-{ .mfi
- add rCoeffAddr1 = rDataPtr, rIndex// coeff. ##0,2,..14
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- adds rCoeffAddr2 = 16, rCoeffAddr1 // Shifted pointer to coeffs
- fmerge.s fSignumX = f8, f1 // signum(x)
- nop.i 0
-}
-{ .mfb
- cmp.le p12, p0 = rSaturation, rShiftedAbsArg // |x|>=19.0625?
- nop.f 0
-(p12) br.cond.spnt tanh_saturation // branch out if x |x| >= 19.0625
-};;
-
-{.mfi
- ldfe fA19 = [rCoeffAddr1], 32 // Load A19
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA18 = [rCoeffAddr2], 32 // Load A18
- nop.f 0
- adds rCoeffAddr3 = 0xA00, rDataPtr // Pointer to "tail"
- // coefficients tables
-};;
-
-{.mfi
- ldfe fA17 = [rCoeffAddr1], 32 // Load A17
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA16 = [rCoeffAddr2], 32 // Load A16
- nop.f 0
- nop.i 0
-};;
-
-{.mfi
- ldfe fA15 = [rCoeffAddr1], 32 // Load A15
- fma.s1 fTSqr = fArgAbsNorm, fArgAbsNorm, f0 // x^2
- shr.u rIndex = rIndex, 2 // Index for "tail" tables
-}
-{.mfi
- ldfe fA14 = [rCoeffAddr2], 32 // Load A14
- nop.f 0
- adds rCoeffAddr4 = 16, r0 // Shifter pointer
- // to "tail" tables
-};;
-
-{.mfi
- ldfe fA13 = [rCoeffAddr1], 32 // Load A13
- nop.f 0
- add rCoeffAddr3 = rCoeffAddr3, rIndex // "tail" coeffs to load
- // ##16..23
-}
-{.mfi
- ldfe fA12 = [rCoeffAddr2], 32 // Load A12
- nop.f 0
- cmp.lt p15, p14 = rArg, r0 // Arg positive (p14)
- // or negative (p15)?
-};;
-
-{.mfi
- ldfe fA11 = [rCoeffAddr1], 32 // Load A11
- nop.f 0
- add rCoeffAddr4 = rCoeffAddr3, rCoeffAddr4 // shifted "tail"
- // coeffs to load
-}
-{.mfi
- ldfe fA10 = [rCoeffAddr2], 32 // Load A10
- nop.f 0
- nop.i 0
-};;
-
-{.mfi
- ldfe fA9 = [rCoeffAddr1], 32 // Load A9
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA8 = [rCoeffAddr2], 32 // Load A8
- nop.f 0
- nop.i 0
-};;
-
-{.mfi
- ldfe fA7 = [rCoeffAddr1], 32 // Load A7
- nop.f 0
- nop.i 0
-}
-{.mfi
- ldfe fA6 = [rCoeffAddr2], 32 // Load A6
- nop.f 0
- nop.i 0
-};;
-
-{.mfi
- ldfe fA5 = [rCoeffAddr1], 32 // Load A5
- fma.s1 fTDeg3 = fArgAbsNorm, fTSqr, f0 // x^3
- nop.i 0
-}
-{.mfi
- ldfe fA4 = [rCoeffAddr2], 32 // Load A4
- fma.s1 fTQuadr = fTSqr, fTSqr, f0 // x^4
- nop.i 0
-};;
-
-// Path #3 Polynomial Pol19(y) computation; y = fArgAbsNorm
-{.mfi
- ldfe fA3 = [rCoeffAddr3], 32 // Load A3
- fma.s1 fArgAbsNormSgn = fArgAbsNorm, fSignumX, f0 // sign(x)*x
- nop.i 0
-}
-{.mfi
- ldfe fA2 = [rCoeffAddr4], 32 // Load A2
- nop.f 0
- nop.i 0
-};;
-
-{.mfi
- ldfe fA1 = [rCoeffAddr3], 32 // Load A1
- fma.s1 fRes = fA19, fArgAbsNorm, fA18 // Polynomial
- nop.i 0
-}
-{.mfi
- ldfe fA0 = [rCoeffAddr4], 32 // Load A0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA17, fArgAbsNorm, fA16 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fArgAbsNorm, fA14 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTDeg7 = fTDeg3, fTQuadr, f0 // Polynomial
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA13 = fA13, fArgAbsNorm, fA12 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fArgAbsNorm, fA10 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA9 = fA9, fArgAbsNorm, fA8 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA17 // Polynomial
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fArgAbsNorm, fA6 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, fArgAbsNorm, f0 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA15, fTSqr, fA13 // Polynomial
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA4, fArgAbsNorm, fA3 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA2 = fA2, fArgAbsNorm, fA1 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA11, fTSqr, fA9 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fTSqr, fA5 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTQuadr, fA15 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA4, fTSqr, fA2 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTQuadr, fA11 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA7, fTDeg3, fA4 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTDeg7, fA4 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- // result for negative argument
-(p15) fms.d.s0 f8 = fRes, fArgAbsNormSgn, fA0 // Polynomial
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // result for positive argument
-(p14) fma.d.s0 f8 = fRes, fArgAbsNormSgn, fA0 // Polynomial
- br.ret.sptk b0
-};;
-
-
-// |x| < 0.25 Path /////////////////////////////////////////////////////////////
-.align 32
-tanh_near_zero:
-{ .mfi
- adds rCoeffAddr1 = 0xC80, rDataPtr // address of A9
- fma.s0 fTSqr = fArgSqr, fArgSqr, f0 // x^4
- nop.i 0
-}
-{ .mfi
- adds rCoeffAddr2 = 0xCB0, rDataPtr // address of A7
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfpd fA9, fA8 = [rCoeffAddr1], 16 // Load A9, A8
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA7, fA6 = [rCoeffAddr2], 16 // Load A7, A6
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfpd fA5, fA4 = [rCoeffAddr1], 16 // Load A5, A4
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfpd fA3, fA2 = [rCoeffAddr2], 16 // Load A3, A2
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA1 = [rCoeffAddr1] // Load A1
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTQuadr = fTSqr, fTSqr, f0 // x^4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fA9, fArgSqr, fA8 // Polynomial
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA7, fArgSqr, fA6 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA3, fArgSqr, fA2 // Polynomial
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA5 = fA5, fArgSqr, fA4 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA1 = fA1, fArgSqr, f0 // Polynomial
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fTQuadrSgn = fTQuadr, f8, f0 // x^4 * x
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA7 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA1 = fA3, fTSqr, fA1 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTSqr, fA5 // Polynomial
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fRes, fTQuadr, fA1 // Polynomial
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fRes, f8, f8 // x+x*Polynomial
- br.ret.sptk b0 // Exit for |x| < 0.25
-};;
-
-
-
-
-
-// 19.0625 <= |x| < +inf Saturation path ///////////////////////////////////////
-.align 32
-tanh_saturation:
-{ .mfi
- adds rDataPtr = 0xCD0, rDataPtr // address of A0
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA0 = [rDataPtr] // Load A0 = 2^(-63)
- nop.f 0
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0-2^(-63))
- br.ret.sptk b0 // Exit for 19.0625 <=|x|< +inf
-};;
-
-
-
-
-
-// 0, denormals and special IEEE numbers path /////////////////////////////////
-_tanh_spec:
-
-{ .mfi
- cmp.lt p15, p14 = rArg, r0 // Is arg negative (p15)
- // or positive p14)
- fclass.m p6,p0 = f8, 0x23 // To filter infinities
- // 0x23 = @pos|@neg|@inf
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fclass.m p7,p0 = f8, 0xC7 // To filter NaNs & Zeros
- // 0xC7 = @pos|@neg|@zero|@qnan|@snan
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
-(p6) fmerge.s f8 = f8, f1 // +/-1 for INF args
-(p6) br.ret.spnt b0 // exit for x = INF
-};;
-
-{ .mfb
- nop.m 0
-(p7) fma.d.s0 f8 = f8, f1, f8 // +/-0 for 0 args
- // and NaNs for NaNs
-(p7) br.ret.spnt b0 // exit for x = NaN or +/-0
-};;
-
-{ .mfi
- nop.m 0
- fnorm.s0 f8 = f8 // Normalize arg
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fnma.d.s0 f8 = f8, f8, f8 // res = r-r^2
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fma.d.s0 f8 = f8, f8, f8 // res = r+r^2
- br.ret.sptk b0 // 0, denormals, specials return
-};;
-
-GLOBAL_LIBM_END(tanh)
-
-
diff --git a/sysdeps/ia64/fpu/s_tanhf.S b/sysdeps/ia64/fpu/s_tanhf.S
deleted file mode 100644
index e4e91cfe63..0000000000
--- a/sysdeps/ia64/fpu/s_tanhf.S
+++ /dev/null
@@ -1,581 +0,0 @@
-.file "tanhf.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 05/30/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// float tanhf(float)
-//
-// Overview of operation
-//==============================================================
-// Background
-//
-//
-// There are 9 paths:
-// 1. x = +/-0.0
-// Return tanhf(x) = +/-0.0
-//
-// 2. 0.0 < |x| < 0.3125
-// Return tanhf(x) = x + x^3*Pol3(x^2),
-// where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0
-//
-// 3. 0.3125 <= |x| < 8.0
-// Return tanhf(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|),
-// where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4),
-// PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0,
-// PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0
-//
-// Actually range 0.3125<=|x|< 8.0 is split to 5 subranges.
-// For each subrange there is particular set of coefficients.
-// Below is the list of subranges:
-// 3.1 0.3125 <= |x| < 0.5
-// 3.2 0.5 <= |x| < 1.0
-// 3.3 1.0 <= |x| < 2.0
-// 3.4 2.0 <= |x| < 4.0
-// 3.5 4.0 <= |x| < 8.0
-//
-// 4. 8.0 <= |x| < 9.125
-// Return tanhf(x) = sign(x)*(A3|x|^3 + A2*x^2 + A1*|x| + A0)
-//
-// 5. 9.125 <= |x| < +INF
-// Return tanhf(x) = sign(x)*(1.0d - 2^(-52))
-//
-// 6. |x| = INF
-// Return tanhf(x) = sign(x) * 1.0
-//
-// 7. x = [S,Q]NaN
-// Return tanhf(x) = QNaN
-//
-// 8. x is positive denormal
-// Return tanhf(x) = x - x^2
-//
-// 9. x is negative denormal
-// Return tanhf(x) = x + x^2
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input
-// f32 -> f59
-
-// General registers used:
-// r32 -> r46, r2, r3
-
-// Predicate registers used:
-// p0, p6 -> p15
-
-// p6 to filter out case when x = [Q,S]NaN or +/-0
-// p7 to filter out case when x = denormal
-// p8 set if |x| >= 0.3125, used also to process denormal input
-// p9 to filter out case when |x| = inf
-// p10 to filter out case when |x| < 0.3125
-// p11 to filter out case when 0.3125 <= |x| < 9.125
-// p12 to filter out case when |x| >= 9.125
-// p13 to filter out case when 8.0 <= |x| < 9.125
-// p14 set to 1 for positive x
-// p15 set to 1 for negative x
-
-// Assembly macros
-//==============================================================
-rDataPtr = r2
-rDataPtr1 = r3
-
-rBias = r33
-rCoeffAddr3 = r34
-rNearSaturation = r35
-rCoeffAddr1 = r36
-rCoeffAddr2 = r37
-rOffset2 = r38
-rBias2 = r39
-rMask = r40
-rArg = r41
-rBound = r42
-rSignBit = r43
-rAbsArg = r44
-rDataPtr2 = r45
-rSaturation = r46
-
-//==============================================================
-fA0 = f32
-fA1 = f33
-fA2 = f34
-fA3 = f35
-fC0 = f36
-fC1 = f37
-fC2 = f38
-fC3 = f39
-fD0 = f40
-fD1 = f41
-fD2 = f42
-fB0 = f43
-fArgSqr = f44
-fAbsArg = f45
-fSignumX = f46
-fArg4 = f47
-fArg4Sgn = f48
-fArg3 = f49
-fArg3Sgn = f50
-fArg7Sgn = f51
-fArg6Sgn = f52
-fPolC = f53
-fPolCTmp = f54
-fPolA = f55
-fPolATmp = f56
-fPolD = f57
-fPolDTmp = f58
-fArgSqrSgn = f59
-
-// Data tables
-//==============================================================
-
-RODATA
-
-.align 16
-
-LOCAL_OBJECT_START(tanhf_data)
-// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5
-data8 0x3F9BEEDFDD177D7B // C0
-data8 0x3F970D10C7F32458 // C1
-data8 0x3F766D6B051F3A38 // C2
-data8 0xBF732F2001B23402 // C3
-data8 0xBF854BE1CE1ED499 // D0
-data8 0x4013C944F3999A16 // D1
-data8 0xC01106C6975222C0 // D2
-data8 0x3F783D5ACCF9EBE8 // B0
-// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
-data8 0xBF5D631440786869 // C0
-data8 0xBF575D79A0D52069 // C1
-data8 0xBF7E2237B7EFC705 // C2
-data8 0x3F6A7ACBC273041F // C3
-data8 0xC040E32EA52D91EB // D0
-data8 0x403D19463E5DB4D7 // D1
-data8 0xC02216F61F759F39 // D2
-data8 0xBF55B4EA0B844BE7 // B0
-// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
-data8 0x3F8637DBE5B3E690 // C0
-data8 0xBF7F7FEC158C07F5 // C1
-data8 0x3F711C586706838A // C2
-data8 0xBF50EF7EF605554E // C3
-data8 0xC054D45448354E25 // D0
-data8 0x404ADFEEA282E730 // D1
-data8 0xC028AEE456D59549 // D2
-data8 0x3F25232D1BED59A8 // B0
-// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0
-data8 0xBF52602285F2D06C // C0
-data8 0x3F2E57C298FFE1E0 // C1
-data8 0xBF15ED575DB3C811 // C2
-data8 0x3EE428878A08525C // C3
-data8 0xC0895A26849039C1 // D0
-data8 0x406E3C60BBFBB575 // D1
-data8 0xC03A06F62867C75A // D2
-data8 0xBEB114C70F1C723E // B0
-// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0
-data8 0x3EF4B22BD17039A3 // C0
-data8 0xBEB704ADC040C57F // C1
-data8 0x3E937A98288AFE1A // C2
-data8 0xBE4F33B2C9FFE7E7 // C3
-data8 0xC0BE48CFADE2431E // D0
-data8 0x4090E74249760FDD // D1
-data8 0xC04B6F537FCF2F1E // D2
-data8 0x3E0DCD879C91ADEA // B0
-// Polynomial coefficients for the tanh(x), -0.3125 < x < 0.3125
-data8 0xBFD555551E8245B7 // A0
-data8 0x3FC110E63F52E689 // A1
-data8 0xBFAB8CD6A5B7BAFA // A2
-data8 0x3F945D467FCEB553 // A3
-// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5
-data8 0xBE3DCC92FCAECBB6 // A0
-data8 0x3FF0000043B7D267 // A1
-data8 0xBED18BF28ACFC4B1 // A2
-data8 0xBFD554A56F82837E // A3
-// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
-data8 0x3EFD6054758539F9 // A0
-data8 0x3FEFFBFC77198EBE // A1
-data8 0x3F700327CA98D237 // A2
-data8 0xBFD68955F5BB2FA1 // A3
-// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
-data8 0xBF71A53F229DF01B // A0
-data8 0x3FF0AECFD730DE50 // A1
-data8 0xBFC882F88E5DF3BA // A2
-data8 0x3FC6EDF212CA2A8D // A3
-// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0
-data8 0xBFAF0B712E9EDA47 // A0
-data8 0x3FF1C208080BEA64 // A1
-data8 0x3FC3D29B20C8946E // A2
-data8 0xBFF04514ED900A6A // A3
-// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0
-data8 0xBFB1DEA49A831CBC // A0
-data8 0x3FFA729FC7085674 // A1
-data8 0xBFF2F44D923A8FA4 // A2
-data8 0x3FE092FC5712227E // A3
-// Polynomial coefficients for the tanh(x), 8.0 <= |x| <= 9.125
-data8 0x3FEFFF5769EE3041 // A0
-data8 0x3EFBBF148D850891 // A1
-data8 0xBEC86BCEF0F5C2FE // A2
-data8 0x3E7CBA4F3A885A5C // A3
-//
-data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon
-LOCAL_OBJECT_END(tanhf_data)
-
-.section .text
-GLOBAL_LIBM_ENTRY(tanhf)
-
-{ .mfi
- alloc r32 = ar.pfs, 1, 14, 0, 0
- fmerge.s fAbsArg = f1, f8 // |x|
- addl rMask = 0x806, r0
-}
-{ .mfi
- addl rDataPtr = @ltoff(tanhf_data), gp
- fma.s1 fArgSqr = f8, f8, f0 // x^2
- adds rSignBit = 0x1, r0
-}
-;;
-
-{ .mfi
- getf.s rArg = f8 // x in GR
- fclass.m p7,p0 = f8, 0x0b // is x denormal ?
- // sign bit and 2 most bits in significand
- shl rMask = rMask, 20
-}
-{ .mfi
- ld8 rDataPtr = [rDataPtr]
- nop.f 0
- adds rBias2 = 0x1F4, r0
-}
-;;
-
-{ .mfi
- adds rNearSaturation = 0x14, r0
- fmerge.s fSignumX = f8, f1 // signum(x)
- shl rSignBit = rSignBit, 31 // mask for sign bit
-}
-{ .mfi
- adds rBound = 0x3EA, r0
- nop.f 0
- addl rSaturation = 0x4112, r0
-}
-;;
-
-{ .mfi
- andcm rOffset2 = rArg, rMask
- fclass.m p6,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ?
- shl rBound = rBound, 20 // 1.0f in GR
-}
-{ .mfb
- andcm rAbsArg = rArg, rSignBit // |x| in GR
- nop.f 0
-(p7) br.cond.spnt tanhf_denormal // branch out if x is denormal
-}
-;;
-
-{ .mfi
- adds rCoeffAddr2 = 352, rDataPtr
- fclass.m p9,p0 = f8, 0x23 // is x +/- inf?
- shr rOffset2 = rOffset2, 21
-}
-{ .mfi
- cmp.lt p10, p8 = rAbsArg, rBound // |x| < 0.3125?
- nop.f 0
- adds rCoeffAddr3 = 16, rDataPtr
-}
-;;
-
-{ .mfi
-(p8) sub rBias = rOffset2, rBias2
- fma.s1 fArg4 = fArgSqr, fArgSqr, f0 // x^4
- shl rSaturation = rSaturation, 16
-}
-{ .mfb
-(p10) adds rBias = 0x14, r0
-(p6) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0
-(p6) br.ret.spnt b0 // exit for x = NaN or +/-0
-}
-;;
-
-{ .mfi
- shladd rCoeffAddr1 = rBias, 4, rDataPtr
- fma.s1 fArg3Sgn = fArgSqr, f8, f0 // sign(x)*|x|^3
- // is |x| < 9.125?
- cmp.lt p11, p12 = rAbsArg, rSaturation
-}
-{ .mfi
- shladd rCoeffAddr3 = rBias, 4, rCoeffAddr3
- fma.s1 fArg3 = fArgSqr, fAbsArg, f0 // |x|^3
- shladd rCoeffAddr2 = rBias, 3, rCoeffAddr2
-}
-;;
-
-{ .mfi
-(p11) ldfpd fC0, fC1 = [rCoeffAddr1]
-(p9) fmerge.s f8 = f8,f1 // +/- inf
-(p12) adds rDataPtr = 544, rDataPtr
-}
-{ .mfb
-(p11) ldfpd fC2, fC3 = [rCoeffAddr3], 16
- nop.f 0
-(p9) br.ret.spnt b0 // exit for x = +/- inf
-}
-;;
-
-{ .mfi
-(p11) ldfpd fA0, fA1 = [rCoeffAddr2], 16
- nop.f 0
-(p8) cmp.eq.unc p13, p0 = rBias, rNearSaturation
-}
-{ .mfi
- add rCoeffAddr1 = 48, rCoeffAddr1
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mfi
-(p11) ldfpd fD0, fD1 = [rCoeffAddr3]
- nop.f 0
- nop.i 0
-}
-{ .mfb
-(p11) ldfpd fD2, fB0 = [rCoeffAddr1]
- // sign(x)*|x|^2
- fma.s1 fArgSqrSgn = fArgSqr, fSignumX, f0
-(p10) br.cond.spnt tanhf_near_zero
-}
-;;
-
-{ .mfi
-(p11) ldfpd fA2, fA3 = [rCoeffAddr2], 16
- fcmp.lt.s1 p15, p14 = f8,f0
- nop.i 0
-}
-{ .mfb
-(p12) ldfd fA0 = [rDataPtr]
- fma.s1 fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4
-(p12) br.cond.spnt tanhf_saturation
-}
-;;
-{ .mfi
- nop.m 0
- fma.s1 fArg7Sgn = fArg4, fArg3Sgn, f0 // sign(x)*|x|^7
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s1 fArg6Sgn = fArg3, fArg3Sgn, f0 // sign(x)*|x|^6
-(p13) br.cond.spnt tanhf_close_to_saturation
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolC = fC3, fAbsArg, fC2 // C3*|x| + C2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolA = fA1, fAbsArg, fA0 // A1*|x| + A0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolD = fD1, fAbsArg, fD0 // D1*|x| + D0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // sign(x)*(|x|^7 + D2*x^6)
- fma.s1 fPolDTmp = fArg6Sgn, fD2, fArg7Sgn
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolATmp = fA3, fAbsArg, fA2 // A3*|x| + A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fB0 = fB0, fArg4, f0 // B0*x^4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- // C3*|x|^3 + C2*x^2 + C1*|x| + C0
- fma.s1 fPolC = fPolC, fArgSqr, fPolCTmp
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4)
- fma.d.s1 fPolD = fPolD, fArg4Sgn, fPolDTmp
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0
- fma.d.s1 fPolA = fPolATmp, fArgSqr, fPolA
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0
- fma.d.s1 fPolC = fPolC, f1, fB0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p14) fma.s.s0 f8 = fPolC, fPolD, fPolA // for positive x
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fms.s.s0 f8 = fPolC, fPolD, fPolA // for negative x
- br.ret.sptk b0 // Exit for 0.3125 <=|x|< 8.0
-};;
-
-
-// Here if |x| < 0.3125
-tanhf_near_zero:
-{ .mfi
- nop.m 0
- fma.s1 fPolC = fC3, fArgSqr, fC2 // C3*x^2 + C2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolCTmp = fC1, fArgSqr, fC0 // C1*x^2 + C0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- // x + x^3*(C3*x^6 + C2*x^4 + C1*x^2 + C0)
- fma.s.s0 f8 = fPolC, fArg3Sgn, f8
- br.ret.sptk b0 // Exit for |x| < 0.3125
-};;
-
-// Here if 9.125 <= |x| < +inf
-tanhf_saturation:
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0d - 2^(-52))
- // Exit for 9.125 <= |x| < +inf
- br.ret.sptk b0 // Exit for 9.125 <=|x|< +inf
-}
-;;
-
-// Here if 8.0 <= |x| < 9.125
-tanhf_close_to_saturation:
-{ .mfi
- nop.m 0
- fma.s1 fPolATmp = fA1, fAbsArg, fA0 // A1*|x| + A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fPolA = fA3, fAbsArg, fA2 // A3*|x| + A2
- nop.i 0
-}
-;;
-
-.pred.rel "mutex", p14, p15
-{ .mfi
- nop.m 0
- // for positive x
-(p14) fma.s.s0 f8 = fPolA, fArgSqr, fPolATmp
- nop.i 0
-}
-{ .mfb
- nop.m 0
- // for negative x
-(p15) fms.s.s0 f8 = fPolA, fArgSqrSgn, fPolATmp
- br.ret.sptk b0 // Exit for 8.0 <=|x|< 9.125
-};;
-
-// Here if x is single precision denormal
-tanhf_denormal:
-{ .mfi
- nop.m 0
- fclass.m p7,p8 = f8, 0x0a // is x -denormal ?
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
-(p7) fma.s.s0 f8 = f8,f8,f8 // -denormal
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p8) fnma.s.s0 f8 = f8,f8,f8 // +denormal
- br.ret.sptk b0 // Exit for denormal
-}
-;;
-
-GLOBAL_LIBM_END(tanhf)
diff --git a/sysdeps/ia64/fpu/s_tanhl.S b/sysdeps/ia64/fpu/s_tanhl.S
deleted file mode 100644
index 3435f4313e..0000000000
--- a/sysdeps/ia64/fpu/s_tanhl.S
+++ /dev/null
@@ -1,1348 +0,0 @@
-.file "tanhl.s"
-
-
-// Copyright (c) 2001 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 11/29/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 08/14/02 Changed mli templates to mlx
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-//
-// API
-//==============================================================
-// long double tanhl(long double)
-//
-// Overview of operation
-//==============================================================
-//
-// Algorithm description
-// ---------------------
-//
-// There are 4 paths:
-//
-// 1. Special path: x = 0, Inf, NaNs, denormal
-// Return tanhl(x) = +/-0.0 for zeros
-// Return tanhl(x) = QNaN for NaNs
-// Return tanhl(x) = sign(x)*1.0 for Inf
-// Return tanhl(x) = x + x^2 for - denormals
-// Return tanhl(x) = x - x^2 for + denormals
-//
-// 2. [0;1/8] path: 0.0 < |x| < 1/8
-// Return tanhl(x) = x + x^3*A3 + ... + x^15*A15
-//
-// 3. Main path: 1/8 <= |x| < 22.8
-// For several ranges of 1/8 <= |x| < 22.8
-// Return tanhl(x) = sign(x)*((A0H+A0L) + y*(A1H+A1L) + y^2*(A2H+A2L) +
-// + y^3*A3 + y^4*A4 + ... + y^25*A25 )
-// where y = (|x|/a) - b
-//
-// For each range there is particular set of coefficients.
-// Below is the list of ranges:
-// 1/8 <= |x| < 1/4 a = 0.125, b = 1.5
-// 1/4 <= |x| < 1/2 a = 0.25, b = 1.5
-// 1/2 <= |x| < 1.0 a = 0.5, b = 1.5
-// 1.0 <= |x| < 2.0 a = 1.0, b = 1.5
-// 2.0 <= |x| < 3.25 a = 2.0, b = 1.5
-// 3.25 <= |x| < 4.0 a = 2.0, b = 2.0
-// 4.0 <= |x| < 6.5 a = 4.0, b = 1.5
-// 6.5 <= |x| < 8.0 a = 4.0, b = 2.0
-// 8.0 <= |x| < 13.0 a = 8.0, b = 1.5
-// 13.0 <= |x| < 16.0 a = 8.0, b = 2.0
-// 16.0 <= |x| < 22.8 a = 16.0, b = 1.5
-// ( [3.25;4.0], [6.5;8.0], [13.9;16.0] subranges separated
-// for monotonicity issues resolve )
-//
-// 4. Saturation path: 22.8 <= |x| < +INF
-// Return tanhl(x) = sign(x)*(1.0 - tiny_value)
-// (tiny_value ~ 1e-1233)
-//
-// Implementation notes
-// --------------------
-//
-// 1. Special path: x = 0, INF, NaNa, denormals
-//
-// This branch is cut off by one fclass operation.
-// Then zeros+nans, infinities and denormals processed separately.
-// For denormals we use simple fma operaton x+x*x (- for +denorms)
-//
-// 2. [0;1/8] path: 0.0 < |x| < 1/8
-//
-// Here we use simple polynimial computations, where last step
-// is performed as x + x^3*A3+...
-// The rest of polynomial is factorized using binary tree technique.
-//
-// 3. Main path: 1/8 <= |x| < 22.8
-//
-// Multiprecision have to be performed only for first few
-// polynomial iterations (up to 3-rd x degree)
-// Here we use the same parallelisation way as above:
-// Split whole polynomial to first, "multiprecision" part, and second,
-// so called "tail", native precision part.
-//
-// 1) Multiprecision part:
-// [v1=(A0H+A0L)+y*(A1H+A1L)] + [v2=y^2*((A2H+A2L)+y*A3)]
-// v1 and v2 terms calculated in parallel
-//
-// 2) Tail part:
-// v3 = x^4 * ( A4 + x*A5 + ... + x^21*A25 )
-// v3 is splitted to 2 even parts (10 coefficient in each one).
-// These 2 parts are also factorized using binary tree technique.
-//
-// So Multiprecision and Tail parts cost is almost the same
-// and we have both results ready before final summation.
-//
-// Some tricks were applied to maintain symmetry at direct
-// rounding modes (to +/-inf). We had to set result sign
-// not at the last operation but much more earlier and at
-// several places.
-//
-// 4. Saturation path: 22.8 <= |x| < +INF
-//
-// We use formula sign(x)*(1.0 - tiny_value) instead of simple sign(x)*1.0
-// just to meet IEEE requirements for different rounding modes in this case.
-//
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8 - input & output
-// f32 -> f92
-
-// General registers used:
-// r2, r3, r32 -> r52
-
-// Predicate registers used:
-// p0, p6 -> p11, p14, p15
-
-// p6 - arg is zero, denormal or special IEEE
-// p7 - arg is in [16;32] binary interval
-// p8 - arg is in one of subranges
-// [3.25;4.0], [6.5;8.0], [13.9;16.0]
-// p9 - arg < 1/8
-// p10 - arg is NOT in one of subranges
-// [3.25;4.0], [6.5;8.0], [13.9;16.0]
-// p11 - arg in saturation domain
-// p14 - arg is positive
-// p15 - arg is negative
-
-// Assembly macros
-//==============================================================
-rDataPtr = r2
-rTailDataPtr = r3
-
-rBias = r33
-rSignBit = r34
-rInterval = r35
-
-rArgExp = r36
-rArgSig = r37
-r3p25Offset = r38
-r2to4 = r39
-r1p25 = r40
-rOffset = r41
-r1p5 = r42
-rSaturation = r43
-r1625Sign = r44
-rTiny = r45
-rAddr1 = r46
-rAddr2 = r47
-rTailAddr1 = r48
-rTailAddr2 = r49
-rTailOffset = r50
-rTailAddOffset = r51
-rShiftedDataPtr = r52
-
-//==============================================================
-fA0H = f32
-fA0L = f33
-fA1H = f34
-fA1L = f35
-fA2H = f36
-fA2L = f37
-fA3 = f38
-fA4 = f39
-fA5 = f40
-fA6 = f41
-fA7 = f42
-fA8 = f43
-fA9 = f44
-fA10 = f45
-fA11 = f46
-fA12 = f47
-fA13 = f48
-fA14 = f49
-fA15 = f50
-fA16 = f51
-fA17 = f52
-fA18 = f53
-fA19 = f54
-fA20 = f55
-fA21 = f56
-fA22 = f57
-fA23 = f58
-fA24 = f59
-fA25 = f60
-
-fArgSqr = f61
-fArgCube = f62
-fArgFour = f63
-fArgEight = f64
-
-fArgAbsNorm = f65
-fArgAbsNorm2 = f66
-fArgAbsNorm2L = f67
-fArgAbsNorm3 = f68
-fArgAbsNorm4 = f69
-fArgAbsNorm11 = f70
-
-fRes = f71
-fResH = f72
-fResL = f73
-fRes1H = f74
-fRes1L = f75
-fRes1Hd = f76
-fRes2H = f77
-fRes2L = f78
-fRes3H = f79
-fRes3L = f80
-fRes4 = f81
-
-fTT = f82
-fTH = f83
-fTL = f84
-fTT2 = f85
-fTH2 = f86
-fTL2 = f87
-
-f1p5 = f88
-f2p0 = f89
-fTiny = f90
-fSignumX = f91
-fArgAbsNorm4X = f92
-
-// Data tables
-//==============================================================
-RODATA
-
-.align 16
-LOCAL_OBJECT_START(tanhl_data)
-
-////////// Main tables ///////////
-_0p125_to_0p25_data: // exp = 2^-3
-// Polynomial coefficients for the tanh(x), 1/8 <= |x| < 1/4
-data8 0x93D27D6AE7E835F8, 0x0000BFF4 //A3 = -5.6389704216278164626050408239e-04
-data8 0xBF66E8668A78A8BC //A2H = -2.7963640930198357253955165902e-03
-data8 0xBBD5384EFD0E7A54 //A2L = -1.7974001252014762983581666453e-20
-data8 0x3FBEE69E31DB6156 //A1H = 1.2070645062647619716322822114e-01
-data8 0x3C43A0B4E24A3DCA //A1L = 2.1280460108882061756490131241e-18
-data8 0x3FC7B8FF903BF776 //A0H = 1.8533319990813951205765874874e-01
-data8 0x3C593F1A61986FD4 //A0L = 5.4744612262799573374268254539e-18
-data8 0xDB9E6735560AAE5A, 0x0000BFA3 //A25 = -3.4649731131719154051239475238e-28
-data8 0xF0DDE953E4327704, 0x00003FA4 //A24 = 7.6004173864565644629900702857e-28
-data8 0x8532AED11DEC5612, 0x00003FAB //A23 = 5.3798235684551098715428515761e-26
-data8 0xAEF72A34D88B0038, 0x0000BFAD //A22 = -2.8267199091484508912273222600e-25
-data8 0x9645EF1DCB759DDD, 0x0000BFB2 //A21 = -7.7689413112830095709522203109e-24
-data8 0xA5D12364E121F70F, 0x00003FB5 //A20 = 6.8580281614531622113161030550e-23
-data8 0x9CF166EA815AC705, 0x00003FB9 //A19 = 1.0385615003184753213024737634e-21
-data8 0x852B1D0252498752, 0x0000BFBD //A18 = -1.4099753997949827217635356478e-20
-data8 0x9270F5716D25EC9F, 0x0000BFC0 //A17 = -1.2404055949090177751123473821e-19
-data8 0xC216A9C4EEBDDDCA, 0x00003FC4 //A16 = 2.6303900460415782677749729120e-18
-data8 0xDCE944D89FF592F2, 0x00003FC6 //A15 = 1.1975620514752377092265425941e-17
-data8 0x83C8DDF213711381, 0x0000BFCC //A14 = -4.5721980583985311263109531319e-16
-LOCAL_OBJECT_END(tanhl_data)
-
-LOCAL_OBJECT_START(_0p25_to_0p5_data)
-// Polynomial coefficients for the tanh(x), 1/4 <= |x| < 1/2
-data8 0xB6E27B747C47C8AD, 0x0000BFF6 //A3 = -2.7905990032063258105302045572e-03
-data8 0xBF93FD54E226F8F7 //A2H = -1.9521070769536099515084615064e-02
-data8 0xBC491BC884F6F18A //A2L = -2.7222721075104525371410300625e-18
-data8 0x3FCBE3FBB015A591 //A1H = 2.1789499376181400980279079249e-01
-data8 0x3C76AFC2D1AE35F7 //A1L = 1.9677459707672596091076696742e-17
-data8 0x3FD6EF53DE8C8FAF //A0H = 3.5835739835078589399230963863e-01
-data8 0x3C8E2A1C14355F9D //A0L = 5.2327050592919416045278607775e-17
-data8 0xF56D363AAE3BAD53, 0x00003FBB //A25 = 6.4963882412697389947564301120e-21
-data8 0xAD6348526CEEB897, 0x0000BFBD //A24 = -1.8358149767147407353343152624e-20
-data8 0x85D96A988565FD65, 0x0000BFC1 //A23 = -2.2674950494950919052759556703e-19
-data8 0xD52CAF6B1E4D9717, 0x00003FC3 //A22 = 1.4445269502644677106995571101e-18
-data8 0xBD7E1BE5CBEF7A01, 0x00003FC5 //A21 = 5.1362075721080004718090799595e-18
-data8 0xAE84A9B12ADD6948, 0x0000BFC9 //A20 = -7.5685210830925426342786733068e-17
-data8 0xEAC2D5FCF80E250C, 0x00003FC6 //A19 = 1.2726423522879522181100392135e-17
-data8 0xE0D2A8AC8C2EDB95, 0x00003FCE //A18 = 3.1200443098733419749016380203e-15
-data8 0xB22F0AB7B417F78E, 0x0000BFD0 //A17 = -9.8911854977385933809488291835e-15
-data8 0xE25A627BAEFFA7A4, 0x0000BFD3 //A16 = -1.0052095388666003876301743498e-13
-data8 0xC90F32EC4A17F908, 0x00003FD6 //A15 = 7.1430637679768183097897337145e-13
-data8 0x905F6F124AF956B1, 0x00003FD8 //A14 = 2.0516607231389483452611375485e-12
-LOCAL_OBJECT_END(_0p25_to_0p5_data)
-
-LOCAL_OBJECT_START(_0p5_to_1_data)
-// Polynomial coefficients for the tanh(x), 1/2 <= |x| < 1
-data8 0xAB402BE491EE72A7, 0x00003FF7 //A3 = 5.2261556931080934657023772945e-03
-data8 0xBFB8403D3DDA87BE //A2H = -9.4730212784752659826992271519e-02
-data8 0xBC6FF7BC2AB71A8B //A2L = -1.3863786398568460929625760740e-17
-data8 0x3FD3173B1EFA6EF4 //A1H = 2.9829290414066567116435635398e-01
-data8 0x3C881E4DCABDE840 //A1L = 4.1838710466827119847963316219e-17
-data8 0x3FE45323E552F228 //A0H = 6.3514895238728730220145735075e-01
-data8 0x3C739D5832BF7BCF //A0L = 1.7012977006567066423682445459e-17
-data8 0xF153980BECD8AE12, 0x00003FD0 //A25 = 1.3396313991261493342597057700e-14
-data8 0xEC9ACCD245368129, 0x0000BFD3 //A24 = -1.0507358886349528807350792383e-13
-data8 0x8AE6498CA36D2D1A, 0x00003FD4 //A23 = 1.2336759149738309660361813001e-13
-data8 0x8DF02FBF5AC70E64, 0x00003FD7 //A22 = 1.0085317723615282268326194551e-12
-data8 0x9E15C7125DA204EE, 0x0000BFD9 //A21 = -4.4930478919612724261941857560e-12
-data8 0xA62C6F39BDDCEC1C, 0x00003FD7 //A20 = 1.1807342457875095150035780314e-12
-data8 0xDFD8D65D30F80F52, 0x00003FDC //A19 = 5.0896919887121116317817665996e-11
-data8 0xB795AFFD458F743E, 0x0000BFDE //A18 = -1.6696932710534097241291327756e-10
-data8 0xFEF30234CB01EC89, 0x0000BFDD //A17 = -1.1593749714588103589483091370e-10
-data8 0xA2F638356E13761E, 0x00003FE2 //A16 = 2.3714062288761887457674853605e-09
-data8 0xC429CC0D031E4FD5, 0x0000BFE3 //A15 = -5.7091025466377379046489586383e-09
-data8 0xC78363FF929EFF62, 0x0000BFE4 //A14 = -1.1613199289622686725595739572e-08
-LOCAL_OBJECT_END(_0p5_to_1_data)
-
-LOCAL_OBJECT_START(_1_to_2_data)
-// Polynomial coefficients for the tanh(x), 1 <= |x| < 2.0
-data8 0xB3D8FB48A548D99A, 0x00003FFB //A3 = 8.7816203264683800892441646129e-02
-data8 0xBFC4EFBD8FB38E3B //A2H = -1.6356629864377389416141284073e-01
-data8 0xBC77687FD8087B23 //A2L = -2.0303377679446772162287121190e-17
-data8 0x3FC72165282C6F72 //A1H = 1.8070663892364852154415189034e-01
-data8 0x3C64E01F7A76D777 //A1L = 9.0532964466719018524360408402e-18
-data8 0x3FECF6F9786DF577 //A0H = 9.0514825364486639625027919465e-01
-data8 0x3C8834EDCE71A65B //A0L = 4.1992023813070331863928976191e-17
-data8 0xC3EEEB3EFA688094, 0x00003FE2 //A25 = 2.8512044383274095705865793485e-09
-data8 0x88461973672AEB12, 0x0000BFE1 //A24 = -9.9152258079470849685057375343e-10
-data8 0xFC2AF9950DC5027E, 0x0000BFE4 //A23 = -1.4678101918123116001692289670e-08
-data8 0x9C80CA742F89B7B5, 0x00003FE6 //A22 = 3.6438714992394138274843759814e-08
-data8 0xA0B3D7FAA606260A, 0x0000BFE6 //A21 = -3.7416469848124568887944709492e-08
-data8 0xDA5858432FBD9D9D, 0x0000BFE6 //A20 = -5.0837429421503142141842414978e-08
-data8 0xB0244D1E1AE9C1B0, 0x00003FE9 //A19 = 3.2808967255272595749004827841e-07
-data8 0xC8D3109ACF740738, 0x0000BFEA //A18 = -7.4812945767507614821609020680e-07
-data8 0xBB0F3440EEA55BBF, 0x00003FEA //A17 = 6.9685053481643125932497676583e-07
-data8 0xC13A8B08D8576C19, 0x00003FEB //A16 = 1.4396658837712390333960587173e-06
-data8 0xFF3A1163CC5522A1, 0x0000BFED //A15 = -7.6063522055104010298762276148e-06
-data8 0x8672AF27EB0823B7, 0x00003FEF //A14 = 1.6027448793338500004496520337e-05
-LOCAL_OBJECT_END(_1_to_2_data)
-
-LOCAL_OBJECT_START(_2_to_3p25_data)
-// Polynomial coefficients for the tanh(x), 2 <= |x| < 3.25
-data8 0xD45657BEC559E366, 0x00003FFA //A3 = 5.1840155367548909799883161889e-02
-data8 0xBFA41B109CA6AB81 //A2H = -3.9268988726084870510835145296e-02
-data8 0xBC2C3D708A4E56C5 //A2L = -7.6544669252238280132415018518e-19
-data8 0x3F9434A517BBC5F4 //A1H = 1.9732074330880380874653212686e-02
-data8 0x3C3ED62DD9585229 //A1L = 1.6716574468135097509707871438e-18
-data8 0x3FEFD77D111A0AFF //A0H = 9.9505475368673035330147058630e-01
-data8 0x3C9C415E151C6CA5 //A0L = 9.8030409604070051319822874013e-17
-data8 0xB1596391D4534D52, 0x00003FEC //A25 = 2.6427086526487251988631279067e-06
-data8 0xC4DC44E243D1AF5F, 0x00003FEF //A24 = 2.3467591534149209236830008333e-05
-data8 0xAED5786023982BB8, 0x00003FF0 //A23 = 4.1683642395739762658623742687e-05
-data8 0xCF39926C9FBC6A10, 0x00003FF0 //A22 = 4.9406263949321793291856681624e-05
-data8 0xA255A72359928142, 0x00003FF0 //A21 = 3.8703580278108400672236161973e-05
-data8 0xA2E573B9FC332C0D, 0x00003FED //A20 = 4.8546879618263642155709302480e-06
-data8 0x82C7BD01830ACA93, 0x00003FF0 //A19 = 3.1180436075031301077175550468e-05
-data8 0xB38AF4C76E96444B, 0x0000BFF0 //A18 = -4.2806338675404452784440167120e-05
-data8 0xEC08FF0FB194464C, 0x00003FF0 //A17 = 5.6275163156181928637744511210e-05
-data8 0xB850825D9E235135, 0x0000BFF0 //A16 = -4.3943998628289568813056822585e-05
-data8 0xF98436E838763687, 0x0000BFEF //A15 = -2.9744680263523220185672219686e-05
-data8 0xE1851A2D00737A5D, 0x00003FF2 //A14 = 2.1507256570895163202182573369e-04
-LOCAL_OBJECT_END(_2_to_3p25_data)
-
-LOCAL_OBJECT_START(_4_to_6p5_data)
-// Polynomial coefficients for the tanh(x), 4 <= |x| < 6.5
-data8 0x896FDBD321A0BE58, 0x00003FF5 //A3 = 1.0485606995331904734870550114e-03
-data8 0xBF39C522B95A37D6 //A2H = -3.9321992640217512306882730044e-04
-data8 0xBBA9B3EC39A45338 //A2L = -2.7213922673282819034134988241e-21
-data8 0x3F19C5377A48B5AD //A1H = 9.8306189621330793766869338146e-05
-data8 0x3BCAFCB1D08A891C //A1L = 1.1429476443042275163117526657e-20
-data8 0x3FEFFFE63ABE253B //A0H = 9.9998771165079547440512897083e-01
-data8 0x3C9BB74C4EE0D16F //A0L = 9.6159219890436197391279544561e-17
-data8 0x8D86121D469AFA7E, 0x0000BFEF //A25 = -1.6870941388985743600323604423e-05
-data8 0x9D3656A36593C5C4, 0x00003FEF //A24 = 1.8741161763079973068909254398e-05
-data8 0xDCD772D5BF9ADB96, 0x00003FF0 //A23 = 5.2652739523018349983563695656e-05
-data8 0xFF79ADCF0DCBCC2D, 0x00003FF1 //A22 = 1.2182012003034659966028035977e-04
-data8 0x84D24E394DEFD0D2, 0x00003FF1 //A21 = 6.3334229517535065590380468696e-05
-data8 0xA66B56BFD2782544, 0x00003FF1 //A20 = 7.9354902476954571736114945842e-05
-data8 0xFB15771FBF3155FE, 0x0000BFEE //A19 = -1.4965763624796745134798717707e-05
-data8 0xC774790126BE54C3, 0x00003FEF //A18 = 2.3776885435831770523136610539e-05
-data8 0x825A13DACB8C68CD, 0x00003FEF //A17 = 1.5539153272890695426189818556e-05
-data8 0xCFF96E6810AACE27, 0x0000BFF1 //A16 = -9.9169893703251156059893890295e-05
-data8 0x8A85D2061B865024, 0x00003FF3 //A15 = 2.6421115104625621420758344535e-04
-data8 0x922EC6F3CFE0496E, 0x0000BFF4 //A14 = -5.5764283474946207558456581668e-04
-LOCAL_OBJECT_END(_4_to_6p5_data)
-
-LOCAL_OBJECT_START(_8_to_13_data)
-// Polynomial coefficients for the tanh(x), 8 <= |x| < 13
-data8 0xDD6050A898303460, 0x00003FE6 //A3 = 5.1543170295688189081352133793e-08
-data8 0xBE44C1078FDBADC0 //A2H = -9.6643444318955652627581125180e-09
-data8 0xBAF95FCAA6DBBA6F //A2L = -1.3118146684038113473094275420e-24
-data8 0x3E14C1078FE26748 //A1H = 1.2080430540780827633746315479e-09
-data8 0x3A88168082F37D95 //A1L = 9.7290246966246404028418245094e-27
-data8 0x3FEFFFFFFFF59F7C //A0H = 9.9999999992449728480892190419e-01
-data8 0x3C7C068EBC5C2EEB //A0L = 2.4308346546749583521003998922e-17
-data8 0x9DC155C77A6C46E5, 0x00003FF2 //A25 = 1.5044709695520252096006763473e-04
-data8 0xF2F9E09CA47F46E9, 0x00003FF3 //A24 = 4.6344010077547944693833282056e-04
-data8 0xCBFD67E704734BC8, 0x00003FF4 //A23 = 7.7815958662026429864083620142e-04
-data8 0xC18DC821CD67E621, 0x00003FF4 //A22 = 7.3834928521190855055818897104e-04
-data8 0x8AF72BCAB05A296E, 0x00003FF4 //A21 = 5.3011135848666430331904214879e-04
-data8 0xC2E73BE9B9AB4007, 0x00003FF2 //A20 = 1.8587423129049905806822275188e-04
-data8 0xE7E8C2058E2FF9F7, 0x00003FF1 //A19 = 1.1058292891321512917337425414e-04
-data8 0xC46309F52E429F97, 0x0000BFF0 //A18 = -4.6822278664829811025251866877e-05
-data8 0x81966C1E007E9BEB, 0x00003FF1 //A17 = 6.1792176836716291200611553354e-05
-data8 0x8CEDC4BEFCAB9A7E, 0x0000BFF1 //A16 = -6.7200080564674449915571760779e-05
-data8 0x8B64E9FA53210018, 0x00003FF1 //A15 = 6.6468331917938095774361868182e-05
-data8 0x82DEDAA539A3A3F1, 0x0000BFF1 //A14 = -6.2403928644276709411156885292e-05
-LOCAL_OBJECT_END(_8_to_13_data)
-
-LOCAL_OBJECT_START(_16_to_22p8_data)
-// Polynomial coefficients for the tanh(x), 16 <= |x| < 22.88
-data8 0x992C00F33DDE804D, 0x00003FCE //A3 = 2.1256869805798788337547274131e-15
-data8 0x3C8D42EA28102760 //A2H = 5.0760412270332007485198379096e-17
-data8 0x391A747B43B072DD //A2L = 1.2737621993898125881520341053e-33
-data8 0x3C309BC5C3CB4D5F //A1H = 9.0034785192019775952205276560e-19
-data8 0x38A8EF3B5C9DCE71 //A1L = 9.3793162715476168397242934494e-36
-data8 0x3FF0000000000000 //A0H = 1.0000000000000000000000000000e+00
-data8 0x3BACC66AFD5CA22A //A0L = 3.0466790472070565954180861749e-21
-data8 0xF020FB351C2F37CB, 0x00003FF1 //A25 = 1.1450235038836625246604146870e-04
-data8 0xBE80596C51302A7B, 0x00003FF4 //A24 = 7.2670503421185030764546828414e-04
-data8 0x91343CF8577E0131, 0x00003FF6 //A23 = 2.2156380512949603402001207105e-03
-data8 0x8D029A8679641286, 0x00003FF7 //A22 = 4.3032888906494613055765544559e-03
-data8 0xC3713F64D8DC4BAB, 0x00003FF7 //A21 = 5.9644279041951657632420721490e-03
-data8 0xCD678C455A5D06C2, 0x00003FF7 //A20 = 6.2684473911812928601693994403e-03
-data8 0xA9E1C825BDCEEBCC, 0x00003FF7 //A19 = 5.1843859941826642445235686826e-03
-data8 0xE29C919AD93F6EB9, 0x00003FF6 //A18 = 3.4578185539872939928152204329e-03
-data8 0xF7E615A75994A607, 0x00003FF5 //A17 = 1.8913175041916131006881986311e-03
-data8 0xE102EFE0F7F2B2AD, 0x00003FF4 //A16 = 8.5835064987089641065525269712e-04
-data8 0xAAD62946DEE96996, 0x00003FF3 //A15 = 3.2584489313998677644253007210e-04
-data8 0xDA2470DE110B293E, 0x00003FF1 //A14 = 1.0401837693241806604296821650e-04
-LOCAL_OBJECT_END(_16_to_22p8_data)
-
-LOCAL_OBJECT_START(_3p25_to_4_data)
-// Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4
-data8 0xE9E07240432926E6, 0x00003FF7 //A3 = 7.1373517862636557382403555215e-03
-data8 0xBF75F495227AF306 //A2H = -5.3602052282115727338540622782e-03
-data8 0xBBBE92D355A6B716 //A2L = -6.4741983326810209847018826624e-21
-data8 0x3F65F85AD510B690 //A1H = 2.6819013660517934671823070403e-03
-data8 0x3C159A0B73E6EC01 //A1L = 2.9275813076637328121849573333e-19
-data8 0x3FEFFA81708A0B42 //A0H = 9.9932929973906703402519724477e-01
-data8 0x3C66857246C19DC6 //A0L = 9.7670460995685717424398031188e-18
-data8 0xE6B6B8365B1E4D6C, 0x00003FE3 //A25 = 6.7146538162212081470554423396e-09
-data8 0xE0453CEEF483A510, 0x00003FE2 //A24 = 3.2635647369924061614015292015e-09
-data8 0x9C7D83B56E92CF1A, 0x00003FE5 //A23 = 1.8217867585545497089756353348e-08
-data8 0xA94635C48ABA9EB4, 0x0000BFE4 //A22 = -9.8530586070049930796756799547e-09
-data8 0xB1B0C14443067646, 0x00003FE5 //A21 = 2.0685890807654992387562340307e-08
-data8 0x9C6E549781E293C3, 0x00003FDE //A20 = 1.4227314592865135171341122138e-10
-data8 0xB0CBFCE7C80F57A7, 0x0000BFE7 //A19 = -8.2327438416004542109809245219e-08
-data8 0xB151AB3876E896E1, 0x00003FE9 //A18 = 3.3028241036175815328309577940e-07
-data8 0xFCF3A5C1A5CB7EEE, 0x0000BFEA //A17 = -9.4231869277542043001280640966e-07
-data8 0x96A9016C7C95BEDA, 0x00003FEC //A16 = 2.2450115975007100522962781833e-06
-data8 0x9B9B0A3901DEC05B, 0x0000BFED //A15 = -4.6374089937147736266514566049e-06
-data8 0x8987DF26A6789CCF, 0x00003FEE //A14 = 8.1974714257536543772040700977e-06
-LOCAL_OBJECT_END(_3p25_to_4_data)
-
-LOCAL_OBJECT_START(_6p5_to_8_data)
-// Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0
-data8 0xA11C8A63815E5657, 0x00003FEF //A3 = 1.9205985861286093001394561449e-05
-data8 0xBEDE355AD6CB61D8 //A2H = -7.2022479400070228499307345427e-06
-data8 0xBB8E6B50B8468A63 //A2L = -8.0518953122203408718779840543e-22
-data8 0x3EBE355B48DCF330 //A1H = 1.8005623902549165889479948488e-06
-data8 0x3B5837550FFA98DA //A1L = 8.0124491698609178046195694087e-23
-data8 0x3FEFFFFF872A91F8 //A0H = 9.9999977492967584424832239165e-01
-data8 0x3C8A43B839B4EB63 //A0L = 4.5561696441306660142461355317e-17
-data8 0xB5BC1948966B8826, 0x0000BFE6 //A25 = -4.2313421330480692560677276010e-08
-data8 0x91D0BE367389BDFC, 0x0000BFE8 //A24 = -1.3580117599617083801153887619e-07
-data8 0xFFD950AF282AB36C, 0x0000BFE8 //A23 = -2.3827784451962439125197203287e-07
-data8 0x959B1770EBB8903A, 0x0000BFE9 //A22 = -2.7866256690165347051403663794e-07
-data8 0xCC78060D1C0CFF3C, 0x0000BFE8 //A21 = -1.9042644867126442102188429523e-07
-data8 0xF8919BAF2E87F31D, 0x0000BFE8 //A20 = -2.3149771783868910586746973299e-07
-data8 0xC5B6AC942A3F2440, 0x00003FE8 //A19 = 1.8413511183396213757149263639e-07
-data8 0xABF1A4703056450A, 0x0000BFEA //A18 = -6.4054099983863829656292958643e-07
-data8 0xBB543D8BDB670453, 0x00003FEB //A17 = 1.3957102903892251890348444989e-06
-data8 0xC9D6F37700C1D092, 0x0000BFEC //A16 = -3.0076451968978522605262647414e-06
-data8 0xCA6EF4BB64E49EC8, 0x00003FED //A15 = 6.0329860989478473738709576062e-06
-data8 0xBE25D0FD069D0A93, 0x0000BFEE //A14 = -1.1333687314965721384777951065e-05
-LOCAL_OBJECT_END(_6p5_to_8_data)
-
-LOCAL_OBJECT_START(_13_to_16_data)
-// Polynomial coefficients for the tanh(x), 13 <= |x| < 16
-data8 0x98176FD2075BDBD5, 0x00003FDB //A3 = 1.7290807363028159200235264756e-11
-data8 0xBD8C8464F76162D1 //A2H = -3.2420263805679445515400340441e-12
-data8 0xBA2D56B508E0F1FD //A2L = -1.8515322669984580704502445180e-28
-data8 0x3D5C8464F761639C //A1H = 4.0525329757100331782338488690e-13
-data8 0x3A0A09D9E328E620 //A1L = 4.1081479300866418212862258651e-29
-data8 0x3FEFFFFFFFFFFF1B //A0H = 9.9999999999997457589273608392e-01
-data8 0x3C9B9B089E9BFD89 //A0L = 9.5776165728054091471814161399e-17
-data8 0xC5395B9EC765BDB7, 0x00003FE6 //A25 = 4.5919803498257974411526879804e-08
-data8 0x9A0F1FCB1DC24C3A, 0x00003FE8 //A24 = 1.4347869798460288751020493795e-07
-data8 0x8AA5C3459FAD0B28, 0x00003FE9 //A23 = 2.5825111356333853968900510087e-07
-data8 0x9578B747988CFF9D, 0x00003FE9 //A22 = 2.7841245127068220034870119246e-07
-data8 0x810DF1A589D9CAF1, 0x00003FE9 //A21 = 2.4038267971021370956311255310e-07
-data8 0x8A00D77B9416EB75, 0x00003FE8 //A20 = 1.2852557749068320312899366352e-07
-data8 0xB2436C4A1849C498, 0x00003FE7 //A19 = 8.3010350873515703893886683374e-08
-data8 0xEA6405B18356600B, 0x00003FE3 //A18 = 6.8216675390299296071261114202e-09
-data8 0xF7606C022194B7E8, 0x00003FE5 //A17 = 2.8798432098264655723769995993e-08
-data8 0xAF4B0C453FCAF34E, 0x0000BFE5 //A16 = -2.0406809167824936143455638336e-08
-data8 0xC324C1F10D5FA7CC, 0x00003FE5 //A15 = 2.2717703170390130238356558599e-08
-data8 0xB34A2E3A4D3B9C31, 0x0000BFE5 //A14 = -2.0872076027950789618606920471e-08
-LOCAL_OBJECT_END(_13_to_16_data)
-
-
-//////// "Tail" tables //////////
-LOCAL_OBJECT_START(_0p125_to_0p25_data_tail)
-// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4
-data8 0x9D7D206E97ADC83A, 0x0000BFCC //A13 = -5.4639895428711257047470806445e-16
-data8 0xA8972B666A845810, 0x00003FD3 //A12 = 7.4869224589947988668562043110e-14
-data8 0x9A5B31511C9F4698, 0x0000BFD4 //A11 = -1.3709586467430093373657009487e-13
-data8 0xCBB8047BCB274982, 0x0000BFDA //A10 = -1.1580074124926108509393610532e-11
-data8 0xF95EB849E5F9247C, 0x00003FDC //A9 = 5.6700173336564916962945623180e-11
-data8 0xE7893404C6A53386, 0x00003FE1 //A8 = 1.6846457582993065168777704528e-09
-data8 0xF2E5C7E2B5F55ECC, 0x0000BFE4 //A7 = -1.4138500046802141367543484859e-08
-data8 0xF43906FF53A002C0, 0x0000BFE8 //A6 = -2.2745017243678613107034288816e-07
-data8 0xC6175D5E47D1D259, 0x00003FEC //A5 = 2.9517899220726077077586632607e-06
-data8 0xE7C2AE92CB36769B, 0x00003FEF //A4 = 2.7628001723157068127646694830e-05
-LOCAL_OBJECT_END(_0p125_to_0p25_data_tail)
-
-LOCAL_OBJECT_START(_0p25_to_0p5_data_tail)
-// Polynomial coefficients for the tanh(x), 1/4 <= |x| < 1/2
-data8 0x9E2972C008B9965E, 0x0000BFDC //A13 = -3.5961854154738002253192260213e-11
-data8 0xC3EABA3D219BEA8A, 0x00003FDB //A12 = 2.2273173303628274478819473067e-11
-data8 0xC50FB68D960D5CD9, 0x00003FE1 //A11 = 1.4338102430978399800743148719e-09
-data8 0xB3BB92499EF2D583, 0x0000BFE3 //A10 = -5.2309100551458044083112632491e-09
-data8 0xBD915BE632F1D04E, 0x0000BFE6 //A9 = -4.4137194873936112573773943707e-08
-data8 0xBC48C813FA819141, 0x00003FE9 //A8 = 3.5070684356359066908197915734e-07
-data8 0xD3E34EA031AC611B, 0x00003FEA //A7 = 7.8934400708919584259192272835e-07
-data8 0x8EAC489D859541CD, 0x0000BFEF //A6 = -1.7007944944124693133572815137e-05
-data8 0x98D4D7E5D1508B8A, 0x00003FEF //A5 = 1.8218924920302265989878708948e-05
-data8 0xAC262F3F8CF49C02, 0x00003FF4 //A4 = 6.5669692402266433496312492412e-04
-LOCAL_OBJECT_END(_0p25_to_0p5_data_tail)
-
-LOCAL_OBJECT_START(_0p5_to_1_data_tail)
-// Polynomial coefficients for the tanh(x), 1/2 <= |x| < 1
-data8 0xDF67FB36FFA2A538, 0x00003FE7 //A13 = 1.0403160796697495720021114635e-07
-data8 0xB7FB80FB5AFA63A4, 0x0000BFE8 //A12 = -1.7134699677764282023124981753e-07
-data8 0xC87625A0BA7D6C5F, 0x0000BFEA //A11 = -7.4677732458471897291461679095e-07
-data8 0x90DA375DD9AF6D79, 0x00003FED //A10 = 4.3169381418023765618186668159e-06
-data8 0x82DFB03317B17316, 0x0000BFED //A9 = -3.9003426534601562552753368105e-06
-data8 0xAA582FD4F3438BB4, 0x0000BFF0 //A8 = -4.0613288845040776435400454867e-05
-data8 0xB1532D8CF763B21C, 0x00003FF2 //A7 = 1.6911021594787399557528570601e-04
-data8 0x82E12AEF7CAB76C6, 0x0000BFEF //A6 = -1.5602059530458172761585925044e-05
-data8 0x83256E3D0FBA5C93, 0x0000BFF6 //A5 = -2.0011324059500451791903108104e-03
-data8 0xCC4AB2EC0965499B, 0x00003FF7 //A4 = 6.2344907419841579664122448353e-03
-LOCAL_OBJECT_END(_0p5_to_1_data_tail)
-
-LOCAL_OBJECT_START(_1_to_2_data_tail)
-// Polynomial coefficients for the tanh(x), 1 <= |x| < 2.0
-data8 0xCCAEE174EAC17F78, 0x0000BFEE //A13 = -1.2200065117856038355953618829e-05
-data8 0xA39DD0981D1A2776, 0x0000BFF0 //A12 = -3.9009204899026604074167603200e-05
-data8 0xB7104FA27FAF80D0, 0x00003FF2 //A11 = 1.7458316338540792661905876072e-04
-data8 0xB219A7274436A734, 0x0000BFF3 //A10 = -3.3969918595931391572998415468e-04
-data8 0xCCD9D03C0C73CECF, 0x00003FF2 //A9 = 1.9536097875337884986025498958e-04
-data8 0x85321EA40CFEEBEE, 0x00003FF5 //A8 = 1.0162031558369402750607778300e-03
-data8 0x81F272C08C308220, 0x0000BFF7 //A7 = -3.9656696618251138315464862909e-03
-data8 0xE8761C6BDEA9ED87, 0x00003FF7 //A6 = 7.0941580558970243020090656343e-03
-data8 0xAE4E9F3691F66877, 0x0000BFF6 //A5 = -2.6597155288710984120834711909e-03
-data8 0xCC8286B331BD8AAA, 0x0000BFF9 //A4 = -2.4964583478826523250880337777e-02
-LOCAL_OBJECT_END(_1_to_2_data_tail)
-
-LOCAL_OBJECT_START(_2_to_3p25_data_tail)
-// Polynomial coefficients for the tanh(x), 2 <= |x| < 3.25
-data8 0x92E1711A3BD6408B, 0x0000BFF4 //A13 = -5.6030514548041036913731470443e-04
-data8 0x8B9BD885FF3E98C5, 0x00003FF5 //A12 = 1.0651304064581604055612602669e-03
-data8 0xD041356C7FA26A22, 0x0000BFF5 //A11 = -1.5888574328066952147023520244e-03
-data8 0xDFA210BE9BE6B7FD, 0x00003FF5 //A10 = 1.7061849060196387827639060629e-03
-data8 0x8ECC3606808028E9, 0x0000BFF4 //A9 = -5.4472999329435778312080340471e-04
-data8 0xD5C053B8EEBD10C8, 0x0000BFF6 //A8 = -3.2615856552479930645151033322e-03
-data8 0xB7BFD63AC5051539, 0x00003FF8 //A7 = 1.1215171059191957498023766643e-02
-data8 0xC367C59D7FA3ADA2, 0x0000BFF9 //A6 = -2.3853193251842394834616848995e-02
-data8 0x9FC9FB890BB053CF, 0x00003FFA //A5 = 3.9010984954739386625695104667e-02
-data8 0xD01D077B42E7ED76, 0x0000BFFA //A4 = -5.0808934425896607486919526567e-02
-LOCAL_OBJECT_END(_2_to_3p25_data_tail)
-
-LOCAL_OBJECT_START(_4_to_6p5_data_tail)
-// Polynomial coefficients for the tanh(x), 4 <= |x| < 6.5
-data8 0x870CCE8C76C52C7E, 0x00003FF5 //A13 = 1.0303499350193060915603525934e-03
-data8 0xE1431E54AD2A738B, 0x0000BFF5 //A12 = -1.7186140560972621669872002486e-03
-data8 0xAB20056533E28734, 0x00003FF6 //A11 = 2.6111615345168277554841545330e-03
-data8 0xECCB91D64718B9BD, 0x0000BFF6 //A10 = -3.6132079169671860943878776041e-03
-data8 0x94771DA3B8C2EB4F, 0x00003FF7 //A9 = 4.5308012699419563988381317896e-03
-data8 0xA7497377E4946F2C, 0x0000BFF7 //A8 = -5.1051915941441437592654444804e-03
-data8 0xA76B2D6FCA088AE9, 0x00003FF7 //A7 = 5.1092120989582196669504468168e-03
-data8 0x928C8961F33C9560, 0x0000BFF7 //A6 = -4.4723196805537430568162704711e-03
-data8 0xDBDDDF6CDE9AB9BE, 0x00003FF6 //A5 = 3.3548994514326736175581084349e-03
-data8 0x896E211733AD9D40, 0x0000BFF6 //A4 = -2.0970183170010094667442967500e-03
-LOCAL_OBJECT_END(_4_to_6p5_data_tail)
-
-LOCAL_OBJECT_START(_8_to_13_data_tail)
-// Polynomial coefficients for the tanh(x), 8 <= |x| < 13
-data8 0xE50C3476BED020AA, 0x00003FF0 //A13 = 5.4609221347524272615754239857e-05
-data8 0xBA16F5F4EDC0EABC, 0x0000BFF0 //A12 = -4.4367239594986428539386662937e-05
-data8 0x8B916C2F002C3D91, 0x00003FF0 //A11 = 3.3275617838067362533536610680e-05
-data8 0xBFE8031097CB4442, 0x0000BFEF //A10 = -2.2877013297722792747267224605e-05
-data8 0xEFE1FFD106B2DA41, 0x00003FEE //A9 = 1.4298129659899553350478452989e-05
-data8 0x86EF1FF403A6622E, 0x0000BFEE //A8 = -8.0426979849841642112688693288e-06
-data8 0x86EF200FD047306B, 0x00003FED //A7 = 4.0213490418736097707257704218e-06
-data8 0xEC22782377882553, 0x0000BFEB //A6 = -1.7593402092805559754997565942e-06
-data8 0xB119DA1DB7C47773, 0x00003FEA //A5 = 6.5975257917246601211360847253e-07
-data8 0xDD6050A7761D67BB, 0x0000BFE8 //A4 = -2.0617268111985310661707082242e-07
-LOCAL_OBJECT_END(_8_to_13_data_tail)
-
-LOCAL_OBJECT_START(_16_to_22p8_data_tail)
-// Polynomial coefficients for the tanh(x), 16 <= |x| < 22.88
-data8 0xEAF4AF87336E81B1, 0x00003FEF //A13 = 2.8008914392791730186582989654e-05
-data8 0xD5B309EA768E2711, 0x00003FED //A12 = 6.3687375204024238267961143128e-06
-data8 0xA4048CA537113538, 0x00003FEB //A11 = 1.2220276227448617951538196845e-06
-data8 0xD3EC78BB3425377D, 0x00003FE8 //A10 = 1.9736934193679794194181457250e-07
-data8 0xE5763CD37440266E, 0x00003FE5 //A9 = 2.6712876934440631473215182284e-08
-data8 0xCECA765EEB4A265F, 0x00003FE2 //A8 = 3.0092031912460315516888139627e-09
-data8 0x99ABF588DF81A52E, 0x00003FDF //A7 = 2.7952722177649984066847682907e-10
-data8 0xB9C78918294A4685, 0x00003FDB //A6 = 2.1120676552098603524020495036e-11
-data8 0xB3A3C42AD539D50F, 0x00003FD7 //A5 = 1.2764169243389521270291967366e-12
-data8 0x86BC347939478174, 0x00003FD3 //A4 = 5.9834437707863962671883176163e-14
-LOCAL_OBJECT_END(_16_to_22p8_data_tail)
-
-LOCAL_OBJECT_START(_3p25_to_4_data_tail)
-// Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4
-data8 0xBE9A2BE19F21BA1C, 0x0000BFEE //A13 = -1.1360778336288065244475976873e-05
-data8 0xF84910F515BDB014, 0x00003FED //A12 = 7.3994819819577018481862729782e-06
-data8 0xC4C84FB788AA4007, 0x00003FEF //A11 = 2.3458298013663976251972482656e-05
-data8 0x86CC6243C170E5ED, 0x0000BFF2 //A10 = -1.2855374755847770638424932233e-04
-data8 0xD3065AC539ABABFF, 0x00003FF3 //A9 = 4.0249790677367806832685138089e-04
-data8 0x82C4413795EC381B, 0x0000BFF5 //A8 = -9.9767013652382759950854031514e-04
-data8 0x88D588720888899A, 0x00003FF6 //A7 = 2.0879228705174076794011525274e-03
-data8 0xF4CA066137741469, 0x0000BFF6 //A6 = -3.7351861548964870836350490741e-03
-data8 0xB998746D56E81737, 0x00003FF7 //A5 = 5.6639259807333999973200378964e-03
-data8 0xE93FB2F48233275B, 0x0000BFF7 //A4 = -7.1181892208343798194003322900e-03
-LOCAL_OBJECT_END(_3p25_to_4_data_tail)
-
-LOCAL_OBJECT_START(_6p5_to_8_data_tail)
-// Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0
-data8 0xA6881D7D21774BFD, 0x00003FEF //A13 = 1.9852125640303530752913966680e-05
-data8 0x875E983AA042E605, 0x0000BFF0 //A12 = -3.2274606306629334402383651599e-05
-data8 0xCB19E01E94FC133C, 0x00003FF0 //A11 = 4.8423069963831314927026982707e-05
-data8 0x8BA5E8D9E72D56B2, 0x0000BFF1 //A10 = -6.6589395655200734237190902534e-05
-data8 0xAE91F647ED4E46B2, 0x00003FF1 //A9 = 8.3241541003842930001632190258e-05
-data8 0xC465A7E0B22F884E, 0x0000BFF1 //A8 = -9.3649431639051891449916386619e-05
-data8 0xC4666148AA01A4D7, 0x00003FF1 //A7 = 9.3650780646160216748407869111e-05
-data8 0xABD9E63D181B0C6C, 0x0000BFF1 //A6 = -8.1945023256769295802996591839e-05
-data8 0x80E38B18E509387A, 0x00003FF1 //A5 = 6.1458988764532931141264026311e-05
-data8 0xA11C80E20ADA5A64, 0x0000BFF0 //A4 = -3.8411937140983728563216440713e-05
-LOCAL_OBJECT_END(_6p5_to_8_data_tail)
-
-LOCAL_OBJECT_START(_13_to_16_data_tail)
-// Polynomial coefficients for the tanh(x), 13 <= |x| < 16
-data8 0x9D6CCDA4767CA6D9, 0x00003FE5 //A13 = 1.8326683535066775712253572575e-08
-data8 0xFFAF154F334BF403, 0x0000BFE4 //A12 = -1.4882762852665077172347508377e-08
-data8 0xBFC68FA7C61B6C17, 0x00003FE4 //A11 = 1.1162810813806544919835662888e-08
-data8 0x83D8439A6B19A015, 0x0000BFE4 //A10 = -7.6743763372603959795701788561e-09
-data8 0xA4CE5BE9DC6A2962, 0x00003FE3 //A9 = 4.7964885012772346158732715382e-09
-data8 0xB96826C0697253CA, 0x0000BFE2 //A8 = -2.6980246373950994097953903952e-09
-data8 0xB96826CADDC00E35, 0x00003FE1 //A7 = 1.3490123232313844006540534789e-09
-data8 0xA23B21F1155DF322, 0x0000BFE0 //A6 = -5.9019289132168830718664922372e-10
-data8 0xF358B2E9A50C349C, 0x00003FDE //A5 = 2.2132233424669131155945897524e-10
-data8 0x98176FD2074C1D77, 0x0000BFDD //A4 = -6.9163229452106125388824134881e-11
-LOCAL_OBJECT_END(_13_to_16_data_tail)
-
-LOCAL_OBJECT_START(_0_to_1o8_data)
-// Polynomial coefficients for the tanh(x), 0.0 <= |x| < 0.125
-data8 0xBA0EC1879495150B, 0x0000BFF5 // A15 = -1.4195071451378679802688367813e-03
-data8 0xEB5A82898D1BCBA4, 0x00003FF6 // A13 = 3.5912102408030526706365632879e-03
-data8 0x91370DAFE0B64438, 0x0000BFF8 // A11 = -8.8632234251336964576640807982e-03
-data8 0xB327A435358F1200, 0x00003FF9 // A9 = 2.1869488447622383899199238857e-02
-data8 0xDD0DD0DD07A0775F, 0x0000BFFA // A7 = -5.3968253967902161405327069187e-02
-data8 0x888888888887C299, 0x00003FFC // A5 = 1.3333333333333264660338062012e-01
-data8 0xAAAAAAAAAAAAAA98, 0x0000BFFD // A3 = -3.3333333333333333282255458755e-01
-LOCAL_OBJECT_END(_0_to_1o8_data)
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(tanhl)
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 21, 0, 0
- fmerge.se fArgAbsNorm = f1, f8 // normalized x (1.0 <= x < 2.0)
- addl rSignBit = 0x20000, r0 // Set sign bit for exponent
-}
-{ .mlx
- addl rDataPtr = @ltoff(tanhl_data), gp // Get common data ptr
- movl r1p5 = 0x3FF8000000000000 // 1.5 in dbl repres.
-};;
-
-{ .mfi
- getf.exp rArgExp = f8 // Get arg exponent
- fclass.m p6,p0 = f8, 0xEF // Filter 0, denormals and specials
- // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf
- addl rBias = 0xfffc, r0 // Value to subtract from exp
- // to get actual interval number
-}
-{ .mfi
- ld8 rDataPtr = [rDataPtr] // Get real common data pointer
- fma.s1 fArgSqr = f8, f8, f0 // x^2 (for [0;1/8] path)
- addl r2to4 = 0x10000, r0 // unbiased exponent
- // for [2;4] binary interval
-};;
-
-{ .mfi
- getf.sig rArgSig = f8 // Get arg significand
- fcmp.lt.s1 p15, p14 = f8, f0 // Is arg negative/positive?
- addl rSaturation = 0xb70, r0 // First 12 bits of
- // saturation value signif.
-}
-{ .mfi
- setf.d f1p5 = r1p5 // 1.5 construction
- fma.s1 f2p0 = f1,f1,f1 // 2.0 construction
- addl r1625Sign = 0xd01, r0 // First 12 bits of
- // 1.625 value signif.
- // 1.625 significand used to filter values greater than 3.25, 6.5, 13.0
-};;
-
-{ .mfi
- addl rTailDataPtr = 0xB00, rDataPtr // Pointer to "tail" data
- fmerge.s fSignumX = f8, f1 // signum(x)
- andcm rArgExp = rArgExp, rSignBit // Remove sign of exp
-}
-{ .mfb
- addl rTiny = 0xf000, r0 // Tiny value for saturation path
- nop.f 0
-(p6) br.cond.spnt tanhl_spec // Branch to zero, denorm & specs
-};;
-
-{ .mfi
- sub rInterval = rArgExp, rBias // Get actual interval number
- nop.f 0
- shr.u rArgSig = rArgSig, 52 // Leave only 12 bits of sign.
-}
-{ .mfi
- adds rShiftedDataPtr = 0x10, rDataPtr // Second ptr to data
- nop.f 0
- cmp.ge p8, p10 = rArgExp, r2to4 // If exp >= 2to4 interval?
-};;
-
-{ .mfi
-(p8) cmp.le p8, p10 = r1625Sign, rArgSig // If signd is greater
- // than 1.625? (arg is at one of binary subranges)
- nop.f 0
- shl rOffset = rInterval, 8 // Make offset from
- // interval number
-}
-{ .mfi
- cmp.gt p9, p0 = 0x0, rInterval // If interval is less than 0
- // (means arg is in [0; 1/8])
- nop.f 0
- cmp.eq p7, p0 = 0x7, rInterval // If arg is in [16;] interv.?
-};;
-
-{ .mfi
-(p8) adds rOffset = 0x400, rOffset // Add additional offset
- // (arg is at one of binary subranges)
- fma.s1 fArgCube = fArgSqr, f8, f0 // x^3 (for [0;1/8] path)
- shl rTailOffset = rInterval, 7 // Make offset to "tail" data
- // from interval number
-}
-{ .mib
- setf.exp fTiny = rTiny // Construct "tiny" value
- // for saturation path
- cmp.ltu p11, p0 = 0x7, rInterval // if arg > 32
-(p9) br.cond.spnt _0_to_1o8
-};;
-
-{ .mfi
- add rAddr1 = rDataPtr, rOffset // Get address for
- // interval data
- nop.f 0
- shl rTailAddOffset = rInterval, 5 // Offset to interval
- // "tail" data
-}
-{ .mib
- add rAddr2 = rShiftedDataPtr, rOffset // Get second
- // address for interval data
-(p7) cmp.leu p11, p0 = rSaturation, rArgSig // if arg is
- // in [22.8;32] interval
-(p11) br.cond.spnt _saturation // Branch to Saturation path
-};;
-
-{ .mmi
- ldfe fA3 = [rAddr1], 0x90 // Load A3
- ldfpd fA2H, fA2L = [rAddr2], 16 // Load A2High, A2Low
- add rTailOffset = rTailOffset, rTailAddOffset // "Tail" offset
-};;
-
-{ .mmi
- ldfe fA20 = [rAddr1], 16 // Load A20
- ldfpd fA1H, fA1L = [rAddr2], 16 // Load A1High, A1Low
-(p8) adds rTailOffset = 0x280, rTailOffset // Additional offset
- // (arg is at one of binary subranges)
-};;
-
-{ .mmi
- ldfe fA19 = [rAddr1], 16 // Load A19
- ldfpd fA0H, fA0L = [rAddr2], 16 // Load A0High, A0Low
- add rTailAddr1 = rTailDataPtr, rTailOffset // First tail
- // data address
-};;
-
-.pred.rel "mutex",p8,p10
-{ .mfi
- ldfe fA18 = [rAddr1], 16 // Load A18
-(p8) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f2p0 // Add 2.0
- // (arg is at one of binary subranges)
- adds rTailAddr2 = 0x10, rTailAddr1 // First tail
- // data address
-}
-{ .mfi
- ldfe fA25 = [rAddr2], 16 // Load A25
-(p10) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f1p5 // Add 1.5
- // to normalized arg
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA17 = [rAddr1], 16 // Load A17
- ldfe fA24 = [rAddr2], 16 // Load A24
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA16 = [rAddr1], 16 // Load A16
- ldfe fA23 = [rAddr2], 16 // Load A23
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA15 = [rAddr1], 16 // Load A15
- ldfe fA22 = [rAddr2], 16 // Load A22
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA14 = [rAddr1], 16 // Load A14
- ldfe fA21 = [rAddr2], 16 // Load A21
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA13 = [rTailAddr1], 32 // Load A13
- fms.s1 fArgAbsNorm2 = fArgAbsNorm, fArgAbsNorm, f0 // x^2
- nop.i 0
-}
-{ .mfi
- ldfe fA12 = [rTailAddr2], 32 // Load A12
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA11 = [rTailAddr1], 32 // Load A11
- fma.s1 fRes3H = fA3, fArgAbsNorm, fA2H // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- ldfe fA10 = [rTailAddr2], 32 // Load A10
- fma.s1 fTH = fA3, fArgAbsNorm, f0 // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA9 = [rTailAddr1], 32 // Load A9
- fma.s1 fTT2 = fA1L, fArgAbsNorm, f0 // A1*x+A0
- nop.i 0
-}
-{ .mfi
- ldfe fA8 = [rTailAddr2], 32 // Load A8
- nop.f 0
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA7 = [rTailAddr1], 32 // Load A7
- ldfe fA6 = [rTailAddr2], 32 // Load A6
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA5 = [rTailAddr1], 32 // Load A5
- ldfe fA4 = [rTailAddr2], 32 // Load A4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm2L = fArgAbsNorm, fArgAbsNorm, fArgAbsNorm2
- // Low part of x^2 (delta)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm4 = fArgAbsNorm2, fArgAbsNorm2, f0 // x^4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes3L = fA2H, f1, fRes3H // // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm3 = fArgAbsNorm2, fArgAbsNorm, f0 // x^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fTH2 = fA1H, fArgAbsNorm, fTT2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA23 = fA24, fArgAbsNorm, fA23 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA21 = fA22, fArgAbsNorm, fA21 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA12 = fA13, fArgAbsNorm, fA12 // Polynomial tail
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes3L, f1, fTH // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA20, fArgAbsNorm, fA19 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1H = fTH2, f1, fA0H // A1*x+A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fTL2 = fA1H, fArgAbsNorm, fTH2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA9, fArgAbsNorm, fA8 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA10 = fA11, fArgAbsNorm, fA10 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA16, fArgAbsNorm, fA15 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA17 = fA18, fArgAbsNorm, fA17 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm11 = fArgAbsNorm4, fArgAbsNorm4, f0 // x^8
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA5, fArgAbsNorm, fA4 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes3L = fRes3L, f1, fA2L // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA6 = fA7, fArgAbsNorm, fA6 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTL2 = fTL2, f1, fTT2 // A1*x+A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fRes1L = fA0H, f1, fRes1H // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA23 = fA25, fArgAbsNorm2, fA23 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA12 = fA14, fArgAbsNorm2, fA12 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA21, fArgAbsNorm2, fA19 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA10, fArgAbsNorm2, fA8 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA17, fArgAbsNorm2, fA15 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm11 = fArgAbsNorm11, fArgAbsNorm3, f0 // x^11
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTT = fRes3L, fArgAbsNorm2, f0 // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA6, fArgAbsNorm2, fA4 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fTH2 // A1*x+A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fArgAbsNorm4X = fArgAbsNorm4, fSignumX, f0 // x^4 * signum
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA19 = fA23, fArgAbsNorm4, fA19 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA8 = fA12, fArgAbsNorm4, fA8 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fTT = fRes3H, fArgAbsNorm2L, fTT // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fTL2 // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA15 = fA19, fArgAbsNorm4, fA15 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA4 = fA8, fArgAbsNorm4, fA4 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes2H = fRes3H, fArgAbsNorm2, fTT // (A3*x+A2)*x^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes1L = fRes1L, f1, fA0L // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes4 = fA15, fArgAbsNorm11, fA4 // Result of
- // polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 fRes2L = fRes3H, fArgAbsNorm2, fRes2H // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fResH = fRes2H, f1, fRes1H // High result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fma.s1 fRes1L = fRes4, fArgAbsNorm4X, fRes1L // A1*x+A0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s1 fRes1L = fRes4, fArgAbsNorm4X, fRes1L // A1*x+A0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes2L = fRes2L, f1, fTT // (A3*x+A2)*x^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fResL = fRes1H, f1, fResH // Low result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s0 fRes1L = fRes2L, fSignumX, fRes1L // Low result
- // .s0 - for symmetry issue resolving at +/-inf rounding mode
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fResL = fResL, f1, fRes2H // Low result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fma.s0 fResL = fRes1L, f1, fResL // Low result
- // .s0 - for symmetry issue resolving at +/-inf rounding mode
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s0 fResL = fRes1L, f1, fResL // Low result
- // .s0 - for symmetry issue resolving at +/-inf rounding mode
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s0 f8 = fResL, f1, fResH// Add high and low results
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fms.s0 f8 = fResL, f1, fResH // Add high and low results
- br.ret.sptk b0 // Main path return
-};;
-
-// satiration path ////////////////////////////////////////////////////////////
-_saturation:
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fms.s0 f8 = f1, f1, fTiny // Saturation result r = 1-tiny
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p15) fnma.s0 f8 = f1, f1, fTiny // Saturation result r = tiny-1
- br.ret.sptk b0 // Saturation path return
-};;
-
-
-// 0, denormals and special IEEE numbers path /////////////////////////////////
-tanhl_spec:
-
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8, 0x23 // To filter infinities
- // 0x23 = @pos|@neg|@inf
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fclass.m p7,p0 = f8, 0xC7 // To filter NaNs & Zeros
- // 0xC7 = @pos|@neg|@zero|@qnan|@snan
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
-(p6) fmerge.s f8 = f8, f1 // +/-1 for INF args
-(p6) br.ret.spnt b0 // exit for x = INF
-};;
-
-{ .mfb
- nop.m 0
-(p7) fma.s0 f8 = f8, f1, f8 // +/-0 for 0 args
- // and NaNs for NaNs
-(p7) br.ret.spnt b0 // exit for x = NaN or +/-0
-};;
-
-{ .mfi
- nop.m 0
- fnorm.s0 f8 = f8 // Normalize arg
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fnma.s0 f8 = f8, f8, f8 // res = r-r^2
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fma.s0 f8 = f8, f8, f8 // res = r+r^2
- br.ret.sptk b0 // 0, denormals, IEEE specials return
-};;
-
-
-// 0 < |x| < 1/8 path /////////////////////////////////////////////////////////
-_0_to_1o8:
-
-{ .mmi
- adds rAddr1 = 0x11e0, rDataPtr // Ptr 1 to coeffs
- adds rAddr2 = 0x11f0, rDataPtr // Ptr 2 to coeffs
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA15 = [rAddr1], 32 // Load A15
- ldfe fA13 = [rAddr2], 32 // Load A13
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA11 = [rAddr1], 32 // Load A11
- ldfe fA9 = [rAddr2], 32 // Load A9
- nop.i 0
-};;
-
-{ .mmi
- ldfe fA7 = [rAddr1], 32 // Load A7
- ldfe fA5 = [rAddr2] // Load A5
- nop.i 0
-};;
-
-{ .mfi
- ldfe fA3 = [rAddr1] // Load A3
- fma.s1 fA11 = fA13, fArgSqr, fA11 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fArgFour = fArgSqr, fArgSqr, f0 // a^4
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA5, fArgSqr, fA3 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA7 = fA9, fArgSqr, fA7 // Polynomial tail
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 fA11 = fA15, fArgFour, fA11 // Polynomial tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fA3 = fA7, fArgFour, fA3 // Polynomial tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fArgEight = fArgFour, fArgFour, f0 // a^8
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 fRes = fA11, fArgEight, fA3 //Polynomial tail result
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s0 f8 = fRes, fArgCube, f8 // (Polynomial tail)*x^3
- br.ret.sptk b0 // [0;1/8] interval return
-};;
-
-GLOBAL_LIBM_END(tanhl)
-
-
-
-
diff --git a/sysdeps/ia64/fpu/s_tanl.S b/sysdeps/ia64/fpu/s_tanl.S
index 607a271545..e13e6c6cbd 100644
--- a/sysdeps/ia64/fpu/s_tanl.S
+++ b/sysdeps/ia64/fpu/s_tanl.S
@@ -1,10 +1,10 @@
-.file "tancotl.s"
+.file "tanl.s"
-
-// Copyright (c) 2000 - 2004, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,78 +35,50 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
-//*********************************************************************
+// *********************************************************************
//
// History:
//
-// 02/02/00 (hand-optimized)
-// 04/04/00 Unwind support added
+// 2/02/2000 (hand-optimized)
+// 4/04/00 Unwind support added
// 12/28/00 Fixed false invalid flags
-// 02/06/02 Improved speed
-// 05/07/02 Changed interface to __libm_pi_by_2_reduce
-// 05/30/02 Added cotl
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 05/15/03 Reformatted data tables
-// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
//
-//*********************************************************************
+// *********************************************************************
//
-// Functions: tanl(x) = tangent(x), for double-extended precision x values
-// cotl(x) = cotangent(x), for double-extended precision x values
+// Function: tanl(x) = tangent(x), for double-extended precision x values
//
-//*********************************************************************
+// *********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
// f9-f15
-// f32-f121
+// f32-f112
//
// General Purpose Registers:
-// r32-r70
+// r32-r48
+// r49-r50 (Used to pass arguments to pi_by_2 reduce routine)
//
// Predicate Registers: p6-p15
//
-//*********************************************************************
+// *********************************************************************
//
-// IEEE Special Conditions for tanl:
+// IEEE Special Conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions do not occur
-// Underflow exceptions raised when appropriate for tan
+// Underflow exceptions raised when appropriate for tan
// (No specialized error handling for this routine)
// Inexact raised when appropriate by algorithm
//
-// tanl(SNaN) = QNaN
-// tanl(QNaN) = QNaN
-// tanl(inf) = QNaN
-// tanl(+/-0) = +/-0
-//
-//*********************************************************************
-//
-// IEEE Special Conditions for cotl:
-//
-// Denormal fault raised on denormal inputs
-// Overflow exceptions occur at zero and near zero
-// Underflow exceptions do not occur
-// Inexact raised when appropriate by algorithm
-//
-// cotl(SNaN) = QNaN
-// cotl(QNaN) = QNaN
-// cotl(inf) = QNaN
-// cotl(+/-0) = +/-Inf and error handling is called
-//
-//*********************************************************************
+// tan(SNaN) = QNaN
+// tan(QNaN) = QNaN
+// tan(inf) = QNaN
+// tan(+/-0) = +/-0
//
-// Below are mathematical and algorithmic descriptions for tanl.
-// For cotl we use next identity cot(x) = -tan(x + Pi/2).
-// So, to compute cot(x) we just need to increment N (N = N + 1)
-// and invert sign of the computed result.
-//
-//*********************************************************************
+// *********************************************************************
//
// Mathematical Description
//
@@ -134,13 +106,13 @@
// -------
//
// tan(r + c) = r + c + r^3/3 ...accurately
-// -cot(r + c) = -1/(r+c) + r/3 ...accurately
+// -cot(r + c) = -1/(r+c) + r/3 ...accurately
//
// Case 4:
// -------
//
// tan(r + c) = r + c + r^3/3 + 2r^5/15 ...accurately
-// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately
+// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately
//
//
// The only cases left are Cases 1 and 3 of the argument reduction
@@ -171,13 +143,13 @@
// Since Arg = N pi/4 + r + c accurately, we have
//
// tan(Arg) = tan(r+c) for N even,
-// = -cot(r+c) otherwise.
+// = -cot(r+c) otherwise.
//
// Here for this case, both tan(r) and -cot(r) can be approximated
// by simple polynomials:
//
// tan(r) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
-// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
+// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
//
// accurately. Since |r| is relatively small, tan(r+c) and
// -cot(r+c) can be accurately approximated by replacing r with
@@ -206,21 +178,21 @@
// The required calculation is either
//
// tan(r + c) = tan(r) + correction, or
-// -cot(r + c) = -cot(r) + correction.
+// -cot(r + c) = -cot(r) + correction.
//
// Specifically,
//
// tan(r + c) = tan(r) + c tan'(r) + O(c^2)
-// = tan(r) + c sec^2(r) + O(c^2)
-// = tan(r) + c SEC_sq ...accurately
+// = tan(r) + c sec^2(r) + O(c^2)
+// = tan(r) + c SEC_sq ...accurately
// as long as SEC_sq approximates sec^2(r)
// to, say, 5 bits or so.
//
// Similarly,
//
-// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2)
-// = -cot(r) + c csc^2(r) + O(c^2)
-// = -cot(r) + c CSC_sq ...accurately
+// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2)
+// = -cot(r) + c csc^2(r) + O(c^2)
+// = -cot(r) + c CSC_sq ...accurately
// as long as CSC_sq approximates csc^2(r)
// to, say, 5 bits or so.
//
@@ -236,14 +208,14 @@
// where
//
// B = 2^k * 1.b_1 b_2 ... b_5 1
-// x = |r| - B
+// x = |r| - B
//
// Now,
// tan(B) + tan(x)
// tan( B + x ) = ------------------------
// 1 - tan(B)*tan(x)
//
-// / \
+// / \
// | tan(B) + tan(x) |
// = tan(B) + | ------------------------ - tan(B) |
@@ -276,7 +248,7 @@
// cot( B + x ) = ------------------------
// tan(B) + tan(x)
//
-// / \
+// / \
// | 1 - tan(B)*tan(x) |
// = cot(B) + | ----------------------- - cot(B) |
@@ -301,7 +273,7 @@
// Arg = N * pi/2 + r + c ...accurately
//
// tan(Arg) = tan(r) + correction if N is even;
-// = -cot(r) + correction otherwise.
+// = -cot(r) + correction otherwise.
//
// For Cases 2 and 4,
//
@@ -320,8 +292,8 @@
// tan(Arg) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
// + c*(1 + r^2) N even
//
-// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
-// + Q1_1*c N odd
+// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13
+// + Q1_1*c N odd
//
// Case normal_r: 2^(-2) <= |r| <= pi/4
//
@@ -332,15 +304,15 @@
//
// tan(Arg) = tan(r) + c*sec^2(r)
// = tan( sgn_r * (B+x) ) + c * sec^2(|r|)
-// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) )
-// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) )
+// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) )
+// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) )
//
// since B approximates |r| to 2^(-6) in relative accuracy.
//
// / (1/[sin(B)*cos(B)]) * tan(x)
// tan(Arg) = sgn_r * | tan(B) + --------------------------------
// \ cot(B) - tan(x)
-// \
+// \
// + CORR |
// /
@@ -352,15 +324,15 @@
//
// tan(Arg) = -cot(r) + c*csc^2(r)
// = -cot( sgn_r * (B+x) ) + c * csc^2(|r|)
-// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) )
-// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) )
+// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) )
+// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) )
//
// since B approximates |r| to 2^(-6) in relative accuracy.
//
// / (1/[sin(B)*cos(B)]) * tan(x)
// tan(Arg) = sgn_r * | -cot(B) + --------------------------------
// \ tan(B) + tan(x)
-// \
+// \
// + CORR |
// /
@@ -384,8 +356,8 @@
// For N even,
//
// rsq := r * r
-// Poly := c + r * rsq * P1_1
-// Result := r + Poly ...in user-defined rounding
+// Result := c + r * rsq * P1_1
+// Result := r + Result ...in user-defined rounding
//
// For N odd,
// S_hi := -frcpa(r) ...8 bits
@@ -403,8 +375,8 @@
// For N even,
//
// rsq := r * r
-// Poly := c + r * rsq * (P1_1 + rsq * P1_2)
-// Result := r + Poly ...in user-defined rounding
+// Result := c + r * rsq * (P1_1 + rsq * P1_2)
+// Result := r + Result ...in user-defined rounding
//
// For N odd,
// S_hi := -frcpa(r) ...8 bits
@@ -442,8 +414,8 @@
// Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9))
// CORR := c * ( 1 + rsq )
// Poly := Poly1 + r_to_the_8*Poly2
-// Poly := r*Poly + CORR
-// Result := r + Poly ...in user-defined rounding
+// Result := r*Poly + CORR
+// Result := r + Result ...in user-defined rounding
// ...note that Poly1 and r_to_the_8 can be computed in parallel
// ...with Poly2 (Poly1 is intentionally set to be much
// ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden)
@@ -462,8 +434,8 @@
// rsq := r*r
// P := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7))
//
-// Poly := r*P + S_lo
-// Result := S_hi + Poly ...in user-defined rounding
+// Result := r*P + S_lo
+// Result := S_hi + Result ...in user-defined rounding
//
//
// Algorithm for the case of normal_r
@@ -482,7 +454,7 @@
// / (1/[sin(B)*cos(B)]) * tan(x)
// sgn_r * | tan(B) + -------------------------------- +
// \ cot(B) - tan(x)
-// \
+// \
// CORR |
// /
@@ -491,7 +463,7 @@
// calculated beforehand and stored in a table. Specifically,
// the table values are
//
-// tan(B) as T_hi + T_lo;
+// tan(B) as T_hi + T_lo;
// cot(B) as C_hi + C_lo;
// 1/[sin(B)*cos(B)] as SC_inv
//
@@ -587,7 +559,7 @@
// / (1/[sin(B)*cos(B)]) * tan(x)
// sgn_r * | -cot(B) + -------------------------------- +
// \ tan(B) + tan(x)
-// \
+// \
// CORR |
// /
@@ -596,7 +568,7 @@
// calculated beforehand and stored in a table. Specifically,
// the table values are
//
-// tan(B) as T_hi + T_lo;
+// tan(B) as T_hi + T_lo;
// cot(B) as C_hi + C_lo;
// 1/[sin(B)*cos(B)] as SC_inv
//
@@ -703,382 +675,254 @@
//
//
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(TANL_BASE_CONSTANTS)
-
-tanl_table_1:
-data8 0xA2F9836E4E44152A, 0x00003FFE // two_by_pi
-data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
-data8 0xC90FDAA22168C235, 0x00003FFF // P_1
-data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
-data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
-LOCAL_OBJECT_END(TANL_BASE_CONSTANTS)
-
-LOCAL_OBJECT_START(tanl_table_2)
-data8 0xC90FDAA22168C234, 0x00003FFE // PI_BY_4
-data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
-data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
-data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
-data4 0x3E800000 // two**-2
-data4 0xBE800000 // -two**-2
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-LOCAL_OBJECT_END(tanl_table_2)
-
-LOCAL_OBJECT_START(tanl_table_p1)
-data8 0xAAAAAAAAAAAAAABD, 0x00003FFD // P1_1
-data8 0x8888888888882E6A, 0x00003FFC // P1_2
-data8 0xDD0DD0DD0F0177B6, 0x00003FFA // P1_3
-data8 0xB327A440646B8C6D, 0x00003FF9 // P1_4
-data8 0x91371B251D5F7D20, 0x00003FF8 // P1_5
-data8 0xEB69A5F161C67914, 0x00003FF6 // P1_6
-data8 0xBEDD37BE019318D2, 0x00003FF5 // P1_7
-data8 0x9979B1463C794015, 0x00003FF4 // P1_8
-data8 0x8EBD21A38C6EB58A, 0x00003FF3 // P1_9
-LOCAL_OBJECT_END(tanl_table_p1)
-
-LOCAL_OBJECT_START(tanl_table_q1)
-data8 0xAAAAAAAAAAAAAAB4, 0x00003FFD // Q1_1
-data8 0xB60B60B60B5FC93E, 0x00003FF9 // Q1_2
-data8 0x8AB355E00C9BBFBF, 0x00003FF6 // Q1_3
-data8 0xDDEBBC89CBEE3D4C, 0x00003FF2 // Q1_4
-data8 0xB3548A685F80BBB6, 0x00003FEF // Q1_5
-data8 0x913625604CED5BF1, 0x00003FEC // Q1_6
-data8 0xF189D95A8EE92A83, 0x00003FE8 // Q1_7
-LOCAL_OBJECT_END(tanl_table_q1)
-
-LOCAL_OBJECT_START(tanl_table_p2)
-data8 0xAAAAAAAAAAAB362F, 0x00003FFD // P2_1
-data8 0x88888886E97A6097, 0x00003FFC // P2_2
-data8 0xDD108EE025E716A1, 0x00003FFA // P2_3
-LOCAL_OBJECT_END(tanl_table_p2)
-
-LOCAL_OBJECT_START(tanl_table_tm2)
+#include "libm_support.h"
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+.align 128
+
+TANL_BASE_CONSTANTS:
+ASM_TYPE_DIRECTIVE(TANL_BASE_CONSTANTS,@object)
+data4 0x4B800000, 0xCB800000, 0x38800000, 0xB8800000 // two**24, -two**24
+ // two**-14, -two**-14
+data4 0x4E44152A, 0xA2F9836E, 0x00003FFE, 0x00000000 // two_by_pi
+data4 0xCE81B9F1, 0xC84D32B0, 0x00004016, 0x00000000 // P_0
+data4 0x2168C235, 0xC90FDAA2, 0x00003FFF, 0x00000000 // P_1
+data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD, 0x00000000 // P_2
+data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C, 0x00000000 // P_3
+data4 0x5F000000, 0xDF000000, 0x00000000, 0x00000000 // two_to_63, -two_to_63
+data4 0x6EC6B45A, 0xA397E504, 0x00003FE7, 0x00000000 // Inv_P_0
+data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF, 0x00000000 // d_1
+data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C, 0x00000000 // d_2
+data4 0x2168C234, 0xC90FDAA2, 0x00003FFE, 0x00000000 // PI_BY_4
+data4 0x2168C234, 0xC90FDAA2, 0x0000BFFE, 0x00000000 // MPI_BY_4
+data4 0x3E800000, 0xBE800000, 0x00000000, 0x00000000 // two**-2, -two**-2
+data4 0x2F000000, 0xAF000000, 0x00000000, 0x00000000 // two**-33, -two**-33
+data4 0xAAAAAABD, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // P1_1
+data4 0x88882E6A, 0x88888888, 0x00003FFC, 0x00000000 // P1_2
+data4 0x0F0177B6, 0xDD0DD0DD, 0x00003FFA, 0x00000000 // P1_3
+data4 0x646B8C6D, 0xB327A440, 0x00003FF9, 0x00000000 // P1_4
+data4 0x1D5F7D20, 0x91371B25, 0x00003FF8, 0x00000000 // P1_5
+data4 0x61C67914, 0xEB69A5F1, 0x00003FF6, 0x00000000 // P1_6
+data4 0x019318D2, 0xBEDD37BE, 0x00003FF5, 0x00000000 // P1_7
+data4 0x3C794015, 0x9979B146, 0x00003FF4, 0x00000000 // P1_8
+data4 0x8C6EB58A, 0x8EBD21A3, 0x00003FF3, 0x00000000 // P1_9
+data4 0xAAAAAAB4, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // Q1_1
+data4 0x0B5FC93E, 0xB60B60B6, 0x00003FF9, 0x00000000 // Q1_2
+data4 0x0C9BBFBF, 0x8AB355E0, 0x00003FF6, 0x00000000 // Q1_3
+data4 0xCBEE3D4C, 0xDDEBBC89, 0x00003FF2, 0x00000000 // Q1_4
+data4 0x5F80BBB6, 0xB3548A68, 0x00003FEF, 0x00000000 // Q1_5
+data4 0x4CED5BF1, 0x91362560, 0x00003FEC, 0x00000000 // Q1_6
+data4 0x8EE92A83, 0xF189D95A, 0x00003FE8, 0x00000000 // Q1_7
+data4 0xAAAB362F, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // P2_1
+data4 0xE97A6097, 0x88888886, 0x00003FFC, 0x00000000 // P2_2
+data4 0x25E716A1, 0xDD108EE0, 0x00003FFA, 0x00000000 // P2_3
//
// Entries T_hi double-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
// Entries T_lo single-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
//
-data8 0x3FD09BC362400794
-data4 0x23A05C32, 0x00000000
-data8 0x3FD124A9DFFBC074
-data4 0x240078B2, 0x00000000
-data8 0x3FD1AE235BD4920F
-data4 0x23826B8E, 0x00000000
-data8 0x3FD2383515E2701D
-data4 0x22D31154, 0x00000000
-data8 0x3FD2C2E463739C2D
-data4 0x2265C9E2, 0x00000000
-data8 0x3FD34E36AFEEA48B
-data4 0x245C05EB, 0x00000000
-data8 0x3FD3DA317DBB35D1
-data4 0x24749F2D, 0x00000000
-data8 0x3FD466DA67321619
-data4 0x2462CECE, 0x00000000
-data8 0x3FD4F4371F94A4D5
-data4 0x246D0DF1, 0x00000000
-data8 0x3FD5824D740C3E6D
-data4 0x240A85B5, 0x00000000
-data8 0x3FD611234CB1E73D
-data4 0x23F96E33, 0x00000000
-data8 0x3FD6A0BEAD9EA64B
-data4 0x247C5393, 0x00000000
-data8 0x3FD73125B804FD01
-data4 0x241F3B29, 0x00000000
-data8 0x3FD7C25EAB53EE83
-data4 0x2479989B, 0x00000000
-data8 0x3FD8546FE6640EED
-data4 0x23B343BC, 0x00000000
-data8 0x3FD8E75FE8AF1892
-data4 0x241454D1, 0x00000000
-data8 0x3FD97B3553928BDA
-data4 0x238613D9, 0x00000000
-data8 0x3FDA0FF6EB9DE4DE
-data4 0x22859FA7, 0x00000000
-data8 0x3FDAA5AB99ECF92D
-data4 0x237A6D06, 0x00000000
-data8 0x3FDB3C5A6D8F1796
-data4 0x23952F6C, 0x00000000
-data8 0x3FDBD40A9CFB8BE4
-data4 0x2280FC95, 0x00000000
-data8 0x3FDC6CC387943100
-data4 0x245D2EC0, 0x00000000
-data8 0x3FDD068CB736C500
-data4 0x23C4AD7D, 0x00000000
-data8 0x3FDDA16DE1DDBC31
-data4 0x23D076E6, 0x00000000
-data8 0x3FDE3D6EEB515A93
-data4 0x244809A6, 0x00000000
-data8 0x3FDEDA97E6E9E5F1
-data4 0x220856C8, 0x00000000
-data8 0x3FDF78F11963CE69
-data4 0x244BE993, 0x00000000
-data8 0x3FE00C417D635BCE
-data4 0x23D21799, 0x00000000
-data8 0x3FE05CAB1C302CD3
-data4 0x248A1B1D, 0x00000000
-data8 0x3FE0ADB9DB6A1FA0
-data4 0x23D53E33, 0x00000000
-data8 0x3FE0FF724A20BA81
-data4 0x24DB9ED5, 0x00000000
-data8 0x3FE151D9153FA6F5
-data4 0x24E9E451, 0x00000000
-LOCAL_OBJECT_END(tanl_table_tm2)
-
-LOCAL_OBJECT_START(tanl_table_tm1)
+data4 0x62400794, 0x3FD09BC3, 0x23A05C32, 0x00000000
+data4 0xDFFBC074, 0x3FD124A9, 0x240078B2, 0x00000000
+data4 0x5BD4920F, 0x3FD1AE23, 0x23826B8E, 0x00000000
+data4 0x15E2701D, 0x3FD23835, 0x22D31154, 0x00000000
+data4 0x63739C2D, 0x3FD2C2E4, 0x2265C9E2, 0x00000000
+data4 0xAFEEA48B, 0x3FD34E36, 0x245C05EB, 0x00000000
+data4 0x7DBB35D1, 0x3FD3DA31, 0x24749F2D, 0x00000000
+data4 0x67321619, 0x3FD466DA, 0x2462CECE, 0x00000000
+data4 0x1F94A4D5, 0x3FD4F437, 0x246D0DF1, 0x00000000
+data4 0x740C3E6D, 0x3FD5824D, 0x240A85B5, 0x00000000
+data4 0x4CB1E73D, 0x3FD61123, 0x23F96E33, 0x00000000
+data4 0xAD9EA64B, 0x3FD6A0BE, 0x247C5393, 0x00000000
+data4 0xB804FD01, 0x3FD73125, 0x241F3B29, 0x00000000
+data4 0xAB53EE83, 0x3FD7C25E, 0x2479989B, 0x00000000
+data4 0xE6640EED, 0x3FD8546F, 0x23B343BC, 0x00000000
+data4 0xE8AF1892, 0x3FD8E75F, 0x241454D1, 0x00000000
+data4 0x53928BDA, 0x3FD97B35, 0x238613D9, 0x00000000
+data4 0xEB9DE4DE, 0x3FDA0FF6, 0x22859FA7, 0x00000000
+data4 0x99ECF92D, 0x3FDAA5AB, 0x237A6D06, 0x00000000
+data4 0x6D8F1796, 0x3FDB3C5A, 0x23952F6C, 0x00000000
+data4 0x9CFB8BE4, 0x3FDBD40A, 0x2280FC95, 0x00000000
+data4 0x87943100, 0x3FDC6CC3, 0x245D2EC0, 0x00000000
+data4 0xB736C500, 0x3FDD068C, 0x23C4AD7D, 0x00000000
+data4 0xE1DDBC31, 0x3FDDA16D, 0x23D076E6, 0x00000000
+data4 0xEB515A93, 0x3FDE3D6E, 0x244809A6, 0x00000000
+data4 0xE6E9E5F1, 0x3FDEDA97, 0x220856C8, 0x00000000
+data4 0x1963CE69, 0x3FDF78F1, 0x244BE993, 0x00000000
+data4 0x7D635BCE, 0x3FE00C41, 0x23D21799, 0x00000000
+data4 0x1C302CD3, 0x3FE05CAB, 0x248A1B1D, 0x00000000
+data4 0xDB6A1FA0, 0x3FE0ADB9, 0x23D53E33, 0x00000000
+data4 0x4A20BA81, 0x3FE0FF72, 0x24DB9ED5, 0x00000000
+data4 0x153FA6F5, 0x3FE151D9, 0x24E9E451, 0x00000000
//
// Entries T_hi double-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
// Entries T_lo single-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
//
-data8 0x3FE1CEC4BA1BE39E
-data4 0x24B60F9E, 0x00000000
-data8 0x3FE277E45ABD9B2D
-data4 0x248C2474, 0x00000000
-data8 0x3FE324180272B110
-data4 0x247B8311, 0x00000000
-data8 0x3FE3D38B890E2DF0
-data4 0x24C55751, 0x00000000
-data8 0x3FE4866D46236871
-data4 0x24E5BC34, 0x00000000
-data8 0x3FE53CEE45E044B0
-data4 0x24001BA4, 0x00000000
-data8 0x3FE5F74282EC06E4
-data4 0x24B973DC, 0x00000000
-data8 0x3FE6B5A125DF43F9
-data4 0x24895440, 0x00000000
-data8 0x3FE77844CAFD348C
-data4 0x240021CA, 0x00000000
-data8 0x3FE83F6BCEED6B92
-data4 0x24C45372, 0x00000000
-data8 0x3FE90B58A34F3665
-data4 0x240DAD33, 0x00000000
-data8 0x3FE9DC522C1E56B4
-data4 0x24F846CE, 0x00000000
-data8 0x3FEAB2A427041578
-data4 0x2323FB6E, 0x00000000
-data8 0x3FEB8E9F9DD8C373
-data4 0x24B3090B, 0x00000000
-data8 0x3FEC709B65C9AA7B
-data4 0x2449F611, 0x00000000
-data8 0x3FED58F4ACCF8435
-data4 0x23616A7E, 0x00000000
-data8 0x3FEE480F97635082
-data4 0x24C2FEAE, 0x00000000
-data8 0x3FEF3E57F0ACC544
-data4 0x242CE964, 0x00000000
-data8 0x3FF01E20F7E06E4B
-data4 0x2480D3EE, 0x00000000
-data8 0x3FF0A1258A798A69
-data4 0x24DB8967, 0x00000000
-LOCAL_OBJECT_END(tanl_table_tm1)
-
-LOCAL_OBJECT_START(tanl_table_cm2)
+data4 0xBA1BE39E, 0x3FE1CEC4, 0x24B60F9E, 0x00000000
+data4 0x5ABD9B2D, 0x3FE277E4, 0x248C2474, 0x00000000
+data4 0x0272B110, 0x3FE32418, 0x247B8311, 0x00000000
+data4 0x890E2DF0, 0x3FE3D38B, 0x24C55751, 0x00000000
+data4 0x46236871, 0x3FE4866D, 0x24E5BC34, 0x00000000
+data4 0x45E044B0, 0x3FE53CEE, 0x24001BA4, 0x00000000
+data4 0x82EC06E4, 0x3FE5F742, 0x24B973DC, 0x00000000
+data4 0x25DF43F9, 0x3FE6B5A1, 0x24895440, 0x00000000
+data4 0xCAFD348C, 0x3FE77844, 0x240021CA, 0x00000000
+data4 0xCEED6B92, 0x3FE83F6B, 0x24C45372, 0x00000000
+data4 0xA34F3665, 0x3FE90B58, 0x240DAD33, 0x00000000
+data4 0x2C1E56B4, 0x3FE9DC52, 0x24F846CE, 0x00000000
+data4 0x27041578, 0x3FEAB2A4, 0x2323FB6E, 0x00000000
+data4 0x9DD8C373, 0x3FEB8E9F, 0x24B3090B, 0x00000000
+data4 0x65C9AA7B, 0x3FEC709B, 0x2449F611, 0x00000000
+data4 0xACCF8435, 0x3FED58F4, 0x23616A7E, 0x00000000
+data4 0x97635082, 0x3FEE480F, 0x24C2FEAE, 0x00000000
+data4 0xF0ACC544, 0x3FEF3E57, 0x242CE964, 0x00000000
+data4 0xF7E06E4B, 0x3FF01E20, 0x2480D3EE, 0x00000000
+data4 0x8A798A69, 0x3FF0A125, 0x24DB8967, 0x00000000
//
// Entries C_hi double-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
// Entries C_lo single-precision memory format
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
//
-data8 0x400ED3E2E63EFBD0
-data4 0x259D94D4, 0x00000000
-data8 0x400DDDB4C515DAB5
-data4 0x245F0537, 0x00000000
-data8 0x400CF57ABE19A79F
-data4 0x25D4EA9F, 0x00000000
-data8 0x400C1A06D15298ED
-data4 0x24AE40A0, 0x00000000
-data8 0x400B4A4C164B2708
-data4 0x25A5AAB6, 0x00000000
-data8 0x400A855A5285B068
-data4 0x25524F18, 0x00000000
-data8 0x4009CA5A3FFA549F
-data4 0x24C999C0, 0x00000000
-data8 0x4009188A646AF623
-data4 0x254FD801, 0x00000000
-data8 0x40086F3C6084D0E7
-data4 0x2560F5FD, 0x00000000
-data8 0x4007CDD2A29A76EE
-data4 0x255B9D19, 0x00000000
-data8 0x400733BE6C8ECA95
-data4 0x25CB021B, 0x00000000
-data8 0x4006A07E1F8DDC52
-data4 0x24AB4722, 0x00000000
-data8 0x4006139BC298AD58
-data4 0x252764E2, 0x00000000
-data8 0x40058CABBAD7164B
-data4 0x24DAF5DB, 0x00000000
-data8 0x40050B4BAE31A5D3
-data4 0x25EA20F4, 0x00000000
-data8 0x40048F2189F85A8A
-data4 0x2583A3E8, 0x00000000
-data8 0x400417DAA862380D
-data4 0x25DCC4CC, 0x00000000
-data8 0x4003A52B1088FCFE
-data4 0x2430A492, 0x00000000
-data8 0x400336CCCD3527D5
-data4 0x255F77CF, 0x00000000
-data8 0x4002CC7F5760766D
-data4 0x25DA0BDA, 0x00000000
-data8 0x4002660711CE02E3
-data4 0x256FF4A2, 0x00000000
-data8 0x4002032CD37BBE04
-data4 0x25208AED, 0x00000000
-data8 0x4001A3BD7F050775
-data4 0x24B72DD6, 0x00000000
-data8 0x40014789A554848A
-data4 0x24AB4DAA, 0x00000000
-data8 0x4000EE65323E81B7
-data4 0x2584C440, 0x00000000
-data8 0x4000982721CF1293
-data4 0x25C9428D, 0x00000000
-data8 0x400044A93D415EEB
-data4 0x25DC8482, 0x00000000
-data8 0x3FFFE78FBD72C577
-data4 0x257F5070, 0x00000000
-data8 0x3FFF4AC375EFD28E
-data4 0x23EBBF7A, 0x00000000
-data8 0x3FFEB2AF60B52DDE
-data4 0x22EECA07, 0x00000000
-data8 0x3FFE1F1935204180
-data4 0x24191079, 0x00000000
-data8 0x3FFD8FCA54F7E60A
-data4 0x248D3058, 0x00000000
-LOCAL_OBJECT_END(tanl_table_cm2)
-
-LOCAL_OBJECT_START(tanl_table_cm1)
+data4 0xE63EFBD0, 0x400ED3E2, 0x259D94D4, 0x00000000
+data4 0xC515DAB5, 0x400DDDB4, 0x245F0537, 0x00000000
+data4 0xBE19A79F, 0x400CF57A, 0x25D4EA9F, 0x00000000
+data4 0xD15298ED, 0x400C1A06, 0x24AE40A0, 0x00000000
+data4 0x164B2708, 0x400B4A4C, 0x25A5AAB6, 0x00000000
+data4 0x5285B068, 0x400A855A, 0x25524F18, 0x00000000
+data4 0x3FFA549F, 0x4009CA5A, 0x24C999C0, 0x00000000
+data4 0x646AF623, 0x4009188A, 0x254FD801, 0x00000000
+data4 0x6084D0E7, 0x40086F3C, 0x2560F5FD, 0x00000000
+data4 0xA29A76EE, 0x4007CDD2, 0x255B9D19, 0x00000000
+data4 0x6C8ECA95, 0x400733BE, 0x25CB021B, 0x00000000
+data4 0x1F8DDC52, 0x4006A07E, 0x24AB4722, 0x00000000
+data4 0xC298AD58, 0x4006139B, 0x252764E2, 0x00000000
+data4 0xBAD7164B, 0x40058CAB, 0x24DAF5DB, 0x00000000
+data4 0xAE31A5D3, 0x40050B4B, 0x25EA20F4, 0x00000000
+data4 0x89F85A8A, 0x40048F21, 0x2583A3E8, 0x00000000
+data4 0xA862380D, 0x400417DA, 0x25DCC4CC, 0x00000000
+data4 0x1088FCFE, 0x4003A52B, 0x2430A492, 0x00000000
+data4 0xCD3527D5, 0x400336CC, 0x255F77CF, 0x00000000
+data4 0x5760766D, 0x4002CC7F, 0x25DA0BDA, 0x00000000
+data4 0x11CE02E3, 0x40026607, 0x256FF4A2, 0x00000000
+data4 0xD37BBE04, 0x4002032C, 0x25208AED, 0x00000000
+data4 0x7F050775, 0x4001A3BD, 0x24B72DD6, 0x00000000
+data4 0xA554848A, 0x40014789, 0x24AB4DAA, 0x00000000
+data4 0x323E81B7, 0x4000EE65, 0x2584C440, 0x00000000
+data4 0x21CF1293, 0x40009827, 0x25C9428D, 0x00000000
+data4 0x3D415EEB, 0x400044A9, 0x25DC8482, 0x00000000
+data4 0xBD72C577, 0x3FFFE78F, 0x257F5070, 0x00000000
+data4 0x75EFD28E, 0x3FFF4AC3, 0x23EBBF7A, 0x00000000
+data4 0x60B52DDE, 0x3FFEB2AF, 0x22EECA07, 0x00000000
+data4 0x35204180, 0x3FFE1F19, 0x24191079, 0x00000000
+data4 0x54F7E60A, 0x3FFD8FCA, 0x248D3058, 0x00000000
//
// Entries C_hi double-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
// Entries C_lo single-precision memory format
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
//
-data8 0x3FFCC06A79F6FADE
-data4 0x239C7886, 0x00000000
-data8 0x3FFBB91F891662A6
-data4 0x250BD191, 0x00000000
-data8 0x3FFABFB6529F155D
-data4 0x256CC3E6, 0x00000000
-data8 0x3FF9D3002E964AE9
-data4 0x250843E3, 0x00000000
-data8 0x3FF8F1EF89DCB383
-data4 0x2277C87E, 0x00000000
-data8 0x3FF81B937C87DBD6
-data4 0x256DA6CF, 0x00000000
-data8 0x3FF74F141042EDE4
-data4 0x2573D28A, 0x00000000
-data8 0x3FF68BAF1784B360
-data4 0x242E489A, 0x00000000
-data8 0x3FF5D0B57C923C4C
-data4 0x2532D940, 0x00000000
-data8 0x3FF51D88F418EF20
-data4 0x253C7DD6, 0x00000000
-data8 0x3FF4719A02F88DAE
-data4 0x23DB59BF, 0x00000000
-data8 0x3FF3CC6649DA0788
-data4 0x252B4756, 0x00000000
-data8 0x3FF32D770B980DB8
-data4 0x23FE585F, 0x00000000
-data8 0x3FF2945FE56C987A
-data4 0x25378A63, 0x00000000
-data8 0x3FF200BDB16523F6
-data4 0x247BB2E0, 0x00000000
-data8 0x3FF172358CE27778
-data4 0x24446538, 0x00000000
-data8 0x3FF0E873FDEFE692
-data4 0x2514638F, 0x00000000
-data8 0x3FF0632C33154062
-data4 0x24A7FC27, 0x00000000
-data8 0x3FEFC42EB3EF115F
-data4 0x248FD0FE, 0x00000000
-data8 0x3FEEC9E8135D26F6
-data4 0x2385C719, 0x00000000
-LOCAL_OBJECT_END(tanl_table_cm1)
-
-LOCAL_OBJECT_START(tanl_table_scim2)
+data4 0x79F6FADE, 0x3FFCC06A, 0x239C7886, 0x00000000
+data4 0x891662A6, 0x3FFBB91F, 0x250BD191, 0x00000000
+data4 0x529F155D, 0x3FFABFB6, 0x256CC3E6, 0x00000000
+data4 0x2E964AE9, 0x3FF9D300, 0x250843E3, 0x00000000
+data4 0x89DCB383, 0x3FF8F1EF, 0x2277C87E, 0x00000000
+data4 0x7C87DBD6, 0x3FF81B93, 0x256DA6CF, 0x00000000
+data4 0x1042EDE4, 0x3FF74F14, 0x2573D28A, 0x00000000
+data4 0x1784B360, 0x3FF68BAF, 0x242E489A, 0x00000000
+data4 0x7C923C4C, 0x3FF5D0B5, 0x2532D940, 0x00000000
+data4 0xF418EF20, 0x3FF51D88, 0x253C7DD6, 0x00000000
+data4 0x02F88DAE, 0x3FF4719A, 0x23DB59BF, 0x00000000
+data4 0x49DA0788, 0x3FF3CC66, 0x252B4756, 0x00000000
+data4 0x0B980DB8, 0x3FF32D77, 0x23FE585F, 0x00000000
+data4 0xE56C987A, 0x3FF2945F, 0x25378A63, 0x00000000
+data4 0xB16523F6, 0x3FF200BD, 0x247BB2E0, 0x00000000
+data4 0x8CE27778, 0x3FF17235, 0x24446538, 0x00000000
+data4 0xFDEFE692, 0x3FF0E873, 0x2514638F, 0x00000000
+data4 0x33154062, 0x3FF0632C, 0x24A7FC27, 0x00000000
+data4 0xB3EF115F, 0x3FEFC42E, 0x248FD0FE, 0x00000000
+data4 0x135D26F6, 0x3FEEC9E8, 0x2385C719, 0x00000000
//
// Entries SC_inv in Swapped IEEE format (extended)
// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64)
//
-data8 0x839D6D4A1BF30C9E, 0x00004001
-data8 0x80092804554B0EB0, 0x00004001
-data8 0xF959F94CA1CF0DE9, 0x00004000
-data8 0xF3086BA077378677, 0x00004000
-data8 0xED154515CCD4723C, 0x00004000
-data8 0xE77909441C27CF25, 0x00004000
-data8 0xE22D037D8DDACB88, 0x00004000
-data8 0xDD2B2D8A89C73522, 0x00004000
-data8 0xD86E1A23BB2C1171, 0x00004000
-data8 0xD3F0E288DFF5E0F9, 0x00004000
-data8 0xCFAF16B1283BEBD5, 0x00004000
-data8 0xCBA4AFAA0D88DD53, 0x00004000
-data8 0xC7CE03CCCA67C43D, 0x00004000
-data8 0xC427BC820CA0DDB0, 0x00004000
-data8 0xC0AECD57F13D8CAB, 0x00004000
-data8 0xBD606C3871ECE6B1, 0x00004000
-data8 0xBA3A0A96A44C4929, 0x00004000
-data8 0xB7394F6FE5CCCEC1, 0x00004000
-data8 0xB45C12039637D8BC, 0x00004000
-data8 0xB1A0552892CB051B, 0x00004000
-data8 0xAF04432B6BA2FFD0, 0x00004000
-data8 0xAC862A237221235F, 0x00004000
-data8 0xAA2478AF5F00A9D1, 0x00004000
-data8 0xA7DDBB0C81E082BF, 0x00004000
-data8 0xA5B0987D45684FEE, 0x00004000
-data8 0xA39BD0F5627A8F53, 0x00004000
-data8 0xA19E3B036EC5C8B0, 0x00004000
-data8 0x9FB6C1F091CD7C66, 0x00004000
-data8 0x9DE464101FA3DF8A, 0x00004000
-data8 0x9C263139A8F6B888, 0x00004000
-data8 0x9A7B4968C27B0450, 0x00004000
-data8 0x98E2DB7E5EE614EE, 0x00004000
-LOCAL_OBJECT_END(tanl_table_scim2)
-
-LOCAL_OBJECT_START(tanl_table_scim1)
+data4 0x1BF30C9E, 0x839D6D4A, 0x00004001, 0x00000000
+data4 0x554B0EB0, 0x80092804, 0x00004001, 0x00000000
+data4 0xA1CF0DE9, 0xF959F94C, 0x00004000, 0x00000000
+data4 0x77378677, 0xF3086BA0, 0x00004000, 0x00000000
+data4 0xCCD4723C, 0xED154515, 0x00004000, 0x00000000
+data4 0x1C27CF25, 0xE7790944, 0x00004000, 0x00000000
+data4 0x8DDACB88, 0xE22D037D, 0x00004000, 0x00000000
+data4 0x89C73522, 0xDD2B2D8A, 0x00004000, 0x00000000
+data4 0xBB2C1171, 0xD86E1A23, 0x00004000, 0x00000000
+data4 0xDFF5E0F9, 0xD3F0E288, 0x00004000, 0x00000000
+data4 0x283BEBD5, 0xCFAF16B1, 0x00004000, 0x00000000
+data4 0x0D88DD53, 0xCBA4AFAA, 0x00004000, 0x00000000
+data4 0xCA67C43D, 0xC7CE03CC, 0x00004000, 0x00000000
+data4 0x0CA0DDB0, 0xC427BC82, 0x00004000, 0x00000000
+data4 0xF13D8CAB, 0xC0AECD57, 0x00004000, 0x00000000
+data4 0x71ECE6B1, 0xBD606C38, 0x00004000, 0x00000000
+data4 0xA44C4929, 0xBA3A0A96, 0x00004000, 0x00000000
+data4 0xE5CCCEC1, 0xB7394F6F, 0x00004000, 0x00000000
+data4 0x9637D8BC, 0xB45C1203, 0x00004000, 0x00000000
+data4 0x92CB051B, 0xB1A05528, 0x00004000, 0x00000000
+data4 0x6BA2FFD0, 0xAF04432B, 0x00004000, 0x00000000
+data4 0x7221235F, 0xAC862A23, 0x00004000, 0x00000000
+data4 0x5F00A9D1, 0xAA2478AF, 0x00004000, 0x00000000
+data4 0x81E082BF, 0xA7DDBB0C, 0x00004000, 0x00000000
+data4 0x45684FEE, 0xA5B0987D, 0x00004000, 0x00000000
+data4 0x627A8F53, 0xA39BD0F5, 0x00004000, 0x00000000
+data4 0x6EC5C8B0, 0xA19E3B03, 0x00004000, 0x00000000
+data4 0x91CD7C66, 0x9FB6C1F0, 0x00004000, 0x00000000
+data4 0x1FA3DF8A, 0x9DE46410, 0x00004000, 0x00000000
+data4 0xA8F6B888, 0x9C263139, 0x00004000, 0x00000000
+data4 0xC27B0450, 0x9A7B4968, 0x00004000, 0x00000000
+data4 0x5EE614EE, 0x98E2DB7E, 0x00004000, 0x00000000
//
// Entries SC_inv in Swapped IEEE format (extended)
// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64)
//
-data8 0x969F335C13B2B5BA, 0x00004000
-data8 0x93D446D9D4C0F548, 0x00004000
-data8 0x9147094F61B798AF, 0x00004000
-data8 0x8EF317CC758787AC, 0x00004000
-data8 0x8CD498B3B99EEFDB, 0x00004000
-data8 0x8AE82A7DDFF8BC37, 0x00004000
-data8 0x892AD546E3C55D42, 0x00004000
-data8 0x8799FEA9D15573C1, 0x00004000
-data8 0x86335F88435A4B4C, 0x00004000
-data8 0x84F4FB6E3E93A87B, 0x00004000
-data8 0x83DD195280A382FB, 0x00004000
-data8 0x82EA3D7FA4CB8C9E, 0x00004000
-data8 0x821B247C6861D0A8, 0x00004000
-data8 0x816EBED163E8D244, 0x00004000
-data8 0x80E42D9127E4CFC6, 0x00004000
-data8 0x807ABF8D28E64AFD, 0x00004000
-data8 0x8031EF26863B4FD8, 0x00004000
-data8 0x800960ADAE8C11FD, 0x00004000
-data8 0x8000E1475FDBEC21, 0x00004000
-data8 0x80186650A07791FA, 0x00004000
-LOCAL_OBJECT_END(tanl_table_scim1)
-
-Arg = f8
-Save_Norm_Arg = f8 // For input to reduction routine
+data4 0x13B2B5BA, 0x969F335C, 0x00004000, 0x00000000
+data4 0xD4C0F548, 0x93D446D9, 0x00004000, 0x00000000
+data4 0x61B798AF, 0x9147094F, 0x00004000, 0x00000000
+data4 0x758787AC, 0x8EF317CC, 0x00004000, 0x00000000
+data4 0xB99EEFDB, 0x8CD498B3, 0x00004000, 0x00000000
+data4 0xDFF8BC37, 0x8AE82A7D, 0x00004000, 0x00000000
+data4 0xE3C55D42, 0x892AD546, 0x00004000, 0x00000000
+data4 0xD15573C1, 0x8799FEA9, 0x00004000, 0x00000000
+data4 0x435A4B4C, 0x86335F88, 0x00004000, 0x00000000
+data4 0x3E93A87B, 0x84F4FB6E, 0x00004000, 0x00000000
+data4 0x80A382FB, 0x83DD1952, 0x00004000, 0x00000000
+data4 0xA4CB8C9E, 0x82EA3D7F, 0x00004000, 0x00000000
+data4 0x6861D0A8, 0x821B247C, 0x00004000, 0x00000000
+data4 0x63E8D244, 0x816EBED1, 0x00004000, 0x00000000
+data4 0x27E4CFC6, 0x80E42D91, 0x00004000, 0x00000000
+data4 0x28E64AFD, 0x807ABF8D, 0x00004000, 0x00000000
+data4 0x863B4FD8, 0x8031EF26, 0x00004000, 0x00000000
+data4 0xAE8C11FD, 0x800960AD, 0x00004000, 0x00000000
+data4 0x5FDBEC21, 0x8000E147, 0x00004000, 0x00000000
+data4 0xA07791FA, 0x80186650, 0x00004000, 0x00000000
+ASM_SIZE_DIRECTIVE(TANL_BASE_CONSTANTS)
+
+Arg = f8
Result = f8
-r = f8 // For output from reduction routine
-c = f9 // For output from reduction routine
+fp_tmp = f9
U_2 = f10
-rsq = f11
+rsq = f11
C_hi = f12
C_lo = f13
T_hi = f14
T_lo = f15
+N_0 = f32
d_1 = f33
-N_0 = f34
+MPI_BY_4 = f34
tail = f35
tanx = f36
Cx = f37
@@ -1105,6 +949,8 @@ P1_7 = f51
P1_8 = f52
P1_9 = f53
+TWO_TO_63 = f54
+NEGTWO_TO_63 = f55
x = f56
xsq = f57
Tx = f58
@@ -1120,10 +966,12 @@ B = f67
SC_inv = f68
Pos_r = f69
N_0_fix = f70
-d_2 = f71
-PI_BY_4 = f72
+PI_BY_4 = f71
+NEGTWO_TO_NEG2 = f72
+TWO_TO_24 = f73
TWO_TO_NEG14 = f74
TWO_TO_NEG33 = f75
+NEGTWO_TO_24 = f76
NEGTWO_TO_NEG14 = f76
NEGTWO_TO_NEG33 = f77
two_by_PI = f78
@@ -1134,14 +982,13 @@ P_2 = f82
P_3 = f83
s_val = f84
w = f85
-B_mask1 = f86
-B_mask2 = f87
-w2 = f88
+c = f86
+r = f87
A = f89
a = f90
t = f91
U_1 = f92
-NEGTWO_TO_NEG2 = f93
+d_2 = f93
TWO_TO_NEG2 = f94
Q1_1 = f95
Q1_2 = f96
@@ -1162,643 +1009,609 @@ V_hiabs = f110
V = f111
Inv_P_0 = f112
-FR_inv_pi_2to63 = f113
-FR_rshf_2to64 = f114
-FR_2tom64 = f115
-FR_rshf = f116
-Norm_Arg = f117
-Abs_Arg = f118
-TWO_TO_NEG65 = f119
-fp_tmp = f120
-mOne = f121
-
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_SAVE_PFS = r35
-table_base = r36
+delta1 = r36
table_ptr1 = r37
table_ptr2 = r38
-table_ptr3 = r39
-lookup = r40
-N_fix_gr = r41
-GR_exp_2tom2 = r42
-GR_exp_2tom65 = r43
-exp_r = r44
-sig_r = r45
-bmask1 = r46
-table_offset = r47
-bmask2 = r48
+i_0 = r39
+i_1 = r40
+N_fix_gr = r41
+N_inc = r42
+exp_Arg = r43
+exp_r = r44
+sig_r = r45
+lookup = r46
+table_offset = r47
+Create_B = r48
gr_tmp = r49
-cot_flag = r50
-
-GR_sig_inv_pi = r51
-GR_rshf_2to64 = r52
-GR_exp_2tom64 = r53
-GR_rshf = r54
-GR_exp_2_to_63 = r55
-GR_exp_2_to_24 = r56
-GR_signexp_x = r57
-GR_exp_x = r58
-GR_exp_mask = r59
-GR_exp_2tom14 = r60
-GR_exp_m2tom14 = r61
-GR_exp_2tom33 = r62
-GR_exp_m2tom33 = r63
-
-GR_SAVE_B0 = r64
-GR_SAVE_PFS = r65
-GR_SAVE_GP = r66
-
-GR_Parameter_X = r67
-GR_Parameter_Y = r68
-GR_Parameter_RESULT = r69
-GR_Parameter_Tag = r70
-
.section .text
-.global __libm_tanl#
-.global __libm_cotl#
-
-.proc __libm_cotl#
-__libm_cotl:
-.endp __libm_cotl#
-LOCAL_LIBM_ENTRY(cotl)
-
-{ .mlx
- alloc r32 = ar.pfs, 0,35,4,0
- movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
-{ .mlx
- mov GR_exp_mask = 0x1ffff // Exponent mask
- movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
-}
-;;
-
-// Check for NatVals, Infs , NaNs, and Zeros
-{ .mfi
- getf.exp GR_signexp_x = Arg // Get sign and exponent of x
- fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
- mov cot_flag = 0x1
-}
-{ .mfb
- addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
- fnorm.s1 Norm_Arg = Arg // Normalize x
- br.cond.sptk COMMON_PATH
+.global tanl
+.proc tanl
+tanl:
+#ifdef _LIBC
+.global __tanl
+.proc __tanl
+__tanl:
+#endif
+{ .mfi
+alloc r32 = ar.pfs, 0,17,2,0
+(p0) fclass.m.unc p6,p0 = Arg, 0x1E7
+ addl gr_tmp = -1,r0
+}
+{ .mfi
+ nop.m 0
+(p0) fclass.nm.unc p7,p0 = Arg, 0x1FF
+ nop.i 0
};;
-LOCAL_LIBM_END(cotl)
-
-
-.proc __libm_tanl#
-__libm_tanl:
-.endp __libm_tanl#
-GLOBAL_IEEE754_ENTRY(tanl)
-
-{ .mlx
- alloc r32 = ar.pfs, 0,35,4,0
- movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
-{ .mlx
- mov GR_exp_mask = 0x1ffff // Exponent mask
- movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
-}
-;;
-
-// Check for NatVals, Infs , NaNs, and Zeros
{ .mfi
- getf.exp GR_signexp_x = Arg // Get sign and exponent of x
- fclass.m p6,p0 = Arg, 0x1E7 // Test for natval, nan, inf, zero
- mov cot_flag = 0x0
-}
-{ .mfi
- addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
- fnorm.s1 Norm_Arg = Arg // Normalize x
+(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp
+ nop.f 999
nop.i 0
-};;
-
-// Common path for both tanl and cotl
-COMMON_PATH:
-{ .mfi
- setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
- fclass.m p9, p0 = Arg, 0x0b // Test x denormal
- mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N
-}
-{ .mlx
- setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
- movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63
}
;;
-
-// Check for everything - if false, then must be pseudo-zero or pseudo-nan.
-// Branch out to deal with special values.
-{ .mfi
- addl gr_tmp = -1,r0
- fclass.nm p7,p0 = Arg, 0x1FF // Test x unsupported
- mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63
-}
-{ .mfb
- ld8 table_base = [table_base] // Get pointer to constant table
- fms.s1 mOne = f0, f0, f1
-(p6) br.cond.spnt TANL_SPECIAL // Branch if x natval, nan, inf, zero
-}
-;;
-
-{ .mmb
+{ .mmi
+(p0) ld8 table_ptr1 = [table_ptr1]
setf.sig fp_tmp = gr_tmp // Make a constant so fmpy produces inexact
- mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24
-(p9) br.cond.spnt TANL_DENORMAL // Branch if x denormal
+ nop.i 999
}
;;
-TANL_COMMON:
-// Return to here if x denormal
//
-// Do fcmp to generate Denormal exception
-// - can't do FNORM (will generate Underflow when U is unmasked!)
-// Branch out to deal with unsupporteds values.
-{ .mfi
- setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
- fcmp.eq.s0 p0, p6 = Arg, f1 // Dummy to flag denormals
- add table_ptr1 = 0, table_base // Point to tanl_table_1
+// Check for NatVals, Infs , NaNs, and Zeros
+// Check for everything - if false, then must be pseudo-zero
+// or pseudo-nan.
+// Local table pointer
+//
+{ .mbb
+(p0) add table_ptr2 = 96, table_ptr1
+(p6) br.cond.spnt L(TANL_SPECIAL)
+(p7) br.cond.spnt L(TANL_SPECIAL) ;;
}
-{ .mib
- setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63
- add table_ptr2 = 80, table_base // Point to tanl_table_2
-(p7) br.cond.spnt TANL_UNSUPPORTED // Branch if x unsupported type
+//
+// Point to Inv_P_0
+// Branch out to deal with unsupporteds and special values.
+//
+{ .mmf
+(p0) ldfs TWO_TO_24 = [table_ptr1],4
+(p0) ldfs TWO_TO_63 = [table_ptr2],4
+//
+// Load -2**24, load -2**63.
+//
+(p0) fcmp.eq.s0 p0, p6 = Arg, f1 ;;
}
-;;
-
{ .mfi
- and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
- fmpy.s1 Save_Norm_Arg = Norm_Arg, f1 // Save x if large arg reduction
- dep.z bmask1 = 0x7c, 56, 8 // Form mask to get 5 msb of r
- // bmask1 = 0x7c00000000000000
+(p0) ldfs NEGTWO_TO_63 = [table_ptr2],12
+(p0) fnorm.s1 Arg = Arg
+ nop.i 999
+}
+//
+// Load 2**24, Load 2**63.
+//
+{ .mmi
+(p0) ldfs NEGTWO_TO_24 = [table_ptr1],12 ;;
+//
+// Do fcmp to generate Denormal exception
+// - can't do FNORM (will generate Underflow when U is unmasked!)
+// Normalize input argument.
+//
+(p0) ldfe two_by_PI = [table_ptr1],16
+ nop.i 999
+}
+{ .mmi
+(p0) ldfe Inv_P_0 = [table_ptr2],16 ;;
+(p0) ldfe d_1 = [table_ptr2],16
+ nop.i 999
}
-;;
-
//
// Decide about the paths to take:
-// Set PR_6 if |Arg| >= 2**63
-// Set PR_9 if |Arg| < 2**24 - CASE 1 OR 2
-// OTHERWISE Set PR_8 - CASE 3 OR 4
+// PR_1 and PR_3 set if -2**24 < Arg < 2**24 - CASE 1 OR 2
+// OTHERWISE - CASE 3 OR 4
+// Load inverse of P_0 .
+// Set PR_6 if Arg <= -2**63
+// Are there any Infs, NaNs, or zeros?
//
-// Branch out if the magnitude of the input argument is >= 2^63
-// - do this branch before the next.
-{ .mfi
- ldfe two_by_PI = [table_ptr1],16 // Load 2/pi
- nop.f 999
- dep.z bmask2 = 0x41, 57, 7 // Form mask to OR to produce B
- // bmask2 = 0x8200000000000000
+{ .mmi
+(p0) ldfe P_0 = [table_ptr1],16 ;;
+(p0) ldfe d_2 = [table_ptr2],16
+ nop.i 999
}
-{ .mib
- ldfe PI_BY_4 = [table_ptr2],16 // Load pi/4
- cmp.ge p6,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
-(p6) br.cond.spnt TANL_ARG_TOO_LARGE // Branch if |x| >= 2^63
+//
+// Set PR_8 if Arg <= -2**24
+// Set PR_6 if Arg >= 2**63
+//
+{ .mmi
+(p0) ldfe P_1 = [table_ptr1],16 ;;
+(p0) ldfe PI_BY_4 = [table_ptr2],16
+ nop.i 999
}
-;;
-
+//
+// Set PR_8 if Arg >= 2**24
+//
{ .mmi
- ldfe P_0 = [table_ptr1],16 // Load P_0
- ldfe Inv_P_0 = [table_ptr2],16 // Load Inv_P_0
- nop.i 999
+(p0) ldfe P_2 = [table_ptr1],16 ;;
+(p0) ldfe MPI_BY_4 = [table_ptr2],16
+ nop.i 999
}
-;;
-
+//
+// Load P_2 and PI_BY_4
+//
{ .mfi
- ldfe P_1 = [table_ptr1],16 // Load P_1
- fmerge.s Abs_Arg = f0, Norm_Arg // Get |x|
- mov GR_exp_m2tom33 = 0x2ffff - 33 // Form signexp of -2^-33
+(p0) ldfe P_3 = [table_ptr1],16
+ nop.f 999
+ nop.i 999 ;;
}
{ .mfi
- ldfe d_1 = [table_ptr2],16 // Load d_1 for 2^24 <= |x| < 2^63
- nop.f 999
- mov GR_exp_2tom33 = 0xffff - 33 // Form signexp of 2^-33
+ nop.m 999
+(p0) fcmp.le.unc.s1 p6,p7 = Arg,NEGTWO_TO_63
+ nop.i 999
}
-;;
-
-{ .mmi
- ldfe P_2 = [table_ptr1],16 // Load P_2
- ldfe d_2 = [table_ptr2],16 // Load d_2 for 2^24 <= |x| < 2^63
- cmp.ge p8,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
+{ .mfi
+ nop.m 999
+(p0) fcmp.le.unc.s1 p8,p9 = Arg,NEGTWO_TO_24
+ nop.i 999 ;;
}
-;;
-
-// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
-// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
-{ .mfb
- ldfe P_3 = [table_ptr1],16 // Load P_3
- fma.s1 N_fix = Norm_Arg, FR_inv_pi_2to63, FR_rshf_2to64
-(p8) br.cond.spnt TANL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63
+{ .mfi
+ nop.m 999
+(p7) fcmp.ge.s1 p6,p0 = Arg,TWO_TO_63
+ nop.i 999
}
-;;
-
-// Here if 0 < |x| < 2^24
-// ARGUMENT REDUCTION CODE - CASE 1 and 2
+{ .mfi
+ nop.m 999
+(p9) fcmp.ge.s1 p8,p0 = Arg,TWO_TO_24
+ nop.i 999 ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
//
-{ .mmf
- setf.exp TWO_TO_NEG33 = GR_exp_2tom33 // Form 2^-33
- setf.exp NEGTWO_TO_NEG33 = GR_exp_m2tom33 // Form -2^-33
- fmerge.s r = Norm_Arg,Norm_Arg // Assume r=x, ok if |x| < pi/4
+// Load P_3 and -PI_BY_4
+//
+(p6) br.cond.spnt L(TANL_ARG_TOO_LARGE) ;;
}
-;;
-
+{ .mib
+ nop.m 999
+ nop.i 999
//
-// If |Arg| < pi/4, set PR_8, else pi/4 <=|Arg| < 2^24 - set PR_9.
+// Load 2**(-2).
+// Load -2**(-2).
+// Branch out if we have a special argument.
+// Branch out if the magnitude of the input argument is too large
+// - do this branch before the next.
+//
+(p8) br.cond.spnt L(TANL_LARGER_ARG) ;;
+}
+//
+// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
//
-// Case 2: Convert integer N_fix back to normalized floating-point value.
{ .mfi
- getf.sig sig_r = Norm_Arg // Get sig_r if 1/4 <= |x| < pi/4
- fcmp.lt.s1 p8,p9= Abs_Arg,PI_BY_4 // Test |x| < pi/4
- mov GR_exp_2tom2 = 0xffff - 2 // Form signexp of 2^-2
+(p0) ldfs TWO_TO_NEG2 = [table_ptr2],4
+// ARGUMENT REDUCTION CODE - CASE 1 and 2
+// Load 2**(-2).
+// Load -2**(-2).
+(p0) fmpy.s1 N = Arg,two_by_PI
+ nop.i 999 ;;
}
{ .mfi
- ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2] // Load 2^-2, -2^-2
- fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
- mov N_fix_gr = r0 // Assume N=0, ok if |x| < pi/4
+(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr2],12
+//
+// N = Arg * 2/pi
+//
+(p0) fcmp.lt.unc.s1 p8,p9= Arg,PI_BY_4
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// if Arg < pi/4, set PR_8.
+//
+(p8) fcmp.gt.s1 p8,p9= Arg,MPI_BY_4
+ nop.i 999 ;;
}
-;;
-
//
// Case 1: Is |r| < 2**(-2).
// Arg is the same as r in this case.
// r = Arg
// c = 0
//
-// Case 2: Place integer part of N in GP register.
{ .mfi
-(p9) getf.sig N_fix_gr = N_fix
- fmerge.s c = f0, f0 // Assume c=0, ok if |x| < pi/4
- cmp.lt p10, p0 = GR_exp_x, GR_exp_2tom2 // Test if |x| < 1/4
+(p8) mov N_fix_gr = r0
+//
+// if Arg > -pi/4, reset PR_8.
+// Select the case when |Arg| < pi/4 - set PR[8] = true.
+// Else Select the case when |Arg| >= pi/4 - set PR[9] = true.
+//
+(p0) fcvt.fx.s1 N_fix = N
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
- nop.f 999
- mov exp_r = GR_exp_x // Get exp_r if 1/4 <= |x| < pi/4
+ nop.m 999
+//
+// Grab the integer part of N .
+//
+(p8) mov r = Arg
+ nop.i 999
}
-{ .mbb
- setf.sig B_mask2 = bmask2 // Form mask to form B from r
-(p10) br.cond.spnt TANL_SMALL_R // Branch if 0 < |x| < 1/4
-(p8) br.cond.spnt TANL_NORMAL_R // Branch if 1/4 <= |x| < pi/4
+{ .mfi
+ nop.m 999
+(p8) mov c = f0
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p8) fcmp.lt.unc.s1 p10, p11 = Arg, TWO_TO_NEG2
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+(p10) fcmp.gt.s1 p10,p0 = Arg, NEGTWO_TO_NEG2
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
+//
+// Case 2: Place integer part of N in GP register.
+//
+(p9) fcvt.xf N = N_fix
+ nop.i 999 ;;
+}
+{ .mib
+(p9) getf.sig N_fix_gr = N_fix
+ nop.i 999
+//
+// Case 2: Convert integer N_fix back to normalized floating-point value.
+//
+(p10) br.cond.spnt L(TANL_SMALL_R) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.sptk L(TANL_NORMAL_R) ;;
}
-;;
-
-// Here if pi/4 <= |x| < 2^24
//
// Case 1: PR_3 is only affected when PR_1 is set.
//
+{ .mmi
+(p9) ldfs TWO_TO_NEG33 = [table_ptr2], 4 ;;
//
-// Case 2: w = N * P_2
-// Case 2: s_val = -N * P_1 + Arg
+// Case 2: Load 2**(-33).
//
-
-{ .mfi
- nop.m 999
- fnma.s1 s_val = N, P_1, Norm_Arg
- nop.i 999
+(p9) ldfs NEGTWO_TO_NEG33 = [table_ptr2], 4
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 w = N, P_2 // w = N * P_2 for |s| >= 2^-33
- nop.i 999
+ nop.m 999
+//
+// Case 2: Load -2**(-33).
+//
+(p9) fnma.s1 s_val = N, P_1, Arg
+ nop.i 999
}
-;;
-
-// Case 2_reduce: w = N * P_3 (change sign)
{ .mfi
- nop.m 999
- fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-33
- nop.i 999
+ nop.m 999
+(p9) fmpy.s1 w = N, P_2
+ nop.i 999 ;;
}
-;;
-
-// Case 1_reduce: r = s + w (change sign)
{ .mfi
- nop.m 999
- fsub.s1 r = s_val, w // r = s_val - w for |s| >= 2^-33
- nop.i 999
+ nop.m 999
+//
+// Case 2: w = N * P_2
+// Case 2: s_val = -N * P_1 + Arg
+//
+(p0) fcmp.lt.unc.s1 p9,p8 = s_val, TWO_TO_NEG33
+ nop.i 999 ;;
}
-;;
-
-// Case 2_reduce: U_1 = N * P_2 + w
{ .mfi
- nop.m 999
- fma.s1 U_1 = N, P_2, w2 // U_1 = N * P_2 + w for |s| < 2^-33
- nop.i 999
-}
-;;
-
+ nop.m 999
//
// Decide between case_1 and case_2 reduce:
-// Case 1_reduce: |s| >= 2**(-33)
-// Case 2_reduce: |s| < 2**(-33)
//
-{ .mfi
- nop.m 999
- fcmp.lt.s1 p9, p8 = s_val, TWO_TO_NEG33
- nop.i 999
+(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
- nop.i 999
+ nop.m 999
+//
+// Case 1_reduce: s <= -2**(-33) or s >= 2**(-33)
+// Case 2_reduce: -2**(-33) < s < 2**(-33)
+//
+(p8) fsub.s1 r = s_val, w
+ nop.i 999
}
-;;
-
-// Case 1_reduce: c = s - r
{ .mfi
- nop.m 999
- fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-33
- nop.i 999
+ nop.m 999
+(p9) fmpy.s1 w = N, P_3
+ nop.i 999 ;;
}
-;;
-
-// Case 2_reduce: r is complete here - continue to calculate c .
-// r = s - U_1
{ .mfi
- nop.m 999
-(p9) fsub.s1 r = s_val, U_1
- nop.i 999
+ nop.m 999
+(p9) fma.s1 U_1 = N, P_2, w
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p9) fms.s1 U_2 = N, P_2, U_1
- nop.i 999
-}
-;;
-
+ nop.m 999
//
// Case 1_reduce: Is |r| < 2**(-2), if so set PR_10
-// else set PR_13.
+// else set PR_11.
//
-
-{ .mfi
- nop.m 999
- fand B = B_mask1, r
- nop.i 999
+(p8) fsub.s1 c = s_val, r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p8) fcmp.lt.unc.s1 p10, p13 = r, TWO_TO_NEG2
- nop.i 999
+ nop.m 999
+//
+// Case 1_reduce: r = s + w (change sign)
+// Case 2_reduce: w = N * P_3 (change sign)
+//
+(p8) fcmp.lt.unc.s1 p10, p11 = r, TWO_TO_NEG2
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p8) getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
- nop.f 999
- nop.i 999
+ nop.m 999
+(p10) fcmp.gt.s1 p10, p11 = r, NEGTWO_TO_NEG2
+ nop.i 999 ;;
}
-;;
-
{ .mfi
-(p8) getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
-(p10) fcmp.gt.s1 p10, p13 = r, NEGTWO_TO_NEG2
- nop.i 999
+ nop.m 999
+(p9) fsub.s1 r = s_val, U_1
+ nop.i 999
}
-;;
-
+{ .mfi
+ nop.m 999
+//
// Case 1_reduce: c is complete here.
-// Case 1: Branch to SMALL_R or NORMAL_R.
// c = c + w (w has not been negated.)
-{ .mfi
- nop.m 999
-(p8) fsub.s1 c = c, w // c = c - w for |s| >= 2^-33
- nop.i 999
-}
-{ .mbb
- nop.m 999
-(p10) br.cond.spnt TANL_SMALL_R // Branch if pi/4 < |x| < 2^24 and |r|<1/4
-(p13) br.cond.sptk TANL_NORMAL_R_A // Branch if pi/4 < |x| < 2^24 and |r|>=1/4
+// Case 2_reduce: r is complete here - continue to calculate c .
+// r = s - U_1
+//
+(p9) fms.s1 U_2 = N, P_2, U_1
+ nop.i 999 ;;
}
-;;
-
-
-// Here if pi/4 < |x| < 2^24 and |s| < 2^-33
+{ .mfi
+ nop.m 999
//
-// Is i_1 = lsb of N_fix_gr even or odd?
-// if i_1 == 0, set p11, else set p12.
+// Case 1_reduce: c = s - r
+// Case 2_reduce: U_1 = N * P_2 + w
//
-{ .mfi
- nop.m 999
- fsub.s1 s_val = s_val, r
- add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+(p8) fsub.s1 c = c, w
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
+(p9) fsub.s1 s_val = s_val, r
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
//
// Case 2_reduce:
// U_2 = N * P_2 - U_1
// Not needed until later.
//
- fadd.s1 U_2 = U_2, w2
+(p9) fadd.s1 U_2 = U_2, w
//
// Case 2_reduce:
// s = s - r
// U_2 = U_2 + w
//
- nop.i 999
+(p10) br.cond.spnt L(TANL_SMALL_R) ;;
}
-;;
-
+{ .mib
+ nop.m 999
+ nop.i 999
+(p11) br.cond.sptk L(TANL_NORMAL_R) ;;
+}
+{ .mii
+ nop.m 999
//
// Case 2_reduce:
// c = c - U_2
// c is complete here
// Argument reduction ends here.
//
+(p9) extr.u i_1 = N_fix_gr, 0, 1 ;;
+(p9) cmp.eq.unc p11, p12 = 0x0000,i_1 ;;
+}
{ .mfi
- nop.m 999
- fmpy.s1 rsq = r, r
- tbit.z p11, p12 = N_fix_gr, 0 ;; // Set p11 if N even, p12 if odd
+ nop.m 999
+//
+// Is i_1 even or odd?
+// if i_1 == 0, set p11, else set p12.
+//
+(p11) fmpy.s1 rsq = r, r
+ nop.i 999 ;;
}
-
{ .mfi
- nop.m 999
-(p12) frcpa.s1 S_hi,p0 = f1, r
- nop.i 999
+ nop.m 999
+(p12) frcpa.s1 S_hi,p0 = f1, r
+ nop.i 999
}
+
+
+
+//
+// Case 1: Branch to SMALL_R or NORMAL_R.
+// Case 1 is done now.
+//
+
{ .mfi
+(p9) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp
+(p9) fsub.s1 c = s_val, U_1
+ nop.i 999 ;;
+}
+;;
+
+{ .mmi
+(p9) ld8 table_ptr1 = [table_ptr1]
nop.m 999
- fsub.s1 c = s_val, U_1
nop.i 999
}
;;
+
{ .mmi
- add table_ptr1 = 160, table_base ;; // Point to tanl_table_p1
- ldfe P1_1 = [table_ptr1],144
- nop.i 999 ;;
+(p9) add table_ptr1 = 224, table_ptr1 ;;
+(p9) ldfe P1_1 = [table_ptr1],144
+ nop.i 999 ;;
}
//
+// Get [i_1] - lsb of N_fix_gr .
// Load P1_1 and point to Q1_1 .
//
{ .mfi
- ldfe Q1_1 = [table_ptr1]
+(p9) ldfe Q1_1 = [table_ptr1] , 0
//
// N even: rsq = r * Z
// N odd: S_hi = frcpa(r)
//
-(p12) fmerge.ns S_hi = S_hi, S_hi
- nop.i 999
+(p12) fmerge.ns S_hi = S_hi, S_hi
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// Case 2_reduce:
// c = s - U_1
//
-(p9) fsub.s1 c = c, U_2
- nop.i 999 ;;
+(p9) fsub.s1 c = c, U_2
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+ nop.m 999
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: Change sign of S_hi
//
-(p11) fmpy.s1 rsq = rsq, P1_1
- nop.i 999 ;;
+(p11) fmpy.s1 rsq = rsq, P1_1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999 ;;
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: rsq = rsq * P1_1
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
//
-(p11) fma.s1 Poly = r, rsq, c
- nop.i 999 ;;
+(p11) fma.s1 Result = r, rsq, c
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Poly = c + r * rsq
+// N even: Result = c + r * rsq
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
//
-(p12) fma.s1 poly1 = S_hi, r, f1
-(p11) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Result = Poly + r
+// N even: Result = Result + r
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
//
-(p14) fadd.s0 Result = r, Poly // for tanl
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p15) fms.s0 Result = r, mOne, Poly // for cotl
- nop.i 999
+(p11) fadd.s0 Result = r, Result
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
-(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999 ;;
+ nop.m 999
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: Result1 = Result + r
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
//
-(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
//
-(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999 ;;
+(p12) fma.s1 S_hi = S_hi, poly1, S_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * poly + 1.0 64 bits
//
-(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0
//
-(p12) fma.s1 poly1 = S_hi, c, poly1
- nop.i 999 ;;
+(p12) fma.s1 poly1 = S_hi, c, poly1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * c + poly1
//
-(p12) fmpy.s1 S_lo = S_hi, poly1
- nop.i 999 ;;
+(p12) fmpy.s1 S_lo = S_hi, poly1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: S_lo = S_hi * poly1
//
-(p12) fma.s1 S_lo = Q1_1, r, S_lo
-(p12) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
+(p12) fma.s1 S_lo = Q1_1, r, S_lo
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: Result = S_hi + S_lo
//
- fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
- nop.i 999 ;;
+(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
}
-{ .mfi
- nop.m 999
+{ .mfb
+ nop.m 999
//
// N odd: S_lo = S_lo + Q1_1 * r
//
-(p14) fadd.s0 Result = S_hi, S_lo // for tanl
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
- br.ret.sptk b0 ;; // Exit for pi/4 <= |x| < 2^24 and |s| < 2^-33
+(p12) fadd.s0 Result = S_hi, S_lo
+(p0) br.ret.sptk b0 ;;
}
-TANL_LARGER_ARG:
-// Here if 2^24 <= |x| < 2^63
+L(TANL_LARGER_ARG):
+
//
// ARGUMENT REDUCTION CODE - CASE 3 and 4
//
-{ .mmf
- mov GR_exp_2tom14 = 0xffff - 14 // Form signexp of 2^-14
- mov GR_exp_m2tom14 = 0x2ffff - 14 // Form signexp of -2^-14
- fmpy.s1 N_0 = Norm_Arg, Inv_P_0
+{ .mfi
+(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp
+(p0) fmpy.s1 N_0 = Arg, Inv_P_0
+ nop.i 999
}
;;
{ .mmi
- setf.exp TWO_TO_NEG14 = GR_exp_2tom14 // Form 2^-14
- setf.exp NEGTWO_TO_NEG14 = GR_exp_m2tom14// Form -2^-14
+(p0) ld8 table_ptr1 = [table_ptr1]
+ nop.m 999
nop.i 999
}
;;
@@ -1809,605 +1622,661 @@ TANL_LARGER_ARG:
// N_0 = Arg * Inv_P_0
//
{ .mmi
- add table_ptr2 = 144, table_base ;; // Point to 2^-2
- ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
- nop.i 999
+(p0) add table_ptr1 = 8, table_ptr1 ;;
+//
+// Point to 2*-14
+//
+(p0) ldfs TWO_TO_NEG14 = [table_ptr1], 4
+ nop.i 999 ;;
}
-;;
-
+//
+// Load 2**(-14).
+//
+{ .mmi
+(p0) ldfs NEGTWO_TO_NEG14 = [table_ptr1], 180 ;;
//
// N_0_fix = integer part of N_0 .
+// Adjust table_ptr1 to beginning of table.
//
+(p0) ldfs TWO_TO_NEG2 = [table_ptr1], 4
+ nop.i 999 ;;
+}
//
// Make N_0 the integer part.
//
{ .mfi
- nop.m 999
- fcvt.fx.s1 N_0_fix = N_0
- nop.i 999 ;;
+(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr1]
+//
+// Load -2**(-14).
+//
+(p0) fcvt.fx.s1 N_0_fix = N_0
+ nop.i 999 ;;
}
{ .mfi
- setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
- fcvt.xf N_0 = N_0_fix
- nop.i 999 ;;
+ nop.m 999
+(p0) fcvt.xf N_0 = N_0_fix
+ nop.i 999 ;;
}
{ .mfi
- setf.sig B_mask2 = bmask2 // Form mask to form B from r
- fnma.s1 ArgPrime = N_0, P_0, Norm_Arg
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 ArgPrime = N_0, P_0, Arg
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s1 w = N_0, d_1
- nop.i 999 ;;
+ nop.m 999
+(p0) fmpy.s1 w = N_0, d_1
+ nop.i 999 ;;
}
+{ .mfi
+ nop.m 999
//
// ArgPrime = -N_0 * P_0 + Arg
// w = N_0 * d_1
//
+(p0) fmpy.s1 N = ArgPrime, two_by_PI
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
//
// N = ArgPrime * 2/pi
//
-// fcvt.fx.s1 N_fix = N
-// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
-// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
+(p0) fcvt.fx.s1 N_fix = N
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fma.s1 N_fix = ArgPrime, FR_inv_pi_2to63, FR_rshf_2to64
-
- nop.i 999 ;;
+ nop.m 999
+//
+// N_fix is the integer part.
+//
+(p0) fcvt.xf N = N_fix
+ nop.i 999 ;;
}
-// Convert integer N_fix back to normalized floating-point value.
{ .mfi
- nop.m 999
- fms.s1 N = N_fix, FR_2tom64, FR_rshf // Use scaling to get N floated
- nop.i 999
+(p0) getf.sig N_fix_gr = N_fix
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
// N is the integer part of the reduced-reduced argument.
// Put the integer in a GP register.
//
+(p0) fnma.s1 s_val = N, P_1, ArgPrime
+ nop.i 999
+}
{ .mfi
- getf.sig N_fix_gr = N_fix
- nop.f 999
- nop.i 999
+ nop.m 999
+(p0) fnma.s1 w = N, P_2, w
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
//
// s_val = -N*P_1 + ArgPrime
// w = -N*P_2 + w
//
-{ .mfi
- nop.m 999
- fnma.s1 s_val = N, P_1, ArgPrime
- nop.i 999
+(p0) fcmp.lt.unc.s1 p11, p10 = s_val, TWO_TO_NEG14
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fnma.s1 w = N, P_2, w
- nop.i 999
+ nop.m 999
+(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
+ nop.i 999 ;;
}
-;;
-
-// Case 4: V_hi = N * P_2
-// Case 4: U_hi = N_0 * d_1
{ .mfi
- nop.m 999
- fmpy.s1 V_hi = N, P_2 // V_hi = N * P_2 for |s| < 2^-14
- nop.i 999
+ nop.m 999
+//
+// Case 3: r = s_val + w (Z complete)
+// Case 4: U_hi = N_0 * d_1
+//
+(p10) fmpy.s1 V_hi = N, P_2
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s1 U_hi = N_0, d_1 // U_hi = N_0 * d_1 for |s| < 2^-14
- nop.i 999
+ nop.m 999
+(p11) fmpy.s1 U_hi = N_0, d_1
+ nop.i 999 ;;
}
-;;
-
-// Case 3: r = s_val + w (Z complete)
-// Case 4: w = N * P_3
{ .mfi
- nop.m 999
- fadd.s1 r = s_val, w // r = s_val + w for |s| >= 2^-14
- nop.i 999
+ nop.m 999
+//
+// Case 3: r = s_val + w (Z complete)
+// Case 4: U_hi = N_0 * d_1
+//
+(p11) fmpy.s1 V_hi = N, P_2
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s1 w2 = N, P_3 // w = N * P_3 for |s| < 2^-14
- nop.i 999
+ nop.m 999
+(p11) fmpy.s1 U_hi = N_0, d_1
+ nop.i 999 ;;
}
-;;
-
-// Case 4: A = U_hi + V_hi
-// Note: Worry about switched sign of V_hi, so subtract instead of add.
-// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
-// Note: the (-) is still missing for V_hi.
{ .mfi
- nop.m 999
- fsub.s1 A = U_hi, V_hi // A = U_hi - V_hi for |s| < 2^-14
- nop.i 999
+ nop.m 999
+//
+// Decide between case 3 and 4:
+// Case 3: s <= -2**(-14) or s >= 2**(-14)
+// Case 4: -2**(-14) < s < 2**(-14)
+//
+(p10) fadd.s1 r = s_val, w
+ nop.i 999
}
{ .mfi
- nop.m 999
- fnma.s1 V_lo = N, P_2, V_hi // V_lo = V_hi - N * P_2 for |s| < 2^-14
- nop.i 999
+ nop.m 999
+(p11) fmpy.s1 w = N, P_3
+ nop.i 999 ;;
}
-;;
-
-// Decide between case 3 and 4:
-// Case 3: |s| >= 2**(-14) Set p10
-// Case 4: |s| < 2**(-14) Set p11
+{ .mfi
+ nop.m 999
//
-// Case 4: U_lo = N_0 * d_1 - U_hi
+// Case 4: We need abs of both U_hi and V_hi - dont
+// worry about switched sign of V_hi .
+//
+(p11) fsub.s1 A = U_hi, V_hi
+ nop.i 999
+}
{ .mfi
- nop.m 999
- fms.s1 U_lo = N_0, d_1, U_hi // U_lo = N_0*d_1 - U_hi for |s| < 2^-14
- nop.i 999
+ nop.m 999
+//
+// Case 4: A = U_hi + V_hi
+// Note: Worry about switched sign of V_hi, so subtract instead of add.
+//
+(p11) fnma.s1 V_lo = N, P_2, V_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fcmp.lt.s1 p11, p10 = s_val, TWO_TO_NEG14
- nop.i 999
+ nop.m 999
+(p11) fms.s1 U_lo = N_0, d_1, U_hi
+ nop.i 999 ;;
}
-;;
-
-// Case 4: We need abs of both U_hi and V_hi - dont
-// worry about switched sign of V_hi.
{ .mfi
- nop.m 999
- fabs V_hiabs = V_hi // |V_hi| for |s| < 2^-14
- nop.i 999
+ nop.m 999
+(p11) fabs V_hiabs = V_hi
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
- nop.i 999
+ nop.m 999
+//
+// Case 4: V_hi = N * P_2
+// w = N * P_3
+// Note the product does not include the (-) as in the writeup
+// so (-) missing for V_hi and w .
+(p10) fadd.s1 r = s_val, w
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
+//
// Case 3: c = s_val - r
+// Case 4: U_lo = N_0 * d_1 - U_hi
+//
+(p11) fabs U_hiabs = U_hi
+ nop.i 999
+}
{ .mfi
- nop.m 999
- fabs U_hiabs = U_hi // |U_hi| for |s| < 2^-14
- nop.i 999
+ nop.m 999
+(p11) fmpy.s1 w = N, P_3
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fsub.s1 c = s_val, r // c = s_val - r for |s| >= 2^-14
- nop.i 999
+ nop.m 999
+//
+// Case 4: Set P_12 if U_hiabs >= V_hiabs
+//
+(p11) fadd.s1 C_hi = s_val, A
+ nop.i 999 ;;
}
-;;
-
-// For Case 3, |s| >= 2^-14, determine if |r| < 1/4
+{ .mfi
+ nop.m 999
//
// Case 4: C_hi = s_val + A
//
-{ .mfi
- nop.m 999
-(p11) fadd.s1 C_hi = s_val, A // C_hi = s_val + A for |s| < 2^-14
- nop.i 999
+(p11) fadd.s1 t = U_lo, V_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
- nop.i 999
+ nop.m 999
+//
+// Case 3: Is |r| < 2**(-2), if so set PR_7
+// else set PR_8.
+// Case 3: If PR_7 is set, prepare to branch to Small_R.
+// Case 3: If PR_8 is set, prepare to branch to Normal_R.
+//
+(p10) fsub.s1 c = s_val, r
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- getf.sig sig_r = r // Get signif of r if |s| >= 2^-33
- fand B = B_mask1, r
- nop.i 999
+ nop.m 999
+//
+// Case 3: c = (s - r) + w (c complete)
+//
+(p11) fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
+ nop.i 999
}
-;;
-
-// Case 4: t = U_lo + V_lo
{ .mfi
- getf.exp exp_r = r // Extract signexp of r if |s| >= 2^-33
-(p11) fadd.s1 t = U_lo, V_lo // t = U_lo + V_lo for |s| < 2^-14
- nop.i 999
+ nop.m 999
+(p11) fms.s1 w = N_0, d_2, w
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
- nop.i 999
+ nop.m 999
+//
+// Case 4: V_hi = N * P_2
+// w = N * P_3
+// Note the product does not include the (-) as in the writeup
+// so (-) missing for V_hi and w .
+//
+(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
+ nop.i 999 ;;
}
-;;
-
-// Case 3: c = (s - r) + w (c complete)
{ .mfi
- nop.m 999
-(p10) fadd.s1 c = c, w // c = c + w for |s| >= 2^-14
- nop.i 999
-}
-{ .mbb
- nop.m 999
-(p14) br.cond.spnt TANL_SMALL_R // Branch if 2^24 <= |x| < 2^63 and |r|< 1/4
-(p15) br.cond.sptk TANL_NORMAL_R_A // Branch if 2^24 <= |x| < 2^63 and |r|>=1/4
+ nop.m 999
+(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
+ nop.i 999 ;;
}
-;;
-
-
-// Here if 2^24 <= |x| < 2^63 and |s| < 2^-14 >>>>>>> Case 4.
+{ .mfb
+ nop.m 999
//
-// Case 4: Set P_12 if U_hiabs >= V_hiabs
+// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
+// Note: the (-) is still missing for V_hi .
// Case 4: w = w + N_0 * d_2
// Note: the (-) is now incorporated in w .
-{ .mfi
- add table_ptr1 = 160, table_base // Point to tanl_table_p1
- fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
- nop.i 999
+//
+(p10) fadd.s1 c = c, w
+//
+// Case 4: t = U_lo + V_lo
+// Note: remember V_lo should be (-), subtract instead of add. NO
+//
+(p14) br.cond.spnt L(TANL_SMALL_R) ;;
+}
+{ .mib
+ nop.m 999
+ nop.i 999
+(p15) br.cond.spnt L(TANL_NORMAL_R) ;;
}
{ .mfi
- nop.m 999
- fms.s1 w2 = N_0, d_2, w2
- nop.i 999
+ nop.m 999
+//
+// Case 3: Vector off when |r| < 2**(-2). Recall that PR_3 will be true.
+// The remaining stuff is for Case 4.
+//
+(p12) fsub.s1 a = U_hi, A
+(p11) extr.u i_1 = N_fix_gr, 0, 1 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
+//
// Case 4: C_lo = s_val - C_hi
+//
+(p11) fadd.s1 t = t, w
+ nop.i 999
+}
{ .mfi
- ldfe P1_1 = [table_ptr1], 16 // Load P1_1
- fsub.s1 C_lo = s_val, C_hi
- nop.i 999
+ nop.m 999
+(p13) fadd.s1 a = V_hi, A
+ nop.i 999 ;;
}
-;;
+
+
//
// Case 4: a = U_hi - A
// a = V_hi - A (do an add to account for missing (-) on V_hi
//
-{ .mfi
- ldfe P1_2 = [table_ptr1], 128 // Load P1_2
-(p12) fsub.s1 a = U_hi, A
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p13) fadd.s1 a = V_hi, A
- nop.i 999
-}
-;;
-// Case 4: t = U_lo + V_lo + w
{ .mfi
- ldfe Q1_1 = [table_ptr1], 16 // Load Q1_1
- fadd.s1 t = t, w2
- nop.i 999
+(p11) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp
+(p11) fsub.s1 C_lo = s_val, C_hi
+ nop.i 999
}
;;
+
+
+//
// Case 4: a = (U_hi - A) + V_hi
// a = (V_hi - A) + U_hi
// In each case account for negative missing form V_hi .
//
-{ .mfi
- ldfe Q1_2 = [table_ptr1], 16 // Load Q1_2
-(p12) fsub.s1 a = a, V_hi
- nop.i 999
-}
-{ .mfi
+
+
+{ .mmi
+(p11) ld8 table_ptr1 = [table_ptr1]
nop.m 999
-(p13) fsub.s1 a = U_hi, a
nop.i 999
}
;;
+
//
// Case 4: C_lo = (s_val - C_hi) + A
//
+{ .mmi
+(p11) add table_ptr1 = 224, table_ptr1 ;;
+(p11) ldfe P1_1 = [table_ptr1], 16
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fadd.s1 C_lo = C_lo, A
- nop.i 999 ;;
+(p11) ldfe P1_2 = [table_ptr1], 128
+//
+// Case 4: w = U_lo + V_lo + w
+//
+(p12) fsub.s1 a = a, V_hi
+ nop.i 999 ;;
}
//
-// Case 4: t = t + a
+// Case 4: r = C_hi + C_lo
//
{ .mfi
- nop.m 999
- fadd.s1 t = t, a
- nop.i 999
+(p11) ldfe Q1_1 = [table_ptr1], 16
+(p11) fadd.s1 C_lo = C_lo, A
+ nop.i 999 ;;
}
-;;
-
-// Case 4: C_lo = C_lo + t
-// Case 4: r = C_hi + C_lo
+//
+// Case 4: c = C_hi - r
+// Get [i_1] - lsb of N_fix_gr.
+//
{ .mfi
- nop.m 999
- fadd.s1 C_lo = C_lo, t
- nop.i 999
+(p11) ldfe Q1_2 = [table_ptr1], 16
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
{ .mfi
- nop.m 999
- fadd.s1 r = C_hi, C_lo
- nop.i 999
+ nop.m 999
+(p13) fsub.s1 a = U_hi, a
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+ nop.m 999
+(p11) fadd.s1 t = t, a
+ nop.i 999 ;;
+}
+{ .mfi
+ nop.m 999
//
-// Case 4: c = C_hi - r
+// Case 4: t = t + a
//
+(p11) fadd.s1 C_lo = C_lo, t
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fsub.s1 c = C_hi, r
- nop.i 999
+ nop.m 999
+//
+// Case 4: C_lo = C_lo + t
+//
+(p11) fadd.s1 r = C_hi, C_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 rsq = r, r
- add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+ nop.m 999
+(p11) fsub.s1 c = C_hi, r
+ nop.i 999
}
-;;
-
-// Case 4: c = c + C_lo finished.
+{ .mfi
+ nop.m 999
//
-// Is i_1 = lsb of N_fix_gr even or odd?
-// if i_1 == 0, set PR_11, else set PR_12.
+// Case 4: c = c + C_lo finished.
+// Is i_1 even or odd?
+// if i_1 == 0, set PR_4, else set PR_5.
//
+// r and c have been computed.
+// We known whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+(p0) fmpy.s1 rsq = r, r
+ nop.i 999 ;;
+}
{ .mfi
- nop.m 999
- fadd.s1 c = c , C_lo
- tbit.z p11, p12 = N_fix_gr, 0
+ nop.m 999
+(p11) fadd.s1 c = c , C_lo
+(p11) cmp.eq.unc p11, p12 = 0x0000, i_1 ;;
}
-;;
-
-// r and c have been computed.
{ .mfi
- nop.m 999
+ nop.m 999
(p12) frcpa.s1 S_hi, p0 = f1, r
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: Change sign of S_hi
//
-(p11) fma.s1 Poly = rsq, P1_2, P1_1
- nop.i 999 ;;
+(p11) fma.s1 Result = rsq, P1_2, P1_1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 P = rsq, Q1_2, Q1_1
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: Result = S_hi + S_lo (User supplied rounding mode for C1)
//
- fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
- nop.i 999 ;;
+(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: rsq = r * r
// N odd: S_hi = frcpa(r)
//
(p12) fmerge.ns S_hi = S_hi, S_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: rsq = rsq * P1_2 + P1_1
// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary
//
-(p11) fmpy.s1 Poly = rsq, Poly
- nop.i 999 ;;
+(p11) fmpy.s1 Result = rsq, Result
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly1 = S_hi, r,f1
-(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Poly = Poly * rsq
+// N even: Result = Result * rsq
// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary
//
-(p11) fma.s1 Poly = r, Poly, c
- nop.i 999 ;;
+(p11) fma.s1 Result = r, Result, c
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: S_hi = S_hi * poly1 + S_hi 32 bits
//
-(p14) fadd.s0 Result = r, Poly // for tanl
- nop.i 999 ;;
-}
-
-.pred.rel "mutex",p15,p12
-{ .mfi
- nop.m 999
-(p15) fms.s0 Result = r, mOne, Poly // for cotl
- nop.i 999
+(p11) fadd.s0 Result= r, Result
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Poly = Poly * r + c
+// N even: Result = Result * r + c
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Result = Poly + r (Rounding mode S0)
+// N even: Result1 = Result + r (Rounding mode S0)
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * poly + S_hi 64 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0
//
(p12) fma.s1 poly1 = S_hi, c, poly1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: S_lo = S_hi * poly1
//
(p12) fma.s1 S_lo = P, r, S_lo
-(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
-}
-
-{ .mfi
- nop.m 999
-(p14) fadd.s0 Result = S_hi, S_lo // for tanl
- nop.i 999
+ nop.i 999 ;;
}
{ .mfb
- nop.m 999
+ nop.m 999
//
// N odd: S_lo = S_lo + r * P
//
-(p15) fms.s0 Result = S_hi, mOne, S_lo // for cotl
- br.ret.sptk b0 ;; // Exit for 2^24 <= |x| < 2^63 and |s| < 2^-14
+(p12) fadd.s0 Result = S_hi, S_lo
+(p0) br.ret.sptk b0 ;;
}
-TANL_SMALL_R:
-// Here if |r| < 1/4
-// r and c have been computed.
-// *****************************************************************
-// *****************************************************************
-// *****************************************************************
-// N odd: S_hi = frcpa(r)
-// Get [i_1] - lsb of N_fix_gr. Set p11 if N even, p12 if N odd.
-// N even: rsq = r * r
+L(TANL_SMALL_R):
+{ .mii
+ nop.m 999
+(p0) extr.u i_1 = N_fix_gr, 0, 1 ;;
+(p0) cmp.eq.unc p11, p12 = 0x0000, i_1
+}
{ .mfi
- add table_ptr1 = 160, table_base // Point to tanl_table_p1
- frcpa.s1 S_hi, p0 = f1, r // S_hi for N odd
- add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+ nop.m 999
+(p0) fmpy.s1 rsq = r, r
+ nop.i 999 ;;
}
{ .mfi
- add table_ptr2 = 400, table_base // Point to Q1_7
- fmpy.s1 rsq = r, r
- nop.i 999
+(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp
+(p12) frcpa.s1 S_hi, p0 = f1, r
+ nop.i 999
}
;;
+
{ .mmi
- ldfe P1_1 = [table_ptr1], 16
-;;
- ldfe P1_2 = [table_ptr1], 16
- tbit.z p11, p12 = N_fix_gr, 0
+(p0) ld8 table_ptr1 = [table_ptr1]
+ nop.m 999
+ nop.i 999
}
;;
+// *****************************************************************
+// *****************************************************************
+// *****************************************************************
+
+{ .mmi
+(p0) add table_ptr1 = 224, table_ptr1 ;;
+(p0) ldfe P1_1 = [table_ptr1], 16
+ nop.i 999 ;;
+}
+// r and c have been computed.
+// We known whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// |r| < 2**(-2)
{ .mfi
- ldfe P1_3 = [table_ptr1], 96
- nop.f 999
- nop.i 999
+(p0) ldfe P1_2 = [table_ptr1], 16
+(p11) fmpy.s1 r_to_the_8 = rsq, rsq
+ nop.i 999 ;;
}
-;;
-
+//
+// Set table_ptr1 to beginning of constant table.
+// Get [i_1] - lsb of N_fix_gr.
+//
{ .mfi
-(p11) ldfe P1_9 = [table_ptr1], -16
+(p0) ldfe P1_3 = [table_ptr1], 96
+//
+// N even: rsq = r * r
+// N odd: S_hi = frcpa(r)
+//
(p12) fmerge.ns S_hi = S_hi, S_hi
- nop.i 999
+ nop.i 999 ;;
}
+//
+// Is i_1 even or odd?
+// if i_1 == 0, set PR_11.
+// if i_1 != 0, set PR_12.
+//
{ .mfi
- nop.m 999
-(p11) fmpy.s1 r_to_the_8 = rsq, rsq
- nop.i 999
-}
-;;
-
+(p11) ldfe P1_9 = [table_ptr1], -16
//
// N even: Poly2 = P1_7 + Poly2 * rsq
// N odd: poly2 = Q1_5 + poly2 * rsq
//
-{ .mfi
-(p11) ldfe P1_8 = [table_ptr1], -16
(p11) fadd.s1 CORR = rsq, f1
- nop.i 999
+ nop.i 999 ;;
}
-;;
-
+{ .mmi
+(p11) ldfe P1_8 = [table_ptr1], -16 ;;
//
// N even: Poly1 = P1_2 + P1_3 * rsq
-// N odd: poly1 = 1.0 + S_hi * r
+// N odd: poly1 = 1.0 + S_hi * r
// 16 bits partial account for necessary (-1)
//
-{ .mmi
(p11) ldfe P1_7 = [table_ptr1], -16
-;;
-(p11) ldfe P1_6 = [table_ptr1], -16
- nop.i 999
+ nop.i 999 ;;
}
-;;
-
//
// N even: Poly1 = P1_1 + Poly1 * rsq
// N odd: S_hi = S_hi + S_hi * poly1) 16 bits account for necessary
//
+{ .mfi
+(p11) ldfe P1_6 = [table_ptr1], -16
//
// N even: Poly2 = P1_5 + Poly2 * rsq
// N odd: poly2 = Q1_3 + poly2 * rsq
//
-{ .mfi
-(p11) ldfe P1_5 = [table_ptr1], -16
(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8
- nop.i 999
+ nop.i 999 ;;
}
-{ .mfi
- nop.m 999
-(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999
-}
-;;
-
//
// N even: Poly1 = Poly1 * rsq
// N odd: poly1 = 1.0 + S_hi * r 32 bits partial
//
+{ .mfi
+(p11) ldfe P1_5 = [table_ptr1], -16
+(p12) fma.s1 poly1 = S_hi, r, f1
+ nop.i 999 ;;
+}
//
// N even: CORR = CORR * c
@@ -2421,30 +2290,44 @@ TANL_SMALL_R:
{ .mmf
(p11) ldfe P1_4 = [table_ptr1], -16
- nop.m 999
+(p0) addl table_ptr2 = @ltoff(TANL_BASE_CONSTANTS), gp
(p11) fmpy.s1 CORR = CORR, c
}
;;
-{ .mfi
+
+{ .mmi
+(p0) ld8 table_ptr2 = [table_ptr2]
nop.m 999
+ nop.i 999
+}
+;;
+
+
+{ .mii
+(p0) add table_ptr2 = 464, table_ptr2
+ nop.i 999 ;;
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
(p11) fma.s1 Poly1 = P1_3, rsq, P1_2
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
-(p12) ldfe Q1_7 = [table_ptr2], -16
+(p0) ldfe Q1_7 = [table_ptr2], -16
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
-(p12) ldfe Q1_6 = [table_ptr2], -16
+(p0) ldfe Q1_6 = [table_ptr2], -16
(p11) fma.s1 Poly2 = P1_9, rsq, P1_8
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mmi
-(p12) ldfe Q1_5 = [table_ptr2], -16 ;;
+(p0) ldfe Q1_5 = [table_ptr2], -16 ;;
(p12) ldfe Q1_4 = [table_ptr2], -16
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_3 = [table_ptr2], -16
@@ -2453,796 +2336,735 @@ TANL_SMALL_R:
// N odd: poly2 = Q1_6 + Q1_7 * rsq
//
(p11) fma.s1 Poly1 = Poly1, rsq, P1_1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_2 = [table_ptr2], -16
(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_1 = [table_ptr2], -16
(p11) fma.s1 Poly2 = Poly2, rsq, P1_7
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: CORR = rsq + 1
// N even: r_to_the_8 = rsq * rsq
//
(p11) fmpy.s1 Poly1 = Poly1, rsq
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p11) fma.s1 Poly2 = Poly2, rsq, P1_6
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_5
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p11) fma.s1 Poly2= Poly2, rsq, P1_5
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_4
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: r_to_the_8 = r_to_the_8 * r_to_the_8
// N odd: poly1 = S_hi * r + 1.0 64 bits partial
//
(p11) fma.s1 Poly2 = Poly2, rsq, P1_4
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Poly = CORR + Poly * r
+// N even: Result = CORR + Poly * r
// N odd: P = Q1_1 + poly2 * rsq
//
(p12) fma.s1 poly1 = S_hi, r, f1
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_3
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: Poly2 = P1_4 + Poly2 * rsq
// N odd: poly2 = Q1_2 + poly2 * rsq
//
(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly1 = S_hi, c, poly1
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_2
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: Poly = Poly1 + Poly2 * r_to_the_8
// N odd: S_hi = S_hi * poly1 + S_hi 64 bits
//
-(p11) fma.s1 Poly = Poly, r, CORR
- nop.i 999 ;;
+(p11) fma.s1 Result = Poly, r, CORR
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
-// N even: Result = r + Poly (User supplied rounding mode)
+// N even: Result = r + Result (User supplied rounding mode)
// N odd: poly1 = S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
-(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fma.s1 P = poly2, rsq, Q1_1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: poly1 = S_hi * r + 1.0
//
//
// N odd: S_lo = S_hi * poly1
//
-(p14) fadd.s0 Result = Poly, r // for tanl
- nop.i 999
+(p11) fadd.s0 Result = Result, r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p15) fms.s0 Result = Poly, mOne, r // for cotl
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: S_lo = Q1_1 * c + S_lo
//
(p12) fma.s1 S_lo = Q1_1, c, S_lo
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
- nop.i 999 ;;
+ nop.m 999
+(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: Result = S_lo + r * P
//
(p12) fma.s1 Result = P, r, S_lo
-(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
+ nop.i 999 ;;
}
-
+{ .mfb
+ nop.m 999
//
// N odd: Result = Result + S_hi (user supplied rounding mode)
//
-{ .mfi
- nop.m 999
-(p14) fadd.s0 Result = Result, S_hi // for tanl
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p15) fms.s0 Result = Result, mOne, S_hi // for cotl
- br.ret.sptk b0 ;; // Exit |r| < 1/4 path
+(p12) fadd.s0 Result = Result, S_hi
+(p0) br.ret.sptk b0 ;;
}
-TANL_NORMAL_R:
-// Here if 1/4 <= |x| < pi/4 or if |x| >= 2^63 and |r| >= 1/4
+L(TANL_NORMAL_R):
+{ .mfi
+(p0) getf.sig sig_r = r
// *******************************************************************
// *******************************************************************
// *******************************************************************
//
// r and c have been computed.
+// Make sure ftz mode is set - should be automatic when using wre
//
+//
+// Get [i_1] - lsb of N_fix_gr alone.
+//
+(p0) fmerge.s Pos_r = f1, r
+(p0) extr.u i_1 = N_fix_gr, 0, 1 ;;
+}
{ .mfi
- nop.m 999
- fand B = B_mask1, r
- nop.i 999
+ nop.m 999
+(p0) fmerge.s sgn_r = r, f1
+(p0) cmp.eq.unc p11, p12 = 0x0000, i_1 ;;
+}
+{ .mfi
+ nop.m 999
+ nop.f 999
+(p0) extr.u lookup = sig_r, 58, 5
+}
+{ .mlx
+ nop.m 999
+(p0) movl Create_B = 0x8200000000000000 ;;
+}
+{ .mfi
+(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp
+ nop.f 999
+(p0) dep Create_B = lookup, Create_B, 58, 5
}
;;
-TANL_NORMAL_R_A:
-// Enter here if pi/4 <= |x| < 2^63 and |r| >= 1/4
-// Get the 5 bits or r for the lookup. 1.xxxxx ....
+
+//
+// Get [i_1] - lsb of N_fix_gr alone.
+// Pos_r = abs (r)
+//
+
+
{ .mmi
- add table_ptr1 = 416, table_base // Point to tanl_table_p2
- mov GR_exp_2tom65 = 0xffff - 65 // Scaling constant for B
- extr.u lookup = sig_r, 58, 5
+(p0) ld8 table_ptr1 = [table_ptr1]
+ nop.m 999
+ nop.i 999
}
;;
+
{ .mmi
- ldfe P2_1 = [table_ptr1], 16
- setf.exp TWO_TO_NEG65 = GR_exp_2tom65 // 2^-65 for scaling B if exp_r=-2
- add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
+ nop.m 999
+(p0) setf.sig B = Create_B
+//
+// Set table_ptr1 and table_ptr2 to base address of
+// constant table.
+//
+(p0) add table_ptr1 = 480, table_ptr1 ;;
}
-;;
-
-.pred.rel "mutex",p11,p12
-// B = 2^63 * 1.xxxxx 100...0
-{ .mfi
- ldfe P2_2 = [table_ptr1], 16
- for B = B_mask2, B
- mov table_offset = 512 // Assume table offset is 512
+{ .mmb
+ nop.m 999
+//
+// Is i_1 or i_0 == 0 ?
+// Create the constant 1 00000 1000000000000000000000...
+//
+(p0) ldfe P2_1 = [table_ptr1], 16
+ nop.b 999
}
-;;
-
-{ .mfi
- ldfe P2_3 = [table_ptr1], 16
- fmerge.s Pos_r = f1, r
- tbit.nz p8,p9 = exp_r, 0
+{ .mmi
+ nop.m 999 ;;
+(p0) getf.exp exp_r = Pos_r
+ nop.i 999
}
-;;
-
+//
+// Get r's exponent
+// Get r's significand
+//
+{ .mmi
+(p0) ldfe P2_2 = [table_ptr1], 16 ;;
+//
+// Get the 5 bits or r for the lookup. 1.xxxxx ....
+// from sig_r.
+// Grab lsb of exp of B
+//
+(p0) ldfe P2_3 = [table_ptr1], 16
+ nop.i 999 ;;
+}
+{ .mii
+ nop.m 999
+(p0) andcm table_offset = 0x0001, exp_r ;;
+(p0) shl table_offset = table_offset, 9 ;;
+}
+{ .mii
+ nop.m 999
+//
+// Deposit 0 00000 1000000000000000000000... on
+// 1 xxxxx yyyyyyyyyyyyyyyyyyyyyy...,
+// getting rid of the ys.
// Is B = 2** -2 or B= 2** -1? If 2**-1, then
// we want an offset of 512 for table addressing.
-{ .mii
- add table_ptr2 = 1296, table_base // Point to tanl_table_cm2
-(p9) shladd table_offset = lookup, 4, table_offset
-(p8) shladd table_offset = lookup, 4, r0
+//
+(p0) shladd table_offset = lookup, 4, table_offset ;;
+//
+// B = ........ 1xxxxx 1000000000000000000...
+//
+(p0) add table_ptr1 = table_ptr1, table_offset ;;
}
-;;
-
-{ .mmi
- add table_ptr1 = table_ptr1, table_offset // Point to T_hi
- add table_ptr2 = table_ptr2, table_offset // Point to C_hi
- add table_ptr3 = 2128, table_base // Point to tanl_table_scim2
+{ .mmb
+ nop.m 999
+//
+// B = ........ 1xxxxx 1000000000000000000...
+// Convert B so it has the same exponent as Pos_r
+//
+(p0) ldfd T_hi = [table_ptr1], 8
+ nop.b 999 ;;
}
-;;
-{ .mmi
- ldfd T_hi = [table_ptr1], 8 // Load T_hi
-;;
- ldfd C_hi = [table_ptr2], 8 // Load C_hi
- add table_ptr3 = table_ptr3, table_offset // Point to SC_inv
-}
-;;
+
//
// x = |r| - B
+// Load T_hi.
+// Load C_hi.
//
-// Convert B so it has the same exponent as Pos_r before subtracting
-{ .mfi
- ldfs T_lo = [table_ptr1] // Load T_lo
-(p9) fnma.s1 x = B, FR_2tom64, Pos_r
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fnma.s1 x = B, TWO_TO_NEG65, Pos_r
- nop.i 999
+
+{ .mmf
+(p0) addl table_ptr2 = @ltoff(TANL_BASE_CONSTANTS), gp
+(p0) ldfs T_lo = [table_ptr1]
+(p0) fmerge.se B = Pos_r, B
}
;;
-{ .mfi
- ldfs C_lo = [table_ptr2] // Load C_lo
- nop.f 999
+
+{ .mmi
+(p0) ld8 table_ptr2 = [table_ptr2]
+ nop.m 999
nop.i 999
}
;;
-{ .mfi
- ldfe SC_inv = [table_ptr3] // Load SC_inv
- fmerge.s sgn_r = r, f1
- tbit.z p11, p12 = N_fix_gr, 0 // p11 if N even, p12 if odd
+{ .mii
+(p0) add table_ptr2 = 1360, table_ptr2
+ nop.i 999 ;;
+(p0) add table_ptr2 = table_ptr2, table_offset ;;
}
-;;
-
+{ .mfi
+(p0) ldfd C_hi = [table_ptr2], 8
+(p0) fsub.s1 x = Pos_r, B
+ nop.i 999 ;;
+}
+{ .mii
+(p0) ldfs C_lo = [table_ptr2],255
+ nop.i 999 ;;
//
// xsq = x * x
// N even: Tx = T_hi * x
+// Load T_lo.
+// Load C_lo - increment pointer to get SC_inv
+// - cant get all the way, do an add later.
+//
+(p0) add table_ptr2 = 569, table_ptr2 ;;
+}
//
// N even: Tx1 = Tx + 1
// N odd: Cx1 = 1 - Cx
//
-
{ .mfi
- nop.m 999
- fmpy.s1 xsq = x, x
- nop.i 999
+(p0) ldfe SC_inv = [table_ptr2], 0
+ nop.f 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
+(p0) fmpy.s1 xsq = x, x
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
(p11) fmpy.s1 Tx = T_hi, x
- nop.i 999
+ nop.i 999 ;;
}
-;;
-
-//
-// N odd: Cx = C_hi * x
-//
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fmpy.s1 Cx = C_hi, x
- nop.i 999
+ nop.i 999 ;;
}
-;;
+{ .mfi
+ nop.m 999
//
-// N even and odd: P = P2_3 + P2_2 * xsq
+// N odd: Cx = C_hi * x
//
-{ .mfi
- nop.m 999
- fma.s1 P = P2_3, xsq, P2_2
- nop.i 999
+(p0) fma.s1 P = P2_3, xsq, P2_2
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
+//
+// N even and odd: P = P2_3 + P2_2 * xsq
+//
(p11) fadd.s1 Tx1 = Tx, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: D = C_hi - tanx
// N odd: D = T_hi + tanx
//
(p11) fmpy.s1 CORR = SC_inv, T_hi
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
- fmpy.s1 Sx = SC_inv, x
- nop.i 999 ;;
+ nop.m 999
+(p0) fmpy.s1 Sx = SC_inv, x
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fmpy.s1 CORR = SC_inv, C_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fsub.s1 V_hi = f1, Cx
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fma.s1 P = P, xsq, P2_1
- nop.i 999
+ nop.m 999
+(p0) fma.s1 P = P, xsq, P2_1
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: P = P2_1 + P * xsq
//
(p11) fma.s1 V_hi = Tx, Tx1, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: Result = sgn_r * tail + T_hi (user rounding mode for C1)
// N odd: Result = sgn_r * tail + C_hi (user rounding mode for C1)
//
- fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
- nop.i 999 ;;
+(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 CORR = CORR, c
- nop.i 999 ;;
+ nop.m 999
+(p0) fmpy.s1 CORR = CORR, c
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fnma.s1 V_hi = Cx,V_hi,f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: V_hi = Tx * Tx1 + 1
// N odd: Cx1 = 1 - Cx * Cx1
//
- fmpy.s1 P = P, xsq
- nop.i 999
+(p0) fmpy.s1 P = P, xsq
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: P = P * xsq
//
(p11) fmpy.s1 V_hi = V_hi, T_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: tail = P * tail + V_lo
//
(p11) fmpy.s1 T_hi = sgn_r, T_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
- fmpy.s1 CORR = CORR, sgn_r
- nop.i 999 ;;
+ nop.m 999
+(p0) fmpy.s1 CORR = CORR, sgn_r
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fmpy.s1 V_hi = V_hi,C_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: V_hi = T_hi * V_hi
// N odd: V_hi = C_hi * V_hi
//
- fma.s1 tanx = P, x, x
- nop.i 999
+(p0) fma.s1 tanx = P, x, x
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fnmpy.s1 C_hi = sgn_r, C_hi
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: V_lo = 1 - V_hi + C_hi
// N odd: V_lo = 1 - V_hi + T_hi
//
(p11) fadd.s1 CORR = CORR, T_lo
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fsub.s1 CORR = CORR, C_lo
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: tanx = x + x * P
// N even and odd: Sx = SC_inv * x
//
(p11) fsub.s1 D = C_hi, tanx
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fadd.s1 D = T_hi, tanx
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N odd: CORR = SC_inv * C_hi
// N even: CORR = SC_inv * T_hi
//
- fnma.s1 D = V_hi, D, f1
- nop.i 999 ;;
+(p0) fnma.s1 D = V_hi, D, f1
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: D = 1 - V_hi * D
// N even and odd: CORR = CORR * c
//
- fma.s1 V_hi = V_hi, D, V_hi
- nop.i 999 ;;
+(p0) fma.s1 V_hi = V_hi, D, V_hi
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: V_hi = V_hi + V_hi * D
// N even and odd: CORR = sgn_r * CORR
//
(p11) fnma.s1 V_lo = V_hi, C_hi, f1
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fnma.s1 V_lo = V_hi, T_hi, f1
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: CORR = COOR + T_lo
// N odd: CORR = CORR - C_lo
//
(p11) fma.s1 V_lo = tanx, V_hi, V_lo
- tbit.nz p15, p0 = cot_flag, 0 // p15=1 if we compute cotl
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fnma.s1 V_lo = tanx, V_hi, V_lo
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p15) fms.s1 T_hi = f0, f0, T_hi // to correct result's sign for cotl
- nop.i 999
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
-(p15) fms.s1 C_hi = f0, f0, C_hi // to correct result's sign for cotl
- nop.i 999
-};;
-
-{ .mfi
- nop.m 999
-(p15) fms.s1 sgn_r = f0, f0, sgn_r // to correct result's sign for cotl
- nop.i 999
-};;
-
-{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: V_lo = V_lo + V_hi * tanx
// N odd: V_lo = V_lo - V_hi * tanx
//
(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo
- nop.i 999
+ nop.i 999
}
{ .mfi
- nop.m 999
+ nop.m 999
(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo
- nop.i 999 ;;
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: V_lo = V_lo - V_hi * C_lo
// N odd: V_lo = V_lo - V_hi * T_lo
//
- fmpy.s1 V_lo = V_hi, V_lo
- nop.i 999 ;;
+(p0) fmpy.s1 V_lo = V_hi, V_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: V_lo = V_lo * V_hi
//
- fadd.s1 tail = V_hi, V_lo
- nop.i 999 ;;
+(p0) fadd.s1 tail = V_hi, V_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: tail = V_hi + V_lo
//
- fma.s1 tail = tail, P, V_lo
- nop.i 999 ;;
+(p0) fma.s1 tail = tail, P, V_lo
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even: T_hi = sgn_r * T_hi
// N odd : C_hi = -sgn_r * C_hi
//
- fma.s1 tail = tail, Sx, CORR
- nop.i 999 ;;
+(p0) fma.s1 tail = tail, Sx, CORR
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even and odd: tail = Sx * tail + CORR
//
- fma.s1 tail = V_hi, Sx, tail
- nop.i 999 ;;
+(p0) fma.s1 tail = V_hi, Sx, tail
+ nop.i 999 ;;
}
{ .mfi
- nop.m 999
+ nop.m 999
//
// N even an odd: tail = Sx * V_hi + tail
//
(p11) fma.s0 Result = sgn_r, tail, T_hi
- nop.i 999
+ nop.i 999
}
{ .mfb
- nop.m 999
+ nop.m 999
(p12) fma.s0 Result = sgn_r, tail, C_hi
- br.ret.sptk b0 ;; // Exit for 1/4 <= |r| < pi/4
+(p0) br.ret.sptk b0 ;;
}
-TANL_DENORMAL:
-// Here if x denormal
+L(TANL_SPECIAL):
{ .mfb
- getf.exp GR_signexp_x = Norm_Arg // Get sign and exponent of x
- nop.f 999
- br.cond.sptk TANL_COMMON // Return to common code
+ nop.m 999
+(p0) fmpy.s0 Arg = Arg, f0
+(p0) br.ret.sptk b0 ;;
}
-;;
-
-
-TANL_SPECIAL:
-TANL_UNSUPPORTED:
//
// Code for NaNs, Unsupporteds, Infs, or +/- zero ?
// Invalid raised for Infs and SNaNs.
//
-{ .mfi
- nop.m 999
- fmerge.s f10 = f8, f8 // Save input for error call
- tbit.nz p6, p7 = cot_flag, 0 // p6=1 if we compute cotl
-}
-;;
-
-{ .mfi
- nop.m 999
-(p6) fclass.m p6, p7 = f8, 0x7 // Test for zero (cotl only)
- nop.i 999
-}
-;;
-
-.pred.rel "mutex", p6, p7
-{ .mfi
-(p6) mov GR_Parameter_Tag = 225 // (cotl)
-(p6) frcpa.s0 f8, p0 = f1, f8 // cotl(+-0) = +-Inf
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p7) fmpy.s0 f8 = f8, f0
-(p7) br.ret.sptk b0
-}
-;;
-
-GLOBAL_IEEE754_END(tanl)
+.endp tanl
+ASM_SIZE_DIRECTIVE(tanl)
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
+//
+// Special Code to handle very large argument case.
+// Call int pi_by_2_reduce(&x,&r,&c)
+// for |arguments| >= 2**63
+// (Arg or x) is in f8
+// Address to save r and c as double
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_callout
+__libm_callout:
+L(TANL_ARG_TOO_LARGE):
.prologue
-
-// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
+ add r50=-32,sp // Parameter: r address
+ nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
-
-// (2)
{ .mmi
- stfe [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfe [r50] = f0,16 // Clear Parameter r on stack
+ add r49 = 16,sp // Parameter x address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
-
.body
-// (3)
{ .mib
- stfe [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ stfe [r50] = f0,-16 // Clear Parameter c on stack
+ nop.i 0
+ nop.b 0
}
{ .mib
- stfe [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-
-// (4)
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ stfe [r49] = Arg // Store Parameter x on stack
+ nop.i 0
+(p0) br.call.sptk b0=__libm_pi_by_2_reduce# ;;
};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
-
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
//
-// Special Code to handle very large argument case.
-// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
-// The interface is custom:
-// On input:
-// (Arg or x) is in f8
-// On output:
-// r is in f8
-// c is in f9
-// N is in r8
-// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
-// use this to eliminate save/restore of key fp registers in this calling
-// function.
+// Load 2^-2
//
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-
-LOCAL_LIBM_ENTRY(__libm_callout)
-TANL_ARG_TOO_LARGE:
-.prologue
-{ .mfi
- add table_ptr2 = 144, table_base // Point to 2^-2
- nop.f 999
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-;;
-
-// Load 2^-2, -2^-2
{ .mmi
- ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
- setf.sig B_mask1 = bmask1 // Form mask to get 5 msb of r
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
+(p0) ldfe Arg =[r49],16
//
-// Call argument reduction with x in f8
-// Returns with N in r8, r in f8, c in f9
-// Assumes f71-127 are preserved across the call
+// Call argument reduction
//
-{ .mib
- setf.sig B_mask2 = bmask2 // Form mask to form B from r
- mov GR_SAVE_GP=gp // Save gp
- br.call.sptk b0=__libm_pi_by_2_reduce#
+(p0) ldfs TWO_TO_NEG2 = [table_ptr2],4
+// Get Arg off stack
+// Get r off stack - hi order part
+// Get c off stack - lo order part
+(p0) mov N_fix_gr = r8 ;;
}
-;;
-
-//
-// Is |r| < 2**(-2)
-//
-{ .mfi
- getf.sig sig_r = r // Extract significand of r
- fcmp.lt.s1 p6, p0 = r, TWO_TO_NEG2
- mov gp = GR_SAVE_GP // Restore gp
+{ .mmb
+(p0) ldfe r =[r50],16
+(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr2],4
+ nop.b 999 ;;
}
-;;
-
{ .mfi
- getf.exp exp_r = r // Extract signexp of r
- nop.f 999
- mov b0 = GR_SAVE_B0 // Restore return address
+(p0) ldfe c =[r50],-32
+ nop.f 999
+ nop.i 999 ;;
}
-;;
-
+{ .mfi
+.restore sp
+ add sp = 64,sp // Restore stack pointer
//
-// Get N_fix_gr
+// Is |r| < 2**(-2)
//
+(p0) fcmp.lt.unc.s1 p6, p0 = r, TWO_TO_NEG2
+mov b0 = GR_SAVE_B0 // Restore return address
+};;
{ .mfi
- mov N_fix_gr = r8
-(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2
- mov ar.pfs = GR_SAVE_PFS // Restore pfs
-}
-;;
-
+ mov gp = GR_SAVE_GP // Restore gp
+(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2
+ mov ar.pfs = GR_SAVE_PFS // Restore gp
+};;
{ .mbb
- nop.m 999
-(p6) br.cond.spnt TANL_SMALL_R // Branch if |r| < 1/4
- br.cond.sptk TANL_NORMAL_R // Branch if 1/4 <= |r| < pi/4
+ nop.m 999
+(p6) br.cond.spnt L(TANL_SMALL_R)
+(p0) br.cond.sptk L(TANL_NORMAL_R) ;;
}
-;;
-LOCAL_LIBM_END(__libm_callout)
+.endp __libm_callout
+ASM_SIZE_DIRECTIVE(__libm_callout)
.type __libm_pi_by_2_reduce#,@function
.global __libm_pi_by_2_reduce#
diff --git a/sysdeps/ia64/fpu/s_trunc.S b/sysdeps/ia64/fpu/s_trunc.S
index b9ad03b5a8..0be91200e3 100644
--- a/sysdeps/ia64/fpu/s_trunc.S
+++ b/sysdeps/ia64/fpu/s_trunc.S
@@ -1,10 +1,11 @@
.file "trunc.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 7/7/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,28 +21,33 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+.align 32
+.global trunc#
+
+.section .text
+.proc trunc#
+.align 32
+
// History
//==============================================================
-// 07/07/00 Created
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance and reduced code size
+// 7/7/00: Created
//==============================================================
// API
@@ -49,28 +55,25 @@
// double trunc(double x)
//==============================================================
-// general input registers:
-// r14 - r18
+#include "libm_support.h"
-rExpBias = r14
-rSignexp = r15
-rExp = r16
-rExpMask = r17
-rBigexp = r18
+// general input registers:
+TRUNC_GR_FFFF = r14
+TRUNC_GR_signexp = r15
+TRUNC_GR_exponent = r16
+TRUNC_GR_expmask = r17
+TRUNC_GR_bigexp = r18
// floating-point registers:
-// f8 - f10
-
-fXtruncInt = f9
-fNormX = f10
+// f8, f9, f11, f12
-// predicate registers used:
-// p6, p7
+// predicate registers used:
+// p6, p7, p8, p9, p10, p11
// Overview of operation
//==============================================================
// double trunc(double x)
-// Return an integer value (represented as a double) less than or
+// Return an integer value (represented as a double) less than or
// equal to x in magnitude.
// This is x rounded toward zero to an integral value.
//==============================================================
@@ -94,73 +97,105 @@ fNormX = f10
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
-.section .text
-GLOBAL_LIBM_ENTRY(trunc)
+trunc:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fcvt.fx.trunc.s1 fXtruncInt = f8 // Convert to int in significand
- addl rBigexp = 0x10033, r0 // Set exponent at which is integer
+ getf.exp TRUNC_GR_signexp = f8
+ fcvt.fx.trunc.s1 f9 = f8
+ addl TRUNC_GR_bigexp = 0x10033, r0
}
{ .mfi
- mov rExpBias = 0x0FFFF // Form exponent bias
- fnorm.s1 fNormX = f8 // Normalize input
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
-;;
+ mov TRUNC_GR_FFFF = 0x0FFFF
+ fnorm.d f11 = f8
+ mov TRUNC_GR_expmask = 0x1FFFF
+};;
+// get the exponent of x
+// convert x to integer in signficand of f9
+// Normalize x - this will raise invalid on SNaNs, the
+// denormal operand flag - and possibly a spurious U flag
+// get exponent only mask (will exclude sign bit)
{ .mfi
nop.m 0
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
+ fclass.m p7,p8 = f8, 0x0b
nop.i 0
}
-;;
-
-{ .mfb
+{ .mfi
nop.m 0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p7) br.cond.spnt TRUNC_UNORM // Branch if x unorm
-}
-;;
-
-TRUNC_COMMON:
-// Return here from TRUNC_UNORM
+ fcmp.eq.unc.s1 p9,p0 = f8,f0
+ nop.i 0
+};;
+// fclass to set p7 if unnorm
+{ .mmi
+ and TRUNC_GR_exponent = TRUNC_GR_signexp, TRUNC_GR_expmask ;;
+(p8) cmp.ge.unc p10,p11 = TRUNC_GR_exponent, TRUNC_GR_bigexp
+(p8) cmp.ne.unc p6,p0 = TRUNC_GR_exponent, TRUNC_GR_signexp
+};;
+// Get the exponent of x
+// Test if exponent such that result already an integer
+// Test if x < 0
+{ .mmi
+(p9) cmp.eq.andcm p10,p11 = r0, r0
+(p6) cmp.lt.unc p6,p0 = TRUNC_GR_exponent, TRUNC_GR_FFFF
+ nop.i 0
+};;
+// If -1 < x < 0, set p6, turn off p10 and p11, and set result to -0.0
+{ .mfb
+(p6) cmp.eq.andcm p10,p11 = r0, r0
+(p6) fmerge.s f8 = f8, f0
+ nop.b 0
+};;
+// If not a unnorm, set p10 if x already is a big int, nan, or inf?
+// If not a unnorm, set p10 if x already is a big int, nan, or inf?
+.pred.rel "mutex",p10,p11
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.d.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
-;;
-
-{ .mfi
- cmp.lt p6,p0 = rExp, rExpBias // Is |x| < 1?
- fcvt.xf f8 = fXtruncInt // Result, assume 1 <= |x| < 2^52
- cmp.ge p7,p0 = rExp, rBigexp // Is |x| >= 2^52?
-}
-;;
-
-// We must correct result if |x| < 1, or |x| >= 2^52
-.pred.rel "mutex",p6,p7
-{ .mfi
nop.m 0
-(p6) fmerge.s f8 = fNormX, f0 // If |x| < 1, result sgn(x)*0
- nop.i 0
+(p11) fcvt.xf f8 = f9
+ nop.b 0
}
{ .mfb
nop.m 0
-(p7) fma.d.s0 f8 = fNormX, f1, f0 // If |x| >= 2^52, result x
- br.ret.sptk b0 // Exit main path
-}
-;;
-
-
-TRUNC_UNORM:
-// Here if x unorm
+(p10) fma.d.s1 f8 = f11,f1,f0
+(p8) br.ret.sptk b0
+};;
+// If not a unnorm and not an big int, nan,or +/-inf convert signficand
+// back to f8.
+// If not a unorm and a big int, nan, or +/-inf, return fnorm'd x
+// If not a unorm, Return
+// If unnorm, get the exponent again - perhaps it wasn't a denorm.
+{ .mfb
+(p7) getf.exp TRUNC_GR_signexp = f11
+(p7) fcvt.fx.trunc.s1 f12 = f11
+ nop.b 0
+};;
+{ .mfb
+ and TRUNC_GR_exponent = TRUNC_GR_signexp, TRUNC_GR_expmask
+ fcmp.lt.unc.s1 p9,p0 = f8,f0
+ nop.b 0
+};;
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk TRUNC_COMMON // Return to main path
+ cmp.ge.unc p10,p11 = TRUNC_GR_exponent, TRUNC_GR_bigexp
+ nop.f 0
+ nop.b 0
+};;
+// If a unnorm, check to see if value is already a big int.
+{ .mfb
+ nop.m 0
+(p11) fcvt.xf f8 = f12
+ nop.b 0
}
-;;
-
-GLOBAL_LIBM_END(trunc)
+{ .mfi
+ nop.m 0
+(p10) fma.d.s1 f8 = f11,f1,f0
+ nop.i 0
+};;
+{ .mfb
+ nop.m 0
+(p9) fmerge.ns f8 = f1,f8
+ br.ret.sptk b0
+};;
+// If so return it. Otherwise, return (fcvt.xf(fcvt.fx.trunc(x)))
+// Make sure the result is negative if it should be - that is
+// negative(denormal) -> -0.
+.endp trunc
+ASM_SIZE_DIRECTIVE(trunc)
diff --git a/sysdeps/ia64/fpu/s_truncf.S b/sysdeps/ia64/fpu/s_truncf.S
index ff40bc7101..0ac4181209 100644
--- a/sysdeps/ia64/fpu/s_truncf.S
+++ b/sysdeps/ia64/fpu/s_truncf.S
@@ -1,10 +1,11 @@
.file "truncf.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 7/7/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,28 +21,33 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+.align 32
+.global truncf#
+
+.section .text
+.proc truncf#
+.align 32
+
// History
//==============================================================
-// 07/07/00 Created
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance and reduced code size
+// 7/7/00: Created
//==============================================================
// API
@@ -49,28 +55,25 @@
// float truncf(float x)
//==============================================================
-// general input registers:
-// r14 - r18
+#include "libm_support.h"
-rExpBias = r14
-rSignexp = r15
-rExp = r16
-rExpMask = r17
-rBigexp = r18
+// general input registers:
+TRUNC_GR_FFFF = r14
+TRUNC_GR_signexp = r15
+TRUNC_GR_exponent = r16
+TRUNC_GR_expmask = r17
+TRUNC_GR_bigexp = r18
// floating-point registers:
-// f8 - f10
-
-fXtruncInt = f9
-fNormX = f10
+// f8, f9, f11, f12
-// predicate registers used:
-// p6, p7
+// predicate registers used:
+// p6, p7, p8, p9, p10, p11
// Overview of operation
//==============================================================
// float truncf(float x)
-// Return an integer value (represented as a float) less than or
+// Return an integer value (represented as a float) less than or
// equal to x in magnitude.
// This is x rounded toward zero to an integral value.
//==============================================================
@@ -94,73 +97,105 @@ fNormX = f10
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
-.section .text
-GLOBAL_LIBM_ENTRY(truncf)
+truncf:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fcvt.fx.trunc.s1 fXtruncInt = f8 // Convert to int in significand
- addl rBigexp = 0x10016, r0 // Set exponent at which is integer
+ getf.exp TRUNC_GR_signexp = f8
+ fcvt.fx.trunc.s1 f9 = f8
+ addl TRUNC_GR_bigexp = 0x10016, r0
}
{ .mfi
- mov rExpBias = 0x0FFFF // Form exponent bias
- fnorm.s1 fNormX = f8 // Normalize input
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
-;;
+ mov TRUNC_GR_FFFF = 0x0FFFF
+ fnorm.s f11 = f8
+ mov TRUNC_GR_expmask = 0x1FFFF
+};;
+// get the exponent of x
+// convert x to integer in signficand of f9
+// Normalize x - this will raise invalid on SNaNs, the
+// denormal operand flag - and possibly a spurious U flag
+// get exponent only mask (will exclude sign bit)
{ .mfi
nop.m 0
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
+ fclass.m p7,p8 = f8, 0x0b
nop.i 0
}
-;;
-
-{ .mfb
+{ .mfi
nop.m 0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p7) br.cond.spnt TRUNC_UNORM // Branch if x unorm
-}
-;;
-
-TRUNC_COMMON:
-// Return here from TRUNC_UNORM
+ fcmp.eq.unc.s1 p9,p0 = f8,f0
+ nop.i 0
+};;
+// fclass to set p7 if unnorm
+{ .mmi
+ and TRUNC_GR_exponent = TRUNC_GR_signexp, TRUNC_GR_expmask ;;
+(p8) cmp.ge.unc p10,p11 = TRUNC_GR_exponent, TRUNC_GR_bigexp
+(p8) cmp.ne.unc p6,p0 = TRUNC_GR_exponent, TRUNC_GR_signexp
+};;
+// Get the exponent of x
+// Test if exponent such that result already an integer
+// Test if x < 0
+{ .mmi
+(p9) cmp.eq.andcm p10,p11 = r0, r0
+(p6) cmp.lt.unc p6,p0 = TRUNC_GR_exponent, TRUNC_GR_FFFF
+ nop.i 0
+};;
+// If -1 < x < 0, set p6, turn off p10 and p11, and set result to -0.0
+{ .mfb
+(p6) cmp.eq.andcm p10,p11 = r0, r0
+(p6) fmerge.s f8 = f8, f0
+ nop.b 0
+};;
+// If not a unnorm, set p10 if x already is a big int, nan, or inf?
+// If not a unnorm, set p10 if x already is a big int, nan, or inf?
+.pred.rel "mutex",p10,p11
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.s.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
-;;
-
-{ .mfi
- cmp.lt p6,p0 = rExp, rExpBias // Is |x| < 1?
- fcvt.xf f8 = fXtruncInt // Result, assume 1 <= |x| < 2^23
- cmp.ge p7,p0 = rExp, rBigexp // Is |x| >= 2^23?
-}
-;;
-
-// We must correct result if |x| < 1, or |x| >= 2^23
-.pred.rel "mutex",p6,p7
-{ .mfi
nop.m 0
-(p6) fmerge.s f8 = fNormX, f0 // If |x| < 1, result sgn(x)*0
- nop.i 0
+(p11) fcvt.xf f8 = f9
+ nop.b 0
}
{ .mfb
nop.m 0
-(p7) fma.s.s0 f8 = fNormX, f1, f0 // If |x| >= 2^23, result x
- br.ret.sptk b0 // Exit main path
-}
-;;
-
-
-TRUNC_UNORM:
-// Here if x unorm
+(p10) fma.s.s1 f8 = f11,f1,f0
+(p8) br.ret.sptk b0
+};;
+// If not a unnorm and not an big int, nan,or +/-inf convert signficand
+// back to f8.
+// If not a unorm and a big int, nan, or +/-inf, return fnorm'd x
+// If not a unorm, Return
+// If unnorm, get the exponent again - perhaps it wasn't a denorm.
+{ .mfb
+(p7) getf.exp TRUNC_GR_signexp = f11
+(p7) fcvt.fx.trunc.s1 f12 = f11
+ nop.b 0
+};;
+{ .mfb
+ and TRUNC_GR_exponent = TRUNC_GR_signexp, TRUNC_GR_expmask
+ fcmp.lt.unc.s1 p9,p0 = f8,f0
+ nop.b 0
+};;
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk TRUNC_COMMON // Return to main path
+ cmp.ge.unc p10,p11 = TRUNC_GR_exponent, TRUNC_GR_bigexp
+ nop.f 0
+ nop.b 0
+};;
+// If a unnorm, check to see if value is already a big int.
+{ .mfb
+ nop.m 0
+(p11) fcvt.xf f8 = f12
+ nop.b 0
}
-;;
-
-GLOBAL_LIBM_END(truncf)
+{ .mfi
+ nop.m 0
+(p10) fma.s.s1 f8 = f11,f1,f0
+ nop.i 0
+};;
+{ .mfb
+ nop.m 0
+(p9) fmerge.ns f8 = f1,f8
+ br.ret.sptk b0
+};;
+// If so return it. Otherwise, return (fcvt.xf(fcvt.fx.trunc(x)))
+// Make sure the result is negative if it should be - that is
+// negative(denormal) -> -0.
+.endp truncf
+ASM_SIZE_DIRECTIVE(truncf)
diff --git a/sysdeps/ia64/fpu/s_truncl.S b/sysdeps/ia64/fpu/s_truncl.S
index 1afa19ba2b..91bf96ce90 100644
--- a/sysdeps/ia64/fpu/s_truncl.S
+++ b/sysdeps/ia64/fpu/s_truncl.S
@@ -1,10 +1,11 @@
.file "truncl.s"
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Contributed 7/7/2000 by John Harrison, Cristina Iordache, Ted Kubaska,
+// Bob Norin, Shane Story, and Ping Tak Peter Tang of the
+// Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,57 +21,59 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
//
+.align 32
+.global truncl#
+
+.section .text
+.proc truncl#
+.align 32
+
// History
//==============================================================
-// 07/07/00 Created
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 01/20/03 Improved performance and reduced code size
+// 7/7/00: Created
//==============================================================
// API
//==============================================================
-// long double truncl(long double x)
+// long double truncl(float x)
//==============================================================
-// general input registers:
-// r14 - r18
+#include "libm_support.h"
-rExpBias = r14
-rSignexp = r15
-rExp = r16
-rExpMask = r17
-rBigexp = r18
+// general input registers:
+TRUNC_GR_FFFF = r14
+TRUNC_GR_signexp = r15
+TRUNC_GR_exponent = r16
+TRUNC_GR_expmask = r17
+TRUNC_GR_bigexp = r18
// floating-point registers:
-// f8 - f10
+// f8, f9, f11, f12
-fXtruncInt = f9
-fNormX = f10
-
-// predicate registers used:
-// p6, p7
+// predicate registers used:
+// p6, p7, p8, p9, p10, p11
// Overview of operation
//==============================================================
// long double truncl(long double x)
-// Return an integer value (represented as a long double) less than or
+// Return an integer value (represented as a long double) less than or
// equal to x in magnitude.
// This is x rounded toward zero to an integral value.
//==============================================================
@@ -94,73 +97,105 @@ fNormX = f10
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
-.section .text
-GLOBAL_LIBM_ENTRY(truncl)
+truncl:
{ .mfi
- getf.exp rSignexp = f8 // Get signexp, recompute if unorm
- fcvt.fx.trunc.s1 fXtruncInt = f8 // Convert to int in significand
- addl rBigexp = 0x1003e, r0 // Set exponent at which is integer
+ getf.exp TRUNC_GR_signexp = f8
+ fcvt.fx.trunc.s1 f9 = f8
+ addl TRUNC_GR_bigexp = 0x1003e, r0
}
{ .mfi
- mov rExpBias = 0x0FFFF // Form exponent bias
- fnorm.s1 fNormX = f8 // Normalize input
- mov rExpMask = 0x1FFFF // Form exponent mask
-}
-;;
+ mov TRUNC_GR_FFFF = 0x0FFFF
+ fnorm f11 = f8
+ mov TRUNC_GR_expmask = 0x1FFFF
+};;
+// get the exponent of x
+// convert x to integer in signficand of f9
+// Normalize x - this will raise invalid on SNaNs, the
+// denormal operand flag - and possibly a spurious U flag
+// get exponent only mask (will exclude sign bit)
{ .mfi
nop.m 0
- fclass.m p7,p0 = f8, 0x0b // Test x unorm
+ fclass.m p7,p8 = f8, 0x0b
nop.i 0
}
-;;
-
-{ .mfb
+{ .mfi
nop.m 0
- fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf
-(p7) br.cond.spnt TRUNC_UNORM // Branch if x unorm
-}
-;;
-
-TRUNC_COMMON:
-// Return here from TRUNC_UNORM
+ fcmp.eq.unc.s1 p9,p0 = f8,f0
+ nop.i 0
+};;
+// fclass to set p7 if unnorm
+{ .mmi
+ and TRUNC_GR_exponent = TRUNC_GR_signexp, TRUNC_GR_expmask ;;
+(p8) cmp.ge.unc p10,p11 = TRUNC_GR_exponent, TRUNC_GR_bigexp
+(p8) cmp.ne.unc p6,p0 = TRUNC_GR_exponent, TRUNC_GR_signexp
+};;
+// Get the exponent of x
+// Test if exponent such that result already an integer
+// Test if x < 0
+{ .mmi
+(p9) cmp.eq.andcm p10,p11 = r0, r0
+(p6) cmp.lt.unc p6,p0 = TRUNC_GR_exponent, TRUNC_GR_FFFF
+ nop.i 0
+};;
+// If -1 < x < 0, set p6, turn off p10 and p11, and set result to -0.0
+{ .mfb
+(p6) cmp.eq.andcm p10,p11 = r0, r0
+(p6) fmerge.s f8 = f8, f0
+ nop.b 0
+};;
+// If not a unnorm, set p10 if x already is a big int, nan, or inf?
+// If not a unnorm, set p10 if x already is a big int, nan, or inf?
+.pred.rel "mutex",p10,p11
{ .mfb
- and rExp = rSignexp, rExpMask // Get biased exponent
-(p6) fma.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf
-(p6) br.ret.spnt b0 // Exit if x natval, nan, inf
-}
-;;
-
-{ .mfi
- cmp.lt p6,p0 = rExp, rExpBias // Is |x| < 1?
- fcvt.xf f8 = fXtruncInt // Result, assume 1 <= |x| < 2^63
- cmp.ge p7,p0 = rExp, rBigexp // Is |x| >= 2^63?
-}
-;;
-
-// We must correct result if |x| < 1, or |x| >= 2^63
-.pred.rel "mutex",p6,p7
-{ .mfi
nop.m 0
-(p6) fmerge.s f8 = fNormX, f0 // If |x| < 1, result sgn(x)*0
- nop.i 0
+(p11) fcvt.xf f8 = f9
+ nop.b 0
}
{ .mfb
nop.m 0
-(p7) fma.s0 f8 = fNormX, f1, f0 // If |x| >= 2^63, result x
- br.ret.sptk b0 // Exit main path
-}
-;;
-
-
-TRUNC_UNORM:
-// Here if x unorm
+(p10) fma.s1 f8 = f11,f1,f0
+(p8) br.ret.sptk b0
+};;
+// If not a unnorm and not an big int, nan,or +/-inf convert signficand
+// back to f8.
+// If not a unorm and a big int, nan, or +/-inf, return fnorm'd x
+// If not a unorm, Return
+// If unnorm, get the exponent again - perhaps it wasn't a denorm.
+{ .mfb
+(p7) getf.exp TRUNC_GR_signexp = f11
+(p7) fcvt.fx.trunc.s1 f12 = f11
+ nop.b 0
+};;
+{ .mfb
+ and TRUNC_GR_exponent = TRUNC_GR_signexp, TRUNC_GR_expmask
+ fcmp.lt.unc.s1 p9,p0 = f8,f0
+ nop.b 0
+};;
{ .mfb
- getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
- fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
- br.cond.sptk TRUNC_COMMON // Return to main path
+ cmp.ge.unc p10,p11 = TRUNC_GR_exponent, TRUNC_GR_bigexp
+ nop.f 0
+ nop.b 0
+};;
+// If a unnorm, check to see if value is already a big int.
+{ .mfb
+ nop.m 0
+(p11) fcvt.xf f8 = f12
+ nop.b 0
}
-;;
-
-GLOBAL_LIBM_END(truncl)
+{ .mfi
+ nop.m 0
+(p10) fma.s1 f8 = f11,f1,f0
+ nop.i 0
+};;
+{ .mfb
+ nop.m 0
+(p9) fmerge.ns f8 = f1,f8
+ br.ret.sptk b0
+};;
+// If so return it. Otherwise, return (fcvt.xf(fcvt.fx.trunc(x)))
+// Make sure the result is negative if it should be - that is
+// negative(denormal) -> -0.
+.endp truncl
+ASM_SIZE_DIRECTIVE(truncl)
diff --git a/sysdeps/ia64/fpu/t_exp.c b/sysdeps/ia64/fpu/t_exp.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/t_exp.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_acosh.c b/sysdeps/ia64/fpu/w_acosh.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_acosh.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_acoshf.c b/sysdeps/ia64/fpu/w_acoshf.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_acoshf.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_acoshl.c b/sysdeps/ia64/fpu/w_acoshl.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_acoshl.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_atanh.c b/sysdeps/ia64/fpu/w_atanh.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_atanh.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_atanhf.c b/sysdeps/ia64/fpu/w_atanhf.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_atanhf.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_atanhl.c b/sysdeps/ia64/fpu/w_atanhl.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_atanhl.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_exp10.c b/sysdeps/ia64/fpu/w_exp10.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_exp10.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_exp10f.c b/sysdeps/ia64/fpu/w_exp10f.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_exp10f.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_exp10l.c b/sysdeps/ia64/fpu/w_exp10l.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_exp10l.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_exp2.c b/sysdeps/ia64/fpu/w_exp2.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_exp2.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_exp2f.c b/sysdeps/ia64/fpu/w_exp2f.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_exp2f.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_exp2l.c b/sysdeps/ia64/fpu/w_exp2l.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_exp2l.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_expl.c b/sysdeps/ia64/fpu/w_expl.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_expl.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_lgamma.c b/sysdeps/ia64/fpu/w_lgamma.c
deleted file mode 100644
index 2006d3e806..0000000000
--- a/sysdeps/ia64/fpu/w_lgamma.c
+++ /dev/null
@@ -1,80 +0,0 @@
-/* file: lgamma.c */
-
-
-// Copyright (c) 2002 Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-// History
-//==============================================================
-// 02/04/02: Initial version
-// 02/22/02: Removed lgammaf/gammaf
-//
-/*
-// FUNCTIONS: double lgamma(double x)
-// double gamma(double x)
-// Natural logarithm of GAMMA function
-*/
-
-#include "libm_support.h"
-
-
-extern double __libm_lgamma(double /*x*/, int* /*signgam*/, int /*signgamsz*/);
-
-
-double __ieee754_lgamma(double x)
-{
-#ifdef __POSIX__
- extern int signgam;
-#else
- int signgam;
-#endif
- return __libm_lgamma(x, &signgam, sizeof(signgam));
-}
-weak_alias (__ieee754_lgamma, lgamma)
-
-double __ieee754_gamma(double x)
-{
-#ifdef __POSIX__
- extern int signgam;
-#else
- int signgam;
-#endif
- return __libm_lgamma(x, &signgam, sizeof(signgam));
-}
-weak_alias (__ieee754_gamma, gamma)
diff --git a/sysdeps/ia64/fpu/w_lgamma_r.c b/sysdeps/ia64/fpu/w_lgamma_r.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_lgamma_r.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_lgammaf.c b/sysdeps/ia64/fpu/w_lgammaf.c
deleted file mode 100644
index cd0b4f6666..0000000000
--- a/sysdeps/ia64/fpu/w_lgammaf.c
+++ /dev/null
@@ -1,80 +0,0 @@
-/* file: lgammaf.c */
-
-
-// Copyright (c) 2002 Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-// History
-//==============================================================
-// 02/04/02: Initial version
-// 02/22/02: Removed lgamma/gamma
-//
-/*
-// FUNCTIONS: float lgammaf(float x)
-// float gammaf(float x)
-// Natural logarithm of GAMMA function
-*/
-
-#include "libm_support.h"
-
-
-extern float __libm_lgammaf(float /*x*/, int* /*signgam*/, int /*signgamsz*/);
-
-
-float __ieee754_lgammaf(float x)
-{
-#ifdef __POSIX__
- extern int signgam;
-#else
- int signgam;
-#endif
- return __libm_lgammaf(x, &signgam, sizeof(signgam));
-}
-weak_alias (__ieee754_lgammaf, lgammaf)
-
-float __ieee754_gammaf(float x)
-{
-#ifdef __POSIX__
- extern int signgam;
-#else
- int signgam;
-#endif
- return __libm_lgammaf(x, &signgam, sizeof(signgam));
-}
-weak_alias (__ieee754_gammaf, gammaf)
diff --git a/sysdeps/ia64/fpu/w_lgammaf_r.c b/sysdeps/ia64/fpu/w_lgammaf_r.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_lgammaf_r.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_lgammal.c b/sysdeps/ia64/fpu/w_lgammal.c
deleted file mode 100644
index e3885296eb..0000000000
--- a/sysdeps/ia64/fpu/w_lgammal.c
+++ /dev/null
@@ -1,79 +0,0 @@
-/* file: lgammal.c */
-
-
-// Copyright (c) 2002 Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//
-
-// History
-//==============================================================
-// 08/15/02: Initial version
-//
-/*
-// FUNCTIONS: long double lgammal(long double x)
-// long double gammal(long double x)
-// Natural logarithm of GAMMA function
-*/
-
-#include "libm_support.h"
-
-
-extern double __libm_lgammal(long double /*x*/, int* /*signgam*/, int /*signgamsz*/);
-
-
-long double __ieee754_lgammal(long double x)
-{
-#ifdef __POSIX__
- extern int signgam;
-#else
- int signgam;
-#endif
- return __libm_lgammal(x, &signgam, sizeof(signgam));
-}
-weak_alias (__ieee754_lgammal, lgammal)
-
-long double __ieee754_gammal(long double x)
-{
-#ifdef __POSIX__
- extern int signgam;
-#else
- int signgam;
-#endif
- return __libm_lgammal(x, &signgam, sizeof(signgam));
-}
-weak_alias (__ieee754_gammal, gammal)
diff --git a/sysdeps/ia64/fpu/w_lgammal_r.c b/sysdeps/ia64/fpu/w_lgammal_r.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_lgammal_r.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_log2.c b/sysdeps/ia64/fpu/w_log2.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_log2.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_log2f.c b/sysdeps/ia64/fpu/w_log2f.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_log2f.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_log2l.c b/sysdeps/ia64/fpu/w_log2l.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_log2l.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_sinh.c b/sysdeps/ia64/fpu/w_sinh.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_sinh.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_sinhf.c b/sysdeps/ia64/fpu/w_sinhf.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_sinhf.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_sinhl.c b/sysdeps/ia64/fpu/w_sinhl.c
deleted file mode 100644
index 41254ae60a..0000000000
--- a/sysdeps/ia64/fpu/w_sinhl.c
+++ /dev/null
@@ -1 +0,0 @@
-/* Not needed. */
diff --git a/sysdeps/ia64/fpu/w_tgamma.S b/sysdeps/ia64/fpu/w_tgamma.S
deleted file mode 100644
index 24f3d11840..0000000000
--- a/sysdeps/ia64/fpu/w_tgamma.S
+++ /dev/null
@@ -1,1836 +0,0 @@
-.file "tgamma.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
-// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
-// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code,and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 10/12/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/04/03 Changed error codes for overflow and negative integers
-// 04/10/03 Changed code for overflow near zero handling
-// 03/31/05 Reformatted delimiters between data tables
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: tgamma(x) computes the principle value of the GAMMA
-// function of x.
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8-f15
-// f33-f87
-//
-// General Purpose Registers:
-// r8-r11
-// r14-r28
-// r32-r36
-// r37-r40 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// tgamma(+inf) = +inf
-// tgamma(-inf) = QNaN
-// tgamma(+/-0) = +/-inf
-// tgamma(x<0, x - integer) = QNaN
-// tgamma(SNaN) = QNaN
-// tgamma(QNaN) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of three cases.
-//
-// If 2 <= x < OVERFLOW_BOUNDARY use case tgamma_regular;
-// else if 0 < x < 2 use case tgamma_from_0_to_2;
-// else if -(i+1) < x < -i, i = 0...184 use case tgamma_negatives;
-//
-// Case 2 <= x < OVERFLOW_BOUNDARY
-// -------------------------------
-// Here we use algorithm based on the recursive formula
-// GAMMA(x+1) = x*GAMMA(x). For that we subdivide interval
-// [2; OVERFLOW_BOUNDARY] into intervals [16*n; 16*(n+1)] and
-// approximate GAMMA(x) by polynomial of 22th degree on each
-// [16*n; 16*n+1], recursive formula is used to expand GAMMA(x)
-// to [16*n; 16*n+1]. In other words we need to find n, i and r
-// such that x = 16 * n + i + r where n and i are integer numbers
-// and r is fractional part of x. So GAMMA(x) = GAMMA(16*n+i+r) =
-// = (x-1)*(x-2)*...*(x-i)*GAMMA(x-i) =
-// = (x-1)*(x-2)*...*(x-i)*GAMMA(16*n+r) ~
-// ~ (x-1)*(x-2)*...*(x-i)*P22n(r).
-//
-// Step 1: Reduction
-// -----------------
-// N = [x] with truncate
-// r = x - N, note 0 <= r < 1
-//
-// n = N & ~0xF - index of table that contains coefficient of
-// polynomial approximation
-// i = N & 0xF - is used in recursive formula
-//
-//
-// Step 2: Approximation
-// ---------------------
-// We use factorized minimax approximation polynomials
-// P22n(r) = A22*(r^2+C01(n)*R+C00(n))*
-// *(r^2+C11(n)*R+C10(n))*...*(r^2+CA1(n)*R+CA0(n))
-//
-// Step 3: Recursion
-// -----------------
-// In case when i > 0 we need to multiply P22n(r) by product
-// R(i)=(x-1)*(x-2)*...*(x-i). To reduce number of fp-instructions
-// we can calculate R as follow:
-// R(i) = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-1))*(x-i)) if i is
-// even or R = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-2))*(x-(i-1)))*
-// *(i-1) if i is odd. In both cases we need to calculate
-// R2(i) = (x^2-3*x+2)*(x^2-7*x+12)*...*(x^2+x+2*j*(2*j-1)) =
-// = (x^2-3*x+2)*(x^2-7*x+12)*...*((x^2+x)+2*j*(2*(j-1)+(1-2*x))) =
-// = (RA+2*(2-RB))*(RA+4*(4-RB))*...*(RA+2*j*(2*(j-1)+RB))
-// where j = 1..[i/2], RA = x^2+x, RB = 1-2*x.
-//
-// Step 4: Reconstruction
-// ----------------------
-// Reconstruction is just simple multiplication i.e.
-// GAMMA(x) = P22n(r)*R(i)
-//
-// Case 0 < x < 2
-// --------------
-// To calculate GAMMA(x) on this interval we do following
-// if 1 <= x < 1.25 than GAMMA(x) = P15(x-1)
-// if 1.25 <= x < 1.5 than GAMMA(x) = P15(x-x_min) where
-// x_min is point of local minimum on [1; 2] interval.
-// if 1.5 <= x < 2.0 than GAMMA(x) = P15(x-1.5)
-// and
-// if 0 < x < 1 than GAMMA(x) = GAMMA(x+1)/x
-//
-// Case -(i+1) < x < -i, i = 0...184
-// ----------------------------------
-// Here we use the fact that GAMMA(-x) = PI/(x*GAMMA(x)*sin(PI*x)) and
-// so we need to calculate GAMMA(x), sin(PI*x)/PI. Calculation of
-// GAMMA(x) is described above.
-//
-// Step 1: Reduction
-// -----------------
-// Note that period of sin(PI*x) is 2 and range reduction for
-// sin(PI*x) is like to range reduction for GAMMA(x)
-// i.e r = x - [x] with exception of cases
-// when r > 0.5 (in such cases r = 1 - (x - [x])).
-//
-// Step 2: Approximation
-// ---------------------
-// To approximate sin(PI*x)/PI = sin(PI*(2*n+r))/PI =
-// = (-1)^n*sin(PI*r)/PI Taylor series is used.
-// sin(PI*r)/PI ~ S21(r).
-//
-// Step 3: Division
-// ----------------
-// To calculate 1/(x*GAMMA(x)*S21(r)) we use frcpa instruction
-// with following Newton-Raphson interations.
-//
-//
-//*********************************************************************
-
-GR_Sig = r8
-GR_TAG = r8
-GR_ad_Data = r9
-GR_SigRqLin = r10
-GR_iSig = r11
-GR_ExpOf1 = r11
-GR_ExpOf8 = r11
-
-
-GR_Sig2 = r14
-GR_Addr_Mask1 = r15
-GR_Sign_Exp = r16
-GR_Tbl_Offs = r17
-GR_Addr_Mask2 = r18
-GR_ad_Co = r19
-GR_Bit2 = r19
-GR_ad_Ce = r20
-GR_ad_Co7 = r21
-GR_NzOvfBound = r21
-GR_ad_Ce7 = r22
-GR_Tbl_Ind = r23
-GR_Tbl_16xInd = r24
-GR_ExpOf025 = r24
-GR_ExpOf05 = r25
-GR_0x30033 = r26
-GR_10 = r26
-GR_12 = r27
-GR_185 = r27
-GR_14 = r28
-GR_2 = r28
-GR_fpsr = r28
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-
-FR_X = f10
-FR_Y = f1 // tgamma is single argument function
-FR_RESULT = f8
-
-FR_AbsX = f9
-FR_NormX = f9
-FR_r02 = f11
-FR_AbsXp1 = f12
-FR_X2pX = f13
-FR_1m2X = f14
-FR_Rq1 = f14
-FR_Xt = f15
-
-FR_r = f33
-FR_OvfBound = f34
-FR_Xmin = f35
-FR_2 = f36
-FR_Rcp1 = f36
-FR_Rcp3 = f36
-FR_4 = f37
-FR_5 = f38
-FR_6 = f39
-FR_8 = f40
-FR_10 = f41
-FR_12 = f42
-FR_14 = f43
-FR_GAMMA = f43
-FR_05 = f44
-
-FR_Rq2 = f45
-FR_Rq3 = f46
-FR_Rq4 = f47
-FR_Rq5 = f48
-FR_Rq6 = f49
-FR_Rq7 = f50
-FR_RqLin = f51
-
-FR_InvAn = f52
-
-FR_C01 = f53
-FR_A15 = f53
-FR_C11 = f54
-FR_A14 = f54
-FR_C21 = f55
-FR_A13 = f55
-FR_C31 = f56
-FR_A12 = f56
-FR_C41 = f57
-FR_A11 = f57
-FR_C51 = f58
-FR_A10 = f58
-FR_C61 = f59
-FR_A9 = f59
-FR_C71 = f60
-FR_A8 = f60
-FR_C81 = f61
-FR_A7 = f61
-FR_C91 = f62
-FR_A6 = f62
-FR_CA1 = f63
-FR_A5 = f63
-FR_C00 = f64
-FR_A4 = f64
-FR_rs2 = f64
-FR_C10 = f65
-FR_A3 = f65
-FR_rs3 = f65
-FR_C20 = f66
-FR_A2 = f66
-FR_rs4 = f66
-FR_C30 = f67
-FR_A1 = f67
-FR_rs7 = f67
-FR_C40 = f68
-FR_A0 = f68
-FR_rs8 = f68
-FR_C50 = f69
-FR_r2 = f69
-FR_C60 = f70
-FR_r3 = f70
-FR_C70 = f71
-FR_r4 = f71
-FR_C80 = f72
-FR_r7 = f72
-FR_C90 = f73
-FR_r8 = f73
-FR_CA0 = f74
-FR_An = f75
-
-FR_S21 = f76
-FR_S19 = f77
-FR_Rcp0 = f77
-FR_Rcp2 = f77
-FR_S17 = f78
-FR_S15 = f79
-FR_S13 = f80
-FR_S11 = f81
-FR_S9 = f82
-FR_S7 = f83
-FR_S5 = f84
-FR_S3 = f85
-
-FR_iXt = f86
-FR_rs = f87
-
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(tgamma_data)
-data8 0x406573FAE561F648 // overflow boundary (171.624376956302739927196)
-data8 0x3FDD8B618D5AF8FE // point of local minium (0.461632144968362356785)
-//
-//[2; 3]
-data8 0xEF0E85C9AE40ABE2,0x00004000 // C01
-data8 0xCA2049DDB4096DD8,0x00004000 // C11
-data8 0x99A203B4DC2D1A8C,0x00004000 // C21
-data8 0xBF5D9D9C0C295570,0x00003FFF // C31
-data8 0xE8DD037DEB833BAB,0x00003FFD // C41
-data8 0xB6AE39A2A36AA03A,0x0000BFFE // C51
-data8 0x804960DC2850277B,0x0000C000 // C61
-data8 0xD9F3973841C09F80,0x0000C000 // C71
-data8 0x9C198A676F8A2239,0x0000C001 // C81
-data8 0xC98B7DAE02BE3226,0x0000C001 // C91
-data8 0xE9CAF31AC69301BA,0x0000C001 // CA1
-data8 0xFBBDD58608A0D172,0x00004000 // C00
-data8 0xFDD0316D1E078301,0x00004000 // C10
-data8 0x8630B760468C15E4,0x00004001 // C20
-data8 0x93EDE20E47D9152E,0x00004001 // C30
-data8 0xA86F3A38C77D6B19,0x00004001 // C40
-//[16; 17]
-data8 0xF87F757F365EE813,0x00004000 // C01
-data8 0xECA84FBA92759DA4,0x00004000 // C11
-data8 0xD4E0A55E07A8E913,0x00004000 // C21
-data8 0xB0EB45E94C8A5F7B,0x00004000 // C31
-data8 0x8050D6B4F7C8617D,0x00004000 // C41
-data8 0x8471B111AA691E5A,0x00003FFF // C51
-data8 0xADAF462AF96585C9,0x0000BFFC // C61
-data8 0xD327C7A587A8C32B,0x0000BFFF // C71
-data8 0xDEF5192B4CF5E0F1,0x0000C000 // C81
-data8 0xBADD64BB205AEF02,0x0000C001 // C91
-data8 0x9330A24AA67D6860,0x0000C002 // CA1
-data8 0xF57EEAF36D8C47BE,0x00004000 // C00
-data8 0x807092E12A251B38,0x00004001 // C10
-data8 0x8C458F80DEE7ED1C,0x00004001 // C20
-data8 0x9F30C731DC77F1A6,0x00004001 // C30
-data8 0xBAC4E7E099C3A373,0x00004001 // C40
-//[32; 33]
-data8 0xC3059A415F142DEF,0x00004000 // C01
-data8 0xB9C1DAC24664587A,0x00004000 // C11
-data8 0xA7101D910992FFB2,0x00004000 // C21
-data8 0x8A9522B8E4AA0AB4,0x00004000 // C31
-data8 0xC76A271E4BA95DCC,0x00003FFF // C41
-data8 0xC5D6DE2A38DB7FF2,0x00003FFE // C51
-data8 0xDBA42086997818B2,0x0000BFFC // C61
-data8 0xB8EDDB1424C1C996,0x0000BFFF // C71
-data8 0xBF7372FB45524B5D,0x0000C000 // C81
-data8 0xA03DDE759131580A,0x0000C001 // C91
-data8 0xFDA6FC4022C1FFE3,0x0000C001 // CA1
-data8 0x9759ABF797B2533D,0x00004000 // C00
-data8 0x9FA160C6CF18CEC5,0x00004000 // C10
-data8 0xB0EFF1E3530E0FCD,0x00004000 // C20
-data8 0xCCD60D5C470165D1,0x00004000 // C30
-data8 0xF5E53F6307B0B1C1,0x00004000 // C40
-//[48; 49]
-data8 0xAABE577FBCE37F5E,0x00004000 // C01
-data8 0xA274CAEEB5DF7172,0x00004000 // C11
-data8 0x91B90B6646C1B924,0x00004000 // C21
-data8 0xF06718519CA256D9,0x00003FFF // C31
-data8 0xAA9EE181C0E30263,0x00003FFF // C41
-data8 0xA07BDB5325CB28D2,0x00003FFE // C51
-data8 0x86C8B873204F9219,0x0000BFFD // C61
-data8 0xB0192C5D3E4787D6,0x0000BFFF // C71
-data8 0xB1E0A6263D4C19EF,0x0000C000 // C81
-data8 0x93BA32A118EAC9AE,0x0000C001 // C91
-data8 0xE942A39CD9BEE887,0x0000C001 // CA1
-data8 0xE838B0957B0D3D0D,0x00003FFF // C00
-data8 0xF60E0F00074FCF34,0x00003FFF // C10
-data8 0x89869936AE00C2A5,0x00004000 // C20
-data8 0xA0FE4E8AA611207F,0x00004000 // C30
-data8 0xC3B1229CFF1DDAFE,0x00004000 // C40
-//[64; 65]
-data8 0x9C00DDF75CDC6183,0x00004000 // C01
-data8 0x9446AE9C0F6A833E,0x00004000 // C11
-data8 0x84ABC5083310B774,0x00004000 // C21
-data8 0xD9BA3A0977B1ED83,0x00003FFF // C31
-data8 0x989B18C99411D300,0x00003FFF // C41
-data8 0x886E66402318CE6F,0x00003FFE // C51
-data8 0x99028C2468F18F38,0x0000BFFD // C61
-data8 0xAB72D17DCD40CCE1,0x0000BFFF // C71
-data8 0xA9D9AC9BE42C2EF9,0x0000C000 // C81
-data8 0x8C11D983AA177AD2,0x0000C001 // C91
-data8 0xDC779E981C1F0F06,0x0000C001 // CA1
-data8 0xC1FD4AC85965E8D6,0x00003FFF // C00
-data8 0xCE3D2D909D389EC2,0x00003FFF // C10
-data8 0xE7F79980AD06F5D8,0x00003FFF // C20
-data8 0x88DD9F73C8680B5D,0x00004000 // C30
-data8 0xA7D6CB2CB2D46F9D,0x00004000 // C40
-//[80; 81]
-data8 0x91C7FF4E993430D0,0x00004000 // C01
-data8 0x8A6E7AB83E45A7E9,0x00004000 // C11
-data8 0xF72D6382E427BEA9,0x00003FFF // C21
-data8 0xC9E2E4F9B3B23ED6,0x00003FFF // C31
-data8 0x8BEFEF56AE05D775,0x00003FFF // C41
-data8 0xEE9666AB6A185560,0x00003FFD // C51
-data8 0xA6AFAF5CEFAEE04D,0x0000BFFD // C61
-data8 0xA877EAFEF1F9C880,0x0000BFFF // C71
-data8 0xA45BD433048ECA15,0x0000C000 // C81
-data8 0x86BD1636B774CC2E,0x0000C001 // C91
-data8 0xD3721BE006E10823,0x0000C001 // CA1
-data8 0xA97EFABA91854208,0x00003FFF // C00
-data8 0xB4AF0AEBB3F97737,0x00003FFF // C10
-data8 0xCC38241936851B0B,0x00003FFF // C20
-data8 0xF282A6261006EA84,0x00003FFF // C30
-data8 0x95B8E9DB1BD45BAF,0x00004000 // C40
-//[96; 97]
-data8 0x8A1FA3171B35A106,0x00004000 // C01
-data8 0x830D5B8843890F21,0x00004000 // C11
-data8 0xE98B0F1616677A23,0x00003FFF // C21
-data8 0xBDF8347F5F67D4EC,0x00003FFF // C31
-data8 0x825F15DE34EC055D,0x00003FFF // C41
-data8 0xD4846186B8AAC7BE,0x00003FFD // C51
-data8 0xB161093AB14919B1,0x0000BFFD // C61
-data8 0xA65758EEA4800EF4,0x0000BFFF // C71
-data8 0xA046B67536FA329C,0x0000C000 // C81
-data8 0x82BBEC1BCB9E9068,0x0000C001 // C91
-data8 0xCC9DE2B23BA91B0B,0x0000C001 // CA1
-data8 0x983B16148AF77F94,0x00003FFF // C00
-data8 0xA2A4D8EE90FEE5DD,0x00003FFF // C10
-data8 0xB89446FA37FF481C,0x00003FFF // C20
-data8 0xDC5572648485FB01,0x00003FFF // C30
-data8 0x88CD5D7DB976129A,0x00004000 // C40
-//[112; 113]
-data8 0x8417098FD62AC5E3,0x00004000 // C01
-data8 0xFA7896486B779CBB,0x00003FFF // C11
-data8 0xDEC98B14AF5EEBD1,0x00003FFF // C21
-data8 0xB48E153C6BF0B5A3,0x00003FFF // C31
-data8 0xF597B038BC957582,0x00003FFE // C41
-data8 0xBFC6F0884A415694,0x00003FFD // C51
-data8 0xBA075A1392BDB5E5,0x0000BFFD // C61
-data8 0xA4B79E01B44C7DB4,0x0000BFFF // C71
-data8 0x9D12FA7711BFAB0F,0x0000C000 // C81
-data8 0xFF24C47C8E108AB4,0x0000C000 // C91
-data8 0xC7325EC86562606A,0x0000C001 // CA1
-data8 0x8B47DCD9E1610938,0x00003FFF // C00
-data8 0x9518B111B70F88B8,0x00003FFF // C10
-data8 0xA9CC197206F68682,0x00003FFF // C20
-data8 0xCB98294CC0D7A6A6,0x00003FFF // C30
-data8 0xFE09493EA9165181,0x00003FFF // C40
-//[128; 129]
-data8 0xFE53D03442270D90,0x00003FFF // C01
-data8 0xF0F857BAEC1993E4,0x00003FFF // C11
-data8 0xD5FF6D70DBBC2FD3,0x00003FFF // C21
-data8 0xACDAA5F4988B1074,0x00003FFF // C31
-data8 0xE92E069F8AD75B54,0x00003FFE // C41
-data8 0xAEBB64645BD94234,0x00003FFD // C51
-data8 0xC13746249F39B43C,0x0000BFFD // C61
-data8 0xA36B74F5B6297A1F,0x0000BFFF // C71
-data8 0x9A77860DF180F6E5,0x0000C000 // C81
-data8 0xF9F8457D84410A0C,0x0000C000 // C91
-data8 0xC2BF44C649EB8597,0x0000C001 // CA1
-data8 0x81225E7489BCDC0E,0x00003FFF // C00
-data8 0x8A788A09CE0EED11,0x00003FFF // C10
-data8 0x9E2E6F86D1B1D89C,0x00003FFF // C20
-data8 0xBE6866B21CF6CCB5,0x00003FFF // C30
-data8 0xEE94426EC1486AAE,0x00003FFF // C40
-//[144; 145]
-data8 0xF6113E09732A6497,0x00003FFF // C01
-data8 0xE900D45931B04FC8,0x00003FFF // C11
-data8 0xCE9FD58F745EBA5D,0x00003FFF // C21
-data8 0xA663A9636C864C86,0x00003FFF // C31
-data8 0xDEBF5315896CE629,0x00003FFE // C41
-data8 0xA05FEA415EBD7737,0x00003FFD // C51
-data8 0xC750F112BD9C4031,0x0000BFFD // C61
-data8 0xA2593A35C51C6F6C,0x0000BFFF // C71
-data8 0x9848E1DA7FB40C8C,0x0000C000 // C81
-data8 0xF59FEE87A5759A4B,0x0000C000 // C91
-data8 0xBF00203909E45A1D,0x0000C001 // CA1
-data8 0xF1D8E157200127E5,0x00003FFE // C00
-data8 0x81DD5397CB08D487,0x00003FFF // C10
-data8 0x94C1DC271A8B766F,0x00003FFF // C20
-data8 0xB3AFAF9B5D6EDDCF,0x00003FFF // C30
-data8 0xE1FB4C57CA81BE1E,0x00003FFF // C40
-//[160; 161]
-data8 0xEEFFE5122AC72FFD,0x00003FFF // C01
-data8 0xE22F70BB52AD54B3,0x00003FFF // C11
-data8 0xC84FF021FE993EEA,0x00003FFF // C21
-data8 0xA0DA2208EB5B2752,0x00003FFF // C31
-data8 0xD5CDD2FCF8AD2DF5,0x00003FFE // C41
-data8 0x940BEC6DCD811A59,0x00003FFD // C51
-data8 0xCC954EF4FD4EBB81,0x0000BFFD // C61
-data8 0xA1712E29A8C04554,0x0000BFFF // C71
-data8 0x966B55DFB243521A,0x0000C000 // C81
-data8 0xF1E6A2B9CEDD0C4C,0x0000C000 // C91
-data8 0xBBC87BCC031012DB,0x0000C001 // CA1
-data8 0xE43974E6D2818583,0x00003FFE // C00
-data8 0xF5702A516B64C5B7,0x00003FFE // C10
-data8 0x8CEBCB1B32E19471,0x00003FFF // C20
-data8 0xAAC10F05BB77E0AF,0x00003FFF // C30
-data8 0xD776EFCAB205CC58,0x00003FFF // C40
-//[176; 177]
-data8 0xE8DA614119811E5D,0x00003FFF // C01
-data8 0xDC415E0288B223D8,0x00003FFF // C11
-data8 0xC2D2243E44EC970E,0x00003FFF // C21
-data8 0x9C086664B5307BEA,0x00003FFF // C31
-data8 0xCE03D7A08B461156,0x00003FFE // C41
-data8 0x894BE3BAAAB66ADC,0x00003FFD // C51
-data8 0xD131EDD71A702D4D,0x0000BFFD // C61
-data8 0xA0A907CDDBE10898,0x0000BFFF // C71
-data8 0x94CC3CD9C765C808,0x0000C000 // C81
-data8 0xEEA85F237815FC0D,0x0000C000 // C91
-data8 0xB8FA04B023E43F91,0x0000C001 // CA1
-data8 0xD8B2C7D9FCBD7EF9,0x00003FFE // C00
-data8 0xE9566E93AAE7E38F,0x00003FFE // C10
-data8 0x8646E78AABEF0255,0x00003FFF // C20
-data8 0xA32AEDB62E304345,0x00003FFF // C30
-data8 0xCE83E40280EE7DF0,0x00003FFF // C40
-//
-//[2; 3]
-data8 0xC44FB47E90584083,0x00004001 // C50
-data8 0xE863EE77E1C45981,0x00004001 // C60
-data8 0x8AC15BE238B9D70E,0x00004002 // C70
-data8 0xA5D94B6592350EF4,0x00004002 // C80
-data8 0xC379DB3E20A148B3,0x00004002 // C90
-data8 0xDACA49B73974F6C9,0x00004002 // CA0
-data8 0x810E496A1AFEC895,0x00003FE1 // An
-//[16; 17]
-data8 0xE17C0357AAF3F817,0x00004001 // C50
-data8 0x8BA8804750FBFBFE,0x00004002 // C60
-data8 0xB18EAB3CB64BEBEE,0x00004002 // C70
-data8 0xE90AB7015AF1C28F,0x00004002 // C80
-data8 0xA0AB97CE9E259196,0x00004003 // C90
-data8 0xF5E0E0A000C2D720,0x00004003 // CA0
-data8 0xD97F0F87EC791954,0x00004005 // An
-//[32; 33]
-data8 0x980C293F3696040D,0x00004001 // C50
-data8 0xC0DBFFBB948A9A4E,0x00004001 // C60
-data8 0xFAB54625E9A588A2,0x00004001 // C70
-data8 0xA7E08176D6050FBF,0x00004002 // C80
-data8 0xEBAAEC4952270A9F,0x00004002 // C90
-data8 0xB7479CDAD20550FE,0x00004003 // CA0
-data8 0xAACD45931C3FF634,0x00004054 // An
-//[48; 49]
-data8 0xF5180F0000419AD5,0x00004000 // C50
-data8 0x9D507D07BFBB2273,0x00004001 // C60
-data8 0xCEB53F7A13A383E3,0x00004001 // C70
-data8 0x8BAFEF9E0A49128F,0x00004002 // C80
-data8 0xC58EF912D39E228C,0x00004002 // C90
-data8 0x9A88118422BA208E,0x00004003 // CA0
-data8 0xBD6C0E2477EC12CB,0x000040AC // An
-//[64; 65]
-data8 0xD410AC48BF7748DA,0x00004000 // C50
-data8 0x89399B90AFEBD931,0x00004001 // C60
-data8 0xB596DF8F77EB8560,0x00004001 // C70
-data8 0xF6D9445A047FB4A6,0x00004001 // C80
-data8 0xAF52F0DD65221357,0x00004002 // C90
-data8 0x8989B45BFC881989,0x00004003 // CA0
-data8 0xB7FCAE86E6E10D5A,0x0000410B // An
-//[80; 81]
-data8 0xBE759740E3B5AA84,0x00004000 // C50
-data8 0xF8037B1B07D27609,0x00004000 // C60
-data8 0xA4F6F6C7F0977D4F,0x00004001 // C70
-data8 0xE131960233BF02C4,0x00004001 // C80
-data8 0xA06DF43D3922BBE2,0x00004002 // C90
-data8 0xFC266AB27255A360,0x00004002 // CA0
-data8 0xD9F4B012EDAFEF2F,0x0000416F // An
-//[96; 97]
-data8 0xAEFC84CDA8E1EAA6,0x00004000 // C50
-data8 0xE5009110DB5F3C8A,0x00004000 // C60
-data8 0x98F5F48738E7B232,0x00004001 // C70
-data8 0xD17EE64E21FFDC6B,0x00004001 // C80
-data8 0x9596F7A7E36145CC,0x00004002 // C90
-data8 0xEB64DBE50E125CAF,0x00004002 // CA0
-data8 0xA090530D79E32D2E,0x000041D8 // An
-//[112; 113]
-data8 0xA33AEA22A16B2655,0x00004000 // C50
-data8 0xD682B93BD7D7945C,0x00004000 // C60
-data8 0x8FC854C6E6E30CC3,0x00004001 // C70
-data8 0xC5754D828AFFDC7A,0x00004001 // C80
-data8 0x8D41216B397139C2,0x00004002 // C90
-data8 0xDE78D746848116E5,0x00004002 // CA0
-data8 0xB8A297A2DC0630DB,0x00004244 // An
-//[128; 129]
-data8 0x99EB00F11D95E292,0x00004000 // C50
-data8 0xCB005CB911EB779A,0x00004000 // C60
-data8 0x8879AA2FDFF3A37A,0x00004001 // C70
-data8 0xBBDA538AD40CAC2C,0x00004001 // C80
-data8 0x8696D849D311B9DE,0x00004002 // C90
-data8 0xD41E1C041481199F,0x00004002 // CA0
-data8 0xEBA1A43D34EE61EE,0x000042B3 // An
-//[144; 145]
-data8 0x924F822578AA9F3D,0x00004000 // C50
-data8 0xC193FAF9D3B36960,0x00004000 // C60
-data8 0x827AE3A6B68ED0CA,0x00004001 // C70
-data8 0xB3F52A27EED23F0B,0x00004001 // C80
-data8 0x811A079FB3C94D79,0x00004002 // C90
-data8 0xCB94415470B6F8D2,0x00004002 // CA0
-data8 0x80A0260DCB3EC9AC,0x00004326 // An
-//[160; 161]
-data8 0x8BF24091E88B331D,0x00004000 // C50
-data8 0xB9ADE01187E65201,0x00004000 // C60
-data8 0xFAE4508F6E7625FE,0x00004000 // C70
-data8 0xAD516668AD6D7367,0x00004001 // C80
-data8 0xF8F5FF171154F637,0x00004001 // C90
-data8 0xC461321268990C82,0x00004002 // CA0
-data8 0xC3B693F344B0E6FE,0x0000439A // An
-//
-//[176; 177]
-data8 0x868545EB42A258ED,0x00004000 // C50
-data8 0xB2EF04ACE8BA0E6E,0x00004000 // C60
-data8 0xF247D22C22E69230,0x00004000 // C70
-data8 0xA7A1AB93E3981A90,0x00004001 // C80
-data8 0xF10951733E2C697F,0x00004001 // C90
-data8 0xBE3359BFAD128322,0x00004002 // CA0
-data8 0x8000000000000000,0x00003fff
-//
-//[160; 161] for negatives
-data8 0xA76DBD55B2E32D71,0x00003C63 // 1/An
-//
-// sin(pi*x)/pi
-data8 0xBCBC4342112F52A2,0x00003FDE // S21
-data8 0xFAFCECB86536F655,0x0000BFE3 // S19
-data8 0x87E4C97F9CF09B92,0x00003FE9 // S17
-data8 0xEA124C68E704C5CB,0x0000BFED // S15
-data8 0x9BA38CFD59C8AA1D,0x00003FF2 // S13
-data8 0x99C0B552303D5B21,0x0000BFF6 // S11
-//
-//[176; 177] for negatives
-data8 0xBA5D5869211696FF,0x00003BEC // 1/An
-//
-// sin(pi*x)/pi
-data8 0xD63402E79A853175,0x00003FF9 // S9
-data8 0xC354723906DB36BA,0x0000BFFC // S7
-data8 0xCFCE5A015E236291,0x00003FFE // S5
-data8 0xD28D3312983E9918,0x0000BFFF // S3
-//
-//
-// [1.0;1.25]
-data8 0xA405530B067ECD3C,0x0000BFFC // A15
-data8 0xF5B5413F95E1C282,0x00003FFD // A14
-data8 0xC4DED71C782F76C8,0x0000BFFE // A13
-data8 0xECF7DDDFD27C9223,0x00003FFE // A12
-data8 0xFB73D31793068463,0x0000BFFE // A11
-data8 0xFF173B7E66FD1D61,0x00003FFE // A10
-data8 0xFFA5EF3959089E94,0x0000BFFE // A9
-data8 0xFF8153BD42E71A4F,0x00003FFE // A8
-data8 0xFEF9CAEE2CB5B533,0x0000BFFE // A7
-data8 0xFE3F02E5EDB6811E,0x00003FFE // A6
-data8 0xFB64074CED2658FB,0x0000BFFE // A5
-data8 0xFB52882A095B18A4,0x00003FFE // A4
-data8 0xE8508C7990A0DAC0,0x0000BFFE // A3
-data8 0xFD32C611D8A881D0,0x00003FFE // A2
-data8 0x93C467E37DB0C536,0x0000BFFE // A1
-data8 0x8000000000000000,0x00003FFF // A0
-//
-// [1.25;1.5]
-data8 0xD038092400619677,0x0000BFF7 // A15
-data8 0xEA6DE925E6EB8C8F,0x00003FF3 // A14
-data8 0xC53F83645D4597FC,0x0000BFF7 // A13
-data8 0xE366DB2FB27B7ECD,0x00003FF7 // A12
-data8 0xAC8FD5E11F6EEAD8,0x0000BFF8 // A11
-data8 0xFB14010FB3697785,0x00003FF8 // A10
-data8 0xB6F91CB5C371177B,0x0000BFF9 // A9
-data8 0x85A262C6F8FEEF71,0x00003FFA // A8
-data8 0xC038E6E3261568F9,0x0000BFFA // A7
-data8 0x8F4BDE8883232364,0x00003FFB // A6
-data8 0xBCFBBD5786537E9A,0x0000BFFB // A5
-data8 0xA4C08BAF0A559479,0x00003FFC // A4
-data8 0x85D74FA063E81476,0x0000BFFC // A3
-data8 0xDB629FB9BBDC1C4E,0x00003FFD // A2
-data8 0xF4F8FBC7C0C9D317,0x00003FC6 // A1
-data8 0xE2B6E4153A57746C,0x00003FFE // A0
-//
-// [1.25;1.5]
-data8 0x9533F9D3723B448C,0x0000BFF2 // A15
-data8 0xF1F75D3C561CBBAF,0x00003FF5 // A14
-data8 0xBA55A9A1FC883523,0x0000BFF8 // A13
-data8 0xB5D5E9E5104FA995,0x00003FFA // A12
-data8 0xFD84F35B70CD9AE2,0x0000BFFB // A11
-data8 0x87445235F4688CC5,0x00003FFD // A10
-data8 0xE7F236EBFB9F774E,0x0000BFFD // A9
-data8 0xA6605F2721F787CE,0x00003FFE // A8
-data8 0xCF579312AD7EAD72,0x0000BFFE // A7
-data8 0xE96254A2407A5EAC,0x00003FFE // A6
-data8 0xF41312A8572ED346,0x0000BFFE // A5
-data8 0xF9535027C1B1F795,0x00003FFE // A4
-data8 0xE7E82D0C613A8DE4,0x0000BFFE // A3
-data8 0xFD23CD9741B460B8,0x00003FFE // A2
-data8 0x93C30FD9781DBA88,0x0000BFFE // A1
-data8 0xFFFFF1781FDBEE84,0x00003FFE // A0
-LOCAL_OBJECT_END(tgamma_data)
-
-
-//==============================================================
-// Code
-//==============================================================
-
-.section .text
-GLOBAL_LIBM_ENTRY(tgamma)
-{ .mfi
- getf.exp GR_Sign_Exp = f8
- fma.s1 FR_1m2X = f8,f1,f8 // 2x
- addl GR_ad_Data = @ltoff(tgamma_data), gp
-}
-{ .mfi
- mov GR_ExpOf8 = 0x10002 // 8
- fcvt.fx.trunc.s1 FR_iXt = f8 // [x]
- mov GR_ExpOf05 = 0xFFFE // 0.5
-};;
-{ .mfi
- getf.sig GR_Sig = f8
- fma.s1 FR_2 = f1,f1,f1 // 2
- mov GR_Addr_Mask1 = 0x780
-}
-{ .mlx
- setf.exp FR_8 = GR_ExpOf8
- movl GR_10 = 0x4024000000000000
-};;
-{ .mfi
- ld8 GR_ad_Data = [GR_ad_Data]
- fcmp.lt.s1 p14,p15 = f8,f0
- tbit.z p12,p13 = GR_Sign_Exp,0x10 // p13 if x >= 2
-}
-{ .mlx
- and GR_Bit2 = 4,GR_Sign_Exp
- movl GR_12 = 0x4028000000000000
-};;
-{ .mfi
- setf.d FR_10 = GR_10
- fma.s1 FR_r02 = f8,f1,f0
- extr.u GR_Tbl_Offs = GR_Sig,58,6
-}
-{ .mfi
-(p12) mov GR_Addr_Mask1 = r0
- fma.s1 FR_NormX = f8,f1,f0
- cmp.ne p8,p0 = GR_Bit2,r0
-};;
-{ .mfi
-(p8) shladd GR_Tbl_Offs = GR_Tbl_Offs,4,r0
- fclass.m p10,p0 = f8,0x1E7 // Test x for NaTVal, NaN, +/-0, +/-INF
- tbit.nz p11,p0 = GR_Sign_Exp,1
-}
-{ .mlx
- add GR_Addr_Mask2 = GR_Addr_Mask1,GR_Addr_Mask1
- movl GR_14 = 0x402C000000000000
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- setf.d FR_12 = GR_12
-(p14) fma.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x|
- tbit.nz p8,p9 = GR_Sign_Exp,0
-}
-{ .mfi
- ldfpd FR_OvfBound,FR_Xmin = [GR_ad_Data],16
-(p15) fms.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x|
-(p11) shladd GR_Tbl_Offs = GR_Tbl_Offs,2,r0
-};;
-.pred.rel "mutex",p9,p8
-{ .mfi
- setf.d FR_14 = GR_14
- fma.s1 FR_4 = FR_2,FR_2,f0
-(p8) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask1
-}
-{ .mfi
- setf.exp FR_05 = GR_ExpOf05
- fma.s1 FR_6 = FR_2,FR_2,FR_2
-(p9) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask2
-};;
-.pred.rel "mutex",p9,p8
-{ .mfi
-(p8) shladd GR_ad_Co = GR_Tbl_Offs,1,GR_ad_Data
- fcvt.xf FR_Xt = FR_iXt // [x]
-(p15) tbit.z.unc p11,p0 = GR_Sign_Exp,0x10 // p11 if 0 < x < 2
-}
-{ .mfi
-(p9) add GR_ad_Co = GR_ad_Data,GR_Tbl_Offs
- fma.s1 FR_5 = FR_2,FR_2,f1
-(p15) cmp.lt.unc p7,p6 = GR_ExpOf05,GR_Sign_Exp // p7 if 0 < x < 1
-};;
-{ .mfi
- add GR_ad_Ce = 16,GR_ad_Co
-(p11) frcpa.s1 FR_Rcp0,p0 = f1,f8
- sub GR_Tbl_Offs = GR_ad_Co,GR_ad_Data
-}
-{ .mfb
- ldfe FR_C01 = [GR_ad_Co],32
-(p7) fms.s1 FR_r02 = FR_r02,f1,f1
- // jump if x is NaTVal, NaN, +/-0, +/-INF
-(p10) br.cond.spnt tgamma_spec
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- ldfe FR_C11 = [GR_ad_Ce],32
-(p14) fms.s1 FR_X2pX = f8,f8,f8 // RA=x^2+|x|
- shr GR_Tbl_Ind = GR_Tbl_Offs,8
-}
-{ .mfb
- ldfe FR_C21 = [GR_ad_Co],32
-(p15) fma.s1 FR_X2pX = f8,f8,f8 // RA=x^2+x
- // jump if 0 < x < 2
-(p11) br.cond.spnt tgamma_from_0_to_2
-};;
-{ .mfi
- ldfe FR_C31 = [GR_ad_Ce],32
- fma.s1 FR_Rq2 = FR_2,f1,FR_1m2X // 2 + B
- cmp.ltu p7,p0=0xB,GR_Tbl_Ind
-}
-{ .mfb
- ldfe FR_C41 = [GR_ad_Co],32
- fma.s1 FR_Rq3 = FR_2,FR_2,FR_1m2X // 4 + B
- // jump if GR_Tbl_Ind > 11, i.e |x| is more than 192
-(p7) br.cond.spnt tgamma_spec_res
-};;
-{ .mfi
- ldfe FR_C51 = [GR_ad_Ce],32
- fma.s1 FR_Rq4 = FR_6,f1,FR_1m2X // 6 + B
- shr GR_Tbl_Offs = GR_Tbl_Offs,1
-}
-{ .mfi
- ldfe FR_C61 = [GR_ad_Co],32
- fma.s1 FR_Rq5 = FR_4,FR_2,FR_1m2X // 8 + B
- nop.i 0
-};;
-{ .mfi
- ldfe FR_C71 = [GR_ad_Ce],32
-(p14) fms.s1 FR_r = FR_Xt,f1,f8 // r = |x| - [|x|]
- shr GR_Tbl_16xInd = GR_Tbl_Offs,3
-}
-{ .mfi
- ldfe FR_C81 = [GR_ad_Co],32
-(p15) fms.s1 FR_r = f8,f1,FR_Xt // r = x - [x]
- add GR_ad_Data = 0xC00,GR_ad_Data
-};;
-{ .mfi
- ldfe FR_C91 = [GR_ad_Ce],32
- fma.s1 FR_Rq6 = FR_5,FR_2,FR_1m2X // 10 + B
-(p14) mov GR_0x30033 = 0x30033
-}
-{ .mfi
- ldfe FR_CA1 = [GR_ad_Co],32
- fma.s1 FR_Rq7 = FR_6,FR_2,FR_1m2X // 12 + B
- sub GR_Tbl_Offs = GR_Tbl_Offs,GR_Tbl_16xInd
-};;
-{ .mfi
- ldfe FR_C00 = [GR_ad_Ce],32
- fma.s1 FR_Rq1 = FR_Rq1,FR_2,FR_X2pX // (x-1)*(x-2)
-(p13) cmp.eq.unc p8,p0 = r0,GR_Tbl_16xInd // index is 0 i.e. arg from [2;16)
-}
-{ .mfi
- ldfe FR_C10 = [GR_ad_Co],32
-(p14) fms.s1 FR_AbsX = f0,f0,FR_NormX // absolute value of argument
- add GR_ad_Co7 = GR_ad_Data,GR_Tbl_Offs
-};;
-{ .mfi
- ldfe FR_C20 = [GR_ad_Ce],32
- fma.s1 FR_Rq2 = FR_Rq2,FR_4,FR_X2pX // (x-3)*(x-4)
- add GR_ad_Ce7 = 16,GR_ad_Co7
-}
-{ .mfi
- ldfe FR_C30 = [GR_ad_Co],32
- fma.s1 FR_Rq3 = FR_Rq3,FR_6,FR_X2pX // (x-5)*(x-6)
- nop.i 0
-};;
-{ .mfi
- ldfe FR_C40 = [GR_ad_Ce],32
- fma.s1 FR_Rq4 = FR_Rq4,FR_8,FR_X2pX // (x-7)*(x-8)
-(p14) cmp.leu.unc p7,p0 = GR_0x30033,GR_Sign_Exp
-}
-{ .mfb
- ldfe FR_C50 = [GR_ad_Co7],32
- fma.s1 FR_Rq5 = FR_Rq5,FR_10,FR_X2pX // (x-9)*(x-10)
- // jump if x is less or equal to -2^52, i.e. x is big negative integer
-(p7) br.cond.spnt tgamma_singularity
-};;
-{ .mfi
- ldfe FR_C60 = [GR_ad_Ce7],32
- fma.s1 FR_C01 = FR_C01,f1,FR_r
- add GR_ad_Ce = 0x560,GR_ad_Data
-}
-{ .mfi
- ldfe FR_C70 = [GR_ad_Co7],32
- fma.s1 FR_rs = f0,f0,FR_r // reduced arg for sin(pi*x)
- add GR_ad_Co = 0x550,GR_ad_Data
-};;
-{ .mfi
- ldfe FR_C80 = [GR_ad_Ce7],32
- fma.s1 FR_C11 = FR_C11,f1,FR_r
- nop.i 0
-}
-{ .mfi
- ldfe FR_C90 = [GR_ad_Co7],32
- fma.s1 FR_C21 = FR_C21,f1,FR_r
- nop.i 0
-};;
-.pred.rel "mutex",p12,p13
-{ .mfi
-(p13) getf.sig GR_iSig = FR_iXt
- fcmp.lt.s1 p11,p0 = FR_05,FR_r
- mov GR_185 = 185
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_Rq6 = FR_Rq6,FR_12,FR_X2pX // (x-11)*(x-12)
- nop.i 0
-};;
-{ .mfi
- ldfe FR_CA0 = [GR_ad_Ce7],32
- fma.s1 FR_C31 = FR_C31,f1,FR_r
-(p12) mov GR_iSig = 0
-}
-{ .mfi
- ldfe FR_An = [GR_ad_Co7],0x80
- fma.s1 FR_C41 = FR_C41,f1,FR_r
- nop.i 0
-};;
-{ .mfi
-(p14) getf.sig GR_Sig = FR_r
- fma.s1 FR_C51 = FR_C51,f1,FR_r
-(p14) sub GR_iSig = r0,GR_iSig
-}
-{ .mfi
- ldfe FR_S21 = [GR_ad_Co],32
- fma.s1 FR_C61 = FR_C61,f1,FR_r
- nop.i 0
-};;
-{ .mfi
- ldfe FR_S19 = [GR_ad_Ce],32
- fma.s1 FR_C71 = FR_C71,f1,FR_r
- and GR_SigRqLin = 0xF,GR_iSig
-}
-{ .mfi
- ldfe FR_S17 = [GR_ad_Co],32
- fma.s1 FR_C81 = FR_C81,f1,FR_r
- mov GR_2 = 2
-};;
-{ .mfi
-(p14) ldfe FR_InvAn = [GR_ad_Co7]
- fma.s1 FR_C91 = FR_C91,f1,FR_r
- // if significand of r is 0 tnan argument is negative integer
-(p14) cmp.eq.unc p12,p0 = r0,GR_Sig
-}
-{ .mfb
-(p8) sub GR_SigRqLin = GR_SigRqLin,GR_2 // subtract 2 if 2 <= x < 16
- fma.s1 FR_CA1 = FR_CA1,f1,FR_r
- // jump if x is negative integer such that -2^52 < x < -185
-(p12) br.cond.spnt tgamma_singularity
-};;
-{ .mfi
- setf.sig FR_Xt = GR_SigRqLin
-(p11) fms.s1 FR_rs = f1,f1,FR_r
-(p14) cmp.ltu.unc p7,p0 = GR_185,GR_iSig
-}
-{ .mfb
- ldfe FR_S15 = [GR_ad_Ce],32
- fma.s1 FR_Rq7 = FR_Rq7,FR_14,FR_X2pX // (x-13)*(x-14)
- // jump if x is noninteger such that -2^52 < x < -185
-(p7) br.cond.spnt tgamma_underflow
-};;
-{ .mfi
- ldfe FR_S13 = [GR_ad_Co],48
- fma.s1 FR_C01 = FR_C01,FR_r,FR_C00
- and GR_Sig2 = 0xE,GR_SigRqLin
-}
-{ .mfi
- ldfe FR_S11 = [GR_ad_Ce],48
- fma.s1 FR_C11 = FR_C11,FR_r,FR_C10
- nop.i 0
-};;
-{ .mfi
- ldfe FR_S9 = [GR_ad_Co],32
- fma.s1 FR_C21 = FR_C21,FR_r,FR_C20
- // should we mul by polynomial of recursion?
- cmp.eq p13,p12 = r0,GR_SigRqLin
-}
-{ .mfi
- ldfe FR_S7 = [GR_ad_Ce],32
- fma.s1 FR_C31 = FR_C31,FR_r,FR_C30
- nop.i 0
-};;
-{ .mfi
- ldfe FR_S5 = [GR_ad_Co],32
- fma.s1 FR_C41 = FR_C41,FR_r,FR_C40
- nop.i 0
-}
-{ .mfi
- ldfe FR_S3 = [GR_ad_Ce],32
- fma.s1 FR_C51 = FR_C51,FR_r,FR_C50
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C61 = FR_C61,FR_r,FR_C60
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C71 = FR_C71,FR_r,FR_C70
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C81 = FR_C81,FR_r,FR_C80
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C91 = FR_C91,FR_r,FR_C90
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_CA1 = FR_CA1,FR_r,FR_CA0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C01 = FR_C01,FR_C11,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_C31,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rs2 = FR_rs,FR_rs,f0
-(p12) cmp.lt.unc p7,p0 = 2,GR_Sig2 // should mul by FR_Rq2?
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C41 = FR_C41,FR_C51,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq2,f0
-(p12) cmp.lt.unc p9,p0 = 6,GR_Sig2 // should mul by FR_Rq4?
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C61 = FR_C61,FR_C71,f0
-(p15) cmp.eq p11,p0 = r0,r0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_Rq3 = FR_Rq3,FR_Rq4,f0
-(p12) cmp.lt.unc p8,p0 = 10,GR_Sig2 // should mul by FR_Rq6?
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C81 = FR_C81,FR_C91,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq6,f0
-(p14) cmp.ltu p0,p11 = 0x9,GR_Tbl_Ind
-};;
-{ .mfi
- nop.m 0
- fcvt.xf FR_RqLin = FR_Xt
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_CA1 = FR_CA1,FR_An,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S21 = FR_S21,FR_rs2,FR_S19
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S17 = FR_S17,FR_rs2,FR_S15
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C01 = FR_C01,FR_C21,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rs4 = FR_rs2,FR_rs2,f0
-(p12) cmp.lt.unc p8,p0 = 4,GR_Sig2 // should mul by FR_Rq3?
-};;
-{ .mfi
- nop.m 0
-(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq3,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S13 = FR_S13,FR_rs2,FR_S11
-(p12) cmp.lt.unc p9,p0 = 12,GR_Sig2 // should mul by FR_Rq7?
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C41 = FR_C41,FR_C61,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq7,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C81 = FR_C81,FR_CA1,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S9 = FR_S9,FR_rs2,FR_S7
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S5 = FR_S5,FR_rs2,FR_S3
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_rs3 = FR_rs2,FR_rs,f0
-(p12) tbit.nz.unc p6,p0 = GR_SigRqLin,0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_rs8 = FR_rs4,FR_rs4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S21 = FR_S21,FR_rs4,FR_S17
- mov GR_ExpOf1 = 0x2FFFF
-}
-{ .mfi
- nop.m 0
-(p6) fms.s1 FR_RqLin = FR_AbsX,f1,FR_RqLin
-(p12) cmp.lt.unc p8,p0 = 8,GR_Sig2 // should mul by FR_Rq5?
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C01 = FR_C01,FR_C41,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq5,f0
-(p14) cmp.gtu.unc p7,p0 = GR_Sign_Exp,GR_ExpOf1
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S13 = FR_S13,FR_rs4,FR_S9
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_C81 = FR_C81,FR_AbsX,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_AbsXp1 = f1,f1,FR_AbsX // |x|+1
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fcmp.lt.unc.s1 p0,p10 = FR_AbsX,FR_OvfBound // x >= overflow_boundary
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_rs7 = FR_rs4,FR_rs3,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_S5 = FR_S5,FR_rs3,FR_rs
- nop.i 0
-};;
-{ .mib
-(p14) cmp.lt p13,p0 = r0,r0 // set p13 to 0 if x < 0
-(p12) cmp.eq.unc p8,p9 = 1,GR_SigRqLin
-(p10) br.cond.spnt tgamma_spec_res
-};;
-{ .mfi
- getf.sig GR_Sig = FR_iXt
-(p6) fma.s1 FR_Rq1 = FR_Rq1,FR_RqLin,f0
- // should we mul by polynomial of recursion?
-(p15) cmp.eq.unc p0,p11 = r0,GR_SigRqLin
-}
-{ .mfb
- nop.m 0
- fma.s1 FR_GAMMA = FR_C01,FR_C81,f0
-(p11) br.cond.spnt tgamma_positives
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S21 = FR_S21,FR_rs8,FR_S13
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p13) fma.d.s0 f8 = FR_C01,FR_C81,f0
-(p13) br.ret.spnt b0
-};;
-.pred.rel "mutex",p8,p9
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_GAMMA = FR_GAMMA,FR_Rq1,f0
- tbit.z p6,p7 = GR_Sig,0 // p6 if sin<0, p7 if sin>0
-}
-{ .mfi
- nop.m 0
-(p8) fma.s1 FR_GAMMA = FR_GAMMA,FR_RqLin,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_S21 = FR_S21,FR_rs7,FR_S5
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fnma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0
- mov GR_Sig2 = 1
-};;
-{ .mfi
- nop.m 0
- frcpa.s1 FR_Rcp0,p0 = f1,FR_GAMMA
- cmp.ltu p13,p0 = GR_Sign_Exp,GR_ExpOf1
-};;
-// NR method: ineration #1
-{ .mfi
-(p13) getf.exp GR_Sign_Exp = FR_AbsX
- fnma.s1 FR_Rcp1 = FR_Rcp0,FR_GAMMA,f1 // t = 1 - r0*x
-(p13) shl GR_Sig2 = GR_Sig2,63
-};;
-{ .mfi
-(p13) getf.sig GR_Sig = FR_AbsX
- nop.f 0
-(p13) mov GR_NzOvfBound = 0xFBFF
-};;
-{ .mfi
-(p13) cmp.ltu.unc p8,p0 = GR_Sign_Exp,GR_NzOvfBound // p8 <- overflow
- nop.f 0
-(p13) cmp.eq.unc p9,p0 = GR_Sign_Exp,GR_NzOvfBound
-};;
-{ .mfb
- nop.m 0
-(p13) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags
-(p8) br.cond.spnt tgamma_ovf_near_0 //tgamma_neg_overflow
-};;
-{ .mib
- nop.m 0
-(p9) cmp.eq.unc p8,p0 = GR_Sig,GR_Sig2
-(p8) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_neg_overflow
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0
- nop.i 0
-};;
-// NR method: ineration #2
-{ .mfi
- nop.m 0
- fnma.s1 FR_Rcp2 = FR_Rcp1,FR_GAMMA,f1 // t = 1 - r1*x
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1
- nop.i 0
-};;
-// NR method: ineration #3
-{ .mfi
- nop.m 0
- fnma.s1 FR_Rcp3 = FR_Rcp2,FR_GAMMA,f1 // t = 1 - r2*x
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_Rcp2 = FR_Rcp2,FR_AbsXp1,f0
-(p14) cmp.ltu p10,p11 = 0x9,GR_Tbl_Ind
-};;
-.pred.rel "mutex",p10,p11
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_GAMMA = FR_Rcp2,FR_Rcp3,FR_Rcp2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.d.s0 f8 = FR_Rcp2,FR_Rcp3,FR_Rcp2
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p10) fma.d.s0 f8 = FR_GAMMA,FR_InvAn,f0
- br.ret.sptk b0
-};;
-
-
-// here if x >= 3
-//--------------------------------------------------------------------
-.align 32
-tgamma_positives:
-.pred.rel "mutex",p8,p9
-{ .mfi
- nop.m 0
-(p9) fma.d.s0 f8 = FR_GAMMA,FR_Rq1,f0
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p8) fma.d.s0 f8 = FR_GAMMA,FR_RqLin,f0
- br.ret.sptk b0
-};;
-
-// here if 0 < x < 1
-//--------------------------------------------------------------------
-.align 32
-tgamma_from_0_to_2:
-{ .mfi
- getf.exp GR_Sign_Exp = FR_r02
- fms.s1 FR_r = FR_r02,f1,FR_Xmin
- mov GR_ExpOf025 = 0xFFFD
-}
-{ .mfi
- add GR_ad_Co = 0x1200,GR_ad_Data
-(p6) fnma.s1 FR_Rcp1 = FR_Rcp0,FR_NormX,f1 // t = 1 - r0*x
-(p6) mov GR_Sig2 = 1
-};;
-{ .mfi
-(p6) getf.sig GR_Sig = FR_NormX
- nop.f 0
-(p6) shl GR_Sig2 = GR_Sig2,63
-}
-{ .mfi
- add GR_ad_Ce = 0x1210,GR_ad_Data
- nop.f 0
-(p6) mov GR_NzOvfBound = 0xFBFF
-};;
-{ .mfi
- cmp.eq p8,p0 = GR_Sign_Exp,GR_ExpOf05 // r02 >= 1/2
- nop.f 0
- cmp.eq p9,p10 = GR_Sign_Exp,GR_ExpOf025 // r02 >= 1/4
-}
-{ .mfi
-(p6) cmp.ltu.unc p11,p0 = GR_Sign_Exp,GR_NzOvfBound // p11 <- overflow
- nop.f 0
-(p6) cmp.eq.unc p12,p0 = GR_Sign_Exp,GR_NzOvfBound
-};;
-.pred.rel "mutex",p8,p9
-{ .mfi
-(p8) add GR_ad_Co = 0x200,GR_ad_Co
-(p6) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags
-(p9) add GR_ad_Co = 0x100,GR_ad_Co
-}
-{ .mib
-(p8) add GR_ad_Ce = 0x200,GR_ad_Ce
-(p9) add GR_ad_Ce = 0x100,GR_ad_Ce
-(p11) br.cond.spnt tgamma_ovf_near_0 //tgamma_spec_res
-};;
-{ .mfi
- ldfe FR_A15 = [GR_ad_Co],32
- nop.f 0
-(p12) cmp.eq.unc p13,p0 = GR_Sig,GR_Sig2
-}
-{ .mfb
- ldfe FR_A14 = [GR_ad_Ce],32
- nop.f 0
-(p13) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_spec_res
-};;
-{ .mfi
- ldfe FR_A13 = [GR_ad_Co],32
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A12 = [GR_ad_Ce],32
- nop.f 0
- nop.i 0
-};;
-.pred.rel "mutex",p9,p10
-{ .mfi
- ldfe FR_A11 = [GR_ad_Co],32
-(p10) fma.s1 FR_r2 = FR_r02,FR_r02,f0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A10 = [GR_ad_Ce],32
-(p9) fma.s1 FR_r2 = FR_r,FR_r,f0
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A9 = [GR_ad_Co],32
-(p6) fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A8 = [GR_ad_Ce],32
-(p10) fma.s1 FR_r = f0,f0,FR_r02
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A7 = [GR_ad_Co],32
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A6 = [GR_ad_Ce],32
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A5 = [GR_ad_Co],32
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A4 = [GR_ad_Ce],32
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A3 = [GR_ad_Co],32
- nop.f 0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A2 = [GR_ad_Ce],32
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- ldfe FR_A1 = [GR_ad_Co],32
- fma.s1 FR_r4 = FR_r2,FR_r2,f0
- nop.i 0
-}
-{ .mfi
- ldfe FR_A0 = [GR_ad_Ce],32
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p6) fnma.s1 FR_Rcp2 = FR_Rcp1,FR_NormX,f1 // t = 1 - r1*x
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r,FR_A14
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A11 = FR_A11,FR_r,FR_A10
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_r8 = FR_r4,FR_r4,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r,FR_A6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r,FR_A2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r,FR_A13
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A11 = FR_A11,FR_r,FR_A9
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p6) fnma.s1 FR_Rcp3 = FR_Rcp2,FR_NormX,f1 // t = 1 - r1*x
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r,FR_A5
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r,FR_A1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r,FR_A12
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A11 = FR_A11,FR_r,FR_A8
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_Rcp3 = FR_Rcp2,FR_Rcp3,FR_Rcp2
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r,FR_A4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r,FR_A0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A15 = FR_A15,FR_r4,FR_A11
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r4,FR_A3
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_A15 = FR_A15,FR_r8,FR_A7
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fma.d.s0 f8 = FR_A15,FR_r8,FR_A7
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p6) fma.d.s0 f8 = FR_A15,FR_Rcp3,f0
- br.ret.sptk b0
-};;
-
-// overflow
-//--------------------------------------------------------------------
-.align 32
-tgamma_ovf_near_0_boundary:
-.pred.rel "mutex",p14,p15
-{ .mfi
- mov GR_fpsr = ar.fpsr
- nop.f 0
-(p15) mov r8 = 0x7ff
-}
-{ .mfi
- nop.m 0
- nop.f 0
-(p14) mov r8 = 0xfff
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- shl r8 = r8,52
-};;
-{ .mfi
- sub r8 = r8,r0,1
- nop.f 0
- extr.u GR_fpsr = GR_fpsr,10,2 // rounding mode
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- // set p8 to 0 in case of overflow and to 1 otherwise
- // for negative arg:
- // no overflow if rounding mode either Z or +Inf, i.e.
- // GR_fpsr > 1
-(p14) cmp.lt p8,p0 = 1,GR_fpsr
- nop.f 0
- // for positive arg:
- // no overflow if rounding mode either Z or -Inf, i.e.
- // (GR_fpsr & 1) == 0
-(p15) tbit.z p0,p8 = GR_fpsr,0
-};;
-{ .mib
-(p8) setf.d f8 = r8 // set result to 0x7fefffffffffffff without
- // OVERFLOW flag raising
- nop.i 0
-(p8) br.ret.sptk b0
-};;
-.align 32
-tgamma_ovf_near_0:
-{ .mfi
- mov r8 = 0x1FFFE
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- setf.exp f9 = r8
- fmerge.s FR_X = f8,f8
- mov GR_TAG = 258 // overflow
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p14) fnma.d.s0 f8 = f9,f9,f0 // Set I,O and -INF result
- br.cond.sptk tgamma_libm_err
-};;
-// overflow or absolute value of x is too big
-//--------------------------------------------------------------------
-.align 32
-tgamma_spec_res:
-{ .mfi
- mov GR_0x30033 = 0x30033
-(p14) fcmp.eq.unc.s1 p10,p11 = f8,FR_Xt
-(p15) mov r8 = 0x1FFFE
-};;
-{ .mfi
-(p15) setf.exp f9 = r8
- nop.f 0
- nop.i 0
-};;
-{ .mfb
-(p11) cmp.ltu.unc p7,p8 = GR_0x30033,GR_Sign_Exp
- nop.f 0
-(p10) br.cond.spnt tgamma_singularity
-};;
-.pred.rel "mutex",p7,p8
-{ .mbb
- nop.m 0
-(p7) br.cond.spnt tgamma_singularity
-(p8) br.cond.spnt tgamma_underflow
-};;
-{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- mov GR_TAG = 258 // overflow
-}
-{ .mfb
- nop.m 0
-(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result
- br.cond.sptk tgamma_libm_err
-};;
-
-// x is negative integer or +/-0
-//--------------------------------------------------------------------
-.align 32
-tgamma_singularity:
-{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- mov GR_TAG = 259 // negative
-}
-{ .mfb
- nop.m 0
- frcpa.s0 f8,p0 = f0,f0
- br.cond.sptk tgamma_libm_err
-};;
-// x is negative noninteger with big absolute value
-//--------------------------------------------------------------------
-.align 32
-tgamma_underflow:
-{ .mmi
- getf.sig GR_Sig = FR_iXt
- mov r11 = 0x00001
- nop.i 0
-};;
-{ .mfi
- setf.exp f9 = r11
- nop.f 0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- tbit.z p6,p7 = GR_Sig,0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fms.d.s0 f8 = f9,f9,f9
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fma.d.s0 f8 = f9,f9,f9
- br.ret.sptk b0
-};;
-
-// x for natval, nan, +/-inf or +/-0
-//--------------------------------------------------------------------
-.align 32
-tgamma_spec:
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.m p7,p8 = f8,0x7 // +/-0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p6) fma.d.s0 f8 = f8,f1,f8
-(p6) br.ret.spnt b0
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
-(p7) mov GR_TAG = 259 // negative
-(p7) frcpa.s0 f8,p0 = f1,f8
- nop.i 0
-}
-{ .mib
- nop.m 0
- nop.i 0
-(p8) br.cond.spnt tgamma_singularity
-};;
-
-.align 32
-tgamma_libm_err:
-{ .mfi
- alloc r32 = ar.pfs,1,4,4,0
- nop.f 0
- mov GR_Parameter_TAG = GR_TAG
-};;
-
-GLOBAL_LIBM_END(tgamma)
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/w_tgammaf.S b/sysdeps/ia64/fpu/w_tgammaf.S
deleted file mode 100644
index dda0d0fe9d..0000000000
--- a/sysdeps/ia64/fpu/w_tgammaf.S
+++ /dev/null
@@ -1,1331 +0,0 @@
-.file "tgammaf.s"
-
-
-// Copyright (c) 2001 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2001 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
-// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
-// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code,and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 11/30/01 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 04/04/03 Changed error codes for overflow and negative integers
-// 04/10/03 Changed code for overflow near zero handling
-// 12/16/03 Fixed parameter passing to/from error handling routine
-// 03/31/05 Reformatted delimiters between data tables
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: tgammaf(x) computes the principle value of the GAMMA
-// function of x.
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8-f15
-// f33-f75
-//
-// General Purpose Registers:
-// r8-r11
-// r14-r29
-// r32-r36
-// r37-r40 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// tgammaf(+inf) = +inf
-// tgammaf(-inf) = QNaN
-// tgammaf(+/-0) = +/-inf
-// tgammaf(x<0, x - integer) = QNaN
-// tgammaf(SNaN) = QNaN
-// tgammaf(QNaN) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of three cases.
-//
-// If 2 <= x < OVERFLOW_BOUNDARY use case tgamma_regular;
-// else if 0 < x < 2 use case tgamma_from_0_to_2;
-// else if -(i+1) < x < -i, i = 0...43 use case tgamma_negatives;
-//
-// Case 2 <= x < OVERFLOW_BOUNDARY
-// -------------------------------
-// Here we use algorithm based on the recursive formula
-// GAMMA(x+1) = x*GAMMA(x). For that we subdivide interval
-// [2; OVERFLOW_BOUNDARY] into intervals [8*n; 8*(n+1)] and
-// approximate GAMMA(x) by polynomial of 22th degree on each
-// [8*n; 8*n+1], recursive formula is used to expand GAMMA(x)
-// to [8*n; 8*n+1]. In other words we need to find n, i and r
-// such that x = 8 * n + i + r where n and i are integer numbers
-// and r is fractional part of x. So GAMMA(x) = GAMMA(8*n+i+r) =
-// = (x-1)*(x-2)*...*(x-i)*GAMMA(x-i) =
-// = (x-1)*(x-2)*...*(x-i)*GAMMA(8*n+r) ~
-// ~ (x-1)*(x-2)*...*(x-i)*P12n(r).
-//
-// Step 1: Reduction
-// -----------------
-// N = [x] with truncate
-// r = x - N, note 0 <= r < 1
-//
-// n = N & ~0xF - index of table that contains coefficient of
-// polynomial approximation
-// i = N & 0xF - is used in recursive formula
-//
-//
-// Step 2: Approximation
-// ---------------------
-// We use factorized minimax approximation polynomials
-// P12n(r) = A12*(r^2+C01(n)*r+C00(n))*
-// *(r^2+C11(n)*r+C10(n))*...*(r^2+C51(n)*r+C50(n))
-//
-// Step 3: Recursion
-// -----------------
-// In case when i > 0 we need to multiply P12n(r) by product
-// R(i,x)=(x-1)*(x-2)*...*(x-i). To reduce number of fp-instructions
-// we can calculate R as follow:
-// R(i,x) = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-1))*(x-i)) if i is
-// even or R = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-2))*(x-(i-1)))*
-// *(i-1) if i is odd. In both cases we need to calculate
-// R2(i,x) = (x^2-3*x+2)*(x^2-7*x+12)*...*(x^2+x+2*j*(2*j-1)) =
-// = ((x^2-x)+2*(1-x))*((x^2-x)+6*(2-x))*...*((x^2-x)+2*(2*j-1)*(j-x)) =
-// = (RA+2*RB)*(RA+6*(1-RB))*...*(RA+2*(2*j-1)*(j-1+RB))
-// where j = 1..[i/2], RA = x^2-x, RB = 1-x.
-//
-// Step 4: Reconstruction
-// ----------------------
-// Reconstruction is just simple multiplication i.e.
-// GAMMA(x) = P12n(r)*R(i,x)
-//
-// Case 0 < x < 2
-// --------------
-// To calculate GAMMA(x) on this interval we do following
-// if 1.0 <= x < 1.25 than GAMMA(x) = P7(x-1)
-// if 1.25 <= x < 1.5 than GAMMA(x) = P7(x-x_min) where
-// x_min is point of local minimum on [1; 2] interval.
-// if 1.5 <= x < 1.75 than GAMMA(x) = P7(x-1.5)
-// if 1.75 <= x < 2.0 than GAMMA(x) = P7(x-1.5)
-// and
-// if 0 < x < 1 than GAMMA(x) = GAMMA(x+1)/x
-//
-// Case -(i+1) < x < -i, i = 0...43
-// ----------------------------------
-// Here we use the fact that GAMMA(-x) = PI/(x*GAMMA(x)*sin(PI*x)) and
-// so we need to calculate GAMMA(x), sin(PI*x)/PI. Calculation of
-// GAMMA(x) is described above.
-//
-// Step 1: Reduction
-// -----------------
-// Note that period of sin(PI*x) is 2 and range reduction for
-// sin(PI*x) is like to range reduction for GAMMA(x)
-// i.e rs = x - round(x) and |rs| <= 0.5.
-//
-// Step 2: Approximation
-// ---------------------
-// To approximate sin(PI*x)/PI = sin(PI*(2*n+rs))/PI =
-// = (-1)^n*sin(PI*rs)/PI Taylor series is used.
-// sin(PI*rs)/PI ~ S17(rs).
-//
-// Step 3: Division
-// ----------------
-// To calculate 1/x and 1/(GAMMA(x)*S12(rs)) we use frcpa
-// instruction with following Newton-Raphson interations.
-//
-//
-//*********************************************************************
-
-GR_ad_Data = r8
-GR_TAG = r8
-GR_SignExp = r9
-GR_Sig = r10
-GR_ArgNz = r10
-GR_RqDeg = r11
-
-GR_NanBound = r14
-GR_ExpOf025 = r15
-GR_ExpOf05 = r16
-GR_ad_Co = r17
-GR_ad_Ce = r18
-GR_TblOffs = r19
-GR_Arg = r20
-GR_Exp2Ind = r21
-GR_TblOffsMask = r21
-GR_Offs = r22
-GR_OvfNzBound = r23
-GR_ZeroResBound = r24
-GR_ad_SinO = r25
-GR_ad_SinE = r26
-GR_Correction = r27
-GR_Tbl12Offs = r28
-GR_NzBound = r28
-GR_ExpOf1 = r29
-GR_fpsr = r29
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-FR_iXt = f11
-FR_Xt = f12
-FR_r = f13
-FR_r2 = f14
-FR_r4 = f15
-
-FR_C01 = f33
-FR_A7 = f33
-FR_C11 = f34
-FR_A6 = f34
-FR_C21 = f35
-FR_A5 = f35
-FR_C31 = f36
-FR_A4 = f36
-FR_C41 = f37
-FR_A3 = f37
-FR_C51 = f38
-FR_A2 = f38
-
-FR_C00 = f39
-FR_A1 = f39
-FR_C10 = f40
-FR_A0 = f40
-FR_C20 = f41
-FR_C30 = f42
-FR_C40 = f43
-FR_C50 = f44
-FR_An = f45
-FR_OvfBound = f46
-FR_InvAn = f47
-
-FR_Multplr = f48
-FR_NormX = f49
-FR_X2mX = f50
-FR_1mX = f51
-FR_Rq0 = f51
-FR_Rq1 = f52
-FR_Rq2 = f53
-FR_Rq3 = f54
-
-FR_Rcp0 = f55
-FR_Rcp1 = f56
-FR_Rcp2 = f57
-
-FR_InvNormX1 = f58
-FR_InvNormX2 = f59
-
-FR_rs = f60
-FR_rs2 = f61
-
-FR_LocalMin = f62
-FR_10 = f63
-
-FR_05 = f64
-
-FR_S32 = f65
-FR_S31 = f66
-FR_S01 = f67
-FR_S11 = f68
-FR_S21 = f69
-FR_S00 = f70
-FR_S10 = f71
-FR_S20 = f72
-
-FR_GAMMA = f73
-FR_2 = f74
-FR_6 = f75
-
-
-
-
-// Data tables
-//==============================================================
-RODATA
-.align 16
-LOCAL_OBJECT_START(tgammaf_data)
-data8 0x3FDD8B618D5AF8FE // local minimum (0.461632144968362356785)
-data8 0x4024000000000000 // 10.0
-data8 0x3E90FC992FF39E13 // S32
-data8 0xBEC144B2760626E2 // S31
-//
-//[2; 8)
-data8 0x4009EFD1BA0CB3B4 // C01
-data8 0x3FFFB35378FF4822 // C11
-data8 0xC01032270413B896 // C41
-data8 0xC01F171A4C0D6827 // C51
-data8 0x40148F8E197396AC // C20
-data8 0x401C601959F1249C // C30
-data8 0x3EE21AD881741977 // An
-data8 0x4041852200000000 // overflow boundary (35.04010009765625)
-data8 0x3FD9CE68F695B198 // C21
-data8 0xBFF8C30AC900DA03 // C31
-data8 0x400E17D2F0535C02 // C00
-data8 0x4010689240F7FAC8 // C10
-data8 0x402563147DDCCF8D // C40
-data8 0x4033406D0480A21C // C50
-//
-//[8; 16)
-data8 0x4006222BAE0B793B // C01
-data8 0x4002452733473EDA // C11
-data8 0xC0010EF3326FDDB3 // C41
-data8 0xC01492B817F99C0F // C51
-data8 0x40099C905A249B75 // C20
-data8 0x4012B972AE0E533D // C30
-data8 0x3FE6F6DB91D0D4CC // An
-data8 0x4041852200000000 // overflow boundary
-data8 0x3FF545828F7B73C5 // C21
-data8 0xBFBBD210578764DF // C31
-data8 0x4000542098F53CFC // C00
-data8 0x40032C1309AD6C81 // C10
-data8 0x401D7331E19BD2E1 // C40
-data8 0x402A06807295EF57 // C50
-//
-//[16; 24)
-data8 0x4000131002867596 // C01
-data8 0x3FFAA362D5D1B6F2 // C11
-data8 0xBFFCB6985697DB6D // C41
-data8 0xC0115BEE3BFC3B3B // C51
-data8 0x3FFE62FF83456F73 // C20
-data8 0x4007E33478A114C4 // C30
-data8 0x41E9B2B73795ED57 // An
-data8 0x4041852200000000 // overflow boundary
-data8 0x3FEEB1F345BC2769 // C21
-data8 0xBFC3BBE6E7F3316F // C31
-data8 0x3FF14E07DA5E9983 // C00
-data8 0x3FF53B76BF81E2C0 // C10
-data8 0x4014051E0269A3DC // C40
-data8 0x40229D4227468EDB // C50
-//
-//[24; 32)
-data8 0x3FFAF7BD498384DE // C01
-data8 0x3FF62AD8B4D1C3D2 // C11
-data8 0xBFFABCADCD004C32 // C41
-data8 0xC00FADE97C097EC9 // C51
-data8 0x3FF6DA9ED737707E // C20
-data8 0x4002A29E9E0C782C // C30
-data8 0x44329D5B5167C6C3 // An
-data8 0x4041852200000000 // overflow boundary
-data8 0x3FE8943CBBB4B727 // C21
-data8 0xBFCB39D466E11756 // C31
-data8 0x3FE879AF3243D8C1 // C00
-data8 0x3FEEC7DEBB14CE1E // C10
-data8 0x401017B79BA80BCB // C40
-data8 0x401E941DC3C4DE80 // C50
-//
-//[32; 40)
-data8 0x3FF7ECB3A0E8FE5C // C01
-data8 0x3FF3815A8516316B // C11
-data8 0xBFF9ABD8FCC000C3 // C41
-data8 0xC00DD89969A4195B // C51
-data8 0x3FF2E43139CBF563 // C20
-data8 0x3FFF96DC3474A606 // C30
-data8 0x46AFF4CA9B0DDDF0 // An
-data8 0x4041852200000000 // overflow boundary
-data8 0x3FE4CE76DA1B5783 // C21
-data8 0xBFD0524DB460BC4E // C31
-data8 0x3FE35852DF14E200 // C00
-data8 0x3FE8C7610359F642 // C10
-data8 0x400BCF750EC16173 // C40
-data8 0x401AC14E02EA701C // C50
-//
-//[40; 48)
-data8 0x3FF5DCE4D8193097 // C01
-data8 0x3FF1B0D8C4974FFA // C11
-data8 0xBFF8FB450194CAEA // C41
-data8 0xC00C9658E030A6C4 // C51
-data8 0x3FF068851118AB46 // C20
-data8 0x3FFBF7C7BB46BF7D // C30
-data8 0x3FF0000000000000 // An
-data8 0x4041852200000000 // overflow boundary
-data8 0x3FE231DEB11D847A // C21
-data8 0xBFD251ECAFD7E935 // C31
-data8 0x3FE0368AE288F6BF // C00
-data8 0x3FE513AE4215A70C // C10
-data8 0x4008F960F7141B8B // C40
-data8 0x40183BA08134397B // C50
-//
-//[1.0; 1.25)
-data8 0xBFD9909648921868 // A7
-data8 0x3FE96FFEEEA8520F // A6
-data8 0xBFED0800D93449B8 // A3
-data8 0x3FEFA648D144911C // A2
-data8 0xBFEE3720F7720B4D // A5
-data8 0x3FEF4857A010CA3B // A4
-data8 0xBFE2788CCD545AA4 // A1
-data8 0x3FEFFFFFFFE9209E // A0
-//
-//[1.25; 1.5)
-data8 0xBFB421236426936C // A7
-data8 0x3FAF237514F36691 // A6
-data8 0xBFC0BADE710A10B9 // A3
-data8 0x3FDB6C5465BBEF1F // A2
-data8 0xBFB7E7F83A546EBE // A5
-data8 0x3FC496A01A545163 // A4
-data8 0xBDEE86A39D8452EB // A1
-data8 0x3FEC56DC82A39AA2 // A0
-//
-//[1.5; 1.75)
-data8 0xBF94730B51795867 // A7
-data8 0x3FBF4203E3816C7B // A6
-data8 0xBFE85B427DBD23E4 // A3
-data8 0x3FEE65557AB26771 // A2
-data8 0xBFD59D31BE3AB42A // A5
-data8 0x3FE3C90CC8F09147 // A4
-data8 0xBFE245971DF735B8 // A1
-data8 0x3FEFFC613AE7FBC8 // A0
-//
-//[1.75; 2.0)
-data8 0xBF7746A85137617E // A7
-data8 0x3FA96E37D09735F3 // A6
-data8 0xBFE3C24AC40AC0BB // A3
-data8 0x3FEC56A80A977CA5 // A2
-data8 0xBFC6F0E707560916 // A5
-data8 0x3FDB262D949175BE // A4
-data8 0xBFE1C1AEDFB25495 // A1
-data8 0x3FEFEE1E644B2022 // A0
-//
-// sin(pi*x)/pi
-data8 0xC026FB0D377656CC // S01
-data8 0x3FFFB15F95A22324 // S11
-data8 0x406CE58F4A41C6E7 // S10
-data8 0x404453786302C61E // S20
-data8 0xC023D59A47DBFCD3 // S21
-data8 0x405541D7ABECEFCA // S00
-//
-// 1/An for [40; 48)
-data8 0xCAA7576DE621FCD5, 0x3F68
-LOCAL_OBJECT_END(tgammaf_data)
-
-//==============================================================
-// Code
-//==============================================================
-
-.section .text
-GLOBAL_LIBM_ENTRY(tgammaf)
-{ .mfi
- getf.exp GR_SignExp = f8
- fma.s1 FR_NormX = f8,f1,f0
- addl GR_ad_Data = @ltoff(tgammaf_data), gp
-}
-{ .mfi
- mov GR_ExpOf05 = 0xFFFE
- fcvt.fx.trunc.s1 FR_iXt = f8 // [x]
- mov GR_Offs = 0 // 2 <= x < 8
-};;
-{ .mfi
- getf.d GR_Arg = f8
- fcmp.lt.s1 p14,p15 = f8,f0
- mov GR_Tbl12Offs = 0
-}
-{ .mfi
- setf.exp FR_05 = GR_ExpOf05
- fma.s1 FR_2 = f1,f1,f1 // 2
- mov GR_Correction = 0
-};;
-{ .mfi
- ld8 GR_ad_Data = [GR_ad_Data]
- fclass.m p10,p0 = f8,0x1E7 // is x NaTVal, NaN, +/-0 or +/-INF?
- tbit.z p12,p13 = GR_SignExp,16 // p13 if |x| >= 2
-}
-{ .mfi
- mov GR_ExpOf1 = 0xFFFF
- fcvt.fx.s1 FR_rs = f8 // round(x)
- and GR_Exp2Ind = 7,GR_SignExp
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
-(p15) cmp.eq.unc p11,p0 = GR_ExpOf1,GR_SignExp // p11 if 1 <= x < 2
-(p14) fma.s1 FR_1mX = f1,f1,f8 // 1 - |x|
- mov GR_Sig = 0 // if |x| < 2
-}
-{ .mfi
-(p13) cmp.eq.unc p7,p0 = 2,GR_Exp2Ind
-(p15) fms.s1 FR_1mX = f1,f1,f8 // 1 - |x|
-(p13) cmp.eq.unc p8,p0 = 3,GR_Exp2Ind
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
-(p7) mov GR_Offs = 0x7 // 8 <= |x| < 16
- nop.f 0
-(p8) tbit.z.unc p0,p6 = GR_Arg,51
-}
-{ .mib
-(p13) cmp.lt.unc p9,p0 = 3,GR_Exp2Ind
-(p8) mov GR_Offs = 0xE // 16 <= |x| < 32
- // jump if x is NaTVal, NaN, +/-0 or +/-INF?
-(p10) br.cond.spnt tgammaf_spec_args
-};;
-.pred.rel "mutex",p14,p15
-.pred.rel "mutex",p6,p9
-{ .mfi
-(p9) mov GR_Offs = 0x1C // 32 <= |x|
-(p14) fma.s1 FR_X2mX = FR_NormX,FR_NormX,FR_NormX // x^2-|x|
-(p9) tbit.z.unc p0,p8 = GR_Arg,50
-}
-{ .mfi
- ldfpd FR_LocalMin,FR_10 = [GR_ad_Data],16
-(p15) fms.s1 FR_X2mX = FR_NormX,FR_NormX,FR_NormX // x^2-|x|
-(p6) add GR_Offs = 0x7,GR_Offs // 24 <= x < 32
-};;
-.pred.rel "mutex",p8,p12
-{ .mfi
- add GR_ad_Ce = 0x50,GR_ad_Data
-(p15) fcmp.lt.unc.s1 p10,p0 = f8,f1 // p10 if 0 <= x < 1
- mov GR_OvfNzBound = 2
-}
-{ .mib
- ldfpd FR_S32,FR_S31 = [GR_ad_Data],16
-(p8) add GR_Offs = 0x7,GR_Offs // 40 <= |x|
- // jump if 1 <= x < 2
-(p11) br.cond.spnt tgammaf_from_1_to_2
-};;
-{ .mfi
- shladd GR_ad_Ce = GR_Offs,4,GR_ad_Ce
- fcvt.xf FR_Xt = FR_iXt // [x]
-(p13) cmp.eq.unc p7,p0 = r0,GR_Offs // p7 if 2 <= |x| < 8
-}
-{ .mfi
- shladd GR_ad_Co = GR_Offs,4,GR_ad_Data
- fma.s1 FR_6 = FR_2,FR_2,FR_2
- mov GR_ExpOf05 = 0x7FC
-};;
-{ .mfi
-(p13) getf.sig GR_Sig = FR_iXt // if |x| >= 2
- frcpa.s1 FR_Rcp0,p0 = f1,FR_NormX
-(p10) shr GR_Arg = GR_Arg,51
-}
-{ .mib
- ldfpd FR_C01,FR_C11 = [GR_ad_Co],16
-(p7) mov GR_Correction = 2
- // jump if 0 < x < 1
-(p10) br.cond.spnt tgammaf_from_0_to_1
-};;
-{ .mfi
- ldfpd FR_C21,FR_C31 = [GR_ad_Ce],16
- fma.s1 FR_Rq2 = f1,f1,FR_1mX // 2 - |x|
-(p14) sub GR_Correction = r0,GR_Correction
-}
-{ .mfi
- ldfpd FR_C41,FR_C51 = [GR_ad_Co],16
-(p14) fcvt.xf FR_rs = FR_rs
-(p14) add GR_ad_SinO = 0x3A0,GR_ad_Data
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- ldfpd FR_C00,FR_C10 = [GR_ad_Ce],16
- nop.f 0
-(p14) sub GR_Sig = GR_Correction,GR_Sig
-}
-{ .mfi
- ldfpd FR_C20,FR_C30 = [GR_ad_Co],16
- fma.s1 FR_Rq1 = FR_1mX,FR_2,FR_X2mX // (x-1)*(x-2)
-(p15) sub GR_Sig = GR_Sig,GR_Correction
-};;
-{ .mfi
-(p14) ldfpd FR_S01,FR_S11 = [GR_ad_SinO],16
- fma.s1 FR_Rq3 = FR_2,f1,FR_1mX // 3 - |x|
- and GR_RqDeg = 0x6,GR_Sig
-}
-{ .mfi
- ldfpd FR_C40,FR_C50 = [GR_ad_Ce],16
-(p14) fma.d.s0 FR_X = f0,f0,f8 // set deno flag
- mov GR_NanBound = 0x30016 // -2^23
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
-(p14) add GR_ad_SinE = 0x3C0,GR_ad_Data
-(p15) fms.s1 FR_r = FR_NormX,f1,FR_Xt // r = x - [x]
- cmp.eq p8,p0 = 2,GR_RqDeg
-}
-{ .mfi
- ldfpd FR_An,FR_OvfBound = [GR_ad_Co]
-(p14) fms.s1 FR_r = FR_Xt,f1,FR_NormX // r = |x - [x]|
- cmp.eq p9,p0 = 4,GR_RqDeg
-};;
-.pred.rel "mutex",p8,p9
-{ .mfi
-(p14) ldfpd FR_S21,FR_S00 = [GR_ad_SinE],16
-(p8) fma.s1 FR_Rq0 = FR_2,f1,FR_1mX // (3-x)
- tbit.z p0,p6 = GR_Sig,0
-}
-{ .mfi
-(p14) ldfpd FR_S10,FR_S20 = [GR_ad_SinO],16
-(p9) fma.s1 FR_Rq0 = FR_2,FR_2,FR_1mX // (5-x)
- cmp.eq p10,p0 = 6,GR_RqDeg
-};;
-{ .mfi
-(p14) getf.s GR_Arg = f8
-(p14) fcmp.eq.unc.s1 p13,p0 = FR_NormX,FR_Xt
-(p14) mov GR_ZeroResBound = 0xC22C // -43
-}
-{ .mfi
-(p14) ldfe FR_InvAn = [GR_ad_SinE]
-(p10) fma.s1 FR_Rq0 = FR_6,f1,FR_1mX // (7-x)
- cmp.eq p7,p0 = r0,GR_RqDeg
-};;
-{ .mfi
-(p14) cmp.ge.unc p11,p0 = GR_SignExp,GR_NanBound
- fma.s1 FR_Rq2 = FR_Rq2,FR_6,FR_X2mX // (x-3)*(x-4)
-(p14) shl GR_ZeroResBound = GR_ZeroResBound,16
-}
-{ .mfb
-(p14) mov GR_OvfNzBound = 0x802
-(p14) fms.s1 FR_rs = FR_rs,f1,FR_NormX // rs = round(x) - x
- // jump if x < -2^23 i.e. x is negative integer
-(p11) br.cond.spnt tgammaf_singularity
-};;
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_Rq1 = f0,f0,f1
-(p14) shl GR_OvfNzBound = GR_OvfNzBound,20
-}
-{ .mfb
- nop.m 0
- fma.s1 FR_Rq3 = FR_Rq3,FR_10,FR_X2mX // (x-5)*(x-6)
- // jump if x is negative integer such that -2^23 < x < 0
-(p13) br.cond.spnt tgammaf_singularity
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C01 = FR_C01,f1,FR_r
-(p14) mov GR_ExpOf05 = 0xFFFE
-}
-{ .mfi
-(p14) cmp.eq.unc p7,p0 = GR_Arg,GR_OvfNzBound
- fma.s1 FR_C11 = FR_C11,f1,FR_r
-(p14) cmp.ltu.unc p11,p0 = GR_Arg,GR_OvfNzBound
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,f1,FR_r
-(p14) cmp.ltu.unc p9,p0 = GR_ZeroResBound,GR_Arg
-}
-{ .mfb
- nop.m 0
- fma.s1 FR_C31 = FR_C31,f1,FR_r
- // jump if argument is close to 0 negative
-(p11) br.cond.spnt tgammaf_overflow
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C41 = FR_C41,f1,FR_r
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s1 FR_C51 = FR_C51,f1,FR_r
- // jump if x is negative noninteger such that -2^23 < x < -43
-(p9) br.cond.spnt tgammaf_underflow
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_rs2 = FR_rs,FR_rs,f0
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p14) fma.s1 FR_S01 = FR_rs,FR_rs,FR_S01
- // jump if argument is 0x80200000
-(p7) br.cond.spnt tgammaf_overflow_near0_bound
-};;
-{ .mfi
- nop.m 0
-(p6) fnma.s1 FR_Rq1 = FR_Rq1,FR_Rq0,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_Rq2 = FR_Rq2,FR_Rq3,f0
- and GR_Sig = 0x7,GR_Sig
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C01 = FR_C01,FR_r,FR_C00
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C11 = FR_C11,FR_r,FR_C10
- cmp.eq p6,p7 = r0,GR_Sig // p6 if |x| from one of base intervals
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_r,FR_C20
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C31 = FR_C31,FR_r,FR_C30
-(p7) cmp.lt.unc p9,p0 = 2,GR_RqDeg
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S11 = FR_rs,FR_rs,FR_S11
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S21 = FR_rs,FR_rs,FR_S21
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C41 = FR_C41,FR_r,FR_C40
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S32 = FR_rs2,FR_S32,FR_S31
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq2,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C51 = FR_C51,FR_r,FR_C50
- nop.i 0
-};;
-{ .mfi
-(p14) getf.exp GR_SignExp = FR_rs
- fma.s1 FR_C01 = FR_C01,FR_C11,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S01 = FR_S01,FR_rs2,FR_S00
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C21 = FR_C21,FR_C31,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // NR-iteration
-(p14) fnma.s1 FR_InvNormX1 = FR_Rcp0,FR_NormX,f1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S11 = FR_S11,FR_rs2,FR_S10
-(p14) tbit.z.unc p11,p12 = GR_SignExp,17
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S21 = FR_S21,FR_rs2,FR_S20
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p15) fcmp.lt.unc.s1 p0,p13 = FR_NormX,FR_OvfBound
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S32 = FR_rs2,FR_S32,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_C41 = FR_C41,FR_C51,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p7) fma.s1 FR_An = FR_Rq1,FR_An,f0
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- nop.f 0
- // jump if x > 35.04010009765625
-(p13) br.cond.spnt tgammaf_overflow
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
-(p14) fma.s1 FR_InvNormX1 = FR_Rcp0,FR_InvNormX1,FR_Rcp0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S01 = FR_S01,FR_S11,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_S21 = FR_S21,FR_S32,f0
- nop.i 0
-};;
-{ .mfi
-(p14) getf.exp GR_SignExp = FR_NormX
- fma.s1 FR_C01 = FR_C01,FR_C21,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_C41 = FR_C41,FR_An,f0
-(p14) mov GR_ExpOf1 = 0x2FFFF
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
-(p14) fnma.s1 FR_InvNormX2 = FR_InvNormX1,FR_NormX,f1
- nop.i 0
-};;
-.pred.rel "mutex",p11,p12
-{ .mfi
- nop.m 0
-(p12) fnma.s1 FR_S01 = FR_S01,FR_S21,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_S01 = FR_S01,FR_S21,f0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_GAMMA = FR_C01,FR_C41,f0
-(p14) tbit.z.unc p6,p7 = GR_Sig,0
-}
-{ .mfb
- nop.m 0
-(p15) fma.s.s0 f8 = FR_C01,FR_C41,f0
-(p15) br.ret.spnt b0 // exit for positives
-};;
-.pred.rel "mutex",p11,p12
-{ .mfi
- nop.m 0
-(p12) fms.s1 FR_S01 = FR_rs,FR_S01,FR_rs
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s1 FR_S01 = FR_rs,FR_S01,FR_rs
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
- fma.s1 FR_InvNormX2 = FR_InvNormX1,FR_InvNormX2,FR_InvNormX1
- cmp.eq p10,p0 = 0x23,GR_Offs
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fma.s1 FR_GAMMA = FR_S01,FR_GAMMA,f0
- cmp.gtu p8,p0 = GR_SignExp,GR_ExpOf1
-}
-{ .mfi
- nop.m 0
-(p7) fnma.s1 FR_GAMMA = FR_S01,FR_GAMMA,f0
- cmp.eq p9,p0 = GR_SignExp,GR_ExpOf1
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
- fnma.s1 FR_InvNormX1 = FR_InvNormX2,FR_NormX,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_InvNormX2 = FR_InvNormX2,FR_InvAn,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- frcpa.s1 FR_Rcp0,p0 = f1,FR_GAMMA
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_Multplr = FR_NormX,f1,f1 // x - 1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
- fnma.s1 FR_Rcp1 = FR_Rcp0,FR_GAMMA,f1
- nop.i 0
-};;
-.pred.rel "mutex",p8,p9
-{ .mfi
- nop.m 0
- // 1/x or 1/(An*x)
-(p8) fma.s1 FR_Multplr = FR_InvNormX2,FR_InvNormX1,FR_InvNormX2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p9) fma.s1 FR_Multplr = f1,f1,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
- fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
- fnma.s1 FR_Rcp2 = FR_Rcp1,FR_GAMMA,f1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- // NR-iteration
- fma.s1 FR_Rcp1 = FR_Rcp1,FR_Multplr,f0
- nop.i 0
-};;
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = FR_Rcp1,FR_Rcp2,FR_Rcp1
- br.ret.sptk b0
-};;
-
-// here if 0 < x < 1
-//--------------------------------------------------------------------
-.align 32
-tgammaf_from_0_to_1:
-{ .mfi
- cmp.lt p7,p0 = GR_Arg,GR_ExpOf05
- // NR-iteration
- fnma.s1 FR_Rcp1 = FR_Rcp0,FR_NormX,f1
- cmp.eq p8,p0 = GR_Arg,GR_ExpOf05
-}
-{ .mfi
- cmp.gt p9,p0 = GR_Arg,GR_ExpOf05
- fma.s1 FR_r = f0,f0,FR_NormX // reduced arg for (0;1)
- mov GR_ExpOf025 = 0x7FA
-};;
-{ .mfi
- getf.s GR_ArgNz = f8
- fma.d.s0 FR_X = f0,f0,f8 // set deno flag
- shl GR_OvfNzBound = GR_OvfNzBound,20
-}
-{ .mfi
-(p8) mov GR_Tbl12Offs = 0x80 // 0.5 <= x < 0.75
- nop.f 0
-(p7) cmp.ge.unc p6,p0 = GR_Arg,GR_ExpOf025
-};;
-.pred.rel "mutex",p6,p9
-{ .mfi
-(p9) mov GR_Tbl12Offs = 0xC0 // 0.75 <= x < 1
- nop.f 0
-(p6) mov GR_Tbl12Offs = 0x40 // 0.25 <= x < 0.5
-}
-{ .mfi
- add GR_ad_Ce = 0x2C0,GR_ad_Data
- nop.f 0
- add GR_ad_Co = 0x2A0,GR_ad_Data
-};;
-{ .mfi
- add GR_ad_Co = GR_ad_Co,GR_Tbl12Offs
- nop.f 0
- cmp.lt p12,p0 = GR_ArgNz,GR_OvfNzBound
-}
-{ .mib
- add GR_ad_Ce = GR_ad_Ce,GR_Tbl12Offs
- cmp.eq p7,p0 = GR_ArgNz,GR_OvfNzBound
- // jump if argument is 0x00200000
-(p7) br.cond.spnt tgammaf_overflow_near0_bound
-};;
-{ .mmb
- ldfpd FR_A7,FR_A6 = [GR_ad_Co],16
- ldfpd FR_A5,FR_A4 = [GR_ad_Ce],16
- // jump if argument is close to 0 positive
-(p12) br.cond.spnt tgammaf_overflow
-};;
-{ .mfi
- ldfpd FR_A3,FR_A2 = [GR_ad_Co],16
- // NR-iteration
- fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0
- nop.i 0
-}
-{ .mfb
- ldfpd FR_A1,FR_A0 = [GR_ad_Ce],16
- nop.f 0
- br.cond.sptk tgamma_from_0_to_2
-};;
-
-// here if 1 < x < 2
-//--------------------------------------------------------------------
-.align 32
-tgammaf_from_1_to_2:
-{ .mfi
- add GR_ad_Co = 0x2A0,GR_ad_Data
- fms.s1 FR_r = f0,f0,FR_1mX
- shr GR_TblOffs = GR_Arg,47
-}
-{ .mfi
- add GR_ad_Ce = 0x2C0,GR_ad_Data
- nop.f 0
- mov GR_TblOffsMask = 0x18
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- and GR_TblOffs = GR_TblOffs,GR_TblOffsMask
-};;
-{ .mfi
- shladd GR_ad_Co = GR_TblOffs,3,GR_ad_Co
- nop.f 0
- nop.i 0
-}
-{ .mfi
- shladd GR_ad_Ce = GR_TblOffs,3,GR_ad_Ce
- nop.f 0
- cmp.eq p6,p7 = 8,GR_TblOffs
-};;
-{ .mmi
- ldfpd FR_A7,FR_A6 = [GR_ad_Co],16
- ldfpd FR_A5,FR_A4 = [GR_ad_Ce],16
- nop.i 0
-};;
-{ .mmi
- ldfpd FR_A3,FR_A2 = [GR_ad_Co],16
- ldfpd FR_A1,FR_A0 = [GR_ad_Ce],16
- nop.i 0
-};;
-
-.align 32
-tgamma_from_0_to_2:
-{ .mfi
- nop.m 0
-(p6) fms.s1 FR_r = FR_r,f1,FR_LocalMin
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
-(p10) fnma.s1 FR_Rcp2 = FR_Rcp1,FR_NormX,f1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fms.s1 FR_r2 = FR_r,FR_r,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r,FR_A6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A5 = FR_A5,FR_r,FR_A4
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r,FR_A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_A1 = FR_A1,FR_r,FR_A0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- // NR-iteration
-(p10) fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A7 = FR_A7,FR_r2,FR_A5
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r4 = FR_r2,FR_r2,f0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fma.s1 FR_A3 = FR_A3,FR_r2,FR_A1
- nop.i 0
-};;
-{ .mfi
- nop.m 0
-(p10) fma.s1 FR_GAMMA = FR_A7,FR_r4,FR_A3
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p11) fma.s.s0 f8 = FR_A7,FR_r4,FR_A3
- nop.i 0
-};;
-{ .mfb
- nop.m 0
-(p10) fma.s.s0 f8 = FR_GAMMA,FR_Rcp2,f0
- br.ret.sptk b0
-};;
-
-
-// overflow
-//--------------------------------------------------------------------
-.align 32
-tgammaf_overflow_near0_bound:
-.pred.rel "mutex",p14,p15
-{ .mfi
- mov GR_fpsr = ar.fpsr
- nop.f 0
-(p15) mov r8 = 0x7f8
-}
-{ .mfi
- nop.m 0
- nop.f 0
-(p14) mov r8 = 0xff8
-};;
-{ .mfi
- nop.m 0
- nop.f 0
- shl r8 = r8,20
-};;
-{ .mfi
- sub r8 = r8,r0,1
- nop.f 0
- extr.u GR_fpsr = GR_fpsr,10,2 // rounding mode
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- // set p8 to 0 in case of overflow and to 1 otherwise
- // for negative arg:
- // no overflow if rounding mode either Z or +Inf, i.e.
- // GR_fpsr > 1
-(p14) cmp.lt p8,p0 = 1,GR_fpsr
- nop.f 0
- // for positive arg:
- // no overflow if rounding mode either Z or -Inf, i.e.
- // (GR_fpsr & 1) == 0
-(p15) tbit.z p0,p8 = GR_fpsr,0
-};;
-{ .mib
-(p8) setf.s f8 = r8 // set result to 0x7f7fffff without
- // OVERFLOW flag raising
- nop.i 0
-(p8) br.ret.sptk b0
-};;
-
-.align 32
-tgammaf_overflow:
-{ .mfi
- nop.m 0
- nop.f 0
- mov r8 = 0x1FFFE
-};;
-{ .mfi
- setf.exp f9 = r8
- fmerge.s FR_X = f8,f8
- nop.i 0
-};;
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fnma.s.s0 f8 = f9,f9,f0 // set I,O and -INF result
- mov GR_TAG = 261 // overflow
-}
-{ .mfb
- nop.m 0
-(p15) fma.s.s0 f8 = f9,f9,f0 // set I,O and +INF result
- br.cond.sptk tgammaf_libm_err
-};;
-
-// x is negative integer or +/-0
-//--------------------------------------------------------------------
-.align 32
-tgammaf_singularity:
-{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- mov GR_TAG = 262 // negative
-}
-{ .mfb
- nop.m 0
- frcpa.s0 f8,p0 = f0,f0
- br.cond.sptk tgammaf_libm_err
-};;
-// x is negative noninteger with big absolute value
-//--------------------------------------------------------------------
-.align 32
-tgammaf_underflow:
-{ .mfi
- mov r8 = 0x00001
- nop.f 0
- tbit.z p6,p7 = GR_Sig,0
-};;
-{ .mfi
- setf.exp f9 = r8
- nop.f 0
- nop.i 0
-};;
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fms.s.s0 f8 = f9,f9,f9
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fma.s.s0 f8 = f9,f9,f9
- br.ret.sptk b0
-};;
-
-// x for natval, nan, +/-inf or +/-0
-//--------------------------------------------------------------------
-.align 32
-tgammaf_spec_args:
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.m p7,p8 = f8,0x7 // +/-0
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p6) fma.s.s0 f8 = f8,f1,f8
-(p6) br.ret.spnt b0
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
-(p7) mov GR_TAG = 262 // negative
-(p7) frcpa.s0 f8,p0 = f1,f8
- nop.i 0
-}
-{ .mib
- nop.m 0
- nop.i 0
-(p8) br.cond.spnt tgammaf_singularity
-};;
-
-.align 32
-tgammaf_libm_err:
-{ .mfi
- alloc r32 = ar.pfs,1,4,4,0
- nop.f 0
- mov GR_Parameter_TAG = GR_TAG
-};;
-
-GLOBAL_LIBM_END(tgammaf)
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#
-
diff --git a/sysdeps/ia64/fpu/w_tgammal.S b/sysdeps/ia64/fpu/w_tgammal.S
deleted file mode 100644
index f64e213266..0000000000
--- a/sysdeps/ia64/fpu/w_tgammal.S
+++ /dev/null
@@ -1,4487 +0,0 @@
-.file "tgammal.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 01/16/02 Initial version
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 03/17/03 Moved tgammal_libm_err label into .proc region
-// 04/10/03 Changed error codes for overflow and negative integers
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// long double tgammal(long double)
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8-f15
-// f32-f127
-//
-// General Purpose Registers: r32-r67
-//
-// Predicate Registers: p6-p15
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// tgammal(+inf) = +inf
-// tgammal(-inf) = QNaN
-// tgammal(+/-0) = +/-inf
-// tgammal(x<0, x - integer) = QNaN
-// tgammal(SNaN) = QNaN
-// tgammal(QNaN) = QNaN
-//
-//*********************************************************************
-// Overview of operation
-//==============================================================
-//
-// Algorithm description
-// ---------------------
-//
-// There are 3 main paths in the implementation
-// (and additional special values branches)
-//
-// 1) |X| >= 13 - Stirling formula computation
-// a) Positive arguments:
-// TGAMMAL(X) = exp((X-0.5)*ln(X) - X + C + S(Z)),
-// where C = 0.5*ln(2*Pi) , Z = 1/Z, S(Z) - Bernulli polynomial
-// (up to 'B18' term).
-// Some of these calculation done in multiprecision.
-// Ln returns multiprecision result too
-// and exp also accepts and returns pair of values.
-//
-// b) Negative arguments
-// TGAMMAL(-X) = PI/(X*TGAMMAL(X)*sin(PI*X)).
-// (X*sin(PI*X))/PI calculated in parallel with TGAMMAL.
-// Here we use polynomial of 9th degree with 2 multiprecision steps.
-// Argument range reduction is:
-// N = [x] with round to nearest, r = x - N, -0.5 <= r < 0.5
-// After ((X-0.5)*ln(X) - X + C + S(Z)) completed we just invert
-// its result and compute exp with negative argument (1/exp(x)=exp(-x))
-// Then we multiply exp result to PI/(X*sin(PI*X)).
-//
-// 2) 1 <= |X| < 13 - Polynomial part
-// a) Positive arguments:
-// All values are splitted to such intervals as:
-// #0->[2;3], #1->[3,4], #2->[5,6]...
-// For even intervals we just use polynomial computation with degree 20
-// and first 6 multiprecision computations.
-// Range reduction looks like
-// N = [x] with truncate, r = x - N - 0.5, -0.5 <= r < 0.5
-// For odd intervals we use reccurent formula:
-// TGAMMAL(X) = TGAMMA(X-1)*(X-1)
-// [1;2] interval is splitted to 3 subranges:
-// [1;1.25], [1.25;1.75], [1.75;2] with the same polynomial forms
-//
-// b) Negative arguments
-// TGAMMAL(-X) = PI/(X*TGAMMAL(X)*sin(PI*X)).
-// (X*sin(PI*X))/PI calculated in parallel with TGAMMAL.
-// After multiplication by TGAMMAL(X) result we calculate reciprocal
-// and get final result.
-//
-// 3) 0 < |X| < 1 - Near 0 part
-// a) Here we use reccurent formula TGAMMAL(X) = TGAMMAL(X+1)/X
-// TGAMMAL(X+1) calculated as shown above,
-// 1/X result obtained in parallel. Then we just multiply these values.
-// There is only additional separated subrange: [0;0.125] with specific
-// polynomial constants set.
-//
-// b) Negative arguments
-// TGAMMAL(-X) = PI/(TGAMMAL(X+1)*sin(PI*X)).
-// There is no need to compute 1/X.
-
-
-
-RODATA
-
-.align 16
-LOCAL_OBJECT_START(Constants_Tgammal_log_80_Q)
-// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
-data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
-data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-data4 0xA51BE0AF,0x92492453,0x00003FFC,0x00000000
-data4 0xA0CFD29F,0xAAAAAB73,0x0000BFFC,0x00000000
-data4 0xCCCE3872,0xCCCCCCCC,0x00003FFC,0x00000000
-data4 0xFFFFB4FB,0xFFFFFFFF,0x0000BFFC,0x00000000
-data4 0xAAAAAAAB,0xAAAAAAAA,0x00003FFD,0x00000000
-data4 0x00000000,0x80000000,0x0000BFFE,0x00000000
-LOCAL_OBJECT_END(Constants_Tgammal_log_80_Q)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_log_80_Z_G_H_h1)
-// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
-data4 0x00008000,0x3F800000,0x00000000,0x00000000
-data4 0x00000000,0x00000000,0x00000000,0x00000000
-data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000
-data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000
-data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000
-data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000
-data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000
-data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
-data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000
-data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
-data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
-data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
-data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
-data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000
-data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
-data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
-data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
-data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
-data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
-data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
-data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
-data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
-data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
-data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
-data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000
-data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
-data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
-data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
-data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
-data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
-data4 0x00004211,0x3F042108,0x3F29516A,0x00000000
-data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
-LOCAL_OBJECT_END(Constants_Tgammal_log_80_Z_G_H_h1)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_log_80_Z_G_H_h2)
-// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
-data4 0x00008000,0x3F800000,0x00000000,0x00000000
-data4 0x00000000,0x00000000,0x00000000,0x00000000
-data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
-data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000
-data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
-data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
-data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
-data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
-data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
-data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
-data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
-data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000
-data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
-data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
-data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000
-data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
-data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
-data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
-data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
-data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
-data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
-data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
-data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
-data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
-data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
-data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
-data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
-data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
-data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
-data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
-data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
-data4 0xBE11C424,0xA49C8DB5,0x0000BFE0,0x00000000
-LOCAL_OBJECT_END(Constants_Tgammal_log_80_Z_G_H_h2)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_log_80_h3_G_H)
-// h3 IEEE double extended, H3 and G3 IEEE single
-data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
-data4 0x9B7FAD21,0x90051030,0x00003FD8,0x3F7FF400
-data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
-data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
-data4 0xCA964D95,0xCE65C1D8,0x0000BFD8,0x3F7FDC00
-data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
-data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
-data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
-data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
-data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
-data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
-data4 0x2F053150,0xB25CA912,0x0000BFDA,0x3F7FA420
-data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
-data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
-data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
-data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
-data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
-data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
-data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
-data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
-data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
-data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
-data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
-data4 0x1F34A7EB,0x9A995A97,0x0000BFDC,0x3F7F4488
-data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
-data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
-data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
-data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
-data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
-data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
-data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
-data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
-data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
-data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
-data4 0x3A87F20B,0x3A97F68B,0x3AA7EB86,0x3AB7E101
-data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
-data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
-data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
-data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
-data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
-LOCAL_OBJECT_END(Constants_Tgammal_log_80_h3_G_H)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_stirling)
-//0.5*ln(2*Pi)=9.1893853320467266954096885e-01 + 7.2239360881843238220057778e-17
-data8 0x3FED67F1C864BEB4, 0x3C94D252F2400510
-// Bernulli numbers
-data8 0xAAAAAAAAAAAAAAAB, 0x00003FFB //B2 = 8.3333333333333333333333333333e-02
-data8 0xBF66C16C16C16C17 //B4 = -2.7777777777777777777777777778e-03
-data8 0x3F4A01A01A01A01A //B6 = 7.9365079365079365079365079365e-04
-data8 0xBF43813813813814 //B8 = -5.9523809523809523809523809524e-04
-data8 0x3F4B951E2B18FF23 //B10 = 8.4175084175084175084175084175e-04
-data8 0xBF5F6AB0D9993C7D //B12 = -1.9175269175269175269175269175e-03
-data8 0x3F7A41A41A41A41A //B14 = 6.4102564102564102564102564103e-03
-data8 0xBF9E4286CB0F5398 //B16 = -2.9550653594771241830065359477e-02
-data8 0x3FC6FE96381E0680 //B18 = 1.7964437236883057316493849002e-01
-data8 0x3FE0000000000000 // 0.5
-LOCAL_OBJECT_END(Constants_Tgammal_stirling)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_sin)
-// Polynomial coefficients for the sin(Pi*x)/Pi, 0 <= |x| < 0.5
-//A2 = 8.1174242528335360802316245099e-01 + 5.1302254650266899774269946201e-18
-data8 0x3FE9F9CB402BC46C, 0x3C57A8B3819B7CEC
-//A1 = -1.6449340668482264060656916627e+00 + -3.0210280454695477893051351574e-17
-data8 0xBFFA51A6625307D3, 0xBC816A402079D0EF
-data8 0xF3AEF1FFCCE6C813, 0x0000BFE3 //A9 = -7.0921197799923779127089910470e-09
-data8 0x87D54408E6D4BB9D, 0x00003FE9 //A8 = 2.5300880778252693946712766029e-07
-data8 0xEA12033DCE7B8ED9, 0x0000BFED //A7 = -6.9758403885461690048189307819e-06
-data8 0x9BA38C952A59D1A8, 0x00003FF2 //A6 = 1.4842878710882320255092707181e-04
-data8 0x99C0B55178FF0E38, 0x0000BFF6 //A5 = -2.3460810348048124421268761990e-03
-data8 0xD63402E798FEC896, 0x00003FF9 //A4 = 2.6147847817611456327417812320e-02
-data8 0xC354723906D95E92, 0x0000BFFC //A3 = -1.9075182412208257558294507774e-01
-LOCAL_OBJECT_END(Constants_Tgammal_sin)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_exp_64_Arg)
-data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000 // L_hi = hi part log(2)/2^12
-data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000 // L_lo = lo part log(2)/2^12
-LOCAL_OBJECT_END(Constants_Tgammal_exp_64_Arg)
-
-LOCAL_OBJECT_START(Constants_Tgammal_exp_64_A)
-data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000 // A3
-data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000 // A2
-data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000 // A1
-LOCAL_OBJECT_END(Constants_Tgammal_exp_64_A)
-
-LOCAL_OBJECT_START(Constants_Tgammal_exp_64_T1)
-data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
-data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
-data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
-data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
-data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
-data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
-data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
-data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
-data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
-data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
-data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
-data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
-data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
-data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
-data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
-data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
-LOCAL_OBJECT_END(Constants_Tgammal_exp_64_T1)
-
-LOCAL_OBJECT_START(Constants_Tgammal_exp_64_T2)
-data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
-data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
-data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
-data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
-data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
-data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
-data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
-data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
-data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
-data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
-data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
-data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
-data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
-data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
-data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
-data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
-LOCAL_OBJECT_END(Constants_Tgammal_exp_64_T2)
-
-LOCAL_OBJECT_START(Constants_Tgammal_exp_64_W1)
-data8 0x0000000000000000, 0xBE384454171EC4B4
-data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
-data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
-data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
-data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
-data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
-data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
-data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
-data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
-data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
-data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
-data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
-data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
-data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
-data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
-data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
-data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
-data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
-data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
-data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
-data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
-data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
-data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
-data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
-data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
-data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
-data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
-data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
-data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
-data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
-data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
-data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
-LOCAL_OBJECT_END(Constants_Tgammal_exp_64_W1)
-
-LOCAL_OBJECT_START(Constants_Tgammal_exp_64_W2)
-data8 0x0000000000000000, 0xBE641F2537A3D7A2
-data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
-data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
-data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
-data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
-data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
-data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
-data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
-data8 0xBE56856B49BFF529, 0x3E66DD3300508651
-data8 0x3E51165FC114BC13, 0x3E53333DC453290F
-data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
-data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
-data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
-data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
-data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
-data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
-data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
-data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
-data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
-data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
-data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
-data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
-data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
-data8 0xBE559725ADE45917, 0xBE68C29C042FC476
-data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
-data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
-data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
-data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
-data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
-data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
-data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
-data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
-LOCAL_OBJECT_END(Constants_Tgammal_exp_64_W2)
-
-
-
-LOCAL_OBJECT_START(Constants_Tgammal_poly)
-
-// Polynomial coefficients for the tgammal(x), 2 <= |x| < 3
-//A5 = 2.8360780594841213109180699803e-02 + 2.2504152891014320704380000000e-19
-data8 0x3F9D0A9BC49353D2, 0x3C109AEA0F23CE2D
-//A4 = 1.0967323400216015538699565468e-01 + 9.9225166000430644587276000000e-18
-data8 0x3FBC138B89492C5B, 0x3C66E138506D5652
-//A3 = 2.5387124684114281691904579930e-01 + 2.2667777637607113205546600000e-17
-data8 0x3FD03F6D2FA4F4F8, 0x3C7A2258DA8CD8B1
-data8 0xC5866457328BC39B, 0x00003FE3 //A20 = 5.7487331964156762795056629138e-09
-data8 0xE93D9F1ACD59C929, 0x0000BFE4 //A19= -1.3576396100397317396956445658e-08
-data8 0xE33389C8F6CBA813, 0x00003FE5 //A18 = 2.6449714924964597501721434271e-08
-data8 0x8FE7B25B9CD26D2A, 0x0000BFE7 //A17= -6.7011017946055513660266853311e-08
-data8 0xB89F4721BFBC15B0, 0x00003FE8 //A16 = 1.7194280320370423615174419192e-07
-data8 0xE49CBDC1874EBABA, 0x0000BFE9 //A15= -4.2582353660153782928729466776e-07
-data8 0x913AF50A336129CA, 0x00003FEB //A14 = 1.0820500665257088283172211622e-06
-data8 0xABCF0F7313B3B332, 0x0000BFEC //A13= -2.5601510627710417669568115706e-06
-//A2 = 6.5455857798133676439533701341e-01 + 1.3292075193155190798867000000e-18
-data8 0x3FE4F224D4B7E01C, 0x3C3885014A2B8319
-//A1 = 9.3473452162608550164435428087e-01 + 3.2785154201417136611642400000e-17
-data8 0x3FEDE9585F1A7093, 0x3C82E63C1B5028BF
-//A0 = 1.3293403881791368004172682049e+00 + 2.2005689328949279282607500000e-16
-data8 0x3FF544FA6D47B38F, 0x3CAFB6AA9829E81F
-data8 0xF3668F799997C76D, 0x00003FED //A12 = 7.2539039479124273660331538367e-06
-data8 0xD6C6BBD54CDEAEB1, 0x0000BFEE //A11= -1.2801665282681088568639378920e-05
-data8 0x809E4763B06F6883, 0x00003FF1 //A10 = 6.1329973609906572700697893187e-05
-data8 0x8443B000F8F9A71A, 0x00003FED //A9 = 3.9417864189995544394564413428e-06
-data8 0xC5C7E6D62A6991D8, 0x00003FF4 //A8 = 7.5447412886334708803357581519e-04
-data8 0xD2AF690725C62D88, 0x00003FF5 //A7 = 1.6074004848394703022110823298e-03
-data8 0xAA44E635D4B7B682, 0x00003FF8 //A6 = 1.0392403425906843901680697839e-02
-//
-// Polynomial coefficients for the tgammal(x), 4 <= |x| < 5
-//A5 = 1.1600674810589555185913468449e+00 + 3.0229979112715124660731000000e-17
-data8 0x3FF28FA2EB44D22E, 0x3C816D285234C815
-//A4 = 3.1374268565470946334983182169e+00 + 1.3694868953995008497659600000e-16
-data8 0x400919734073B1E1, 0x3CA3BC83CD7E9565
-//A3 = 7.0834593993741057360580271052e+00 + 3.3899702569039156457249800000e-16
-data8 0x401C5576617B6C1F, 0x3CB86D6431213296
-data8 0xA4A5FB49C094966B, 0x00003FDA //A20 = 9.3591760106637809309720130828e-12
-data8 0xA9260DA0F51D7ED8, 0x00003FDD //A19 = 7.6919898428091669411809372180e-11
-data8 0xA16441DFB14BD6E1, 0x00003FE0 //A18 = 5.8713933014370867331213494535e-10
-data8 0x95F098D9C2234849, 0x00003FE3 //A17 = 4.3638234584169302324461091035e-09
-data8 0x8581817400E5AD2B, 0x00003FE6 //A16 = 3.1084260332429955234755367839e-08
-data8 0xE272940E373EBE15, 0x00003FE8 //A15 = 2.1089573544273993580820317236e-07
-data8 0xB6B3391145D226FB, 0x00003FEB //A14 = 1.3612217421122787182942706259e-06
-data8 0x8B9428C4DF95FCD5, 0x00003FEE //A13 = 8.3195416382628990683949003789e-06
-//A2 = 1.2665135075272345943631080445e+01 + 9.8721896915973874255877000000e-16
-data8 0x4029548C95A76F38, 0x3CD1C8BE715B8E13
-//A1 = 1.6154969393303069580269948347e+01 + 9.6850518810678379641029000000e-16
-data8 0x403027AC12FC1E1E, 0x3CD172711C15501B
-//A0 = 1.1631728396567448058362970187e+01 + 8.7078125362814179268673000000e-16
-data8 0x40274371E7866C65, 0x3CCF5F8A1A5FACA0
-data8 0xC94A903114272C03, 0x00003FF0 //A12 = 4.7991576836334427243159066630e-05
-data8 0x8844262960E04BE6, 0x00003FF3 //A11 = 2.5990716419283017929486175141e-04
-data8 0xAC5418A76767678D, 0x00003FF5 //A10 = 1.3147621245497801180184809726e-03
-data8 0xCA231B6EFE959132, 0x00003FF7 //A9 = 6.1687358811367989146517222415e-03
-data8 0xDA38E39C13819D2A, 0x00003FF9 //A8 = 2.6638454961912040754759086920e-02
-data8 0xD696DF8D8389FE53, 0x00003FFB //A7 = 1.0477995539298934056097943975e-01
-data8 0xBDD5C153048BC435, 0x00003FFD //A6 = 3.7077144754791605130056406006e-01
-//
-// Polynomial coefficients for the tgammal(x), 6 <= |x| < 7
-//A5 = 6.7169398121054200601065531373e+01 + 2.9481001527213915901489600000e-15
-data8 0x4050CAD76B377BA0, 0x3CEA8DDB2B2DE93E
-//A4 = 1.6115104376855398982115730178e+02 + 1.3422421925418824418257300000e-14
-data8 0x406424D559BDC687, 0x3D0E397FDB5B33DC
-//A3 = 3.1812194028053562533386866562e+02 + 3.9881709875858650942409600000e-14
-data8 0x4073E1F377A6CF73, 0x3D26738F63FE9C4C
-data8 0xD6E1B5FF90CAABD3, 0x00003FE1 //A20 = 1.5634700199277480081025480635e-09
-data8 0xD451987B925DD37E, 0x00003FE4 //A19 = 1.2358576813211397717382327174e-08
-data8 0xBFC151B67FA58E6B, 0x00003FE7 //A18 = 8.9292951435632759686382657901e-08
-data8 0xA9034C5E1D67572E, 0x00003FEA //A17 = 6.2962205718327848327368724720e-07
-data8 0x8E40F6EAA30A71EC, 0x00003FED //A16 = 4.2394926442967995119170095258e-06
-data8 0xE3C3541B03A1C350, 0x00003FEF //A15 = 2.7151465666109594512258841637e-05
-data8 0xACE2E58436B2DDCE, 0x00003FF2 //A14 = 1.6487723793339152877117376243e-04
-data8 0xF7EAF8D8D1CAA3D1, 0x00003FF4 //A13 = 9.4573158112768812533636022369e-04
-//A2 = 4.8664351544258869353143381886e+02 + 4.7424047995944376868895400000e-14
-data8 0x407E6A4BD6D9463B, 0x3D2AB2868D79E192
-//A1 = 5.1615277644992545447166776285e+02 + 3.0901956935588717379242200000e-14
-data8 0x40802138E2DC003B, 0x3D216570FB601AEA
-//A0 = 2.8788527781504433278314536437e+02 + 2.8213174117085164944959600000e-14
-data8 0x4071FE2A1911F7D6, 0x3D1FC3E4CF4DB5AF
-data8 0xA72B88E48D3D1BAB, 0x00003FF7 //A12 = 5.1016252919939028020562237471e-03
-data8 0xD2EFB1067DB4FFB2, 0x00003FF9 //A11 = 2.5749059441230515023024615917e-02
-data8 0xF788AF9522205C24, 0x00003FFB //A10 = 1.2086617635601742290221382521e-01
-data8 0x861A6CE06CB29EAF, 0x00003FFE //A9 = 5.2384071807018493367136112163e-01
-data8 0x84FBDE0947718B58, 0x00004000 //A8 = 2.0778727617851237754568261869e+00
-data8 0xEEC1371E265A2C3A, 0x00004001 //A7 = 7.4610858525146049022238037342e+00
-data8 0xBF514B9BE68ED59D, 0x00004003 //A6 = 2.3914694993947572859629197920e+01
-//
-// Polynomial coefficients for the tgammal(x), 8 <= |x| < 9
-//A5 = 5.8487447114416836484451778233e+03 + 4.7365465221455983144182900000e-13
-data8 0x40B6D8BEA568B6FD, 0x3D60AA4D44C2589B
-//A4 = 1.2796464063087094473303295672e+04 + 1.2373341702514898266244200000e-12
-data8 0x40C8FE3B666B532D, 0x3D75C4752C5B4783
-//A3 = 2.2837606581322281272150576115e+04 + 2.6598064610627891398831000000e-13
-data8 0x40D64D66D23A7764, 0x3D52B77B3A10EA5C
-data8 0xB23418F75B0BE22A, 0x00003FE9 //A20 = 3.3192989594206801808678663868e-07
-data8 0xA984A7BC8B856ED2, 0x00003FEC //A19 = 2.5260177918662350066375115788e-06
-data8 0x921A49729416372C, 0x00003FEF //A18 = 1.7416797068239475136398213598e-05
-data8 0xF5BB9415CC399CA4, 0x00003FF1 //A17 = 1.1717449586392814601938207599e-04
-data8 0xC50B91A40B81F9DF, 0x00003FF4 //A16 = 7.5166775151159345732094429036e-04
-data8 0x96002572326DB203, 0x00003FF7 //A15 = 4.5776541559407384162139204300e-03
-data8 0xD81A1A595E4157BA, 0x00003FF9 //A14 = 2.6379634345126284099420760736e-02
-data8 0x92B700D0CFECADD8, 0x00003FFC //A13 = 1.4327622675407940907282658100e-01
-//A2 = 3.1237895525940199149772524834e+04 + 3.1280450505163186432331700000e-12
-data8 0x40DE8179504C0878, 0x3D8B83BB33FBB766
-//A1 = 2.9192841741344487672904506326e+04 + 7.9300780509779689630767000000e-13
-data8 0x40DC8235DF171691, 0x3D6BE6C780EE54DF
-//A0 = 1.4034407293483411194756627083e+04 + 1.4038139346291543309253700000e-12
-data8 0x40CB693422315F90, 0x3D78B23746113FCE
-data8 0xBAE50807548BC711, 0x00003FFE //A12 = 7.3005724123917935346868107005e-01
-data8 0xDE28B1F57E68CFB6, 0x00004000 //A11 = 3.4712338349724065462763671443e+00
-data8 0xF4DCA5A5FF901118, 0x00004002 //A10 = 1.5303868912154033908205911714e+01
-data8 0xF85AAA1AD5E84E5E, 0x00004004 //A9 = 6.2088539523416399361048051373e+01
-data8 0xE5AA8BB1BF02934D, 0x00004006 //A8 = 2.2966619406617480799195651466e+02
-data8 0xBF6CFEFD67F59845, 0x00004008 //A7 = 7.6570306334640770654588802417e+02
-data8 0x8DB5D2F001635C29, 0x0000400A //A6 = 2.2673639984182571062068713002e+03
-//
-// Polynomial coefficients for the tgammal(x), 10 <= |x| < 11
-//A5 = 7.2546009516580589115619659424e+05 + 1.0343348865365065212891728822e-10
-data8 0x412623A830B99290, 0x3DDC6E7C157611C4
-//A4 = 1.4756292870840241666883230209e+06 + 8.1516565365333844166705674775e-11
-data8 0x4136842D497E56AF, 0x3DD66837E4C3F9EE
-//A3 = 2.4356116926500420086085796356e+06 + 3.5508860076560925641351069404e-10
-data8 0x4142950DD8A8C1AF, 0x3DF866C8E3DD0980
-data8 0xB7FD0D1EEAC38EB4, 0x00003FF1 //A20 = 8.7732544640091602721643775932e-05
-data8 0xA9345C64AC750AE9, 0x00003FF4 //A19 = 6.4546407626804942279126469603e-04
-data8 0x8BEABC81BE1E93C9, 0x00003FF7 //A18 = 4.2699261134524096128048819443e-03
-data8 0xE1CD281EDD7315F8, 0x00003FF9 //A17 = 2.7563646660310313164706189622e-02
-data8 0xAD8A5BA6D0FD9758, 0x00003FFC //A16 = 1.6947310643831556048460963841e-01
-data8 0xFCDDA464AD3F182E, 0x00003FFE //A15 = 9.8775699098518676937088606052e-01
-data8 0xAE0DCE2F7B60D1AE, 0x00004001 //A14 = 5.4391852309591064073782104822e+00
-data8 0xE1745D9ABEB8D1A7, 0x00004003 //A13 = 2.8181819161363002758615770457e+01
-//A2 = 3.0619656223573554307222366333e+06 + 1.0819940302945474471259520006e-10
-data8 0x41475C66CFA967E4, 0x3DDDBDDB2A27334B
-//A1 = 2.6099413018962685018777847290e+06 + 3.6851882860056025385268615240e-10
-data8 0x4143E98AA6A48974, 0x3DF9530D42589AB6
-//A0 = 1.1332783889487853739410638809e+06 + 1.9339350553312096248591829758e-10
-data8 0x41314ADE639225C9, 0x3DEA946DD6C2C8D3
-data8 0x88BCFAAE71812A1C, 0x00004006 //A12 = 1.3673820009490115307300592012e+02
-data8 0x9A770F5AB540A326, 0x00004008 //A11 = 6.1786031215382040427126476507e+02
-data8 0xA170C1D2C6B413FC, 0x0000400A //A10 = 2.5830473201524594051391525170e+03
-data8 0x9AE56061CB02EB55, 0x0000400C //A9 = 9.9133441230507404119297200255e+03
-data8 0x872390769650FBE2, 0x0000400E //A8 = 3.4595564309496661629764193479e+04
-data8 0xD3E5E8D6923910C1, 0x0000400F //A7 = 1.0849181904819284819615140521e+05
-data8 0x930D70602F50B754, 0x00004011 //A6 = 3.0116351174131169193070583741e+05
-//
-// Polynomial coefficients for the tgammal(x), 12 <= |x| < 13
-//A5 = 1.2249876249976964294910430908e+08 + 6.0051348061679753770848000000e-09
-data8 0x419D34BB29FFC39D, 0x3E39CAB72E01818D
-//A4 = 2.3482765927605420351028442383e+08 + 1.1874729051592862323641700000e-08
-data8 0x41ABFE5F168D56FA, 0x3E4980338AA7B04B
-//A3 = 3.6407329688125067949295043945e+08 + 2.6657200942150363994658700000e-08
-data8 0x41B5B35150E199A5, 0x3E5C9F79C0EB5300
-data8 0xE89AE0F8D726329D, 0x00003FF9 //A20 = 2.8394164465429105626588451540e-02
-data8 0xCF90981F86E38013, 0x00003FFC //A19 = 2.0270002071785908652476845915e-01
-data8 0xA56C658079CA8C4A, 0x00003FFF //A18 = 1.2923704984019263122675412350e+00
-data8 0x80AEF96A67C5615A, 0x00004002 //A17 = 8.0427183300456238315262463506e+00
-data8 0xBE886D7529678931, 0x00004004 //A16 = 4.7633230047847868242503413461e+01
-data8 0x858EDBA4CE2F7508, 0x00004007 //A15 = 2.6711607799594541057655957154e+02
-data8 0xB0B0A3AF388274F0, 0x00004009 //A14 = 1.4135199810126975119809102782e+03
-data8 0xDBA87137988751EF, 0x0000400B //A13 = 7.0290552818218513870879313985e+03
-//A2 = 4.2828433593031734228134155273e+08 + 3.9760422293645854535247300000e-08
-data8 0x41B98719AFEE2947, 0x3E6558A17E0D3007
-//A1 = 3.4008253676084774732589721680e+08 + 1.2558352335001093116071000000e-09
-data8 0x41B4453F68C2C6EB, 0x3E159338C5BC7EC3
-//A0 = 1.3684336546556583046913146973e+08 + 2.6786516700381562934240300000e-08
-data8 0x41A05020CAEE5EA5, 0x3E5CC3058A858579
-data8 0xFF5E3940FB4BA576, 0x0000400D //A12 = 3.2687111823895439312116108631e+04
-data8 0x8A08C124C7F74B6C, 0x00004010 //A11 = 1.4134701786994123329786229006e+05
-data8 0x89D701953540BFFB, 0x00004012 //A10 = 5.6459209892773907605385652281e+05
-data8 0xFC46344B3116C3AD, 0x00004013 //A9 = 2.0666305367147234406757715163e+06
-data8 0xD183EBD7A400151F, 0x00004015 //A8 = 6.8653979211730981618367536737e+06
-data8 0x9C083A40742112F4, 0x00004017 //A7 = 2.0451444503543981795037456447e+07
-data8 0xCD3C475B1A8B6662, 0x00004018 //A6 = 5.3801245423495149598177886823e+07
-LOCAL_OBJECT_END(Constants_Tgammal_poly)
-
-
-LOCAL_OBJECT_START(Constants_Tgammal_poly_splitted)
-
-// Polynomial coefficients for the tgammal(x), 1 <= |x| < 1.25
-//A5 = -9.8199506890310417350775651357e-01+ -3.2546247786122976510752200000e-17
-data8 0xBFEF6C80EC38B509, 0xBC82C2FA7A3DE3BD
-//A4 = 9.8172808683439960475425323239e-01 + 4.4847611775298520359811400000e-17
-data8 0x3FEF6A51055096B0, 0x3C89DA56DE95EFE4
-//A3 = -9.0747907608088618225394839101e-01 +-1.0244057366544064435443970000e-16
-data8 0xBFED0A118F324B62, 0xBC9D86C7B9EBCFFF
-data8 0xB8E3FDAA66CC738E, 0x00003FFB //A20 = 9.0278608095877488976217714815e-02
-data8 0xA76067AE1738699C, 0x0000BFFD //A19 =-3.2690738678103132837070881737e-01
-data8 0x9D66B13718408C44, 0x00003FFE //A18 = 6.1484820933424283818320582920e-01
-data8 0xD4AC67BBB4AE5599, 0x0000BFFE //A17 =-8.3075569470082063491389474937e-01
-data8 0xF1426ED1C1488DB3, 0x00003FFE //A16 = 9.4241993542644505594957058785e-01
-data8 0xFC12EB07AA6F4B6B, 0x0000BFFE //A15 =-9.8466366707947121954333549690e-01
-data8 0xFF2B32CFE5B0DDC8, 0x00003FFE //A14 = 9.9675290656677214804168895915e-01
-data8 0xFFD8E7E6FF3662EA, 0x0000BFFE //A13 =-9.9940347089360552383472582319e-01
-//A2 = 9.8905599532797250361682017683e-01 + 5.1760162410376024240867300000e-17
-data8 0x3FEFA658C23B1578, 0x3C8DD673A61F6FE7
-//A1 = -5.7721566490153275452712478000e-01+ -1.0607935612223465065923310000e-16
-data8 0xBFE2788CFC6FB618, 0xBC9E9346622D53B7
-//A0 = 9.9999999999999988897769753748e-01 + 1.1102230245372554544790880000e-16
-data8 0x3FEFFFFFFFFFFFFF, 0x3C9FFFFFFFF51E4E
-data8 0xFFF360DF628F0BC9, 0x00003FFE //A12 = 9.9980740979895815468216470840e-01
-data8 0xFFEF8F9A72B40480, 0x0000BFFE //A11 = -9.9974916001038145045939523470e-01
-data8 0xFFE037B8C7E39952, 0x00003FFE //A10 = 9.9951504002809911822597567307e-01
-data8 0xFFC01E08F348BED2, 0x0000BFFE //A9 = -9.9902522772325406705059517941e-01
-data8 0xFF83DAC83119B52C, 0x00003FFE //A8 = 9.9810569179053383842734164901e-01
-data8 0xFEF9F8AB891ABB24, 0x0000BFFE //A7 = -9.9600176036720260345608796766e-01
-data8 0xFE3F0537573C8235, 0x00003FFE //A6 = 9.9314911461918778676646301341e-01
-//
-// Polynomial coefficients for the tgammal(x), 1.25 <= |x| < 1.75
-//A5 = -7.7523052299853054125655660300e-02+ -1.2693512521686721504433600000e-17
-data8 0xBFB3D88CFE50601B, 0xBC6D44ED60EE2170
-//A4 = 1.4464535904462152982041800442e-01 + 2.5426820829345729856648800000e-17
-data8 0x3FC283BD374EB2A9, 0x3C7D50AC436187C3
-//A3 = -1.0729480456477220873257039102e-01+ -6.2429894945456418196551000000e-18
-data8 0xBFBB77AC1CA2EBA5, 0xBC5CCA6BCC422D41
-data8 0xF732D2689F323283, 0x00003FF2 //A20 = 2.3574688251652899567587145422e-04
-data8 0xB6B00E23DE89D13A, 0x0000BFF3 //A19 =-3.4844916488842618776630058875e-04
-data8 0xE98396FE4A1B2799, 0x00003FF3 //A18 =4.4539265198744452020440735977e-04
-data8 0xAF8D235A640DB1A2, 0x0000BFF4 //A17 =-6.6967514303333563295261178346e-04
-data8 0x8513B736C918B261, 0x00003FF5 //A16 = 1.0152970456990865810615917715e-03
-data8 0xC790A1A2C78D8E17, 0x0000BFF5 //A15 =-1.5225598630329403515321688394e-03
-data8 0x959706CFA638CDE2, 0x00003FF6 //A14 = 2.2825614575133879623648932383e-03
-data8 0xE050A6021E129860, 0x0000BFF6 //A13 =-3.4227757733947066666295285936e-03
-//A2 = 4.1481345368830113695679528973e-01 + 3.1252439808354284892632100000e-17
-data8 0x3FDA8C4DBA620D56, 0x3C82040BCB483C76
-//A1 = 3.2338397448885010387886751460e-02 + 3.4437825798552300531443100000e-18
-data8 0x3FA08EA88EE561B1, 0x3C4FC366D6C64806
-//A0 = 8.8622692545275794095971377828e-01 + 7.2689375867553992399219000000e-17
-data8 0x3FEC5BF891B4EF6A, 0x3C94F3877D311C0C
-data8 0xA8275AADC09D16FC, 0x00003FF7 //A12 = 5.1316445128621071486146117136e-03
-data8 0xFBFE2CE9215267A2, 0x0000BFF7 //A11= -7.6902121820788373000579382408e-03
-data8 0xBCC8EEAB67ECD91D, 0x00003FF8 //A10 = 1.1522515369164312742737727262e-02
-data8 0x8D1614BB97E5E8C2, 0x0000BFF9 //A9 = -1.7222443097804730395560633583e-02
-data8 0xD3A963578BE291E3, 0x00003FF9 //A8 = 2.5837606456090186343624210891e-02
-data8 0x9BA7EAE64C42FDF7, 0x0000BFFA //A7 = -3.8001935555045161419575037512e-02
-data8 0xF0115BA1A77607E7, 0x00003FFA //A6 = 5.8610303817173477119764956736e-02
-//
-// Polynomial coefficients for the tgammal(x), 1.75 <= |x| < 2.0
-//A5 = 2.6698206874501426502654943818e-04 + 3.4033756836921062797887300000e-20
-data8 0x3F317F3740FE2A68, 0x3BE417093234B06E
-//A4 = 7.4249010753513894345090307070e-02 + 3.9810018444482764697014200000e-18
-data8 0x3FB301FBB0F25A92, 0x3C525BEFFABB622F
-//A3 = -8.1576919247086265851720554565e-02+ -5.2716624487804746360745000000e-19
-data8 0xBFB4E239984650AC, 0xBC2372F1C4F276FF
-data8 0xFEF3AEE71038E9A3, 0x00003FEB //A20 = 1.8995395865421509009969188571e-06
-data8 0xA11CFA2672BF876A, 0x0000BFEB //A19 =-1.2003868221414015771269244270e-06
-data8 0xF8E107215DAE2164, 0x00003FEC //A18 = 3.7085863210303833432006027217e-06
-data8 0xBCDDD3FC011EF7D6, 0x00003FEC //A17 = 2.8143303971756051015245433043e-06
-data8 0x8683C4687FA22E68, 0x00003FEE //A16 = 8.0177018464360416764308252462e-06
-data8 0xFDA09E5D33E32968, 0x00003FEE //A15 = 1.5117372062443781157389064848e-05
-data8 0xFFB00D0CFF4089B4, 0x00003FEF //A14 = 3.0480348961227424242198174995e-05
-data8 0xFEF6C39566785085, 0x00003FF0 //A13 = 6.0788135974125244644334004947e-05
-//A2 = 4.1184033042643969357854416558e-01 + 1.2103396182129232634761000000e-18
-data8 0x3FDA5B978B96BEBF, 0x3C3653AAD0A139E4
-//A1 = -4.2278433509846713445057275749e-01+ -4.9429151528135657430413000000e-18
-data8 0xBFDB0EE6072093CE, 0xBC56CB907027554F
-//A0 = 1.0000000000000000000000000000e+00 + 1.0969171200000000000000000000e-31
-data8 0x3FF0000000000000, 0x3981CC6A5B20B4D5
-data8 0xFF2B7BA9A8D68C37, 0x00003FF1 //A12 = 1.2167446884801403650547161615e-04
-data8 0xFCA53468E3692EF1, 0x00003FF2 //A11 = 2.4094136329542400976250900707e-04
-data8 0x808D698A9C993615, 0x00003FF4 //A10 = 4.9038845704938303659791698883e-04
-data8 0xF10F8E3FB8BB4AFB, 0x00003FF4 //A9 = 9.1957383840999861214472423976e-04
-data8 0x89E224E42F93F005, 0x00003FF6 //A8 = 2.1039333407187324139473634747e-03
-data8 0xBAF374824937A323, 0x00003FF6 //A7 = 2.8526458211545152218493600470e-03
-data8 0xB6BF7564F52140C6, 0x00003FF8 //A6 = 1.1154045718131014476684982178e-02
-//
-// Polynomial coefficients for the tgammal(x), 0.0 <= |x| < 0.125
-//A5 = -9.8199506890314514073736518185e-01+ -5.9363811993837985890950900000e-17
-data8 0xBFEF6C80EC38B67A, 0xBC911C46B447C81F
-//A4 = 9.8172808683440015986576554496e-01 + 2.7457414262802803699834200000e-17
-data8 0x3FEF6A51055096B5, 0x3C7FA7FF90ACAD1F
-//A3 = -9.0747907608088618225394839101e-01 + -1.0676255850934306734701780000e-16
-data8 0xBFED0A118F324B62, 0xBC9EC5AFB633438D
-data8 0x9217E83FA207CB80, 0x00003FFD //A20 = 2.8533864762086088781083621561e-01
-data8 0xA8DABFA52FDF03EC, 0x0000BFFE //A19= -6.5958783896337186303285832783e-01
-data8 0xE331ED293AF39F9B, 0x00003FFE //A18 = 8.8748056656454687449654731184e-01
-data8 0xF9163C5DDB52419D, 0x0000BFFE //A17= -9.7299554149078295602977718525e-01
-data8 0xFEC0A1C672CB9265, 0x00003FFE //A16 = 9.9512683005268190987854104489e-01
-data8 0xFFD2D65B8EA7B5F4, 0x0000BFFE //A15= -9.9931087241443958201592847861e-01
-data8 0xFFF93AA39EE53445, 0x00003FFE //A14 = 9.9989668364186884793382816496e-01
-data8 0xFFFB99A9A3F5F480, 0x0000BFFE //A13= -9.9993286506283835663204999212e-01
-//A2 = 9.8905599532797250361682017683e-01 + 5.1778575360788420716540100000e-17
-data8 0x3FEFA658C23B1578, 0x3C8DD92B45408D07
-//A1 = -5.7721566490153275452712478000e-01+ -1.0607938730998824663273110000e-16
-data8 0xBFE2788CFC6FB618, 0xBC9E9346F8FDE55B
-//A0 = 9.9999999999999988897769753748e-01 + 1.1102230246251564036631420000e-16
-data8 0x3FEFFFFFFFFFFFFF, 0x3C9FFFFFFFFFFFFF
-data8 0xFFF7FEBB545812C1, 0x00003FFE //A12 = 9.9987785409425126648628395084e-01
-data8 0xFFF00C02E943A3F2, 0x0000BFFE //A11= -9.9975657530855116454438747397e-01
-data8 0xFFE0420AADC53820, 0x00003FFE //A10 = 9.9951565514290485919027183699e-01
-data8 0xFFC01EB42EF27EEB, 0x0000BFFE //A9 = -9.9902526759155739377365522320e-01
-data8 0xFF83DAD0BF23FF12, 0x00003FFE //A8 = 9.9810569378236378800364235948e-01
-data8 0xFEF9F8ABDBCDB2F3, 0x0000BFFE //A7 = -9.9600176044241699109053158187e-01
-data8 0xFE3F05375988491D, 0x00003FFE //A6 = 9.9314911462127599008937257662e-01
-LOCAL_OBJECT_END(Constants_Tgammal_poly_splitted)
-
-.align 64
-LOCAL_OBJECT_START(Constants_Tgammal_common)
-// Positive overflow value
-data8 0x3FE0000000000000 // 0.5
-data8 0x3FF8000000000000 // 1.5
-data8 0x3FD0000000000000 // 0.25
-data8 0x0000000000000000 // 0
-data8 0xDB718C066B352E21, 0x00004009 // Positive overflow value
-LOCAL_OBJECT_END(Constants_Tgammal_common)
-
-
-
-//=======================================================
-// Lgamma registers
-
-// General Purpose Registers
-GR_l_Log_Table = r33
-GR_l_Log_Table1 = r34
-GR_l_BIAS = r34
-GR_l_Index1 = r35
-GR_l_Index2 = r36
-GR_l_signif_Z = r37
-GR_l_X_0 = r38
-GR_l_X_1 = r39
-GR_l_X_2 = r40
-GR_l_Z_1 = r41
-GR_l_Z_2 = r42
-GR_l_N = r43
-GR_l_Index3 = r44
-GR_l_Stirling_Table = r45
-GR_l_N_Unbiased = r46
-
-// Floating Point Registers
-FR_l_logl_X = f8
-
-FR_l_h_3 = f10
-FR_l_poly_hi = f10
-FR_l_W = f11
-FR_l_S = f12
-FR_l_GS_hi = f13
-FR_l_Y_lo = f13
-FR_l_r_cor = f14
-FR_l_G_1 = f15
-FR_l_G = f15
-FR_l_H_1 = f32
-FR_l_H = f32
-FR_l_h = f33
-FR_l_h_1 = f33
-FR_l_N = f33
-FR_l_G_2 = f34
-FR_l_H_2 = f35
-FR_l_h_2 = f36
-FR_l_G_3 = f37
-FR_l_log2_hi = f38
-FR_l_GS_lo = f39
-FR_l_H_3 = f40
-FR_l_float_N = f41
-FR_l_Q_4 = f42
-FR_l_Q_3 = f43
-FR_l_Q_2 = f44
-FR_l_Q_1 = f45
-FR_l_Q_5 = f46
-FR_l_Q_6 = f47
-FR_l_log2_lo = f48
-FR_l_r = f49
-FR_l_poly_lo = f50
-FR_l_poly = f51
-FR_l_rsq = f52
-FR_l_Y_lo_res = f53
-
-FR_l_Y0 = f55
-FR_l_Q0 = f56
-FR_l_E0 = f57
-FR_l_E2 = f58
-FR_l_E1 = f59
-FR_l_Y1 = f60
-FR_l_E3 = f61
-FR_l_Y2 = f62
-
-FR_l_Z = f63
-FR_l_Z2 = f64
-FR_l_Z4 = f65
-FR_l_Z8 = f66
-
-FR_l_CH = f67
-FR_l_CL = f68
-
-FR_l_B2 = f69
-FR_l_B4 = f70
-FR_l_B6 = f71
-FR_l_B8 = f72
-FR_l_B10 = f73
-FR_l_B12 = f74
-FR_l_B14 = f75
-FR_l_B16 = f76
-FR_l_B18 = f77
-FR_l_Half = f78
-FR_l_SS = f79
-FR_l_AbsX_m_Half = f80
-FR_l_CXH = f81
-FR_l_CXL = f82
-FR_l_SSCXH = f83
-FR_l_SSCXL = f84
-FR_l_XYH = f85
-FR_l_XYL = f86
-FR_l_Temp = f87
-
-FR_l_logl_YHi = f88
-FR_l_logl_YLo = f89
-
-FR_l_SignedXYH = f123
-
-FR_l_AbsX = f127
-
-
-
-//=======================================================
-// Negative part registers
-
-// General Purpose Registers
-GR_n_sin_Table = r47
-GR_n_XN = r48
-
-// Float point registers
-FR_n_IXNS = f125
-FR_n_IXN = f126
-
-FR_n_XNS = f90
-FR_n_XS = f91
-FR_n_XS2 = f92
-FR_n_XS2L = f93
-FR_n_XS4 = f94
-FR_n_XS7 = f95
-FR_n_XS8 = f96
-FR_n_TT = f97
-FR_n_TH = f98
-FR_n_TL = f99
-
-FR_n_A2H = f100
-FR_n_A2L = f101
-FR_n_A1H = f102
-FR_n_A1L = f103
-FR_n_A9 = f104
-FR_n_A8 = f105
-FR_n_A7 = f106
-FR_n_A6 = f107
-FR_n_A5 = f108
-FR_n_A4 = f109
-FR_n_A3 = f110
-
-FR_n_PolyH = f111
-FR_n_PolyL = f112
-
-FR_n_Poly1H = f113
-FR_n_SinxH = f113 // the same as FR_n_Poly1H
-FR_n_Poly1L = f114
-FR_n_SinxL = f114 // the same as FR_n_Poly1L
-
-FR_n_Tail = f115
-FR_n_NegOne = f116
-
-FR_n_Y0 = f117
-
-FR_n_Q0 = f118
-FR_n_E0 = f119
-
-FR_n_E2 = f120
-FR_n_E1 = f121
-
-FR_n_Y1 = f55
-FR_n_E3 = f56
-
-FR_n_Y2 = f57
-FR_n_R0 = f58
-
-FR_n_E4 = f59
-FR_n_RcpResH = f60
-
-FR_n_Y3 = f61
-FR_n_R1 = f62
-FR_n_Temp = f63
-
-FR_n_RcpResL = f64
-
-FR_n_ResH = f65
-FR_n_ResL = f66
-
-
-
-
-//=======================================================
-// Exp registers
-
-// General Purpose Registers
-GR_e_ad_Arg = r33
-GR_e_ad_A = r34
-GR_e_signexp_x = r35
-GR_e_exp_x = r35
-GR_e_exp_mask = r36
-GR_e_ad_W1 = r37
-GR_e_ad_W2 = r38
-GR_e_M2 = r39
-GR_e_M1 = r40
-GR_e_K = r41
-GR_e_exp_2_mk = r42
-GR_e_exp_2_k = r43
-GR_e_ad_T1 = r44
-GR_e_ad_T2 = r45
-GR_e_N_fix = r46
-GR_e_one = r47
-GR_e_exp_bias = r48
-GR_e_sig_inv_ln2 = r49
-GR_e_rshf_2to51 = r50
-GR_e_exp_2tom51 = r51
-GR_e_rshf = r52
-
-// Floating Point Registers
-FR_e_RSHF_2TO51 = f10
-FR_e_INV_LN2_2TO63 = f11
-FR_e_W_2TO51_RSH = f12
-FR_e_2TOM51 = f13
-FR_e_RSHF = f14
-FR_e_Y_hi = f15
-FR_e_Y_lo = f32
-FR_e_scale = f33
-FR_e_float_N = f34
-FR_e_N_signif = f35
-FR_e_L_hi = f36
-FR_e_L_lo = f37
-FR_e_r = f38
-FR_e_W1 = f39
-FR_e_T1 = f40
-FR_e_W2 = f41
-FR_e_T2 = f42
-FR_e_W1_p1 = f43
-FR_e_rsq = f44
-FR_e_A2 = f45
-FR_e_r4 = f46
-FR_e_A3 = f47
-FR_e_poly = f48
-FR_e_T = f49
-FR_e_W = f50
-FR_e_Wp1 = f51
-FR_e_r6 = f52
-FR_e_2_mk = f53
-FR_e_A1 = f54
-FR_e_T_scale = f55
-FR_e_result_lo = f56
-FR_e_W_T_scale = f57
-FR_e_Wp1_T_scale = f58
-
-FR_e_expl_Input_X = f123
-FR_e_expl_Input_Y = f124
-FR_e_expl_Output_X = f123
-FR_e_expl_Output_Y = f124
-
-
-FR_e_expl_Input_AbsX = f122
-
-
-
-//=======================================================
-// Common registers
-
-// General Purpose Registers
-GR_c_Table = r53
-GR_c_NegUnderflow = r54
-GR_c_NegSingularity = r55
-GR_c_X = r56
-GR_c_SignBit = r57
-GR_c_13 = r58
-
-
-// Floating Point Registers
-FR_c_PosOverflow = f123
-FR_c_XN = f124
-
-
-//=======================================================
-// Polynomial part registers
-
-// General Purpose Registers
-GR_p_Table = r59
-GR_p_XN = r33
-GR_p_Table2 = r34
-GR_p_Int = r35
-GR_p_Offset = r36
-GR_p_Offset2 = r38
-GR_p_X_Sgnd = GR_l_signif_Z // = r37
-GR_p_Exp = r61
-GR_p_Bias = r62
-GR_p_0p75 = r63
-
-// Floating Point Registers
-FR_p_AbsX = FR_l_AbsX // = f127
-FR_p_IXN = FR_n_IXN // = f126
-FR_p_XN = f32
-FR_p_0p5 = f33
-FR_p_1p5 = f34
-FR_p_AbsXM1 = f35
-FR_p_2 = f36
-
-FR_p_A20 = f37
-FR_p_A19 = f38
-FR_p_A18 = f39
-FR_p_A17 = f40
-FR_p_A16 = f41
-FR_p_A15 = f42
-FR_p_A14 = f43
-FR_p_A13 = f44
-FR_p_A12 = f45
-FR_p_A11 = f46
-FR_p_A10 = f47
-FR_p_A9 = f48
-FR_p_A8 = f49
-FR_p_A7 = f50
-FR_p_A6 = f51
-FR_p_A5H = f52
-FR_p_A5L = f53
-FR_p_A4H = f54
-FR_p_A4L = f55
-FR_p_A3H = f56
-FR_p_A3L = f57
-FR_p_A2H = f58
-FR_p_A2L = f59
-FR_p_A1H = f60
-FR_p_A1L = f61
-FR_p_A0H = f62
-FR_p_A0L = f63
-
-FR_p_XR = f64
-FR_p_XR2 = f65
-FR_p_XR2L = f52
-
-FR_p_XR3 = f58
-FR_p_XR3L = f38
-
-FR_p_XR4 = f42
-FR_p_XR6 = f40
-FR_p_XR8 = f37
-
-FR_p_Poly5H = f66
-FR_p_Poly5L = f67
-FR_p_Poly4H = f53
-FR_p_Poly4L = f44
-FR_p_Poly3H = f41
-FR_p_Poly3L = f47
-FR_p_Poly2H = f68
-FR_p_Poly2L = f54
-FR_p_Poly1H = f55
-FR_p_Poly1L = f46
-FR_p_Poly0H = f39
-FR_p_Poly0L = f43
-
-FR_p_Temp5H = f69
-FR_p_Temp5L = f70
-FR_p_Temp4H = f71
-FR_p_Temp4L = f60
-FR_p_Temp2H = f72
-FR_p_Temp2L = f73
-FR_p_Temp1H = f59
-FR_p_Temp1L = f61
-FR_p_Temp0H = f49
-FR_p_Temp0L = f48
-FR_p_PolyTail = f45
-FR_p_OddPoly0H = f56
-FR_p_OddPoly0L = f51
-
-FR_p_0p25 = f73
-
-
-//=======================================================
-// Negative polynomial part registers
-// General Purpose Registers
-GR_r_sin_Table = r47
-GR_r_sin_Table2 = r60
-
-// Floating Point Registers
-FR_r_IXNS = FR_n_IXNS
-FR_r_IXN = FR_n_IXN
-
-FR_r_AbsX = FR_l_AbsX
-
-FR_r_A9 = f74
-FR_r_A8 = f75
-FR_r_A7 = f76
-FR_r_A6 = f77
-FR_r_A5 = f78
-FR_r_A4 = f79
-FR_r_A3 = f80
-FR_r_A2H = f81
-FR_r_A2L = f82
-FR_r_A1H = f83
-FR_r_A1L = f84
-
-FR_r_XNS = f85
-FR_r_XS = f86
-FR_r_XS2 = f87
-FR_r_XS2L = f88
-FR_r_XS4 = f89
-FR_r_XS7 = f90
-FR_r_XS8 = f91
-
-FR_r_Tail = f92
-
-FR_r_TT = f93
-FR_r_TH = f94
-FR_r_TL = f95
-
-FR_r_ResH = f96
-FR_r_ResL = f97
-
-FR_r_Res3H = f98
-FR_r_Res3L = f99
-
-FR_r_Res1H = f100
-FR_r_Res1L = f101
-
-
-
-FR_r_Y0 = f102
-FR_r_Q0 = f103
-FR_r_E0 = f104
-FR_r_E2 = f105
-FR_r_E1 = f106
-FR_r_Y1 = f107
-FR_r_E3 = f108
-FR_r_Y2 = f109
-FR_r_R0 = f110
-FR_r_E4 = f111
-FR_r_ZH = f112
-FR_r_Y3 = f113
-FR_r_R1 = f114
-FR_r_ZHN = f115
-FR_r_ZL = f115
-FR_r_NegOne = f116
-
-FR_z_Y0 = f102
-FR_z_Q0 = f103
-FR_z_E0 = f104
-FR_z_E2 = f105
-FR_z_E1 = f106
-FR_z_Y1 = f107
-FR_z_E3 = f108
-FR_z_Y2 = f109
-FR_z_R0 = f110
-FR_z_E4 = f111
-FR_z_ZH = f112
-FR_z_Y3 = f113
-FR_z_R1 = f114
-FR_z_ZL = f115
-
-
-// General Purpose Registers
-GR_SAVE_PFS = r32
-GR_DenOverflow = r33
-GR_u_XN = r34
-
-GR_SAVE_B0 = r35
-GR_SAVE_GP = r36
-GR_SAVE_SP = r37
-
-// Floating Point Registers
-FR_u_IXN = f34
-
-
-// ERROR HANDLER REGISTERS
-GR_Parameter_X = r64
-GR_Parameter_Y = r65
-GR_Parameter_RESULT = r66
-GR_Parameter_TAG = r67
-
-FR_RESULT = f8
-FR_X = f32
-FR_Y = f1
-
-
-.section .text
-GLOBAL_LIBM_ENTRY(tgammal)
-{ .mfi
- alloc r32 = ar.pfs,0,32,4,0
- fabs FR_l_AbsX = f8 // Get absolute value of X
- addl GR_n_sin_Table = @ltoff(Constants_Tgammal_sin), gp
-}
-{ .mfi
- addl GR_l_Log_Table=@ltoff(Constants_Tgammal_log_80_Z_G_H_h1#),gp
- nop.f 0
- addl GR_l_Stirling_Table = @ltoff(Constants_Tgammal_stirling), gp
-};;
-
-{ .mfi
- getf.sig GR_l_signif_Z = f8 // Significand of X
- fcvt.fx.s1 FR_n_IXNS = f8 // Convert to fixed point
- addl GR_c_Table = @ltoff(Constants_Tgammal_common), gp
-}
-{ .mfi
- ld8 GR_l_Log_Table = [GR_l_Log_Table]
- nop.f 0
- addl GR_p_Table = @ltoff(Constants_Tgammal_poly), gp
-};;
-
-{ .mfi
- ld8 GR_n_sin_Table = [GR_n_sin_Table]
- fclass.m p6,p0 = f8,0x1EF // Check x for NaN, 0, INF, denorm
- // NatVal.
- addl GR_c_NegSingularity = 0x1003E, r0
-}
-{ .mlx
- ld8 GR_l_Stirling_Table = [GR_l_Stirling_Table]
- movl GR_c_13 = 0x402A000000000000 // 13.0
-};;
-
-{ .mfi
- getf.d GR_c_X = f8 // Double prec. X to general register
- frcpa.s1 FR_z_Y0,p0 = f1,f8 // y = frcpa(x) (for negatives)
- extr.u GR_l_Index1 = GR_l_signif_Z, 59, 4 // = High 4 bits of Z
-}
-{ .mlx
- ld8 GR_c_Table = [GR_c_Table]
- movl GR_c_SignBit = 0x8000000000000000 // High bit (sign)
-};;
-
-{ .mfi
- ld8 GR_p_Table = [GR_p_Table]
- fcmp.lt.s1 p15, p14 = f8,f0 // p14 - positive arg, p15 - negative
- shl GR_l_Index1 = GR_l_Index1,5 // Adjust Index1 ptr (x32)
-}
-{ .mfb
- adds GR_c_NegUnderflow = 1765, r0
- nop.f 0
-(p6) br.cond.spnt tgammal_spec // Spec. values processing branch ////////////
- // (0s, INFs, NANs, NatVals, denormals) //////
-};;
-
-{ .mfi
- ldfpd FR_l_CH,FR_l_CL= [GR_l_Stirling_Table], 16 // Load CH, CL
- fcvt.fx.trunc.s1 FR_n_IXN = FR_l_AbsX // Abs arg to int by trunc
- extr.u GR_l_X_0 = GR_l_signif_Z, 49, 15 // High 15 bit of Z
-}
-{ .mfi
- add GR_l_Index1 = GR_l_Index1,GR_l_Log_Table // Add offset
- fma.s1 FR_p_2 = f1, f1, f1 // 2.0
- andcm GR_c_X = GR_c_X, GR_c_SignBit // Remove sign
-};;
-
-{ .mfi
- addl GR_l_Log_Table = @ltoff(Constants_Tgammal_log_80_Z_G_H_h2#), gp
- fcmp.lt.s1 p10, p0 = FR_l_AbsX, f1 // If |X|<1 then p10 = 1
- nop.i 0
-}
-{ .mlx
- ld2 GR_l_Z_1 = [GR_l_Index1],4 // load Z_1 from Index1
- movl GR_l_BIAS = 0x000000000000FFFF // Bias for exponent
-};;
-
-{ .mfi
- ld8 GR_l_Log_Table = [GR_l_Log_Table]
- frcpa.s1 FR_l_Y0, p0 = f1, FR_l_AbsX // y = frcpa(x)
- nop.i 0
-}
-{ .mfi
- ldfs FR_l_G_1 = [GR_l_Index1],4 // Load G_1
- fsub.s1 FR_l_W = FR_l_AbsX, f1 // W = |X|-1
- nop.i 0
-};;
-
-{ .mfi
- getf.exp GR_l_N_Unbiased= FR_l_AbsX // exponent of |X|
- fmerge.se FR_l_S = f1, FR_l_AbsX // S = merging of X and 1.0
- cmp.gtu p11, p0 = GR_c_13, GR_c_X // If 1 <= |X| < 13
- // then p11 = 1
-}
-{ .mfb
- ldfs FR_l_H_1 = [GR_l_Index1],8 // Load H_1
- fcvt.xf FR_n_XNS = FR_n_IXNS // Convert to FP repr. of int X
-(p10) br.cond.spnt tgamma_lt_1 // Branch to |X| < 1 path ///////////////////
-};;
-
-{ .mfi
- ldfpd FR_n_A2H, FR_n_A2L = [GR_n_sin_Table], 16
- nop.f 0
- pmpyshr2.u GR_l_X_1 = GR_l_X_0,GR_l_Z_1,15 // Adjust Index2 (x32)
-}
-{ .mfb
- ldfe FR_l_B2 = [GR_l_Stirling_Table], 16
- nop.f 0
-(p11) br.cond.spnt tgamma_lt_13 // Branch to 1 <= |X| < 13 path ///////////////
-};;
-
-{ .mfi
- ldfe FR_l_h_1 = [GR_l_Index1],0
- nop.f 0
- sub GR_l_N = GR_l_N_Unbiased, GR_l_BIAS // N - BIAS
-}
-{ .mib
- ldfpd FR_l_B4,FR_l_B6= [GR_l_Stirling_Table], 16 // Load C
-(p15) cmp.geu.unc p8,p0 = GR_l_N_Unbiased, GR_c_NegSingularity
-(p8) br.cond.spnt tgammal_singularity // Singularity for arg < to -2^63 //////
-};;
-
-{ .mmi
-(p15) ldfpd FR_n_A1H, FR_n_A1L = [GR_n_sin_Table], 16
- ldfpd FR_l_B8, FR_l_B10 = [GR_l_Stirling_Table], 16
- add GR_c_Table = 0x20, GR_c_Table
-};;
-
-{ .mfi
-(p15) ldfe FR_n_A9 = [GR_n_sin_Table], 16
- fma.s1 FR_l_Q0 = f1,FR_l_Y0,f0 // Q0 = Y0
- nop.i 0
-}
-{ .mfi
- ldfpd FR_l_B12, FR_l_B14 = [GR_l_Stirling_Table], 16
- fnma.s1 FR_l_E0 = FR_l_Y0,FR_l_AbsX,f1 // e = 1-b*y
- nop.i 0
-};;
-
-{ .mfi
-(p15) ldfe FR_n_A8 = [GR_n_sin_Table], 16
- fcvt.xf FR_c_XN = FR_n_IXN // Convert to FP repr. of int X
- extr.u GR_l_Index2 = GR_l_X_1, 6, 4 // Extract Index2
-}
-{ .mfi
- ldfpd FR_l_B16, FR_l_B18 = [GR_l_Stirling_Table], 16
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
-(p15) ldfe FR_n_A7 = [GR_n_sin_Table], 16
- fms.s1 FR_l_CXH = FR_l_CH, f1, FR_l_AbsX // CXH = CH+|X|
- shl GR_l_Index2 = GR_l_Index2,5
-}
-{ .mfi
- ldfd FR_l_Half = [GR_l_Stirling_Table] // Load 0.5
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- add GR_l_Index2 = GR_l_Index2, GR_l_Log_Table // Add offset
- nop.f 0
- nop.i 0
-}
-{ .mfi
-(p15) ldfe FR_n_A6 = [GR_n_sin_Table], 16
-(p15) fma.s1 FR_n_XS = FR_l_AbsX , f1, FR_n_XNS // xs = x - int(x)
- nop.i 0
-};;
-
-{ .mmi
- ld2 GR_l_Z_2 = [GR_l_Index2],4
- addl GR_l_Log_Table = @ltoff(Constants_Tgammal_log_80_h3_G_H#),gp
- nop.i 0
-};;
-
-{ .mfi
- ld8 GR_l_Log_Table = [GR_l_Log_Table]
- fma.s1 FR_l_E2 = FR_l_E0,FR_l_E0,FR_l_E0 // e2 = e+e^2
- nop.i 0
-}
-{ .mfi
- ldfs FR_l_G_2 = [GR_l_Index2],4
- fma.s1 FR_l_E1 = FR_l_E0,FR_l_E0,f0 // e1 = e^2
- nop.i 0
-};;
-
-{ .mmi
- ldfs FR_l_H_2 = [GR_l_Index2],8
-(p15) ldfe FR_n_A5 = [GR_n_sin_Table], 16
- nop.i 0
-};;
-
-{ .mfi
- setf.sig FR_l_float_N = GR_l_N // float_N = Make N a fp number
- nop.f 0
- pmpyshr2.u GR_l_X_2 = GR_l_X_1,GR_l_Z_2,15 // X_2 = X_1 * Z_2
-}
-{ .mfi
- ldfe FR_l_h_2 = [GR_l_Index2],0
- fma.s1 FR_l_CXL = FR_l_AbsX, f1, FR_l_CXH // CXL = |X|+CXH
- add GR_l_Log_Table1= 0x200, GR_l_Log_Table
-};;
-
-{ .mfi
-(p15) ldfe FR_n_A4 = [GR_n_sin_Table], 16
-(p15) fcmp.eq.unc.s1 p9,p0 = FR_l_AbsX, FR_c_XN //if argument is integer
- // and negative
- nop.i 0
-}
-{ .mfi
- ldfe FR_c_PosOverflow = [GR_c_Table],16 //Load pos overflow value
-(p15) fma.s1 FR_n_XS2 = FR_n_XS, FR_n_XS, f0 // xs^2 = xs*xs
- nop.i 0
-};;
-
-{ .mfi
-(p15) ldfe FR_n_A3 = [GR_n_sin_Table], 16
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
-(p15) getf.sig GR_n_XN = FR_n_IXN // int(x) to general reg
- fma.s1 FR_l_Y1 = FR_l_Y0,FR_l_E2,FR_l_Y0 // y1 = y+y*e2
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s1 FR_l_E3 = FR_l_E1,FR_l_E1,FR_l_E0 // e3 = e+e1^2
-(p9) br.cond.spnt tgammal_singularity // Singularity for integer /////////////
- // and negative arguments //////////////
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_l_AbsX_m_Half = FR_l_AbsX, f1, FR_l_Half // |x|-0.5
- extr.u GR_l_Index2 = GR_l_X_2, 1, 5 // Get Index3
-};;
-
-{ .mfi
- shladd GR_l_Log_Table1= GR_l_Index2, 2, GR_l_Log_Table1
- nop.f 0
- shladd GR_l_Index3 = GR_l_Index2,4, GR_l_Log_Table // Index3
-}
-{ .mfb
-(p15) cmp.gtu.unc p11, p0 = GR_n_XN, GR_c_NegUnderflow // X < -1765
- fms.s1 FR_l_CXL = FR_l_CH, f1, FR_l_CXL // CXL = CH - CXL
-(p11) br.cond.spnt tgammal_underflow // Singularity for negative argument //////
- // at underflow domain (X < -1765) //////
-};;
-
-{ .mfi
- addl GR_l_Log_Table = @ltoff(Constants_Tgammal_log_80_Q#), gp
-(p15) fma.s1 FR_n_TT = FR_n_A2L, FR_n_XS2, f0 // T=A2L*x^2
- tbit.nz.unc p13, p12 = GR_n_XN, 0x0 // whether [X] odd or even
-}
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_n_XS2L = FR_n_XS, FR_n_XS, FR_n_XS2 // xs^2 Low part
- nop.i 0
-};;
-
-{ .mfi
- ld8 GR_l_Log_Table = [GR_l_Log_Table]
-(p15) fma.s1 FR_n_A7 = FR_n_A8, FR_n_XS2, FR_n_A7 // poly tail
- nop.i 0
-}
-{ .mfi
- ldfe FR_l_h_3 = [GR_l_Index3],12
-(p15) fma.s1 FR_n_XS4 = FR_n_XS2, FR_n_XS2, f0 // xs^4 = xs^2*xs^2
- nop.i 0
-};;
-
-{ .mfi
- ldfs FR_l_H_3 = [GR_l_Log_Table1], 0
- fma.s1 FR_l_Y2 = FR_l_Y1, FR_l_E3, FR_l_Y0 // y2 = y+y1*e3
- nop.i 0
-}
-{ .mfi
- ldfs FR_l_G_3 = [GR_l_Index3], 0
- fnma.s1 FR_l_Z = FR_l_AbsX,FR_l_Q0,f1 // r = a-b*q
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_l_G = FR_l_G_1, FR_l_G_2 // G = G1 * G_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_H = FR_l_H_1, FR_l_H_2 // H = H_1 + H_2
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_log2_hi = [GR_l_Log_Table],16 // load log2_hi part
- fadd.s1 FR_l_h = FR_l_h_1, FR_l_h_2 // h = h_1 + h_2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fcvt.xf FR_l_float_N = FR_l_float_N // int(N)
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_log2_lo = [GR_l_Log_Table],16 // Load log2_lo part
- fma.s1 FR_l_CXL = FR_l_CXL, f1, FR_l_CL
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TT = FR_n_A2H, FR_n_XS2L, FR_n_TT // T=A2H*x2L+T
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_Q_6 = [GR_l_Log_Table],16
-(p15) fma.s1 FR_n_A3 = FR_n_A4, FR_n_XS2, FR_n_A3 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_A5 = FR_n_A6, FR_n_XS2, FR_n_A5 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_Q_5 = [GR_l_Log_Table],16
-(p15) fabs FR_n_XS = FR_n_XS // abs(xs)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_Z = FR_l_Z,FR_l_Y2,FR_l_Q0 // x_hi = q+r*y2
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_Q_4 = [GR_l_Log_Table],16
-(p15) fma.s1 FR_n_A7 = FR_n_A9, FR_n_XS4, FR_n_A7 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_XS7 = FR_n_XS4, FR_n_XS2, f0 // = x^4*x^2
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_Q_3 = [GR_l_Log_Table],16
- fneg FR_n_NegOne = f1 // -1.0
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_XS8 = FR_n_XS4, FR_n_XS4, f0 // xs^8 = xs^4*xs^4
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_Q_2 = [GR_l_Log_Table],16
- fadd.s1 FR_l_h = FR_l_h, FR_l_h_3 // h = h_1 + h_2 + h_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TH = FR_n_A2H, FR_n_XS2, FR_n_TT // A2H*xs2+T
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_l_Q_1 = [GR_l_Log_Table],16
- fmpy.s1 FR_l_G = FR_l_G, FR_l_G_3 // G = G_1 * G_2 * G_3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_H = FR_l_H, FR_l_H_3 // H = H_1 + H_2 + H_3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_Z2 = FR_l_Z, FR_l_Z, f0 // Z^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_A3 = FR_n_A5, FR_n_XS4, FR_n_A3 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fcmp.gt.unc.s1 p7,p0 = FR_l_AbsX, FR_c_PosOverflow //X > 1755.5483
- // (overflow domain, result cannot be represented by normal value)
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_XS7 = FR_n_XS7, FR_n_XS, f0 // x^7 construction
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_n_TL = FR_n_A2H, FR_n_XS2, FR_n_TH // A2H*xs2+TH
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_PolyH = FR_n_TH, f1, FR_n_A1H // PolyH=TH+A1H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_l_GS_hi = FR_l_G, FR_l_S // GS_hi = G*S
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fms.s1 FR_l_r = FR_l_G, FR_l_S, f1 // r = G*S -1
-(p7) br.cond.spnt tgammal_overflow // Overflow path for arg > 1755.5483 //////
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B14 = FR_l_B16, FR_l_Z2, FR_l_B14// bernulli tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_Z4 = FR_l_Z2, FR_l_Z2, f0 // Z^4 = Z^2*Z^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B2 = FR_l_B4, FR_l_Z2, FR_l_B2 // bernulli tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B6 = FR_l_B8, FR_l_Z2, FR_l_B6 // bernulli tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B10 = FR_l_B12, FR_l_Z2, FR_l_B10// bernulli tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_Tail = FR_n_A7, FR_n_XS8, FR_n_A3 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TL = FR_n_TL, f1, FR_n_TT // TL = TL+T
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_n_PolyL = FR_n_A1H, f1, FR_n_PolyH // polyH+A1H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_poly_lo = FR_l_r, FR_l_Q_6, FR_l_Q_5 // Q_5+r*Q_6
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 FR_l_r_cor = FR_l_GS_hi, f1 // r_cor = GS_hi -1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_l_GS_lo = FR_l_G, FR_l_S, FR_l_GS_hi // G*S-GS_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_poly = FR_l_r, FR_l_Q_2, FR_l_Q_1 //poly=r*Q2+Q1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_l_rsq = FR_l_r, FR_l_r // rsq = r * r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_G = FR_l_float_N, FR_l_log2_hi, FR_l_H // Tbl =
- // float_N*log2_hi + H
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_Y_lo = FR_l_float_N, FR_l_log2_lo, FR_l_h // Y_lo=
- // float_N*log2_lo + h
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B14 = FR_l_B18, FR_l_Z4, FR_l_B14 //bernulli tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B2 = FR_l_B6, FR_l_Z4, FR_l_B2 //bernulli tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_Z8 = FR_l_Z4, FR_l_Z4, f0 //bernulli tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_poly_lo = FR_l_r, FR_l_poly_lo, FR_l_Q_4 // poly_lo =
- // Q_4 + r * poly_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fsub.s1 FR_l_r_cor = FR_l_r_cor, FR_l_r // r_cor = r_cor - r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_PolyL = FR_n_PolyL, f1, FR_n_TH // polyL+TH
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TT = FR_n_TL, f1, FR_n_A1L // TL+A1L
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_logl_YHi = FR_l_G, FR_l_r // Y_hi = Tbl + r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_B10 = FR_l_B14, FR_l_Z4, FR_l_B10 //bernulli tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_poly_lo = FR_l_r, FR_l_poly_lo, FR_l_Q_3 // poly_lo =
- // Q_3 + r * poly_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_r_cor = FR_l_r_cor, FR_l_GS_lo // r_cor=r_cor+GS_lo
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_PolyL = FR_n_PolyL, f1, FR_n_TT // polyL+TT
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fsub.s1 FR_l_Y_lo_res = FR_l_G, FR_l_logl_YHi // Y_lo = Tbl - Y_hi
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_XYH = FR_l_logl_YHi, FR_l_AbsX_m_Half, f0 // XYH=
- // YHi*|x-0.5|
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_SS = FR_l_B10, FR_l_Z8, FR_l_B2 // bernulli tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_r_cor = FR_l_r_cor, FR_l_Y_lo // r_cor = r_cor+Y_lo
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_l_poly = FR_l_rsq, FR_l_poly_lo, FR_l_poly //poly=
- // r^2*polyLo+poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TT = FR_n_PolyL, FR_n_XS2, f0 // T=polyL*xs^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_Y_lo = FR_l_Y_lo_res, FR_l_r // Y_lo = Y_lo + r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_l_XYL = FR_l_logl_YHi, FR_l_AbsX_m_Half, FR_l_XYH
- // XYL = YHi*|x-0.5|-XYH
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_SSCXH = FR_l_SS, FR_l_Z, FR_l_CXH // SS*Z+CXH
- nop.i 0
-}
-{ .mfi
- mov GR_e_exp_2tom51= 0xffff-51 // 2^-51
-(p15) fma.s1 FR_l_SignedXYH = FR_l_XYH, FR_n_NegOne, f0 // XYH = -XYH
- // for negatives
- nop.i 0
-};;
-
-{ .mlx
- nop.m 0
- movl GR_e_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
-}
-{ .mlx
- nop.m 0
- movl GR_e_sig_inv_ln2 = 0xb8aa3b295c17f0bc //significand of 1/ln2
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_poly = FR_l_rsq, FR_l_poly, FR_l_r_cor // poly =
- // rsq * poly + r_cor
- nop.i 0
-};;
-
-{ .mfi
- addl GR_e_ad_Arg = @ltoff(Constants_Tgammal_exp_64_Arg#),gp
-(p15) fma.s1 FR_n_TT = FR_n_PolyH, FR_n_XS2L, FR_n_TT
- mov GR_e_exp_mask = 0x1FFFF // Form exponent mask
-}
-{ .mlx
- nop.m 0
- movl GR_e_rshf = 0x43e8000000000000 // 1.10000 2^63 rshift
-};;
-
-
-{ .mmi
- setf.sig FR_e_INV_LN2_2TO63 = GR_e_sig_inv_ln2 // form 1/ln2 * 2^63
- setf.d FR_e_RSHF_2TO51 = GR_e_rshf_2to51 // 1.1000 * 2^(63+51)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_l_SSCXL = FR_l_CXH, f1, FR_l_SSCXH // CXH+SS*CXH
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_e_expl_Input_AbsX = FR_l_XYH, f1, FR_l_SSCXH // HI EXP
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_e_expl_Input_X = FR_l_XYH, f1, FR_l_SSCXH // HI EXP
- mov GR_e_exp_bias = 0x0FFFF // Set exponent bias
-}
-{ .mfi
- ld8 GR_e_ad_Arg = [GR_e_ad_Arg] // Point to Arg table
-(p15) fms.s1 FR_e_expl_Input_X = FR_l_SignedXYH, f1, FR_l_SSCXH // HI EXP
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fadd.s1 FR_l_logl_YLo = FR_l_Y_lo, FR_l_poly // YLo = YLo+poly
- nop.i 0
-};;
-
-{ .mfi
- setf.exp FR_e_2TOM51 = GR_e_exp_2tom51 //2^-51 for scaling float_N
-(p15) fma.s1 FR_n_TH = FR_n_PolyH, FR_n_XS2, FR_n_TT // TH=
- // polyH*xs^2+T
- nop.i 0
-}
-{ .mib
- setf.d FR_e_RSHF = GR_e_rshf // Right shift const 1.1000*2^63
- nop.i 0
- nop.b 0
-};;
-
-{ .mfi
- add GR_e_ad_A = 0x20, GR_e_ad_Arg // Point to A table
- nop.f 0
- add GR_e_ad_T1 = 0x50, GR_e_ad_Arg // Point to T1 table
-}
-{ .mfi
- add GR_e_ad_T2 = 0x150, GR_e_ad_Arg // Point to T2 table
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_SSCXL = FR_l_SS, FR_l_Z, FR_l_SSCXL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_e_expl_Input_Y = FR_l_XYH, f1, FR_e_expl_Input_AbsX
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_e_L_hi = [GR_e_ad_Arg],16 // Get L_hi
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_XYL = FR_l_logl_YLo, FR_l_AbsX_m_Half, FR_l_XYL
- // XYL = YLo*|x-0.5|+XYL
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_e_L_lo = [GR_e_ad_Arg],16 // Get L_lo
-(p15) fms.s1 FR_n_TL = FR_n_PolyH, FR_n_XS2, FR_n_TH // TL =
- // = polyH*xs^2-TH
- add GR_e_ad_W1 = 0x100, GR_e_ad_T2 // Point to W1 table
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_Poly1H = FR_n_TH, f1, f1 // poly1H = TH+1
- add GR_e_ad_W2 = 0x300, GR_e_ad_T2 // Point to W2 table
-};;
-
-{ .mmi
- getf.exp GR_e_signexp_x = FR_e_expl_Input_X // Extract sign and exp
- ldfe FR_e_A3 = [GR_e_ad_A],16 // Get A3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_SSCXL = FR_l_SSCXL, f1, FR_l_CXL
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, f1, FR_l_SSCXH
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_N_signif=FR_e_expl_Input_X,FR_e_INV_LN2_2TO63,FR_e_RSHF_2TO51
- and GR_e_exp_x = GR_e_signexp_x, GR_e_exp_mask
-};;
-
-{ .mmi
- sub GR_e_exp_x = GR_e_exp_x, GR_e_exp_bias // Get exponent
- ldfe FR_e_A2 = [GR_e_ad_A],16 // Get A2 for main path
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_PolyH = FR_n_Poly1H, FR_n_XS, f0//sin(Pi*x) poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_n_Poly1L = f1, f1, FR_n_Poly1H//sin(Pi*x) poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TL = FR_n_TL, f1, FR_n_TT//sin(Pi*x) poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_l_Temp = FR_l_XYL, f1, FR_l_SSCXL // XYL+SS*CXL
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, FR_n_NegOne, f0
- // Negate lo part of exp argument for negative input values
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_e_A1 = [GR_e_ad_A],16 // Get A1
- nop.f 0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_e_float_N = FR_e_N_signif, FR_e_2TOM51, FR_e_RSHF
- // Get float N = signd*2^51-RSHIFTER
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_Poly1L = FR_n_Poly1L, f1, FR_n_TH //sin(Pi*x) poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_n_PolyL = FR_n_Poly1H, FR_n_XS, FR_n_PolyH//sin(Pi*x)
- nop.i 0
-};;
-
-{ .mfi
- getf.sig GR_e_N_fix = FR_e_N_signif // Get N from significand
- nop.f 0
- nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, f1, FR_l_Temp
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, f1, FR_l_Temp
- // arguments for exp computation
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_e_r = FR_e_L_hi, FR_e_float_N, FR_e_expl_Input_X
- // r = -L_hi * float_N + x
- extr.u GR_e_M1 = GR_e_N_fix, 6, 6 // Extract index M_1
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_Poly1L = FR_n_Poly1L, f1, FR_n_TL //sin(Pi*x) poly
- nop.i 0
-};;
-
-
-{ .mmf
- nop.m 0
- nop.m 0
- fma.s1 FR_e_r = FR_e_r, f1, FR_e_expl_Input_Y
- // r = r + FR_e_expl_Input_Y
-};;
-
-{ .mmi
- shladd GR_e_ad_W1 = GR_e_M1,3,GR_e_ad_W1 // Point to W1
- shladd GR_e_ad_T1 = GR_e_M1,2,GR_e_ad_T1 // Point to T1
- extr.u GR_e_M2 = GR_e_N_fix, 0, 6 // Extract index M_2
-};;
-
-
-{ .mfi
- ldfs FR_e_T1 = [GR_e_ad_T1],0 // Get T1
- nop.f 0
- extr GR_e_K = GR_e_N_fix, 12, 32 //Extract limit range K
-}
-{ .mfi
- shladd GR_e_ad_T2 = GR_e_M2,2,GR_e_ad_T2 // Point to T2
-(p15) fma.s1 FR_n_PolyL = FR_n_Poly1L, FR_n_XS, FR_n_PolyL
- //sin(Pi*x) poly
- shladd GR_e_ad_W2 = GR_e_M2,3,GR_e_ad_W2 // Point to W2
-};;
-
-{ .mfi
- ldfs FR_e_T2 = [GR_e_ad_T2],0 // Get T2
- nop.f 0
- add GR_e_exp_2_k = GR_e_exp_bias, GR_e_K // exp of 2^k
-}
-{ .mfi
- ldfd FR_e_W1 = [GR_e_ad_W1],0 // Get W1
- nop.f 0
- sub GR_e_exp_2_mk = GR_e_exp_bias, GR_e_K // exp of 2^-k
-};;
-
-{ .mmi
- ldfd FR_e_W2 = [GR_e_ad_W2],0 // Get W2
- nop.m 0
- nop.i 0
-};;
-
-{ .mmf
- setf.exp FR_e_scale = GR_e_exp_2_k // Set scale = 2^k
- setf.exp FR_e_2_mk = GR_e_exp_2_mk // Form 2^-k
- fnma.s1 FR_e_r = FR_e_L_lo, FR_e_float_N, FR_e_r
- // r = -L_lo * float_N + r
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_PolyL = FR_n_Tail, FR_n_XS7, FR_n_PolyL
- //sin(Pi*x) poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_poly = FR_e_r, FR_e_A3, FR_e_A2 // poly=r*A3+A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 FR_e_rsq = FR_e_r, FR_e_r // rsq = r * r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 FR_e_T = FR_e_T1, FR_e_T2 // T = T1 * T2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fadd.s1 FR_e_W1_p1 = FR_e_W1, f1 // W1_p1 = W1 + 1.0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_TT = FR_n_PolyL, FR_l_AbsX, f0 //sin(Pi*x) poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_poly = FR_e_r, FR_e_poly, FR_e_A1
- // poly = r * poly + A1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_T_scale = FR_e_T, FR_e_scale, f0 // T_scale=T*scale
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_e_W = FR_e_W2, FR_e_W1_p1, FR_e_W1
- // W = W2 * (W1+1.0) + W1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_SinxH = FR_n_PolyH, FR_l_AbsX, FR_n_TT
- // sin(Pi*x) poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- mov FR_e_Y_hi = FR_e_T // Assume Y_hi = T
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_poly = FR_e_rsq, FR_e_poly, FR_e_r
- // poly = rsq * poly + r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_Wp1_T_scale = FR_e_W, FR_e_T_scale, FR_e_T_scale
- // (W+1)*T*scale
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_e_W_T_scale = FR_e_W, FR_e_T_scale, f0 // W*T*scale
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fms.s1 FR_n_SinxL = FR_n_PolyH, FR_l_AbsX, FR_n_SinxH
- // Low part of sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) frcpa.s1 FR_n_Y0, p0 = f1, FR_n_SinxH // y = frcpa(b)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_result_lo = FR_e_Wp1_T_scale, FR_e_poly, FR_e_W_T_scale
- // Low part of exp result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_SinxL = FR_n_SinxL, f1, FR_n_TT // sin low result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p15) fma.s1 FR_n_Q0 = f1,FR_n_Y0,f0 // q = y
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p15) fnma.s1 FR_n_E0 = FR_n_Y0, FR_n_SinxH, f1 // e = 1-b*y
- nop.i 0
-};;
-
-
-{ .mfb
- nop.m 0
-(p14) fma.s0 f8 = FR_e_Y_hi, FR_e_scale, FR_e_result_lo
-(p14) br.ret.spnt b0 // Exit for positive Stirling path //////////////////////
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_e_expl_Output_X = FR_e_Y_hi, FR_e_scale, f0 // exp result
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_e_expl_Output_Y = FR_e_result_lo, f1, f0// exp lo result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_E2 = FR_n_E0,FR_n_E0,FR_n_E0 // e2 = e+e^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_n_E1 = FR_n_E0,FR_n_E0,f0 // e1 = e^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_Y1 = FR_n_Y0,FR_n_E2,FR_n_Y0 // y1 = y+y*e2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_n_E3 = FR_n_E1,FR_n_E1,FR_n_E0 // e3 = e+e1^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_Y2 = FR_n_Y1,FR_n_E3,FR_n_Y0 // y2 = y+y1*e3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_n_R0 = FR_n_SinxH,FR_n_Q0,f1 // r = a-b*q
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_n_E4 = FR_n_SinxH,FR_n_Y2,f1 // e4 = 1-b*y2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_n_RcpResH = FR_n_R0,FR_n_Y2,FR_n_Q0 // x = q+r*y2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_Y3 = FR_n_Y2,FR_n_E4,FR_n_Y2 // y3 = y2+y2*e4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_n_R1 = FR_n_SinxH,FR_n_RcpResH,f1 // r1 = a-b*x
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_n_R1 = FR_n_SinxL,FR_n_RcpResH,FR_n_R1
- // r1 = r1 - b_lo*X
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_RcpResL = FR_n_R1,FR_n_Y3,f0 // x_lo = r1*y3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_n_Temp = FR_n_RcpResH, FR_e_expl_Output_Y, f0
- // Multiplying exp and sin result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_Temp = FR_n_RcpResL, FR_e_expl_Output_X, FR_n_Temp
- // Multiplying exp and sin result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_ResH = FR_n_RcpResH, FR_e_expl_Output_X, FR_n_Temp
- // Multiplying exp and sin result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_n_ResL = FR_n_RcpResH, FR_e_expl_Output_X, FR_n_ResH
- // Multiplying exp and sin result
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_n_ResH = FR_n_ResH, FR_n_NegOne, f0 // Negate
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_n_ResL = FR_n_ResL, f1, FR_n_Temp
- // Multiplying exp and sin result - low result obtained
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- nop.m 0
-(p13) fma.s0 f8 = FR_n_ResH, f1, FR_n_ResL // For odd
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p12) fms.s0 f8 = FR_n_ResH, f1, FR_n_ResL // For even
- br.ret.sptk b0 // Exit for negative Stirling path //////////////////////
-};;
-
-
-//////////// 1 <= |X| < 13 path ////////////////////////////////////////////////
-//------------------------------------------------------------------------------
-.align 64
-tgamma_lt_13:
-{ .mfi
- getf.sig GR_p_XN = FR_p_IXN // Get significand
- fcvt.xf FR_p_XN = FR_p_IXN // xn = [x]
- add GR_r_sin_Table2= 0x40, GR_r_sin_Table // Shifted table addr.
-}
-{ .mfi
- ldfpd FR_p_0p5, FR_p_1p5 = [GR_c_Table], 16 // 0.5 & 1.5
- fms.s1 FR_p_AbsXM1 = FR_p_AbsX, f1, f1 // X-1
- add GR_p_Table2 = 0xB0, GR_p_Table
-};;
-
-{ .mfi
- add GR_r_sin_Table = -16, GR_r_sin_Table // For compensation
- fcvt.xf FR_r_XNS = FR_r_IXNS // Convert int repr to float
- shr.u GR_p_X_Sgnd = GR_p_X_Sgnd, 59 // Get only 5 bit of signd
-};;
-
-{ .mfi
- ldfpd FR_r_A2H,FR_r_A2L = [GR_r_sin_Table], 16 // Load A2
- nop.f 0
- add GR_p_Int = -2, GR_p_XN // int = int - 2
-}
-{ .mfi
- ldfe FR_r_A6 = [GR_r_sin_Table2], 16
- nop.f 0
- cmp.gtu p11, p12 = 0x2, GR_p_XN // p11: x < 2 (splitted intervals),
- // p12: x > 2 (base intervals)
-};;
-
-{ .mfi
- ldfpd FR_r_A1H, FR_r_A1L = [GR_r_sin_Table], 16
- nop.f 0
- shr GR_p_Int = GR_p_Int, 1 // int/2
-}
-{ .mfi
- ldfe FR_r_A5 = [GR_r_sin_Table2], 16
- nop.f 0
-(p11) cmp.gtu.unc p10, p11 = 0x1C, GR_p_X_Sgnd // sgnd(x) < 0.75
-};;
-
-{ .mfi
- ldfe FR_r_A9 = [GR_r_sin_Table], 16
- nop.f 0
- shl GR_p_Offset = GR_p_Int, 4 // offset = int*16
-}
-{ .mfi
- ldfe FR_r_A4 = [GR_r_sin_Table2], 16
- nop.f 0
-(p10) cmp.gtu.unc p9, p10 = 0x14, GR_p_X_Sgnd // sgnd(x) < 0.25
-};;
-
-
-{ .mfi
- ldfe FR_r_A8 = [GR_r_sin_Table], 16
- nop.f 0
-(p12) tbit.nz.unc p13, p12 = GR_p_XN, 0x0 // p13: reccurent computations
- // X is at [3;4], [5;6], [7;8]... interval
-}
-{ .mfi
- ldfe FR_r_A3 = [GR_r_sin_Table2], 16
- nop.f 0
- shladd GR_p_Offset = GR_p_Int, 2, GR_p_Offset // +int*4
-};;
-
-.pred.rel "mutex",p9,p11
-{ .mfi
- add GR_p_Offset = GR_p_Int, GR_p_Offset
- // +int, so offset = int*21
-(p9) fms.s1 FR_p_XR = FR_p_AbsX, f1, f1 // r = x-1
- nop.i 0
-}
-{ .mfi
- ldfe FR_r_A7 = [GR_r_sin_Table], 16
-(p11) fms.s1 FR_p_XR = FR_p_2, f1, FR_p_AbsX
- // r = 2-x for 1.75 < x < 2
- nop.i 0
-};;
-
-.pred.rel "mutex",p9,p10
-.pred.rel "mutex",p10,p11
-.pred.rel "mutex",p9,p11
-{ .mfi
-(p9) add GR_p_Offset = 126, r0 // 1.0 < x < 1.25 table
-(p15) fcmp.eq.unc.s1 p7,p0 = FR_p_AbsX, FR_p_XN
- // If arg is integer and negative - singularity branch
- nop.i 0
-}
-{ .mfi
-(p10) add GR_p_Offset = 147, r0 // 1.25 < x < 1.75 table
- nop.f 0
-(p11) add GR_p_Offset = 168, r0 // 1.75 < x < 2.0 table
-};;
-
-{ .mmf
- shladd GR_p_Table = GR_p_Offset, 4, GR_p_Table
- shladd GR_p_Table2 = GR_p_Offset, 4, GR_p_Table2
- fma.s1 FR_r_XS = FR_r_AbsX , f1, FR_r_XNS // xs = x - [x]
-};;
-
-{ .mmb
- ldfpd FR_p_A5H, FR_p_A5L = [GR_p_Table], 16
- ldfpd FR_p_A2H, FR_p_A2L = [GR_p_Table2], 16
-(p7) br.cond.spnt tgammal_singularity // Singularity for integer /////////////
- // and negative argument ///////////////
-};;
-
-{ .mfi
- ldfpd FR_p_A4H, FR_p_A4L = [GR_p_Table], 16
- fma.s1 FR_p_XN = FR_p_XN, f1, FR_p_0p5 // xn = xn+0.5
- nop.i 0
-}
-{ .mfi
- ldfpd FR_p_A1H, FR_p_A1L = [GR_p_Table2], 16
-(p10) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_1p5 // r = x - 1.5
- nop.i 0
-};;
-
-{ .mmi
- ldfpd FR_p_A3H, FR_p_A3L = [GR_p_Table], 16
- ldfpd FR_p_A0H, FR_p_A0L = [GR_p_Table2], 16
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_p_A20 = [GR_p_Table], 16
- ldfe FR_p_A12 = [GR_p_Table2], 16
- nop.i 0
-};;
-
-{ .mmf
- ldfe FR_p_A19 = [GR_p_Table], 16
- ldfe FR_p_A11 = [GR_p_Table2], 16
- fma.s1 FR_r_XS2 = FR_r_XS, FR_r_XS, f0 // xs2 = xs*xs
-};;
-
-{ .mmi
- ldfe FR_p_A18 = [GR_p_Table], 16
- ldfe FR_p_A10 = [GR_p_Table2], 16
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- ldfe FR_p_A17 = [GR_p_Table], 16
-(p12) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_XN // r = x - xn
- nop.i 0
-}
-{ .mfi
- ldfe FR_p_A9 = [GR_p_Table2], 16
-(p13) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_XN
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_p_A16 = [GR_p_Table], 16
- ldfe FR_p_A8 = [GR_p_Table2], 16
-(p9) cmp.eq p12, p0 = r0, r0 // clear p12
-};;
-
-{ .mmi
- ldfe FR_p_A15 = [GR_p_Table], 16
- ldfe FR_p_A7 = [GR_p_Table2], 16
-(p10) cmp.eq p12, p0 = r0, r0 // clear p12
-};;
-
-{ .mfi
- ldfe FR_p_A14 = [GR_p_Table], 16
- fma.s1 FR_r_TH = FR_r_A2H, FR_r_XS2, f0 // sin for neg
-(p11) cmp.eq p12, p0 = r0, r0 // clear p12
-}
-{ .mfi
- ldfe FR_p_A6 = [GR_p_Table2], 16
- fma.s1 FR_r_TL = FR_r_A2L, FR_r_XS2, f0 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_p_A13 = [GR_p_Table], 16
- fms.s1 FR_r_XS2L = FR_r_XS, FR_r_XS, FR_r_XS2 // x2Lo part
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp5H = FR_p_A5H, FR_p_XR, f0 // A5H*r
- // 'Low poly'
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR2 = FR_p_XR, FR_p_XR, f0 // r^2 = r*r
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fabs FR_r_XS = FR_r_XS // abs(xs)
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp2H = FR_p_A2H, FR_p_XR, f0 // A2H*r
- // 'High poly'
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_TT = FR_r_A2H, FR_r_XS2, FR_r_TH // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResH = FR_r_TH, f1, FR_r_A1H // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_A2H, FR_r_XS2L, FR_r_TL // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp5L = FR_p_A5H,FR_p_XR,FR_p_Temp5H //A5H*r delta
- // 'Low poly'
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly5H = FR_p_Temp5H, f1, FR_p_A4H // A5H*r+A4H
- // 'Low poly'
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp2L = FR_p_A2H, FR_p_XR, FR_p_Temp2H//A2H*r delta
- //'High poly'
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly2H = FR_p_Temp2H, f1, FR_p_A1H // A2H*r+A1H
- //'High poly'
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR3 = FR_p_XR2, FR_p_XR, f0 // r^3 = r^2*r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_p_XR2L = FR_p_XR, FR_p_XR, FR_p_XR2 // r^2 delta
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A18 = FR_p_A19, FR_p_XR, FR_p_A18 // Poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A14 = FR_p_A15, FR_p_XR, FR_p_A14 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR4 = FR_p_XR2, FR_p_XR2, f0 // r^4 = r^2*r^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp5L = FR_p_A5L, FR_p_XR, FR_p_Temp5L// Low part
- // of A5*r+A4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly5L = FR_p_A4H, f1, FR_p_Poly5H // Low part
- // of A5*r+A4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp4H = FR_p_Poly5H, FR_p_XR, f0 // (A5H*r+A4H)*r
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp2L = FR_p_A2L, FR_p_XR, FR_p_Temp2L // A2*r low
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly2L = FR_p_A1H, f1, FR_p_Poly2H // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1H = FR_p_Poly2H, FR_p_XR, f0 // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_XR3L = FR_p_XR2, FR_p_XR, FR_p_XR3 // x^3 delta
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A16 = FR_p_A17, FR_p_XR, FR_p_A16 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_ResL = FR_r_A1H, f1, FR_r_ResH // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp5L = FR_p_Temp5L, f1, FR_p_A4L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5H // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp4L = FR_p_Poly5H,FR_p_XR,FR_p_Temp4H //Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly4H = FR_p_Temp4H, f1, FR_p_A3H // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp2L = FR_p_Temp2L, f1, FR_p_A1L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp1L = FR_p_Poly2H,FR_p_XR,FR_p_Temp1H //High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1H = FR_p_Temp1H, f1, FR_p_A0H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A12 = FR_p_A13, FR_p_XR, FR_p_A12 // Poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR3L = FR_p_XR2L, FR_p_XR, FR_p_XR3L // x^3 low
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A10 = FR_p_A11, FR_p_XR, FR_p_A10 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly4L = FR_p_A3H, f1, FR_p_Poly4H // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A6 = FR_p_A7, FR_p_XR, FR_p_A6 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A8 = FR_p_A9, FR_p_XR, FR_p_A8 // Poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR6 = FR_p_XR4, FR_p_XR2, f0 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly1L = FR_p_A0H, f1, FR_p_Poly1H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TH // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TT = FR_r_TL, f1, FR_r_A1L // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp4L = FR_p_Poly5L,FR_p_XR,FR_p_Temp4L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A18 = FR_p_A20, FR_p_XR2, FR_p_A18 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4H // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A14 = FR_p_A16, FR_p_XR2, FR_p_A14 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A6 = FR_p_A8, FR_p_XR2, FR_p_A6 // Poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A10 = FR_p_A12, FR_p_XR2, FR_p_A10 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1L = FR_p_Poly2L,FR_p_XR,FR_p_Temp1L //High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TT // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TH = FR_r_ResH, FR_r_XS2, f0 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp4L = FR_p_Temp4L, f1, FR_p_A3L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3H = FR_p_Poly4H, FR_p_XR3, f0 // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A14 = FR_p_A18, FR_p_XR4, FR_p_A14 // Poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR8 = FR_p_XR4, FR_p_XR4, f0 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_ResH, FR_r_XS2L, f0 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1L = FR_p_Temp1L, f1, FR_p_A0L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A6 = FR_p_A10, FR_p_XR4, FR_p_A6 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_TT = FR_r_ResH, FR_r_XS2, FR_r_TH // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res3H = FR_r_TH, f1, f1 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3L = FR_p_Poly4H, FR_p_XR3L, f0 // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly0H = FR_p_Poly3H,f1,FR_p_Poly1H //Low & High add
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A7 = FR_r_A8, FR_r_XS2, FR_r_A7 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_ResL, FR_r_XS2, FR_r_TL // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS4 = FR_r_XS2, FR_r_XS2, f0 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_PolyTail = FR_p_A14, FR_p_XR8, FR_p_A6 // Poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_Res3L = f1, f1, FR_r_Res3H // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResH = FR_r_Res3H, FR_r_XS, f0 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp0L = FR_p_Poly4H,FR_p_XR3,FR_p_Poly3H //Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3L = FR_p_Poly4L,FR_p_XR3,FR_p_Poly3L //Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly0L = FR_p_Poly1H,f1,FR_p_Poly0H //Low & High add
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_p_OddPoly0H = FR_p_Poly0H, FR_p_AbsXM1, f0
- // Reccurent computations - multiplying by X-1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A3 = FR_r_A4, FR_r_XS2, FR_r_A3 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1L = FR_p_PolyTail,FR_p_XR6,FR_p_Poly1L//High
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A5 = FR_r_A6, FR_r_XS2, FR_r_A5 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TH // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_r_ResL = FR_r_Res3H, FR_r_XS, FR_r_ResH//sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3L = FR_p_Poly3L, f1, FR_p_Temp0L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A7 = FR_r_A9, FR_r_XS4, FR_r_A7 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly0L = FR_p_Poly0L,f1,FR_p_Poly3H //Low & High add
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fms.s1 FR_p_OddPoly0L = FR_p_Poly0H, FR_p_AbsXM1, FR_p_OddPoly0H
- // Reccurent computations - multiplying by X-1 (low part)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A3 = FR_r_A5, FR_r_XS4, FR_r_A3 // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS7 = FR_r_XS4, FR_r_XS2, f0 // xs^6
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TL // sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS8 = FR_r_XS4, FR_r_XS4, f0 // sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp0H = FR_p_Poly3L,f1,FR_p_Poly1L //Low & High add
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS7 = FR_r_XS7, FR_r_XS, f0 // xs^7
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_Res3L, FR_r_XS, FR_r_ResL//sin for neg
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Tail = FR_r_A7, FR_r_XS8, FR_r_A3 // sin tail res
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly0L = FR_p_Poly0L,f1,FR_p_Temp0H //Low & High add
- nop.i 0
-};;
-
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_Tail,FR_r_XS7,FR_r_ResL //sin for neg
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_p_OddPoly0L = FR_p_Poly0L, FR_p_AbsXM1, FR_p_OddPoly0L
- // Reccurent computations - multiplying by X-1 (low part)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TT = FR_r_ResL, FR_r_AbsX, f0 // X*sin
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- nop.m 0
-(p12) fma.s0 f8 = FR_p_Poly0H, f1, FR_p_Poly0L // Even
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p13) fma.s0 f8 = FR_p_OddPoly0H, f1, FR_p_OddPoly0L // Odd
-(p14) br.ret.spnt b0 // Exit for 1 <= |X| < 13 path (positive arguments)/////
-};;
-
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_p_Poly0H = FR_p_OddPoly0H, f1, f0
- // Reccurent computations
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p13) fma.s1 FR_p_Poly0L = FR_p_OddPoly0L, f1, f0
- // Reccurent computations
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res1H = FR_r_ResH, FR_r_AbsX, FR_r_TT // X*sin
-(p11) cmp.eq p13, p12 = r0, r0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_Res1L = FR_r_ResH,FR_r_AbsX,FR_r_Res1H// X*sin
-(p9) cmp.eq p13, p12 = r0, r0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res1L = FR_r_Res1L, f1, FR_r_TT // sin for neg
-(p10) cmp.eq p13, p12 = r0, r0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_p_Poly0L, FR_r_Res1H, f0 // mult by sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_p_Poly0H,FR_r_Res1L,FR_r_TL//mult by sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResH = FR_p_Poly0H,FR_r_Res1H,FR_r_TL//mult by sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_ResL = FR_p_Poly0H,FR_r_Res1H,FR_r_ResH//sin mult
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- frcpa.s1 FR_r_Y0,p0 = f1,FR_r_ResH // y = frcpa(b)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fneg FR_r_NegOne = f1 // Form -1.0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TL //Low result of mult
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Q0 = f1,FR_r_Y0,f0 // q = a*y
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_E0 = FR_r_Y0,FR_r_ResH,f1 // e = 1-b*y
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_E2 = FR_r_E0,FR_r_E0,FR_r_E0 // e2 = e+e^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_E1 = FR_r_E0,FR_r_E0,f0 // e1 = e^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Y1 = FR_r_Y0,FR_r_E2,FR_r_Y0 // y1 = y+y*e2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_E3 = FR_r_E1,FR_r_E1,FR_r_E0 // e3 = e+e1^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Y2 = FR_r_Y1,FR_r_E3,FR_r_Y0 // y2 = y+y1*e3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_R0 = FR_r_ResH,FR_r_Q0,f1 // r = a-b*q
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_E4 = FR_r_ResH,FR_r_Y2,f1 // e4 = 1-b*y2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ZH = FR_r_R0,FR_r_Y2,FR_r_Q0 // x = q+r*y2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Y3 = FR_r_Y2,FR_r_E4,FR_r_Y2 // y3 = y2+y2*e4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_R1 = FR_r_ResH,FR_r_ZH,f1 // r1 = a-b*x
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_R1 = FR_r_ResL,FR_r_ZH,FR_r_R1 // r1=r1-b_lo*X
- nop.i 0
-}
-{ .mfi
- nop.m 0
-(p12) fma.s1 FR_r_ZHN = FR_r_ZH,FR_r_NegOne, f0 // Negate for evens
- nop.i 0
-};;
-
-.pred.rel "mutex",p13,p12
-{ .mfi
- nop.m 0
-(p13) fma.s0 f8 = FR_r_R1,FR_r_Y3,FR_r_ZH // Final result
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p12) fnma.s0 f8 = FR_r_R1,FR_r_Y3,FR_r_ZHN // Final result
- br.ret.sptk b0 // Exit for 1 <= |X| < 13 path (negative arguments)//////
-};;
-
-
-//////////// |X| < 1 path /////////////////////////////////////////////////////
-//------------------------------------------------------------------------------
-.align 64
-tgamma_lt_1:
-{ .mfi
- getf.exp GR_p_Exp = FR_p_AbsX // exp of abs X
- fma.s1 FR_z_Q0 = f1,FR_z_Y0,f0 // q = a*y
- add GR_r_sin_Table2= 0x50, GR_r_sin_Table
-}
-{ .mfi
- ldfpd FR_p_0p5, FR_p_1p5 = [GR_c_Table], 16
- fnma.s1 FR_z_E0 = FR_z_Y0,f8,f1 // e = 1-b*y
- add GR_p_Table2 = 0xB0, GR_p_Table
-};;
-
-{ .mfi
- ldfd FR_p_0p25 = [GR_c_Table]
- fcvt.xf FR_r_XNS = FR_r_IXNS // Convert int repr to float
- shr.u GR_p_X_Sgnd = GR_p_X_Sgnd, 60
- // Obtain only 4 bits of significand
-}
-{ .mfi
- nop.m 0
- nop.f 0
- add GR_p_Bias = 0xffff, r0 // Set bias
-};;
-
-{ .mfi
- ldfpd FR_r_A2H, FR_r_A2L = [GR_r_sin_Table], 16
- nop.f 0
- shl GR_p_XN = GR_p_Exp, 4
- // Shift exp to 4 bits left to set place for significand
-}
-{ .mlx
- ldfe FR_r_A6 = [GR_r_sin_Table2], 16
- movl GR_p_0p75 = 0xfffec // 0.75
-};;
-
-{ .mfi
- ldfpd FR_r_A1H, FR_r_A1L = [GR_r_sin_Table], 16
- nop.f 0
- or GR_p_XN = GR_p_XN, GR_p_X_Sgnd
- // Combine exp with 4 high bits of significand
-}
-{ .mfi
- ldfe FR_r_A5 = [GR_r_sin_Table2], 16
- nop.f 0
- sub GR_p_Exp = GR_p_Exp, GR_p_Bias // Unbiased exp
-};;
-
-{ .mmi
- ldfe FR_r_A9 = [GR_r_sin_Table], 16
- ldfe FR_r_A4 = [GR_r_sin_Table2], 16
- cmp.gtu.unc p10, p11 = GR_p_0p75, GR_p_XN // sgnd(x) < 0.75
-};;
-
-{ .mfi
- ldfe FR_r_A8 = [GR_r_sin_Table], 16
- fma.s1 FR_z_E2 = FR_z_E0,FR_z_E0,FR_z_E0 // e2 = e+e^2
-(p10) cmp.gt.unc p9, p10 = -2, GR_p_Exp // x < 0.25
-}
-{ .mfi
- ldfe FR_r_A3 = [GR_r_sin_Table2], 16
- fma.s1 FR_z_E1 = FR_z_E0,FR_z_E0,f0 // e1 = e^2
-(p11) add GR_p_Offset = 168, r0 // [0.75;1] interval
-};;
-
-{ .mmi
-(p10) add GR_p_Offset = 147, r0 // [0.25;0.75] interval
- ldfe FR_r_A7 = [GR_r_sin_Table], 16
-(p9) cmp.gt.unc p8, p9 = -3, GR_p_Exp // x < 0.125
-};;
-
-.pred.rel "mutex",p9,p8
-{ .mmi
-(p9) add GR_p_Offset = 126, r0 // [0.125;0.25] interval
-(p8) add GR_p_Offset = 189, r0 // [0.;0.125] interval
- nop.i 0
-};;
-
-{ .mmf
- shladd GR_p_Table = GR_p_Offset, 4, GR_p_Table //Make addresses
- shladd GR_p_Table2 = GR_p_Offset, 4, GR_p_Table2
- fma.s1 FR_r_XS = FR_r_AbsX , f1, FR_r_XNS // xs = |x|-[x]
-};;
-
-.pred.rel "mutex",p8,p11
-{ .mfi
- ldfpd FR_p_A5H, FR_p_A5L = [GR_p_Table], 16
-(p11) fms.s1 FR_p_XR = f1, f1, FR_p_AbsX // r = 1 - |x|
- // for [0.75;1] interval
- nop.i 0
-}
-{ .mfi
- ldfpd FR_p_A2H, FR_p_A2L = [GR_p_Table2], 16
-(p8) fms.s1 FR_p_XR = FR_p_AbsX, f1, f0 // r = |x|
- // for [0.;0.125] interval
- nop.i 0
-};;
-
-{ .mfi
- ldfpd FR_p_A4H, FR_p_A4L = [GR_p_Table], 16
- fma.s1 FR_z_Y1 = FR_z_Y0,FR_z_E2,FR_z_Y0 // y1 = y+y*e2
- nop.i 0
-}
-{ .mfi
- ldfpd FR_p_A1H, FR_p_A1L = [GR_p_Table2], 16
- fma.s1 FR_z_E3 = FR_z_E1,FR_z_E1,FR_z_E0 // e3 = e+e1^2
- nop.i 0
-};;
-
-.pred.rel "mutex",p9,p10
-{ .mfi
- ldfpd FR_p_A3H, FR_p_A3L = [GR_p_Table], 16
-(p9) fms.s1 FR_p_XR = FR_p_AbsX, f1, f0 // r = |x|
- // for [0.125;0.25] interval
- nop.i 0
-}
-{ .mfi
- ldfpd FR_p_A0H, FR_p_A0L = [GR_p_Table2], 16
-(p10) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_0p5 // r = |x| - 0.5
- // for [0.25;0.75] interval
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_p_A20 = [GR_p_Table], 16
- ldfe FR_p_A12 = [GR_p_Table2], 16
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_p_A19 = [GR_p_Table], 16
- fma.s1 FR_r_XS2 = FR_r_XS, FR_r_XS, f0 // xs^2
- nop.i 0
-}
-{ .mfi
- ldfe FR_p_A11 = [GR_p_Table2], 16
- nop.f 0
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_p_A18 = [GR_p_Table], 16
- ldfe FR_p_A10 = [GR_p_Table2], 16
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- ldfe FR_p_A17 = [GR_p_Table], 16
- fma.s1 FR_z_Y2 = FR_z_Y1,FR_z_E3,FR_z_Y0 // y2 = y+y1*e3
- nop.i 0
-}
-{ .mfi
- ldfe FR_p_A9 = [GR_p_Table2], 16
- fnma.s1 FR_z_R0 = f8,FR_z_Q0,f1 // r = a-b*q
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_p_A16 = [GR_p_Table], 16
- ldfe FR_p_A8 = [GR_p_Table2], 16
- nop.i 0
-};;
-
-{ .mmi
- ldfe FR_p_A15 = [GR_p_Table], 16
- ldfe FR_p_A7 = [GR_p_Table2], 16
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_p_A14 = [GR_p_Table], 16
- fma.s1 FR_r_TH = FR_r_A2H, FR_r_XS2, f0 // neg sin
- nop.i 0
-}
-{ .mfi
- ldfe FR_p_A6 = [GR_p_Table2], 16
- fma.s1 FR_r_TL = FR_r_A2L, FR_r_XS2, f0 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- ldfe FR_p_A13 = [GR_p_Table], 16
- fms.s1 FR_r_XS2L = FR_r_XS, FR_r_XS, FR_r_XS2 // xs^2 delta
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp5H = FR_p_A5H, FR_p_XR, f0 // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR2 = FR_p_XR, FR_p_XR, f0 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fabs FR_r_XS = FR_r_XS // Absolute value of xs
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp2H = FR_p_A2H, FR_p_XR, f0 // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_z_E4 = f8,FR_z_Y2,f1 // e4 = 1-b*y2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_z_ZH = FR_z_R0,FR_z_Y2,FR_z_Q0 // 1/x = q+r*y2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_TT = FR_r_A2H, FR_r_XS2, FR_r_TH // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResH = FR_r_TH, f1, FR_r_A1H // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_A2H, FR_r_XS2L, FR_r_TL // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp5L = FR_p_A5H, FR_p_XR, FR_p_Temp5H // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly5H = FR_p_Temp5H, f1, FR_p_A4H // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp2L = FR_p_A2H, FR_p_XR, FR_p_Temp2H // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly2H = FR_p_Temp2H, f1, FR_p_A1H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR3 = FR_p_XR2, FR_p_XR, f0 // r^3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_p_XR2L = FR_p_XR, FR_p_XR, FR_p_XR2 // r^2 delta
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A18 = FR_p_A19, FR_p_XR, FR_p_A18 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A14 = FR_p_A15, FR_p_XR, FR_p_A14 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR4 = FR_p_XR2, FR_p_XR2, f0 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_z_Y3 = FR_z_Y2,FR_z_E4,FR_z_Y2 // y3 = y2+y2*e4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp5L = FR_p_A5L, FR_p_XR, FR_p_Temp5L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly5L = FR_p_A4H, f1, FR_p_Poly5H // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp4H = FR_p_Poly5H, FR_p_XR, f0 // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp2L = FR_p_A2L, FR_p_XR, FR_p_Temp2L // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly2L = FR_p_A1H, f1, FR_p_Poly2H // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1H = FR_p_Poly2H, FR_p_XR, f0 // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_XR3L = FR_p_XR2, FR_p_XR, FR_p_XR3 // x^3 delta
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A16 = FR_p_A17, FR_p_XR, FR_p_A16 //poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_ResL = FR_r_A1H, f1, FR_r_ResH // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp5L = FR_p_Temp5L, f1, FR_p_A4L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5H //Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp4L = FR_p_Poly5H, FR_p_XR, FR_p_Temp4H//Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly4H = FR_p_Temp4H, f1, FR_p_A3H // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp2L = FR_p_Temp2L, f1, FR_p_A1L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp1L = FR_p_Poly2H,FR_p_XR,FR_p_Temp1H //High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1H = FR_p_Temp1H, f1, FR_p_A0H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A12 = FR_p_A13, FR_p_XR, FR_p_A12 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR3L = FR_p_XR2L, FR_p_XR, FR_p_XR3L // x^3 low
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5L //Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A10 = FR_p_A11, FR_p_XR, FR_p_A10 //poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly4L = FR_p_A3H, f1, FR_p_Poly4H /// Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A6 = FR_p_A7, FR_p_XR, FR_p_A6 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A8 = FR_p_A9, FR_p_XR, FR_p_A8 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR6 = FR_p_XR4, FR_p_XR2, f0 // r^6
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly1L = FR_p_A0H, f1, FR_p_Poly1H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TH // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TT = FR_r_TL, f1, FR_r_A1L // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp4L = FR_p_Poly5L,FR_p_XR,FR_p_Temp4L //Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A18 = FR_p_A20, FR_p_XR2, FR_p_A18 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4H // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A14 = FR_p_A16, FR_p_XR2, FR_p_A14 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A6 = FR_p_A8, FR_p_XR2, FR_p_A6 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A10 = FR_p_A12, FR_p_XR2, FR_p_A10 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1L = FR_p_Poly2L,FR_p_XR,FR_p_Temp1L //High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1H // High poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TT // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TH = FR_r_ResH, FR_r_XS2, f0 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp4L = FR_p_Temp4L, f1, FR_p_A3L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3H = FR_p_Poly4H, FR_p_XR3, f0 // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A14 = FR_p_A18, FR_p_XR4, FR_p_A14 // poly tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_XR8 = FR_p_XR4, FR_p_XR4, f0 // r^8
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_ResH, FR_r_XS2L, f0 // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_z_R1 = f8,FR_z_ZH,f1 // r1 = a-b*x
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1L = FR_p_Temp1L, f1, FR_p_A0L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_A6 = FR_p_A10, FR_p_XR4, FR_p_A6 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_TT = FR_r_ResH, FR_r_XS2, FR_r_TH // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res3H = FR_r_TH, f1, f1 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3L = FR_p_Poly4H, FR_p_XR3L, f0 // Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly0H = FR_p_Poly3H, f1, FR_p_Poly1H // Result
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A7 = FR_r_A8, FR_r_XS2, FR_r_A7 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_ResL, FR_r_XS2, FR_r_TL // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS4 = FR_r_XS2, FR_r_XS2, f0 // xs^4
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1L // High poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_PolyTail = FR_p_A14, FR_p_XR8, FR_p_A6 // poly tail
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_Res3L = f1, f1, FR_r_Res3H // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResH = FR_r_Res3H, FR_r_XS, f0 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Temp0L = FR_p_Poly4H,FR_p_XR3,FR_p_Poly3H //Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3L = FR_p_Poly4L,FR_p_XR3,FR_p_Poly3L //Low poly
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_p_Poly0L = FR_p_Poly1H, f1, FR_p_Poly0H // Result
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_z_ZL = FR_z_R1,FR_z_Y3, f0 // x_lo = r1*y3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A3 = FR_r_A4, FR_r_XS2, FR_r_A3 /// neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly1L = FR_p_PolyTail,FR_p_XR6,FR_p_Poly1L // High
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A5 = FR_r_A6, FR_r_XS2, FR_r_A5 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TH // neg sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 FR_r_ResL = FR_r_Res3H, FR_r_XS, FR_r_ResH // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly3L = FR_p_Poly3L, f1, FR_p_Temp0L // Low poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A7 = FR_r_A9, FR_r_XS4, FR_r_A7 // neg sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly0L = FR_p_Poly0L, f1, FR_p_Poly3H // result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fma.s1 f8 = FR_p_Poly0H, FR_z_ZH, f0 // z*poly
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp1L = FR_p_Poly0H, FR_z_ZL, f0 // z*poly low
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_A3 = FR_r_A5, FR_r_XS4, FR_r_A3 // sin tail
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS7 = FR_r_XS4, FR_r_XS2, f0 // xs^6
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TL // sin low
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS8 = FR_r_XS4, FR_r_XS4, f0 // xs^8
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Temp0H = FR_p_Poly3L, f1, FR_p_Poly1L // result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fms.s1 FR_p_Temp1H = FR_p_Poly0H, FR_z_ZH, f8 // hi result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_XS7 = FR_r_XS7, FR_r_XS, f0 // xs^7
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_Res3L, FR_r_XS, FR_r_ResL // lo result
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Tail = FR_r_A7, FR_r_XS8, FR_r_A3 // tail result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_p_Poly0L = FR_p_Poly0L, f1, FR_p_Temp0H // lo result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_Tail, FR_r_XS7, FR_r_ResL // lo result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_p_Temp1L = FR_p_Poly0L,FR_z_ZH,FR_p_Temp1L //hi result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TT = FR_r_ResL, f1, f0 // for low result
- nop.i 0
-};;
-
-.pred.rel "mutex",p12,p13
-{ .mfi
- nop.m 0
-(p14) fma.s1 FR_p_Temp1L = FR_p_Temp1L, f1, FR_p_Temp1H // for lo res
- nop.i 0
-};;
-
-{ .mfi
-(p10) cmp.eq p13, p12 = r0, r0 // set p13, clear p12
- fma.s1 FR_r_Res1H = FR_r_ResH, f1, FR_r_TT // hi res
- nop.i 0
-};;
-
-{ .mfb
-(p9) cmp.eq p13, p12 = r0, r0 // set p13, clear p12
-(p14) fma.s0 f8 = f8, f1, FR_p_Temp1L // Final result
-(p14) br.ret.spnt b0 // Exit for 0 < |X| < 1 path (positive arguments)///////
-};;
-
-{ .mfi
-(p11) cmp.eq p13, p12 = r0, r0 // set p13, clear p12
- fms.s1 FR_r_Res1L = FR_r_ResH, f1, FR_r_Res1H // Low sin result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Res1L = FR_r_Res1L, f1, FR_r_TT // Low sin result
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_p_Poly0L,FR_r_Res1H,f0 //Low sin result
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_TL = FR_p_Poly0H, FR_r_Res1L, FR_r_TL //Low sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResH = FR_p_Poly0H, FR_r_Res1H, FR_r_TL //High sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fms.s1 FR_r_ResL = FR_p_Poly0H,FR_r_Res1H,FR_r_ResH //Low res
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- frcpa.s1 FR_r_Y0,p0 = f1,FR_r_ResH // y = frcpa(b)
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fneg FR_r_NegOne = f1 // Construct -1.0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TL // low sin
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Q0 = f1,FR_r_Y0,f0 // q = a*y
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_E0 = FR_r_Y0,FR_r_ResH,f1 // e = 1-b*y
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_E2 = FR_r_E0,FR_r_E0,FR_r_E0 // e2 = e+e^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_E1 = FR_r_E0,FR_r_E0,f0 // e1 = e^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Y1 = FR_r_Y0,FR_r_E2,FR_r_Y0 // y1 = y+y*e2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_E3 = FR_r_E1,FR_r_E1,FR_r_E0 // e3 = e+e1^2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Y2 = FR_r_Y1,FR_r_E3,FR_r_Y0 // y2 = y+y1*e3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_R0 = FR_r_ResH,FR_r_Q0,f1 // r = a-b*q
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_E4 = FR_r_ResH,FR_r_Y2,f1 // e4 = 1-b*y2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ZH = FR_r_R0,FR_r_Y2,FR_r_Q0 // x = q+r*y2
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_r_Y3 = FR_r_Y2,FR_r_E4,FR_r_Y2 // y3 = y2+y2*e4
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_R1 = FR_r_ResH,FR_r_ZH,f1 // r1 = a-b*x
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fnma.s1 FR_r_R1 = FR_r_ResL,FR_r_ZH,FR_r_R1 // r1=r1 - b_lo*X
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 FR_r_ZHN = FR_r_ZH,FR_r_NegOne, f0 // Negate
- nop.i 0
-};;
-
-.pred.rel "mutex",p13,p12
-{ .mfb
- nop.m 0
- fnma.s0 f8 = FR_r_R1,FR_r_Y3,FR_r_ZHN // Result for neg
- br.ret.sptk b0 // Exit for 0 < |X| < 1 path (negative arguments)//////
-};;
-
-
-
-
-// SPECIALS (x for natval, nan, +/-inf or +/-0) ///////////////////////////////
-//------------------------------------------------------------------------------
-.align 32
-tgammal_spec:
-{ .mlx
- nop.m 0
- movl GR_DenOverflow = 0x2000000000000001
-}
-{ .mfi
- nop.m 0
- fclass.m p9,p0 = f8,0xB // +/-denormals
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf
- nop.i 0
-};;
-{ .mfi
- nop.m 0
- fclass.m p7,p8 = f8,0x7 // +/-0
- nop.i 0
-}
-
-{ .mfi
-(p9) cmp.ltu.unc p10,p11 = GR_l_signif_Z, GR_DenOverflow
-(p9) fnorm.s0 f8 = f8
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
-(p9) fcvt.fx.trunc.s1 FR_n_IXN = FR_l_AbsX // Round by truncate
-(p11) br.cond.sptk tgamma_lt_1 // Return to gamma ('good' denormal)////////////
-};;
-
-{ .mfb
- nop.m 0
- nop.f 0
-(p10) br.cond.spnt tgammal_overflow // "Bad" denormal - overflow! /////////////
-};;
-
-{ .mfi
- nop.m 0
- mov FR_X = f8 // for error handler
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p6) fma.s0 f8 = f8,f1,f8 // res = x + x
-(p6) br.ret.spnt b0 // Exit for NAN, INF and NatVals ////////////////////////
-};;
-.pred.rel "mutex",p7,p8
-{ .mfi
-(p7) mov GR_Parameter_TAG = 256 // negative
-(p7) frcpa.s0 f8,p0 = f1,f8 // Raise V flag
- nop.i 0
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p8) br.cond.spnt tgammal_singularity // Branch for +ZERO ////////////////////
-};;
-
-{ .mfb
- nop.m 0
- nop.f 0
- br.cond.spnt tgammal_libm_err // Branch for -ZERO ///////////////////////
-};;
-
-
-
-
-// SINGULARITY (x is negative integer or 0) ////////////////////////////////////
-//------------------------------------------------------------------------------
-.align 32
-tgammal_singularity:
-{ .mfi
- nop.m 0
- mov FR_X = f8 // For error handler
- mov GR_Parameter_TAG = 256 // negative
-}
-{ .mfb
- nop.m 0
- frcpa.s0 f8,p0 = f0,f0 // Raise V flag
- br.cond.sptk tgammal_libm_err // Call error handler /////////////////////
- // with singularity error /////////////////
-};;
-
-
-
-
-// OVERFLOW (result is too big and cannot be represented by normal value) //////
-// ( X > 1755.54 and for denormals with abs value less than 0x2000000000000001 )
-//------------------------------------------------------------------------------
-.align 32
-tgammal_overflow:
-{ .mfi
- addl r8 = 0x1FFFE, r0 // Exp of INF
- fcmp.lt.s1 p15,p14 = f8,f0 // p14 - pos arg, p15 - neg arg
- nop.i 0
-};;
-
-{ .mfi
- setf.exp f9 = r8
- mov FR_X = f8 // For error handler
- mov GR_Parameter_TAG = 255 // overflow
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
- nop.m 0
-(p14) fma.s0 f8 = f9,f9,f0 // Set I,O and +INF result
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p15) fnma.s0 f8 = f9,f9,f0 // Set I,O and -INF result
- br.cond.sptk tgammal_libm_err // Call error handler /////////////////////
- // with overflow error ////////////////////
-};;
-
-
-
-
-
-// UNDERFLOW (x is negative noninteger with big absolute value) ////////////////
-//------------------------------------------------------------------------------
-.align 32
-tgammal_underflow:
-{ .mfi
- nop.m 0
- fcvt.fx.trunc.s1 FR_u_IXN = f8 // Convert arg to int repres. in FR
- nop.i 0
-};;
-
-{ .mmi
- getf.sig GR_u_XN = FR_u_IXN
- mov r11 = 0x00001
- nop.i 0
-};;
-
-{ .mfi
- setf.exp f9 = r11
- nop.f 0
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- nop.f 0
- tbit.z p6,p7 = GR_u_XN,0 // even or odd
-};;
-
-.pred.rel "mutex",p6,p7
-{ .mfi
- nop.m 0
-(p6) fms.s0 f8 = f9,f9,f9 // for negatives
- nop.i 0
-}
-{ .mfb
- nop.m 0
-(p7) fma.s0 f8 = f9,f9,f9 // for positives
- br.ret.sptk b0 // Exit for underflow path //////////////////////////////
-};;
-
-
-GLOBAL_LIBM_END(tgammal)
-
-
-
-
-////////////////// Tgammal error handler ///////////////////////////////////////
-//------------------------------------------------------------------------------
-LOCAL_LIBM_ENTRY(__libm_error_region)
-tgammal_libm_err:
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 999
- nop.m 999
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#