diff options
Diffstat (limited to 'sysdeps/ia64/fpu/w_tgamma.S')
-rw-r--r-- | sysdeps/ia64/fpu/w_tgamma.S | 1835 |
1 files changed, 1835 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/w_tgamma.S b/sysdeps/ia64/fpu/w_tgamma.S new file mode 100644 index 0000000000..7d654d0343 --- /dev/null +++ b/sysdeps/ia64/fpu/w_tgamma.S @@ -0,0 +1,1835 @@ +.file "tgamma.s" + + +// Copyright (c) 2001 - 2003, Intel Corporation +// All rights reserved. +// +// Contributed 2001 by the Intel Numerics Group, Intel Corporation +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote +// products derived from this software without specific prior written +// permission. + +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT +// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL, +// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code,and requests that all +// problem reports or change requests be submitted to it directly at +// http://www.intel.com/software/products/opensource/libraries/num.htm. +// +//********************************************************************* +// +// History: +// 10/12/01 Initial version +// 05/20/02 Cleaned up namespace and sf0 syntax +// 02/10/03 Reordered header: .section, .global, .proc, .align +// 04/04/03 Changed error codes for overflow and negative integers +// 04/10/03 Changed code for overflow near zero handling +// +//********************************************************************* +// +//********************************************************************* +// +// Function: tgamma(x) computes the principle value of the GAMMA +// function of x. +// +//********************************************************************* +// +// Resources Used: +// +// Floating-Point Registers: f8-f15 +// f33-f87 +// +// General Purpose Registers: +// r8-r11 +// r14-r28 +// r32-r36 +// r37-r40 (Used to pass arguments to error handling routine) +// +// Predicate Registers: p6-p15 +// +//********************************************************************* +// +// IEEE Special Conditions: +// +// tgamma(+inf) = +inf +// tgamma(-inf) = QNaN +// tgamma(+/-0) = +/-inf +// tgamma(x<0, x - integer) = QNaN +// tgamma(SNaN) = QNaN +// tgamma(QNaN) = QNaN +// +//********************************************************************* +// +// Overview +// +// The method consists of three cases. +// +// If 2 <= x < OVERFLOW_BOUNDARY use case tgamma_regular; +// else if 0 < x < 2 use case tgamma_from_0_to_2; +// else if -(i+1) < x < -i, i = 0...184 use case tgamma_negatives; +// +// Case 2 <= x < OVERFLOW_BOUNDARY +// ------------------------------- +// Here we use algorithm based on the recursive formula +// GAMMA(x+1) = x*GAMMA(x). For that we subdivide interval +// [2; OVERFLOW_BOUNDARY] into intervals [16*n; 16*(n+1)] and +// approximate GAMMA(x) by polynomial of 22th degree on each +// [16*n; 16*n+1], recursive formula is used to expand GAMMA(x) +// to [16*n; 16*n+1]. In other words we need to find n, i and r +// such that x = 16 * n + i + r where n and i are integer numbers +// and r is fractional part of x. So GAMMA(x) = GAMMA(16*n+i+r) = +// = (x-1)*(x-2)*...*(x-i)*GAMMA(x-i) = +// = (x-1)*(x-2)*...*(x-i)*GAMMA(16*n+r) ~ +// ~ (x-1)*(x-2)*...*(x-i)*P22n(r). +// +// Step 1: Reduction +// ----------------- +// N = [x] with truncate +// r = x - N, note 0 <= r < 1 +// +// n = N & ~0xF - index of table that contains coefficient of +// polynomial approximation +// i = N & 0xF - is used in recursive formula +// +// +// Step 2: Approximation +// --------------------- +// We use factorized minimax approximation polynomials +// P22n(r) = A22*(r^2+C01(n)*R+C00(n))* +// *(r^2+C11(n)*R+C10(n))*...*(r^2+CA1(n)*R+CA0(n)) +// +// Step 3: Recursion +// ----------------- +// In case when i > 0 we need to multiply P22n(r) by product +// R(i)=(x-1)*(x-2)*...*(x-i). To reduce number of fp-instructions +// we can calculate R as follow: +// R(i) = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-1))*(x-i)) if i is +// even or R = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-2))*(x-(i-1)))* +// *(i-1) if i is odd. In both cases we need to calculate +// R2(i) = (x^2-3*x+2)*(x^2-7*x+12)*...*(x^2+x+2*j*(2*j-1)) = +// = (x^2-3*x+2)*(x^2-7*x+12)*...*((x^2+x)+2*j*(2*(j-1)+(1-2*x))) = +// = (RA+2*(2-RB))*(RA+4*(4-RB))*...*(RA+2*j*(2*(j-1)+RB)) +// where j = 1..[i/2], RA = x^2+x, RB = 1-2*x. +// +// Step 4: Reconstruction +// ---------------------- +// Reconstruction is just simple multiplication i.e. +// GAMMA(x) = P22n(r)*R(i) +// +// Case 0 < x < 2 +// -------------- +// To calculate GAMMA(x) on this interval we do following +// if 1 <= x < 1.25 than GAMMA(x) = P15(x-1) +// if 1.25 <= x < 1.5 than GAMMA(x) = P15(x-x_min) where +// x_min is point of local minimum on [1; 2] interval. +// if 1.5 <= x < 2.0 than GAMMA(x) = P15(x-1.5) +// and +// if 0 < x < 1 than GAMMA(x) = GAMMA(x+1)/x +// +// Case -(i+1) < x < -i, i = 0...184 +// ---------------------------------- +// Here we use the fact that GAMMA(-x) = PI/(x*GAMMA(x)*sin(PI*x)) and +// so we need to calculate GAMMA(x), sin(PI*x)/PI. Calculation of +// GAMMA(x) is described above. +// +// Step 1: Reduction +// ----------------- +// Note that period of sin(PI*x) is 2 and range reduction for +// sin(PI*x) is like to range reduction for GAMMA(x) +// i.e r = x - [x] with exception of cases +// when r > 0.5 (in such cases r = 1 - (x - [x])). +// +// Step 2: Approximation +// --------------------- +// To approximate sin(PI*x)/PI = sin(PI*(2*n+r))/PI = +// = (-1)^n*sin(PI*r)/PI Taylor series is used. +// sin(PI*r)/PI ~ S21(r). +// +// Step 3: Division +// ---------------- +// To calculate 1/(x*GAMMA(x)*S21(r)) we use frcpa instruction +// with following Newton-Raphson interations. +// +// +//********************************************************************* + +GR_Sig = r8 +GR_TAG = r8 +GR_ad_Data = r9 +GR_SigRqLin = r10 +GR_iSig = r11 +GR_ExpOf1 = r11 +GR_ExpOf8 = r11 + + +GR_Sig2 = r14 +GR_Addr_Mask1 = r15 +GR_Sign_Exp = r16 +GR_Tbl_Offs = r17 +GR_Addr_Mask2 = r18 +GR_ad_Co = r19 +GR_Bit2 = r19 +GR_ad_Ce = r20 +GR_ad_Co7 = r21 +GR_NzOvfBound = r21 +GR_ad_Ce7 = r22 +GR_Tbl_Ind = r23 +GR_Tbl_16xInd = r24 +GR_ExpOf025 = r24 +GR_ExpOf05 = r25 +GR_0x30033 = r26 +GR_10 = r26 +GR_12 = r27 +GR_185 = r27 +GR_14 = r28 +GR_2 = r28 +GR_fpsr = r28 + +GR_SAVE_B0 = r33 +GR_SAVE_PFS = r34 +GR_SAVE_GP = r35 +GR_SAVE_SP = r36 + +GR_Parameter_X = r37 +GR_Parameter_Y = r38 +GR_Parameter_RESULT = r39 +GR_Parameter_TAG = r40 + + + +FR_X = f10 +FR_Y = f1 // tgamma is single argument function +FR_RESULT = f8 + +FR_AbsX = f9 +FR_NormX = f9 +FR_r02 = f11 +FR_AbsXp1 = f12 +FR_X2pX = f13 +FR_1m2X = f14 +FR_Rq1 = f14 +FR_Xt = f15 + +FR_r = f33 +FR_OvfBound = f34 +FR_Xmin = f35 +FR_2 = f36 +FR_Rcp1 = f36 +FR_Rcp3 = f36 +FR_4 = f37 +FR_5 = f38 +FR_6 = f39 +FR_8 = f40 +FR_10 = f41 +FR_12 = f42 +FR_14 = f43 +FR_GAMMA = f43 +FR_05 = f44 + +FR_Rq2 = f45 +FR_Rq3 = f46 +FR_Rq4 = f47 +FR_Rq5 = f48 +FR_Rq6 = f49 +FR_Rq7 = f50 +FR_RqLin = f51 + +FR_InvAn = f52 + +FR_C01 = f53 +FR_A15 = f53 +FR_C11 = f54 +FR_A14 = f54 +FR_C21 = f55 +FR_A13 = f55 +FR_C31 = f56 +FR_A12 = f56 +FR_C41 = f57 +FR_A11 = f57 +FR_C51 = f58 +FR_A10 = f58 +FR_C61 = f59 +FR_A9 = f59 +FR_C71 = f60 +FR_A8 = f60 +FR_C81 = f61 +FR_A7 = f61 +FR_C91 = f62 +FR_A6 = f62 +FR_CA1 = f63 +FR_A5 = f63 +FR_C00 = f64 +FR_A4 = f64 +FR_rs2 = f64 +FR_C10 = f65 +FR_A3 = f65 +FR_rs3 = f65 +FR_C20 = f66 +FR_A2 = f66 +FR_rs4 = f66 +FR_C30 = f67 +FR_A1 = f67 +FR_rs7 = f67 +FR_C40 = f68 +FR_A0 = f68 +FR_rs8 = f68 +FR_C50 = f69 +FR_r2 = f69 +FR_C60 = f70 +FR_r3 = f70 +FR_C70 = f71 +FR_r4 = f71 +FR_C80 = f72 +FR_r7 = f72 +FR_C90 = f73 +FR_r8 = f73 +FR_CA0 = f74 +FR_An = f75 + +FR_S21 = f76 +FR_S19 = f77 +FR_Rcp0 = f77 +FR_Rcp2 = f77 +FR_S17 = f78 +FR_S15 = f79 +FR_S13 = f80 +FR_S11 = f81 +FR_S9 = f82 +FR_S7 = f83 +FR_S5 = f84 +FR_S3 = f85 + +FR_iXt = f86 +FR_rs = f87 + + +// Data tables +//============================================================== +RODATA +.align 16 + +LOCAL_OBJECT_START(tgamma_data) +data8 0x406573FAE561F648 // overflow boundary (171.624376956302739927196) +data8 0x3FDD8B618D5AF8FE // point of local minium (0.461632144968362356785) +// +//[2; 3] +data8 0xEF0E85C9AE40ABE2,0x00004000 // C01 +data8 0xCA2049DDB4096DD8,0x00004000 // C11 +data8 0x99A203B4DC2D1A8C,0x00004000 // C21 +data8 0xBF5D9D9C0C295570,0x00003FFF // C31 +data8 0xE8DD037DEB833BAB,0x00003FFD // C41 +data8 0xB6AE39A2A36AA03A,0x0000BFFE // C51 +data8 0x804960DC2850277B,0x0000C000 // C61 +data8 0xD9F3973841C09F80,0x0000C000 // C71 +data8 0x9C198A676F8A2239,0x0000C001 // C81 +data8 0xC98B7DAE02BE3226,0x0000C001 // C91 +data8 0xE9CAF31AC69301BA,0x0000C001 // CA1 +data8 0xFBBDD58608A0D172,0x00004000 // C00 +data8 0xFDD0316D1E078301,0x00004000 // C10 +data8 0x8630B760468C15E4,0x00004001 // C20 +data8 0x93EDE20E47D9152E,0x00004001 // C30 +data8 0xA86F3A38C77D6B19,0x00004001 // C40 +//[16; 17] +data8 0xF87F757F365EE813,0x00004000 // C01 +data8 0xECA84FBA92759DA4,0x00004000 // C11 +data8 0xD4E0A55E07A8E913,0x00004000 // C21 +data8 0xB0EB45E94C8A5F7B,0x00004000 // C31 +data8 0x8050D6B4F7C8617D,0x00004000 // C41 +data8 0x8471B111AA691E5A,0x00003FFF // C51 +data8 0xADAF462AF96585C9,0x0000BFFC // C61 +data8 0xD327C7A587A8C32B,0x0000BFFF // C71 +data8 0xDEF5192B4CF5E0F1,0x0000C000 // C81 +data8 0xBADD64BB205AEF02,0x0000C001 // C91 +data8 0x9330A24AA67D6860,0x0000C002 // CA1 +data8 0xF57EEAF36D8C47BE,0x00004000 // C00 +data8 0x807092E12A251B38,0x00004001 // C10 +data8 0x8C458F80DEE7ED1C,0x00004001 // C20 +data8 0x9F30C731DC77F1A6,0x00004001 // C30 +data8 0xBAC4E7E099C3A373,0x00004001 // C40 +//[32; 33] +data8 0xC3059A415F142DEF,0x00004000 // C01 +data8 0xB9C1DAC24664587A,0x00004000 // C11 +data8 0xA7101D910992FFB2,0x00004000 // C21 +data8 0x8A9522B8E4AA0AB4,0x00004000 // C31 +data8 0xC76A271E4BA95DCC,0x00003FFF // C41 +data8 0xC5D6DE2A38DB7FF2,0x00003FFE // C51 +data8 0xDBA42086997818B2,0x0000BFFC // C61 +data8 0xB8EDDB1424C1C996,0x0000BFFF // C71 +data8 0xBF7372FB45524B5D,0x0000C000 // C81 +data8 0xA03DDE759131580A,0x0000C001 // C91 +data8 0xFDA6FC4022C1FFE3,0x0000C001 // CA1 +data8 0x9759ABF797B2533D,0x00004000 // C00 +data8 0x9FA160C6CF18CEC5,0x00004000 // C10 +data8 0xB0EFF1E3530E0FCD,0x00004000 // C20 +data8 0xCCD60D5C470165D1,0x00004000 // C30 +data8 0xF5E53F6307B0B1C1,0x00004000 // C40 +//[48; 49] +data8 0xAABE577FBCE37F5E,0x00004000 // C01 +data8 0xA274CAEEB5DF7172,0x00004000 // C11 +data8 0x91B90B6646C1B924,0x00004000 // C21 +data8 0xF06718519CA256D9,0x00003FFF // C31 +data8 0xAA9EE181C0E30263,0x00003FFF // C41 +data8 0xA07BDB5325CB28D2,0x00003FFE // C51 +data8 0x86C8B873204F9219,0x0000BFFD // C61 +data8 0xB0192C5D3E4787D6,0x0000BFFF // C71 +data8 0xB1E0A6263D4C19EF,0x0000C000 // C81 +data8 0x93BA32A118EAC9AE,0x0000C001 // C91 +data8 0xE942A39CD9BEE887,0x0000C001 // CA1 +data8 0xE838B0957B0D3D0D,0x00003FFF // C00 +data8 0xF60E0F00074FCF34,0x00003FFF // C10 +data8 0x89869936AE00C2A5,0x00004000 // C20 +data8 0xA0FE4E8AA611207F,0x00004000 // C30 +data8 0xC3B1229CFF1DDAFE,0x00004000 // C40 +//[64; 65] +data8 0x9C00DDF75CDC6183,0x00004000 // C01 +data8 0x9446AE9C0F6A833E,0x00004000 // C11 +data8 0x84ABC5083310B774,0x00004000 // C21 +data8 0xD9BA3A0977B1ED83,0x00003FFF // C31 +data8 0x989B18C99411D300,0x00003FFF // C41 +data8 0x886E66402318CE6F,0x00003FFE // C51 +data8 0x99028C2468F18F38,0x0000BFFD // C61 +data8 0xAB72D17DCD40CCE1,0x0000BFFF // C71 +data8 0xA9D9AC9BE42C2EF9,0x0000C000 // C81 +data8 0x8C11D983AA177AD2,0x0000C001 // C91 +data8 0xDC779E981C1F0F06,0x0000C001 // CA1 +data8 0xC1FD4AC85965E8D6,0x00003FFF // C00 +data8 0xCE3D2D909D389EC2,0x00003FFF // C10 +data8 0xE7F79980AD06F5D8,0x00003FFF // C20 +data8 0x88DD9F73C8680B5D,0x00004000 // C30 +data8 0xA7D6CB2CB2D46F9D,0x00004000 // C40 +//[80; 81] +data8 0x91C7FF4E993430D0,0x00004000 // C01 +data8 0x8A6E7AB83E45A7E9,0x00004000 // C11 +data8 0xF72D6382E427BEA9,0x00003FFF // C21 +data8 0xC9E2E4F9B3B23ED6,0x00003FFF // C31 +data8 0x8BEFEF56AE05D775,0x00003FFF // C41 +data8 0xEE9666AB6A185560,0x00003FFD // C51 +data8 0xA6AFAF5CEFAEE04D,0x0000BFFD // C61 +data8 0xA877EAFEF1F9C880,0x0000BFFF // C71 +data8 0xA45BD433048ECA15,0x0000C000 // C81 +data8 0x86BD1636B774CC2E,0x0000C001 // C91 +data8 0xD3721BE006E10823,0x0000C001 // CA1 +data8 0xA97EFABA91854208,0x00003FFF // C00 +data8 0xB4AF0AEBB3F97737,0x00003FFF // C10 +data8 0xCC38241936851B0B,0x00003FFF // C20 +data8 0xF282A6261006EA84,0x00003FFF // C30 +data8 0x95B8E9DB1BD45BAF,0x00004000 // C40 +//[96; 97] +data8 0x8A1FA3171B35A106,0x00004000 // C01 +data8 0x830D5B8843890F21,0x00004000 // C11 +data8 0xE98B0F1616677A23,0x00003FFF // C21 +data8 0xBDF8347F5F67D4EC,0x00003FFF // C31 +data8 0x825F15DE34EC055D,0x00003FFF // C41 +data8 0xD4846186B8AAC7BE,0x00003FFD // C51 +data8 0xB161093AB14919B1,0x0000BFFD // C61 +data8 0xA65758EEA4800EF4,0x0000BFFF // C71 +data8 0xA046B67536FA329C,0x0000C000 // C81 +data8 0x82BBEC1BCB9E9068,0x0000C001 // C91 +data8 0xCC9DE2B23BA91B0B,0x0000C001 // CA1 +data8 0x983B16148AF77F94,0x00003FFF // C00 +data8 0xA2A4D8EE90FEE5DD,0x00003FFF // C10 +data8 0xB89446FA37FF481C,0x00003FFF // C20 +data8 0xDC5572648485FB01,0x00003FFF // C30 +data8 0x88CD5D7DB976129A,0x00004000 // C40 +//[112; 113] +data8 0x8417098FD62AC5E3,0x00004000 // C01 +data8 0xFA7896486B779CBB,0x00003FFF // C11 +data8 0xDEC98B14AF5EEBD1,0x00003FFF // C21 +data8 0xB48E153C6BF0B5A3,0x00003FFF // C31 +data8 0xF597B038BC957582,0x00003FFE // C41 +data8 0xBFC6F0884A415694,0x00003FFD // C51 +data8 0xBA075A1392BDB5E5,0x0000BFFD // C61 +data8 0xA4B79E01B44C7DB4,0x0000BFFF // C71 +data8 0x9D12FA7711BFAB0F,0x0000C000 // C81 +data8 0xFF24C47C8E108AB4,0x0000C000 // C91 +data8 0xC7325EC86562606A,0x0000C001 // CA1 +data8 0x8B47DCD9E1610938,0x00003FFF // C00 +data8 0x9518B111B70F88B8,0x00003FFF // C10 +data8 0xA9CC197206F68682,0x00003FFF // C20 +data8 0xCB98294CC0D7A6A6,0x00003FFF // C30 +data8 0xFE09493EA9165181,0x00003FFF // C40 +//[128; 129] +data8 0xFE53D03442270D90,0x00003FFF // C01 +data8 0xF0F857BAEC1993E4,0x00003FFF // C11 +data8 0xD5FF6D70DBBC2FD3,0x00003FFF // C21 +data8 0xACDAA5F4988B1074,0x00003FFF // C31 +data8 0xE92E069F8AD75B54,0x00003FFE // C41 +data8 0xAEBB64645BD94234,0x00003FFD // C51 +data8 0xC13746249F39B43C,0x0000BFFD // C61 +data8 0xA36B74F5B6297A1F,0x0000BFFF // C71 +data8 0x9A77860DF180F6E5,0x0000C000 // C81 +data8 0xF9F8457D84410A0C,0x0000C000 // C91 +data8 0xC2BF44C649EB8597,0x0000C001 // CA1 +data8 0x81225E7489BCDC0E,0x00003FFF // C00 +data8 0x8A788A09CE0EED11,0x00003FFF // C10 +data8 0x9E2E6F86D1B1D89C,0x00003FFF // C20 +data8 0xBE6866B21CF6CCB5,0x00003FFF // C30 +data8 0xEE94426EC1486AAE,0x00003FFF // C40 +//[144; 145] +data8 0xF6113E09732A6497,0x00003FFF // C01 +data8 0xE900D45931B04FC8,0x00003FFF // C11 +data8 0xCE9FD58F745EBA5D,0x00003FFF // C21 +data8 0xA663A9636C864C86,0x00003FFF // C31 +data8 0xDEBF5315896CE629,0x00003FFE // C41 +data8 0xA05FEA415EBD7737,0x00003FFD // C51 +data8 0xC750F112BD9C4031,0x0000BFFD // C61 +data8 0xA2593A35C51C6F6C,0x0000BFFF // C71 +data8 0x9848E1DA7FB40C8C,0x0000C000 // C81 +data8 0xF59FEE87A5759A4B,0x0000C000 // C91 +data8 0xBF00203909E45A1D,0x0000C001 // CA1 +data8 0xF1D8E157200127E5,0x00003FFE // C00 +data8 0x81DD5397CB08D487,0x00003FFF // C10 +data8 0x94C1DC271A8B766F,0x00003FFF // C20 +data8 0xB3AFAF9B5D6EDDCF,0x00003FFF // C30 +data8 0xE1FB4C57CA81BE1E,0x00003FFF // C40 +//[160; 161] +data8 0xEEFFE5122AC72FFD,0x00003FFF // C01 +data8 0xE22F70BB52AD54B3,0x00003FFF // C11 +data8 0xC84FF021FE993EEA,0x00003FFF // C21 +data8 0xA0DA2208EB5B2752,0x00003FFF // C31 +data8 0xD5CDD2FCF8AD2DF5,0x00003FFE // C41 +data8 0x940BEC6DCD811A59,0x00003FFD // C51 +data8 0xCC954EF4FD4EBB81,0x0000BFFD // C61 +data8 0xA1712E29A8C04554,0x0000BFFF // C71 +data8 0x966B55DFB243521A,0x0000C000 // C81 +data8 0xF1E6A2B9CEDD0C4C,0x0000C000 // C91 +data8 0xBBC87BCC031012DB,0x0000C001 // CA1 +data8 0xE43974E6D2818583,0x00003FFE // C00 +data8 0xF5702A516B64C5B7,0x00003FFE // C10 +data8 0x8CEBCB1B32E19471,0x00003FFF // C20 +data8 0xAAC10F05BB77E0AF,0x00003FFF // C30 +data8 0xD776EFCAB205CC58,0x00003FFF // C40 +//[176; 177] +data8 0xE8DA614119811E5D,0x00003FFF // C01 +data8 0xDC415E0288B223D8,0x00003FFF // C11 +data8 0xC2D2243E44EC970E,0x00003FFF // C21 +data8 0x9C086664B5307BEA,0x00003FFF // C31 +data8 0xCE03D7A08B461156,0x00003FFE // C41 +data8 0x894BE3BAAAB66ADC,0x00003FFD // C51 +data8 0xD131EDD71A702D4D,0x0000BFFD // C61 +data8 0xA0A907CDDBE10898,0x0000BFFF // C71 +data8 0x94CC3CD9C765C808,0x0000C000 // C81 +data8 0xEEA85F237815FC0D,0x0000C000 // C91 +data8 0xB8FA04B023E43F91,0x0000C001 // CA1 +data8 0xD8B2C7D9FCBD7EF9,0x00003FFE // C00 +data8 0xE9566E93AAE7E38F,0x00003FFE // C10 +data8 0x8646E78AABEF0255,0x00003FFF // C20 +data8 0xA32AEDB62E304345,0x00003FFF // C30 +data8 0xCE83E40280EE7DF0,0x00003FFF // C40 +// +// +//[2; 3] +data8 0xC44FB47E90584083,0x00004001 // C50 +data8 0xE863EE77E1C45981,0x00004001 // C60 +data8 0x8AC15BE238B9D70E,0x00004002 // C70 +data8 0xA5D94B6592350EF4,0x00004002 // C80 +data8 0xC379DB3E20A148B3,0x00004002 // C90 +data8 0xDACA49B73974F6C9,0x00004002 // CA0 +data8 0x810E496A1AFEC895,0x00003FE1 // An +//[16; 17] +data8 0xE17C0357AAF3F817,0x00004001 // C50 +data8 0x8BA8804750FBFBFE,0x00004002 // C60 +data8 0xB18EAB3CB64BEBEE,0x00004002 // C70 +data8 0xE90AB7015AF1C28F,0x00004002 // C80 +data8 0xA0AB97CE9E259196,0x00004003 // C90 +data8 0xF5E0E0A000C2D720,0x00004003 // CA0 +data8 0xD97F0F87EC791954,0x00004005 // An +//[32; 33] +data8 0x980C293F3696040D,0x00004001 // C50 +data8 0xC0DBFFBB948A9A4E,0x00004001 // C60 +data8 0xFAB54625E9A588A2,0x00004001 // C70 +data8 0xA7E08176D6050FBF,0x00004002 // C80 +data8 0xEBAAEC4952270A9F,0x00004002 // C90 +data8 0xB7479CDAD20550FE,0x00004003 // CA0 +data8 0xAACD45931C3FF634,0x00004054 // An +//[48; 49] +data8 0xF5180F0000419AD5,0x00004000 // C50 +data8 0x9D507D07BFBB2273,0x00004001 // C60 +data8 0xCEB53F7A13A383E3,0x00004001 // C70 +data8 0x8BAFEF9E0A49128F,0x00004002 // C80 +data8 0xC58EF912D39E228C,0x00004002 // C90 +data8 0x9A88118422BA208E,0x00004003 // CA0 +data8 0xBD6C0E2477EC12CB,0x000040AC // An +//[64; 65] +data8 0xD410AC48BF7748DA,0x00004000 // C50 +data8 0x89399B90AFEBD931,0x00004001 // C60 +data8 0xB596DF8F77EB8560,0x00004001 // C70 +data8 0xF6D9445A047FB4A6,0x00004001 // C80 +data8 0xAF52F0DD65221357,0x00004002 // C90 +data8 0x8989B45BFC881989,0x00004003 // CA0 +data8 0xB7FCAE86E6E10D5A,0x0000410B // An +//[80; 81] +data8 0xBE759740E3B5AA84,0x00004000 // C50 +data8 0xF8037B1B07D27609,0x00004000 // C60 +data8 0xA4F6F6C7F0977D4F,0x00004001 // C70 +data8 0xE131960233BF02C4,0x00004001 // C80 +data8 0xA06DF43D3922BBE2,0x00004002 // C90 +data8 0xFC266AB27255A360,0x00004002 // CA0 +data8 0xD9F4B012EDAFEF2F,0x0000416F // An +//[96; 97] +data8 0xAEFC84CDA8E1EAA6,0x00004000 // C50 +data8 0xE5009110DB5F3C8A,0x00004000 // C60 +data8 0x98F5F48738E7B232,0x00004001 // C70 +data8 0xD17EE64E21FFDC6B,0x00004001 // C80 +data8 0x9596F7A7E36145CC,0x00004002 // C90 +data8 0xEB64DBE50E125CAF,0x00004002 // CA0 +data8 0xA090530D79E32D2E,0x000041D8 // An +//[112; 113] +data8 0xA33AEA22A16B2655,0x00004000 // C50 +data8 0xD682B93BD7D7945C,0x00004000 // C60 +data8 0x8FC854C6E6E30CC3,0x00004001 // C70 +data8 0xC5754D828AFFDC7A,0x00004001 // C80 +data8 0x8D41216B397139C2,0x00004002 // C90 +data8 0xDE78D746848116E5,0x00004002 // CA0 +data8 0xB8A297A2DC0630DB,0x00004244 // An +//[128; 129] +data8 0x99EB00F11D95E292,0x00004000 // C50 +data8 0xCB005CB911EB779A,0x00004000 // C60 +data8 0x8879AA2FDFF3A37A,0x00004001 // C70 +data8 0xBBDA538AD40CAC2C,0x00004001 // C80 +data8 0x8696D849D311B9DE,0x00004002 // C90 +data8 0xD41E1C041481199F,0x00004002 // CA0 +data8 0xEBA1A43D34EE61EE,0x000042B3 // An +//[144; 145] +data8 0x924F822578AA9F3D,0x00004000 // C50 +data8 0xC193FAF9D3B36960,0x00004000 // C60 +data8 0x827AE3A6B68ED0CA,0x00004001 // C70 +data8 0xB3F52A27EED23F0B,0x00004001 // C80 +data8 0x811A079FB3C94D79,0x00004002 // C90 +data8 0xCB94415470B6F8D2,0x00004002 // CA0 +data8 0x80A0260DCB3EC9AC,0x00004326 // An +//[160; 161] +data8 0x8BF24091E88B331D,0x00004000 // C50 +data8 0xB9ADE01187E65201,0x00004000 // C60 +data8 0xFAE4508F6E7625FE,0x00004000 // C70 +data8 0xAD516668AD6D7367,0x00004001 // C80 +data8 0xF8F5FF171154F637,0x00004001 // C90 +data8 0xC461321268990C82,0x00004002 // CA0 +data8 0xC3B693F344B0E6FE,0x0000439A // An +// +//[176; 177] +data8 0x868545EB42A258ED,0x00004000 // C50 +data8 0xB2EF04ACE8BA0E6E,0x00004000 // C60 +data8 0xF247D22C22E69230,0x00004000 // C70 +data8 0xA7A1AB93E3981A90,0x00004001 // C80 +data8 0xF10951733E2C697F,0x00004001 // C90 +data8 0xBE3359BFAD128322,0x00004002 // CA0 +data8 0x8000000000000000,0x00003fff +// +//[160; 161] for negatives +data8 0xA76DBD55B2E32D71,0x00003C63 // 1/An +// +// sin(pi*x)/pi +data8 0xBCBC4342112F52A2,0x00003FDE // S21 +data8 0xFAFCECB86536F655,0x0000BFE3 // S19 +data8 0x87E4C97F9CF09B92,0x00003FE9 // S17 +data8 0xEA124C68E704C5CB,0x0000BFED // S15 +data8 0x9BA38CFD59C8AA1D,0x00003FF2 // S13 +data8 0x99C0B552303D5B21,0x0000BFF6 // S11 +// +//[176; 177] for negatives +data8 0xBA5D5869211696FF,0x00003BEC // 1/An +// +// sin(pi*x)/pi +data8 0xD63402E79A853175,0x00003FF9 // S9 +data8 0xC354723906DB36BA,0x0000BFFC // S7 +data8 0xCFCE5A015E236291,0x00003FFE // S5 +data8 0xD28D3312983E9918,0x0000BFFF // S3 +// +// +// [1.0;1.25] +data8 0xA405530B067ECD3C,0x0000BFFC // A15 +data8 0xF5B5413F95E1C282,0x00003FFD // A14 +data8 0xC4DED71C782F76C8,0x0000BFFE // A13 +data8 0xECF7DDDFD27C9223,0x00003FFE // A12 +data8 0xFB73D31793068463,0x0000BFFE // A11 +data8 0xFF173B7E66FD1D61,0x00003FFE // A10 +data8 0xFFA5EF3959089E94,0x0000BFFE // A9 +data8 0xFF8153BD42E71A4F,0x00003FFE // A8 +data8 0xFEF9CAEE2CB5B533,0x0000BFFE // A7 +data8 0xFE3F02E5EDB6811E,0x00003FFE // A6 +data8 0xFB64074CED2658FB,0x0000BFFE // A5 +data8 0xFB52882A095B18A4,0x00003FFE // A4 +data8 0xE8508C7990A0DAC0,0x0000BFFE // A3 +data8 0xFD32C611D8A881D0,0x00003FFE // A2 +data8 0x93C467E37DB0C536,0x0000BFFE // A1 +data8 0x8000000000000000,0x00003FFF // A0 +// +// [1.25;1.5] +data8 0xD038092400619677,0x0000BFF7 // A15 +data8 0xEA6DE925E6EB8C8F,0x00003FF3 // A14 +data8 0xC53F83645D4597FC,0x0000BFF7 // A13 +data8 0xE366DB2FB27B7ECD,0x00003FF7 // A12 +data8 0xAC8FD5E11F6EEAD8,0x0000BFF8 // A11 +data8 0xFB14010FB3697785,0x00003FF8 // A10 +data8 0xB6F91CB5C371177B,0x0000BFF9 // A9 +data8 0x85A262C6F8FEEF71,0x00003FFA // A8 +data8 0xC038E6E3261568F9,0x0000BFFA // A7 +data8 0x8F4BDE8883232364,0x00003FFB // A6 +data8 0xBCFBBD5786537E9A,0x0000BFFB // A5 +data8 0xA4C08BAF0A559479,0x00003FFC // A4 +data8 0x85D74FA063E81476,0x0000BFFC // A3 +data8 0xDB629FB9BBDC1C4E,0x00003FFD // A2 +data8 0xF4F8FBC7C0C9D317,0x00003FC6 // A1 +data8 0xE2B6E4153A57746C,0x00003FFE // A0 +// +// [1.25;1.5] +data8 0x9533F9D3723B448C,0x0000BFF2 // A15 +data8 0xF1F75D3C561CBBAF,0x00003FF5 // A14 +data8 0xBA55A9A1FC883523,0x0000BFF8 // A13 +data8 0xB5D5E9E5104FA995,0x00003FFA // A12 +data8 0xFD84F35B70CD9AE2,0x0000BFFB // A11 +data8 0x87445235F4688CC5,0x00003FFD // A10 +data8 0xE7F236EBFB9F774E,0x0000BFFD // A9 +data8 0xA6605F2721F787CE,0x00003FFE // A8 +data8 0xCF579312AD7EAD72,0x0000BFFE // A7 +data8 0xE96254A2407A5EAC,0x00003FFE // A6 +data8 0xF41312A8572ED346,0x0000BFFE // A5 +data8 0xF9535027C1B1F795,0x00003FFE // A4 +data8 0xE7E82D0C613A8DE4,0x0000BFFE // A3 +data8 0xFD23CD9741B460B8,0x00003FFE // A2 +data8 0x93C30FD9781DBA88,0x0000BFFE // A1 +data8 0xFFFFF1781FDBEE84,0x00003FFE // A0 +LOCAL_OBJECT_END(tgamma_data) + + +//============================================================== +// Code +//============================================================== + +.section .text +GLOBAL_LIBM_ENTRY(tgamma) +{ .mfi + getf.exp GR_Sign_Exp = f8 + fma.s1 FR_1m2X = f8,f1,f8 // 2x + addl GR_ad_Data = @ltoff(tgamma_data), gp +} +{ .mfi + mov GR_ExpOf8 = 0x10002 // 8 + fcvt.fx.trunc.s1 FR_iXt = f8 // [x] + mov GR_ExpOf05 = 0xFFFE // 0.5 +};; +{ .mfi + getf.sig GR_Sig = f8 + fma.s1 FR_2 = f1,f1,f1 // 2 + mov GR_Addr_Mask1 = 0x780 +} +{ .mlx + setf.exp FR_8 = GR_ExpOf8 + movl GR_10 = 0x4024000000000000 +};; +{ .mfi + ld8 GR_ad_Data = [GR_ad_Data] + fcmp.lt.s1 p14,p15 = f8,f0 + tbit.z p12,p13 = GR_Sign_Exp,0x10 // p13 if x >= 2 +} +{ .mlx + and GR_Bit2 = 4,GR_Sign_Exp + movl GR_12 = 0x4028000000000000 +};; +{ .mfi + setf.d FR_10 = GR_10 + fma.s1 FR_r02 = f8,f1,f0 + extr.u GR_Tbl_Offs = GR_Sig,58,6 +} +{ .mfi +(p12) mov GR_Addr_Mask1 = r0 + fma.s1 FR_NormX = f8,f1,f0 + cmp.ne p8,p0 = GR_Bit2,r0 +};; +{ .mfi +(p8) shladd GR_Tbl_Offs = GR_Tbl_Offs,4,r0 + fclass.m p10,p0 = f8,0x1E7 // Test x for NaTVal, NaN, +/-0, +/-INF + tbit.nz p11,p0 = GR_Sign_Exp,1 +} +{ .mlx + add GR_Addr_Mask2 = GR_Addr_Mask1,GR_Addr_Mask1 + movl GR_14 = 0x402C000000000000 +};; +.pred.rel "mutex",p14,p15 +{ .mfi + setf.d FR_12 = GR_12 +(p14) fma.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x| + tbit.nz p8,p9 = GR_Sign_Exp,0 +} +{ .mfi + ldfpd FR_OvfBound,FR_Xmin = [GR_ad_Data],16 +(p15) fms.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x| +(p11) shladd GR_Tbl_Offs = GR_Tbl_Offs,2,r0 +};; +.pred.rel "mutex",p9,p8 +{ .mfi + setf.d FR_14 = GR_14 + fma.s1 FR_4 = FR_2,FR_2,f0 +(p8) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask1 +} +{ .mfi + setf.exp FR_05 = GR_ExpOf05 + fma.s1 FR_6 = FR_2,FR_2,FR_2 +(p9) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask2 +};; +.pred.rel "mutex",p9,p8 +{ .mfi +(p8) shladd GR_ad_Co = GR_Tbl_Offs,1,GR_ad_Data + fcvt.xf FR_Xt = FR_iXt // [x] +(p15) tbit.z.unc p11,p0 = GR_Sign_Exp,0x10 // p11 if 0 < x < 2 +} +{ .mfi +(p9) add GR_ad_Co = GR_ad_Data,GR_Tbl_Offs + fma.s1 FR_5 = FR_2,FR_2,f1 +(p15) cmp.lt.unc p7,p6 = GR_ExpOf05,GR_Sign_Exp // p7 if 0 < x < 1 +};; +{ .mfi + add GR_ad_Ce = 16,GR_ad_Co +(p11) frcpa.s1 FR_Rcp0,p0 = f1,f8 + sub GR_Tbl_Offs = GR_ad_Co,GR_ad_Data +} +{ .mfb + ldfe FR_C01 = [GR_ad_Co],32 +(p7) fms.s1 FR_r02 = FR_r02,f1,f1 + // jump if x is NaTVal, NaN, +/-0, +/-INF +(p10) br.cond.spnt tgamma_spec +};; +.pred.rel "mutex",p14,p15 +{ .mfi + ldfe FR_C11 = [GR_ad_Ce],32 +(p14) fms.s1 FR_X2pX = f8,f8,f8 // RA=x^2+|x| + shr GR_Tbl_Ind = GR_Tbl_Offs,8 +} +{ .mfb + ldfe FR_C21 = [GR_ad_Co],32 +(p15) fma.s1 FR_X2pX = f8,f8,f8 // RA=x^2+x + // jump if 0 < x < 2 +(p11) br.cond.spnt tgamma_from_0_to_2 +};; +{ .mfi + ldfe FR_C31 = [GR_ad_Ce],32 + fma.s1 FR_Rq2 = FR_2,f1,FR_1m2X // 2 + B + cmp.ltu p7,p0=0xB,GR_Tbl_Ind +} +{ .mfb + ldfe FR_C41 = [GR_ad_Co],32 + fma.s1 FR_Rq3 = FR_2,FR_2,FR_1m2X // 4 + B + // jump if GR_Tbl_Ind > 11, i.e |x| is more than 192 +(p7) br.cond.spnt tgamma_spec_res +};; +{ .mfi + ldfe FR_C51 = [GR_ad_Ce],32 + fma.s1 FR_Rq4 = FR_6,f1,FR_1m2X // 6 + B + shr GR_Tbl_Offs = GR_Tbl_Offs,1 +} +{ .mfi + ldfe FR_C61 = [GR_ad_Co],32 + fma.s1 FR_Rq5 = FR_4,FR_2,FR_1m2X // 8 + B + nop.i 0 +};; +{ .mfi + ldfe FR_C71 = [GR_ad_Ce],32 +(p14) fms.s1 FR_r = FR_Xt,f1,f8 // r = |x| - [|x|] + shr GR_Tbl_16xInd = GR_Tbl_Offs,3 +} +{ .mfi + ldfe FR_C81 = [GR_ad_Co],32 +(p15) fms.s1 FR_r = f8,f1,FR_Xt // r = x - [x] + add GR_ad_Data = 0xC00,GR_ad_Data +};; +{ .mfi + ldfe FR_C91 = [GR_ad_Ce],32 + fma.s1 FR_Rq6 = FR_5,FR_2,FR_1m2X // 10 + B +(p14) mov GR_0x30033 = 0x30033 +} +{ .mfi + ldfe FR_CA1 = [GR_ad_Co],32 + fma.s1 FR_Rq7 = FR_6,FR_2,FR_1m2X // 12 + B + sub GR_Tbl_Offs = GR_Tbl_Offs,GR_Tbl_16xInd +};; +{ .mfi + ldfe FR_C00 = [GR_ad_Ce],32 + fma.s1 FR_Rq1 = FR_Rq1,FR_2,FR_X2pX // (x-1)*(x-2) +(p13) cmp.eq.unc p8,p0 = r0,GR_Tbl_16xInd // index is 0 i.e. arg from [2;16) +} +{ .mfi + ldfe FR_C10 = [GR_ad_Co],32 +(p14) fms.s1 FR_AbsX = f0,f0,FR_NormX // absolute value of argument + add GR_ad_Co7 = GR_ad_Data,GR_Tbl_Offs +};; +{ .mfi + ldfe FR_C20 = [GR_ad_Ce],32 + fma.s1 FR_Rq2 = FR_Rq2,FR_4,FR_X2pX // (x-3)*(x-4) + add GR_ad_Ce7 = 16,GR_ad_Co7 +} +{ .mfi + ldfe FR_C30 = [GR_ad_Co],32 + fma.s1 FR_Rq3 = FR_Rq3,FR_6,FR_X2pX // (x-5)*(x-6) + nop.i 0 +};; +{ .mfi + ldfe FR_C40 = [GR_ad_Ce],32 + fma.s1 FR_Rq4 = FR_Rq4,FR_8,FR_X2pX // (x-7)*(x-8) +(p14) cmp.leu.unc p7,p0 = GR_0x30033,GR_Sign_Exp +} +{ .mfb + ldfe FR_C50 = [GR_ad_Co7],32 + fma.s1 FR_Rq5 = FR_Rq5,FR_10,FR_X2pX // (x-9)*(x-10) + // jump if x is less or equal to -2^52, i.e. x is big negative integer +(p7) br.cond.spnt tgamma_singularity +};; +{ .mfi + ldfe FR_C60 = [GR_ad_Ce7],32 + fma.s1 FR_C01 = FR_C01,f1,FR_r + add GR_ad_Ce = 0x560,GR_ad_Data +} +{ .mfi + ldfe FR_C70 = [GR_ad_Co7],32 + fma.s1 FR_rs = f0,f0,FR_r // reduced arg for sin(pi*x) + add GR_ad_Co = 0x550,GR_ad_Data +};; +{ .mfi + ldfe FR_C80 = [GR_ad_Ce7],32 + fma.s1 FR_C11 = FR_C11,f1,FR_r + nop.i 0 +} +{ .mfi + ldfe FR_C90 = [GR_ad_Co7],32 + fma.s1 FR_C21 = FR_C21,f1,FR_r + nop.i 0 +};; +.pred.rel "mutex",p12,p13 +{ .mfi +(p13) getf.sig GR_iSig = FR_iXt + fcmp.lt.s1 p11,p0 = FR_05,FR_r + mov GR_185 = 185 +} +{ .mfi + nop.m 0 + fma.s1 FR_Rq6 = FR_Rq6,FR_12,FR_X2pX // (x-11)*(x-12) + nop.i 0 +};; +{ .mfi + ldfe FR_CA0 = [GR_ad_Ce7],32 + fma.s1 FR_C31 = FR_C31,f1,FR_r +(p12) mov GR_iSig = 0 +} +{ .mfi + ldfe FR_An = [GR_ad_Co7],0x80 + fma.s1 FR_C41 = FR_C41,f1,FR_r + nop.i 0 +};; +{ .mfi +(p14) getf.sig GR_Sig = FR_r + fma.s1 FR_C51 = FR_C51,f1,FR_r +(p14) sub GR_iSig = r0,GR_iSig +} +{ .mfi + ldfe FR_S21 = [GR_ad_Co],32 + fma.s1 FR_C61 = FR_C61,f1,FR_r + nop.i 0 +};; +{ .mfi + ldfe FR_S19 = [GR_ad_Ce],32 + fma.s1 FR_C71 = FR_C71,f1,FR_r + and GR_SigRqLin = 0xF,GR_iSig +} +{ .mfi + ldfe FR_S17 = [GR_ad_Co],32 + fma.s1 FR_C81 = FR_C81,f1,FR_r + mov GR_2 = 2 +};; +{ .mfi +(p14) ldfe FR_InvAn = [GR_ad_Co7] + fma.s1 FR_C91 = FR_C91,f1,FR_r + // if significand of r is 0 tnan argument is negative integer +(p14) cmp.eq.unc p12,p0 = r0,GR_Sig +} +{ .mfb +(p8) sub GR_SigRqLin = GR_SigRqLin,GR_2 // subtract 2 if 2 <= x < 16 + fma.s1 FR_CA1 = FR_CA1,f1,FR_r + // jump if x is negative integer such that -2^52 < x < -185 +(p12) br.cond.spnt tgamma_singularity +};; +{ .mfi + setf.sig FR_Xt = GR_SigRqLin +(p11) fms.s1 FR_rs = f1,f1,FR_r +(p14) cmp.ltu.unc p7,p0 = GR_185,GR_iSig +} +{ .mfb + ldfe FR_S15 = [GR_ad_Ce],32 + fma.s1 FR_Rq7 = FR_Rq7,FR_14,FR_X2pX // (x-13)*(x-14) + // jump if x is noninteger such that -2^52 < x < -185 +(p7) br.cond.spnt tgamma_underflow +};; +{ .mfi + ldfe FR_S13 = [GR_ad_Co],48 + fma.s1 FR_C01 = FR_C01,FR_r,FR_C00 + and GR_Sig2 = 0xE,GR_SigRqLin +} +{ .mfi + ldfe FR_S11 = [GR_ad_Ce],48 + fma.s1 FR_C11 = FR_C11,FR_r,FR_C10 + nop.i 0 +};; +{ .mfi + ldfe FR_S9 = [GR_ad_Co],32 + fma.s1 FR_C21 = FR_C21,FR_r,FR_C20 + // should we mul by polynomial of recursion? + cmp.eq p13,p12 = r0,GR_SigRqLin +} +{ .mfi + ldfe FR_S7 = [GR_ad_Ce],32 + fma.s1 FR_C31 = FR_C31,FR_r,FR_C30 + nop.i 0 +};; +{ .mfi + ldfe FR_S5 = [GR_ad_Co],32 + fma.s1 FR_C41 = FR_C41,FR_r,FR_C40 + nop.i 0 +} +{ .mfi + ldfe FR_S3 = [GR_ad_Ce],32 + fma.s1 FR_C51 = FR_C51,FR_r,FR_C50 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_C61 = FR_C61,FR_r,FR_C60 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_C71 = FR_C71,FR_r,FR_C70 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_C81 = FR_C81,FR_r,FR_C80 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_C91 = FR_C91,FR_r,FR_C90 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_CA1 = FR_CA1,FR_r,FR_CA0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_C01 = FR_C01,FR_C11,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_C21 = FR_C21,FR_C31,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_rs2 = FR_rs,FR_rs,f0 +(p12) cmp.lt.unc p7,p0 = 2,GR_Sig2 // should mul by FR_Rq2? +};; +{ .mfi + nop.m 0 + fma.s1 FR_C41 = FR_C41,FR_C51,f0 + nop.i 0 +} +{ .mfi + nop.m 0 +(p7) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq2,f0 +(p12) cmp.lt.unc p9,p0 = 6,GR_Sig2 // should mul by FR_Rq4? +};; +{ .mfi + nop.m 0 + fma.s1 FR_C61 = FR_C61,FR_C71,f0 +(p15) cmp.eq p11,p0 = r0,r0 +} +{ .mfi + nop.m 0 +(p9) fma.s1 FR_Rq3 = FR_Rq3,FR_Rq4,f0 +(p12) cmp.lt.unc p8,p0 = 10,GR_Sig2 // should mul by FR_Rq6? +};; +{ .mfi + nop.m 0 + fma.s1 FR_C81 = FR_C81,FR_C91,f0 + nop.i 0 +} +{ .mfi + nop.m 0 +(p8) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq6,f0 +(p14) cmp.ltu p0,p11 = 0x9,GR_Tbl_Ind +};; +{ .mfi + nop.m 0 + fcvt.xf FR_RqLin = FR_Xt + nop.i 0 +} +{ .mfi + nop.m 0 +(p11) fma.s1 FR_CA1 = FR_CA1,FR_An,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_S21 = FR_S21,FR_rs2,FR_S19 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_S17 = FR_S17,FR_rs2,FR_S15 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_C01 = FR_C01,FR_C21,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_rs4 = FR_rs2,FR_rs2,f0 +(p12) cmp.lt.unc p8,p0 = 4,GR_Sig2 // should mul by FR_Rq3? +};; +{ .mfi + nop.m 0 +(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq3,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_S13 = FR_S13,FR_rs2,FR_S11 +(p12) cmp.lt.unc p9,p0 = 12,GR_Sig2 // should mul by FR_Rq7? +};; +{ .mfi + nop.m 0 + fma.s1 FR_C41 = FR_C41,FR_C61,f0 + nop.i 0 +} +{ .mfi + nop.m 0 +(p9) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq7,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_C81 = FR_C81,FR_CA1,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_S9 = FR_S9,FR_rs2,FR_S7 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_S5 = FR_S5,FR_rs2,FR_S3 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_rs3 = FR_rs2,FR_rs,f0 +(p12) tbit.nz.unc p6,p0 = GR_SigRqLin,0 +} +{ .mfi + nop.m 0 + fma.s1 FR_rs8 = FR_rs4,FR_rs4,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_S21 = FR_S21,FR_rs4,FR_S17 + mov GR_ExpOf1 = 0x2FFFF +} +{ .mfi + nop.m 0 +(p6) fms.s1 FR_RqLin = FR_AbsX,f1,FR_RqLin +(p12) cmp.lt.unc p8,p0 = 8,GR_Sig2 // should mul by FR_Rq5? +};; +{ .mfi + nop.m 0 + fma.s1 FR_C01 = FR_C01,FR_C41,f0 + nop.i 0 +} +{ .mfi + nop.m 0 +(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq5,f0 +(p14) cmp.gtu.unc p7,p0 = GR_Sign_Exp,GR_ExpOf1 +};; +{ .mfi + nop.m 0 + fma.s1 FR_S13 = FR_S13,FR_rs4,FR_S9 + nop.i 0 +} +{ .mfi + nop.m 0 +(p7) fma.s1 FR_C81 = FR_C81,FR_AbsX,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 +(p14) fma.s1 FR_AbsXp1 = f1,f1,FR_AbsX // |x|+1 + nop.i 0 +} +{ .mfi + nop.m 0 +(p15) fcmp.lt.unc.s1 p0,p10 = FR_AbsX,FR_OvfBound // x >= overflow_boundary + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_rs7 = FR_rs4,FR_rs3,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_S5 = FR_S5,FR_rs3,FR_rs + nop.i 0 +};; +{ .mib +(p14) cmp.lt p13,p0 = r0,r0 // set p13 to 0 if x < 0 +(p12) cmp.eq.unc p8,p9 = 1,GR_SigRqLin +(p10) br.cond.spnt tgamma_spec_res +};; +{ .mfi + getf.sig GR_Sig = FR_iXt +(p6) fma.s1 FR_Rq1 = FR_Rq1,FR_RqLin,f0 + // should we mul by polynomial of recursion? +(p15) cmp.eq.unc p0,p11 = r0,GR_SigRqLin +} +{ .mfb + nop.m 0 + fma.s1 FR_GAMMA = FR_C01,FR_C81,f0 +(p11) br.cond.spnt tgamma_positives +};; +{ .mfi + nop.m 0 + fma.s1 FR_S21 = FR_S21,FR_rs8,FR_S13 + nop.i 0 +} +{ .mfb + nop.m 0 +(p13) fma.d.s0 f8 = FR_C01,FR_C81,f0 +(p13) br.ret.spnt b0 +};; +.pred.rel "mutex",p8,p9 +{ .mfi + nop.m 0 +(p9) fma.s1 FR_GAMMA = FR_GAMMA,FR_Rq1,f0 + tbit.z p6,p7 = GR_Sig,0 // p6 if sin<0, p7 if sin>0 +} +{ .mfi + nop.m 0 +(p8) fma.s1 FR_GAMMA = FR_GAMMA,FR_RqLin,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_S21 = FR_S21,FR_rs7,FR_S5 + nop.i 0 +};; +.pred.rel "mutex",p6,p7 +{ .mfi + nop.m 0 +(p6) fnma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0 + nop.i 0 +} +{ .mfi + nop.m 0 +(p7) fma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0 + mov GR_Sig2 = 1 +};; +{ .mfi + nop.m 0 + frcpa.s1 FR_Rcp0,p0 = f1,FR_GAMMA + cmp.ltu p13,p0 = GR_Sign_Exp,GR_ExpOf1 +};; +// NR method: ineration #1 +{ .mfi +(p13) getf.exp GR_Sign_Exp = FR_AbsX + fnma.s1 FR_Rcp1 = FR_Rcp0,FR_GAMMA,f1 // t = 1 - r0*x +(p13) shl GR_Sig2 = GR_Sig2,63 +};; +{ .mfi +(p13) getf.sig GR_Sig = FR_AbsX + nop.f 0 +(p13) mov GR_NzOvfBound = 0xFBFF +};; +{ .mfi +(p13) cmp.ltu.unc p8,p0 = GR_Sign_Exp,GR_NzOvfBound // p8 <- overflow + nop.f 0 +(p13) cmp.eq.unc p9,p0 = GR_Sign_Exp,GR_NzOvfBound +};; +{ .mfb + nop.m 0 +(p13) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags +(p8) br.cond.spnt tgamma_ovf_near_0 //tgamma_neg_overflow +};; +{ .mib + nop.m 0 +(p9) cmp.eq.unc p8,p0 = GR_Sig,GR_Sig2 +(p8) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_neg_overflow +};; +{ .mfi + nop.m 0 + fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0 + nop.i 0 +};; +// NR method: ineration #2 +{ .mfi + nop.m 0 + fnma.s1 FR_Rcp2 = FR_Rcp1,FR_GAMMA,f1 // t = 1 - r1*x + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1 + nop.i 0 +};; +// NR method: ineration #3 +{ .mfi + nop.m 0 + fnma.s1 FR_Rcp3 = FR_Rcp2,FR_GAMMA,f1 // t = 1 - r2*x + nop.i 0 +} +{ .mfi + nop.m 0 +(p13) fma.s1 FR_Rcp2 = FR_Rcp2,FR_AbsXp1,f0 +(p14) cmp.ltu p10,p11 = 0x9,GR_Tbl_Ind +};; +.pred.rel "mutex",p10,p11 +{ .mfi + nop.m 0 +(p10) fma.s1 FR_GAMMA = FR_Rcp2,FR_Rcp3,FR_Rcp2 + nop.i 0 +} +{ .mfi + nop.m 0 +(p11) fma.d.s0 f8 = FR_Rcp2,FR_Rcp3,FR_Rcp2 + nop.i 0 +};; +{ .mfb + nop.m 0 +(p10) fma.d.s0 f8 = FR_GAMMA,FR_InvAn,f0 + br.ret.sptk b0 +};; + + +// here if x >= 3 +//-------------------------------------------------------------------- +.align 32 +tgamma_positives: +.pred.rel "mutex",p8,p9 +{ .mfi + nop.m 0 +(p9) fma.d.s0 f8 = FR_GAMMA,FR_Rq1,f0 + nop.i 0 +} +{ .mfb + nop.m 0 +(p8) fma.d.s0 f8 = FR_GAMMA,FR_RqLin,f0 + br.ret.sptk b0 +};; + +// here if 0 < x < 1 +//-------------------------------------------------------------------- +.align 32 +tgamma_from_0_to_2: +{ .mfi + getf.exp GR_Sign_Exp = FR_r02 + fms.s1 FR_r = FR_r02,f1,FR_Xmin + mov GR_ExpOf025 = 0xFFFD +} +{ .mfi + add GR_ad_Co = 0x1200,GR_ad_Data +(p6) fnma.s1 FR_Rcp1 = FR_Rcp0,FR_NormX,f1 // t = 1 - r0*x +(p6) mov GR_Sig2 = 1 +};; +{ .mfi +(p6) getf.sig GR_Sig = FR_NormX + nop.f 0 +(p6) shl GR_Sig2 = GR_Sig2,63 +} +{ .mfi + add GR_ad_Ce = 0x1210,GR_ad_Data + nop.f 0 +(p6) mov GR_NzOvfBound = 0xFBFF +};; +{ .mfi + cmp.eq p8,p0 = GR_Sign_Exp,GR_ExpOf05 // r02 >= 1/2 + nop.f 0 + cmp.eq p9,p10 = GR_Sign_Exp,GR_ExpOf025 // r02 >= 1/4 +} +{ .mfi +(p6) cmp.ltu.unc p11,p0 = GR_Sign_Exp,GR_NzOvfBound // p11 <- overflow + nop.f 0 +(p6) cmp.eq.unc p12,p0 = GR_Sign_Exp,GR_NzOvfBound +};; +.pred.rel "mutex",p8,p9 +{ .mfi +(p8) add GR_ad_Co = 0x200,GR_ad_Co +(p6) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags +(p9) add GR_ad_Co = 0x100,GR_ad_Co +} +{ .mib +(p8) add GR_ad_Ce = 0x200,GR_ad_Ce +(p9) add GR_ad_Ce = 0x100,GR_ad_Ce +(p11) br.cond.spnt tgamma_ovf_near_0 //tgamma_spec_res +};; +{ .mfi + ldfe FR_A15 = [GR_ad_Co],32 + nop.f 0 +(p12) cmp.eq.unc p13,p0 = GR_Sig,GR_Sig2 +} +{ .mfb + ldfe FR_A14 = [GR_ad_Ce],32 + nop.f 0 +(p13) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_spec_res +};; +{ .mfi + ldfe FR_A13 = [GR_ad_Co],32 + nop.f 0 + nop.i 0 +} +{ .mfi + ldfe FR_A12 = [GR_ad_Ce],32 + nop.f 0 + nop.i 0 +};; +.pred.rel "mutex",p9,p10 +{ .mfi + ldfe FR_A11 = [GR_ad_Co],32 +(p10) fma.s1 FR_r2 = FR_r02,FR_r02,f0 + nop.i 0 +} +{ .mfi + ldfe FR_A10 = [GR_ad_Ce],32 +(p9) fma.s1 FR_r2 = FR_r,FR_r,f0 + nop.i 0 +};; +{ .mfi + ldfe FR_A9 = [GR_ad_Co],32 +(p6) fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0 + nop.i 0 +} +{ .mfi + ldfe FR_A8 = [GR_ad_Ce],32 +(p10) fma.s1 FR_r = f0,f0,FR_r02 + nop.i 0 +};; +{ .mfi + ldfe FR_A7 = [GR_ad_Co],32 + nop.f 0 + nop.i 0 +} +{ .mfi + ldfe FR_A6 = [GR_ad_Ce],32 + nop.f 0 + nop.i 0 +};; +{ .mfi + ldfe FR_A5 = [GR_ad_Co],32 + nop.f 0 + nop.i 0 +} +{ .mfi + ldfe FR_A4 = [GR_ad_Ce],32 + nop.f 0 + nop.i 0 +};; +{ .mfi + ldfe FR_A3 = [GR_ad_Co],32 + nop.f 0 + nop.i 0 +} +{ .mfi + ldfe FR_A2 = [GR_ad_Ce],32 + nop.f 0 + nop.i 0 +};; +{ .mfi + ldfe FR_A1 = [GR_ad_Co],32 + fma.s1 FR_r4 = FR_r2,FR_r2,f0 + nop.i 0 +} +{ .mfi + ldfe FR_A0 = [GR_ad_Ce],32 + nop.f 0 + nop.i 0 +};; +{ .mfi + nop.m 0 +(p6) fnma.s1 FR_Rcp2 = FR_Rcp1,FR_NormX,f1 // t = 1 - r1*x + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A15 = FR_A15,FR_r,FR_A14 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A11 = FR_A11,FR_r,FR_A10 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_r8 = FR_r4,FR_r4,f0 + nop.i 0 +};; +{ .mfi + nop.m 0 +(p6) fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A7 = FR_A7,FR_r,FR_A6 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A3 = FR_A3,FR_r,FR_A2 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A15 = FR_A15,FR_r,FR_A13 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A11 = FR_A11,FR_r,FR_A9 + nop.i 0 +};; +{ .mfi + nop.m 0 +(p6) fnma.s1 FR_Rcp3 = FR_Rcp2,FR_NormX,f1 // t = 1 - r1*x + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A7 = FR_A7,FR_r,FR_A5 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A3 = FR_A3,FR_r,FR_A1 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A15 = FR_A15,FR_r,FR_A12 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A11 = FR_A11,FR_r,FR_A8 + nop.i 0 +};; +{ .mfi + nop.m 0 +(p6) fma.s1 FR_Rcp3 = FR_Rcp2,FR_Rcp3,FR_Rcp2 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A7 = FR_A7,FR_r,FR_A4 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A3 = FR_A3,FR_r,FR_A0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fma.s1 FR_A15 = FR_A15,FR_r4,FR_A11 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 FR_A7 = FR_A7,FR_r4,FR_A3 + nop.i 0 +};; +.pred.rel "mutex",p6,p7 +{ .mfi + nop.m 0 +(p6) fma.s1 FR_A15 = FR_A15,FR_r8,FR_A7 + nop.i 0 +} +{ .mfi + nop.m 0 +(p7) fma.d.s0 f8 = FR_A15,FR_r8,FR_A7 + nop.i 0 +};; +{ .mfb + nop.m 0 +(p6) fma.d.s0 f8 = FR_A15,FR_Rcp3,f0 + br.ret.sptk b0 +};; + +// overflow +//-------------------------------------------------------------------- +.align 32 +tgamma_ovf_near_0_boundary: +.pred.rel "mutex",p14,p15 +{ .mfi + mov GR_fpsr = ar.fpsr + nop.f 0 +(p15) mov r8 = 0x7ff +} +{ .mfi + nop.m 0 + nop.f 0 +(p14) mov r8 = 0xfff +};; +{ .mfi + nop.m 0 + nop.f 0 + shl r8 = r8,52 +};; +{ .mfi + sub r8 = r8,r0,1 + nop.f 0 + extr.u GR_fpsr = GR_fpsr,10,2 // rounding mode +};; +.pred.rel "mutex",p14,p15 +{ .mfi + // set p8 to 0 in case of overflow and to 1 otherwise + // for negative arg: + // no overflow if rounding mode either Z or +Inf, i.e. + // GR_fpsr > 1 +(p14) cmp.lt p8,p0 = 1,GR_fpsr + nop.f 0 + // for positive arg: + // no overflow if rounding mode either Z or -Inf, i.e. + // (GR_fpsr & 1) == 0 +(p15) tbit.z p0,p8 = GR_fpsr,0 +};; +{ .mib +(p8) setf.d f8 = r8 // set result to 0x7fefffffffffffff without + // OVERFLOW flag raising + nop.i 0 +(p8) br.ret.sptk b0 +};; +.align 32 +tgamma_ovf_near_0: +{ .mfi + mov r8 = 0x1FFFE + nop.f 0 + nop.i 0 +};; +{ .mfi + setf.exp f9 = r8 + fmerge.s FR_X = f8,f8 + mov GR_TAG = 258 // overflow +};; +.pred.rel "mutex",p14,p15 +{ .mfi + nop.m 0 +(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result + nop.i 0 +} +{ .mfb + nop.m 0 +(p14) fnma.d.s0 f8 = f9,f9,f0 // Set I,O and -INF result + br.cond.sptk tgamma_libm_err +};; +// overflow or absolute value of x is too big +//-------------------------------------------------------------------- +.align 32 +tgamma_spec_res: +{ .mfi + mov GR_0x30033 = 0x30033 +(p14) fcmp.eq.unc.s1 p10,p11 = f8,FR_Xt +(p15) mov r8 = 0x1FFFE +};; +{ .mfi +(p15) setf.exp f9 = r8 + nop.f 0 + nop.i 0 +};; +{ .mfb +(p11) cmp.ltu.unc p7,p8 = GR_0x30033,GR_Sign_Exp + nop.f 0 +(p10) br.cond.spnt tgamma_singularity +};; +.pred.rel "mutex",p7,p8 +{ .mbb + nop.m 0 +(p7) br.cond.spnt tgamma_singularity +(p8) br.cond.spnt tgamma_underflow +};; +{ .mfi + nop.m 0 + fmerge.s FR_X = f8,f8 + mov GR_TAG = 258 // overflow +} +{ .mfb + nop.m 0 +(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result + br.cond.sptk tgamma_libm_err +};; + +// x is negative integer or +/-0 +//-------------------------------------------------------------------- +.align 32 +tgamma_singularity: +{ .mfi + nop.m 0 + fmerge.s FR_X = f8,f8 + mov GR_TAG = 259 // negative +} +{ .mfb + nop.m 0 + frcpa.s0 f8,p0 = f0,f0 + br.cond.sptk tgamma_libm_err +};; +// x is negative noninteger with big absolute value +//-------------------------------------------------------------------- +.align 32 +tgamma_underflow: +{ .mmi + getf.sig GR_Sig = FR_iXt + mov r11 = 0x00001 + nop.i 0 +};; +{ .mfi + setf.exp f9 = r11 + nop.f 0 + nop.i 0 +};; +{ .mfi + nop.m 0 + nop.f 0 + tbit.z p6,p7 = GR_Sig,0 +};; +.pred.rel "mutex",p6,p7 +{ .mfi + nop.m 0 +(p6) fms.d.s0 f8 = f9,f9,f9 + nop.i 0 +} +{ .mfb + nop.m 0 +(p7) fma.d.s0 f8 = f9,f9,f9 + br.ret.sptk b0 +};; + +// x for natval, nan, +/-inf or +/-0 +//-------------------------------------------------------------------- +.align 32 +tgamma_spec: +{ .mfi + nop.m 0 + fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf + nop.i 0 +};; +{ .mfi + nop.m 0 + fclass.m p7,p8 = f8,0x7 // +/-0 + nop.i 0 +};; +{ .mfi + nop.m 0 + fmerge.s FR_X = f8,f8 + nop.i 0 +} +{ .mfb + nop.m 0 +(p6) fma.d.s0 f8 = f8,f1,f8 +(p6) br.ret.spnt b0 +};; +.pred.rel "mutex",p7,p8 +{ .mfi +(p7) mov GR_TAG = 259 // negative +(p7) frcpa.s0 f8,p0 = f1,f8 + nop.i 0 +} +{ .mib + nop.m 0 + nop.i 0 +(p8) br.cond.spnt tgamma_singularity +};; + +.align 32 +tgamma_libm_err: +{ .mfi + alloc r32 = ar.pfs,1,4,4,0 + nop.f 0 + mov GR_Parameter_TAG = GR_TAG +};; + +GLOBAL_LIBM_END(tgamma) +LOCAL_LIBM_ENTRY(__libm_error_region) +.prologue +{ .mfi + add GR_Parameter_Y=-32,sp // Parameter 2 value + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS=ar.pfs // Save ar.pfs +} +{ .mfi +.fframe 64 + add sp=-64,sp // Create new stack + nop.f 0 + mov GR_SAVE_GP=gp // Save gp +};; +{ .mmi + stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack + add GR_Parameter_X = 16,sp // Parameter 1 address +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0=b0 // Save b0 +};; +.body +{ .mib + stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack + add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address + nop.b 0 +} +{ .mib + stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack + add GR_Parameter_Y = -16,GR_Parameter_Y + br.call.sptk b0=__libm_error_support# // Call error handling function +};; +{ .mmi + nop.m 0 + nop.m 0 + add GR_Parameter_RESULT = 48,sp +};; +{ .mmi + ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack +.restore sp + add sp = 64,sp // Restore stack pointer + mov b0 = GR_SAVE_B0 // Restore return address +};; +{ .mib + mov gp = GR_SAVE_GP // Restore gp + mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs + br.ret.sptk b0 // Return +};; + +LOCAL_LIBM_END(__libm_error_region) +.type __libm_error_support#,@function +.global __libm_error_support# + |