summaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/libm_sincosf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosf.S744
1 files changed, 744 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S
new file mode 100644
index 0000000000..c4783aca3a
--- /dev/null
+++ b/sysdeps/ia64/fpu/libm_sincosf.S
@@ -0,0 +1,744 @@
+.file "libm_sincosf.s"
+
+
+// Copyright (c) 2002 - 2003, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2002 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+// History
+//==============================================================
+// 02/01/02 Initial version
+// 02/18/02 Large arguments processing routine is excluded.
+// External interface entry points are added
+// 02/26/02 Added temporary return of results in r8, r9
+// 03/13/02 Corrected restore of predicate registers
+// 03/19/02 Added stack unwind around call to __libm_cisf_large
+// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
+// 02/10/03 Reordered header: .section, .global, .proc, .align
+
+// API
+//==============================================================
+// 1) float _Complex cisf(float)
+// 2) void sincosf(float, float*s, float*c)
+// 3) __libm_sincosf - internal LIBM function, that accepts
+// argument in f8 and returns cosine through f8, sine through f9
+
+//
+// Overview of operation
+//==============================================================
+//
+// Step 1
+// ======
+// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
+// divide x by pi/2^k.
+// Multiply by 2^k/pi.
+// nfloat = Round result to integer (round-to-nearest)
+//
+// r = x - nfloat * pi/2^k
+// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
+// pi/2^k is stored as two numbers that when added make pi/2^k.
+// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
+// HIGH part is rounded to zero, LOW - to nearest
+//
+// x = (nfloat * pi/2^k) + r
+// r is small enough that we can use a polynomial approximation
+// and is referred to as the reduced argument.
+//
+// Step 3
+// ======
+// Take the unreduced part and remove the multiples of 2pi.
+// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
+//
+// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
+// N * 2^(k+1)
+// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
+// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
+// nfloat * pi/2^k = N2pi + M * pi/2^k
+//
+//
+// Sin(x) = Sin((nfloat * pi/2^k) + r)
+// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
+//
+// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
+// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
+// = Sin(Mpi/2^k)
+//
+// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
+// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
+// = Cos(Mpi/2^k)
+//
+// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
+//
+//
+// Step 4
+// ======
+// 0 <= M < 2^(k+1)
+// There are 2^(k+1) Sin entries in a table.
+// There are 2^(k+1) Cos entries in a table.
+//
+// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
+//
+//
+// Step 5
+// ======
+// Calculate Cos(r) and Sin(r) by polynomial approximation.
+//
+// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
+// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
+//
+// and the coefficients q1, q2 and p1, p2 are stored in a table
+//
+//
+// Calculate
+// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
+//
+// as follows
+//
+// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
+// rsq = r*r
+//
+//
+// P = p1 + r^2p2
+// Q = q1 + r^2q2
+//
+// rcub = r * rsq
+// Sin(r) = r + rcub * P
+// = r + r^3p1 + r^5p2 = Sin(r)
+//
+// P = r + rcub * P
+//
+// Answer = S[m] Cos(r) + C[m] P
+//
+// Cos(r) = 1 + rsq Q
+// Cos(r) = 1 + r^2 Q
+// Cos(r) = 1 + r^2 (q1 + r^2q2)
+// Cos(r) = 1 + r^2q1 + r^4q2
+//
+// S[m] Cos(r) = S[m](1 + rsq Q)
+// S[m] Cos(r) = S[m] + S[m] rsq Q
+// S[m] Cos(r) = S[m] + s_rsq Q
+// Q = S[m] + s_rsq Q
+//
+// Then,
+//
+// Answer = Q + C[m] P
+
+
+// Registers used
+//==============================================================
+// general input registers:
+// r14 -> r19
+// r32 -> r49
+
+// predicate registers used:
+// p6 -> p14
+
+// floating-point registers used
+// f9 -> f15
+// f32 -> f100
+
+// Assembly macros
+//==============================================================
+
+cisf_Arg = f8
+
+cisf_Sin_res = f9
+cisf_Cos_res = f8
+
+
+cisf_NORM_f8 = f10
+cisf_W = f11
+cisf_int_Nfloat = f12
+cisf_Nfloat = f13
+
+cisf_r = f14
+cisf_r_exact = f68
+cisf_rsq = f15
+cisf_rcub = f32
+
+cisf_Inv_Pi_by_16 = f33
+cisf_Pi_by_16_hi = f34
+cisf_Pi_by_16_lo = f35
+
+cisf_Inv_Pi_by_64 = f36
+cisf_Pi_by_64_hi = f37
+cisf_Pi_by_64_lo = f38
+
+
+cisf_P1 = f39
+cisf_Q1 = f40
+cisf_P2 = f41
+cisf_Q2 = f42
+cisf_P3 = f43
+cisf_Q3 = f44
+cisf_P4 = f45
+cisf_Q4 = f46
+
+cisf_P_temp1 = f47
+cisf_P_temp2 = f48
+
+cisf_Q_temp1 = f49
+cisf_Q_temp2 = f50
+
+cisf_P = f51
+
+cisf_SIG_INV_PI_BY_16_2TO61 = f52
+cisf_RSHF_2TO61 = f53
+cisf_RSHF = f54
+cisf_2TOM61 = f55
+cisf_NFLOAT = f56
+cisf_W_2TO61_RSH = f57
+
+cisf_tmp = f58
+
+cisf_Sm_sin = f59
+cisf_Cm_sin = f60
+
+cisf_Sm_cos = f61
+cisf_Cm_cos = f62
+
+cisf_srsq_sin = f63
+cisf_srsq_cos = f64
+
+cisf_Q_sin = f65
+cisf_Q_cos = f66
+cisf_Q = f67
+
+/////////////////////////////////////////////////////////////
+
+cisf_pResSin = r33
+cisf_pResCos = r34
+
+cisf_exp_limit = r35
+cisf_r_signexp = r36
+cisf_AD_beta_table = r37
+cisf_r_sincos = r38
+
+cisf_r_exp = r39
+cisf_r_17_ones = r40
+
+cisf_GR_sig_inv_pi_by_16 = r14
+cisf_GR_rshf_2to61 = r15
+cisf_GR_rshf = r16
+cisf_GR_exp_2tom61 = r17
+cisf_GR_n = r18
+
+cisf_GR_n_sin = r19
+cisf_GR_m_sin = r41
+cisf_GR_32m_sin = r41
+
+cisf_GR_n_cos = r42
+cisf_GR_m_cos = r43
+cisf_GR_32m_cos = r43
+
+cisf_AD_2_sin = r44
+cisf_AD_2_cos = r45
+
+cisf_gr_tmp = r46
+GR_SAVE_B0 = r47
+GR_SAVE_GP = r48
+rB0_SAVED = r49
+GR_SAVE_PFS = r50
+GR_SAVE_PR = r51
+cisf_AD_1 = r52
+
+RODATA
+
+.align 16
+// Pi/16 parts
+LOCAL_OBJECT_START(double_cisf_pi)
+ data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
+ data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
+LOCAL_OBJECT_END(double_cisf_pi)
+
+// Coefficients for polynomials
+LOCAL_OBJECT_START(double_cisf_pq_k4)
+ data8 0x3F810FABB668E9A2 // P2
+ data8 0x3FA552E3D6DE75C9 // Q2
+ data8 0xBFC555554447BC7F // P1
+ data8 0xBFDFFFFFC447610A // Q1
+LOCAL_OBJECT_END(double_cisf_pq_k4)
+
+// Sincos table (S[m], C[m])
+LOCAL_OBJECT_START(double_sin_cos_beta_k4)
+ data8 0x0000000000000000 // sin ( 0 Pi / 16 )
+ data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
+//
+ data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
+ data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
+//
+ data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
+ data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
+//
+ data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
+ data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
+//
+ data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
+ data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
+//
+ data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
+ data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
+//
+ data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
+ data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
+//
+ data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
+ data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
+//
+ data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
+ data8 0x0000000000000000 // cos ( 8 Pi / 16 )
+//
+ data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
+ data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
+//
+ data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
+ data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
+//
+ data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
+ data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
+//
+ data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
+ data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
+//
+ data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
+ data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
+//
+ data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
+ data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
+//
+ data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
+ data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
+//
+ data8 0x0000000000000000 // sin ( 16 Pi / 16 )
+ data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
+//
+ data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
+ data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
+//
+ data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
+ data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
+//
+ data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
+ data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
+//
+ data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
+ data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
+//
+ data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
+ data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
+//
+ data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
+ data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
+//
+ data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
+ data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
+//
+ data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
+ data8 0x0000000000000000 // cos ( 24 Pi / 16 )
+//
+ data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
+ data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
+//
+ data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
+ data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
+//
+ data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
+ data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
+//
+ data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
+ data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
+//
+ data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
+ data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
+//
+ data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
+ data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
+//
+ data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
+ data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
+//
+ data8 0x0000000000000000 // sin ( 32 Pi / 16 )
+ data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
+LOCAL_OBJECT_END(double_sin_cos_beta_k4)
+
+.section .text
+
+GLOBAL_IEEE754_ENTRY(sincosf)
+// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
+{ .mlx
+ alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
+ movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
+
+}
+// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
+{ .mlx
+ addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
+ movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
+};;
+
+{ .mfi
+ ld8 cisf_AD_1 = [cisf_AD_1]
+ fnorm.s1 cisf_NORM_f8 = cisf_Arg
+ cmp.eq p13, p14 = r0, r0 // p13 set for sincos
+}
+// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
+{ .mib
+ mov cisf_GR_exp_2tom61 = 0xffff-61
+ nop.i 0
+ br.cond.sptk _CISF_COMMON
+};;
+GLOBAL_IEEE754_END(sincosf)
+LOCAL_LIBM_ENTRY(cisf)
+LOCAL_LIBM_END(cisf)
+GLOBAL_LIBM_ENTRY(__libm_sincosf)
+{ .mlx
+// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
+ alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
+ movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
+}
+// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
+{ .mlx
+ addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
+ movl cisf_GR_rshf_2to61 = 0x47b8000000000000
+};;
+
+// p14 set for __libm_sincos and cis
+{ .mfi
+ ld8 cisf_AD_1 = [cisf_AD_1]
+ fnorm.s1 cisf_NORM_f8 = cisf_Arg
+ cmp.eq p14, p13 = r0, r0
+}
+// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
+{ .mib
+ mov cisf_GR_exp_2tom61 = 0xffff-61
+ nop.i 0
+ nop.b 0
+};;
+
+_CISF_COMMON:
+// Form two constants we need
+// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
+// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
+// fcmp used to set denormal, and invalid on snans
+{ .mfi
+ setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
+ fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
+ addl cisf_gr_tmp = -1, r0
+}
+// cisf_GR_rshf = 1.1000 2^63 for right shift
+{ .mlx
+ setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
+ movl cisf_GR_rshf = 0x43e8000000000000
+};;
+
+// Form another constant
+// 2^-61 for scaling Nfloat
+// 0x10017 is register_bias + 24.
+// So if f8 >= 2^24, go to large args routine
+{ .mmi
+ getf.exp cisf_r_signexp = cisf_Arg
+ setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
+ mov cisf_exp_limit = 0x10017
+};;
+
+// Load the two pieces of pi/16
+// Form another constant
+// 1.1000...000 * 2^63, the right shift constant
+{ .mmb
+ ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
+ setf.d cisf_RSHF = cisf_GR_rshf
+(p6) br.cond.spnt _CISF_SPECIAL_ARGS
+};;
+
+{ .mmi
+ ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
+ setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
+ nop.i 0
+};;
+
+// Start loading P, Q coefficients
+{ .mmi
+ ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
+ nop.m 0
+ dep.z cisf_r_exp = cisf_r_signexp, 0, 17
+};;
+
+// p10 is true if we must call routines to handle larger arguments
+// p10 is true if f8 exp is >= 0x10017
+{ .mmb
+ ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
+ cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
+(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
+};;
+
+// cisf_W = x * cisf_Inv_Pi_by_16
+// Multiply x by scaled 16/pi and add large const to shift integer part of W to
+// rightmost bits of significand
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
+ nop.i 0
+};;
+
+// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
+{ .mfi
+ nop.m 0
+ fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
+ nop.i 0
+};;
+
+// N = (int)cisf_int_Nfloat
+{ .mfi
+ getf.sig cisf_GR_n = cisf_W_2TO61_RSH
+ nop.f 0
+ nop.i 0
+};;
+
+// Add 2^(k-1) (which is in cisf_r_sincos) to N
+// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
+// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
+{ .mfi
+ add cisf_GR_n_cos = 0x8, cisf_GR_n
+ fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
+ nop.i 0
+};;
+
+//Get M (least k+1 bits of N)
+{ .mmi
+ and cisf_GR_m_sin = 0x1f,cisf_GR_n
+ and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
+ nop.i 0
+};;
+
+{ .mmi
+ shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
+ shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
+ nop.i 0
+};;
+
+// den. input to set uflow
+{ .mmf
+ ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
+ ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
+ fclass.m.unc p10,p0 = cisf_Arg,0x0b
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
+ nop.i 0
+};;
+
+{ .mmf
+ nop.m 0
+ nop.m 0
+ fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
+ nop.i 0
+};;
+
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
+ nop.i 0
+};;
+
+// If den. arg, force underflow to be set
+{ .mfi
+ nop.m 0
+(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
+ nop.i 0
+};;
+
+//Final sin
+{ .mfi
+ nop.m 0
+ fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
+ nop.i 0
+}
+//Final cos
+{ .mfb
+ nop.m 0
+ fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
+(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
+};;
+
+{ .mmb
+ stfs [cisf_pResSin] = cisf_Sin_res
+ stfs [cisf_pResCos] = cisf_Cos_res
+ br.ret.sptk b0 // common exit for sincos main path
+};;
+
+_CISF_SPECIAL_ARGS:
+// sinf(+/-0) = +/-0
+// sinf(Inf) = NaN
+// sinf(NaN) = NaN
+{ .mfi
+ nop.m 999
+ fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
+ nop.i 999
+};;
+
+// cosf(+/-0) = 1.0
+// cosf(Inf) = NaN
+// cosf(NaN) = NaN
+{ .mfb
+ nop.m 999
+ fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
+(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
+};;
+
+{ .mmb
+ stfs [cisf_pResSin] = cisf_Sin_res
+ stfs [cisf_pResCos] = cisf_Cos_res
+ br.ret.sptk b0 // special exit for sincos main path
+};;
+
+ // exit for sincos
+ // NOTE! r8 and r9 used only because of compiler issue
+ // connected with float point complex function arguments pass
+ // After fix of this issue this operations can be deleted
+_CISF_RETURN:
+{ .mmb
+ getf.s r8 = cisf_Cos_res
+ getf.s r9 = cisf_Sin_res
+ br.ret.sptk b0 // exit for sincos
+};;
+GLOBAL_LIBM_END(__libm_sincosf)
+//// |x| > 2^24 path ///////
+.proc _CISF_LARGE_ARGS
+_CISF_LARGE_ARGS:
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs, GR_SAVE_PFS
+ mov GR_SAVE_PFS = ar.pfs
+};;
+
+{ .mfi
+ mov GR_SAVE_GP = gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0 = b0
+};;
+
+.body
+// Call of huge arguments sincos
+{ .mib
+ nop.m 0
+ mov GR_SAVE_PR = pr
+ br.call.sptk b0 = __libm_sincos_large
+};;
+
+{ .mfi
+ mov gp = GR_SAVE_GP
+ nop.f 0
+ mov pr = GR_SAVE_PR, 0x1fffe
+}
+;;
+
+{ .mfi
+ nop.m 0
+ nop.f 0
+ mov b0 = GR_SAVE_B0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
+ mov ar.pfs = GR_SAVE_PFS
+}
+// exit for |x| > 2^24 path (__libm_sincos and cis)
+{ .mfb
+ nop.m 0
+ fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
+(p14) br.cond.sptk _CISF_RETURN
+};;
+
+{ .mmb
+ stfs [cisf_pResSin] = cisf_Sin_res
+ stfs [cisf_pResCos] = cisf_Cos_res
+ br.ret.sptk b0 // exit for sincos |x| > 2^24 path
+};;
+
+.endp _CISF_LARGE_ARGS
+
+.type __libm_sincos_large#,@function
+.global __libm_sincos_large#
+