summaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_pow.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_pow.S')
-rw-r--r--sysdeps/ia64/fpu/e_pow.S1633
1 files changed, 803 insertions, 830 deletions
diff --git a/sysdeps/ia64/fpu/e_pow.S b/sysdeps/ia64/fpu/e_pow.S
index 56f7f078ba..11fae53d72 100644
--- a/sysdeps/ia64/fpu/e_pow.S
+++ b/sysdeps/ia64/fpu/e_pow.S
@@ -1,10 +1,10 @@
.file "pow.s"
-// Copyright (C) 2000, 2001, Intel Corporation
+
+// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
-// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
-// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-//
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,30 +35,41 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://developer.intel.com/opensource.
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
-// 2/02/00 Initial version
-// 2/03/00 Added p12 to definite over/under path. With odd power we did not
+// 02/02/00 Initial version
+// 02/03/00 Added p12 to definite over/under path. With odd power we did not
// maintain the sign of x in this path.
-// 4/04/00 Unwind support added
-// 4/19/00 pow(+-1,inf) now returns NaN
-// pow(+-val, +-inf) returns 0 or inf, but now does not call error support
+// 04/04/00 Unwind support added
+// 04/19/00 pow(+-1,inf) now returns NaN
+// pow(+-val, +-inf) returns 0 or inf, but now does not call error
+// support
// Added s1 to fcvt.fx because invalid flag was incorrectly set.
-// 8/15/00 Bundle added after call to __libm_error_support to properly
+// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 9/07/00 Improved performance by eliminating bank conflicts and other stalls,
+// 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
// and tweaking the critical path
-// 9/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
-// 9/28/00 Updated NaN**0 path
-// 1/20/01 Fixed denormal flag settings.
-// 2/12/01 Improved speed.
+// 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
+// 09/28/00 Updated NaN**0 path
+// 01/20/01 Fixed denormal flag settings.
+// 02/13/01 Improved speed.
+// 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
+// problem in round up, down, and to zero modes. Also corrected
+// overflow result when x negative, y odd in round up, down, zero.
+// 06/14/01 Added brace missing from bundle
+// 12/10/01 Corrected case where x negative, 2^52 <= |y| < 2^53, y odd integer.
+// 12/20/01 Fixed monotonity problem in round to nearest.
+// 02/08/02 Fixed overflow/underflow cases that were not calling error support.
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 08/29/02 Improved Itanium 2 performance
+// 09/21/02 Added branch for |y*log(x)|<2^-11 to fix monotonicity problems.
+// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
-// double pow(double)
-// float powf(float)
+// double pow(double x, double y)
//
// Overview of operation
//==============================================================
@@ -67,51 +78,51 @@
// 1. Log(x)
// 2. y Log(x)
// 3. exp(y log(x))
-//
+//
// This means we work with the absolute value of x and merge in the sign later.
// Log(x) = G + delta + r -rsq/2 + p
// G,delta depend on the exponent of x and table entries. The table entries are
// indexed by the exponent of x, called K.
-//
+//
// The G and delta come out of the reduction; r is the reduced x.
-//
+//
// B = frcpa(x)
// xB-1 is small means that B is the approximate inverse of x.
-//
+//
// Log(x) = Log( (1/B)(Bx) )
// = Log(1/B) + Log(Bx)
// = Log(1/B) + Log( 1 + (Bx-1))
-//
+//
// x = 2^K 1.x_1x_2.....x_52
-// B= frcpa(x) = 2^-k Cm
+// B= frcpa(x) = 2^-k Cm
// Log(1/B) = Log(1/(2^-K Cm))
// Log(1/B) = Log((2^K/ Cm))
// Log(1/B) = K Log(2) + Log(1/Cm)
-//
+//
// Log(x) = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
-//
+//
// If you take the significand of x, set the exponent to true 0, then Cm is
// the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
// The frcpa table is indexed by 8 bits, the x_1 thru x_8.
// m = x_1x_2...x_8 is an 8-bit index.
-//
+//
// Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
-//
+//
// We tabluate as two doubles, T and t, where T +t is the value itself.
-//
+//
// Log(x) = (K Log(2)_hi + T) + (Log(2)_hi + t) + Log( 1 + (Bx-1))
// Log(x) = G + delta + Log( 1 + (Bx-1))
-//
+//
// The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
-//
+//
// Log( 1 + (Bx-1)) = r - rsq/2 + p
-//
+//
// Then,
-//
+//
// yLog(x) = yG + y delta + y(r-rsq/2) + yp
// yLog(x) = Z1 + e3 + Z2 + Z3 + (e2 + e3)
-//
-//
+//
+//
// exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
//
//
@@ -133,7 +144,7 @@
// exp(r) = exp(Z - N log2/128)
//
// r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
-// = Z - N (log2/128)
+// = Z - N (log2/128)
//
// Z = s+d +N (log2/128)
//
@@ -149,22 +160,22 @@
// n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
// n log2/128 = I2 log2/8 + I1 log2/128
//
-// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
+// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
//
// exp(Z) = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
// exp(Z) = exp(s) (1+d1) (1+d2)(2^M) 2^I2/8 2^I1/128
// exp(Z) = exp(s) f1 f2 (2^M) 2^I2/8 2^I1/128
//
// I1, I2 are table indices. Use a series for exp(s).
-// Then get exp(Z)
+// Then get exp(Z)
//
// exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
-// exp(yLog(x)) = exp(Z) exp(Z3) f3
-// exp(yLog(x)) = exp(Z)f3 exp(Z3)
-// exp(yLog(x)) = A exp(Z3)
+// exp(yLog(x)) = exp(Z) exp(Z3) f3
+// exp(yLog(x)) = exp(Z)f3 exp(Z3)
+// exp(yLog(x)) = A exp(Z3)
//
// We actually calculate exp(Z3) -1.
-// Then,
+// Then,
// exp(yLog(x)) = A + A( exp(Z3) -1)
//
@@ -175,142 +186,146 @@
// ==============
// The operation (K*log2_hi) must be exact. K is the true exponent of x.
// If we allow gradual underflow (denormals), K can be represented in 12 bits
-// (as a two's complement number). We assume 13 bits as an engineering precaution.
-//
+// (as a two's complement number). We assume 13 bits as an engineering
+// precaution.
+//
// +------------+----------------+-+
// | 13 bits | 50 bits | |
// +------------+----------------+-+
// 0 1 66
// 2 34
-//
+//
// So we want the lsb(log2_hi) to be 2^-50
// We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
-//
+//
// 0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
-//
+//
// Consider numbering the bits left to right, starting at 0 thru 127.
// Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
-//
+//
// ...79ab
// 0111 1001 1010 1011
// 44
// 89
-//
-// So if we shift off the rightmost 14 bits, then (shift back only
+//
+// So if we shift off the rightmost 14 bits, then (shift back only
// the top half) we get
-//
+//
// 0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
-//
+//
// Put the right 64-bit signficand in an FR register, convert to double;
// it is exact. Put the next 128 bits into a quad register and round to double.
// The true exponent of the low part is -51.
-//
+//
// hi is 0 fffe b17217f7d1cf4000
// lo is 0 ffcc e6af278ece601000
-//
+//
// Convert to double memory format and get
-//
+//
// hi is 0x3fe62e42fefa39e8
-// lo is 0x3cccd5e4f1d9cc02
-//
+// lo is 0x3cccd5e4f1d9cc02
+//
// log2_hi + log2_lo is an accurate value for log2.
-//
-//
+//
+//
// The T and t values
// ==================
// A similar method is used to generate the T and t values.
-//
+//
// K * log2_hi + T must be exact.
-//
+//
// Smallest T,t
// ----------
-// The smallest T,t is
+// The smallest T,t is
// T t
-// data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
-//
+// 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
+//
// The exponent is 0x3f6 (biased) or -9 (true).
// For the smallest T value, what we want is to clip the significand such that
-// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the specific
-// for the first entry. In general, it is 0xffff - (biased 15-bit exponent).
+// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
+// specific for the first entry. In general, it is 0xffff - (biased 15-bit
+// exponent).
-// Independently, what we have calculated is the table value as a quad precision number.
+// Independently, what we have calculated is the table value as a quad
+// precision number.
// Table entry 1 is
// 0 fff6 80200aaeac44ef38 338f77605fdf8000
-//
+//
// We store this quad precision number in a data structure that is
-// sign: 1
+// sign: 1
// exponent: 15
// signficand_hi: 64 (includes explicit bit)
// signficand_lo: 49
// Because the explicit bit is included, the significand is 113 bits.
-//
+//
// Consider significand_hi for table entry 1.
-//
-//
+//
+//
// +-+--- ... -------+--------------------+
// | |
// +-+--- ... -------+--------------------+
// 0 1 4444444455555555556666
// 2345678901234567890123
-//
+//
// Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
// Bit 42 is 2^-42. If we shift to the right by 9, the bit in
// bit 42 goes in 51.
-//
+//
// So what we want to do is shift bits 43 thru 63 into significand_lo.
-// This is shifting bit 42 into bit 63, taking care to retain the shifted-off bits.
-// Then shifting (just with signficaand_hi) back into bit 42.
-//
-// The shift_value is 63-42 = 21. In general, this is
+// This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
+// Then shifting (just with signficaand_hi) back into bit 42.
+//
+// The shift_value is 63-42 = 21. In general, this is
// 63 - (51 -(0xffff - 0xfff6))
// For this example, it is
// 63 - (51 - 9) = 63 - 42 = 21
-//
-// This means we are shifting 21 bits into significand_lo. We must maintain more
-// that a 128-bit signficand not to lose bits. So before the shift we put the 128-bit
-// significand into a 256-bit signficand and then shift.
+//
+// This means we are shifting 21 bits into significand_lo. We must maintain more
+// that a 128-bit signficand not to lose bits. So before the shift we put the
+// 128-bit significand into a 256-bit signficand and then shift.
// The 256-bit significand has four parts: hh, hl, lh, and ll.
-//
+//
// Start off with
// hh hl lh ll
// <64> <49><15_0> <64_0> <64_0>
-//
+//
// After shift by 21 (then return for significand_hi),
// <43><21_0> <21><43> <6><58_0> <64_0>
-//
+//
// Take the hh part and convert to a double. There is no rounding here.
-// The conversion is exact. The true exponent of the high part is the same as the
-// true exponent of the input quad.
-//
-// We have some 64 plus significand bits for the low part. In this example, we have
-// 70 bits. We want to round this to a double. Put them in a quad and then do a quad fnorm.
-// For this example the true exponent of the low part is
+// The conversion is exact. The true exponent of the high part is the same as
+// the true exponent of the input quad.
+//
+// We have some 64 plus significand bits for the low part. In this example, we
+// have 70 bits. We want to round this to a double. Put them in a quad and then
+// do a quad fnorm.
+// For this example the true exponent of the low part is
// true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
-// In general, this is
-// true_exponent_of_high - (64 - shift_value)
-//
-//
+// In general, this is
+// true_exponent_of_high - (64 - shift_value)
+//
+//
// Largest T,t
// ----------
// The largest T,t is
-// data8 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))= +6.92171e-001
-//
+// 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))=+6.92171e-001
+//
// Table entry 256 is
// 0 fffe b1321ff67cba178c 51da12f4df5a0000
-//
-// The shift value is
+//
+// The shift value is
// 63 - (51 -(0xffff - 0xfffe)) = 13
-//
-// The true exponent of the low part is
+//
+// The true exponent of the low part is
// true_exponent_of_high - (64 - shift_value)
// -1 - (64-13) = -52
// Biased as a double, this is 0x3cb
-//
-//
-//
+//
+//
+//
// So then lsb(T) must be >= 2^-51
// msb(Klog2_hi) <= 2^12
-//
+//
// +--------+---------+
// | 51 bits | <== largest T
// +--------+---------+
@@ -320,7 +335,6 @@
// +------------+----------------+-+
-
// Special Cases
//==============================================================
@@ -385,63 +399,67 @@
// X any Y =0 +1
-#include "libm_support.h"
-
// Assembly macros
//==============================================================
// integer registers used
-pow_AD_Tt = r33
-pow_GR_FFF7 = r34
-pow_GR_exp_Y = r34 // duplicate
-pow_GR_17ones = r35
-
-pow_AD_P = r36
-pow_AD_Q = r37
-pow_AD_tbl1 = r38
-pow_AD_tbl2 = r39
-pow_GR_exp_X = r40
-pow_GR_true_exp_X = r40 // duplicate
-
-pow_GR_offset = r41
-pow_GR_exp_Xm1 = r42
-pow_GR_sig_X = r43
-pow_GR_signexp_X = r44
-
-pow_GR_signexp_Xm1 = r46
-pow_GR_int_W1 = r47
-pow_GR_int_W2 = r48
-pow_GR_int_N = r49
-pow_GR_index1 = r50
-
-pow_GR_index2 = r51
-pow_AD_T1 = r52
-pow_AD_T2 = r53
-pow_GR_gt_ln = r53 // duplicate
-pow_int_GR_M = r54
-pow_GR_10033 = r55
-
-pow_GR_16ones = r56
-pow_GR_sig_int_Y = r57
-pow_GR_sign_Y_Gpr = r58
-pow_GR_17ones_m1 = r59
-pow_GR_one = r60
-pow_GR_sign_Y = r60
-
-pow_GR_signexp_Y_Gpr = r61
-pow_GR_exp_Y_Gpr = r62
-pow_GR_true_exp_Y_Gpr = r63
-pow_GR_signexp_Y = r64
-
-GR_SAVE_B0 = r65
-GR_SAVE_GP = r66
-GR_SAVE_PFS = r67
-
-GR_Parameter_X = r68
-GR_Parameter_Y = r69
-GR_Parameter_RESULT = r70
-pow_GR_tag = r71
+pow_GR_signexp_X = r14
+pow_GR_17ones = r15
+pow_AD_P = r16
+pow_GR_exp_2tom8 = r17
+pow_GR_sig_X = r18
+pow_GR_10033 = r19
+pow_GR_16ones = r20
+
+pow_AD_Tt = r21
+pow_GR_exp_X = r22
+pow_AD_Q = r23
+pow_GR_true_exp_X = r24
+pow_GR_y_zero = r25
+
+pow_GR_exp_Y = r26
+pow_AD_tbl1 = r27
+pow_AD_tbl2 = r28
+pow_GR_offset = r29
+pow_GR_exp_Xm1 = r30
+pow_GR_xneg_yodd = r31
+
+pow_GR_signexp_Xm1 = r35
+pow_GR_int_W1 = r36
+pow_GR_int_W2 = r37
+pow_GR_int_N = r38
+pow_GR_index1 = r39
+pow_GR_index2 = r40
+
+pow_AD_T1 = r41
+pow_AD_T2 = r42
+pow_int_GR_M = r43
+pow_GR_sig_int_Y = r44
+pow_GR_sign_Y_Gpr = r45
+
+pow_GR_17ones_m1 = r46
+pow_GR_one = r47
+pow_GR_sign_Y = r48
+pow_GR_signexp_Y_Gpr = r49
+pow_GR_exp_Y_Gpr = r50
+
+pow_GR_true_exp_Y_Gpr = r51
+pow_GR_signexp_Y = r52
+pow_GR_x_one = r53
+pow_GR_exp_2toM63 = r54
+pow_GR_big_pos = r55
+
+pow_GR_big_neg = r56
+
+GR_SAVE_B0 = r50
+GR_SAVE_GP = r51
+GR_SAVE_PFS = r52
+
+GR_Parameter_X = r53
+GR_Parameter_Y = r54
+GR_Parameter_RESULT = r55
+pow_GR_tag = r56
// floating point registers used
@@ -464,7 +482,8 @@ POW_log2_lo = f43
POW_r = f44
POW_Q0_half = f45
-POW_Q1 = f46
+POW_Q1 = f46
+POW_tmp = f47
POW_log2_hi = f48
POW_Q4 = f49
POW_P1 = f50
@@ -476,6 +495,7 @@ POW_Yrcub = f54
POW_log2_by_128_lo = f55
POW_v6 = f56
+POW_xsq = f57
POW_v4 = f58
POW_v2 = f59
POW_T = f60
@@ -484,6 +504,7 @@ POW_Tt = f61
POW_RSHF = f62
POW_v21ps = f63
POW_s4 = f64
+POW_twoV = f65
POW_U = f66
POW_G = f67
@@ -533,44 +554,45 @@ POW_1ps = f103
POW_A = f104
POW_es = f105
+POW_Xp1 = f106
POW_int_K = f107
POW_K = f108
POW_f123 = f109
POW_Gpr = f110
-POW_Y_Gpr = f111
+POW_Y_Gpr = f111
POW_int_Y = f112
+POW_abs_q = f114
+POW_2toM63 = f115
POW_float_int_Y = f116
POW_ftz_urm_f8 = f117
POW_wre_urm_f8 = f118
-POW_abs_A = f119
-POW_gt_pln = f120
+POW_big_neg = f119
+POW_big_pos = f120
-POW_xsq = f121
-
-POW_twoV = f122
-POW_Xp1 = f123
+POW_GY_Z2 = f121
+POW_pYrcub_e3 = f122
+POW_d = f123
+POW_d2 = f124
+POW_poly_d_hi = f121
+POW_poly_d_lo = f122
+POW_poly_d = f121
// Data tables
//==============================================================
-#ifdef _LIBC
-.rodata
-#else
-.data
-#endif
+RODATA
.align 16
-pow_table_P:
-ASM_TYPE_DIRECTIVE(pow_table_P,@object)
+LOCAL_OBJECT_START(pow_table_P)
data8 0x8000F7B249FF332D, 0x0000BFFC // P_5
data8 0xAAAAAAA9E7902C7F, 0x0000BFFC // P_3
data8 0x80000000000018E5, 0x0000BFFD // P_1
data8 0xb8aa3b295c17f0bc, 0x00004006 // inv_ln2_by_128
-
-
+//
+//
data8 0x3FA5555555554A9E // Q_2
data8 0x3F8111124F4DD9F9 // Q_3
data8 0x3FE0000000000000 // Q_0
@@ -580,20 +602,18 @@ data8 0x43e8000000000000 // Right shift constant for exp
data8 0xc9e3b39803f2f6af, 0x00003fb7 // ln2_by_128_lo
data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
-ASM_SIZE_DIRECTIVE(pow_table_P)
+LOCAL_OBJECT_END(pow_table_P)
-pow_table_Q:
-ASM_TYPE_DIRECTIVE(pow_table_Q,@object)
+LOCAL_OBJECT_START(pow_table_Q)
data8 0x9249FE7F0DC423CF, 0x00003FFC // P_4
data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC // P_2
data8 0xAAAAAAAAAAAAB505, 0x00003FFD // P_0
data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo = +6.93147e-001
data8 0xb17217f7d1cf79ab, 0x00003ff7 // ln2_by_128_hi
-ASM_SIZE_DIRECTIVE(pow_table_Q)
+LOCAL_OBJECT_END(pow_table_Q)
-pow_Tt:
-ASM_TYPE_DIRECTIVE(pow_Tt,@object)
+LOCAL_OBJECT_START(pow_Tt)
data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 // log(1/frcpa(1+0/256))= +1.95503e-003
data8 0x3f78121214586a00, 0x3cb540e0a5cfc9bc // log(1/frcpa(1+1/256))= +5.87661e-003
data8 0x3f841929f9683200, 0x3cbdf1d57404da1f // log(1/frcpa(1+2/256))= +9.81362e-003
@@ -850,13 +870,12 @@ data8 0x3fe5f673c61a2ed0, 0x3caa385eef5f2789 // log(1/frcpa(1+252/256))= +6.863
data8 0x3fe6065bea385924, 0x3cb11624f165c5b4 // log(1/frcpa(1+253/256))= +6.88276e-001
data8 0x3fe6164bfa7cc068, 0x3cbad884f87073fa // log(1/frcpa(1+254/256))= +6.90222e-001
data8 0x3fe62643fecf9740, 0x3cb78c51da12f4df // log(1/frcpa(1+255/256))= +6.92171e-001
-ASM_SIZE_DIRECTIVE(pow_Tt)
+LOCAL_OBJECT_END(pow_Tt)
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
-pow_tbl1:
-ASM_TYPE_DIRECTIVE(pow_tbl1,@object)
+LOCAL_OBJECT_START(pow_tbl1)
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
@@ -873,13 +892,12 @@ data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
-ASM_SIZE_DIRECTIVE(pow_tbl1)
+LOCAL_OBJECT_END(pow_tbl1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
-pow_tbl2:
-ASM_TYPE_DIRECTIVE(pow_tbl2,@object)
+LOCAL_OBJECT_START(pow_tbl2)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
@@ -888,402 +906,319 @@ data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
-ASM_SIZE_DIRECTIVE(pow_tbl2)
-
-.global pow
+LOCAL_OBJECT_END(pow_tbl2)
.section .text
-.proc pow
-.align 32
-
-pow:
+GLOBAL_LIBM_ENTRY(pow)
+// Get exponent of x. Will be used to calculate K.
{ .mfi
- alloc r32=ar.pfs,1,35,4,0
- fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
- mov pow_GR_17ones = 0x1FFFF
+ getf.exp pow_GR_signexp_X = f8
+ fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
+ mov pow_GR_17ones = 0x1FFFF
}
{ .mfi
-(p0) addl pow_AD_P = @ltoff(pow_table_P), gp
- fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
+ addl pow_AD_P = @ltoff(pow_table_P), gp
+ fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
nop.i 999
;;
}
-
-// Get exponent of x. Will be used to calculate K.
+// Get significand of x. Will be used to get index to fetch T, Tt.
{ .mfi
- getf.exp pow_GR_signexp_X = f8
- frcpa.s1 POW_B, p6 = f1,f8
+ getf.sig pow_GR_sig_X = f8
+ frcpa.s1 POW_B, p6 = f1,f8
nop.i 999
}
{ .mfi
ld8 pow_AD_P = [pow_AD_P]
- fma.s1 POW_NORM_X = f8,f1,f0
- mov pow_GR_FFF7 = 0xFFF7
+ fma.s1 POW_NORM_X = f8,f1,f0
+ mov pow_GR_exp_2tom8 = 0xFFF7
}
;;
-
-
-// Get significand of x. Will be used to get index to fetch T, Tt.
// p13 = TRUE ==> X is unorm
// DOUBLE 0x10033 exponent limit at which y is an integer
-// SINGLE 0x10016
{ .mfi
- getf.sig pow_GR_sig_X = f8
- fclass.m p13,p0 = f8, 0x0b // Test for x unorm
- addl pow_GR_10033 = 0x10033, r0
+ nop.m 999
+ fclass.m p13,p0 = f8, 0x0b // Test for x unorm
+ addl pow_GR_10033 = 0x10033, r0
}
{ .mfi
mov pow_GR_16ones = 0xFFFF
- fma.s1 POW_NORM_Y = f9,f1,f0
+ fma.s1 POW_NORM_Y = f9,f1,f0
nop.i 999
}
;;
-
// p14 = TRUE ==> X is ZERO
{ .mfi
adds pow_AD_Tt = pow_Tt - pow_table_P, pow_AD_P
- fclass.m p14,p15 = f8, 0x07
- and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
+ fclass.m p14,p0 = f8, 0x07
+ and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
}
{ .mfi
- adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
+ adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
nop.f 999
nop.i 999
}
;;
{ .mfi
- ldfe POW_P5 = [pow_AD_P], 16
- fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
- shl pow_GR_offset = pow_GR_sig_X, 1
+ ldfe POW_P5 = [pow_AD_P], 16
+ fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
+ nop.i 999
}
{ .mib
- ldfe POW_P4 = [pow_AD_Q], 16
- sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
-(p13) br.cond.spnt L(POW_X_DENORM)
+ ldfe POW_P4 = [pow_AD_Q], 16
+ sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
+(p13) br.cond.spnt POW_X_DENORM
}
;;
-
// Continue normal and denormal paths here
-L(POW_COMMON):
+POW_COMMON:
// p11 = TRUE ==> Y is a NAN
{ .mfi
- ldfe POW_P3 = [pow_AD_P], 16
- fclass.m.unc p11,p0 = f9, 0xc3
- shr.u pow_GR_offset = pow_GR_offset,56
+ ldfe POW_P3 = [pow_AD_P], 16
+ fclass.m p11,p0 = f9, 0xc3
+ nop.i 999
}
{ .mfi
- ldfe POW_P2 = [pow_AD_Q], 16
+ ldfe POW_P2 = [pow_AD_Q], 16
nop.f 999
- nop.i 999
+ mov pow_GR_y_zero = 0
}
;;
-
-
-// Compute xsq to decide later if |x|=1
-// p11 = TRUE ==> Y is a NaN
+// Note POW_Xm1 and POW_r1 are used interchangably
{ .mfi
- setf.sig POW_int_K = pow_GR_true_exp_X
-(p15) fms.s1 POW_r = POW_B, POW_NORM_X,f1
- shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
+ alloc r32=ar.pfs,2,19,4,0
+ fms.s1 POW_r = POW_B, POW_NORM_X,f1
+ nop.i 999
}
{ .mfi
- nop.m 999
-(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
+ setf.sig POW_int_K = pow_GR_true_exp_X
+(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
nop.i 999
}
;;
-
-
-// p12 = TRUE ==> X is ZERO and Y is ZERO
+// p12 = TRUE if Y is ZERO
+// Compute xsq to decide later if |x|=1
{ .mfi
- ldfe POW_P1 = [pow_AD_P], 16
-(p14) fclass.m.unc p12,p0 = f9, 0x07
- nop.i 999
+ ldfe POW_P1 = [pow_AD_P], 16
+ fclass.m p12,p0 = f9, 0x07
+ shl pow_GR_offset = pow_GR_sig_X, 1
}
{ .mfb
- ldfe POW_P0 = [pow_AD_Q], 16
+ ldfe POW_P0 = [pow_AD_Q], 16
fma.s1 POW_xsq = POW_NORM_X, POW_NORM_X, f0
-(p11) br.cond.spnt L(POW_Y_NAN)
+(p11) br.cond.spnt POW_Y_NAN // Branch if y=nan
}
;;
-
-.pred.rel "mutex",p8,p9
// Get exponent of |x|-1 to use in comparison to 2^-8
-{ .mmf
-(p8) getf.exp pow_GR_signexp_Xm1 = POW_Xp1
-(p9) getf.exp pow_GR_signexp_Xm1 = POW_Xm1
- fcvt.fx.s1 POW_int_Y = POW_NORM_Y
+{ .mfi
+ getf.exp pow_GR_signexp_Xm1 = POW_Xm1
+ fcvt.fx.s1 POW_int_Y = POW_NORM_Y
+ shr.u pow_GR_offset = pow_GR_offset,56
}
;;
-
// p11 = TRUE ==> X is a NAN
{ .mfi
ldfpd POW_log2_hi, POW_log2_lo = [pow_AD_Q], 16
- fclass.m.unc p11,p0 = f8, 0xc3
- nop.i 999
-}
-{ .mib
- ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16
- nop.i 999
-(p12) br.cond.spnt L(POW_X_0_Y_0)
+ fclass.m p11,p0 = f8, 0xc3
+ shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
}
-;;
-
-
-// p14 = TRUE ==> X is zero
-// p15 = TRUE ==> X is zero AND Y is negative
-// p10 = TRUE ==> X is zero AND Y is >= zero
{ .mfi
ldfe POW_inv_log2_by_128 = [pow_AD_P], 16
-(p14) fcmp.lt.unc.s1 p15, p10 = f9,f0
- nop.i 999
+ fma.s1 POW_delta = f0,f0,f0 // delta=0 in case |x| near 1
+(p12) mov pow_GR_y_zero = 1
}
-{ .mfi
- nop.m 999
- nop.f 999
- and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
-}
-;;
-
-
-// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
-// p12 = TRUE ==> X is a NAN and Y is a zero
-// p13 = TRUE ==> X is a NAN and Y is anything else
-{ .mfi
- getf.exp pow_GR_signexp_Y = POW_NORM_Y
-(p11) fclass.m.unc p12,p13 = f9, 0x07
- cmp.lt.unc p6,p7 = pow_GR_exp_Xm1, pow_GR_FFF7
-}
-{ .mfi
- ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16
- fma.s1 POW_rsq = POW_r, POW_r,f0
- nop.i 999
;;
-}
-// If on the x near 1 path, assign r1 to r and r1*r1 to rsq
{ .mfi
- ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16
-(p6) fma.s1 POW_r = POW_r1, f1, f0
- nop.i 999
+ ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16
+ fma.s1 POW_G = f0,f0,f0 // G=0 in case |x| near 1
+ and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
}
-{ .mfi
- nop.m 999
-(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
- nop.i 999
;;
-}
-
+// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
{ .mfi
- ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16
-(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4
- and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
+ getf.exp pow_GR_signexp_Y = POW_NORM_Y
+ nop.f 999
+ cmp.lt p6,p7 = pow_GR_exp_Xm1, pow_GR_exp_2tom8
}
{ .mfb
- nop.m 999
-(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4
-(p12) br.cond.spnt L(POW_X_NAN_Y_0)
+ ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16
+ fma.s1 POW_rsq = POW_r, POW_r,f0
+(p11) br.cond.spnt POW_X_NAN // Branch if x=nan and y not nan
}
;;
-
+// If on the x near 1 path, assign r1 to r and r1*r1 to rsq
{ .mfi
- nop.m 999
-(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2
- andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
+ ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16
+(p6) fma.s1 POW_r = POW_r1, f1, f0
+ nop.i 999
}
{ .mfb
nop.m 999
-(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2
-(p12) br.cond.spnt L(POW_X_NAN_Y_0)
+(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
+(p14) br.cond.spnt POW_X_0 // Branch if x zero and y not nan
}
;;
{ .mfi
- nop.m 999
- fcvt.xf POW_K = POW_int_K
+ ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16
+(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4
nop.i 999
}
-{ .mfb
- nop.m 999
-(p13) fma.d f8 = f8,f1,f0
-(p13) br.ret.spnt b0 // Exit if x nan, y anything but zero
+{ .mfi
+ mov pow_GR_exp_2toM63 = 0xffc0 // Exponent of 2^-63
+(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4
+ nop.i 999
}
;;
-
-// p10 = TRUE ==> X is zero AND Y is positive
-// p8 = TRUE ==> X is zero AND Y is outside integer range (treat as even int)
-// return +0
-// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer)
+
{ .mfi
-(p10) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033
-(p6) fmerge.s POW_delta = f0,f0
+ setf.exp POW_2toM63 = pow_GR_exp_2toM63 // Form 2^-63 for test of q
+(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2
nop.i 999
}
{ .mfi
nop.m 999
-(p6) fma.s1 POW_G = f0,f0,f0
+(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2
nop.i 999
}
;;
{ .mfi
- getf.sig pow_GR_sig_int_Y = POW_int_Y
- fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0
- nop.i 999
-}
-{ .mfi
nop.m 999
- fma.s1 POW_U = POW_NORM_Y,POW_r,f0
+ fcvt.xf POW_K = POW_int_K
nop.i 999
}
;;
{ .mfi
- ldfe POW_log2_by_128_lo = [pow_AD_P], 16
-(p6) fma.s1 POW_v2 = POW_P1, POW_r1, POW_P0
- nop.i 999
+ getf.sig pow_GR_sig_int_Y = POW_int_Y
+ fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0
+ and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
}
-{ .mfi
- ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
-(p7) fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
- nop.i 999
+{ .mfb
+ andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
+ fma.s1 POW_U = POW_NORM_Y,POW_r,f0
+(p12) br.cond.spnt POW_Y_0 // Branch if y=zero, x not zero or nan
}
;;
-
+// p11 = TRUE ==> X is NEGATIVE but not inf
{ .mfi
- nop.m 999
- fcvt.xf POW_float_int_Y = POW_int_Y
+ ldfe POW_log2_by_128_lo = [pow_AD_P], 16
+ fclass.m p11,p0 = f8, 0x1a
nop.i 999
}
{ .mfi
- nop.m 999
- fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4
- adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
+ ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
+ fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
+ nop.i 999
}
;;
{ .mfi
nop.m 999
-(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt
+ fcvt.xf POW_float_int_Y = POW_int_Y
nop.i 999
}
{ .mfi
nop.m 999
-(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
- adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
+ fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4
+ adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
}
;;
-
{ .mfi
nop.m 999
- fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U
+(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U
- nop.i 999
+(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
+ adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
}
;;
-// p11 = TRUE ==> X is NEGATIVE
-// p8 = TRUE ==> X is zero AND Y is outside intger range (treat as even int)
-// return +0
{ .mfi
nop.m 999
- fclass.m.unc p11,p0 = f8, 0x1a
+ fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
-(p8) fma.d f8 = f0,f0,f0
-(p8) br.ret.spnt b0
+ fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U
+ nop.i 999
}
;;
-{ .mfi
+{ .mfi
nop.m 999
- fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
+ fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
nop.i 999
}
-{ .mfi
+{ .mfi
nop.m 999
- fma.s1 POW_p = POW_rsq, POW_v3, POW_v2
+ fma.s1 POW_p = POW_rsq, POW_v3, POW_v2
nop.i 999
}
;;
-
-// p11 = TRUE ==> X is NEGATIVE
-// p12 = TRUE ==> X is NEGATIVE AND Y already int
+// p11 = TRUE ==> X is NEGATIVE but not inf
+// p12 = TRUE ==> X is NEGATIVE AND Y already even int
// p13 = TRUE ==> X is NEGATIVE AND Y possible int
{ .mfi
nop.m 999
- fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0
-(p11) cmp.ge.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
+ fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0
+(p11) cmp.gt.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
}
{ .mfi
nop.m 999
- fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
+ fma.s1 POW_Gpr = POW_G, f1, POW_r
nop.i 999
}
;;
-// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer)
-// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd)
-// p7 = TRUE ==> X is zero AND Y is NOT an integer, return +0
+// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
-(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y
+ fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF
nop.i 999
}
-{ .mfi
+{ .mfi
nop.m 999
- fma.s1 POW_Gpr = POW_G, f1, POW_r
+ fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2
nop.i 999
}
;;
-// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
- fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2
+ fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
nop.i 999
}
;;
-
-// If x=0 and y>0, test y and flag denormal
-// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd)
-// p8 = TRUE ==> X is zero AND Y is an odd integer
-// p9 = TRUE ==> X is zero AND Y is an even integer
{ .mfi
nop.m 999
-(p10) fcmp.eq.s0 p15,p0 = f9,f0
-(p6) tbit.nz.unc p8,p9 = pow_GR_sig_int_Y,0
+ fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
+ nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
+ fma.s1 POW_GY_Z2 = POW_G, POW_NORM_Y, POW_Z2
nop.i 999
}
;;
@@ -1291,7 +1226,7 @@ L(POW_COMMON):
// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
{ .mfi
nop.m 999
- fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1
+ fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1
nop.i 999
}
{ .mfi
@@ -1301,81 +1236,60 @@ L(POW_COMMON):
}
;;
+// p13 = TRUE ==> X is NEGATIVE AND Y possible int
+// p10 = TRUE ==> X is NEG and Y is an int
+// p12 = TRUE ==> X is NEG and Y is not an int
{ .mfi
nop.m 999
-(p7) fma.d f8 = f0,f0,f0 // Result +0 if x zero and y not integer
- nop.i 999
+(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
+ mov pow_GR_xneg_yodd = 0
}
-{ .mfb
+{ .mfi
nop.m 999
- fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
-(p8) br.ret.spnt b0 // Exit if x zero and y odd integer
+ fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
+ nop.i 999
}
;;
// By subtracting RSHF we get rounded integer POW_N2float
-// p15 = TRUE ==> X_0_Y_NEG
{ .mfi
nop.m 999
fms.s1 POW_N2float = POW_W2, f1, POW_RSHF
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
- fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2
-(p15) br.cond.spnt L(POW_X_0_Y_NEG)
+ fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2
+ nop.i 999
}
;;
-
-
{ .mfi
nop.m 999
- fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
+ fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
nop.i 999
}
-{ .mfb
+{ .mfi
nop.m 999
- fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2
-(p7) br.ret.spnt b0 // Exit if x zero and y not an integer
+ fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2
+ nop.i 999
}
;;
-
-
// Extract rounded integer from rightmost significand of POW_W2
// By subtracting RSHF we get rounded integer POW_N1float
{ .mfi
- getf.sig pow_GR_int_W2 = POW_W2
+ getf.sig pow_GR_int_W2 = POW_W2
fms.s1 POW_N1float = POW_W1, f1, POW_RSHF
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half
+ fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half
nop.i 999
}
;;
-
-
-
-// p13 = TRUE ==> X is NEGATIVE AND Y possible int
-// p10 = TRUE ==> X is NEG and Y is an int
-// p12 = TRUE ==> X is NEG and Y is not an int
-{ .mfi
- nop.m 999
-(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
- nop.i 999
-}
-{ .mfb
- nop.m 999
-(p9) fma.d f8 = f0,f0,f0 // Result +0 if x zero and y even integer
-(p9) br.ret.spnt b0 // Exit if x zero and y even integer
-}
-;;
-
-
{ .mfi
nop.m 999
fnma.s1 POW_s2 = POW_N2float, POW_log2_by_128_hi, POW_Z2
@@ -1383,7 +1297,7 @@ L(POW_COMMON):
}
{ .mfi
nop.m 999
- fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV
+ fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV
nop.i 999
}
;;
@@ -1391,278 +1305,283 @@ L(POW_COMMON):
// Extract rounded integer from rightmost significand of POW_W1
// Test if x inf
{ .mfi
- getf.sig pow_GR_int_W1 = POW_W1
- fclass.m.unc p15,p0 = POW_NORM_X, 0x23
+ getf.sig pow_GR_int_W1 = POW_W1
+ fclass.m p15,p0 = POW_NORM_X, 0x23
nop.i 999
}
{ .mfb
nop.m 999
fnma.s1 POW_f2 = POW_N2float, POW_log2_by_128_lo, f1
-(p12) br.cond.spnt L(POW_X_NEG_Y_NONINT) // Branch if x neg, y not integer
+(p12) br.cond.spnt POW_X_NEG_Y_NONINT // Branch if x neg, y not integer
}
;;
+// p11 = TRUE ==> X is +1.0
// p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer
{ .mfi
- getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
- fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4
-(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
+ getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
+ fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
+(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
+}
+{ .mfi
+ nop.m 999
+ fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4
+ nop.i 999
}
;;
-
{ .mfi
- add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2
+ nop.m 999
fnma.s1 POW_f1 = POW_N1float, POW_log2_by_128_lo, f1
nop.i 999
}
{ .mfb
nop.m 999
fnma.s1 POW_s1 = POW_N1float, POW_log2_by_128_hi, POW_Z1
-(p15) br.cond.spnt L(POW_X_INF)
+(p15) br.cond.spnt POW_X_INF
}
;;
-
// Test x and y and flag denormal
{ .mfi
- and pow_GR_index1 = 0x0f, pow_GR_int_N
+ nop.m 999
fcmp.eq.s0 p15,p0 = f8,f9
- shr r2 = pow_GR_int_N, 7
+ nop.i 999
}
{ .mfi
- and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
- nop.f 999
- and pow_GR_index2 = 0x70, pow_GR_int_N
+ nop.m 999
+ fma.s1 POW_pYrcub_e3 = POW_p, POW_Yrcub, POW_e3
+ nop.i 999
}
;;
-
-
{ .mfi
- shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
+ nop.m 999
fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0
- sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
+ nop.i 999
}
{ .mfi
- addl pow_int_GR_M = 0xFFFF, r2
- fma.s1 POW_e12 = POW_e1,f1,POW_e2
- add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
+ nop.m 999
+ fma.s1 POW_e12 = POW_e1,f1,POW_e2
+ nop.i 999
}
;;
-
-{ .mmi
- ldfe POW_T1 = [pow_AD_T1],16
- setf.exp POW_2M = pow_int_GR_M
- andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+{ .mfi
+ add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2
+(p11) fma.d.s0 f8 = f1,f1,f0 // If x=1, result is +1
+ nop.i 999
+}
+{ .mib
+(p12) mov pow_GR_xneg_yodd = 1
+ nop.i 999
+(p11) br.ret.spnt b0 // Early exit if x=1.0, result is +1
}
;;
-
-{ .mfb
- ldfe POW_T2 = [pow_AD_T2],16
- fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2
+{ .mfi
+ and pow_GR_index1 = 0x0f, pow_GR_int_N
+ fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2
+ shr pow_int_GR_M = pow_GR_int_N, 7 // M = N/128
+}
+{ .mib
+ and pow_GR_index2 = 0x70, pow_GR_int_N
+ cmp.eq p6, p0 = pow_GR_xneg_yodd, r0
(p7) br.ret.spnt b0 // Early exit if y=1.0, result is x
}
;;
-
-// double: p8 TRUE ==> |Y(G + r)| >= 10
-// single: p8 TRUE ==> |Y(G + r)| >= 7
-
-// double
-// -2^10 -2^9 2^9 2^10
-// -----+-----+----+ ... +-----+-----+-----
-// p8 | p9 | p8
-// | | p10 | |
-// single
-// -2^7 -2^6 2^6 2^7
-// -----+-----+----+ ... +-----+-----+-----
-// p8 | p9 | p8
-// | | p10 | |
-
-
{ .mfi
-(p0) cmp.le.unc p8,p9 = 10, pow_GR_true_exp_Y_Gpr
- fma.s1 POW_s = POW_s1, f1, POW_s2
- nop.i 999
+ shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
+ fma.s1 POW_s = POW_s1, f1, POW_s2
+ add pow_int_GR_M = pow_GR_16ones, pow_int_GR_M
}
{ .mfi
- nop.m 999
- fma.s1 POW_f12 = POW_f1, POW_f2,f0
- nop.i 999
+ add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
+ fma.s1 POW_f12 = POW_f1, POW_f2,f0
+ and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
}
;;
-
-{ .mfi
- nop.f 999
-(p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr
+{ .mmi
+ ldfe POW_T1 = [pow_AD_T1]
+ ldfe POW_T2 = [pow_AD_T2]
+ sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
}
;;
-
-
+{ .mfi
+ setf.exp POW_2M = pow_int_GR_M
+ fma.s1 POW_e123 = POW_e12, f1, POW_e3
+ nop.i 999
+}
{ .mfb
- nop.m 999
- fma.s1 POW_e123 = POW_e12, f1, POW_e3
-(p8) br.cond.spnt L(POW_OVER_UNDER_X_NOT_INF)
+(p6) cmp.gt p6, p0 = -11, pow_GR_true_exp_Y_Gpr
+ fma.s1 POW_d = POW_GY_Z2, f1, POW_pYrcub_e3
+(p6) br.cond.spnt POW_NEAR_ONE // branch if |y*log(x)| < 2^(-11)
}
;;
-
-{ .mmf
- fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
+{ .mfi
+ nop.m 999
+ fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
+ nop.i 999
}
;;
+// p8 TRUE ==> |Y(G + r)| >= 10
+// double
+// -2^10 -2^9 2^9 2^10
+// -----+-----+----+ ... +-----+-----+-----
+// p8 | p9 | p8
+// | | p10 | |
+
+// Form signexp of constants to indicate overflow
{ .mfi
- nop.m 999
- fma.s1 POW_ssq = POW_s, POW_s, f0
- nop.i 999
+ mov pow_GR_big_pos = 0x103ff
+ fma.s1 POW_ssq = POW_s, POW_s, f0
+ cmp.le p8,p9 = 10, pow_GR_true_exp_Y_Gpr
}
{ .mfi
- nop.m 999
- fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2
- nop.i 999
+ mov pow_GR_big_neg = 0x303ff
+ fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2
+ andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
}
;;
+// Form big positive and negative constants to test for possible overflow
{ .mfi
- nop.m 999
- fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half
- nop.i 999
+ setf.exp POW_big_pos = pow_GR_big_pos
+ fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half
+(p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr
}
-{ .mfi
- nop.m 999
- fma.s1 POW_1ps = f1,f1,POW_s
- nop.i 999
+{ .mfb
+ setf.exp POW_big_neg = pow_GR_big_neg
+ fma.s1 POW_1ps = f1,f1,POW_s
+(p8) br.cond.spnt POW_OVER_UNDER_X_NOT_INF
}
;;
+// f123 = f12*(e123+1) = f12*e123+f12
{ .mfi
nop.m 999
- fma.s1 POW_f3 = POW_e123,f1,f1
+ fma.s1 POW_f123 = POW_e123,POW_f12,POW_f12
nop.i 999
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
+ fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
nop.i 999
}
-;;
-
{ .mfi
nop.m 999
- fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4
- nop.i 999
+ fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4
+ cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps
+ fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps
nop.i 999
}
{ .mfi
nop.m 999
- fma.s1 POW_s4 = POW_ssq, POW_ssq, f0
+ fma.s1 POW_s4 = POW_ssq, POW_ssq, f0
nop.i 999
}
;;
{ .mfi
nop.m 999
- fma.s1 POW_f123 = POW_f12, POW_f3, f0
+(p12) fnma.s1 POW_A = POW_2M, POW_f123, f0
nop.i 999
}
+{ .mfi
+ nop.m 999
+(p13) fma.s1 POW_A = POW_2M, POW_f123, f0
+ cmp.eq p14,p11 = r0,r0 // Initialize p14 on, p11 off
+}
;;
{ .mfi
nop.m 999
- fma.s1 POW_A = POW_2M, POW_T1T2, f0
+ fmerge.s POW_abs_q = f0, POW_q // Form |q| so can test its size
nop.i 999
}
;;
-
-
{ .mfi
- nop.m 999
-(p12) fmerge.s POW_f123 = f8,POW_f123 // if x neg, y odd int
+(p10) cmp.eq p0,p14 = r0,r0 // Turn off p14 if no overflow
+ fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps
nop.i 999
}
{ .mfi
nop.m 999
-// fma.s1 POW_es = POW_ssq, POW_v3, POW_v2
+ fma.s1 POW_A = POW_A, POW_T1T2, f0
nop.i 999
}
;;
{ .mfi
+// Test for |q| < 2^-63. If so then reverse last two steps of the result
+// to avoid monotonicity problems for results near 1.0 in round up/down/zero.
+// p11 will be set if need to reverse the order, p14 if not.
nop.m 999
- fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps
+(p10) fcmp.lt.s0 p11,p14 = POW_abs_q, POW_2toM63 // Test |q| <2^-63
nop.i 999
}
;;
-
+.pred.rel "mutex",p11,p14
{ .mfi
nop.m 999
- fma.s1 POW_A = POW_A, POW_f123, f0
+(p14) fma.s1 POW_A = POW_A, POW_es, f0
nop.i 999
}
{ .mfi
nop.m 999
-// fma.s1 POW_es = POW_es, POW_ssq, POW_1ps
+(p11) fma.s1 POW_A = POW_A, POW_q, POW_A
nop.i 999
}
;;
-
+// Dummy op to set inexact if |q| < 2^-63
{ .mfi
nop.m 999
- fma.s1 POW_A = POW_A, POW_es,f0
+(p11) fma.d.s0 POW_tmp = POW_A, POW_q, POW_A
nop.i 999
}
;;
-
-
+{ .mfi
+ nop.m 999
+(p14) fma.d.s0 f8 = POW_A, POW_q, POW_A
+ nop.i 999
+}
{ .mfb
nop.m 999
-(p10) fma.d f8 = POW_A, POW_q, POW_A
-(p10) br.ret.sptk b0
+(p11) fma.d.s0 f8 = POW_A, POW_es, f0
+(p10) br.ret.sptk b0 // Exit main branch if no over/underflow
}
;;
-
-
-
-
// POSSIBLE_OVER_UNDER
-// p6 = TRUE ==> Y negative
+// p6 = TRUE ==> Y_Gpr negative
+// Result is already computed. We just need to know if over/underflow occurred.
-{ .mfi
- nop.m 999
- fmerge.s POW_abs_A = f0, POW_A
- cmp.eq.unc p0,p6 = pow_GR_sign_Y, r0
-}
-;;
-
-{ .mib
- nop.m 999
- nop.i 999
-(p6) br.cond.spnt L(POW_POSSIBLE_UNDER)
+{ .mfb
+ cmp.eq p0,p6 = pow_GR_sign_Y_Gpr, r0
+ nop.f 999
+(p6) br.cond.spnt POW_POSSIBLE_UNDER
}
;;
// POSSIBLE_OVER
-// We got an answer.
+// We got an answer.
// overflow is a possibility, not a certainty
@@ -1692,21 +1611,20 @@ L(POW_COMMON):
// RN RN
// RZ
-
// Put in s2 (td set, wre set)
{ .mfi
- mov pow_GR_gt_ln = 0x103ff
+ nop.m 999
fsetc.s2 0x7F,0x42
- nop.i 999
+ nop.i 999
}
;;
-
{ .mfi
- setf.exp POW_gt_pln = pow_GR_gt_ln
- fma.d.s2 POW_wre_urm_f8 = POW_abs_A, POW_q, POW_abs_A
- nop.i 999 ;;
+ nop.m 999
+ fma.d.s2 POW_wre_urm_f8 = POW_A, POW_q, POW_A
+ nop.i 999
}
+;;
// Return s2 to default
{ .mfi
@@ -1716,31 +1634,67 @@ L(POW_COMMON):
}
;;
-
// p7 = TRUE ==> yes, we have an overflow
{ .mfi
nop.m 999
- fcmp.ge.unc.s1 p7, p0 = POW_wre_urm_f8, POW_gt_pln
+ fcmp.ge.s1 p7, p8 = POW_wre_urm_f8, POW_big_pos
nop.i 999
}
;;
+{ .mfi
+ nop.m 999
+(p8) fcmp.le.s1 p7, p0 = POW_wre_urm_f8, POW_big_neg
+ nop.i 999
+}
+;;
+{ .mbb
+(p7) mov pow_GR_tag = 24
+(p7) br.cond.spnt __libm_error_region // Branch if overflow
+ br.ret.sptk b0 // Exit if did not overflow
+}
+;;
-{ .mfb
-(p7) mov pow_GR_tag = 24
- fma.d f8 = POW_A, POW_q, POW_A
-(p7) br.cond.spnt __libm_error_region
+// Here if |y*log(x)| < 2^(-11)
+// pow(x,y) ~ exp(d) ~ 1 + d + 0.5*d^2 + Q1*d^3 + Q2*d^4, where d = y*log(x)
+.align 32
+POW_NEAR_ONE:
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_d2 = POW_d, POW_d, f0
+ nop.i 999
}
-{ .mfb
- nop.m 999
- nop.f 999
-(p0) br.ret.sptk b0
+;;
+
+{ .mfi
+ nop.m 999
+ fma.s1 POW_poly_d_hi = POW_d, POW_Q0_half, f1
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fma.s1 POW_poly_d_lo = POW_d, POW_Q2, POW_Q1
+ nop.i 999
}
;;
+{ .mfi
+ nop.m 999
+ fma.s1 POW_poly_d = POW_d2, POW_poly_d_lo, POW_poly_d_hi
+ nop.i 999
+}
+;;
+
+{ .mfb
+ nop.m 999
+ fma.d.s0 f8 = POW_d, POW_poly_d, f1
+ br.ret.sptk b0 // exit function for arguments |y*log(x)| < 2^(-11)
+}
+;;
-L(POW_POSSIBLE_UNDER):
+POW_POSSIBLE_UNDER:
// We got an answer. input was < -2^9 but > -2^10 (double)
// We got an answer. input was < -2^6 but > -2^7 (float)
// underflow is a possibility, not a certainty
@@ -1763,124 +1717,250 @@ L(POW_POSSIBLE_UNDER):
// 0.1...11 2^-3ffe (biased, 1)
// largest dn smallest normal
-
// Put in s2 (td set, ftz set)
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x41
- nop.i 999
+ nop.i 999
}
;;
-
-
{ .mfi
nop.m 999
- fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A
+ fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A
nop.i 999
}
;;
-
// Return s2 to default
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40
- nop.i 999
+ nop.i 999
}
;;
-
// p7 = TRUE ==> yes, we have an underflow
{ .mfi
nop.m 999
- fcmp.eq.unc.s1 p7, p0 = POW_ftz_urm_f8, f0
- nop.i 999
+ fcmp.eq.s1 p7, p0 = POW_ftz_urm_f8, f0
+ nop.i 999
}
;;
+{ .mbb
+(p7) mov pow_GR_tag = 25
+(p7) br.cond.spnt __libm_error_region // Branch if underflow
+ br.ret.sptk b0 // Exit if did not underflow
+}
+;;
+
+POW_X_DENORM:
+// Here if x unorm. Use the NORM_X for getf instructions, and then back
+// to normal path
+{ .mfi
+ getf.exp pow_GR_signexp_X = POW_NORM_X
+ nop.f 999
+ nop.i 999
+}
+;;
+{ .mmi
+ getf.sig pow_GR_sig_X = POW_NORM_X
+;;
+ and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
+ nop.i 999
+}
+;;
+
+{ .mib
+ sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
+ nop.i 999
+ br.cond.sptk POW_COMMON
+}
+;;
+POW_X_0:
+// Here if x=0 and y not nan
+//
+// We have the following cases:
+// p6 x=0 and y>0 and is an integer (may be even or odd)
+// p7 x=0 and y>0 and is NOT an integer, return +0
+// p8 x=0 and y>0 and so big as to always be an even integer, return +0
+// p9 x=0 and y>0 and may not be integer
+// p10 x=0 and y>0 and is an odd integer, return x
+// p11 x=0 and y>0 and is an even integer, return +0
+// p12 used in dummy fcmp to set denormal flag if y=unorm
+// p13 x=0 and y>0
+// p14 x=0 and y=0, branch to code for calling error handling
+// p15 x=0 and y<0, branch to code for calling error handling
+//
+{ .mfi
+ getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
+ fcmp.lt.s1 p15,p13 = f9, f0 // Test for y<0
+ and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
+}
+{ .mfb
+ cmp.ne p14,p0 = pow_GR_y_zero,r0 // Test for y=0
+ fcvt.xf POW_float_int_Y = POW_int_Y
+(p14) br.cond.spnt POW_X_0_Y_0 // Branch if x=0 and y=0
+}
+;;
+// If x=0 and y>0, test y and flag denormal
{ .mfb
-(p7) mov pow_GR_tag = 25
- fma.d f8 = POW_A, POW_q, POW_A
-(p7) br.cond.spnt __libm_error_region
+(p13) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
+(p13) fcmp.eq.s0 p12,p0 = f9,f0 // If x=0, y>0 dummy op to flag denormal
+(p15) br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
}
;;
+// Here if x=0 and y>0
+{ .mfi
+ nop.m 999
+(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y // Test y=int
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+(p8) fma.d.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
+ nop.i 999
+}
+;;
+{ .mfi
+ nop.m 999
+(p7) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y>0 and not integer
+(p6) tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
+}
+;;
+
+// Note if x=0, y>0 and odd integer, just return x
{ .mfb
nop.m 999
- nop.f 999
- br.ret.sptk b0
+(p11) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y even integer
+ br.ret.sptk b0 // Exit if x=0 and y>0
}
;;
+POW_X_0_Y_0:
+// When X is +-0 and Y is +-0, IEEE returns 1.0
+// We call error support with this value
-L(POW_X_DENORM):
-// Here if x unorm. Use the NORM_X for getf instructions, and the back
-// to normal path
-{ .mfi
- getf.exp pow_GR_signexp_X = POW_NORM_X
- nop.f 999
- nop.i 999
+{ .mfb
+ mov pow_GR_tag = 26
+ fma.d.s0 f8 = f1,f1,f0
+ br.cond.sptk __libm_error_region
}
;;
+POW_X_0_Y_NEG:
+// When X is +-0 and Y is negative, IEEE returns
+// X Y answer
+// +0 -odd int +inf
+// -0 -odd int -inf
+
+// +0 !-odd int +inf
+// -0 !-odd int +inf
+
+// p6 == Y is a floating point number outside the integer.
+// Hence it is an integer and is even.
+// return +inf
+
+// p7 == Y is a floating point number within the integer range.
+// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
+// p11 odd
+// return (sign_of_x)inf
+// p12 even
+// return +inf
+// p10 == Y is not an integer
+// return +inf
+//
+
{ .mfi
- getf.sig pow_GR_sig_X = POW_NORM_X
- nop.f 999
- nop.i 999
+ nop.m 999
+ nop.f 999
+ cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
}
;;
{ .mfi
- and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
- nop.f 999
+ mov pow_GR_tag = 27
+(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
+ nop.i 999
}
;;
-{ .mib
- sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
- shl pow_GR_offset = pow_GR_sig_X, 1
- br.cond.sptk L(POW_COMMON)
+{ .mfb
+ nop.m 999
+(p6) frcpa.s0 f8,p13 = f1, f0
+(p6) br.cond.sptk __libm_error_region // x=0, y<0, y large neg int
+}
+;;
+
+{ .mfb
+ nop.m 999
+(p10) frcpa.s0 f8,p13 = f1, f0
+(p10) br.cond.sptk __libm_error_region // x=0, y<0, y not int
}
;;
+// x=0, y<0, y an int
+{ .mib
+ nop.m 999
+(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
+ nop.b 999
+}
+;;
-L(POW_X_0_Y_0):
-// When X is +-0 and Y is +-0, IEEE returns 1.0
-// We call error support with this value
+{ .mfi
+ nop.m 999
+(p12) frcpa.s0 f8,p13 = f1,f0
+ nop.i 999
+}
+;;
{ .mfb
- mov pow_GR_tag = 26
- fma.d f8 = f1,f1,f0
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p11) frcpa.s0 f8,p13 = f1,f8
+ br.cond.sptk __libm_error_region
}
;;
+POW_Y_0:
+// Here for y zero, x anything but zero and nan
+// Set flag if x denormal
+// Result is +1.0
+{ .mfi
+ nop.m 999
+ fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag if x denormal
+ nop.i 999
+}
+{ .mfb
+ nop.m 999
+ fma.d.s0 f8 = f1,f1,f0
+ br.ret.sptk b0
+}
+;;
-L(POW_X_INF):
-// When X is +-inf and Y is +-, IEEE returns
+POW_X_INF:
+// Here when X is +-inf
-// overflow
-// X +inf Y +inf +inf
-// X -inf Y +inf +inf
+// X +inf Y +inf +inf
+// X -inf Y +inf +inf
-// X +inf Y >0 +inf
+// X +inf Y >0 +inf
// X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !!
-// X -inf Y >0, odd integer -inf
+// X -inf Y >0, odd integer -inf
-// underflow
-// X +inf Y -inf +0
-// X -inf Y -inf +0
+// X +inf Y -inf +0
+// X -inf Y -inf +0
-// X +inf Y <0 +0
-// X -inf Y <0, !odd integer +0
-// X -inf Y <0, odd integer -0
+// X +inf Y <0 +0
+// X -inf Y <0, !odd integer +0
+// X -inf Y <0, odd integer -0
// X + inf Y=+0 +1
// X + inf Y=-0 +1
@@ -1892,32 +1972,30 @@ L(POW_X_INF):
// p6 == Y is a floating point number outside the integer.
// Hence it is an integer and is even.
-// p13 == (Y negative)
+// p13 == (Y negative)
// return +inf
// p14 == (Y positive)
// return +0
-
-
// p7 == Y is a floating point number within the integer range.
// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
// p11 odd
-// p13 == (Y negative)
+// p13 == (Y negative)
// return (sign_of_x)inf
-// p14 == (Y positive)
+// p14 == (Y positive)
// return (sign_of_x)0
-// pxx even
-// p13 == (Y negative)
-// return +inf
+// pxx even
+// p13 == (Y negative)
+// return +inf
// p14 == (Y positive)
-// return +0
+// return +0
// pxx == Y is not an integer
-// p13 == (Y negative)
+// p13 == (Y negative)
// return +inf
// p14 == (Y positive)
// return +0
-//
+//
// If x=inf, test y and flag denormal
{ .mfi
@@ -1929,207 +2007,131 @@ L(POW_X_INF):
{ .mfi
nop.m 999
- fcmp.lt p13,p14 = POW_NORM_Y,f0
- cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033
+ fcmp.lt.s0 p13,p14 = POW_NORM_Y,f0
+ cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
}
{ .mfi
nop.m 999
- fclass.m p12,p0 = f9, 0x23
+ fclass.m p12,p0 = f9, 0x23 //@inf
nop.i 999
}
;;
-
{ .mfi
nop.m 999
- fclass.m p15,p0 = f9, 0x07 //@zero
+ fclass.m p15,p0 = f9, 0x07 //@zero
nop.i 999
}
;;
{ .mfb
nop.m 999
-(p15) fmerge.s f8 = f1,f1
-(p15) br.ret.spnt b0
+(p15) fmerge.s f8 = f1,f1 // Return +1.0 if x=inf, y=0
+(p15) br.ret.spnt b0 // Exit if x=inf, y=0
}
;;
-
{ .mfi
-(p13) mov pow_GR_tag = 25
-(p14) frcpa.s1 f8,p10 = f1,f0
+ nop.m 999
+(p14) frcpa.s1 f8,p10 = f1,f0 // If x=inf, y>0, assume result +inf
nop.i 999
}
{ .mfb
-(p14) mov pow_GR_tag = 24
-(p13) fma.s1 f8 = f0,f0,f0
-(p12) br.ret.spnt b0
-}
-;;
-
-
-
-{ .mfb
nop.m 999
-(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y
- nop.b 999
+(p13) fma.d.s0 f8 = f0,f0,f0 // If x=inf, y<0, assume result +0.0
+(p12) br.ret.spnt b0 // Exit if x=inf, y=inf
}
;;
+// Here if x=inf, and 0 < |y| < inf. Need to correct results if y odd integer.
{ .mfi
nop.m 999
- nop.f 999
-(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0
-}
-;;
-
-{ .mfb
- nop.m 999
-(p11) fmerge.s f8 = POW_NORM_X,f8
- br.ret.sptk b0
+(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y // Is y integer?
+ nop.i 999
}
;;
-
-
-L(POW_X_0_Y_NEG):
-// When X is +-0 and Y is negative, IEEE returns
-// X Y answer
-// +0 -odd int +inf
-// -0 -odd int -inf
-
-// +0 !-odd int +inf
-// -0 !-odd int +inf
-
-
-// p6 == Y is a floating point number outside the integer.
-// Hence it is an integer and is even.
-// return +inf
-
-// p7 == Y is a floating point number within the integer range.
-// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
-// p11 odd
-// return (sign_of_x)inf
-// p12 even
-// return +inf
-// p10 == Y is not an integer
-// return +inf
-//
-//
-
{ .mfi
nop.m 999
nop.f 999
- cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033
-}
-;;
-
-
-{ .mfi
- mov pow_GR_tag = 27
-(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
- nop.i 999
-}
-;;
-
-
-{ .mfb
- nop.m 999
-(p6) frcpa.s0 f8,p13 = f1, f0
-(p6) br.cond.sptk __libm_error_region
+(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 // Test for y odd integer
}
;;
{ .mfb
nop.m 999
-(p10) frcpa.s0 f8,p13 = f1, f0
-(p10) br.cond.sptk __libm_error_region
+(p11) fmerge.s f8 = POW_NORM_X,f8 // If y odd integer use sign of x
+ br.ret.sptk b0 // Exit for x=inf, 0 < |y| < inf
}
;;
+POW_X_NEG_Y_NONINT:
+// When X is negative and Y is a non-integer, IEEE
+// returns a qnan indefinite.
+// We call error support with this value
-{ .mib
- nop.m 999
-(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
- nop.b 999
+{ .mfb
+ mov pow_GR_tag = 28
+ frcpa.s0 f8,p6 = f0,f0
+ br.cond.sptk __libm_error_region
}
;;
-
-
+POW_X_NAN:
+// Here if x=nan, y not nan
{ .mfi
- nop.m 999
-(p12) frcpa.s0 f8,p13 = f1,f0
- nop.i 999
+ nop.m 999
+ fclass.m p9,p13 = f9, 0x07 // Test y=zero
+ nop.i 999
}
;;
{ .mfb
- nop.m 999
-(p11) frcpa f8,p13 = f1,f8
- br.cond.sptk __libm_error_region
+ nop.m 999
+(p13) fma.d.s0 f8 = f8,f1,f0
+(p13) br.ret.sptk b0 // Exit if x nan, y anything but zero or nan
}
;;
-
-
-
-L(POW_X_NEG_Y_NONINT):
-// When X is negative and Y is a non-integer, IEEE
-// returns a qnan indefinite.
-// We call error support with this value
-
-{ .mfb
- mov pow_GR_tag = 28
- frcpa f8,p6 = f0,f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-
-
-
-L(POW_X_NAN_Y_0):
+POW_X_NAN_Y_0:
// When X is a NAN and Y is zero, IEEE returns 1.
// We call error support with this value.
-
{ .mfi
- nop.m 0
- fma.d.s0 f10 = f8,f1,f0
- nop.i 0
+ nop.m 999
+ fcmp.eq.s0 p6,p0 = f8,f0 // Dummy op to set invalid on snan
+ nop.i 999
}
{ .mfb
- mov pow_GR_tag = 29
- fma.d.s0 f8 = f0,f0,f1
+ mov pow_GR_tag = 29
+ fma.d.s0 f8 = f0,f0,f1
br.cond.sptk __libm_error_region
}
;;
-L(POW_OVER_UNDER_X_NOT_INF):
+POW_OVER_UNDER_X_NOT_INF:
// p8 is TRUE for overflow
// p9 is TRUE for underflow
// if y is infinity, we should not over/underflow
-
{ .mfi
nop.m 999
- fcmp.eq.unc.s1 p14, p13 = POW_xsq,f1
- cmp.eq.unc p8,p9 = pow_GR_sign_Y_Gpr, r0
+ fcmp.eq.s1 p14, p13 = POW_xsq,f1 // Test |x|=1
+ cmp.eq p8,p9 = pow_GR_sign_Y_Gpr, r0
}
;;
{ .mfi
nop.m 999
-(p14) fclass.m.unc p15, p0 = f9, 0x23
+(p14) fclass.m.unc p15, p0 = f9, 0x23 // If |x|=1, test y=inf
nop.i 999
}
{ .mfi
nop.m 999
-(p13) fclass.m.unc p11,p0 = f9, 0x23
+(p13) fclass.m.unc p11,p0 = f9, 0x23 // If |x| not 1, test y=inf
nop.i 999
}
;;
@@ -2137,31 +2139,33 @@ L(POW_OVER_UNDER_X_NOT_INF):
// p15 = TRUE if |x|=1, y=inf, return +1
{ .mfb
nop.m 999
-(p15) fma.d f8 = f1,f1,f0
-(p15) br.ret.spnt b0
+(p15) fma.d.s0 f8 = f1,f1,f0 // If |x|=1, y=inf, result +1
+(p15) br.ret.spnt b0 // Exit if |x|=1, y=inf
}
;;
.pred.rel "mutex",p8,p9
{ .mfb
-(p8) setf.exp f8 = pow_GR_17ones
-(p9) fmerge.s f8 = f0,f0
-(p11) br.ret.sptk b0
+(p8) setf.exp f8 = pow_GR_17ones // If exp(+big), result inf
+(p9) fmerge.s f8 = f0,f0 // If exp(-big), result 0
+(p11) br.ret.sptk b0 // Exit if |x| not 1, y=inf
}
+;;
{ .mfb
nop.m 999
nop.f 999
- br.cond.sptk L(POW_OVER_UNDER_ERROR)
+ br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
}
;;
-L(POW_Y_NAN):
-// Is x = +1 then result is +1, else result is quiet Y
+POW_Y_NAN:
+// Here if y=nan, x anything
+// If x = +1 then result is +1, else result is quiet Y
{ .mfi
nop.m 999
- fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
+ fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
nop.i 999
}
;;
@@ -2175,148 +2179,117 @@ L(POW_Y_NAN):
{ .mfi
nop.m 999
-(p10) fma.d f8 = f1,f1,f0
+(p10) fma.d.s0 f8 = f1,f1,f0
nop.i 999
}
{ .mfb
nop.m 999
-(p9) fma.d f8 = f9,f8,f0
- br.ret.sptk b0
+(p9) fma.d.s0 f8 = f9,f8,f0
+ br.ret.sptk b0 // Exit y=nan
}
;;
-L(POW_OVER_UNDER_ERROR):
+POW_OVER_UNDER_ERROR:
+// Here if we have overflow or underflow.
+// Enter with p12 true if x negative and y odd int to force -0 or -inf
{ .mfi
- nop.m 999
- fmerge.s f10 = POW_NORM_X,POW_NORM_X
- nop.i 999
-}
-{ .mfi
- sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
- nop.f 999
- mov pow_GR_one = 0x1
+ sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
+ nop.f 999
+ mov pow_GR_one = 0x1
}
;;
-// overflow
+// overflow, force inf with O flag
{ .mmb
-(p8) mov pow_GR_tag = 24
-(p8) setf.exp f11 = pow_GR_17ones_m1
+(p8) mov pow_GR_tag = 24
+(p8) setf.exp POW_tmp = pow_GR_17ones_m1
nop.b 999
}
;;
-
-// underflow
+// underflow, force zero with I, U flags
{ .mmi
-(p9) mov pow_GR_tag = 25
-(p9) setf.exp f11 = pow_GR_one
+(p9) mov pow_GR_tag = 25
+(p9) setf.exp POW_tmp = pow_GR_one
nop.i 999
}
;;
-
-// p12 x is negative and y is an odd integer
-
-
{ .mfi
nop.m 999
- fma.d f8 = f11, f11, f0
+ fma.d.s0 f8 = POW_tmp, POW_tmp, f0
nop.i 999
}
;;
+// p12 x is negative and y is an odd integer, change sign of result
{ .mfi
nop.m 999
-(p12) fmerge.ns f8 = f8, f8
+(p12) fnma.d.s0 f8 = POW_tmp, POW_tmp, f0
nop.i 999
}
;;
+GLOBAL_LIBM_END(pow)
-.endp pow
-ASM_SIZE_DIRECTIVE(pow)
-
-
-// Stack operations when calling error support.
-// (1) (2) (3) (call) (4)
-// sp -> + psp -> + psp -> + sp -> +
-// | | | |
-// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
-// | | | |
-// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
-// | | | |
-// | | <- GR_X X1 ->| |
-// | | | |
-// sp-64 -> + sp -> + sp -> + +
-// save ar.pfs save b0 restore gp
-// save gp restore ar.pfs
-
-
+LOCAL_LIBM_ENTRY(__libm_error_region)
-.proc __libm_error_region
-__libm_error_region:
-
-// Answer is inf for overflow and 0 for underflow.
.prologue
-// (1)
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
+ add sp=-64,sp // Create new stack
nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ mov GR_SAVE_GP=gp // Save gp
};;
-
-// (2)
{ .mmi
stfd [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
-// (3)
{ .mib
- stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
+ stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
+ nop.b 0
}
{ .mib
- stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
+ stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
+
{ .mmi
- nop.m 0
- nop.m 0
add GR_Parameter_RESULT = 48,sp
+ nop.m 0
+ nop.i 0
};;
-// (4)
{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
+
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
};;
-.endp __libm_error_region
-ASM_SIZE_DIRECTIVE(__libm_error_region)
+LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
+