summaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_logl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_logl.S')
-rw-r--r--sysdeps/ia64/fpu/e_logl.S1200
1 files changed, 0 insertions, 1200 deletions
diff --git a/sysdeps/ia64/fpu/e_logl.S b/sysdeps/ia64/fpu/e_logl.S
deleted file mode 100644
index 3ebb20a632..0000000000
--- a/sysdeps/ia64/fpu/e_logl.S
+++ /dev/null
@@ -1,1200 +0,0 @@
-.file "logl.s"
-
-
-// Copyright (c) 2000 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 05/21/01 Extracted logl and log10l from log1pl.s file, and optimized
-// all paths.
-// 06/20/01 Fixed error tag for x=-inf.
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-//
-//*********************************************************************
-//
-//*********************************************************************
-//
-// Function: Combined logl(x) and log10l(x) where
-// logl(x) = ln(x), for double-extended precision x values
-// log10l(x) = log (x), for double-extended precision x values
-// 10
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 (Input and Return Value)
-// f34-f76
-//
-// General Purpose Registers:
-// r32-r56
-// r53-r56 (Used to pass arguments to error handling routine)
-//
-// Predicate Registers: p6-p14
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// Denormal fault raised on denormal inputs
-// Overflow exceptions cannot occur
-// Underflow exceptions raised when appropriate for log1p
-// (Error Handling Routine called for underflow)
-// Inexact raised when appropriate by algorithm
-//
-// logl(inf) = inf
-// logl(-inf) = QNaN
-// logl(+/-0) = -inf
-// logl(SNaN) = QNaN
-// logl(QNaN) = QNaN
-// logl(EM_special Values) = QNaN
-// log10l(inf) = inf
-// log10l(-inf) = QNaN
-// log10l(+/-0) = -inf
-// log10l(SNaN) = QNaN
-// log10l(QNaN) = QNaN
-// log10l(EM_special Values) = QNaN
-//
-//*********************************************************************
-//
-// Overview
-//
-// The method consists of two cases.
-//
-// If |X-1| < 2^(-7) use case log_near1;
-// else use case log_regular;
-//
-// Case log_near1:
-//
-// logl( 1 + X ) can be approximated by a simple polynomial
-// in W = X-1. This polynomial resembles the truncated Taylor
-// series W - W^/2 + W^3/3 - ...
-//
-// Case log_regular:
-//
-// Here we use a table lookup method. The basic idea is that in
-// order to compute logl(Arg) for an argument Arg in [1,2), we
-// construct a value G such that G*Arg is close to 1 and that
-// logl(1/G) is obtainable easily from a table of values calculated
-// beforehand. Thus
-//
-// logl(Arg) = logl(1/G) + logl(G*Arg)
-// = logl(1/G) + logl(1 + (G*Arg - 1))
-//
-// Because |G*Arg - 1| is small, the second term on the right hand
-// side can be approximated by a short polynomial. We elaborate
-// this method in four steps.
-//
-// Step 0: Initialization
-//
-// We need to calculate logl( X ). Obtain N, S_hi such that
-//
-// X = 2^N * S_hi exactly
-//
-// where S_hi in [1,2)
-//
-// Step 1: Argument Reduction
-//
-// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
-//
-// G := G_1 * G_2 * G_3
-// r := (G * S_hi - 1)
-//
-// These G_j's have the property that the product is exactly
-// representable and that |r| < 2^(-12) as a result.
-//
-// Step 2: Approximation
-//
-//
-// logl(1 + r) is approximated by a short polynomial poly(r).
-//
-// Step 3: Reconstruction
-//
-//
-// Finally, logl( X ) is given by
-//
-// logl( X ) = logl( 2^N * S_hi )
-// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
-// ~=~ N*logl(2) + logl(1/G) + poly(r).
-//
-// **** Algorithm ****
-//
-// Case log_near1:
-//
-// Here we compute a simple polynomial. To exploit parallelism, we split
-// the polynomial into two portions.
-//
-// W := X - 1
-// Wsq := W * W
-// W4 := Wsq*Wsq
-// W6 := W4*Wsq
-// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
-// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
-//
-// Case log_regular:
-//
-// We present the algorithm in four steps.
-//
-// Step 0. Initialization
-// ----------------------
-//
-// Z := X
-// N := unbaised exponent of Z
-// S_hi := 2^(-N) * Z
-//
-// Step 1. Argument Reduction
-// --------------------------
-//
-// Let
-//
-// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
-//
-// We obtain G_1, G_2, G_3 by the following steps.
-//
-//
-// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
-// from S_hi.
-//
-// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
-// to lsb = 2^(-4).
-//
-// Define index_1 := [ d_1 d_2 d_3 d_4 ].
-//
-// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
-// fixed point lsb = 2^(-15).
-// Z_1 looks like z_0.z_1 z_2 ... z_15
-// Note that the fetching is done using index_1.
-// A_1 is actually not needed in the implementation
-// and is used here only to explain how is the value
-// Z_1 defined.
-//
-// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
-// floating pt. Again, fetching is done using index_1. A_1
-// explains how G_1 is defined.
-//
-// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 d_5 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_1 indeed always begin
-// with 1.0000 in fixed point.
-//
-//
-// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
-// truncated to lsb = 2^(-8). Similar to A_1,
-// A_2 is not needed in actual implementation. It
-// helps explain how some of the values are defined.
-//
-// Define index_2 := [ d_5 d_6 d_7 d_8 ].
-//
-// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
-// fixed point lsb = 2^(-15). Fetch done using index_2.
-// Z_2 looks like z_0.z_1 z_2 ... z_15
-//
-// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
-// floating pt.
-//
-// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
-// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
-// This is accomplised by integer multiplication.
-// It is proved that X_2 indeed always begin
-// with 1.00000000 in fixed point.
-//
-//
-// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
-// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
-//
-// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
-//
-// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
-// floating pt. Fetch is done using index_3.
-//
-// Compute G := G_1 * G_2 * G_3.
-//
-// This is done exactly since each of G_j only has 21 sig. bits.
-//
-// Compute
-//
-// r := (G*S_hi - 1)
-//
-//
-// Step 2. Approximation
-// ---------------------
-//
-// This step computes an approximation to logl( 1 + r ) where r is the
-// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
-// thus logl(1+r) can be approximated by a short polynomial:
-//
-// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
-//
-//
-// Step 3. Reconstruction
-// ----------------------
-//
-// This step computes the desired result of logl(X):
-//
-// logl(X) = logl( 2^N * S_hi )
-// = N*logl(2) + logl( S_hi )
-// = N*logl(2) + logl(1/G) +
-// logl(1 + G*S_hi - 1 )
-//
-// logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
-// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
-// single-precision numbers and the low parts are double precision
-// numbers. These have the property that
-//
-// N*log2_hi + SUM ( log1byGj_hi )
-//
-// is computable exactly in double-extended precision (64 sig. bits).
-// Finally
-//
-// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
-// Y_lo := poly_hi + [ poly_lo +
-// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
-//
-
-RODATA
-.align 64
-
-// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
-
-// P_8, P_7, P_6, P_5, P_4, P_3, P_2, and P_1
-
-LOCAL_OBJECT_START(Constants_P)
-data8 0xE3936754EFD62B15,0x00003FFB
-data8 0x8003B271A5E56381,0x0000BFFC
-data8 0x9249248C73282DB0,0x00003FFC
-data8 0xAAAAAA9F47305052,0x0000BFFC
-data8 0xCCCCCCCCCCD17FC9,0x00003FFC
-data8 0x8000000000067ED5,0x0000BFFD
-data8 0xAAAAAAAAAAAAAAAA,0x00003FFD
-data8 0xFFFFFFFFFFFFFFFE,0x0000BFFD
-LOCAL_OBJECT_END(Constants_P)
-
-// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
-
-LOCAL_OBJECT_START(Constants_Q)
-data8 0xB172180000000000,0x00003FFE
-data8 0x82E308654361C4C6,0x0000BFE2
-data8 0xCCCCCAF2328833CB,0x00003FFC
-data8 0x80000077A9D4BAFB,0x0000BFFD
-data8 0xAAAAAAAAAAABE3D2,0x00003FFD
-data8 0xFFFFFFFFFFFFDAB7,0x0000BFFD
-LOCAL_OBJECT_END(Constants_Q)
-
-// 1/ln10_hi, 1/ln10_lo
-
-LOCAL_OBJECT_START(Constants_1_by_LN10)
-data8 0xDE5BD8A937287195,0x00003FFD
-data8 0xD56EAABEACCF70C8,0x00003FBB
-LOCAL_OBJECT_END(Constants_1_by_LN10)
-
-
-// Z1 - 16 bit fixed
-
-LOCAL_OBJECT_START(Constants_Z_1)
-data4 0x00008000
-data4 0x00007879
-data4 0x000071C8
-data4 0x00006BCB
-data4 0x00006667
-data4 0x00006187
-data4 0x00005D18
-data4 0x0000590C
-data4 0x00005556
-data4 0x000051EC
-data4 0x00004EC5
-data4 0x00004BDB
-data4 0x00004925
-data4 0x0000469F
-data4 0x00004445
-data4 0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F70F0F0,0x3D785196
-data8 0x3DA163A6617D741C
-data4 0x3F638E38,0x3DF13843
-data8 0x3E2C55E6CBD3D5BB
-data4 0x3F579430,0x3E2FF9A0
-data8 0xBE3EB0BFD86EA5E7
-data4 0x3F4CCCC8,0x3E647FD6
-data8 0x3E2E6A8C86B12760
-data4 0x3F430C30,0x3E8B3AE7
-data8 0x3E47574C5C0739BA
-data4 0x3F3A2E88,0x3EA30C68
-data8 0x3E20E30F13E8AF2F
-data4 0x3F321640,0x3EB9CEC8
-data8 0xBE42885BF2C630BD
-data4 0x3F2AAAA8,0x3ECF9927
-data8 0x3E497F3497E577C6
-data4 0x3F23D708,0x3EE47FC5
-data8 0x3E3E6A6EA6B0A5AB
-data4 0x3F1D89D8,0x3EF8947D
-data8 0xBDF43E3CD328D9BE
-data4 0x3F17B420,0x3F05F3A1
-data8 0x3E4094C30ADB090A
-data4 0x3F124920,0x3F0F4303
-data8 0xBE28FBB2FC1FE510
-data4 0x3F0D3DC8,0x3F183EBF
-data8 0x3E3A789510FDE3FA
-data4 0x3F088888,0x3F20EC80
-data8 0x3E508CE57CC8C98F
-data4 0x3F042108,0x3F29516A
-data8 0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-
-LOCAL_OBJECT_START(Constants_Z_2)
-data4 0x00008000
-data4 0x00007F81
-data4 0x00007F02
-data4 0x00007E85
-data4 0x00007E08
-data4 0x00007D8D
-data4 0x00007D12
-data4 0x00007C98
-data4 0x00007C20
-data4 0x00007BA8
-data4 0x00007B31
-data4 0x00007ABB
-data4 0x00007A45
-data4 0x000079D1
-data4 0x0000795D
-data4 0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4 0x3F800000,0x00000000
-data8 0x0000000000000000
-data4 0x3F7F00F8,0x3B7F875D
-data8 0x3DB5A11622C42273
-data4 0x3F7E03F8,0x3BFF015B
-data8 0x3DE620CF21F86ED3
-data4 0x3F7D08E0,0x3C3EE393
-data8 0xBDAFA07E484F34ED
-data4 0x3F7C0FC0,0x3C7E0586
-data8 0xBDFE07F03860BCF6
-data4 0x3F7B1880,0x3C9E75D2
-data8 0x3DEA370FA78093D6
-data4 0x3F7A2328,0x3CBDC97A
-data8 0x3DFF579172A753D0
-data4 0x3F792FB0,0x3CDCFE47
-data8 0x3DFEBE6CA7EF896B
-data4 0x3F783E08,0x3CFC15D0
-data8 0x3E0CF156409ECB43
-data4 0x3F774E38,0x3D0D874D
-data8 0xBE0B6F97FFEF71DF
-data4 0x3F766038,0x3D1CF49B
-data8 0xBE0804835D59EEE8
-data4 0x3F757400,0x3D2C531D
-data8 0x3E1F91E9A9192A74
-data4 0x3F748988,0x3D3BA322
-data8 0xBE139A06BF72A8CD
-data4 0x3F73A0D0,0x3D4AE46F
-data8 0x3E1D9202F8FBA6CF
-data4 0x3F72B9D0,0x3D5A1756
-data8 0xBE1DCCC4BA796223
-data4 0x3F71D488,0x3D693B9D
-data8 0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4 0x3F7FFC00,0x38800100
-data8 0x3D355595562224CD
-data4 0x3F7FF400,0x39400480
-data8 0x3D8200A206136FF6
-data4 0x3F7FEC00,0x39A00640
-data8 0x3DA4D68DE8DE9AF0
-data4 0x3F7FE400,0x39E00C41
-data8 0xBD8B4291B10238DC
-data4 0x3F7FDC00,0x3A100A21
-data8 0xBD89CCB83B1952CA
-data4 0x3F7FD400,0x3A300F22
-data8 0xBDB107071DC46826
-data4 0x3F7FCC08,0x3A4FF51C
-data8 0x3DB6FCB9F43307DB
-data4 0x3F7FC408,0x3A6FFC1D
-data8 0xBD9B7C4762DC7872
-data4 0x3F7FBC10,0x3A87F20B
-data8 0xBDC3725E3F89154A
-data4 0x3F7FB410,0x3A97F68B
-data8 0xBD93519D62B9D392
-data4 0x3F7FAC18,0x3AA7EB86
-data8 0x3DC184410F21BD9D
-data4 0x3F7FA420,0x3AB7E101
-data8 0xBDA64B952245E0A6
-data4 0x3F7F9C20,0x3AC7E701
-data8 0x3DB4B0ECAABB34B8
-data4 0x3F7F9428,0x3AD7DD7B
-data8 0x3D9923376DC40A7E
-data4 0x3F7F8C30,0x3AE7D474
-data8 0x3DC6E17B4F2083D3
-data4 0x3F7F8438,0x3AF7CBED
-data8 0x3DAE314B811D4394
-data4 0x3F7F7C40,0x3B03E1F3
-data8 0xBDD46F21B08F2DB1
-data4 0x3F7F7448,0x3B0BDE2F
-data8 0xBDDC30A46D34522B
-data4 0x3F7F6C50,0x3B13DAAA
-data8 0x3DCB0070B1F473DB
-data4 0x3F7F6458,0x3B1BD766
-data8 0xBDD65DDC6AD282FD
-data4 0x3F7F5C68,0x3B23CC5C
-data8 0xBDCDAB83F153761A
-data4 0x3F7F5470,0x3B2BC997
-data8 0xBDDADA40341D0F8F
-data4 0x3F7F4C78,0x3B33C711
-data8 0x3DCD1BD7EBC394E8
-data4 0x3F7F4488,0x3B3BBCC6
-data8 0xBDC3532B52E3E695
-data4 0x3F7F3C90,0x3B43BAC0
-data8 0xBDA3961EE846B3DE
-data4 0x3F7F34A0,0x3B4BB0F4
-data8 0xBDDADF06785778D4
-data4 0x3F7F2CA8,0x3B53AF6D
-data8 0x3DCC3ED1E55CE212
-data4 0x3F7F24B8,0x3B5BA620
-data8 0xBDBA31039E382C15
-data4 0x3F7F1CC8,0x3B639D12
-data8 0x3D635A0B5C5AF197
-data4 0x3F7F14D8,0x3B6B9444
-data8 0xBDDCCB1971D34EFC
-data4 0x3F7F0CE0,0x3B7393BC
-data8 0x3DC7450252CD7ADA
-data4 0x3F7F04F0,0x3B7B8B6D
-data8 0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-
-// Floating Point Registers
-
-FR_Input_X = f8
-
-FR_Y_hi = f34
-FR_Y_lo = f35
-
-FR_Scale = f36
-FR_X_Prime = f37
-FR_S_hi = f38
-FR_W = f39
-FR_G = f40
-
-FR_H = f41
-FR_wsq = f42
-FR_w4 = f43
-FR_h = f44
-FR_w6 = f45
-
-FR_G2 = f46
-FR_H2 = f47
-FR_poly_lo = f48
-FR_P8 = f49
-FR_poly_hi = f50
-
-FR_P7 = f51
-FR_h2 = f52
-FR_rsq = f53
-FR_P6 = f54
-FR_r = f55
-
-FR_log2_hi = f56
-FR_log2_lo = f57
-FR_p87 = f58
-FR_p876 = f58
-FR_p8765 = f58
-FR_float_N = f59
-FR_Q4 = f60
-
-FR_p43 = f61
-FR_p432 = f61
-FR_p4321 = f61
-FR_P4 = f62
-FR_G3 = f63
-FR_H3 = f64
-FR_h3 = f65
-
-FR_Q3 = f66
-FR_P3 = f67
-FR_Q2 = f68
-FR_P2 = f69
-FR_1LN10_hi = f70
-
-FR_Q1 = f71
-FR_P1 = f72
-FR_1LN10_lo = f73
-FR_P5 = f74
-FR_rcub = f75
-
-FR_Output_X_tmp = f76
-
-FR_X = f8
-FR_Y = f0
-FR_RESULT = f76
-
-
-// General Purpose Registers
-
-GR_ad_p = r33
-GR_Index1 = r34
-GR_Index2 = r35
-GR_signif = r36
-GR_X_0 = r37
-GR_X_1 = r38
-GR_X_2 = r39
-GR_Z_1 = r40
-GR_Z_2 = r41
-GR_N = r42
-GR_Bias = r43
-GR_M = r44
-GR_Index3 = r45
-GR_ad_p2 = r46
-GR_exp_mask = r47
-GR_exp_2tom7 = r48
-GR_ad_ln10 = r49
-GR_ad_tbl_1 = r50
-GR_ad_tbl_2 = r51
-GR_ad_tbl_3 = r52
-GR_ad_q = r53
-GR_ad_z_1 = r54
-GR_ad_z_2 = r55
-GR_ad_z_3 = r56
-
-//
-// Added for unwind support
-//
-
-GR_SAVE_PFS = r50
-GR_SAVE_B0 = r51
-GR_SAVE_GP = r52
-GR_Parameter_X = r53
-GR_Parameter_Y = r54
-GR_Parameter_RESULT = r55
-GR_Parameter_TAG = r56
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(logl)
-{ .mfi
- alloc r32 = ar.pfs,0,21,4,0
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
- cmp.eq p7, p14 = r0, r0 // Set p7 if logl
-}
-{ .mfb
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
- br.cond.sptk LOGL_BEGIN
-}
-;;
-
-GLOBAL_IEEE754_END(logl)
-
-
-GLOBAL_IEEE754_ENTRY(log10l)
-{ .mfi
- alloc r32 = ar.pfs,0,21,4,0
- fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
- cmp.ne p7, p14 = r0, r0 // Set p14 if log10l
-}
-{ .mfb
- addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
- fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
- nop.b 999
-}
-;;
-
-
-// Common code for logl and log10
-LOGL_BEGIN:
-{ .mfi
- ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
- fclass.m p10, p0 = FR_Input_X, 0x0b // Test for denormal
- mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
-}
-;;
-
-{ .mfb
- getf.sig GR_signif = FR_Input_X // Get significand of x
- fcmp.eq.s1 p9, p0 = FR_Input_X, f1 // Test for x=1.0
-(p6) br.cond.spnt LOGL_64_special // Branch for nan, inf, natval
-}
-;;
-
-{ .mfi
- add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
- fcmp.lt.s1 p13, p0 = FR_Input_X, f0 // Test for x<0
- add GR_ad_p = -0x100, GR_ad_z_1 // Point to Constants_P
-}
-{ .mib
- add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
- add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
-(p10) br.cond.spnt LOGL_64_denormal // Branch for denormal
-}
-;;
-
-LOGL_64_COMMON:
-{ .mfi
- add GR_ad_q = 0x080, GR_ad_p // Point to Constants_Q
- fcmp.eq.s1 p8, p0 = FR_Input_X, f0 // Test for x=0
- extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
-}
-{ .mfb
- add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
-(p9) fma.s0 f8 = FR_Input_X, f0, f0 // If x=1, return +0.0
-(p9) br.ret.spnt b0 // Exit if x=1
-}
-;;
-
-{ .mfi
- shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
- fclass.nm p10, p0 = FR_Input_X, 0x1FF // Test for unsupported
- extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of significand
-}
-{ .mfi
- ldfe FR_P8 = [GR_ad_p],16 // Load P_8 for near1 path
- fsub.s1 FR_W = FR_X_Prime, f1 // W = x - 1
- add GR_ad_ln10 = 0x060, GR_ad_q // Point to Constants_1_by_LN10
-}
-;;
-
-{ .mfi
- ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
- nop.f 999
- mov GR_exp_mask = 0x1FFFF // Create exponent mask
-}
-{ .mib
- shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
- mov GR_Bias = 0x0FFFF // Create exponent bias
-(p13) br.cond.spnt LOGL_64_negative // Branch if x<0
-}
-;;
-
-{ .mfb
- ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
- fmerge.se FR_S_hi = f1,FR_X_Prime // Form |x|
-(p8) br.cond.spnt LOGL_64_zero // Branch if x=0
-}
-;;
-
-{ .mmb
- getf.exp GR_N = FR_X_Prime // Get N = exponent of x
- ldfd FR_h = [GR_ad_tbl_1] // Load h_1
-(p10) br.cond.spnt LOGL_64_unsupported // Branch for unsupported type
-}
-;;
-
-{ .mfi
- ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
- fcmp.eq.s0 p8, p0 = FR_Input_X, f0 // Dummy op to flag denormals
- pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
-}
-;;
-
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mmi
- ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
-(p14) ldfe FR_1LN10_hi = [GR_ad_ln10],16 // If log10l, load 1/ln10_hi
- sub GR_N = GR_N, GR_Bias
-}
-;;
-
-{ .mmi
- ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
-(p14) ldfe FR_1LN10_lo = [GR_ad_ln10] // If log10l, load 1/ln10_lo
- nop.i 999
-}
-;;
-
-{ .mmi
- ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
- setf.sig FR_float_N = GR_N // Put integer N into rightmost significand
- nop.i 999
-}
-;;
-
-{ .mmi
- getf.exp GR_M = FR_W // Get signexp of w = x - 1
- ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
- extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
-}
-;;
-
-{ .mmi
- ldfe FR_Q1 = [GR_ad_q] // Load Q1
- shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
- add GR_ad_p2 = 0x30,GR_ad_p // Point to P_4
-}
-;;
-
-{ .mmi
- ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
- shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
- and GR_M = GR_exp_mask, GR_M // Get exponent of w = x - 1
-}
-;;
-
-{ .mmi
- ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
- cmp.lt p8, p9 = GR_M, GR_exp_2tom7 // Test |x-1| < 2^-7
- nop.i 999
-}
-;;
-
-// Paths are merged.
-// p8 is for the near1 path: |x-1| < 2^-7
-// p9 is for regular path: |x-1| >= 2^-7
-
-{ .mmi
- ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mmi
-(p8) ldfe FR_P7 = [GR_ad_p],16 // Load P_7 for near1 path
-(p8) ldfe FR_P4 = [GR_ad_p2],16 // Load P_4 for near1 path
-(p9) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
-}
-;;
-
-//
-// For performance, don't use result of pmpyshr2.u for 4 cycles.
-//
-{ .mmi
-(p8) ldfe FR_P6 = [GR_ad_p],16 // Load P_6 for near1 path
-(p8) ldfe FR_P3 = [GR_ad_p2],16 // Load P_3 for near1 path
- nop.i 999
-}
-;;
-
-{ .mmf
-(p8) ldfe FR_P5 = [GR_ad_p],16 // Load P_5 for near1 path
-(p8) ldfe FR_P2 = [GR_ad_p2],16 // Load P_2 for near1 path
-(p8) fmpy.s1 FR_wsq = FR_W, FR_W // wsq = w * w for near1 path
-}
-;;
-
-{ .mmi
-(p8) ldfe FR_P1 = [GR_ad_p2],16 ;; // Load P_1 for near1 path
- nop.m 999
-(p9) extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
-}
-;;
-
-{ .mfi
-(p9) shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
-(p9) fcvt.xf FR_float_N = FR_float_N
- nop.i 999
-}
-;;
-
-{ .mfi
-(p9) ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
- nop.f 999
- nop.i 999
-}
-;;
-
-{ .mfi
-(p9) ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
-(p9) fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
- nop.i 999
-}
-;;
-
-{ .mmf
- nop.m 999
- nop.m 999
-(p9) fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fmpy.s1 FR_w4 = FR_wsq, FR_wsq // w4 = w^4 for near1 path
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p87 = FR_W, FR_P8, FR_P7 // p87 = w * P8 + P7
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p43 = FR_W, FR_P4, FR_P3 // p43 = w * P4 + P3
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fmpy.s1 FR_w6 = FR_w4, FR_wsq // w6 = w^6 for near1 path
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p432 = FR_W, FR_p43, FR_P2 // p432 = w * p43 + P2
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p876 = FR_W, FR_p87, FR_P6 // p876 = w * p87 + P6
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi = N * log2_hi + H
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N * log2_lo + h
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p4321 = FR_W, FR_p432, FR_P1 // p4321 = w * p432 + P1
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_p8765 = FR_W, FR_p876, FR_P5 // p8765 = w * p876 + P5
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_lo = FR_wsq, FR_p4321, f0 // Y_lo = wsq * p4321
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_hi = FR_W, f1, f0 // Y_hi = w for near1 path
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo = poly_lo * r + Q2
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_Y_lo = FR_w6, FR_p8765,FR_Y_lo // Y_lo = w6 * p8765 + w2 * p4321
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1 * rsq + r
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h // poly_lo = poly_lo*r^3 + h
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p9) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo = poly_hi + poly_lo
- nop.i 999
-}
-;;
-
-// Remainder of code is common for near1 and regular paths
-{ .mfi
- nop.m 999
-(p7) fadd.s0 f8 = FR_Y_lo,FR_Y_hi // If logl, result=Y_lo+Y_hi
- nop.i 999
-}
-{ .mfi
- nop.m 999
-(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
- nop.i 999
-}
-;;
-
-{ .mfi
- nop.m 999
-(p14) fma.s1 FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
- nop.i 999
-}
-;;
-
-{ .mfb
- nop.m 999
-(p14) fma.s0 f8 = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
- br.ret.sptk b0 // Common exit for 0 < x < inf
-}
-;;
-
-
-// Here if x=+-0
-LOGL_64_zero:
-//
-// If x=+-0 raise divide by zero and return -inf
-//
-{ .mfi
-(p7) mov GR_Parameter_TAG = 0
- fsub.s1 FR_Output_X_tmp = f0, f1
- nop.i 999
-}
-;;
-
-{ .mfb
-(p14) mov GR_Parameter_TAG = 6
- frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-LOGL_64_special:
-{ .mfi
- nop.m 999
- fclass.m.unc p8, p0 = FR_Input_X, 0x1E1 // Test for natval, nan, +inf
- nop.i 999
-}
-;;
-
-//
-// For SNaN raise invalid and return QNaN.
-// For QNaN raise invalid and return QNaN.
-// For +Inf return +Inf.
-//
-{ .mfb
- nop.m 999
-(p8) fmpy.s0 f8 = FR_Input_X, f1
-(p8) br.ret.sptk b0 // Return for natval, nan, +inf
-}
-;;
-
-//
-// For -Inf raise invalid and return QNaN.
-//
-{ .mmi
-(p7) mov GR_Parameter_TAG = 1
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mfb
-(p14) mov GR_Parameter_TAG = 7
- fmpy.s0 FR_Output_X_tmp = FR_Input_X, f0
- br.cond.sptk __libm_error_region
-}
-;;
-
-// Here if x denormal or unnormal
-LOGL_64_denormal:
-{ .mmi
- getf.sig GR_signif = FR_X_Prime // Get significand of normalized input
- nop.m 999
- nop.i 999
-}
-;;
-
-{ .mmb
- getf.exp GR_N = FR_X_Prime // Get exponent of normalized input
- nop.m 999
- br.cond.sptk LOGL_64_COMMON // Branch back to common code
-}
-;;
-
-LOGL_64_unsupported:
-//
-// Return generated NaN or other value.
-//
-{ .mfb
- nop.m 999
- fmpy.s0 f8 = FR_Input_X, f0
- br.ret.sptk b0
-}
-;;
-
-// Here if -inf < x < 0
-LOGL_64_negative:
-//
-// Deal with x < 0 in a special way - raise
-// invalid and produce QNaN indefinite.
-//
-{ .mfi
-(p7) mov GR_Parameter_TAG = 1
- frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
- nop.i 999
-}
-;;
-
-{ .mib
-(p14) mov GR_Parameter_TAG = 7
- nop.i 999
- br.cond.sptk __libm_error_region
-}
-;;
-
-
-GLOBAL_IEEE754_END(log10l)
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y
- nop.b 0 // Parameter 3 address
-}
-{ .mib
- stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- nop.m 999
- nop.m 999
- add GR_Parameter_RESULT = 48,sp
-};;
-{ .mmi
- ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region#)
-
-.type __libm_error_support#,@function
-.global __libm_error_support#