summaryrefslogtreecommitdiff
path: root/ports/sysdeps/ia64/fpu/s_expm1f.S
diff options
context:
space:
mode:
Diffstat (limited to 'ports/sysdeps/ia64/fpu/s_expm1f.S')
-rw-r--r--ports/sysdeps/ia64/fpu/s_expm1f.S671
1 files changed, 671 insertions, 0 deletions
diff --git a/ports/sysdeps/ia64/fpu/s_expm1f.S b/ports/sysdeps/ia64/fpu/s_expm1f.S
new file mode 100644
index 0000000000..55264a9875
--- /dev/null
+++ b/ports/sysdeps/ia64/fpu/s_expm1f.S
@@ -0,0 +1,671 @@
+.file "expf_m1.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+
+// History
+//*********************************************************************
+// 02/02/00 Initial Version
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
+// 07/07/01 Improved speed of all paths
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 11/20/02 Improved speed, algorithm based on expf
+// 03/31/05 Reformatted delimiters between data tables
+//
+//
+// API
+//*********************************************************************
+// float expm1f(float)
+//
+// Overview of operation
+//*********************************************************************
+// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
+//
+// 2. |x| < 2^-40
+// Result = x, computed by x + x*x to handle appropriate flags and rounding
+//
+// 3. 2^-40 <= |x| < 2^-2
+// Result determined by 8th order Taylor series polynomial
+// expm1f(x) = x + A2*x^2 + ... + A8*x^8
+//
+// 4. x < -24.0
+// Here we know result is essentially -1 + eps, where eps only affects
+// rounded result. Set I.
+//
+// 5. x >= 88.7228
+// Result overflows. Set I, O, and call error support
+//
+// 6. 2^-2 <= x < 88.7228 or -24.0 <= x < -2^-2
+// This is the main path. The algorithm is described below:
+
+// Take the input x. w is "how many log2/128 in x?"
+// w = x * 64/log2
+// NJ = int(w)
+// x = NJ*log2/64 + R
+
+// NJ = 64*n + j
+// x = n*log2 + (log2/64)*j + R
+//
+// So, exp(x) = 2^n * 2^(j/64)* exp(R)
+//
+// T = 2^n * 2^(j/64)
+// Construct 2^n
+// Get 2^(j/64) table
+// actually all the entries of 2^(j/64) table are stored in DP and
+// with exponent bits set to 0 -> multiplication on 2^n can be
+// performed by doing logical "or" operation with bits presenting 2^n
+
+// exp(R) = 1 + (exp(R) - 1)
+// P = exp(R) - 1 approximated by Taylor series of 3rd degree
+// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
+//
+
+// The final result is reconstructed as follows
+// expm1f(x) = T*P + (T - 1.0)
+
+// Special values
+//*********************************************************************
+// expm1f(+0) = +0.0
+// expm1f(-0) = -0.0
+
+// expm1f(+qnan) = +qnan
+// expm1f(-qnan) = -qnan
+// expm1f(+snan) = +qnan
+// expm1f(-snan) = -qnan
+
+// expm1f(-inf) = -1.0
+// expm1f(+inf) = +inf
+
+// Overflow and Underflow
+//*********************************************************************
+// expm1f(x) = largest single normal when
+// x = 88.7228 = 0x42b17217
+//
+// Underflow is handled as described in case 2 above.
+
+
+// Registers used
+//*********************************************************************
+// Floating Point registers used:
+// f8, input
+// f6,f7, f9 -> f15, f32 -> f45
+
+// General registers used:
+// r3, r20 -> r38
+
+// Predicate registers used:
+// p9 -> p15
+
+// Assembly macros
+//*********************************************************************
+// integer registers used
+// scratch
+rNJ = r3
+
+rExp_half = r20
+rSignexp_x = r21
+rExp_x = r22
+rExp_mask = r23
+rExp_bias = r24
+rTmp = r25
+rM1_lim = r25
+rGt_ln = r25
+rJ = r26
+rN = r27
+rTblAddr = r28
+rLn2Div64 = r29
+rRightShifter = r30
+r64DivLn2 = r31
+// stacked
+GR_SAVE_PFS = r32
+GR_SAVE_B0 = r33
+GR_SAVE_GP = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Parameter_TAG = r38
+
+// floating point registers used
+FR_X = f10
+FR_Y = f1
+FR_RESULT = f8
+// scratch
+fRightShifter = f6
+f64DivLn2 = f7
+fNormX = f9
+fNint = f10
+fN = f11
+fR = f12
+fLn2Div64 = f13
+fA2 = f14
+fA3 = f15
+// stacked
+fP = f32
+fX3 = f33
+fT = f34
+fMIN_SGL_OFLOW_ARG = f35
+fMAX_SGL_NORM_ARG = f36
+fMAX_SGL_MINUS_1_ARG = f37
+fA4 = f38
+fA43 = f38
+fA432 = f38
+fRSqr = f39
+fA5 = f40
+fTmp = f41
+fGt_pln = f41
+fXsq = f41
+fA7 = f42
+fA6 = f43
+fA65 = f43
+fTm1 = f44
+fA8 = f45
+fA87 = f45
+fA8765 = f45
+fA8765432 = f45
+fWre_urm_f8 = f45
+
+RODATA
+.align 16
+LOCAL_OBJECT_START(_expf_table)
+data8 0x3efa01a01a01a01a // A8 = 1/8!
+data8 0x3f2a01a01a01a01a // A7 = 1/7!
+data8 0x3f56c16c16c16c17 // A6 = 1/6!
+data8 0x3f81111111111111 // A5 = 1/5!
+data8 0x3fa5555555555555 // A4 = 1/4!
+data8 0x3fc5555555555555 // A3 = 1/3!
+//
+data4 0x42b17218 // Smallest sgl arg to overflow sgl result
+data4 0x42b17217 // Largest sgl arg to give sgl result
+//
+// 2^(j/64) table, j goes from 0 to 63
+data8 0x0000000000000000 // 2^(0/64)
+data8 0x00002C9A3E778061 // 2^(1/64)
+data8 0x000059B0D3158574 // 2^(2/64)
+data8 0x0000874518759BC8 // 2^(3/64)
+data8 0x0000B5586CF9890F // 2^(4/64)
+data8 0x0000E3EC32D3D1A2 // 2^(5/64)
+data8 0x00011301D0125B51 // 2^(6/64)
+data8 0x0001429AAEA92DE0 // 2^(7/64)
+data8 0x000172B83C7D517B // 2^(8/64)
+data8 0x0001A35BEB6FCB75 // 2^(9/64)
+data8 0x0001D4873168B9AA // 2^(10/64)
+data8 0x0002063B88628CD6 // 2^(11/64)
+data8 0x0002387A6E756238 // 2^(12/64)
+data8 0x00026B4565E27CDD // 2^(13/64)
+data8 0x00029E9DF51FDEE1 // 2^(14/64)
+data8 0x0002D285A6E4030B // 2^(15/64)
+data8 0x000306FE0A31B715 // 2^(16/64)
+data8 0x00033C08B26416FF // 2^(17/64)
+data8 0x000371A7373AA9CB // 2^(18/64)
+data8 0x0003A7DB34E59FF7 // 2^(19/64)
+data8 0x0003DEA64C123422 // 2^(20/64)
+data8 0x0004160A21F72E2A // 2^(21/64)
+data8 0x00044E086061892D // 2^(22/64)
+data8 0x000486A2B5C13CD0 // 2^(23/64)
+data8 0x0004BFDAD5362A27 // 2^(24/64)
+data8 0x0004F9B2769D2CA7 // 2^(25/64)
+data8 0x0005342B569D4F82 // 2^(26/64)
+data8 0x00056F4736B527DA // 2^(27/64)
+data8 0x0005AB07DD485429 // 2^(28/64)
+data8 0x0005E76F15AD2148 // 2^(29/64)
+data8 0x0006247EB03A5585 // 2^(30/64)
+data8 0x0006623882552225 // 2^(31/64)
+data8 0x0006A09E667F3BCD // 2^(32/64)
+data8 0x0006DFB23C651A2F // 2^(33/64)
+data8 0x00071F75E8EC5F74 // 2^(34/64)
+data8 0x00075FEB564267C9 // 2^(35/64)
+data8 0x0007A11473EB0187 // 2^(36/64)
+data8 0x0007E2F336CF4E62 // 2^(37/64)
+data8 0x00082589994CCE13 // 2^(38/64)
+data8 0x000868D99B4492ED // 2^(39/64)
+data8 0x0008ACE5422AA0DB // 2^(40/64)
+data8 0x0008F1AE99157736 // 2^(41/64)
+data8 0x00093737B0CDC5E5 // 2^(42/64)
+data8 0x00097D829FDE4E50 // 2^(43/64)
+data8 0x0009C49182A3F090 // 2^(44/64)
+data8 0x000A0C667B5DE565 // 2^(45/64)
+data8 0x000A5503B23E255D // 2^(46/64)
+data8 0x000A9E6B5579FDBF // 2^(47/64)
+data8 0x000AE89F995AD3AD // 2^(48/64)
+data8 0x000B33A2B84F15FB // 2^(49/64)
+data8 0x000B7F76F2FB5E47 // 2^(50/64)
+data8 0x000BCC1E904BC1D2 // 2^(51/64)
+data8 0x000C199BDD85529C // 2^(52/64)
+data8 0x000C67F12E57D14B // 2^(53/64)
+data8 0x000CB720DCEF9069 // 2^(54/64)
+data8 0x000D072D4A07897C // 2^(55/64)
+data8 0x000D5818DCFBA487 // 2^(56/64)
+data8 0x000DA9E603DB3285 // 2^(57/64)
+data8 0x000DFC97337B9B5F // 2^(58/64)
+data8 0x000E502EE78B3FF6 // 2^(59/64)
+data8 0x000EA4AFA2A490DA // 2^(60/64)
+data8 0x000EFA1BEE615A27 // 2^(61/64)
+data8 0x000F50765B6E4540 // 2^(62/64)
+data8 0x000FA7C1819E90D8 // 2^(63/64)
+LOCAL_OBJECT_END(_expf_table)
+
+
+.section .text
+GLOBAL_IEEE754_ENTRY(expm1f)
+
+{ .mlx
+ getf.exp rSignexp_x = f8 // Must recompute if x unorm
+ movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
+}
+{ .mlx
+ addl rTblAddr = @ltoff(_expf_table),gp
+ movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
+}
+;;
+
+{ .mfi
+ // point to the beginning of the table
+ ld8 rTblAddr = [rTblAddr]
+ fclass.m p14, p0 = f8 , 0x22 // test for -INF
+ mov rExp_mask = 0x1ffff // Exponent mask
+}
+{ .mfi
+ nop.m 0
+ fnorm.s1 fNormX = f8 // normalized x
+ nop.i 0
+}
+;;
+
+{ .mfi
+ setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
+ fclass.m p9, p0 = f8 , 0x0b // test for x unorm
+ mov rExp_bias = 0xffff // Exponent bias
+}
+{ .mlx
+ // load Right Shifter to FP reg
+ setf.d fRightShifter = rRightShifter
+ movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+}
+;;
+
+{ .mfi
+ ldfpd fA8, fA7 = [rTblAddr], 16
+ fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
+ mov rExp_half = 0xfffe
+}
+{ .mfb
+ setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
+ nop.f 0
+(p9) br.cond.spnt EXPM1_UNORM // Branch if x unorm
+}
+;;
+
+EXPM1_COMMON:
+{ .mfb
+ ldfpd fA6, fA5 = [rTblAddr], 16
+(p14) fms.s.s0 f8 = f0, f0, f1 // result if x = -inf
+(p14) br.ret.spnt b0 // exit here if x = -inf
+}
+;;
+
+{ .mfb
+ ldfpd fA4, fA3 = [rTblAddr], 16
+ fclass.m p15, p0 = f8 , 0x1e1 // test for NaT,NaN,+Inf
+(p13) br.ret.spnt b0 // exit here if x =0.0, result is x
+}
+;;
+
+{ .mfi
+ // overflow thresholds
+ ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
+ fma.s1 fXsq = fNormX, fNormX, f0 // x^2 for small path
+ and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+}
+{ .mlx
+ nop.m 0
+ movl rM1_lim = 0xc1c00000 // Minus -1 limit (-24.0), SP
+}
+;;
+
+{ .mfi
+ setf.exp fA2 = rExp_half
+ // x*(64/ln(2)) + Right Shifter
+ fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
+ sub rExp_x = rExp_x, rExp_bias // True exponent of x
+}
+{ .mfb
+ nop.m 0
+(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf
+(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf
+}
+;;
+
+{ .mfi
+ setf.s fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0
+ nop.f 0
+ cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)
+}
+;;
+
+{ .mfi
+(p7) cmp.gt.unc p6, p7 = -40, rExp_x // Test |x| < 2^(-40)
+ fma.s1 fA87 = fA8, fNormX, fA7 // Small path, A8*x+A7
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fA65 = fA6, fNormX, fA5 // Small path, A6*x+A5
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+(p6) fma.s.s0 f8 = f8, f8, f8 // If x < 2^-40, result=x+x*x
+(p6) br.ret.spnt b0 // Exit if x < 2^-40
+}
+;;
+
+{ .mfi
+ nop.m 0
+ // check for overflow
+ fcmp.gt.s1 p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fms.s1 fN = fNint, f1, fRightShifter // n in FP register
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+(p7) fma.s1 fA43 = fA4, fNormX, fA3 // Small path, A4*x+A3
+ nop.i 0
+}
+;;
+
+{ .mfi
+ getf.sig rNJ = fNint // bits of n, j
+(p7) fma.s1 fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65
+ nop.i 0
+}
+{ .mfb
+ nop.m 0
+(p7) fma.s1 fX3 = fXsq, fNormX, f0 // Small path, x^3
+ // branch out if overflow
+(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW
+}
+;;
+
+{ .mfi
+ addl rN = 0xffff-63, rNJ // biased and shifted n
+ fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
+ extr.u rJ = rNJ , 0 , 6 // bits of j
+}
+;;
+
+{ .mfi
+ shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
+ // check for certain -1
+ fcmp.le.s1 p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG
+ shr rN = rN, 6 // biased n
+}
+{ .mfi
+ nop.m 0
+(p7) fma.s1 fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ ld8 rJ = [rJ]
+ nop.f 0
+ shl rN = rN , 52 // 2^n bits in DP format
+}
+;;
+
+{ .mmi
+ or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
+(p13) mov rTmp = 1 // Make small value for -1 path
+ nop.i 0
+}
+;;
+
+{ .mfi
+ setf.d fT = rN // 2^n
+ // check for possible overflow (only happens if input higher precision)
+(p14) fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+(p7) fma.s1 fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432
+ nop.i 0
+}
+;;
+
+{ .mfi
+(p13) setf.exp fTmp = rTmp // Make small value for -1 path
+ fma.s1 fP = fA3, fR, fA2 // A3*R + A2
+ nop.i 0
+}
+{ .mfb
+ nop.m 0
+ fma.s1 fRSqr = fR, fR, f0 // R^2
+(p13) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0
+}
+;;
+
+{ .mfb
+ nop.m 0
+(p7) fma.s.s0 f8 = fA8765432, fXsq, fNormX // Small path,
+ // result=xsq*A8765432+x
+(p7) br.ret.spnt b0 // Exit if 2^-40 <= |x| < 2^-2
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fms.s1 fTm1 = fT, f1, f1 // T - 1.0
+(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.s.s0 f8 = fP, fT, fTm1
+ br.ret.sptk b0 // Result for main path
+ // minus_one_limit < x < -2^-2
+ // and +2^-2 <= x < overflow_limit
+}
+;;
+
+// Here if x unorm
+EXPM1_UNORM:
+{ .mfb
+ getf.exp rSignexp_x = fNormX // Must recompute if x unorm
+ fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
+ br.cond.sptk EXPM1_COMMON
+}
+;;
+
+// here if result will be -1 and inexact, x <= -24.0
+EXPM1_CERTAIN_MINUS_ONE:
+{ .mfb
+ nop.m 0
+ fms.s.s0 f8 = fTmp, fTmp, f1 // Result -1, and Inexact set
+ br.ret.sptk b0
+}
+;;
+
+EXPM1_POSSIBLE_OVERFLOW:
+
+// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
+// This cannot happen if input is a single, only if input higher precision.
+// Overflow is a possibility, not a certainty.
+
+// Recompute result using status field 2 with user's rounding mode,
+// and wre set. If result is larger than largest single, then we have
+// overflow
+
+{ .mfi
+ mov rGt_ln = 0x1007f // Exponent for largest sgl + 1 ulp
+ fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
+ nop.i 0
+}
+;;
+
+{ .mfi
+ setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
+ fma.s.s2 fWre_urm_f8 = fP, fT, fTm1 // Result with wre set
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40 // Turn off wre in sf2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ nop.f 0
+(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.s.s0 f8 = fP, fT, fTm1
+ br.ret.sptk b0 // Exit if really no overflow
+}
+;;
+
+// here if overflow
+EXPM1_CERTAIN_OVERFLOW:
+{ .mmi
+ addl rTmp = 0x1FFFE, r0;;
+ setf.exp fTmp = rTmp
+ nop.i 999
+}
+;;
+
+{ .mfi
+ alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
+ fmerge.s FR_X = fNormX,fNormX
+ nop.i 0
+}
+{ .mfb
+ mov GR_Parameter_TAG = 43
+ fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
+ br.cond.sptk __libm_error_region
+}
+;;
+
+GLOBAL_IEEE754_END(expm1f)
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 999
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
+{ .mmi
+ stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+.body
+{ .mfi
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ nop.f 0
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+}
+{ .mib
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
+};;
+
+{ .mmi
+ add GR_Parameter_RESULT = 48,sp
+ nop.m 0
+ nop.i 0
+};;
+
+{ .mmi
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
+{ .mib
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region)
+
+
+.type __libm_error_support#,@function
+.global __libm_error_support#