summaryrefslogtreecommitdiff
path: root/ports/sysdeps/ia64/fpu/s_expm1.S
diff options
context:
space:
mode:
Diffstat (limited to 'ports/sysdeps/ia64/fpu/s_expm1.S')
-rw-r--r--ports/sysdeps/ia64/fpu/s_expm1.S886
1 files changed, 886 insertions, 0 deletions
diff --git a/ports/sysdeps/ia64/fpu/s_expm1.S b/ports/sysdeps/ia64/fpu/s_expm1.S
new file mode 100644
index 0000000000..f0b911e295
--- /dev/null
+++ b/ports/sysdeps/ia64/fpu/s_expm1.S
@@ -0,0 +1,886 @@
+.file "exp_m1.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+// History
+//==============================================================
+// 02/02/00 Initial Version
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
+// 07/07/01 Improved speed of all paths
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 11/20/02 Improved speed, algorithm based on exp
+// 03/31/05 Reformatted delimiters between data tables
+
+// API
+//==============================================================
+// double expm1(double)
+
+// Overview of operation
+//==============================================================
+// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
+//
+// 2. |x| < 2^-60
+// Result = x, computed by x + x*x to handle appropriate flags and rounding
+//
+// 3. 2^-60 <= |x| < 2^-2
+// Result determined by 13th order Taylor series polynomial
+// expm1f(x) = x + Q2*x^2 + ... + Q13*x^13
+//
+// 4. x < -48.0
+// Here we know result is essentially -1 + eps, where eps only affects
+// rounded result. Set I.
+//
+// 5. x >= 709.7827
+// Result overflows. Set I, O, and call error support
+//
+// 6. 2^-2 <= x < 709.7827 or -48.0 <= x < -2^-2
+// This is the main path. The algorithm is described below:
+
+// Take the input x. w is "how many log2/128 in x?"
+// w = x * 128/log2
+// n = int(w)
+// x = n log2/128 + r + delta
+
+// n = 128M + index_1 + 2^4 index_2
+// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
+
+// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
+// Construct 2^M
+// Get 2^(index_1/128) from table_1;
+// Get 2^(index_2/8) from table_2;
+// Calculate exp(r) by series by 5th order polynomial
+// r = x - n (log2/128)_high
+// delta = - n (log2/128)_low
+// Calculate exp(delta) as 1 + delta
+
+
+// Special values
+//==============================================================
+// expm1(+0) = +0.0
+// expm1(-0) = -0.0
+
+// expm1(+qnan) = +qnan
+// expm1(-qnan) = -qnan
+// expm1(+snan) = +qnan
+// expm1(-snan) = -qnan
+
+// expm1(-inf) = -1.0
+// expm1(+inf) = +inf
+
+// Overflow and Underflow
+//=======================
+// expm1(x) = largest double normal when
+// x = 709.7827 = 40862e42fefa39ef
+//
+// Underflow is handled as described in case 2 above.
+
+
+// Registers used
+//==============================================================
+// Floating Point registers used:
+// f8, input
+// f9 -> f15, f32 -> f75
+
+// General registers used:
+// r14 -> r40
+
+// Predicate registers used:
+// p6 -> p15
+
+// Assembly macros
+//==============================================================
+
+rRshf = r14
+rAD_TB1 = r15
+rAD_T1 = r15
+rAD_TB2 = r16
+rAD_T2 = r16
+rAD_Ln2_lo = r17
+rAD_P = r17
+
+rN = r18
+rIndex_1 = r19
+rIndex_2_16 = r20
+
+rM = r21
+rBiased_M = r21
+rIndex_1_16 = r22
+rSignexp_x = r23
+rExp_x = r24
+rSig_inv_ln2 = r25
+
+rAD_Q1 = r26
+rAD_Q2 = r27
+rTmp = r27
+rExp_bias = r28
+rExp_mask = r29
+rRshf_2to56 = r30
+
+rGt_ln = r31
+rExp_2tom56 = r31
+
+
+GR_SAVE_B0 = r33
+GR_SAVE_PFS = r34
+GR_SAVE_GP = r35
+GR_SAVE_SP = r36
+
+GR_Parameter_X = r37
+GR_Parameter_Y = r38
+GR_Parameter_RESULT = r39
+GR_Parameter_TAG = r40
+
+
+FR_X = f10
+FR_Y = f1
+FR_RESULT = f8
+
+fRSHF_2TO56 = f6
+fINV_LN2_2TO63 = f7
+fW_2TO56_RSH = f9
+f2TOM56 = f11
+fP5 = f12
+fP54 = f50
+fP5432 = f50
+fP4 = f13
+fP3 = f14
+fP32 = f14
+fP2 = f15
+
+fLn2_by_128_hi = f33
+fLn2_by_128_lo = f34
+
+fRSHF = f35
+fNfloat = f36
+fW = f37
+fR = f38
+fF = f39
+
+fRsq = f40
+fRcube = f41
+
+f2M = f42
+fS1 = f43
+fT1 = f44
+
+fMIN_DBL_OFLOW_ARG = f45
+fMAX_DBL_MINUS_1_ARG = f46
+fMAX_DBL_NORM_ARG = f47
+fP_lo = f51
+fP_hi = f52
+fP = f53
+fS = f54
+
+fNormX = f56
+
+fWre_urm_f8 = f57
+
+fGt_pln = f58
+fTmp = f58
+
+fS2 = f59
+fT2 = f60
+fSm1 = f61
+
+fXsq = f62
+fX6 = f63
+fX4 = f63
+fQ7 = f64
+fQ76 = f64
+fQ7654 = f64
+fQ765432 = f64
+fQ6 = f65
+fQ5 = f66
+fQ54 = f66
+fQ4 = f67
+fQ3 = f68
+fQ32 = f68
+fQ2 = f69
+fQD = f70
+fQDC = f70
+fQDCBA = f70
+fQDCBA98 = f70
+fQDCBA98765432 = f70
+fQC = f71
+fQB = f72
+fQBA = f72
+fQA = f73
+fQ9 = f74
+fQ98 = f74
+fQ8 = f75
+
+// Data tables
+//==============================================================
+
+RODATA
+.align 16
+
+// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
+
+// double-extended 1/ln(2)
+// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
+// 3fff b8aa 3b29 5c17 f0bc
+// For speed the significand will be loaded directly with a movl and setf.sig
+// and the exponent will be bias+63 instead of bias+0. Thus subsequent
+// computations need to scale appropriately.
+// The constant 128/ln(2) is needed for the computation of w. This is also
+// obtained by scaling the computations.
+//
+// Two shifting constants are loaded directly with movl and setf.d.
+// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
+// This constant is added to x*1/ln2 to shift the integer part of
+// x*128/ln2 into the rightmost bits of the significand.
+// The result of this fma is fW_2TO56_RSH.
+// 2. fRSHF = 1.1000..00 * 2^(63)
+// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
+// the integer part of w, n, as a floating-point number.
+// The result of this fms is fNfloat.
+
+
+LOCAL_OBJECT_START(exp_Table_1)
+data8 0x40862e42fefa39f0 // smallest dbl overflow arg
+data8 0xc048000000000000 // approx largest arg for minus one result
+data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
+data8 0x0 // pad
+data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
+data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
+//
+// Table 1 is 2^(index_1/128) where
+// index_1 goes from 0 to 15
+//
+data8 0x8000000000000000 , 0x00003FFF
+data8 0x80B1ED4FD999AB6C , 0x00003FFF
+data8 0x8164D1F3BC030773 , 0x00003FFF
+data8 0x8218AF4373FC25EC , 0x00003FFF
+data8 0x82CD8698AC2BA1D7 , 0x00003FFF
+data8 0x8383594EEFB6EE37 , 0x00003FFF
+data8 0x843A28C3ACDE4046 , 0x00003FFF
+data8 0x84F1F656379C1A29 , 0x00003FFF
+data8 0x85AAC367CC487B15 , 0x00003FFF
+data8 0x8664915B923FBA04 , 0x00003FFF
+data8 0x871F61969E8D1010 , 0x00003FFF
+data8 0x87DB357FF698D792 , 0x00003FFF
+data8 0x88980E8092DA8527 , 0x00003FFF
+data8 0x8955EE03618E5FDD , 0x00003FFF
+data8 0x8A14D575496EFD9A , 0x00003FFF
+data8 0x8AD4C6452C728924 , 0x00003FFF
+LOCAL_OBJECT_END(exp_Table_1)
+
+// Table 2 is 2^(index_1/8) where
+// index_2 goes from 0 to 7
+LOCAL_OBJECT_START(exp_Table_2)
+data8 0x8000000000000000 , 0x00003FFF
+data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
+data8 0x9837F0518DB8A96F , 0x00003FFF
+data8 0xA5FED6A9B15138EA , 0x00003FFF
+data8 0xB504F333F9DE6484 , 0x00003FFF
+data8 0xC5672A115506DADD , 0x00003FFF
+data8 0xD744FCCAD69D6AF4 , 0x00003FFF
+data8 0xEAC0C6E7DD24392F , 0x00003FFF
+LOCAL_OBJECT_END(exp_Table_2)
+
+
+LOCAL_OBJECT_START(exp_p_table)
+data8 0x3f8111116da21757 //P5
+data8 0x3fa55555d787761c //P4
+data8 0x3fc5555555555414 //P3
+data8 0x3fdffffffffffd6a //P2
+LOCAL_OBJECT_END(exp_p_table)
+
+LOCAL_OBJECT_START(exp_Q1_table)
+data8 0x3de6124613a86d09 // QD = 1/13!
+data8 0x3e21eed8eff8d898 // QC = 1/12!
+data8 0x3ec71de3a556c734 // Q9 = 1/9!
+data8 0x3efa01a01a01a01a // Q8 = 1/8!
+data8 0x8888888888888889,0x3ff8 // Q5 = 1/5!
+data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3!
+data8 0x0,0x0 // Pad to avoid bank conflicts
+LOCAL_OBJECT_END(exp_Q1_table)
+
+LOCAL_OBJECT_START(exp_Q2_table)
+data8 0x3e5ae64567f544e4 // QB = 1/11!
+data8 0x3e927e4fb7789f5c // QA = 1/10!
+data8 0x3f2a01a01a01a01a // Q7 = 1/7!
+data8 0x3f56c16c16c16c17 // Q6 = 1/6!
+data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4!
+data8 0x8000000000000000,0x3ffe // Q2 = 1/2!
+LOCAL_OBJECT_END(exp_Q2_table)
+
+
+.section .text
+GLOBAL_IEEE754_ENTRY(expm1)
+
+{ .mlx
+ getf.exp rSignexp_x = f8 // Must recompute if x unorm
+ movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // signif of 1/ln2
+}
+{ .mlx
+ addl rAD_TB1 = @ltoff(exp_Table_1), gp
+ movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
+}
+;;
+
+// We do this fnorm right at the beginning to normalize
+// any input unnormals so that SWA is not taken.
+{ .mfi
+ ld8 rAD_TB1 = [rAD_TB1]
+ fclass.m p6,p0 = f8,0x0b // Test for x=unorm
+ mov rExp_mask = 0x1ffff
+}
+{ .mfi
+ mov rExp_bias = 0xffff
+ fnorm.s1 fNormX = f8
+ mov rExp_2tom56 = 0xffff-56
+}
+;;
+
+// Form two constants we need
+// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
+// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
+
+{ .mfi
+ setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
+ fclass.m p8,p0 = f8,0x07 // Test for x=0
+ nop.i 0
+}
+{ .mlx
+ setf.d fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56)
+ movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for rshift
+}
+;;
+
+{ .mfi
+ setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
+ fclass.m p9,p0 = f8,0x22 // Test for x=-inf
+ add rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2
+}
+{ .mib
+ add rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path
+ add rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo
+(p6) br.cond.spnt EXPM1_UNORM // Branch if x unorm
+}
+;;
+
+EXPM1_COMMON:
+{ .mfi
+ ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16
+ fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, NaN, NaT
+ add rAD_Q2 = 0x50, rAD_Q1 // Point to Q table for small path
+}
+{ .mfb
+ nop.m 0
+ nop.f 0
+(p8) br.ret.spnt b0 // Exit for x=0, return x
+}
+;;
+
+{ .mfi
+ ldfd fMAX_DBL_NORM_ARG = [rAD_TB1],16
+ nop.f 0
+ and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+}
+{ .mfb
+ setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
+(p9) fms.d.s0 f8 = f0,f0,f1 // quick exit for x=-inf
+(p9) br.ret.spnt b0
+}
+;;
+
+{ .mfi
+ ldfpd fQD, fQC = [rAD_Q1], 16 // Load coeff for small path
+ nop.f 0
+ sub rExp_x = rExp_x, rExp_bias // True exponent of x
+}
+{ .mfb
+ ldfpd fQB, fQA = [rAD_Q2], 16 // Load coeff for small path
+(p10) fma.d.s0 f8 = f8, f1, f0 // For x=+inf, NaN, NaT
+(p10) br.ret.spnt b0 // Exit for x=+inf, NaN, NaT
+}
+;;
+
+{ .mfi
+ ldfpd fQ9, fQ8 = [rAD_Q1], 16 // Load coeff for small path
+ fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
+ cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)
+}
+{ .mfi
+ ldfpd fQ7, fQ6 = [rAD_Q2], 16 // Load coeff for small path
+ nop.f 0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ ldfe fQ5 = [rAD_Q1], 16 // Load coeff for small path
+ nop.f 0
+ nop.i 0
+}
+{ .mib
+ ldfe fQ4 = [rAD_Q2], 16 // Load coeff for small path
+(p7) cmp.gt.unc p6, p7 = -60, rExp_x // Test |x| < 2^(-60)
+(p7) br.cond.spnt EXPM1_SMALL // Branch if 2^-60 <= |x| < 2^-2
+}
+;;
+
+// W = X * Inv_log2_by_128
+// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
+// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
+
+{ .mfi
+ ldfe fLn2_by_128_hi = [rAD_TB1],32
+ fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
+ nop.i 0
+}
+{ .mfb
+ ldfe fLn2_by_128_lo = [rAD_Ln2_lo]
+(p6) fma.d.s0 f8 = f8, f8, f8 // If x < 2^-60, result=x+x*x
+(p6) br.ret.spnt b0 // Exit if x < 2^-60
+}
+;;
+
+// Divide arguments into the following categories:
+// Certain minus one p11 - -inf < x <= MAX_DBL_MINUS_1_ARG
+// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
+// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
+//
+// If the input is really a double arg, then there will never be "Possible
+// Overflow" arguments.
+//
+
+// After that last load, rAD_TB1 points to the beginning of table 1
+
+{ .mfi
+ nop.m 0
+ fcmp.ge.s1 p15,p14 = fNormX,fMIN_DBL_OFLOW_ARG
+ nop.i 0
+}
+;;
+
+{ .mfi
+ add rAD_P = 0x80, rAD_TB2
+ fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_MINUS_1_ARG
+ nop.i 0
+}
+;;
+
+{ .mfb
+ ldfpd fP5, fP4 = [rAD_P] ,16
+(p14) fcmp.gt.unc.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG
+(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW
+}
+;;
+
+// Nfloat = round_int(W)
+// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
+// as a twos complement number in the lower bits (that is, it may be negative).
+// That twos complement number (called N) is put into rN.
+
+// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
+// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
+// Thus, fNfloat contains the floating point version of N
+
+{ .mfb
+ ldfpd fP3, fP2 = [rAD_P]
+ fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
+(p11) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE
+}
+;;
+
+{ .mfi
+ getf.sig rN = fW_2TO56_RSH
+ nop.f 0
+ nop.i 0
+}
+;;
+
+// rIndex_1 has index_1
+// rIndex_2_16 has index_2 * 16
+// rBiased_M has M
+// rIndex_1_16 has index_1 * 16
+
+// r = x - Nfloat * ln2_by_128_hi
+// f = 1 - Nfloat * ln2_by_128_lo
+{ .mfi
+ and rIndex_1 = 0x0f, rN
+ fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
+ shr rM = rN, 0x7
+}
+{ .mfi
+ and rIndex_2_16 = 0x70, rN
+ fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
+ nop.i 0
+}
+;;
+
+// rAD_T1 has address of T1
+// rAD_T2 has address if T2
+
+{ .mmi
+ add rBiased_M = rExp_bias, rM
+ add rAD_T2 = rAD_TB2, rIndex_2_16
+ shladd rAD_T1 = rIndex_1, 4, rAD_TB1
+}
+;;
+
+// Create Scale = 2^M
+// Load T1 and T2
+{ .mmi
+ setf.exp f2M = rBiased_M
+ ldfe fT2 = [rAD_T2]
+ nop.i 0
+}
+;;
+
+{ .mfi
+ ldfe fT1 = [rAD_T1]
+ fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP54 = fR, fP5, fP4
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fP32 = fR, fP3, fP2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fRsq = fR, fR, f0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP5432 = fRsq, fP54, fP32
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fS2 = fF,fT2,f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fS1 = f2M,fT1,f0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP = fRsq, fP5432, fR
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fms.s1 fSm1 = fS1,fS2,f1 // S - 1.0
+ nop.i 0
+}
+{ .mfb
+ nop.m 0
+ fma.s1 fS = fS1,fS2,f0
+(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.d.s0 f8 = fS, fP, fSm1
+ br.ret.sptk b0 // Normal path exit
+}
+;;
+
+// Here if 2^-60 <= |x| <2^-2
+// Compute 13th order polynomial
+EXPM1_SMALL:
+{ .mmf
+ ldfe fQ3 = [rAD_Q1], 16
+ ldfe fQ2 = [rAD_Q2], 16
+ fma.s1 fX4 = fXsq, fXsq, f0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fQDC = fQD, fNormX, fQC
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fQBA = fQB, fNormX, fQA
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fQ98 = fQ9, fNormX, fQ8
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fQ76= fQ7, fNormX, fQ6
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fQ54 = fQ5, fNormX, fQ4
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fX6 = fX4, fXsq, f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fQ32= fQ3, fNormX, fQ2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fQDCBA = fQDC, fXsq, fQBA
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fQ7654 = fQ76, fXsq, fQ54
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fQDCBA98 = fQDCBA, fXsq, fQ98
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fQ765432 = fQ7654, fXsq, fQ32
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fQDCBA98765432 = fQDCBA98, fX6, fQ765432
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.d.s0 f8 = fQDCBA98765432, fXsq, fNormX
+ br.ret.sptk b0 // Exit small branch
+}
+;;
+
+
+EXPM1_POSSIBLE_OVERFLOW:
+
+// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
+// This cannot happen if input is a double, only if input higher precision.
+// Overflow is a possibility, not a certainty.
+
+// Recompute result using status field 2 with user's rounding mode,
+// and wre set. If result is larger than largest double, then we have
+// overflow
+
+{ .mfi
+ mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
+ fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
+ nop.i 0
+}
+;;
+
+{ .mfi
+ setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
+ fma.d.s2 fWre_urm_f8 = fS, fP, fSm1 // Result with wre set
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40 // Turn off wre in sf2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ nop.f 0
+(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.d.s0 f8 = fS, fP, fSm1
+ br.ret.sptk b0 // Exit if really no overflow
+}
+;;
+
+EXPM1_CERTAIN_OVERFLOW:
+{ .mmi
+ sub rTmp = rExp_mask, r0, 1
+;;
+ setf.exp fTmp = rTmp
+ nop.i 0
+}
+;;
+
+{ .mfi
+ alloc r32=ar.pfs,1,4,4,0
+ fmerge.s FR_X = f8,f8
+ nop.i 0
+}
+{ .mfb
+ mov GR_Parameter_TAG = 41
+ fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
+ br.cond.sptk __libm_error_region
+}
+;;
+
+// Here if x unorm
+EXPM1_UNORM:
+{ .mfb
+ getf.exp rSignexp_x = fNormX // Must recompute if x unorm
+ fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
+ br.cond.sptk EXPM1_COMMON
+}
+;;
+
+// here if result will be -1 and inexact, x <= -48.0
+EXPM1_CERTAIN_MINUS_ONE:
+{ .mmi
+ mov rTmp = 1
+;;
+ setf.exp fTmp = rTmp
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fms.d.s0 FR_RESULT = fTmp, fTmp, f1 // Set I, rounded -1+eps result
+ br.ret.sptk b0
+}
+;;
+
+GLOBAL_IEEE754_END(expm1)
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
+{ .mmi
+ stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+.body
+{ .mib
+ stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
+}
+{ .mib
+ stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
+};;
+{ .mmi
+ add GR_Parameter_RESULT = 48,sp
+ nop.m 0
+ nop.i 0
+};;
+{ .mmi
+ ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
+{ .mib
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region)
+.type __libm_error_support#,@function
+.global __libm_error_support#