summaryrefslogtreecommitdiff
path: root/ports/sysdeps/ia64/fpu/e_cosh.S
diff options
context:
space:
mode:
Diffstat (limited to 'ports/sysdeps/ia64/fpu/e_cosh.S')
-rw-r--r--ports/sysdeps/ia64/fpu/e_cosh.S866
1 files changed, 866 insertions, 0 deletions
diff --git a/ports/sysdeps/ia64/fpu/e_cosh.S b/ports/sysdeps/ia64/fpu/e_cosh.S
new file mode 100644
index 0000000000..885456b389
--- /dev/null
+++ b/ports/sysdeps/ia64/fpu/e_cosh.S
@@ -0,0 +1,866 @@
+.file "cosh.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+// History
+//==============================================================
+// 02/02/00 Initial version
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
+// set [the previously overwritten] GR_Parameter_RESULT.
+// 05/07/01 Reworked to improve speed of all paths
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 11/15/02 Improved speed with new algorithm
+// 03/31/05 Reformatted delimiters between data tables
+
+// API
+//==============================================================
+// double cosh(double)
+
+// Overview of operation
+//==============================================================
+// Case 1: 0 < |x| < 0.25
+// Evaluate cosh(x) by a 12th order polynomial
+// Care is take for the order of multiplication; and A2 is not exactly 1/4!,
+// A3 is not exactly 1/6!, etc.
+// cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8 + A5*x^10 + A6*x^12)
+//
+// Case 2: 0.25 < |x| < 710.47586
+// Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.
+// The algorithm for exp is described as below. There are a number of
+// economies from evaluating both exp(x) and exp(-x). Although we
+// are evaluating both quantities, only where the quantities diverge do we
+// duplicate the computations. The basic algorithm for exp(x) is described
+// below.
+//
+// Take the input x. w is "how many log2/128 in x?"
+// w = x * 128/log2
+// n = int(w)
+// x = n log2/128 + r + delta
+
+// n = 128M + index_1 + 2^4 index_2
+// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
+
+// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
+// Construct 2^M
+// Get 2^(index_1/128) from table_1;
+// Get 2^(index_2/8) from table_2;
+// Calculate exp(r) by 5th order polynomial
+// r = x - n (log2/128)_high
+// delta = - n (log2/128)_low
+// Calculate exp(delta) as 1 + delta
+
+
+// Special values
+//==============================================================
+// cosh(+0) = 1.0
+// cosh(-0) = 1.0
+
+// cosh(+qnan) = +qnan
+// cosh(-qnan) = -qnan
+// cosh(+snan) = +qnan
+// cosh(-snan) = -qnan
+
+// cosh(-inf) = +inf
+// cosh(+inf) = +inf
+
+// Overflow and Underflow
+//=======================
+// cosh(x) = largest double normal when
+// x = 710.47586 = 0x408633ce8fb9f87d
+//
+// There is no underflow.
+
+// Registers used
+//==============================================================
+// Floating Point registers used:
+// f8, input, output
+// f6 -> f15, f32 -> f61
+
+// General registers used:
+// r14 -> r40
+
+// Predicate registers used:
+// p6 -> p15
+
+// Assembly macros
+//==============================================================
+
+rRshf = r14
+rN_neg = r14
+rAD_TB1 = r15
+rAD_TB2 = r16
+rAD_P = r17
+rN = r18
+rIndex_1 = r19
+rIndex_2_16 = r20
+rM = r21
+rBiased_M = r21
+rSig_inv_ln2 = r22
+rIndex_1_neg = r22
+rExp_bias = r23
+rExp_bias_minus_1 = r23
+rExp_mask = r24
+rTmp = r24
+rGt_ln = r24
+rIndex_2_16_neg = r24
+rM_neg = r25
+rBiased_M_neg = r25
+rRshf_2to56 = r26
+rAD_T1_neg = r26
+rExp_2tom56 = r28
+rAD_T2_neg = r28
+rAD_T1 = r29
+rAD_T2 = r30
+rSignexp_x = r31
+rExp_x = r31
+
+GR_SAVE_B0 = r33
+GR_SAVE_PFS = r34
+GR_SAVE_GP = r35
+GR_SAVE_SP = r36
+
+GR_Parameter_X = r37
+GR_Parameter_Y = r38
+GR_Parameter_RESULT = r39
+GR_Parameter_TAG = r40
+
+
+FR_X = f10
+FR_Y = f1
+FR_RESULT = f8
+
+fRSHF_2TO56 = f6
+fINV_LN2_2TO63 = f7
+fW_2TO56_RSH = f9
+f2TOM56 = f11
+fP5 = f12
+fP4 = f13
+fP3 = f14
+fP2 = f15
+
+fLn2_by_128_hi = f33
+fLn2_by_128_lo = f34
+
+fRSHF = f35
+fNfloat = f36
+fNormX = f37
+fR = f38
+fF = f39
+
+fRsq = f40
+f2M = f41
+fS1 = f42
+fT1 = f42
+fS2 = f43
+fT2 = f43
+fS = f43
+fWre_urm_f8 = f44
+fAbsX = f44
+
+fMIN_DBL_OFLOW_ARG = f45
+fMAX_DBL_NORM_ARG = f46
+fXsq = f47
+fX4 = f48
+fGt_pln = f49
+fTmp = f49
+
+fP54 = f50
+fP5432 = f50
+fP32 = f51
+fP = f52
+fP54_neg = f53
+fP5432_neg = f53
+fP32_neg = f54
+fP_neg = f55
+fF_neg = f56
+
+f2M_neg = f57
+fS1_neg = f58
+fT1_neg = f58
+fS2_neg = f59
+fT2_neg = f59
+fS_neg = f59
+fExp = f60
+fExp_neg = f61
+
+fA6 = f50
+fA65 = f50
+fA6543 = f50
+fA654321 = f50
+fA5 = f51
+fA4 = f52
+fA43 = f52
+fA3 = f53
+fA2 = f54
+fA21 = f54
+fA1 = f55
+
+// Data tables
+//==============================================================
+
+RODATA
+.align 16
+
+// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
+
+// double-extended 1/ln(2)
+// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
+// 3fff b8aa 3b29 5c17 f0bc
+// For speed the significand will be loaded directly with a movl and setf.sig
+// and the exponent will be bias+63 instead of bias+0. Thus subsequent
+// computations need to scale appropriately.
+// The constant 128/ln(2) is needed for the computation of w. This is also
+// obtained by scaling the computations.
+//
+// Two shifting constants are loaded directly with movl and setf.d.
+// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
+// This constant is added to x*1/ln2 to shift the integer part of
+// x*128/ln2 into the rightmost bits of the significand.
+// The result of this fma is fW_2TO56_RSH.
+// 2. fRSHF = 1.1000..00 * 2^(63)
+// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
+// the integer part of w, n, as a floating-point number.
+// The result of this fms is fNfloat.
+
+
+LOCAL_OBJECT_START(exp_table_1)
+data8 0x408633ce8fb9f87e // smallest dbl overflow arg
+data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result
+data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
+data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
+//
+// Table 1 is 2^(index_1/128) where
+// index_1 goes from 0 to 15
+//
+data8 0x8000000000000000 , 0x00003FFF
+data8 0x80B1ED4FD999AB6C , 0x00003FFF
+data8 0x8164D1F3BC030773 , 0x00003FFF
+data8 0x8218AF4373FC25EC , 0x00003FFF
+data8 0x82CD8698AC2BA1D7 , 0x00003FFF
+data8 0x8383594EEFB6EE37 , 0x00003FFF
+data8 0x843A28C3ACDE4046 , 0x00003FFF
+data8 0x84F1F656379C1A29 , 0x00003FFF
+data8 0x85AAC367CC487B15 , 0x00003FFF
+data8 0x8664915B923FBA04 , 0x00003FFF
+data8 0x871F61969E8D1010 , 0x00003FFF
+data8 0x87DB357FF698D792 , 0x00003FFF
+data8 0x88980E8092DA8527 , 0x00003FFF
+data8 0x8955EE03618E5FDD , 0x00003FFF
+data8 0x8A14D575496EFD9A , 0x00003FFF
+data8 0x8AD4C6452C728924 , 0x00003FFF
+LOCAL_OBJECT_END(exp_table_1)
+
+// Table 2 is 2^(index_1/8) where
+// index_2 goes from 0 to 7
+LOCAL_OBJECT_START(exp_table_2)
+data8 0x8000000000000000 , 0x00003FFF
+data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
+data8 0x9837F0518DB8A96F , 0x00003FFF
+data8 0xA5FED6A9B15138EA , 0x00003FFF
+data8 0xB504F333F9DE6484 , 0x00003FFF
+data8 0xC5672A115506DADD , 0x00003FFF
+data8 0xD744FCCAD69D6AF4 , 0x00003FFF
+data8 0xEAC0C6E7DD24392F , 0x00003FFF
+LOCAL_OBJECT_END(exp_table_2)
+
+LOCAL_OBJECT_START(exp_p_table)
+data8 0x3f8111116da21757 //P5
+data8 0x3fa55555d787761c //P4
+data8 0x3fc5555555555414 //P3
+data8 0x3fdffffffffffd6a //P2
+LOCAL_OBJECT_END(exp_p_table)
+
+LOCAL_OBJECT_START(cosh_p_table)
+data8 0x8FA02AC65BCBD5BC, 0x00003FE2 // A6
+data8 0xD00D00D1021D7370, 0x00003FEF // A4
+data8 0xAAAAAAAAAAAAAB80, 0x00003FFA // A2
+data8 0x93F27740C0C2F1CC, 0x00003FE9 // A5
+data8 0xB60B60B60B4FE884, 0x00003FF5 // A3
+data8 0x8000000000000000, 0x00003FFE // A1
+LOCAL_OBJECT_END(cosh_p_table)
+
+
+.section .text
+GLOBAL_IEEE754_ENTRY(cosh)
+
+{ .mlx
+ getf.exp rSignexp_x = f8 // Must recompute if x unorm
+ movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
+}
+{ .mlx
+ addl rAD_TB1 = @ltoff(exp_table_1), gp
+ movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
+}
+;;
+
+{ .mfi
+ ld8 rAD_TB1 = [rAD_TB1]
+ fclass.m p6,p0 = f8,0x0b // Test for x=unorm
+ mov rExp_mask = 0x1ffff
+}
+{ .mfi
+ mov rExp_bias = 0xffff
+ fnorm.s1 fNormX = f8
+ mov rExp_2tom56 = 0xffff-56
+}
+;;
+
+// Form two constants we need
+// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
+// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
+
+{ .mfi
+ setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
+ fclass.m p8,p0 = f8,0x07 // Test for x=0
+ nop.i 999
+}
+{ .mlx
+ setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
+ movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
+}
+;;
+
+{ .mfi
+ ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16
+ fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT
+ nop.i 0
+}
+{ .mfb
+ setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
+ nop.f 0
+(p6) br.cond.spnt COSH_UNORM // Branch if x=unorm
+}
+;;
+
+COSH_COMMON:
+{ .mfi
+ ldfe fLn2_by_128_hi = [rAD_TB1],16
+ nop.f 0
+ nop.i 0
+}
+{ .mfb
+ setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
+(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0
+(p8) br.ret.spnt b0
+}
+;;
+
+{ .mfi
+ ldfe fLn2_by_128_lo = [rAD_TB1],16
+ nop.f 0
+ nop.i 0
+}
+{ .mfb
+ and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=inf, nan, NaT
+(p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT
+}
+;;
+
+// After that last load rAD_TB1 points to the beginning of table 1
+{ .mfi
+ nop.m 0
+ fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
+ sub rExp_x = rExp_x, rExp_bias // True exponent of x
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fmerge.s fAbsX = f0, fNormX // Form |x|
+ nop.i 0
+}
+{ .mfb
+ cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
+ fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
+(p7) br.cond.spnt COSH_SMALL // Branch if 0 < |x| < 2^-2
+}
+;;
+
+// W = X * Inv_log2_by_128
+// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
+// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
+
+{ .mfi
+ add rAD_P = 0x180, rAD_TB1
+ fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
+ add rAD_TB2 = 0x100, rAD_TB1
+}
+;;
+
+// Divide arguments into the following categories:
+// Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG
+// Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG
+// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf
+//
+// If the input is really a double arg, then there will never be
+// "Possible Overflow" arguments.
+//
+
+{ .mfi
+ ldfpd fP5, fP4 = [rAD_P] ,16
+ fcmp.ge.s1 p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG
+ nop.i 0
+}
+;;
+
+// Nfloat = round_int(W)
+// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
+// as a twos complement number in the lower bits (that is, it may be negative).
+// That twos complement number (called N) is put into rN.
+
+// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
+// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
+// Thus, fNfloat contains the floating point version of N
+
+{ .mfi
+ ldfpd fP3, fP2 = [rAD_P]
+(p14) fcmp.gt.unc.s1 p14,p0 = fAbsX,fMAX_DBL_NORM_ARG
+ nop.i 0
+}
+{ .mfb
+ nop.m 0
+ fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
+(p15) br.cond.spnt COSH_CERTAIN_OVERFLOW
+}
+;;
+
+{ .mfi
+ getf.sig rN = fW_2TO56_RSH
+ nop.f 0
+ mov rExp_bias_minus_1 = 0xfffe
+}
+;;
+
+// rIndex_1 has index_1
+// rIndex_2_16 has index_2 * 16
+// rBiased_M has M
+
+// rM has true M
+// r = x - Nfloat * ln2_by_128_hi
+// f = 1 - Nfloat * ln2_by_128_lo
+{ .mfi
+ and rIndex_1 = 0x0f, rN
+ fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
+ shr rM = rN, 0x7
+}
+{ .mfi
+ and rIndex_2_16 = 0x70, rN
+ fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
+ sub rN_neg = r0, rN
+}
+;;
+
+{ .mmi
+ and rIndex_1_neg = 0x0f, rN_neg
+ add rBiased_M = rExp_bias_minus_1, rM
+ shr rM_neg = rN_neg, 0x7
+}
+{ .mmi
+ and rIndex_2_16_neg = 0x70, rN_neg
+ add rAD_T2 = rAD_TB2, rIndex_2_16
+ shladd rAD_T1 = rIndex_1, 4, rAD_TB1
+}
+;;
+
+// rAD_T1 has address of T1
+// rAD_T2 has address if T2
+
+{ .mmi
+ setf.exp f2M = rBiased_M
+ ldfe fT2 = [rAD_T2]
+ nop.i 0
+}
+{ .mmi
+ add rBiased_M_neg = rExp_bias_minus_1, rM_neg
+ add rAD_T2_neg = rAD_TB2, rIndex_2_16_neg
+ shladd rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1
+}
+;;
+
+// Create Scale = 2^M
+// Load T1 and T2
+{ .mmi
+ ldfe fT1 = [rAD_T1]
+ nop.m 0
+ nop.i 0
+}
+{ .mmf
+ setf.exp f2M_neg = rBiased_M_neg
+ ldfe fT2_neg = [rAD_T2_neg]
+ fma.s1 fF_neg = fNfloat, fLn2_by_128_lo, f1
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fRsq = fR, fR, f0
+ nop.i 0
+}
+{ .mfi
+ ldfe fT1_neg = [rAD_T1_neg]
+ fma.s1 fP54 = fR, fP5, fP4
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP32 = fR, fP3, fP2
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fnma.s1 fP54_neg = fR, fP5, fP4
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fnma.s1 fP32_neg = fR, fP3, fP2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP5432 = fRsq, fP54, fP32
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fS2 = fF,fT2,f0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fS1 = f2M,fT1,f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fP5432_neg = fRsq, fP54_neg, fP32_neg
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fS1_neg = f2M_neg,fT1_neg,f0
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fS2_neg = fF_neg,fT2_neg,f0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fP = fRsq, fP5432, fR
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fS = fS1,fS2,f0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fms.s1 fP_neg = fRsq, fP5432_neg, fR
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fS_neg = fS1_neg,fS2_neg,f0
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
+(p14) br.cond.spnt COSH_POSSIBLE_OVERFLOW
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fExp = fS, fP, fS
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fExp_neg = fS_neg, fP_neg, fS_neg
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.d.s0 f8 = fExp, f1, fExp_neg
+ br.ret.sptk b0 // Normal path exit
+}
+;;
+
+// Here if 0 < |x| < 0.25
+COSH_SMALL:
+{ .mmf
+ add rAD_T1 = 0x1a0, rAD_TB1
+ add rAD_T2 = 0x1d0, rAD_TB1
+}
+;;
+
+{ .mmf
+ ldfe fA6 = [rAD_T1],16
+ ldfe fA5 = [rAD_T2],16
+ nop.f 0
+}
+;;
+
+{ .mmi
+ ldfe fA4 = [rAD_T1],16
+ ldfe fA3 = [rAD_T2],16
+ nop.i 0
+}
+;;
+
+{ .mmi
+ ldfe fA2 = [rAD_T1],16
+ ldfe fA1 = [rAD_T2],16
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fX4 = fXsq, fXsq, f0
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fA65 = fXsq, fA6, fA5
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s1 fA43 = fXsq, fA4, fA3
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fA21 = fXsq, fA2, fA1
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fA6543 = fX4, fA65, fA43
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fma.s1 fA654321 = fX4, fA6543, fA21
+ nop.i 0
+}
+;;
+
+// Dummy multiply to generate inexact
+{ .mfi
+ nop.m 0
+ fmpy.s0 fTmp = fA6, fA6
+ nop.i 0
+}
+{ .mfb
+ nop.m 0
+ fma.d.s0 f8 = fA654321, fXsq, f1
+ br.ret.sptk b0 // Exit if 0 < |x| < 0.25
+}
+;;
+
+
+COSH_POSSIBLE_OVERFLOW:
+
+// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG
+// This cannot happen if input is a double, only if input higher precision.
+// Overflow is a possibility, not a certainty.
+
+// Recompute result using status field 2 with user's rounding mode,
+// and wre set. If result is larger than largest double, then we have
+// overflow
+
+{ .mfi
+ mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
+ fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
+ nop.i 0
+}
+;;
+
+{ .mfi
+ setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
+ fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fsetc.s2 0x7F,0x40 // Turn off wre in sf2
+ nop.i 0
+}
+;;
+
+{ .mfi
+ nop.m 0
+ fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
+ nop.i 0
+}
+;;
+
+{ .mfb
+ nop.m 0
+ nop.f 0
+(p6) br.cond.spnt COSH_CERTAIN_OVERFLOW // Branch if overflow
+}
+;;
+
+{ .mfb
+ nop.m 0
+ fma.d.s0 f8 = fS, fP, fS
+ br.ret.sptk b0 // Exit if really no overflow
+}
+;;
+
+COSH_CERTAIN_OVERFLOW:
+{ .mmi
+ sub rTmp = rExp_mask, r0, 1
+;;
+ setf.exp fTmp = rTmp
+ nop.i 0
+}
+;;
+
+{ .mfi
+ alloc r32=ar.pfs,1,4,4,0
+ fmerge.s FR_X = f8,f8
+ nop.i 0
+}
+{ .mfb
+ mov GR_Parameter_TAG = 64
+ fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
+ br.cond.sptk __libm_error_region
+}
+;;
+
+// Here if x unorm
+COSH_UNORM:
+{ .mfb
+ getf.exp rSignexp_x = fNormX // Must recompute if x unorm
+ fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
+ br.cond.sptk COSH_COMMON
+}
+;;
+
+GLOBAL_IEEE754_END(cosh)
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
+{ .mmi
+ stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+.body
+{ .mib
+ stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ nop.b 0
+}
+{ .mib
+ stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
+};;
+{ .mmi
+ add GR_Parameter_RESULT = 48,sp
+ nop.m 0
+ nop.i 0
+};;
+{ .mmi
+ ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
+{ .mib
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region)
+.type __libm_error_support#,@function
+.global __libm_error_support#