summaryrefslogtreecommitdiff
path: root/manual/=limits.texinfo
diff options
context:
space:
mode:
Diffstat (limited to 'manual/=limits.texinfo')
-rw-r--r--manual/=limits.texinfo106
1 files changed, 53 insertions, 53 deletions
diff --git a/manual/=limits.texinfo b/manual/=limits.texinfo
index 3e384dd6b6..7b55d70465 100644
--- a/manual/=limits.texinfo
+++ b/manual/=limits.texinfo
@@ -12,7 +12,7 @@ floating-point types supported by the GNU C library.
* Floating-Point Limits :: Parameters which characterize
supported floating-point
representations on a particular
- system.
+ system.
@end menu
@node Integer Representation Limits, Floating-Point Limits , , Representation Limits
@@ -37,32 +37,32 @@ macros are all integer constant expressions.
@pindex limits.h
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int CHAR_BIT
This is the number of bits in a @code{char}, usually eight.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int SCHAR_MIN
This is the minimum value that can be represented by a @code{signed char}.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int SCHAR_MAX
This is the maximum value that can be represented by a @code{signed char}.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int UCHAR_MAX
This is the maximum value that can be represented by a @code{unsigned char}.
(The minimum value of an @code{unsigned char} is zero.)
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int CHAR_MIN
This is the minimum value that can be represented by a @code{char}.
It's equal to @code{SCHAR_MIN} if @code{char} is signed, or zero
@@ -70,7 +70,7 @@ otherwise.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int CHAR_MAX
This is the maximum value that can be represented by a @code{char}.
It's equal to @code{SCHAR_MAX} if @code{char} is signed, or
@@ -78,7 +78,7 @@ It's equal to @code{SCHAR_MAX} if @code{char} is signed, or
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int SHRT_MIN
This is the minimum value that can be represented by a @code{signed
short int}. On most machines that the GNU C library runs on,
@@ -86,21 +86,21 @@ short int}. On most machines that the GNU C library runs on,
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int SHRT_MAX
This is the maximum value that can be represented by a @code{signed
short int}.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int USHRT_MAX
This is the maximum value that can be represented by an @code{unsigned
short int}. (The minimum value of an @code{unsigned short int} is zero.)
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int INT_MIN
This is the minimum value that can be represented by a @code{signed
int}. On most machines that the GNU C system runs on, an @code{int} is
@@ -108,21 +108,21 @@ a 32-bit quantity.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int INT_MAX
This is the maximum value that can be represented by a @code{signed
int}.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {unsigned int} UINT_MAX
This is the maximum value that can be represented by an @code{unsigned
int}. (The minimum value of an @code{unsigned int} is zero.)
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {long int} LONG_MIN
This is the minimum value that can be represented by a @code{signed long
int}. On most machines that the GNU C system runs on, @code{long}
@@ -130,14 +130,14 @@ integers are 32-bit quantities, the same size as @code{int}.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {long int} LONG_MAX
This is the maximum value that can be represented by a @code{signed long
int}.
@end deftypevr
@comment limits.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {unsigned long int} ULONG_MAX
This is the maximum value that can be represented by an @code{unsigned
long int}. (The minimum value of an @code{unsigned long int} is zero.)
@@ -180,9 +180,9 @@ particular system.
@menu
* Floating-Point Representation:: Definitions of terminology.
* Floating-Point Parameters:: Descriptions of the library
- facilities.
+ facilities.
* IEEE Floating Point:: An example of a common
- representation.
+ representation.
@end menu
@node Floating-Point Representation, Floating-Point Parameters, , Floating-Point Limits
@@ -233,7 +233,7 @@ unsigned integer.
@cindex mantissa (of floating-point number)
@cindex significand (of floating-point number)
-@item
+@item
The @dfn{precision} of the mantissa. If the base of the representation
is @var{b}, then the precision is the number of base-@var{b} digits in
the mantissa. This is a constant for the particular representation.
@@ -286,14 +286,14 @@ expression. The other macros listed here cannot be reliably used in
places that require constant expressions, such as @samp{#if}
preprocessing directives or array size specifications.
-Although the ANSI C standard specifies minimum and maximum values for
+Although the @w{ISO C} standard specifies minimum and maximum values for
most of these parameters, the GNU C implementation uses whatever
floating-point representations are supported by the underlying hardware.
-So whether GNU C actually satisfies the ANSI C requirements depends on
+So whether GNU C actually satisfies the @w{ISO C} requirements depends on
what machine it is running on.
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_ROUNDS
This value characterizes the rounding mode for floating-point addition.
The following values indicate standard rounding modes:
@@ -317,7 +317,7 @@ mode.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_RADIX
This is the value of the base, or radix, of exponent representation.
This is guaranteed to be a constant expression, unlike the other macros
@@ -325,28 +325,28 @@ described in this section.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_MANT_DIG
This is the number of base-@code{FLT_RADIX} digits in the floating-point
mantissa for the @code{float} data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int DBL_MANT_DIG
This is the number of base-@code{FLT_RADIX} digits in the floating-point
mantissa for the @code{double} data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int LDBL_MANT_DIG
This is the number of base-@code{FLT_RADIX} digits in the floating-point
mantissa for the @code{long double} data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_DIG
This is the number of decimal digits of precision for the @code{float}
data type. Technically, if @var{p} and @var{b} are the precision and
@@ -360,14 +360,14 @@ The value of this macro is guaranteed to be at least @code{6}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int DBL_DIG
This is similar to @code{FLT_DIG}, but is for the @code{double} data
type. The value of this macro is guaranteed to be at least @code{10}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int LDBL_DIG
This is similar to @code{FLT_DIG}, but is for the @code{long double}
data type. The value of this macro is guaranteed to be at least
@@ -375,7 +375,7 @@ data type. The value of this macro is guaranteed to be at least
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_MIN_EXP
This is the minimum negative integer such that the mathematical value
@code{FLT_RADIX} raised to this power minus 1 can be represented as a
@@ -385,21 +385,21 @@ represented in the exponent field of the number.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int DBL_MIN_EXP
This is similar to @code{FLT_MIN_EXP}, but is for the @code{double} data
type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int LDBL_MIN_EXP
This is similar to @code{FLT_MIN_EXP}, but is for the @code{long double}
data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_MIN_10_EXP
This is the minimum negative integer such that the mathematical value
@code{10} raised to this power minus 1 can be represented as a
@@ -408,14 +408,14 @@ guaranteed to be no greater than @code{-37}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int DBL_MIN_10_EXP
This is similar to @code{FLT_MIN_10_EXP}, but is for the @code{double}
data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int LDBL_MIN_10_EXP
This is similar to @code{FLT_MIN_10_EXP}, but is for the @code{long
double} data type.
@@ -424,7 +424,7 @@ double} data type.
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_MAX_EXP
This is the maximum negative integer such that the mathematical value
@code{FLT_RADIX} raised to this power minus 1 can be represented as a
@@ -434,21 +434,21 @@ in the exponent field of the number.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int DBL_MAX_EXP
This is similar to @code{FLT_MAX_EXP}, but is for the @code{double} data
type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int LDBL_MAX_EXP
This is similar to @code{FLT_MAX_EXP}, but is for the @code{long double}
data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int FLT_MAX_10_EXP
This is the maximum negative integer such that the mathematical value
@code{10} raised to this power minus 1 can be represented as a
@@ -457,14 +457,14 @@ guaranteed to be at least @code{37}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int DBL_MAX_10_EXP
This is similar to @code{FLT_MAX_10_EXP}, but is for the @code{double}
data type.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro int LDBL_MAX_10_EXP
This is similar to @code{FLT_MAX_10_EXP}, but is for the @code{long
double} data type.
@@ -472,7 +472,7 @@ double} data type.
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro double FLT_MAX
The value of this macro is the maximum representable floating-point
number of type @code{float}, and is guaranteed to be at least
@@ -480,7 +480,7 @@ number of type @code{float}, and is guaranteed to be at least
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro double DBL_MAX
The value of this macro is the maximum representable floating-point
number of type @code{double}, and is guaranteed to be at least
@@ -488,7 +488,7 @@ number of type @code{double}, and is guaranteed to be at least
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {long double} LDBL_MAX
The value of this macro is the maximum representable floating-point
number of type @code{long double}, and is guaranteed to be at least
@@ -497,7 +497,7 @@ number of type @code{long double}, and is guaranteed to be at least
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro double FLT_MIN
The value of this macro is the minimum normalized positive
floating-point number that is representable by type @code{float}, and is
@@ -505,7 +505,7 @@ guaranteed to be no more than @code{1E-37}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro double DBL_MIN
The value of this macro is the minimum normalized positive
floating-point number that is representable by type @code{double}, and
@@ -513,7 +513,7 @@ is guaranteed to be no more than @code{1E-37}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {long double} LDBL_MIN
The value of this macro is the minimum normalized positive
floating-point number that is representable by type @code{long double},
@@ -522,7 +522,7 @@ and is guaranteed to be no more than @code{1E-37}.
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro double FLT_EPSILON
This is the minimum positive floating-point number of type @code{float}
such that @code{1.0 + FLT_EPSILON != 1.0} is true. It's guaranteed to
@@ -530,14 +530,14 @@ be no greater than @code{1E-5}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro double DBL_EPSILON
This is similar to @code{FLT_EPSILON}, but is for the @code{double}
type. The maximum value is @code{1E-9}.
@end deftypevr
@comment float.h
-@comment ANSI
+@comment ISO
@deftypevr Macro {long double} LDBL_EPSILON
This is similar to @code{FLT_EPSILON}, but is for the @code{long double}
type. The maximum value is @code{1E-9}.
@@ -546,15 +546,15 @@ type. The maximum value is @code{1E-9}.
@node IEEE Floating Point, , Floating-Point Parameters, Floating-Point Limits
@subsection IEEE Floating Point
-@cindex IEEE floating-point representation
+@cindex IEEE floating-point representation
@cindex floating-point, IEEE
@cindex IEEE Std 754
Here is an example showing how these parameters work for a common
floating point representation, specified by the @cite{IEEE Standard for
-Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)}. Nearly
-all computers today use this format.
+Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985 or ANSI/IEEE
+Std 854-1987)}. Nearly all computers today use this format.
The IEEE single-precision float representation uses a base of 2. There
is a sign bit, a mantissa with 23 bits plus one hidden bit (so the total