summaryrefslogtreecommitdiff
path: root/sysdeps/libm-i387/e_powf.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
committerUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
commitabfbdde177c3a7155070dda1b2cdc8292054cc26 (patch)
treee021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/libm-i387/e_powf.S
parent86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff)
Update.
Diffstat (limited to 'sysdeps/libm-i387/e_powf.S')
-rw-r--r--sysdeps/libm-i387/e_powf.S310
1 files changed, 0 insertions, 310 deletions
diff --git a/sysdeps/libm-i387/e_powf.S b/sysdeps/libm-i387/e_powf.S
deleted file mode 100644
index d7342bf56f..0000000000
--- a/sysdeps/libm-i387/e_powf.S
+++ /dev/null
@@ -1,310 +0,0 @@
-/* ix87 specific implementation of pow function.
- Copyright (C) 1996, 1997 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
-
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If not,
- write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include <machine/asm.h>
-
-#ifdef __ELF__
- .section .rodata
-#else
- .text
-#endif
-
- .align ALIGNARG(4)
- ASM_TYPE_DIRECTIVE(infinity,@object)
-inf_zero:
-infinity:
- .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
- ASM_SIZE_DIRECTIVE(infinity)
- ASM_TYPE_DIRECTIVE(zero,@object)
-zero: .double 0.0
- ASM_SIZE_DIRECTIVE(zero)
- ASM_TYPE_DIRECTIVE(minf_mzero,@object)
-minf_mzero:
-minfinity:
- .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
-mzero:
- .byte 0, 0, 0, 0, 0, 0, 0, 0x80
- ASM_SIZE_DIRECTIVE(minf_mzero)
- ASM_TYPE_DIRECTIVE(one,@object)
-one: .double 1.0
- ASM_SIZE_DIRECTIVE(one)
- ASM_TYPE_DIRECTIVE(limit,@object)
-limit: .double 0.29
- ASM_SIZE_DIRECTIVE(limit)
-
-#ifdef PIC
-#define MO(op) op##@GOTOFF(%ecx)
-#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
-#else
-#define MO(op) op
-#define MOX(op,x,f) op(,x,f)
-#endif
-
- .text
-ENTRY(__ieee754_powf)
- flds 8(%esp) // y
- fxam
-
-#ifdef PIC
- call 1f
-1: popl %ecx
- addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
-#endif
-
- fnstsw
- movb %ah, %dl
- andb $0x45, %ah
- cmpb $0x40, %ah // is y == 0 ?
- je 11f
-
- cmpb $0x05, %ah // is y == ±inf ?
- je 12f
-
- cmpb $0x01, %ah // is y == NaN ?
- je 30f
-
- flds 4(%esp) // x : y
-
- subl $4, %esp
-
- fxam
- fnstsw
- movb %ah, %dh
- andb $0x45, %ah
- cmpb $0x40, %ah
- je 20f // x is ±0
-
- cmpb $0x05, %ah
- je 15f // x is ±inf
-
- fxch // y : x
-
- /* First see whether `y' is a natural number. In this case we
- can use a more precise algorithm. */
- fld %st // y : y : x
- fistpl (%esp) // y : x
- fildl (%esp) // int(y) : y : x
- fucomp %st(1) // y : x
- fnstsw
- sahf
- jne 2f
-
- /* OK, we have an integer value for y. */
- popl %edx
- orl $0, %edx
- fstp %st(0) // x
- jns 4f // y >= 0, jump
- fdivrl MO(one) // 1/x (now referred to as x)
- negl %edx
-4: fldl MO(one) // 1 : x
- fxch
-
-6: shrl $1, %edx
- jnc 5f
- fxch
- fmul %st(1) // x : ST*x
- fxch
-5: fmul %st(0), %st // x*x : ST*x
- testl %edx, %edx
- jnz 6b
- fstp %st(0) // ST*x
-30: ret
-
- .align ALIGNARG(4)
-2: /* y is a real number. */
- fxch // x : y
- fldl MO(one) // 1.0 : x : y
- fld %st(1) // x : 1.0 : x : y
- fsub %st(1) // x-1 : 1.0 : x : y
- fabs // |x-1| : 1.0 : x : y
- fcompl MO(limit) // 1.0 : x : y
- fnstsw
- fxch // x : 1.0 : y
- sahf
- ja 7f
- fsub %st(1) // x-1 : 1.0 : y
- fyl2xp1 // log2(x) : y
- jmp 8f
-
-7: fyl2x // log2(x) : y
-8: fmul %st(1) // y*log2(x) : y
- fst %st(1) // y*log2(x) : y*log2(x)
- frndint // int(y*log2(x)) : y*log2(x)
- fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
- fxch // fract(y*log2(x)) : int(y*log2(x))
- f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
- faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
- fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
- addl $4, %esp
- fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
- ret
-
-
- // pow(x,±0) = 1
- .align ALIGNARG(4)
-11: fstp %st(0) // pop y
- fldl MO(one)
- ret
-
- // y == ±inf
- .align ALIGNARG(4)
-12: fstp %st(0) // pop y
- flds 4(%esp) // x
- fabs
- fcompl MO(one) // < 1, == 1, or > 1
- fnstsw
- andb $0x45, %ah
- cmpb $0x45, %ah
- je 13f // jump if x is NaN
-
- cmpb $0x40, %ah
- je 14f // jump if |x| == 1
-
- shlb $1, %ah
- xorb %ah, %dl
- andl $2, %edx
- fldl MOX(inf_zero, %edx, 4)
- ret
-
- .align ALIGNARG(4)
-14: fldl MO(infinity)
- fmull MO(zero) // raise invalid exception
- ret
-
- .align ALIGNARG(4)
-13: flds 4(%esp) // load x == NaN
- ret
-
- .align ALIGNARG(4)
- // x is ±inf
-15: fstp %st(0) // y
- testb $2, %dh
- jz 16f // jump if x == +inf
-
- // We must find out whether y is an odd integer.
- fld %st // y : y
- fistpl (%esp) // y
- fildl (%esp) // int(y) : y
- fucompp // <empty>
- fnstsw
- sahf
- jne 17f
-
- // OK, the value is an integer, but is the number of bits small
- // enough so that all are coming from the mantissa?
- popl %edx
- testb $1, %dl
- jz 18f // jump if not odd
- movl %edx, %eax
- orl %edx, %edx
- jns 155f
- negl %eax
-155: cmpl $0x01000000, %eax
- ja 18f // does not fit in mantissa bits
- // It's an odd integer.
- shrl $31, %edx
- fldl MOX(minf_mzero, %edx, 8)
- ret
-
- .align ALIGNARG(4)
-16: fcompl MO(zero)
- addl $4, %esp
- fnstsw
- shrl $5, %eax
- andl $8, %eax
- fldl MOX(inf_zero, %eax, 1)
- ret
-
- .align ALIGNARG(4)
-17: shll $30, %edx // sign bit for y in right position
- addl $4, %esp
-18: shrl $31, %edx
- fldl MOX(inf_zero, %edx, 8)
- ret
-
- .align ALIGNARG(4)
- // x is ±0
-20: fstp %st(0) // y
- testb $2, %dl
- jz 21f // y > 0
-
- // x is ±0 and y is < 0. We must find out whether y is an odd integer.
- testb $2, %dh
- jz 25f
-
- fld %st // y : y
- fistpl (%esp) // y
- fildl (%esp) // int(y) : y
- fucompp // <empty>
- fnstsw
- sahf
- jne 26f
-
- // OK, the value is an integer, but is the number of bits small
- // enough so that all are coming from the mantissa?
- popl %edx
- testb $1, %dl
- jz 27f // jump if not odd
- cmpl $0xff000000, %edx
- jbe 27f // does not fit in mantissa bits
- // It's an odd integer.
- // Raise divide-by-zero exception and get minus infinity value.
- fldl MO(one)
- fdivl MO(zero)
- fchs
- ret
-
-25: fstp %st(0)
-26: popl %eax
-27: // Raise divide-by-zero exception and get infinity value.
- fldl MO(one)
- fdivl MO(zero)
- ret
-
- .align ALIGNARG(4)
- // x is ±0 and y is > 0. We must find out whether y is an odd integer.
-21: testb $2, %dh
- jz 22f
-
- fld %st // y : y
- fistpl (%esp) // y
- fildl (%esp) // int(y) : y
- fucompp // <empty>
- fnstsw
- sahf
- jne 23f
-
- // OK, the value is an integer, but is the number of bits small
- // enough so that all are coming from the mantissa?
- popl %edx
- testb $1, %dl
- jz 24f // jump if not odd
- cmpl $0xff000000, %edx
- jae 24f // does not fit in mantissa bits
- // It's an odd integer.
- fldl MO(mzero)
- ret
-
-22: fstp %st(0)
-23: popl %eax
-24: fldl MO(zero)
- ret
-
-END(__ieee754_powf)