summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-96/e_jnl.c
diff options
context:
space:
mode:
authorSamuel Thibault <samuel.thibault@ens-lyon.org>2016-08-20 19:50:45 +0200
committerSamuel Thibault <samuel.thibault@ens-lyon.org>2016-08-20 19:50:45 +0200
commit4dd9e35bfd35d3138bc44169baba098005bad51e (patch)
treea4939c43a9c3fe00eb27f023e14acc5e1fe8808c /sysdeps/ieee754/ldbl-96/e_jnl.c
parentbd42a4599d1b6f77bcfe1e4f67b7cbd9e1cb2dfd (diff)
parentf76453c31593957fec1a99b986bfa5506618b79c (diff)
Merge commit 'refs/top-bases/t/bigmem' into t/bigmem
Diffstat (limited to 'sysdeps/ieee754/ldbl-96/e_jnl.c')
-rw-r--r--sysdeps/ieee754/ldbl-96/e_jnl.c522
1 files changed, 272 insertions, 250 deletions
diff --git a/sysdeps/ieee754/ldbl-96/e_jnl.c b/sysdeps/ieee754/ldbl-96/e_jnl.c
index fa8e27efec..2f3a452f55 100644
--- a/sysdeps/ieee754/ldbl-96/e_jnl.c
+++ b/sysdeps/ieee754/ldbl-96/e_jnl.c
@@ -57,6 +57,7 @@
*/
#include <errno.h>
+#include <float.h>
#include <math.h>
#include <math_private.h>
@@ -70,7 +71,7 @@ __ieee754_jnl (int n, long double x)
{
u_int32_t se, i0, i1;
int32_t i, ix, sgn;
- long double a, b, temp, di;
+ long double a, b, temp, di, ret;
long double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
@@ -81,7 +82,7 @@ __ieee754_jnl (int n, long double x)
ix = se & 0x7fff;
/* if J(n,NaN) is NaN */
- if (__builtin_expect ((ix == 0x7fff) && ((i0 & 0x7fffffff) != 0), 0))
+ if (__glibc_unlikely ((ix == 0x7fff) && ((i0 & 0x7fffffff) != 0)))
return x + x;
if (n < 0)
{
@@ -95,195 +96,206 @@ __ieee754_jnl (int n, long double x)
return (__ieee754_j1l (x));
sgn = (n & 1) & (se >> 15); /* even n -- 0, odd n -- sign(x) */
x = fabsl (x);
- if (__builtin_expect ((ix | i0 | i1) == 0 || ix >= 0x7fff, 0))
- /* if x is 0 or inf */
- b = zero;
- else if ((long double) n <= x)
- {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- if (ix >= 0x412D)
- { /* x > 2**302 */
+ {
+ SET_RESTORE_ROUNDL (FE_TONEAREST);
+ if (__glibc_unlikely ((ix | i0 | i1) == 0 || ix >= 0x7fff))
+ /* if x is 0 or inf */
+ return sgn == 1 ? -zero : zero;
+ else if ((long double) n <= x)
+ {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if (ix >= 0x412D)
+ { /* x > 2**302 */
- /* ??? This might be a futile gesture.
- If x exceeds X_TLOSS anyway, the wrapper function
- will set the result to zero. */
+ /* ??? This might be a futile gesture.
+ If x exceeds X_TLOSS anyway, the wrapper function
+ will set the result to zero. */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- long double s;
- long double c;
- __sincosl (x, &s, &c);
- switch (n & 3)
- {
- case 0:
- temp = c + s;
- break;
- case 1:
- temp = -c + s;
- break;
- case 2:
- temp = -c - s;
- break;
- case 3:
- temp = c - s;
- break;
- }
- b = invsqrtpi * temp / __ieee754_sqrtl (x);
- }
- else
- {
- a = __ieee754_j0l (x);
- b = __ieee754_j1l (x);
- for (i = 1; i < n; i++)
- {
- temp = b;
- b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
- a = temp;
- }
- }
- }
- else
- {
- if (ix < 0x3fde)
- { /* x < 2**-33 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if (n >= 400) /* underflow, result < 10^-4952 */
- b = zero;
- else
- {
- temp = x * 0.5;
- b = temp;
- for (a = one, i = 2; i <= n; i++)
- {
- a *= (long double) i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b / a;
- }
- }
- else
- {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- long double t, v;
- long double q0, q1, h, tmp;
- int32_t k, m;
- w = (n + n) / (long double) x;
- h = 2.0L / (long double) x;
- q0 = w;
- z = w + h;
- q1 = w * z - 1.0L;
- k = 1;
- while (q1 < 1.0e11L)
- {
- k += 1;
- z += h;
- tmp = z * q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n + n;
- for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
- t = one / (i / x - t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two / x;
- tmp = tmp * __ieee754_logl (fabsl (v * tmp));
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ long double s;
+ long double c;
+ __sincosl (x, &s, &c);
+ switch (n & 3)
+ {
+ case 0:
+ temp = c + s;
+ break;
+ case 1:
+ temp = -c + s;
+ break;
+ case 2:
+ temp = -c - s;
+ break;
+ case 3:
+ temp = c - s;
+ break;
+ }
+ b = invsqrtpi * temp / __ieee754_sqrtl (x);
+ }
+ else
+ {
+ a = __ieee754_j0l (x);
+ b = __ieee754_j1l (x);
+ for (i = 1; i < n; i++)
+ {
+ temp = b;
+ b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ }
+ else
+ {
+ if (ix < 0x3fde)
+ { /* x < 2**-33 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (n >= 400) /* underflow, result < 10^-4952 */
+ b = zero;
+ else
+ {
+ temp = x * 0.5;
+ b = temp;
+ for (a = one, i = 2; i <= n; i++)
+ {
+ a *= (long double) i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b / a;
+ }
+ }
+ else
+ {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ long double t, v;
+ long double q0, q1, h, tmp;
+ int32_t k, m;
+ w = (n + n) / (long double) x;
+ h = 2.0L / (long double) x;
+ q0 = w;
+ z = w + h;
+ q1 = w * z - 1.0L;
+ k = 1;
+ while (q1 < 1.0e11L)
+ {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n + n;
+ for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+ t = one / (i / x - t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two / x;
+ tmp = tmp * __ieee754_logl (fabsl (v * tmp));
- if (tmp < 1.1356523406294143949491931077970765006170e+04L)
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- }
- }
- else
- {
- for (i = n - 1, di = (long double) (i + i); i > 0; i--)
- {
- temp = b;
- b *= di;
- b = b / x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if (b > 1e100L)
- {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- /* j0() and j1() suffer enormous loss of precision at and
- * near zero; however, we know that their zero points never
- * coincide, so just choose the one further away from zero.
- */
- z = __ieee754_j0l (x);
- w = __ieee754_j1l (x);
- if (fabsl (z) >= fabsl (w))
- b = (t * z / b);
- else
- b = (t * w / a);
- }
+ if (tmp < 1.1356523406294143949491931077970765006170e+04L)
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ }
+ }
+ else
+ {
+ for (i = n - 1, di = (long double) (i + i); i > 0; i--)
+ {
+ temp = b;
+ b *= di;
+ b = b / x - a;
+ a = temp;
+ di -= two;
+ /* scale b to avoid spurious overflow */
+ if (b > 1e100L)
+ {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ }
+ /* j0() and j1() suffer enormous loss of precision at and
+ * near zero; however, we know that their zero points never
+ * coincide, so just choose the one further away from zero.
+ */
+ z = __ieee754_j0l (x);
+ w = __ieee754_j1l (x);
+ if (fabsl (z) >= fabsl (w))
+ b = (t * z / b);
+ else
+ b = (t * w / a);
+ }
+ }
+ if (sgn == 1)
+ ret = -b;
+ else
+ ret = b;
+ }
+ if (ret == 0)
+ ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
+ else if (fabsl (ret) < LDBL_MIN)
+ {
+ long double force_underflow = ret * ret;
+ math_force_eval (force_underflow);
}
- if (sgn == 1)
- return -b;
- else
- return b;
+ return ret;
}
strong_alias (__ieee754_jnl, __jnl_finite)
@@ -293,7 +305,7 @@ __ieee754_ynl (int n, long double x)
u_int32_t se, i0, i1;
int32_t i, ix;
int32_t sign;
- long double a, b, temp;
+ long double a, b, temp, ret;
GET_LDOUBLE_WORDS (se, i0, i1, x);
@@ -314,69 +326,79 @@ __ieee754_ynl (int n, long double x)
}
if (n == 0)
return (__ieee754_y0l (x));
- if (n == 1)
- return (sign * __ieee754_y1l (x));
- if (__builtin_expect (ix == 0x7fff, 0))
- return zero;
- if (ix >= 0x412D)
- { /* x > 2**302 */
+ {
+ SET_RESTORE_ROUNDL (FE_TONEAREST);
+ if (n == 1)
+ {
+ ret = sign * __ieee754_y1l (x);
+ goto out;
+ }
+ if (__glibc_unlikely (ix == 0x7fff))
+ return zero;
+ if (ix >= 0x412D)
+ { /* x > 2**302 */
- /* ??? See comment above on the possible futility of this. */
+ /* ??? See comment above on the possible futility of this. */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- long double s;
- long double c;
- __sincosl (x, &s, &c);
- switch (n & 3)
- {
- case 0:
- temp = s - c;
- break;
- case 1:
- temp = -s - c;
- break;
- case 2:
- temp = -s + c;
- break;
- case 3:
- temp = s + c;
- break;
- }
- b = invsqrtpi * temp / __ieee754_sqrtl (x);
- }
- else
- {
- a = __ieee754_y0l (x);
- b = __ieee754_y1l (x);
- /* quit if b is -inf */
- GET_LDOUBLE_WORDS (se, i0, i1, b);
- /* Use 0xffffffff since GET_LDOUBLE_WORDS sign-extends SE. */
- for (i = 1; i < n && se != 0xffffffff; i++)
- {
- temp = b;
- b = ((long double) (i + i) / x) * b - a;
- GET_LDOUBLE_WORDS (se, i0, i1, b);
- a = temp;
- }
- }
- /* If B is +-Inf, set up errno accordingly. */
- if (! __finitel (b))
- __set_errno (ERANGE);
- if (sign > 0)
- return b;
- else
- return -b;
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ long double s;
+ long double c;
+ __sincosl (x, &s, &c);
+ switch (n & 3)
+ {
+ case 0:
+ temp = s - c;
+ break;
+ case 1:
+ temp = -s - c;
+ break;
+ case 2:
+ temp = -s + c;
+ break;
+ case 3:
+ temp = s + c;
+ break;
+ }
+ b = invsqrtpi * temp / __ieee754_sqrtl (x);
+ }
+ else
+ {
+ a = __ieee754_y0l (x);
+ b = __ieee754_y1l (x);
+ /* quit if b is -inf */
+ GET_LDOUBLE_WORDS (se, i0, i1, b);
+ /* Use 0xffffffff since GET_LDOUBLE_WORDS sign-extends SE. */
+ for (i = 1; i < n && se != 0xffffffff; i++)
+ {
+ temp = b;
+ b = ((long double) (i + i) / x) * b - a;
+ GET_LDOUBLE_WORDS (se, i0, i1, b);
+ a = temp;
+ }
+ }
+ /* If B is +-Inf, set up errno accordingly. */
+ if (! isfinite (b))
+ __set_errno (ERANGE);
+ if (sign > 0)
+ ret = b;
+ else
+ ret = -b;
+ }
+ out:
+ if (isinf (ret))
+ ret = __copysignl (LDBL_MAX, ret) * LDBL_MAX;
+ return ret;
}
strong_alias (__ieee754_ynl, __ynl_finite)