summaryrefslogtreecommitdiff
path: root/linuxthreads/spinlock.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2000-06-26 01:47:56 +0000
committerUlrich Drepper <drepper@redhat.com>2000-06-26 01:47:56 +0000
commitd82e4c7bb231c9e0f835bd46467563ac3b56cebe (patch)
treea408089f079a086df0ed1602c67612d12fc7ac2a /linuxthreads/spinlock.c
parent7475d01602e881e206a29ee30bc8c3e85c235379 (diff)
Update.
2000-06-25 Ulrich Drepper <drepper@redhat.com> * Makefile (tests): Add ex10. Add rules to build it. * Versions [GLIBC_2.2] (libpthread): Add pthread_mutex_timedlock, pthread_rwlock_timedrdlock, and pthread_rwlock_timedwrlock. * condvar.c (pthread_cond_wait): Allow mutex of kind PTHREAD_MUTEX_TIMED_NP. (pthread_cond_timedwait_relative): Likewise. * mutex.c (__pthread_mutex_init): Default is PTHREAD_MUTEX_TIMED_NP. (__pthread_mutex_trylock): Use __pthread_alt_trylock for PTHREAD_MUTEX_ERRORCHECK_NP. Handle PTHREAD_MUTEX_TIMED_NP. (__pthread_mutex_lock): Use __pthread_alt_lock for PTHREAD_MUTEX_ERRORCHECK_NP. Handle PTHREAD_MUTEX_TIMED_NP. (__pthread_mutex_timedlock): New function. (__pthread_mutex_unlock): Use __pthread_alt_unlock for PTHREAD_MUTEX_ERRORCHECK_NP. Handle PTHREAD_MUTEX_TIMED_NP. (__pthread_mutexattr_init): Use PTHREAD_MUTEX_TIMED_NP. (__pthread_mutexattr_settype): Allow PTHREAD_MUTEX_TIMED_NP. * spinlock.c: Implement alternate fastlocks. * spinlock.h: Add prototypes. * Examples/ex10.c: New file. * sysdeps/pthread/pthread.h: Add prototypes for new functions. Patch by Kaz Kylheku <kaz@ashi.footprints.net>. * rwlock.c (__pthread_rwlock_rdlock): Optimize loop a bit. (__pthread_rwlock_timedrdlock): New function. (__pthread_rwlock_timedwrlock): New function. Use laternate fastlock function everywhere.
Diffstat (limited to 'linuxthreads/spinlock.c')
-rw-r--r--linuxthreads/spinlock.c258
1 files changed, 258 insertions, 0 deletions
diff --git a/linuxthreads/spinlock.c b/linuxthreads/spinlock.c
index 60d056aada..5cd772602c 100644
--- a/linuxthreads/spinlock.c
+++ b/linuxthreads/spinlock.c
@@ -17,6 +17,8 @@
#include <errno.h>
#include <sched.h>
#include <time.h>
+#include <stdlib.h>
+#include <limits.h>
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
@@ -147,6 +149,262 @@ again:
return 0;
}
+/*
+ * Alternate fastlocks do not queue threads directly. Instead, they queue
+ * these wait queue node structures. When a timed wait wakes up due to
+ * a timeout, it can leave its wait node in the queue (because there
+ * is no safe way to remove from the quue). Some other thread will
+ * deallocate the abandoned node.
+ */
+
+
+struct wait_node {
+ struct wait_node *next; /* Next node in null terminated linked list */
+ pthread_descr thr; /* The thread waiting with this node */
+ int abandoned; /* Atomic flag */
+};
+
+static long wait_node_free_list;
+static int wait_node_free_list_spinlock;
+
+/* Allocate a new node from the head of the free list using an atomic
+ operation, or else using malloc if that list is empty. A fundamental
+ assumption here is that we can safely access wait_node_free_list->next.
+ That's because we never free nodes once we allocate them, so a pointer to a
+ node remains valid indefinitely. */
+
+static struct wait_node *wait_node_alloc(void)
+{
+ long oldvalue, newvalue;
+
+ do {
+ oldvalue = wait_node_free_list;
+
+ if (oldvalue == 0)
+ return malloc(sizeof *wait_node_alloc());
+
+ newvalue = (long) ((struct wait_node *) oldvalue)->next;
+ WRITE_MEMORY_BARRIER();
+ } while (! compare_and_swap(&wait_node_free_list, oldvalue, newvalue,
+ &wait_node_free_list_spinlock));
+
+ return (struct wait_node *) oldvalue;
+}
+
+/* Return a node to the head of the free list using an atomic
+ operation. */
+
+static void wait_node_free(struct wait_node *wn)
+{
+ long oldvalue, newvalue;
+
+ do {
+ oldvalue = wait_node_free_list;
+ wn->next = (struct wait_node *) oldvalue;
+ newvalue = (long) wn;
+ WRITE_MEMORY_BARRIER();
+ } while (! compare_and_swap(&wait_node_free_list, oldvalue, newvalue,
+ &wait_node_free_list_spinlock));
+}
+
+/* Remove a wait node from the specified queue. It is assumed
+ that the removal takes place concurrently with only atomic insertions at the
+ head of the queue. */
+
+static void wait_node_dequeue(struct wait_node **pp_head,
+ struct wait_node **pp_node,
+ struct wait_node *p_node,
+ int *spinlock)
+{
+ long oldvalue, newvalue;
+
+ /* If the node is being deleted from the head of the
+ list, it must be deleted using atomic compare-and-swap.
+ Otherwise it can be deleted in the straightforward way. */
+
+ if (pp_node == pp_head) {
+ oldvalue = (long) p_node;
+ newvalue = (long) p_node->next;
+
+ if (compare_and_swap((long *) pp_node, oldvalue, newvalue, spinlock))
+ return;
+
+ /* Oops! Compare and swap failed, which means the node is
+ no longer first. We delete it using the ordinary method. But we don't
+ know the identity of the node which now holds the pointer to the node
+ being deleted, so we must search from the beginning. */
+
+ for (pp_node = pp_head; *pp_node != p_node; pp_node = &(*pp_node)->next)
+ ; /* null body */
+ }
+
+ *pp_node = p_node->next;
+ return;
+}
+
+void __pthread_alt_lock(struct _pthread_fastlock * lock,
+ pthread_descr self)
+{
+ struct wait_node wait_node;
+ long oldstatus, newstatus;
+
+ do {
+ oldstatus = lock->__status;
+ if (oldstatus == 0) {
+ newstatus = 1;
+ } else {
+ if (self == NULL)
+ wait_node.thr = self = thread_self();
+ newstatus = (long) &wait_node;
+ }
+ wait_node.abandoned = 0;
+ wait_node.next = (struct wait_node *) oldstatus;
+ /* Make sure the store in wait_node.next completes before performing
+ the compare-and-swap */
+ MEMORY_BARRIER();
+ } while(! compare_and_swap(&lock->__status, oldstatus, newstatus,
+ &lock->__spinlock));
+
+ /* Suspend. Note that unlike in __pthread_lock, we don't worry
+ here about spurious wakeup. That's because this lock is not
+ used in situations where that can happen; the restart can
+ only come from the previous lock owner. */
+
+ if (oldstatus != 0)
+ suspend(self);
+}
+
+/* Timed-out lock operation; returns 0 to indicate timeout. */
+
+int __pthread_alt_timedlock(struct _pthread_fastlock * lock,
+ pthread_descr self, const struct timespec *abstime)
+{
+ struct wait_node *p_wait_node = wait_node_alloc();
+ long oldstatus, newstatus;
+
+ /* Out of memory, just give up and do ordinary lock. */
+ if (p_wait_node == 0) {
+ __pthread_alt_lock(lock, self);
+ return 1;
+ }
+
+ do {
+ oldstatus = lock->__status;
+ if (oldstatus == 0) {
+ newstatus = 1;
+ } else {
+ if (self == NULL)
+ p_wait_node->thr = self = thread_self();
+ newstatus = (long) p_wait_node;
+ }
+ p_wait_node->abandoned = 0;
+ p_wait_node->next = (struct wait_node *) oldstatus;
+ /* Make sure the store in wait_node.next completes before performing
+ the compare-and-swap */
+ MEMORY_BARRIER();
+ } while(! compare_and_swap(&lock->__status, oldstatus, newstatus,
+ &lock->__spinlock));
+
+ /* If we did not get the lock, do a timed suspend. If we wake up due
+ to a timeout, then there is a race; the old lock owner may try
+ to remove us from the queue. This race is resolved by us and the owner
+ doing an atomic testandset() to change the state of the wait node from 0
+ to 1. If we succeed, then it's a timeout and we abandon the node in the
+ queue. If we fail, it means the owner gave us the lock. */
+
+ if (oldstatus != 0) {
+ if (timedsuspend(self, abstime) == 0) {
+ if (!testandset(&p_wait_node->abandoned))
+ return 0; /* Timeout! */
+
+ /* Eat oustanding resume from owner, otherwise wait_node_free() below
+ will race with owner's wait_node_dequeue(). */
+ suspend(self);
+ }
+ }
+
+ wait_node_free(p_wait_node);
+
+ return 1; /* Got the lock! */
+}
+
+void __pthread_alt_unlock(struct _pthread_fastlock *lock)
+{
+ long oldstatus;
+ struct wait_node *p_node, **pp_node, *p_max_prio, **pp_max_prio;
+ struct wait_node ** const pp_head = (struct wait_node **) &lock->__status;
+ int maxprio;
+
+ while (1) {
+
+ /* If no threads are waiting for this lock, try to just
+ atomically release it. */
+
+ oldstatus = lock->__status;
+ if (oldstatus == 0 || oldstatus == 1) {
+ if (compare_and_swap_with_release_semantics (&lock->__status,
+ oldstatus, 0, &lock->__spinlock))
+ return;
+ else
+ continue;
+ }
+
+ /* Process the entire queue of wait nodes. Remove all abandoned
+ wait nodes and put them into the global free queue, and
+ remember the one unabandoned node which refers to the thread
+ having the highest priority. */
+
+ pp_max_prio = pp_node = pp_head;
+ p_max_prio = p_node = *pp_head;
+ maxprio = INT_MIN;
+
+ while (p_node != (struct wait_node *) 1) {
+ int prio;
+
+ if (p_node->abandoned) {
+ /* Remove abandoned node. */
+ wait_node_dequeue(pp_head, pp_node, p_node, &lock->__spinlock);
+ wait_node_free(p_node);
+ READ_MEMORY_BARRIER();
+ p_node = *pp_node;
+ continue;
+ } else if ((prio = p_node->thr->p_priority) >= maxprio) {
+ /* Otherwise remember it if its thread has a higher or equal priority
+ compared to that of any node seen thus far. */
+ maxprio = prio;
+ pp_max_prio = pp_node;
+ p_max_prio = p_node;
+ }
+
+ pp_node = &p_node->next;
+ READ_MEMORY_BARRIER();
+ p_node = *pp_node;
+ }
+
+ READ_MEMORY_BARRIER();
+
+ /* If all threads abandoned, go back to top */
+ if (maxprio == INT_MIN)
+ continue;
+
+ ASSERT (p_max_prio != (struct wait_node *) 1);
+
+ /* Now we want to to remove the max priority thread's wait node from
+ the list. Before we can do this, we must atomically try to change the
+ node's abandon state from zero to nonzero. If we succeed, that means we
+ have the node that we will wake up. If we failed, then it means the
+ thread timed out and abandoned the node in which case we repeat the
+ whole unlock operation. */
+
+ if (!testandset(&p_max_prio->abandoned)) {
+ wait_node_dequeue(pp_head, pp_max_prio, p_max_prio, &lock->__spinlock);
+ WRITE_MEMORY_BARRIER();
+ restart(p_max_prio->thr);
+ return;
+ }
+ }
+}
+
/* Compare-and-swap emulation with a spinlock */