/* * linux/net/sunrpc/xprt.c * * This is a generic RPC call interface supporting congestion avoidance, * and asynchronous calls. * * The interface works like this: * * - When a process places a call, it allocates a request slot if * one is available. Otherwise, it sleeps on the backlog queue * (xprt_reserve). * - Next, the caller puts together the RPC message, stuffs it into * the request struct, and calls xprt_call(). * - xprt_call transmits the message and installs the caller on the * socket's wait list. At the same time, it installs a timer that * is run after the packet's timeout has expired. * - When a packet arrives, the data_ready handler walks the list of * pending requests for that socket. If a matching XID is found, the * caller is woken up, and the timer removed. * - When no reply arrives within the timeout interval, the timer is * fired by the kernel and runs xprt_timer(). It either adjusts the * timeout values (minor timeout) or wakes up the caller with a status * of -ETIMEDOUT. * - When the caller receives a notification from RPC that a reply arrived, * it should release the RPC slot, and process the reply. * If the call timed out, it may choose to retry the operation by * adjusting the initial timeout value, and simply calling rpc_call * again. * * Support for async RPC is done through a set of RPC-specific scheduling * primitives that `transparently' work for processes as well as async * tasks that rely on callbacks. * * Copyright (C) 1995-1997, Olaf Kirch * * TCP callback races fixes (C) 1998 Red Hat Software * TCP send fixes (C) 1998 Red Hat Software * TCP NFS related read + write fixes * (C) 1999 Dave Airlie, University of Limerick, Ireland * * Rewrite of larges part of the code in order to stabilize TCP stuff. * Fix behaviour when socket buffer is full. * (C) 1999 Trond Myklebust */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Local variables */ #ifdef RPC_DEBUG # undef RPC_DEBUG_DATA # define RPCDBG_FACILITY RPCDBG_XPRT #endif #define XPRT_MAX_BACKOFF (8) #define XPRT_IDLE_TIMEOUT (5*60*HZ) #define XPRT_MAX_RESVPORT (800) /* * Local functions */ static void xprt_request_init(struct rpc_task *, struct rpc_xprt *); static inline void do_xprt_reserve(struct rpc_task *); static void xprt_disconnect(struct rpc_xprt *); static void xprt_connect_status(struct rpc_task *task); static struct rpc_xprt * xprt_setup(int proto, struct sockaddr_in *ap, struct rpc_timeout *to); static struct socket *xprt_create_socket(struct rpc_xprt *, int, int); static void xprt_bind_socket(struct rpc_xprt *, struct socket *); static int __xprt_get_cong(struct rpc_xprt *, struct rpc_task *); static int xprt_clear_backlog(struct rpc_xprt *xprt); #ifdef RPC_DEBUG_DATA /* * Print the buffer contents (first 128 bytes only--just enough for * diropres return). */ static void xprt_pktdump(char *msg, u32 *packet, unsigned int count) { u8 *buf = (u8 *) packet; int j; dprintk("RPC: %s\n", msg); for (j = 0; j < count && j < 128; j += 4) { if (!(j & 31)) { if (j) dprintk("\n"); dprintk("0x%04x ", j); } dprintk("%02x%02x%02x%02x ", buf[j], buf[j+1], buf[j+2], buf[j+3]); } dprintk("\n"); } #else static inline void xprt_pktdump(char *msg, u32 *packet, unsigned int count) { /* NOP */ } #endif /* * Look up RPC transport given an INET socket */ static inline struct rpc_xprt * xprt_from_sock(struct sock *sk) { return (struct rpc_xprt *) sk->sk_user_data; } /* * Serialize write access to sockets, in order to prevent different * requests from interfering with each other. * Also prevents TCP socket connects from colliding with writes. */ static int __xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (test_and_set_bit(XPRT_LOCKED, &xprt->sockstate)) { if (task == xprt->snd_task) return 1; goto out_sleep; } if (xprt->nocong || __xprt_get_cong(xprt, task)) { xprt->snd_task = task; if (req) { req->rq_bytes_sent = 0; req->rq_ntrans++; } return 1; } smp_mb__before_clear_bit(); clear_bit(XPRT_LOCKED, &xprt->sockstate); smp_mb__after_clear_bit(); out_sleep: dprintk("RPC: %4d failed to lock socket %p\n", task->tk_pid, xprt); task->tk_timeout = 0; task->tk_status = -EAGAIN; if (req && req->rq_ntrans) rpc_sleep_on(&xprt->resend, task, NULL, NULL); else rpc_sleep_on(&xprt->sending, task, NULL, NULL); return 0; } static inline int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) { int retval; spin_lock_bh(&xprt->sock_lock); retval = __xprt_lock_write(xprt, task); spin_unlock_bh(&xprt->sock_lock); return retval; } static void __xprt_lock_write_next(struct rpc_xprt *xprt) { struct rpc_task *task; if (test_and_set_bit(XPRT_LOCKED, &xprt->sockstate)) return; if (!xprt->nocong && RPCXPRT_CONGESTED(xprt)) goto out_unlock; task = rpc_wake_up_next(&xprt->resend); if (!task) { task = rpc_wake_up_next(&xprt->sending); if (!task) goto out_unlock; } if (xprt->nocong || __xprt_get_cong(xprt, task)) { struct rpc_rqst *req = task->tk_rqstp; xprt->snd_task = task; if (req) { req->rq_bytes_sent = 0; req->rq_ntrans++; } return; } out_unlock: smp_mb__before_clear_bit(); clear_bit(XPRT_LOCKED, &xprt->sockstate); smp_mb__after_clear_bit(); } /* * Releases the socket for use by other requests. */ static void __xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) { if (xprt->snd_task == task) { xprt->snd_task = NULL; smp_mb__before_clear_bit(); clear_bit(XPRT_LOCKED, &xprt->sockstate); smp_mb__after_clear_bit(); __xprt_lock_write_next(xprt); } } static inline void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) { spin_lock_bh(&xprt->sock_lock); __xprt_release_write(xprt, task); spin_unlock_bh(&xprt->sock_lock); } /* * Write data to socket. */ static inline int xprt_sendmsg(struct rpc_xprt *xprt, struct rpc_rqst *req) { struct socket *sock = xprt->sock; struct xdr_buf *xdr = &req->rq_snd_buf; struct sockaddr *addr = NULL; int addrlen = 0; unsigned int skip; int result; if (!sock) return -ENOTCONN; xprt_pktdump("packet data:", req->rq_svec->iov_base, req->rq_svec->iov_len); /* For UDP, we need to provide an address */ if (!xprt->stream) { addr = (struct sockaddr *) &xprt->addr; addrlen = sizeof(xprt->addr); } /* Dont repeat bytes */ skip = req->rq_bytes_sent; clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags); result = xdr_sendpages(sock, addr, addrlen, xdr, skip, MSG_DONTWAIT); dprintk("RPC: xprt_sendmsg(%d) = %d\n", xdr->len - skip, result); if (result >= 0) return result; switch (result) { case -ECONNREFUSED: /* When the server has died, an ICMP port unreachable message * prompts ECONNREFUSED. */ case -EAGAIN: break; case -ECONNRESET: case -ENOTCONN: case -EPIPE: /* connection broken */ if (xprt->stream) result = -ENOTCONN; break; default: printk(KERN_NOTICE "RPC: sendmsg returned error %d\n", -result); } return result; } /* * Van Jacobson congestion avoidance. Check if the congestion window * overflowed. Put the task to sleep if this is the case. */ static int __xprt_get_cong(struct rpc_xprt *xprt, struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (req->rq_cong) return 1; dprintk("RPC: %4d xprt_cwnd_limited cong = %ld cwnd = %ld\n", task->tk_pid, xprt->cong, xprt->cwnd); if (RPCXPRT_CONGESTED(xprt)) return 0; req->rq_cong = 1; xprt->cong += RPC_CWNDSCALE; return 1; } /* * Adjust the congestion window, and wake up the next task * that has been sleeping due to congestion */ static void __xprt_put_cong(struct rpc_xprt *xprt, struct rpc_rqst *req) { if (!req->rq_cong) return; req->rq_cong = 0; xprt->cong -= RPC_CWNDSCALE; __xprt_lock_write_next(xprt); } /* * Adjust RPC congestion window * We use a time-smoothed congestion estimator to avoid heavy oscillation. */ static void xprt_adjust_cwnd(struct rpc_xprt *xprt, int result) { unsigned long cwnd; cwnd = xprt->cwnd; if (result >= 0 && cwnd <= xprt->cong) { /* The (cwnd >> 1) term makes sure * the result gets rounded properly. */ cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd; if (cwnd > RPC_MAXCWND(xprt)) cwnd = RPC_MAXCWND(xprt); __xprt_lock_write_next(xprt); } else if (result == -ETIMEDOUT) { cwnd >>= 1; if (cwnd < RPC_CWNDSCALE) cwnd = RPC_CWNDSCALE; } dprintk("RPC: cong %ld, cwnd was %ld, now %ld\n", xprt->cong, xprt->cwnd, cwnd); xprt->cwnd = cwnd; } /* * Reset the major timeout value */ static void xprt_reset_majortimeo(struct rpc_rqst *req) { struct rpc_timeout *to = &req->rq_xprt->timeout; req->rq_majortimeo = req->rq_timeout; if (to->to_exponential) req->rq_majortimeo <<= to->to_retries; else req->rq_majortimeo += to->to_increment * to->to_retries; if (req->rq_majortimeo > to->to_maxval || req->rq_majortimeo == 0) req->rq_majortimeo = to->to_maxval; req->rq_majortimeo += jiffies; } /* * Adjust timeout values etc for next retransmit */ int xprt_adjust_timeout(struct rpc_rqst *req) { struct rpc_xprt *xprt = req->rq_xprt; struct rpc_timeout *to = &xprt->timeout; int status = 0; if (time_before(jiffies, req->rq_majortimeo)) { if (to->to_exponential) req->rq_timeout <<= 1; else req->rq_timeout += to->to_increment; if (to->to_maxval && req->rq_timeout >= to->to_maxval) req->rq_timeout = to->to_maxval; req->rq_retries++; pprintk("RPC: %lu retrans\n", jiffies); } else { req->rq_timeout = to->to_initval; req->rq_retries = 0; xprt_reset_majortimeo(req); /* Reset the RTT counters == "slow start" */ spin_lock_bh(&xprt->sock_lock); rpc_init_rtt(req->rq_task->tk_client->cl_rtt, to->to_initval); spin_unlock_bh(&xprt->sock_lock); pprintk("RPC: %lu timeout\n", jiffies); status = -ETIMEDOUT; } if (req->rq_timeout == 0) { printk(KERN_WARNING "xprt_adjust_timeout: rq_timeout = 0!\n"); req->rq_timeout = 5 * HZ; } return status; } /* * Close down a transport socket */ static void xprt_close(struct rpc_xprt *xprt) { struct socket *sock = xprt->sock; struct sock *sk = xprt->inet; if (!sk) return; write_lock_bh(&sk->sk_callback_lock); xprt->inet = NULL; xprt->sock = NULL; sk->sk_user_data = NULL; sk->sk_data_ready = xprt->old_data_ready; sk->sk_state_change = xprt->old_state_change; sk->sk_write_space = xprt->old_write_space; write_unlock_bh(&sk->sk_callback_lock); sk->sk_no_check = 0; sock_release(sock); } static void xprt_socket_autoclose(void *args) { struct rpc_xprt *xprt = (struct rpc_xprt *)args; xprt_disconnect(xprt); xprt_close(xprt); xprt_release_write(xprt, NULL); } /* * Mark a transport as disconnected */ static void xprt_disconnect(struct rpc_xprt *xprt) { dprintk("RPC: disconnected transport %p\n", xprt); spin_lock_bh(&xprt->sock_lock); xprt_clear_connected(xprt); rpc_wake_up_status(&xprt->pending, -ENOTCONN); spin_unlock_bh(&xprt->sock_lock); } /* * Used to allow disconnection when we've been idle */ static void xprt_init_autodisconnect(unsigned long data) { struct rpc_xprt *xprt = (struct rpc_xprt *)data; spin_lock(&xprt->sock_lock); if (!list_empty(&xprt->recv) || xprt->shutdown) goto out_abort; if (test_and_set_bit(XPRT_LOCKED, &xprt->sockstate)) goto out_abort; spin_unlock(&xprt->sock_lock); /* Let keventd close the socket */ if (test_bit(XPRT_CONNECTING, &xprt->sockstate) != 0) xprt_release_write(xprt, NULL); else schedule_work(&xprt->task_cleanup); return; out_abort: spin_unlock(&xprt->sock_lock); } static void xprt_socket_connect(void *args) { struct rpc_xprt *xprt = (struct rpc_xprt *)args; struct socket *sock = xprt->sock; int status = -EIO; if (xprt->shutdown || xprt->addr.sin_port == 0) goto out; /* * Start by resetting any existing state */ xprt_close(xprt); sock = xprt_create_socket(xprt, xprt->prot, xprt->resvport); if (sock == NULL) { /* couldn't create socket or bind to reserved port; * this is likely a permanent error, so cause an abort */ goto out; } xprt_bind_socket(xprt, sock); xprt_sock_setbufsize(xprt); status = 0; if (!xprt->stream) goto out; /* * Tell the socket layer to start connecting... */ status = sock->ops->connect(sock, (struct sockaddr *) &xprt->addr, sizeof(xprt->addr), O_NONBLOCK); dprintk("RPC: %p connect status %d connected %d sock state %d\n", xprt, -status, xprt_connected(xprt), sock->sk->sk_state); if (status < 0) { switch (status) { case -EINPROGRESS: case -EALREADY: goto out_clear; } } out: if (status < 0) rpc_wake_up_status(&xprt->pending, status); else rpc_wake_up(&xprt->pending); out_clear: smp_mb__before_clear_bit(); clear_bit(XPRT_CONNECTING, &xprt->sockstate); smp_mb__after_clear_bit(); } /* * Attempt to connect a TCP socket. * */ void xprt_connect(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; dprintk("RPC: %4d xprt_connect xprt %p %s connected\n", task->tk_pid, xprt, (xprt_connected(xprt) ? "is" : "is not")); if (xprt->shutdown) { task->tk_status = -EIO; return; } if (!xprt->addr.sin_port) { task->tk_status = -EIO; return; } if (!xprt_lock_write(xprt, task)) return; if (xprt_connected(xprt)) goto out_write; if (task->tk_rqstp) task->tk_rqstp->rq_bytes_sent = 0; task->tk_timeout = RPC_CONNECT_TIMEOUT; rpc_sleep_on(&xprt->pending, task, xprt_connect_status, NULL); if (!test_and_set_bit(XPRT_CONNECTING, &xprt->sockstate)) { /* Note: if we are here due to a dropped connection * we delay reconnecting by RPC_REESTABLISH_TIMEOUT/HZ * seconds */ if (xprt->sock != NULL) schedule_delayed_work(&xprt->sock_connect, RPC_REESTABLISH_TIMEOUT); else { schedule_work(&xprt->sock_connect); if (!RPC_IS_ASYNC(task)) flush_scheduled_work(); } } return; out_write: xprt_release_write(xprt, task); } /* * We arrive here when awoken from waiting on connection establishment. */ static void xprt_connect_status(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; if (task->tk_status >= 0) { dprintk("RPC: %4d xprt_connect_status: connection established\n", task->tk_pid); return; } /* if soft mounted, just cause this RPC to fail */ if (RPC_IS_SOFT(task)) task->tk_status = -EIO; switch (task->tk_status) { case -ECONNREFUSED: case -ECONNRESET: case -ENOTCONN: return; case -ETIMEDOUT: dprintk("RPC: %4d xprt_connect_status: timed out\n", task->tk_pid); break; default: printk(KERN_ERR "RPC: error %d connecting to server %s\n", -task->tk_status, task->tk_client->cl_server); } xprt_release_write(xprt, task); } /* * Look up the RPC request corresponding to a reply, and then lock it. */ static inline struct rpc_rqst * xprt_lookup_rqst(struct rpc_xprt *xprt, u32 xid) { struct list_head *pos; struct rpc_rqst *req = NULL; list_for_each(pos, &xprt->recv) { struct rpc_rqst *entry = list_entry(pos, struct rpc_rqst, rq_list); if (entry->rq_xid == xid) { req = entry; break; } } return req; } /* * Complete reply received. * The TCP code relies on us to remove the request from xprt->pending. */ static void xprt_complete_rqst(struct rpc_xprt *xprt, struct rpc_rqst *req, int copied) { struct rpc_task *task = req->rq_task; struct rpc_clnt *clnt = task->tk_client; /* Adjust congestion window */ if (!xprt->nocong) { unsigned timer = task->tk_msg.rpc_proc->p_timer; xprt_adjust_cwnd(xprt, copied); __xprt_put_cong(xprt, req); if (timer) { if (req->rq_ntrans == 1) rpc_update_rtt(clnt->cl_rtt, timer, (long)jiffies - req->rq_xtime); rpc_set_timeo(clnt->cl_rtt, timer, req->rq_ntrans - 1); } } #ifdef RPC_PROFILE /* Profile only reads for now */ if (copied > 1024) { static unsigned long nextstat; static unsigned long pkt_rtt, pkt_len, pkt_cnt; pkt_cnt++; pkt_len += req->rq_slen + copied; pkt_rtt += jiffies - req->rq_xtime; if (time_before(nextstat, jiffies)) { printk("RPC: %lu %ld cwnd\n", jiffies, xprt->cwnd); printk("RPC: %ld %ld %ld %ld stat\n", jiffies, pkt_cnt, pkt_len, pkt_rtt); pkt_rtt = pkt_len = pkt_cnt = 0; nextstat = jiffies + 5 * HZ; } } #endif dprintk("RPC: %4d has input (%d bytes)\n", task->tk_pid, copied); list_del_init(&req->rq_list); req->rq_received = req->rq_private_buf.len = copied; /* ... and wake up the process. */ rpc_wake_up_task(task); return; } static size_t skb_read_bits(skb_reader_t *desc, void *to, size_t len) { if (len > desc->count) len = desc->count; if (skb_copy_bits(desc->skb, desc->offset, to, len)) return 0; desc->count -= len; desc->offset += len; return len; } static size_t skb_read_and_csum_bits(skb_reader_t *desc, void *to, size_t len) { unsigned int csum2, pos; if (len > desc->count) len = desc->count; pos = desc->offset; csum2 = skb_copy_and_csum_bits(desc->skb, pos, to, len, 0); desc->csum = csum_block_add(desc->csum, csum2, pos); desc->count -= len; desc->offset += len; return len; } /* * We have set things up such that we perform the checksum of the UDP * packet in parallel with the copies into the RPC client iovec. -DaveM */ int csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb) { skb_reader_t desc; desc.skb = skb; desc.offset = sizeof(struct udphdr); desc.count = skb->len - desc.offset; if (skb->ip_summed == CHECKSUM_UNNECESSARY) goto no_checksum; desc.csum = csum_partial(skb->data, desc.offset, skb->csum); if (xdr_partial_copy_from_skb(xdr, 0, &desc, skb_read_and_csum_bits) < 0) return -1; if (desc.offset != skb->len) { unsigned int csum2; csum2 = skb_checksum(skb, desc.offset, skb->len - desc.offset, 0); desc.csum = csum_block_add(desc.csum, csum2, desc.offset); } if (desc.count) return -1; if ((unsigned short)csum_fold(desc.csum)) return -1; return 0; no_checksum: if (xdr_partial_copy_from_skb(xdr, 0, &desc, skb_read_bits) < 0) return -1; if (desc.count) return -1; return 0; } /* * Input handler for RPC replies. Called from a bottom half and hence * atomic. */ static void udp_data_ready(struct sock *sk, int len) { struct rpc_task *task; struct rpc_xprt *xprt; struct rpc_rqst *rovr; struct sk_buff *skb; int err, repsize, copied; u32 _xid, *xp; read_lock(&sk->sk_callback_lock); dprintk("RPC: udp_data_ready...\n"); if (!(xprt = xprt_from_sock(sk))) { printk("RPC: udp_data_ready request not found!\n"); goto out; } dprintk("RPC: udp_data_ready client %p\n", xprt); if ((skb = skb_recv_datagram(sk, 0, 1, &err)) == NULL) goto out; if (xprt->shutdown) goto dropit; repsize = skb->len - sizeof(struct udphdr); if (repsize < 4) { printk("RPC: impossible RPC reply size %d!\n", repsize); goto dropit; } /* Copy the XID from the skb... */ xp = skb_header_pointer(skb, sizeof(struct udphdr), sizeof(_xid), &_xid); if (xp == NULL) goto dropit; /* Look up and lock the request corresponding to the given XID */ spin_lock(&xprt->sock_lock); rovr = xprt_lookup_rqst(xprt, *xp); if (!rovr) goto out_unlock; task = rovr->rq_task; dprintk("RPC: %4d received reply\n", task->tk_pid); if ((copied = rovr->rq_private_buf.buflen) > repsize) copied = repsize; /* Suck it into the iovec, verify checksum if not done by hw. */ if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) goto out_unlock; /* Something worked... */ dst_confirm(skb->dst); xprt_complete_rqst(xprt, rovr, copied); out_unlock: spin_unlock(&xprt->sock_lock); dropit: skb_free_datagram(sk, skb); out: read_unlock(&sk->sk_callback_lock); } /* * Copy from an skb into memory and shrink the skb. */ static inline size_t tcp_copy_data(skb_reader_t *desc, void *p, size_t len) { if (len > desc->count) len = desc->count; if (skb_copy_bits(desc->skb, desc->offset, p, len)) { dprintk("RPC: failed to copy %zu bytes from skb. %zu bytes remain\n", len, desc->count); return 0; } desc->offset += len; desc->count -= len; dprintk("RPC: copied %zu bytes from skb. %zu bytes remain\n", len, desc->count); return len; } /* * TCP read fragment marker */ static inline void tcp_read_fraghdr(struct rpc_xprt *xprt, skb_reader_t *desc) { size_t len, used; char *p; p = ((char *) &xprt->tcp_recm) + xprt->tcp_offset; len = sizeof(xprt->tcp_recm) - xprt->tcp_offset; used = tcp_copy_data(desc, p, len); xprt->tcp_offset += used; if (used != len) return; xprt->tcp_reclen = ntohl(xprt->tcp_recm); if (xprt->tcp_reclen & 0x80000000) xprt->tcp_flags |= XPRT_LAST_FRAG; else xprt->tcp_flags &= ~XPRT_LAST_FRAG; xprt->tcp_reclen &= 0x7fffffff; xprt->tcp_flags &= ~XPRT_COPY_RECM; xprt->tcp_offset = 0; /* Sanity check of the record length */ if (xprt->tcp_reclen < 4) { printk(KERN_ERR "RPC: Invalid TCP record fragment length\n"); xprt_disconnect(xprt); } dprintk("RPC: reading TCP record fragment of length %d\n", xprt->tcp_reclen); } static void tcp_check_recm(struct rpc_xprt *xprt) { dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, tcp_reclen = %u, tcp_flags = %lx\n", xprt, xprt->tcp_copied, xprt->tcp_offset, xprt->tcp_reclen, xprt->tcp_flags); if (xprt->tcp_offset == xprt->tcp_reclen) { xprt->tcp_flags |= XPRT_COPY_RECM; xprt->tcp_offset = 0; if (xprt->tcp_flags & XPRT_LAST_FRAG) { xprt->tcp_flags &= ~XPRT_COPY_DATA; xprt->tcp_flags |= XPRT_COPY_XID; xprt->tcp_copied = 0; } } } /* * TCP read xid */ static inline void tcp_read_xid(struct rpc_xprt *xprt, skb_reader_t *desc) { size_t len, used; char *p; len = sizeof(xprt->tcp_xid) - xprt->tcp_offset; dprintk("RPC: reading XID (%Zu bytes)\n", len); p = ((char *) &xprt->tcp_xid) + xprt->tcp_offset; used = tcp_copy_data(desc, p, len); xprt->tcp_offset += used; if (used != len) return; xprt->tcp_flags &= ~XPRT_COPY_XID; xprt->tcp_flags |= XPRT_COPY_DATA; xprt->tcp_copied = 4; dprintk("RPC: reading reply for XID %08x\n", ntohl(xprt->tcp_xid)); tcp_check_recm(xprt); } /* * TCP read and complete request */ static inline void tcp_read_request(struct rpc_xprt *xprt, skb_reader_t *desc) { struct rpc_rqst *req; struct xdr_buf *rcvbuf; size_t len; ssize_t r; /* Find and lock the request corresponding to this xid */ spin_lock(&xprt->sock_lock); req = xprt_lookup_rqst(xprt, xprt->tcp_xid); if (!req) { xprt->tcp_flags &= ~XPRT_COPY_DATA; dprintk("RPC: XID %08x request not found!\n", ntohl(xprt->tcp_xid)); spin_unlock(&xprt->sock_lock); return; } rcvbuf = &req->rq_private_buf; len = desc->count; if (len > xprt->tcp_reclen - xprt->tcp_offset) { skb_reader_t my_desc; len = xprt->tcp_reclen - xprt->tcp_offset; memcpy(&my_desc, desc, sizeof(my_desc)); my_desc.count = len; r = xdr_partial_copy_from_skb(rcvbuf, xprt->tcp_copied, &my_desc, tcp_copy_data); desc->count -= r; desc->offset += r; } else r = xdr_partial_copy_from_skb(rcvbuf, xprt->tcp_copied, desc, tcp_copy_data); if (r > 0) { xprt->tcp_copied += r; xprt->tcp_offset += r; } if (r != len) { /* Error when copying to the receive buffer, * usually because we weren't able to allocate * additional buffer pages. All we can do now * is turn off XPRT_COPY_DATA, so the request * will not receive any additional updates, * and time out. * Any remaining data from this record will * be discarded. */ xprt->tcp_flags &= ~XPRT_COPY_DATA; dprintk("RPC: XID %08x truncated request\n", ntohl(xprt->tcp_xid)); dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, tcp_reclen = %u\n", xprt, xprt->tcp_copied, xprt->tcp_offset, xprt->tcp_reclen); goto out; } dprintk("RPC: XID %08x read %Zd bytes\n", ntohl(xprt->tcp_xid), r); dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, tcp_reclen = %u\n", xprt, xprt->tcp_copied, xprt->tcp_offset, xprt->tcp_reclen); if (xprt->tcp_copied == req->rq_private_buf.buflen) xprt->tcp_flags &= ~XPRT_COPY_DATA; else if (xprt->tcp_offset == xprt->tcp_reclen) { if (xprt->tcp_flags & XPRT_LAST_FRAG) xprt->tcp_flags &= ~XPRT_COPY_DATA; } out: if (!(xprt->tcp_flags & XPRT_COPY_DATA)) { dprintk("RPC: %4d received reply complete\n", req->rq_task->tk_pid); xprt_complete_rqst(xprt, req, xprt->tcp_copied); } spin_unlock(&xprt->sock_lock); tcp_check_recm(xprt); } /* * TCP discard extra bytes from a short read */ static inline void tcp_read_discard(struct rpc_xprt *xprt, skb_reader_t *desc) { size_t len; len = xprt->tcp_reclen - xprt->tcp_offset; if (len > desc->count) len = desc->count; desc->count -= len; desc->offset += len; xprt->tcp_offset += len; dprintk("RPC: discarded %Zu bytes\n", len); tcp_check_recm(xprt); } /* * TCP record receive routine * We first have to grab the record marker, then the XID, then the data. */ static int tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct rpc_xprt *xprt = rd_desc->arg.data; skb_reader_t desc = { .skb = skb, .offset = offset, .count = len, .csum = 0 }; dprintk("RPC: tcp_data_recv\n"); do { /* Read in a new fragment marker if necessary */ /* Can we ever really expect to get completely empty fragments? */ if (xprt->tcp_flags & XPRT_COPY_RECM) { tcp_read_fraghdr(xprt, &desc); continue; } /* Read in the xid if necessary */ if (xprt->tcp_flags & XPRT_COPY_XID) { tcp_read_xid(xprt, &desc); continue; } /* Read in the request data */ if (xprt->tcp_flags & XPRT_COPY_DATA) { tcp_read_request(xprt, &desc); continue; } /* Skip over any trailing bytes on short reads */ tcp_read_discard(xprt, &desc); } while (desc.count); dprintk("RPC: tcp_data_recv done\n"); return len - desc.count; } static void tcp_data_ready(struct sock *sk, int bytes) { struct rpc_xprt *xprt; read_descriptor_t rd_desc; read_lock(&sk->sk_callback_lock); dprintk("RPC: tcp_data_ready...\n"); if (!(xprt = xprt_from_sock(sk))) { printk("RPC: tcp_data_ready socket info not found!\n"); goto out; } if (xprt->shutdown) goto out; /* We use rd_desc to pass struct xprt to tcp_data_recv */ rd_desc.arg.data = xprt; rd_desc.count = 65536; tcp_read_sock(sk, &rd_desc, tcp_data_recv); out: read_unlock(&sk->sk_callback_lock); } static void tcp_state_change(struct sock *sk) { struct rpc_xprt *xprt; read_lock(&sk->sk_callback_lock); if (!(xprt = xprt_from_sock(sk))) goto out; dprintk("RPC: tcp_state_change client %p...\n", xprt); dprintk("RPC: state %x conn %d dead %d zapped %d\n", sk->sk_state, xprt_connected(xprt), sock_flag(sk, SOCK_DEAD), sock_flag(sk, SOCK_ZAPPED)); switch (sk->sk_state) { case TCP_ESTABLISHED: spin_lock_bh(&xprt->sock_lock); if (!xprt_test_and_set_connected(xprt)) { /* Reset TCP record info */ xprt->tcp_offset = 0; xprt->tcp_reclen = 0; xprt->tcp_copied = 0; xprt->tcp_flags = XPRT_COPY_RECM | XPRT_COPY_XID; rpc_wake_up(&xprt->pending); } spin_unlock_bh(&xprt->sock_lock); break; case TCP_SYN_SENT: case TCP_SYN_RECV: break; default: xprt_disconnect(xprt); break; } out: read_unlock(&sk->sk_callback_lock); } /* * Called when more output buffer space is available for this socket. * We try not to wake our writers until they can make "significant" * progress, otherwise we'll waste resources thrashing sock_sendmsg * with a bunch of small requests. */ static void xprt_write_space(struct sock *sk) { struct rpc_xprt *xprt; struct socket *sock; read_lock(&sk->sk_callback_lock); if (!(xprt = xprt_from_sock(sk)) || !(sock = sk->sk_socket)) goto out; if (xprt->shutdown) goto out; /* Wait until we have enough socket memory */ if (xprt->stream) { /* from net/core/stream.c:sk_stream_write_space */ if (sk_stream_wspace(sk) < sk_stream_min_wspace(sk)) goto out; } else { /* from net/core/sock.c:sock_def_write_space */ if (!sock_writeable(sk)) goto out; } if (!test_and_clear_bit(SOCK_NOSPACE, &sock->flags)) goto out; spin_lock_bh(&xprt->sock_lock); if (xprt->snd_task) rpc_wake_up_task(xprt->snd_task); spin_unlock_bh(&xprt->sock_lock); out: read_unlock(&sk->sk_callback_lock); } /* * RPC receive timeout handler. */ static void xprt_timer(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; spin_lock(&xprt->sock_lock); if (req->rq_received) goto out; xprt_adjust_cwnd(req->rq_xprt, -ETIMEDOUT); __xprt_put_cong(xprt, req); dprintk("RPC: %4d xprt_timer (%s request)\n", task->tk_pid, req ? "pending" : "backlogged"); task->tk_status = -ETIMEDOUT; out: task->tk_timeout = 0; rpc_wake_up_task(task); spin_unlock(&xprt->sock_lock); } /* * Place the actual RPC call. * We have to copy the iovec because sendmsg fiddles with its contents. */ int xprt_prepare_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int err = 0; dprintk("RPC: %4d xprt_prepare_transmit\n", task->tk_pid); if (xprt->shutdown) return -EIO; spin_lock_bh(&xprt->sock_lock); if (req->rq_received && !req->rq_bytes_sent) { err = req->rq_received; goto out_unlock; } if (!__xprt_lock_write(xprt, task)) { err = -EAGAIN; goto out_unlock; } if (!xprt_connected(xprt)) { err = -ENOTCONN; goto out_unlock; } out_unlock: spin_unlock_bh(&xprt->sock_lock); return err; } void xprt_transmit(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int status, retry = 0; dprintk("RPC: %4d xprt_transmit(%u)\n", task->tk_pid, req->rq_slen); /* set up everything as needed. */ /* Write the record marker */ if (xprt->stream) { u32 *marker = req->rq_svec[0].iov_base; *marker = htonl(0x80000000|(req->rq_slen-sizeof(*marker))); } smp_rmb(); if (!req->rq_received) { if (list_empty(&req->rq_list)) { spin_lock_bh(&xprt->sock_lock); /* Update the softirq receive buffer */ memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(req->rq_private_buf)); /* Add request to the receive list */ list_add_tail(&req->rq_list, &xprt->recv); spin_unlock_bh(&xprt->sock_lock); xprt_reset_majortimeo(req); /* Turn off autodisconnect */ del_singleshot_timer_sync(&xprt->timer); } } else if (!req->rq_bytes_sent) return; /* Continue transmitting the packet/record. We must be careful * to cope with writespace callbacks arriving _after_ we have * called xprt_sendmsg(). */ while (1) { req->rq_xtime = jiffies; status = xprt_sendmsg(xprt, req); if (status < 0) break; if (xprt->stream) { req->rq_bytes_sent += status; /* If we've sent the entire packet, immediately * reset the count of bytes sent. */ if (req->rq_bytes_sent >= req->rq_slen) { req->rq_bytes_sent = 0; goto out_receive; } } else { if (status >= req->rq_slen) goto out_receive; status = -EAGAIN; break; } dprintk("RPC: %4d xmit incomplete (%d left of %d)\n", task->tk_pid, req->rq_slen - req->rq_bytes_sent, req->rq_slen); status = -EAGAIN; if (retry++ > 50) break; } /* Note: at this point, task->tk_sleeping has not yet been set, * hence there is no danger of the waking up task being put on * schedq, and being picked up by a parallel run of rpciod(). */ task->tk_status = status; switch (status) { case -EAGAIN: if (test_bit(SOCK_ASYNC_NOSPACE, &xprt->sock->flags)) { /* Protect against races with xprt_write_space */ spin_lock_bh(&xprt->sock_lock); /* Don't race with disconnect */ if (!xprt_connected(xprt)) task->tk_status = -ENOTCONN; else if (test_bit(SOCK_NOSPACE, &xprt->sock->flags)) { task->tk_timeout = req->rq_timeout; rpc_sleep_on(&xprt->pending, task, NULL, NULL); } spin_unlock_bh(&xprt->sock_lock); return; } /* Keep holding the socket if it is blocked */ rpc_delay(task, HZ>>4); return; case -ECONNREFUSED: task->tk_timeout = RPC_REESTABLISH_TIMEOUT; rpc_sleep_on(&xprt->sending, task, NULL, NULL); case -ENOTCONN: return; default: if (xprt->stream) xprt_disconnect(xprt); } xprt_release_write(xprt, task); return; out_receive: dprintk("RPC: %4d xmit complete\n", task->tk_pid); /* Set the task's receive timeout value */ spin_lock_bh(&xprt->sock_lock); if (!xprt->nocong) { int timer = task->tk_msg.rpc_proc->p_timer; task->tk_timeout = rpc_calc_rto(clnt->cl_rtt, timer); task->tk_timeout <<= rpc_ntimeo(clnt->cl_rtt, timer) + req->rq_retries; if (task->tk_timeout > xprt->timeout.to_maxval || task->tk_timeout == 0) task->tk_timeout = xprt->timeout.to_maxval; } else task->tk_timeout = req->rq_timeout; /* Don't race with disconnect */ if (!xprt_connected(xprt)) task->tk_status = -ENOTCONN; else if (!req->rq_received) rpc_sleep_on(&xprt->pending, task, NULL, xprt_timer); __xprt_release_write(xprt, task); spin_unlock_bh(&xprt->sock_lock); } /* * Reserve an RPC call slot. */ static inline void do_xprt_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; task->tk_status = 0; if (task->tk_rqstp) return; if (!list_empty(&xprt->free)) { struct rpc_rqst *req = list_entry(xprt->free.next, struct rpc_rqst, rq_list); list_del_init(&req->rq_list); task->tk_rqstp = req; xprt_request_init(task, xprt); return; } dprintk("RPC: waiting for request slot\n"); task->tk_status = -EAGAIN; task->tk_timeout = 0; rpc_sleep_on(&xprt->backlog, task, NULL, NULL); } void xprt_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; task->tk_status = -EIO; if (!xprt->shutdown) { spin_lock(&xprt->xprt_lock); do_xprt_reserve(task); spin_unlock(&xprt->xprt_lock); } } /* * Allocate a 'unique' XID */ static inline u32 xprt_alloc_xid(struct rpc_xprt *xprt) { return xprt->xid++; } static inline void xprt_init_xid(struct rpc_xprt *xprt) { get_random_bytes(&xprt->xid, sizeof(xprt->xid)); } /* * Initialize RPC request */ static void xprt_request_init(struct rpc_task *task, struct rpc_xprt *xprt) { struct rpc_rqst *req = task->tk_rqstp; req->rq_timeout = xprt->timeout.to_initval; req->rq_task = task; req->rq_xprt = xprt; req->rq_xid = xprt_alloc_xid(xprt); dprintk("RPC: %4d reserved req %p xid %08x\n", task->tk_pid, req, ntohl(req->rq_xid)); } /* * Release an RPC call slot */ void xprt_release(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; struct rpc_rqst *req; if (!(req = task->tk_rqstp)) return; spin_lock_bh(&xprt->sock_lock); __xprt_release_write(xprt, task); __xprt_put_cong(xprt, req); if (!list_empty(&req->rq_list)) list_del(&req->rq_list); xprt->last_used = jiffies; if (list_empty(&xprt->recv) && !xprt->shutdown) mod_timer(&xprt->timer, xprt->last_used + XPRT_IDLE_TIMEOUT); spin_unlock_bh(&xprt->sock_lock); task->tk_rqstp = NULL; memset(req, 0, sizeof(*req)); /* mark unused */ dprintk("RPC: %4d release request %p\n", task->tk_pid, req); spin_lock(&xprt->xprt_lock); list_add(&req->rq_list, &xprt->free); xprt_clear_backlog(xprt); spin_unlock(&xprt->xprt_lock); } /* * Set default timeout parameters */ static void xprt_default_timeout(struct rpc_timeout *to, int proto) { if (proto == IPPROTO_UDP) xprt_set_timeout(to, 5, 5 * HZ); else xprt_set_timeout(to, 5, 60 * HZ); } /* * Set constant timeout */ void xprt_set_timeout(struct rpc_timeout *to, unsigned int retr, unsigned long incr) { to->to_initval = to->to_increment = incr; to->to_maxval = incr * retr; to->to_retries = retr; to->to_exponential = 0; } unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; unsigned int xprt_tcp_slot_table_entries = RPC_DEF_SLOT_TABLE; /* * Initialize an RPC client */ static struct rpc_xprt * xprt_setup(int proto, struct sockaddr_in *ap, struct rpc_timeout *to) { struct rpc_xprt *xprt; unsigned int entries; size_t slot_table_size; struct rpc_rqst *req; dprintk("RPC: setting up %s transport...\n", proto == IPPROTO_UDP? "UDP" : "TCP"); entries = (proto == IPPROTO_TCP)? xprt_tcp_slot_table_entries : xprt_udp_slot_table_entries; if ((xprt = kmalloc(sizeof(struct rpc_xprt), GFP_KERNEL)) == NULL) return ERR_PTR(-ENOMEM); memset(xprt, 0, sizeof(*xprt)); /* Nnnngh! */ xprt->max_reqs = entries; slot_table_size = entries * sizeof(xprt->slot[0]); xprt->slot = kmalloc(slot_table_size, GFP_KERNEL); if (xprt->slot == NULL) { kfree(xprt); return ERR_PTR(-ENOMEM); } memset(xprt->slot, 0, slot_table_size); xprt->addr = *ap; xprt->prot = proto; xprt->stream = (proto == IPPROTO_TCP)? 1 : 0; if (xprt->stream) { xprt->cwnd = RPC_MAXCWND(xprt); xprt->nocong = 1; xprt->max_payload = (1U << 31) - 1; } else { xprt->cwnd = RPC_INITCWND; xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); } spin_lock_init(&xprt->sock_lock); spin_lock_init(&xprt->xprt_lock); init_waitqueue_head(&xprt->cong_wait); INIT_LIST_HEAD(&xprt->free); INIT_LIST_HEAD(&xprt->recv); INIT_WORK(&xprt->sock_connect, xprt_socket_connect, xprt); INIT_WORK(&xprt->task_cleanup, xprt_socket_autoclose, xprt); init_timer(&xprt->timer); xprt->timer.function = xprt_init_autodisconnect; xprt->timer.data = (unsigned long) xprt; xprt->last_used = jiffies; xprt->port = XPRT_MAX_RESVPORT; /* Set timeout parameters */ if (to) { xprt->timeout = *to; } else xprt_default_timeout(&xprt->timeout, xprt->prot); rpc_init_wait_queue(&xprt->pending, "xprt_pending"); rpc_init_wait_queue(&xprt->sending, "xprt_sending"); rpc_init_wait_queue(&xprt->resend, "xprt_resend"); rpc_init_priority_wait_queue(&xprt->backlog, "xprt_backlog"); /* initialize free list */ for (req = &xprt->slot[entries-1]; req >= &xprt->slot[0]; req--) list_add(&req->rq_list, &xprt->free); xprt_init_xid(xprt); /* Check whether we want to use a reserved port */ xprt->resvport = capable(CAP_NET_BIND_SERVICE) ? 1 : 0; dprintk("RPC: created transport %p with %u slots\n", xprt, xprt->max_reqs); return xprt; } /* * Bind to a reserved port */ static inline int xprt_bindresvport(struct rpc_xprt *xprt, struct socket *sock) { struct sockaddr_in myaddr = { .sin_family = AF_INET, }; int err, port; /* Were we already bound to a given port? Try to reuse it */ port = xprt->port; do { myaddr.sin_port = htons(port); err = sock->ops->bind(sock, (struct sockaddr *) &myaddr, sizeof(myaddr)); if (err == 0) { xprt->port = port; return 0; } if (--port == 0) port = XPRT_MAX_RESVPORT; } while (err == -EADDRINUSE && port != xprt->port); printk("RPC: Can't bind to reserved port (%d).\n", -err); return err; } static void xprt_bind_socket(struct rpc_xprt *xprt, struct socket *sock) { struct sock *sk = sock->sk; if (xprt->inet) return; write_lock_bh(&sk->sk_callback_lock); sk->sk_user_data = xprt; xprt->old_data_ready = sk->sk_data_ready; xprt->old_state_change = sk->sk_state_change; xprt->old_write_space = sk->sk_write_space; if (xprt->prot == IPPROTO_UDP) { sk->sk_data_ready = udp_data_ready; sk->sk_no_check = UDP_CSUM_NORCV; xprt_set_connected(xprt); } else { tcp_sk(sk)->nonagle = 1; /* disable Nagle's algorithm */ sk->sk_data_ready = tcp_data_ready; sk->sk_state_change = tcp_state_change; xprt_clear_connected(xprt); } sk->sk_write_space = xprt_write_space; /* Reset to new socket */ xprt->sock = sock; xprt->inet = sk; write_unlock_bh(&sk->sk_callback_lock); return; } /* * Set socket buffer length */ void xprt_sock_setbufsize(struct rpc_xprt *xprt) { struct sock *sk = xprt->inet; if (xprt->stream) return; if (xprt->rcvsize) { sk->sk_userlocks |= SOCK_RCVBUF_LOCK; sk->sk_rcvbuf = xprt->rcvsize * xprt->max_reqs * 2; } if (xprt->sndsize) { sk->sk_userlocks |= SOCK_SNDBUF_LOCK; sk->sk_sndbuf = xprt->sndsize * xprt->max_reqs * 2; sk->sk_write_space(sk); } } /* * Datastream sockets are created here, but xprt_connect will create * and connect stream sockets. */ static struct socket * xprt_create_socket(struct rpc_xprt *xprt, int proto, int resvport) { struct socket *sock; int type, err; dprintk("RPC: xprt_create_socket(%s %d)\n", (proto == IPPROTO_UDP)? "udp" : "tcp", proto); type = (proto == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; if ((err = sock_create_kern(PF_INET, type, proto, &sock)) < 0) { printk("RPC: can't create socket (%d).\n", -err); return NULL; } /* If the caller has the capability, bind to a reserved port */ if (resvport && xprt_bindresvport(xprt, sock) < 0) { printk("RPC: can't bind to reserved port.\n"); goto failed; } return sock; failed: sock_release(sock); return NULL; } /* * Create an RPC client transport given the protocol and peer address. */ struct rpc_xprt * xprt_create_proto(int proto, struct sockaddr_in *sap, struct rpc_timeout *to) { struct rpc_xprt *xprt; xprt = xprt_setup(proto, sap, to); if (IS_ERR(xprt)) dprintk("RPC: xprt_create_proto failed\n"); else dprintk("RPC: xprt_create_proto created xprt %p\n", xprt); return xprt; } /* * Prepare for transport shutdown. */ static void xprt_shutdown(struct rpc_xprt *xprt) { xprt->shutdown = 1; rpc_wake_up(&xprt->sending); rpc_wake_up(&xprt->resend); rpc_wake_up(&xprt->pending); rpc_wake_up(&xprt->backlog); wake_up(&xprt->cong_wait); del_timer_sync(&xprt->timer); /* synchronously wait for connect worker to finish */ cancel_delayed_work(&xprt->sock_connect); flush_scheduled_work(); } /* * Clear the xprt backlog queue */ static int xprt_clear_backlog(struct rpc_xprt *xprt) { rpc_wake_up_next(&xprt->backlog); wake_up(&xprt->cong_wait); return 1; } /* * Destroy an RPC transport, killing off all requests. */ int xprt_destroy(struct rpc_xprt *xprt) { dprintk("RPC: destroying transport %p\n", xprt); xprt_shutdown(xprt); xprt_disconnect(xprt); xprt_close(xprt); kfree(xprt->slot); kfree(xprt); return 0; }