#include #include #include #include #include #include #include #include #include #include static u32 net_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; static int __init net_secret_init(void) { get_random_bytes(net_secret, sizeof(net_secret)); return 0; } late_initcall(net_secret_init); #ifdef CONFIG_INET static u32 seq_scale(u32 seq) { /* * As close as possible to RFC 793, which * suggests using a 250 kHz clock. * Further reading shows this assumes 2 Mb/s networks. * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but * we also need to limit the resolution so that the u32 seq * overlaps less than one time per MSL (2 minutes). * Choosing a clock of 64 ns period is OK. (period of 274 s) */ return seq + (ktime_to_ns(ktime_get_real()) >> 6); } #endif #if IS_ENABLED(CONFIG_IPV6) __u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr, __be16 sport, __be16 dport) { u32 secret[MD5_MESSAGE_BYTES / 4]; u32 hash[MD5_DIGEST_WORDS]; u32 i; memcpy(hash, saddr, 16); for (i = 0; i < 4; i++) secret[i] = net_secret[i] + (__force u32)daddr[i]; secret[4] = net_secret[4] + (((__force u16)sport << 16) + (__force u16)dport); for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++) secret[i] = net_secret[i]; md5_transform(hash, secret); return seq_scale(hash[0]); } EXPORT_SYMBOL(secure_tcpv6_sequence_number); u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport) { u32 secret[MD5_MESSAGE_BYTES / 4]; u32 hash[MD5_DIGEST_WORDS]; u32 i; memcpy(hash, saddr, 16); for (i = 0; i < 4; i++) secret[i] = net_secret[i] + (__force u32) daddr[i]; secret[4] = net_secret[4] + (__force u32)dport; for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++) secret[i] = net_secret[i]; md5_transform(hash, secret); return hash[0]; } #endif #ifdef CONFIG_INET __u32 secure_ip_id(__be32 daddr) { u32 hash[MD5_DIGEST_WORDS]; hash[0] = (__force __u32) daddr; hash[1] = net_secret[13]; hash[2] = net_secret[14]; hash[3] = net_secret[15]; md5_transform(hash, net_secret); return hash[0]; } __u32 secure_ipv6_id(const __be32 daddr[4]) { __u32 hash[4]; memcpy(hash, daddr, 16); md5_transform(hash, net_secret); return hash[0]; } __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport) { u32 hash[MD5_DIGEST_WORDS]; hash[0] = (__force u32)saddr; hash[1] = (__force u32)daddr; hash[2] = ((__force u16)sport << 16) + (__force u16)dport; hash[3] = net_secret[15]; md5_transform(hash, net_secret); return seq_scale(hash[0]); } u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) { u32 hash[MD5_DIGEST_WORDS]; hash[0] = (__force u32)saddr; hash[1] = (__force u32)daddr; hash[2] = (__force u32)dport ^ net_secret[14]; hash[3] = net_secret[15]; md5_transform(hash, net_secret); return hash[0]; } EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); #endif #if IS_ENABLED(CONFIG_IP_DCCP) u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport) { u32 hash[MD5_DIGEST_WORDS]; u64 seq; hash[0] = (__force u32)saddr; hash[1] = (__force u32)daddr; hash[2] = ((__force u16)sport << 16) + (__force u16)dport; hash[3] = net_secret[15]; md5_transform(hash, net_secret); seq = hash[0] | (((u64)hash[1]) << 32); seq += ktime_to_ns(ktime_get_real()); seq &= (1ull << 48) - 1; return seq; } EXPORT_SYMBOL(secure_dccp_sequence_number); #if IS_ENABLED(CONFIG_IPV6) u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr, __be16 sport, __be16 dport) { u32 secret[MD5_MESSAGE_BYTES / 4]; u32 hash[MD5_DIGEST_WORDS]; u64 seq; u32 i; memcpy(hash, saddr, 16); for (i = 0; i < 4; i++) secret[i] = net_secret[i] + daddr[i]; secret[4] = net_secret[4] + (((__force u16)sport << 16) + (__force u16)dport); for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++) secret[i] = net_secret[i]; md5_transform(hash, secret); seq = hash[0] | (((u64)hash[1]) << 32); seq += ktime_to_ns(ktime_get_real()); seq &= (1ull << 48) - 1; return seq; } EXPORT_SYMBOL(secure_dccpv6_sequence_number); #endif #endif