/* flow.c: Generic flow cache. * * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) * Copyright (C) 2003 David S. Miller (davem@redhat.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct flow_cache_entry { union { struct hlist_node hlist; struct list_head gc_list; } u; struct net *net; u16 family; u8 dir; u32 genid; struct flowi key; struct flow_cache_object *object; }; struct flow_cache_percpu { struct hlist_head *hash_table; int hash_count; u32 hash_rnd; int hash_rnd_recalc; struct tasklet_struct flush_tasklet; }; struct flow_flush_info { struct flow_cache *cache; atomic_t cpuleft; struct completion completion; }; struct flow_cache { u32 hash_shift; struct flow_cache_percpu __percpu *percpu; struct notifier_block hotcpu_notifier; int low_watermark; int high_watermark; struct timer_list rnd_timer; }; atomic_t flow_cache_genid = ATOMIC_INIT(0); EXPORT_SYMBOL(flow_cache_genid); static struct flow_cache flow_cache_global; static struct kmem_cache *flow_cachep __read_mostly; static DEFINE_SPINLOCK(flow_cache_gc_lock); static LIST_HEAD(flow_cache_gc_list); #define flow_cache_hash_size(cache) (1 << (cache)->hash_shift) #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) static void flow_cache_new_hashrnd(unsigned long arg) { struct flow_cache *fc = (void *) arg; int i; for_each_possible_cpu(i) per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; add_timer(&fc->rnd_timer); } static int flow_entry_valid(struct flow_cache_entry *fle) { if (atomic_read(&flow_cache_genid) != fle->genid) return 0; if (fle->object && !fle->object->ops->check(fle->object)) return 0; return 1; } static void flow_entry_kill(struct flow_cache_entry *fle) { if (fle->object) fle->object->ops->delete(fle->object); kmem_cache_free(flow_cachep, fle); } static void flow_cache_gc_task(struct work_struct *work) { struct list_head gc_list; struct flow_cache_entry *fce, *n; INIT_LIST_HEAD(&gc_list); spin_lock_bh(&flow_cache_gc_lock); list_splice_tail_init(&flow_cache_gc_list, &gc_list); spin_unlock_bh(&flow_cache_gc_lock); list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) flow_entry_kill(fce); } static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task); static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp, int deleted, struct list_head *gc_list) { if (deleted) { fcp->hash_count -= deleted; spin_lock_bh(&flow_cache_gc_lock); list_splice_tail(gc_list, &flow_cache_gc_list); spin_unlock_bh(&flow_cache_gc_lock); schedule_work(&flow_cache_gc_work); } } static void __flow_cache_shrink(struct flow_cache *fc, struct flow_cache_percpu *fcp, int shrink_to) { struct flow_cache_entry *fle; struct hlist_node *entry, *tmp; LIST_HEAD(gc_list); int i, deleted = 0; for (i = 0; i < flow_cache_hash_size(fc); i++) { int saved = 0; hlist_for_each_entry_safe(fle, entry, tmp, &fcp->hash_table[i], u.hlist) { if (saved < shrink_to && flow_entry_valid(fle)) { saved++; } else { deleted++; hlist_del(&fle->u.hlist); list_add_tail(&fle->u.gc_list, &gc_list); } } } flow_cache_queue_garbage(fcp, deleted, &gc_list); } static void flow_cache_shrink(struct flow_cache *fc, struct flow_cache_percpu *fcp) { int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); __flow_cache_shrink(fc, fcp, shrink_to); } static void flow_new_hash_rnd(struct flow_cache *fc, struct flow_cache_percpu *fcp) { get_random_bytes(&fcp->hash_rnd, sizeof(u32)); fcp->hash_rnd_recalc = 0; __flow_cache_shrink(fc, fcp, 0); } static u32 flow_hash_code(struct flow_cache *fc, struct flow_cache_percpu *fcp, const struct flowi *key, size_t keysize) { const u32 *k = (const u32 *) key; const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32); return jhash2(k, length, fcp->hash_rnd) & (flow_cache_hash_size(fc) - 1); } /* I hear what you're saying, use memcmp. But memcmp cannot make * important assumptions that we can here, such as alignment. */ static int flow_key_compare(const struct flowi *key1, const struct flowi *key2, size_t keysize) { const flow_compare_t *k1, *k1_lim, *k2; k1 = (const flow_compare_t *) key1; k1_lim = k1 + keysize; k2 = (const flow_compare_t *) key2; do { if (*k1++ != *k2++) return 1; } while (k1 < k1_lim); return 0; } struct flow_cache_object * flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir, flow_resolve_t resolver, void *ctx) { struct flow_cache *fc = &flow_cache_global; struct flow_cache_percpu *fcp; struct flow_cache_entry *fle, *tfle; struct hlist_node *entry; struct flow_cache_object *flo; size_t keysize; unsigned int hash; local_bh_disable(); fcp = this_cpu_ptr(fc->percpu); fle = NULL; flo = NULL; keysize = flow_key_size(family); if (!keysize) goto nocache; /* Packet really early in init? Making flow_cache_init a * pre-smp initcall would solve this. --RR */ if (!fcp->hash_table) goto nocache; if (fcp->hash_rnd_recalc) flow_new_hash_rnd(fc, fcp); hash = flow_hash_code(fc, fcp, key, keysize); hlist_for_each_entry(tfle, entry, &fcp->hash_table[hash], u.hlist) { if (tfle->net == net && tfle->family == family && tfle->dir == dir && flow_key_compare(key, &tfle->key, keysize) == 0) { fle = tfle; break; } } if (unlikely(!fle)) { if (fcp->hash_count > fc->high_watermark) flow_cache_shrink(fc, fcp); fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); if (fle) { fle->net = net; fle->family = family; fle->dir = dir; memcpy(&fle->key, key, keysize * sizeof(flow_compare_t)); fle->object = NULL; hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]); fcp->hash_count++; } } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) { flo = fle->object; if (!flo) goto ret_object; flo = flo->ops->get(flo); if (flo) goto ret_object; } else if (fle->object) { flo = fle->object; flo->ops->delete(flo); fle->object = NULL; } nocache: flo = NULL; if (fle) { flo = fle->object; fle->object = NULL; } flo = resolver(net, key, family, dir, flo, ctx); if (fle) { fle->genid = atomic_read(&flow_cache_genid); if (!IS_ERR(flo)) fle->object = flo; else fle->genid--; } else { if (flo && !IS_ERR(flo)) flo->ops->delete(flo); } ret_object: local_bh_enable(); return flo; } EXPORT_SYMBOL(flow_cache_lookup); static void flow_cache_flush_tasklet(unsigned long data) { struct flow_flush_info *info = (void *)data; struct flow_cache *fc = info->cache; struct flow_cache_percpu *fcp; struct flow_cache_entry *fle; struct hlist_node *entry, *tmp; LIST_HEAD(gc_list); int i, deleted = 0; fcp = this_cpu_ptr(fc->percpu); for (i = 0; i < flow_cache_hash_size(fc); i++) { hlist_for_each_entry_safe(fle, entry, tmp, &fcp->hash_table[i], u.hlist) { if (flow_entry_valid(fle)) continue; deleted++; hlist_del(&fle->u.hlist); list_add_tail(&fle->u.gc_list, &gc_list); } } flow_cache_queue_garbage(fcp, deleted, &gc_list); if (atomic_dec_and_test(&info->cpuleft)) complete(&info->completion); } static void flow_cache_flush_per_cpu(void *data) { struct flow_flush_info *info = data; int cpu; struct tasklet_struct *tasklet; cpu = smp_processor_id(); tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet; tasklet->data = (unsigned long)info; tasklet_schedule(tasklet); } void flow_cache_flush(void) { struct flow_flush_info info; static DEFINE_MUTEX(flow_flush_sem); /* Don't want cpus going down or up during this. */ get_online_cpus(); mutex_lock(&flow_flush_sem); info.cache = &flow_cache_global; atomic_set(&info.cpuleft, num_online_cpus()); init_completion(&info.completion); local_bh_disable(); smp_call_function(flow_cache_flush_per_cpu, &info, 0); flow_cache_flush_tasklet((unsigned long)&info); local_bh_enable(); wait_for_completion(&info.completion); mutex_unlock(&flow_flush_sem); put_online_cpus(); } static void flow_cache_flush_task(struct work_struct *work) { flow_cache_flush(); } static DECLARE_WORK(flow_cache_flush_work, flow_cache_flush_task); void flow_cache_flush_deferred(void) { schedule_work(&flow_cache_flush_work); } static int __cpuinit flow_cache_cpu_prepare(struct flow_cache *fc, int cpu) { struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc); if (!fcp->hash_table) { fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); if (!fcp->hash_table) { pr_err("NET: failed to allocate flow cache sz %zu\n", sz); return -ENOMEM; } fcp->hash_rnd_recalc = 1; fcp->hash_count = 0; tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); } return 0; } static int __cpuinit flow_cache_cpu(struct notifier_block *nfb, unsigned long action, void *hcpu) { struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier); int res, cpu = (unsigned long) hcpu; struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: res = flow_cache_cpu_prepare(fc, cpu); if (res) return notifier_from_errno(res); break; case CPU_DEAD: case CPU_DEAD_FROZEN: __flow_cache_shrink(fc, fcp, 0); break; } return NOTIFY_OK; } static int __init flow_cache_init(struct flow_cache *fc) { int i; fc->hash_shift = 10; fc->low_watermark = 2 * flow_cache_hash_size(fc); fc->high_watermark = 4 * flow_cache_hash_size(fc); fc->percpu = alloc_percpu(struct flow_cache_percpu); if (!fc->percpu) return -ENOMEM; for_each_online_cpu(i) { if (flow_cache_cpu_prepare(fc, i)) goto err; } fc->hotcpu_notifier = (struct notifier_block){ .notifier_call = flow_cache_cpu, }; register_hotcpu_notifier(&fc->hotcpu_notifier); setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, (unsigned long) fc); fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; add_timer(&fc->rnd_timer); return 0; err: for_each_possible_cpu(i) { struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); kfree(fcp->hash_table); fcp->hash_table = NULL; } free_percpu(fc->percpu); fc->percpu = NULL; return -ENOMEM; } static int __init flow_cache_init_global(void) { flow_cachep = kmem_cache_create("flow_cache", sizeof(struct flow_cache_entry), 0, SLAB_PANIC, NULL); return flow_cache_init(&flow_cache_global); } module_init(flow_cache_init_global);