/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_clnt.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_alloc.h" #include "xfs_dmapi.h" #include "xfs_quota.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_bmap.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_itable.h" #include "xfs_rw.h" #include "xfs_acl.h" #include "xfs_attr.h" #include "xfs_buf_item.h" #include "xfs_utils.h" #include "xfs_version.h" #include #include #include #include #include #include #include static struct quotactl_ops xfs_quotactl_operations; static struct super_operations xfs_super_operations; static kmem_zone_t *xfs_vnode_zone; static kmem_zone_t *xfs_ioend_zone; mempool_t *xfs_ioend_pool; STATIC struct xfs_mount_args * xfs_args_allocate( struct super_block *sb, int silent) { struct xfs_mount_args *args; args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP); args->logbufs = args->logbufsize = -1; strncpy(args->fsname, sb->s_id, MAXNAMELEN); /* Copy the already-parsed mount(2) flags we're interested in */ if (sb->s_flags & MS_DIRSYNC) args->flags |= XFSMNT_DIRSYNC; if (sb->s_flags & MS_SYNCHRONOUS) args->flags |= XFSMNT_WSYNC; if (silent) args->flags |= XFSMNT_QUIET; args->flags |= XFSMNT_32BITINODES; return args; } __uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_prepare_write does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBD) ASSERT(sizeof(sector_t) == 8); pagefactor = PAGE_CACHE_SIZE; bitshift = BITS_PER_LONG; # else pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); # endif #endif return (((__uint64_t)pagefactor) << bitshift) - 1; } STATIC_INLINE void xfs_set_inodeops( struct inode *inode) { switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_op = &xfs_inode_operations; inode->i_fop = &xfs_file_operations; inode->i_mapping->a_ops = &xfs_address_space_operations; break; case S_IFDIR: inode->i_op = &xfs_dir_inode_operations; inode->i_fop = &xfs_dir_file_operations; break; case S_IFLNK: inode->i_op = &xfs_symlink_inode_operations; if (inode->i_blocks) inode->i_mapping->a_ops = &xfs_address_space_operations; break; default: inode->i_op = &xfs_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); break; } } STATIC_INLINE void xfs_revalidate_inode( xfs_mount_t *mp, bhv_vnode_t *vp, xfs_inode_t *ip) { struct inode *inode = vn_to_inode(vp); inode->i_mode = ip->i_d.di_mode; inode->i_nlink = ip->i_d.di_nlink; inode->i_uid = ip->i_d.di_uid; inode->i_gid = ip->i_d.di_gid; switch (inode->i_mode & S_IFMT) { case S_IFBLK: case S_IFCHR: inode->i_rdev = MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, sysv_minor(ip->i_df.if_u2.if_rdev)); break; default: inode->i_rdev = 0; break; } inode->i_generation = ip->i_d.di_gen; i_size_write(inode, ip->i_d.di_size); inode->i_blocks = XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec; inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec; inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec; inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec; inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec; inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec; if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) inode->i_flags |= S_SYNC; else inode->i_flags &= ~S_SYNC; if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; vp->v_flag &= ~VMODIFIED; } void xfs_initialize_vnode( bhv_desc_t *bdp, bhv_vnode_t *vp, bhv_desc_t *inode_bhv, int unlock) { xfs_inode_t *ip = XFS_BHVTOI(inode_bhv); struct inode *inode = vn_to_inode(vp); if (!inode_bhv->bd_vobj) { vp->v_vfsp = bhvtovfs(bdp); bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops); bhv_insert(VN_BHV_HEAD(vp), inode_bhv); } /* * We need to set the ops vectors, and unlock the inode, but if * we have been called during the new inode create process, it is * too early to fill in the Linux inode. We will get called a * second time once the inode is properly set up, and then we can * finish our work. */ if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) { xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip); xfs_set_inodeops(inode); xfs_iflags_clear(ip, XFS_INEW); barrier(); unlock_new_inode(inode); } } int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { int error = 0; *bdevp = open_bdev_excl(name, 0, mp); if (IS_ERR(*bdevp)) { error = PTR_ERR(*bdevp); printk("XFS: Invalid device [%s], error=%d\n", name, error); } return -error; } void xfs_blkdev_put( struct block_device *bdev) { if (bdev) close_bdev_excl(bdev); } /* * Try to write out the superblock using barriers. */ STATIC int xfs_barrier_test( xfs_mount_t *mp) { xfs_buf_t *sbp = xfs_getsb(mp, 0); int error; XFS_BUF_UNDONE(sbp); XFS_BUF_UNREAD(sbp); XFS_BUF_UNDELAYWRITE(sbp); XFS_BUF_WRITE(sbp); XFS_BUF_UNASYNC(sbp); XFS_BUF_ORDERED(sbp); xfsbdstrat(mp, sbp); error = xfs_iowait(sbp); /* * Clear all the flags we set and possible error state in the * buffer. We only did the write to try out whether barriers * worked and shouldn't leave any traces in the superblock * buffer. */ XFS_BUF_DONE(sbp); XFS_BUF_ERROR(sbp, 0); XFS_BUF_UNORDERED(sbp); xfs_buf_relse(sbp); return error; } void xfs_mountfs_check_barriers(xfs_mount_t *mp) { int error; if (mp->m_logdev_targp != mp->m_ddev_targp) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, not supported with external log device"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered == QUEUE_ORDERED_NONE) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, not supported by the underlying device"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } if (xfs_readonly_buftarg(mp->m_ddev_targp)) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, underlying device is readonly"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } error = xfs_barrier_test(mp); if (error) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, trial barrier write failed"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } } void xfs_blkdev_issue_flush( xfs_buftarg_t *buftarg) { blkdev_issue_flush(buftarg->bt_bdev, NULL); } STATIC struct inode * xfs_fs_alloc_inode( struct super_block *sb) { bhv_vnode_t *vp; vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP); if (unlikely(!vp)) return NULL; return vn_to_inode(vp); } STATIC void xfs_fs_destroy_inode( struct inode *inode) { kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode)); } STATIC void xfs_fs_inode_init_once( void *vnode, kmem_zone_t *zonep, unsigned long flags) { if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) inode_init_once(vn_to_inode((bhv_vnode_t *)vnode)); } STATIC int xfs_init_zones(void) { xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode", KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD, xfs_fs_inode_init_once); if (!xfs_vnode_zone) goto out; xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend"); if (!xfs_ioend_zone) goto out_destroy_vnode_zone; xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE, xfs_ioend_zone); if (!xfs_ioend_pool) goto out_free_ioend_zone; return 0; out_free_ioend_zone: kmem_zone_destroy(xfs_ioend_zone); out_destroy_vnode_zone: kmem_zone_destroy(xfs_vnode_zone); out: return -ENOMEM; } STATIC void xfs_destroy_zones(void) { mempool_destroy(xfs_ioend_pool); kmem_zone_destroy(xfs_vnode_zone); kmem_zone_destroy(xfs_ioend_zone); } /* * Attempt to flush the inode, this will actually fail * if the inode is pinned, but we dirty the inode again * at the point when it is unpinned after a log write, * since this is when the inode itself becomes flushable. */ STATIC int xfs_fs_write_inode( struct inode *inode, int sync) { bhv_vnode_t *vp = vn_from_inode(inode); int error = 0, flags = FLUSH_INODE; if (vp) { vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); if (sync) flags |= FLUSH_SYNC; error = bhv_vop_iflush(vp, flags); if (error == EAGAIN) error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0; } return -error; } STATIC void xfs_fs_clear_inode( struct inode *inode) { bhv_vnode_t *vp = vn_from_inode(inode); vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); XFS_STATS_INC(vn_rele); XFS_STATS_INC(vn_remove); XFS_STATS_INC(vn_reclaim); XFS_STATS_DEC(vn_active); /* * This can happen because xfs_iget_core calls xfs_idestroy if we * find an inode with di_mode == 0 but without IGET_CREATE set. */ if (VNHEAD(vp)) bhv_vop_inactive(vp, NULL); VN_LOCK(vp); vp->v_flag &= ~VMODIFIED; VN_UNLOCK(vp, 0); if (VNHEAD(vp)) if (bhv_vop_reclaim(vp)) panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp); ASSERT(VNHEAD(vp) == NULL); #ifdef XFS_VNODE_TRACE ktrace_free(vp->v_trace); #endif } /* * Enqueue a work item to be picked up by the vfs xfssyncd thread. * Doing this has two advantages: * - It saves on stack space, which is tight in certain situations * - It can be used (with care) as a mechanism to avoid deadlocks. * Flushing while allocating in a full filesystem requires both. */ STATIC void xfs_syncd_queue_work( struct bhv_vfs *vfs, void *data, void (*syncer)(bhv_vfs_t *, void *)) { struct bhv_vfs_sync_work *work; work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); INIT_LIST_HEAD(&work->w_list); work->w_syncer = syncer; work->w_data = data; work->w_vfs = vfs; spin_lock(&vfs->vfs_sync_lock); list_add_tail(&work->w_list, &vfs->vfs_sync_list); spin_unlock(&vfs->vfs_sync_lock); wake_up_process(vfs->vfs_sync_task); } /* * Flush delayed allocate data, attempting to free up reserved space * from existing allocations. At this point a new allocation attempt * has failed with ENOSPC and we are in the process of scratching our * heads, looking about for more room... */ STATIC void xfs_flush_inode_work( bhv_vfs_t *vfs, void *inode) { filemap_flush(((struct inode *)inode)->i_mapping); iput((struct inode *)inode); } void xfs_flush_inode( xfs_inode_t *ip) { struct inode *inode = vn_to_inode(XFS_ITOV(ip)); struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount); igrab(inode); xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work); delay(msecs_to_jiffies(500)); } /* * This is the "bigger hammer" version of xfs_flush_inode_work... * (IOW, "If at first you don't succeed, use a Bigger Hammer"). */ STATIC void xfs_flush_device_work( bhv_vfs_t *vfs, void *inode) { sync_blockdev(vfs->vfs_super->s_bdev); iput((struct inode *)inode); } void xfs_flush_device( xfs_inode_t *ip) { struct inode *inode = vn_to_inode(XFS_ITOV(ip)); struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount); igrab(inode); xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work); delay(msecs_to_jiffies(500)); xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); } STATIC void vfs_sync_worker( bhv_vfs_t *vfsp, void *unused) { int error; if (!(vfsp->vfs_flag & VFS_RDONLY)) error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \ SYNC_ATTR | SYNC_REFCACHE, NULL); vfsp->vfs_sync_seq++; wake_up(&vfsp->vfs_wait_single_sync_task); } STATIC int xfssyncd( void *arg) { long timeleft; bhv_vfs_t *vfsp = (bhv_vfs_t *) arg; bhv_vfs_sync_work_t *work, *n; LIST_HEAD (tmp); timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); for (;;) { timeleft = schedule_timeout_interruptible(timeleft); /* swsusp */ try_to_freeze(); if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list)) break; spin_lock(&vfsp->vfs_sync_lock); /* * We can get woken by laptop mode, to do a sync - * that's the (only!) case where the list would be * empty with time remaining. */ if (!timeleft || list_empty(&vfsp->vfs_sync_list)) { if (!timeleft) timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list); list_add_tail(&vfsp->vfs_sync_work.w_list, &vfsp->vfs_sync_list); } list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list) list_move(&work->w_list, &tmp); spin_unlock(&vfsp->vfs_sync_lock); list_for_each_entry_safe(work, n, &tmp, w_list) { (*work->w_syncer)(vfsp, work->w_data); list_del(&work->w_list); if (work == &vfsp->vfs_sync_work) continue; kmem_free(work, sizeof(struct bhv_vfs_sync_work)); } } return 0; } STATIC int xfs_fs_start_syncd( bhv_vfs_t *vfsp) { vfsp->vfs_sync_work.w_syncer = vfs_sync_worker; vfsp->vfs_sync_work.w_vfs = vfsp; vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd"); if (IS_ERR(vfsp->vfs_sync_task)) return -PTR_ERR(vfsp->vfs_sync_task); return 0; } STATIC void xfs_fs_stop_syncd( bhv_vfs_t *vfsp) { kthread_stop(vfsp->vfs_sync_task); } STATIC void xfs_fs_put_super( struct super_block *sb) { bhv_vfs_t *vfsp = vfs_from_sb(sb); int error; xfs_fs_stop_syncd(vfsp); bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL); error = bhv_vfs_unmount(vfsp, 0, NULL); if (error) { printk("XFS: unmount got error=%d\n", error); printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp); } else { vfs_deallocate(vfsp); } } STATIC void xfs_fs_write_super( struct super_block *sb) { if (!(sb->s_flags & MS_RDONLY)) bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL); sb->s_dirt = 0; } STATIC int xfs_fs_sync_super( struct super_block *sb, int wait) { bhv_vfs_t *vfsp = vfs_from_sb(sb); int error; int flags; if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) { /* * First stage of freeze - no more writers will make progress * now we are here, so we flush delwri and delalloc buffers * here, then wait for all I/O to complete. Data is frozen at * that point. Metadata is not frozen, transactions can still * occur here so don't bother flushing the buftarg (i.e * SYNC_QUIESCE) because it'll just get dirty again. */ flags = SYNC_FSDATA | SYNC_DELWRI | SYNC_WAIT | SYNC_IOWAIT; } else flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0); error = bhv_vfs_sync(vfsp, flags, NULL); sb->s_dirt = 0; if (unlikely(laptop_mode)) { int prev_sync_seq = vfsp->vfs_sync_seq; /* * The disk must be active because we're syncing. * We schedule xfssyncd now (now that the disk is * active) instead of later (when it might not be). */ wake_up_process(vfsp->vfs_sync_task); /* * We have to wait for the sync iteration to complete. * If we don't, the disk activity caused by the sync * will come after the sync is completed, and that * triggers another sync from laptop mode. */ wait_event(vfsp->vfs_wait_single_sync_task, vfsp->vfs_sync_seq != prev_sync_seq); } return -error; } STATIC int xfs_fs_statfs( struct dentry *dentry, struct kstatfs *statp) { return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp, vn_from_inode(dentry->d_inode)); } STATIC int xfs_fs_remount( struct super_block *sb, int *flags, char *options) { bhv_vfs_t *vfsp = vfs_from_sb(sb); struct xfs_mount_args *args = xfs_args_allocate(sb, 0); int error; error = bhv_vfs_parseargs(vfsp, options, args, 1); if (!error) error = bhv_vfs_mntupdate(vfsp, flags, args); kmem_free(args, sizeof(*args)); return -error; } STATIC void xfs_fs_lockfs( struct super_block *sb) { bhv_vfs_freeze(vfs_from_sb(sb)); } STATIC int xfs_fs_show_options( struct seq_file *m, struct vfsmount *mnt) { return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m); } STATIC int xfs_fs_quotasync( struct super_block *sb, int type) { return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL); } STATIC int xfs_fs_getxstate( struct super_block *sb, struct fs_quota_stat *fqs) { return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs); } STATIC int xfs_fs_setxstate( struct super_block *sb, unsigned int flags, int op) { return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags); } STATIC int xfs_fs_getxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { return -bhv_vfs_quotactl(vfs_from_sb(sb), (type == USRQUOTA) ? Q_XGETQUOTA : ((type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETPQUOTA), id, (caddr_t)fdq); } STATIC int xfs_fs_setxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { return -bhv_vfs_quotactl(vfs_from_sb(sb), (type == USRQUOTA) ? Q_XSETQLIM : ((type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETPQLIM), id, (caddr_t)fdq); } STATIC int xfs_fs_fill_super( struct super_block *sb, void *data, int silent) { struct bhv_vnode *rootvp; struct bhv_vfs *vfsp = vfs_allocate(sb); struct xfs_mount_args *args = xfs_args_allocate(sb, silent); struct kstatfs statvfs; int error; bhv_insert_all_vfsops(vfsp); error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0); if (error) { bhv_remove_all_vfsops(vfsp, 1); goto fail_vfsop; } sb_min_blocksize(sb, BBSIZE); sb->s_export_op = &xfs_export_operations; sb->s_qcop = &xfs_quotactl_operations; sb->s_op = &xfs_super_operations; error = bhv_vfs_mount(vfsp, args, NULL); if (error) { bhv_remove_all_vfsops(vfsp, 1); goto fail_vfsop; } error = bhv_vfs_statvfs(vfsp, &statvfs, NULL); if (error) goto fail_unmount; sb->s_dirt = 1; sb->s_magic = statvfs.f_type; sb->s_blocksize = statvfs.f_bsize; sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); sb->s_time_gran = 1; set_posix_acl_flag(sb); error = bhv_vfs_root(vfsp, &rootvp); if (error) goto fail_unmount; sb->s_root = d_alloc_root(vn_to_inode(rootvp)); if (!sb->s_root) { error = ENOMEM; goto fail_vnrele; } if (is_bad_inode(sb->s_root->d_inode)) { error = EINVAL; goto fail_vnrele; } if ((error = xfs_fs_start_syncd(vfsp))) goto fail_vnrele; vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address); kmem_free(args, sizeof(*args)); return 0; fail_vnrele: if (sb->s_root) { dput(sb->s_root); sb->s_root = NULL; } else { VN_RELE(rootvp); } fail_unmount: bhv_vfs_unmount(vfsp, 0, NULL); fail_vfsop: vfs_deallocate(vfsp); kmem_free(args, sizeof(*args)); return -error; } STATIC int xfs_fs_get_sb( struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super, mnt); } static struct super_operations xfs_super_operations = { .alloc_inode = xfs_fs_alloc_inode, .destroy_inode = xfs_fs_destroy_inode, .write_inode = xfs_fs_write_inode, .clear_inode = xfs_fs_clear_inode, .put_super = xfs_fs_put_super, .write_super = xfs_fs_write_super, .sync_fs = xfs_fs_sync_super, .write_super_lockfs = xfs_fs_lockfs, .statfs = xfs_fs_statfs, .remount_fs = xfs_fs_remount, .show_options = xfs_fs_show_options, }; static struct quotactl_ops xfs_quotactl_operations = { .quota_sync = xfs_fs_quotasync, .get_xstate = xfs_fs_getxstate, .set_xstate = xfs_fs_setxstate, .get_xquota = xfs_fs_getxquota, .set_xquota = xfs_fs_setxquota, }; STATIC struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .get_sb = xfs_fs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; STATIC int __init init_xfs_fs( void ) { int error; struct sysinfo si; static char message[] __initdata = KERN_INFO \ XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"; printk(message); si_meminfo(&si); xfs_physmem = si.totalram; ktrace_init(64); error = xfs_init_zones(); if (error < 0) goto undo_zones; error = xfs_buf_init(); if (error < 0) goto undo_buffers; vn_init(); xfs_init(); uuid_init(); vfs_initquota(); error = register_filesystem(&xfs_fs_type); if (error) goto undo_register; return 0; undo_register: xfs_buf_terminate(); undo_buffers: xfs_destroy_zones(); undo_zones: return error; } STATIC void __exit exit_xfs_fs( void ) { vfs_exitquota(); unregister_filesystem(&xfs_fs_type); xfs_cleanup(); xfs_buf_terminate(); xfs_destroy_zones(); ktrace_uninit(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");