/* * balloc.c * * PURPOSE * Block allocation handling routines for the OSTA-UDF(tm) filesystem. * * CONTACTS * E-mail regarding any portion of the Linux UDF file system should be * directed to the development team mailing list (run by majordomo): * linux_udf@hpesjro.fc.hp.com * * COPYRIGHT * This file is distributed under the terms of the GNU General Public * License (GPL). Copies of the GPL can be obtained from: * ftp://prep.ai.mit.edu/pub/gnu/GPL * Each contributing author retains all rights to their own work. * * (C) 1999-2001 Ben Fennema * (C) 1999 Stelias Computing Inc * * HISTORY * * 02/24/99 blf Created. * */ #include "udfdecl.h" #include #include #include #include "udf_i.h" #include "udf_sb.h" #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) #define uintBPL_t uint(BITS_PER_LONG) #define uint(x) xuint(x) #define xuint(x) __le ## x extern inline int find_next_one_bit (void * addr, int size, int offset) { uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); int result = offset & ~(BITS_PER_LONG-1); unsigned long tmp; if (offset >= size) return size; size -= result; offset &= (BITS_PER_LONG-1); if (offset) { tmp = leBPL_to_cpup(p++); tmp &= ~0UL << offset; if (size < BITS_PER_LONG) goto found_first; if (tmp) goto found_middle; size -= BITS_PER_LONG; result += BITS_PER_LONG; } while (size & ~(BITS_PER_LONG-1)) { if ((tmp = leBPL_to_cpup(p++))) goto found_middle; result += BITS_PER_LONG; size -= BITS_PER_LONG; } if (!size) return result; tmp = leBPL_to_cpup(p); found_first: tmp &= ~0UL >> (BITS_PER_LONG-size); found_middle: return result + ffz(~tmp); } #define find_first_one_bit(addr, size)\ find_next_one_bit((addr), (size), 0) static int read_block_bitmap(struct super_block * sb, struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr) { struct buffer_head *bh = NULL; int retval = 0; kernel_lb_addr loc; loc.logicalBlockNum = bitmap->s_extPosition; loc.partitionReferenceNum = UDF_SB_PARTITION(sb); bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); if (!bh) { retval = -EIO; } bitmap->s_block_bitmap[bitmap_nr] = bh; return retval; } static int __load_block_bitmap(struct super_block * sb, struct udf_bitmap *bitmap, unsigned int block_group) { int retval = 0; int nr_groups = bitmap->s_nr_groups; if (block_group >= nr_groups) { udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups); } if (bitmap->s_block_bitmap[block_group]) return block_group; else { retval = read_block_bitmap(sb, bitmap, block_group, block_group); if (retval < 0) return retval; return block_group; } } static inline int load_block_bitmap(struct super_block * sb, struct udf_bitmap *bitmap, unsigned int block_group) { int slot; slot = __load_block_bitmap(sb, bitmap, block_group); if (slot < 0) return slot; if (!bitmap->s_block_bitmap[slot]) return -EIO; return slot; } static void udf_bitmap_free_blocks(struct super_block * sb, struct inode * inode, struct udf_bitmap *bitmap, kernel_lb_addr bloc, uint32_t offset, uint32_t count) { struct udf_sb_info *sbi = UDF_SB(sb); struct buffer_head * bh = NULL; unsigned long block; unsigned long block_group; unsigned long bit; unsigned long i; int bitmap_nr; unsigned long overflow; down(&sbi->s_alloc_sem); if (bloc.logicalBlockNum < 0 || (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) { udf_debug("%d < %d || %d + %d > %d\n", bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); goto error_return; } block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); do_more: overflow = 0; block_group = block >> (sb->s_blocksize_bits + 3); bit = block % (sb->s_blocksize << 3); /* * Check to see if we are freeing blocks across a group boundary. */ if (bit + count > (sb->s_blocksize << 3)) { overflow = bit + count - (sb->s_blocksize << 3); count -= overflow; } bitmap_nr = load_block_bitmap(sb, bitmap, block_group); if (bitmap_nr < 0) goto error_return; bh = bitmap->s_block_bitmap[bitmap_nr]; for (i=0; i < count; i++) { if (udf_set_bit(bit + i, bh->b_data)) { udf_debug("bit %ld already set\n", bit + i); udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); } else { if (inode) DQUOT_FREE_BLOCK(inode, 1); if (UDF_SB_LVIDBH(sb)) { UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1); } } } mark_buffer_dirty(bh); if (overflow) { block += count; count = overflow; goto do_more; } error_return: sb->s_dirt = 1; if (UDF_SB_LVIDBH(sb)) mark_buffer_dirty(UDF_SB_LVIDBH(sb)); up(&sbi->s_alloc_sem); return; } static int udf_bitmap_prealloc_blocks(struct super_block * sb, struct inode * inode, struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block, uint32_t block_count) { struct udf_sb_info *sbi = UDF_SB(sb); int alloc_count = 0; int bit, block, block_group, group_start; int nr_groups, bitmap_nr; struct buffer_head *bh; down(&sbi->s_alloc_sem); if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) goto out; if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) block_count = UDF_SB_PARTLEN(sb, partition) - first_block; repeat: nr_groups = (UDF_SB_PARTLEN(sb, partition) + (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); block = first_block + (sizeof(struct spaceBitmapDesc) << 3); block_group = block >> (sb->s_blocksize_bits + 3); group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); bitmap_nr = load_block_bitmap(sb, bitmap, block_group); if (bitmap_nr < 0) goto out; bh = bitmap->s_block_bitmap[bitmap_nr]; bit = block % (sb->s_blocksize << 3); while (bit < (sb->s_blocksize << 3) && block_count > 0) { if (!udf_test_bit(bit, bh->b_data)) goto out; else if (DQUOT_PREALLOC_BLOCK(inode, 1)) goto out; else if (!udf_clear_bit(bit, bh->b_data)) { udf_debug("bit already cleared for block %d\n", bit); DQUOT_FREE_BLOCK(inode, 1); goto out; } block_count --; alloc_count ++; bit ++; block ++; } mark_buffer_dirty(bh); if (block_count > 0) goto repeat; out: if (UDF_SB_LVIDBH(sb)) { UDF_SB_LVID(sb)->freeSpaceTable[partition] = cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } sb->s_dirt = 1; up(&sbi->s_alloc_sem); return alloc_count; } static int udf_bitmap_new_block(struct super_block * sb, struct inode * inode, struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err) { struct udf_sb_info *sbi = UDF_SB(sb); int newbit, bit=0, block, block_group, group_start; int end_goal, nr_groups, bitmap_nr, i; struct buffer_head *bh = NULL; char *ptr; int newblock = 0; *err = -ENOSPC; down(&sbi->s_alloc_sem); repeat: if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) goal = 0; nr_groups = bitmap->s_nr_groups; block = goal + (sizeof(struct spaceBitmapDesc) << 3); block_group = block >> (sb->s_blocksize_bits + 3); group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); bitmap_nr = load_block_bitmap(sb, bitmap, block_group); if (bitmap_nr < 0) goto error_return; bh = bitmap->s_block_bitmap[bitmap_nr]; ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { bit = block % (sb->s_blocksize << 3); if (udf_test_bit(bit, bh->b_data)) { goto got_block; } end_goal = (bit + 63) & ~63; bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); if (bit < end_goal) goto got_block; ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); newbit = (ptr - ((char *)bh->b_data)) << 3; if (newbit < sb->s_blocksize << 3) { bit = newbit; goto search_back; } newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); if (newbit < sb->s_blocksize << 3) { bit = newbit; goto got_block; } } for (i=0; i<(nr_groups*2); i++) { block_group ++; if (block_group >= nr_groups) block_group = 0; group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); bitmap_nr = load_block_bitmap(sb, bitmap, block_group); if (bitmap_nr < 0) goto error_return; bh = bitmap->s_block_bitmap[bitmap_nr]; if (i < nr_groups) { ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { bit = (ptr - ((char *)bh->b_data)) << 3; break; } } else { bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3); if (bit < sb->s_blocksize << 3) break; } } if (i >= (nr_groups*2)) { up(&sbi->s_alloc_sem); return newblock; } if (bit < sb->s_blocksize << 3) goto search_back; else bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); if (bit >= sb->s_blocksize << 3) { up(&sbi->s_alloc_sem); return 0; } search_back: for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--); got_block: /* * Check quota for allocation of this block. */ if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) { up(&sbi->s_alloc_sem); *err = -EDQUOT; return 0; } newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - (sizeof(struct spaceBitmapDesc) << 3); if (!udf_clear_bit(bit, bh->b_data)) { udf_debug("bit already cleared for block %d\n", bit); goto repeat; } mark_buffer_dirty(bh); if (UDF_SB_LVIDBH(sb)) { UDF_SB_LVID(sb)->freeSpaceTable[partition] = cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } sb->s_dirt = 1; up(&sbi->s_alloc_sem); *err = 0; return newblock; error_return: *err = -EIO; up(&sbi->s_alloc_sem); return 0; } static void udf_table_free_blocks(struct super_block * sb, struct inode * inode, struct inode * table, kernel_lb_addr bloc, uint32_t offset, uint32_t count) { struct udf_sb_info *sbi = UDF_SB(sb); uint32_t start, end; uint32_t nextoffset, oextoffset, elen; kernel_lb_addr nbloc, obloc, eloc; struct buffer_head *obh, *nbh; int8_t etype; int i; down(&sbi->s_alloc_sem); if (bloc.logicalBlockNum < 0 || (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) { udf_debug("%d < %d || %d + %d > %d\n", bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); goto error_return; } /* We do this up front - There are some error conditions that could occure, but.. oh well */ if (inode) DQUOT_FREE_BLOCK(inode, count); if (UDF_SB_LVIDBH(sb)) { UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } start = bloc.logicalBlockNum + offset; end = bloc.logicalBlockNum + offset + count - 1; oextoffset = nextoffset = sizeof(struct unallocSpaceEntry); elen = 0; obloc = nbloc = UDF_I_LOCATION(table); obh = nbh = NULL; while (count && (etype = udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1) { if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == start)) { if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) { count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); elen = (etype << 30) | (0x40000000 - sb->s_blocksize); } else { elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits)); start += count; count = 0; } udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); } else if (eloc.logicalBlockNum == (end + 1)) { if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) { count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); eloc.logicalBlockNum -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); elen = (etype << 30) | (0x40000000 - sb->s_blocksize); } else { eloc.logicalBlockNum = start; elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits)); end -= count; count = 0; } udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); } if (nbh != obh) { i = -1; obloc = nbloc; udf_release_data(obh); atomic_inc(&nbh->b_count); obh = nbh; oextoffset = 0; } else oextoffset = nextoffset; } if (count) { /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate a new block, and since we hold the super block lock already very bad things would happen :) We copy the behavior of udf_add_aext, but instead of trying to allocate a new block close to the existing one, we just steal a block from the extent we are trying to add. It would be nice if the blocks were close together, but it isn't required. */ int adsize; short_ad *sad = NULL; long_ad *lad = NULL; struct allocExtDesc *aed; eloc.logicalBlockNum = start; elen = EXT_RECORDED_ALLOCATED | (count << sb->s_blocksize_bits); if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) adsize = sizeof(short_ad); else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) adsize = sizeof(long_ad); else { udf_release_data(obh); udf_release_data(nbh); goto error_return; } if (nextoffset + (2 * adsize) > sb->s_blocksize) { char *sptr, *dptr; int loffset; udf_release_data(obh); obh = nbh; obloc = nbloc; oextoffset = nextoffset; /* Steal a block from the extent being free'd */ nbloc.logicalBlockNum = eloc.logicalBlockNum; eloc.logicalBlockNum ++; elen -= sb->s_blocksize; if (!(nbh = udf_tread(sb, udf_get_lb_pblock(sb, nbloc, 0)))) { udf_release_data(obh); goto error_return; } aed = (struct allocExtDesc *)(nbh->b_data); aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); if (nextoffset + adsize > sb->s_blocksize) { loffset = nextoffset; aed->lengthAllocDescs = cpu_to_le32(adsize); if (obh) sptr = UDF_I_DATA(inode) + nextoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize; else sptr = obh->b_data + nextoffset - adsize; dptr = nbh->b_data + sizeof(struct allocExtDesc); memcpy(dptr, sptr, adsize); nextoffset = sizeof(struct allocExtDesc) + adsize; } else { loffset = nextoffset + adsize; aed->lengthAllocDescs = cpu_to_le32(0); sptr = (obh)->b_data + nextoffset; nextoffset = sizeof(struct allocExtDesc); if (obh) { aed = (struct allocExtDesc *)(obh)->b_data; aed->lengthAllocDescs = cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); } else { UDF_I_LENALLOC(table) += adsize; mark_inode_dirty(table); } } if (UDF_SB_UDFREV(sb) >= 0x0200) udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, nbloc.logicalBlockNum, sizeof(tag)); else udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, nbloc.logicalBlockNum, sizeof(tag)); switch (UDF_I_ALLOCTYPE(table)) { case ICBTAG_FLAG_AD_SHORT: { sad = (short_ad *)sptr; sad->extLength = cpu_to_le32( EXT_NEXT_EXTENT_ALLOCDECS | sb->s_blocksize); sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum); break; } case ICBTAG_FLAG_AD_LONG: { lad = (long_ad *)sptr; lad->extLength = cpu_to_le32( EXT_NEXT_EXTENT_ALLOCDECS | sb->s_blocksize); lad->extLocation = cpu_to_lelb(nbloc); break; } } if (obh) { udf_update_tag(obh->b_data, loffset); mark_buffer_dirty(obh); } else mark_inode_dirty(table); } if (elen) /* It's possible that stealing the block emptied the extent */ { udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1); if (!nbh) { UDF_I_LENALLOC(table) += adsize; mark_inode_dirty(table); } else { aed = (struct allocExtDesc *)nbh->b_data; aed->lengthAllocDescs = cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); udf_update_tag(nbh->b_data, nextoffset); mark_buffer_dirty(nbh); } } } udf_release_data(nbh); udf_release_data(obh); error_return: sb->s_dirt = 1; up(&sbi->s_alloc_sem); return; } static int udf_table_prealloc_blocks(struct super_block * sb, struct inode * inode, struct inode *table, uint16_t partition, uint32_t first_block, uint32_t block_count) { struct udf_sb_info *sbi = UDF_SB(sb); int alloc_count = 0; uint32_t extoffset, elen, adsize; kernel_lb_addr bloc, eloc; struct buffer_head *bh; int8_t etype = -1; if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) return 0; if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) adsize = sizeof(short_ad); else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) adsize = sizeof(long_ad); else return 0; down(&sbi->s_alloc_sem); extoffset = sizeof(struct unallocSpaceEntry); bloc = UDF_I_LOCATION(table); bh = NULL; eloc.logicalBlockNum = 0xFFFFFFFF; while (first_block != eloc.logicalBlockNum && (etype = udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) { udf_debug("eloc=%d, elen=%d, first_block=%d\n", eloc.logicalBlockNum, elen, first_block); ; /* empty loop body */ } if (first_block == eloc.logicalBlockNum) { extoffset -= adsize; alloc_count = (elen >> sb->s_blocksize_bits); if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) alloc_count = 0; else if (alloc_count > block_count) { alloc_count = block_count; eloc.logicalBlockNum += alloc_count; elen -= (alloc_count << sb->s_blocksize_bits); udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1); } else udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh); } else alloc_count = 0; udf_release_data(bh); if (alloc_count && UDF_SB_LVIDBH(sb)) { UDF_SB_LVID(sb)->freeSpaceTable[partition] = cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); sb->s_dirt = 1; } up(&sbi->s_alloc_sem); return alloc_count; } static int udf_table_new_block(struct super_block * sb, struct inode * inode, struct inode *table, uint16_t partition, uint32_t goal, int *err) { struct udf_sb_info *sbi = UDF_SB(sb); uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; uint32_t newblock = 0, adsize; uint32_t extoffset, goal_extoffset, elen, goal_elen = 0; kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc; struct buffer_head *bh, *goal_bh; int8_t etype; *err = -ENOSPC; if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) adsize = sizeof(short_ad); else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) adsize = sizeof(long_ad); else return newblock; down(&sbi->s_alloc_sem); if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) goal = 0; /* We search for the closest matching block to goal. If we find a exact hit, we stop. Otherwise we keep going till we run out of extents. We store the buffer_head, bloc, and extoffset of the current closest match and use that when we are done. */ extoffset = sizeof(struct unallocSpaceEntry); bloc = UDF_I_LOCATION(table); goal_bh = bh = NULL; while (spread && (etype = udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) { if (goal >= eloc.logicalBlockNum) { if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) nspread = 0; else nspread = goal - eloc.logicalBlockNum - (elen >> sb->s_blocksize_bits); } else nspread = eloc.logicalBlockNum - goal; if (nspread < spread) { spread = nspread; if (goal_bh != bh) { udf_release_data(goal_bh); goal_bh = bh; atomic_inc(&goal_bh->b_count); } goal_bloc = bloc; goal_extoffset = extoffset - adsize; goal_eloc = eloc; goal_elen = (etype << 30) | elen; } } udf_release_data(bh); if (spread == 0xFFFFFFFF) { udf_release_data(goal_bh); up(&sbi->s_alloc_sem); return 0; } /* Only allocate blocks from the beginning of the extent. That way, we only delete (empty) extents, never have to insert an extent because of splitting */ /* This works, but very poorly.... */ newblock = goal_eloc.logicalBlockNum; goal_eloc.logicalBlockNum ++; goal_elen -= sb->s_blocksize; if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) { udf_release_data(goal_bh); up(&sbi->s_alloc_sem); *err = -EDQUOT; return 0; } if (goal_elen) udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1); else udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh); udf_release_data(goal_bh); if (UDF_SB_LVIDBH(sb)) { UDF_SB_LVID(sb)->freeSpaceTable[partition] = cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } sb->s_dirt = 1; up(&sbi->s_alloc_sem); *err = 0; return newblock; } inline void udf_free_blocks(struct super_block * sb, struct inode * inode, kernel_lb_addr bloc, uint32_t offset, uint32_t count) { uint16_t partition = bloc.partitionReferenceNum; if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) { return udf_bitmap_free_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, bloc, offset, count); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) { return udf_table_free_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, bloc, offset, count); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) { return udf_bitmap_free_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, bloc, offset, count); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) { return udf_table_free_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, bloc, offset, count); } else return; } inline int udf_prealloc_blocks(struct super_block * sb, struct inode * inode, uint16_t partition, uint32_t first_block, uint32_t block_count) { if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) { return udf_bitmap_prealloc_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, partition, first_block, block_count); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) { return udf_table_prealloc_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, partition, first_block, block_count); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) { return udf_bitmap_prealloc_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, partition, first_block, block_count); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) { return udf_table_prealloc_blocks(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, partition, first_block, block_count); } else return 0; } inline int udf_new_block(struct super_block * sb, struct inode * inode, uint16_t partition, uint32_t goal, int *err) { if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) { return udf_bitmap_new_block(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, partition, goal, err); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) { return udf_table_new_block(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, partition, goal, err); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) { return udf_bitmap_new_block(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, partition, goal, err); } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) { return udf_table_new_block(sb, inode, UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, partition, goal, err); } else { *err = -EIO; return 0; } }