/* * Copyright (c) 2001 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith * Andy Adamson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include "xdr4.h" #include "vfs.h" #define NFSDDBG_FACILITY NFSDDBG_PROC /* Globals */ time_t nfsd4_lease = 90; /* default lease time */ time_t nfsd4_grace = 90; static time_t boot_time; #define all_ones {{~0,~0},~0} static const stateid_t one_stateid = { .si_generation = ~0, .si_opaque = all_ones, }; static const stateid_t zero_stateid = { /* all fields zero */ }; static u64 current_sessionid = 1; #define ZERO_STATEID(stateid) (!memcmp((stateid), &zero_stateid, sizeof(stateid_t))) #define ONE_STATEID(stateid) (!memcmp((stateid), &one_stateid, sizeof(stateid_t))) /* forward declarations */ static int check_for_locks(struct nfs4_file *filp, struct nfs4_lockowner *lowner); /* Locking: */ /* Currently used for almost all code touching nfsv4 state: */ static DEFINE_MUTEX(client_mutex); /* * Currently used for the del_recall_lru and file hash table. In an * effort to decrease the scope of the client_mutex, this spinlock may * eventually cover more: */ static DEFINE_SPINLOCK(recall_lock); static struct kmem_cache *openowner_slab = NULL; static struct kmem_cache *lockowner_slab = NULL; static struct kmem_cache *file_slab = NULL; static struct kmem_cache *stateid_slab = NULL; static struct kmem_cache *deleg_slab = NULL; void nfs4_lock_state(void) { mutex_lock(&client_mutex); } void nfs4_unlock_state(void) { mutex_unlock(&client_mutex); } static inline u32 opaque_hashval(const void *ptr, int nbytes) { unsigned char *cptr = (unsigned char *) ptr; u32 x = 0; while (nbytes--) { x *= 37; x += *cptr++; } return x; } static struct list_head del_recall_lru; static void nfsd4_free_file(struct nfs4_file *f) { kmem_cache_free(file_slab, f); } static inline void put_nfs4_file(struct nfs4_file *fi) { if (atomic_dec_and_lock(&fi->fi_ref, &recall_lock)) { list_del(&fi->fi_hash); spin_unlock(&recall_lock); iput(fi->fi_inode); nfsd4_free_file(fi); } } static inline void get_nfs4_file(struct nfs4_file *fi) { atomic_inc(&fi->fi_ref); } static int num_delegations; unsigned int max_delegations; /* * Open owner state (share locks) */ /* hash tables for lock and open owners */ #define OWNER_HASH_BITS 8 #define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS) #define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1) static unsigned int ownerstr_hashval(u32 clientid, struct xdr_netobj *ownername) { unsigned int ret; ret = opaque_hashval(ownername->data, ownername->len); ret += clientid; return ret & OWNER_HASH_MASK; } static struct list_head ownerstr_hashtbl[OWNER_HASH_SIZE]; /* hash table for nfs4_file */ #define FILE_HASH_BITS 8 #define FILE_HASH_SIZE (1 << FILE_HASH_BITS) static unsigned int file_hashval(struct inode *ino) { /* XXX: why are we hashing on inode pointer, anyway? */ return hash_ptr(ino, FILE_HASH_BITS); } static struct list_head file_hashtbl[FILE_HASH_SIZE]; static void __nfs4_file_get_access(struct nfs4_file *fp, int oflag) { BUG_ON(!(fp->fi_fds[oflag] || fp->fi_fds[O_RDWR])); atomic_inc(&fp->fi_access[oflag]); } static void nfs4_file_get_access(struct nfs4_file *fp, int oflag) { if (oflag == O_RDWR) { __nfs4_file_get_access(fp, O_RDONLY); __nfs4_file_get_access(fp, O_WRONLY); } else __nfs4_file_get_access(fp, oflag); } static void nfs4_file_put_fd(struct nfs4_file *fp, int oflag) { if (fp->fi_fds[oflag]) { fput(fp->fi_fds[oflag]); fp->fi_fds[oflag] = NULL; } } static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag) { if (atomic_dec_and_test(&fp->fi_access[oflag])) { nfs4_file_put_fd(fp, oflag); /* * It's also safe to get rid of the RDWR open *if* * we no longer have need of the other kind of access * or if we already have the other kind of open: */ if (fp->fi_fds[1-oflag] || atomic_read(&fp->fi_access[1 - oflag]) == 0) nfs4_file_put_fd(fp, O_RDWR); } } static void nfs4_file_put_access(struct nfs4_file *fp, int oflag) { if (oflag == O_RDWR) { __nfs4_file_put_access(fp, O_RDONLY); __nfs4_file_put_access(fp, O_WRONLY); } else __nfs4_file_put_access(fp, oflag); } static inline int get_new_stid(struct nfs4_stid *stid) { static int min_stateid = 0; struct idr *stateids = &stid->sc_client->cl_stateids; int new_stid; int error; error = idr_get_new_above(stateids, stid, min_stateid, &new_stid); /* * Note: the necessary preallocation was done in * nfs4_alloc_stateid(). The idr code caps the number of * preallocations that can exist at a time, but the state lock * prevents anyone from using ours before we get here: */ BUG_ON(error); /* * It shouldn't be a problem to reuse an opaque stateid value. * I don't think it is for 4.1. But with 4.0 I worry that, for * example, a stray write retransmission could be accepted by * the server when it should have been rejected. Therefore, * adopt a trick from the sctp code to attempt to maximize the * amount of time until an id is reused, by ensuring they always * "increase" (mod INT_MAX): */ min_stateid = new_stid+1; if (min_stateid == INT_MAX) min_stateid = 0; return new_stid; } static void init_stid(struct nfs4_stid *stid, struct nfs4_client *cl, unsigned char type) { stateid_t *s = &stid->sc_stateid; int new_id; stid->sc_type = type; stid->sc_client = cl; s->si_opaque.so_clid = cl->cl_clientid; new_id = get_new_stid(stid); s->si_opaque.so_id = (u32)new_id; /* Will be incremented before return to client: */ s->si_generation = 0; } static struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct kmem_cache *slab) { struct idr *stateids = &cl->cl_stateids; if (!idr_pre_get(stateids, GFP_KERNEL)) return NULL; /* * Note: if we fail here (or any time between now and the time * we actually get the new idr), we won't need to undo the idr * preallocation, since the idr code caps the number of * preallocated entries. */ return kmem_cache_alloc(slab, GFP_KERNEL); } static struct nfs4_ol_stateid * nfs4_alloc_stateid(struct nfs4_client *clp) { return openlockstateid(nfs4_alloc_stid(clp, stateid_slab)); } static struct nfs4_delegation * alloc_init_deleg(struct nfs4_client *clp, struct nfs4_ol_stateid *stp, struct svc_fh *current_fh, u32 type) { struct nfs4_delegation *dp; struct nfs4_file *fp = stp->st_file; dprintk("NFSD alloc_init_deleg\n"); /* * Major work on the lease subsystem (for example, to support * calbacks on stat) will be required before we can support * write delegations properly. */ if (type != NFS4_OPEN_DELEGATE_READ) return NULL; if (fp->fi_had_conflict) return NULL; if (num_delegations > max_delegations) return NULL; dp = delegstateid(nfs4_alloc_stid(clp, deleg_slab)); if (dp == NULL) return dp; init_stid(&dp->dl_stid, clp, NFS4_DELEG_STID); /* * delegation seqid's are never incremented. The 4.1 special * meaning of seqid 0 isn't meaningful, really, but let's avoid * 0 anyway just for consistency and use 1: */ dp->dl_stid.sc_stateid.si_generation = 1; num_delegations++; INIT_LIST_HEAD(&dp->dl_perfile); INIT_LIST_HEAD(&dp->dl_perclnt); INIT_LIST_HEAD(&dp->dl_recall_lru); get_nfs4_file(fp); dp->dl_file = fp; dp->dl_type = type; fh_copy_shallow(&dp->dl_fh, ¤t_fh->fh_handle); dp->dl_time = 0; atomic_set(&dp->dl_count, 1); INIT_WORK(&dp->dl_recall.cb_work, nfsd4_do_callback_rpc); return dp; } void nfs4_put_delegation(struct nfs4_delegation *dp) { if (atomic_dec_and_test(&dp->dl_count)) { dprintk("NFSD: freeing dp %p\n",dp); put_nfs4_file(dp->dl_file); kmem_cache_free(deleg_slab, dp); num_delegations--; } } static void nfs4_put_deleg_lease(struct nfs4_file *fp) { if (atomic_dec_and_test(&fp->fi_delegees)) { vfs_setlease(fp->fi_deleg_file, F_UNLCK, &fp->fi_lease); fp->fi_lease = NULL; fput(fp->fi_deleg_file); fp->fi_deleg_file = NULL; } } static void unhash_stid(struct nfs4_stid *s) { struct idr *stateids = &s->sc_client->cl_stateids; idr_remove(stateids, s->sc_stateid.si_opaque.so_id); } /* Called under the state lock. */ static void unhash_delegation(struct nfs4_delegation *dp) { unhash_stid(&dp->dl_stid); list_del_init(&dp->dl_perclnt); spin_lock(&recall_lock); list_del_init(&dp->dl_perfile); list_del_init(&dp->dl_recall_lru); spin_unlock(&recall_lock); nfs4_put_deleg_lease(dp->dl_file); nfs4_put_delegation(dp); } /* * SETCLIENTID state */ /* client_lock protects the client lru list and session hash table */ static DEFINE_SPINLOCK(client_lock); /* Hash tables for nfs4_clientid state */ #define CLIENT_HASH_BITS 4 #define CLIENT_HASH_SIZE (1 << CLIENT_HASH_BITS) #define CLIENT_HASH_MASK (CLIENT_HASH_SIZE - 1) static unsigned int clientid_hashval(u32 id) { return id & CLIENT_HASH_MASK; } static unsigned int clientstr_hashval(const char *name) { return opaque_hashval(name, 8) & CLIENT_HASH_MASK; } /* * reclaim_str_hashtbl[] holds known client info from previous reset/reboot * used in reboot/reset lease grace period processing * * conf_id_hashtbl[], and conf_str_hashtbl[] hold confirmed * setclientid_confirmed info. * * unconf_str_hastbl[] and unconf_id_hashtbl[] hold unconfirmed * setclientid info. * * client_lru holds client queue ordered by nfs4_client.cl_time * for lease renewal. * * close_lru holds (open) stateowner queue ordered by nfs4_stateowner.so_time * for last close replay. */ static struct list_head reclaim_str_hashtbl[CLIENT_HASH_SIZE]; static int reclaim_str_hashtbl_size = 0; static struct list_head conf_id_hashtbl[CLIENT_HASH_SIZE]; static struct list_head conf_str_hashtbl[CLIENT_HASH_SIZE]; static struct list_head unconf_str_hashtbl[CLIENT_HASH_SIZE]; static struct list_head unconf_id_hashtbl[CLIENT_HASH_SIZE]; static struct list_head client_lru; static struct list_head close_lru; /* * We store the NONE, READ, WRITE, and BOTH bits separately in the * st_{access,deny}_bmap field of the stateid, in order to track not * only what share bits are currently in force, but also what * combinations of share bits previous opens have used. This allows us * to enforce the recommendation of rfc 3530 14.2.19 that the server * return an error if the client attempt to downgrade to a combination * of share bits not explicable by closing some of its previous opens. * * XXX: This enforcement is actually incomplete, since we don't keep * track of access/deny bit combinations; so, e.g., we allow: * * OPEN allow read, deny write * OPEN allow both, deny none * DOWNGRADE allow read, deny none * * which we should reject. */ static void set_access(unsigned int *access, unsigned long bmap) { int i; *access = 0; for (i = 1; i < 4; i++) { if (test_bit(i, &bmap)) *access |= i; } } static void set_deny(unsigned int *deny, unsigned long bmap) { int i; *deny = 0; for (i = 0; i < 4; i++) { if (test_bit(i, &bmap)) *deny |= i ; } } static int test_share(struct nfs4_ol_stateid *stp, struct nfsd4_open *open) { unsigned int access, deny; set_access(&access, stp->st_access_bmap); set_deny(&deny, stp->st_deny_bmap); if ((access & open->op_share_deny) || (deny & open->op_share_access)) return 0; return 1; } static int nfs4_access_to_omode(u32 access) { switch (access & NFS4_SHARE_ACCESS_BOTH) { case NFS4_SHARE_ACCESS_READ: return O_RDONLY; case NFS4_SHARE_ACCESS_WRITE: return O_WRONLY; case NFS4_SHARE_ACCESS_BOTH: return O_RDWR; } BUG(); } static void unhash_generic_stateid(struct nfs4_ol_stateid *stp) { list_del(&stp->st_perfile); list_del(&stp->st_perstateowner); } static void close_generic_stateid(struct nfs4_ol_stateid *stp) { int i; if (stp->st_access_bmap) { for (i = 1; i < 4; i++) { if (test_bit(i, &stp->st_access_bmap)) nfs4_file_put_access(stp->st_file, nfs4_access_to_omode(i)); __clear_bit(i, &stp->st_access_bmap); } } put_nfs4_file(stp->st_file); stp->st_file = NULL; } static void free_generic_stateid(struct nfs4_ol_stateid *stp) { kmem_cache_free(stateid_slab, stp); } static void release_lock_stateid(struct nfs4_ol_stateid *stp) { struct file *file; unhash_generic_stateid(stp); unhash_stid(&stp->st_stid); file = find_any_file(stp->st_file); if (file) locks_remove_posix(file, (fl_owner_t)lockowner(stp->st_stateowner)); close_generic_stateid(stp); free_generic_stateid(stp); } static void unhash_lockowner(struct nfs4_lockowner *lo) { struct nfs4_ol_stateid *stp; list_del(&lo->lo_owner.so_strhash); list_del(&lo->lo_perstateid); list_del(&lo->lo_owner_ino_hash); while (!list_empty(&lo->lo_owner.so_stateids)) { stp = list_first_entry(&lo->lo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); release_lock_stateid(stp); } } static void release_lockowner(struct nfs4_lockowner *lo) { unhash_lockowner(lo); nfs4_free_lockowner(lo); } static void release_stateid_lockowners(struct nfs4_ol_stateid *open_stp) { struct nfs4_lockowner *lo; while (!list_empty(&open_stp->st_lockowners)) { lo = list_entry(open_stp->st_lockowners.next, struct nfs4_lockowner, lo_perstateid); release_lockowner(lo); } } static void unhash_open_stateid(struct nfs4_ol_stateid *stp) { unhash_generic_stateid(stp); release_stateid_lockowners(stp); close_generic_stateid(stp); } static void release_open_stateid(struct nfs4_ol_stateid *stp) { unhash_open_stateid(stp); unhash_stid(&stp->st_stid); free_generic_stateid(stp); } static void unhash_openowner(struct nfs4_openowner *oo) { struct nfs4_ol_stateid *stp; list_del(&oo->oo_owner.so_strhash); list_del(&oo->oo_perclient); while (!list_empty(&oo->oo_owner.so_stateids)) { stp = list_first_entry(&oo->oo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); release_open_stateid(stp); } } static void release_last_closed_stateid(struct nfs4_openowner *oo) { struct nfs4_ol_stateid *s = oo->oo_last_closed_stid; if (s) { unhash_stid(&s->st_stid); free_generic_stateid(s); oo->oo_last_closed_stid = NULL; } } static void release_openowner(struct nfs4_openowner *oo) { unhash_openowner(oo); list_del(&oo->oo_close_lru); release_last_closed_stateid(oo); nfs4_free_openowner(oo); } #define SESSION_HASH_SIZE 512 static struct list_head sessionid_hashtbl[SESSION_HASH_SIZE]; static inline int hash_sessionid(struct nfs4_sessionid *sessionid) { struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid; return sid->sequence % SESSION_HASH_SIZE; } static inline void dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid) { u32 *ptr = (u32 *)(&sessionid->data[0]); dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]); } static void gen_sessionid(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd4_sessionid *sid; sid = (struct nfsd4_sessionid *)ses->se_sessionid.data; sid->clientid = clp->cl_clientid; sid->sequence = current_sessionid++; sid->reserved = 0; } /* * The protocol defines ca_maxresponssize_cached to include the size of * the rpc header, but all we need to cache is the data starting after * the end of the initial SEQUENCE operation--the rest we regenerate * each time. Therefore we can advertise a ca_maxresponssize_cached * value that is the number of bytes in our cache plus a few additional * bytes. In order to stay on the safe side, and not promise more than * we can cache, those additional bytes must be the minimum possible: 24 * bytes of rpc header (xid through accept state, with AUTH_NULL * verifier), 12 for the compound header (with zero-length tag), and 44 * for the SEQUENCE op response: */ #define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44) static void free_session_slots(struct nfsd4_session *ses) { int i; for (i = 0; i < ses->se_fchannel.maxreqs; i++) kfree(ses->se_slots[i]); } /* * We don't actually need to cache the rpc and session headers, so we * can allocate a little less for each slot: */ static inline int slot_bytes(struct nfsd4_channel_attrs *ca) { return ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ; } static int nfsd4_sanitize_slot_size(u32 size) { size -= NFSD_MIN_HDR_SEQ_SZ; /* We don't cache the rpc header */ size = min_t(u32, size, NFSD_SLOT_CACHE_SIZE); return size; } /* * XXX: If we run out of reserved DRC memory we could (up to a point) * re-negotiate active sessions and reduce their slot usage to make * room for new connections. For now we just fail the create session. */ static int nfsd4_get_drc_mem(int slotsize, u32 num) { int avail; num = min_t(u32, num, NFSD_MAX_SLOTS_PER_SESSION); spin_lock(&nfsd_drc_lock); avail = min_t(int, NFSD_MAX_MEM_PER_SESSION, nfsd_drc_max_mem - nfsd_drc_mem_used); num = min_t(int, num, avail / slotsize); nfsd_drc_mem_used += num * slotsize; spin_unlock(&nfsd_drc_lock); return num; } static void nfsd4_put_drc_mem(int slotsize, int num) { spin_lock(&nfsd_drc_lock); nfsd_drc_mem_used -= slotsize * num; spin_unlock(&nfsd_drc_lock); } static struct nfsd4_session *alloc_session(int slotsize, int numslots) { struct nfsd4_session *new; int mem, i; BUILD_BUG_ON(NFSD_MAX_SLOTS_PER_SESSION * sizeof(struct nfsd4_slot *) + sizeof(struct nfsd4_session) > PAGE_SIZE); mem = numslots * sizeof(struct nfsd4_slot *); new = kzalloc(sizeof(*new) + mem, GFP_KERNEL); if (!new) return NULL; /* allocate each struct nfsd4_slot and data cache in one piece */ for (i = 0; i < numslots; i++) { mem = sizeof(struct nfsd4_slot) + slotsize; new->se_slots[i] = kzalloc(mem, GFP_KERNEL); if (!new->se_slots[i]) goto out_free; } return new; out_free: while (i--) kfree(new->se_slots[i]); kfree(new); return NULL; } static void init_forechannel_attrs(struct nfsd4_channel_attrs *new, struct nfsd4_channel_attrs *req, int numslots, int slotsize) { u32 maxrpc = nfsd_serv->sv_max_mesg; new->maxreqs = numslots; new->maxresp_cached = min_t(u32, req->maxresp_cached, slotsize + NFSD_MIN_HDR_SEQ_SZ); new->maxreq_sz = min_t(u32, req->maxreq_sz, maxrpc); new->maxresp_sz = min_t(u32, req->maxresp_sz, maxrpc); new->maxops = min_t(u32, req->maxops, NFSD_MAX_OPS_PER_COMPOUND); } static void free_conn(struct nfsd4_conn *c) { svc_xprt_put(c->cn_xprt); kfree(c); } static void nfsd4_conn_lost(struct svc_xpt_user *u) { struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user); struct nfs4_client *clp = c->cn_session->se_client; spin_lock(&clp->cl_lock); if (!list_empty(&c->cn_persession)) { list_del(&c->cn_persession); free_conn(c); } spin_unlock(&clp->cl_lock); nfsd4_probe_callback(clp); } static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags) { struct nfsd4_conn *conn; conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL); if (!conn) return NULL; svc_xprt_get(rqstp->rq_xprt); conn->cn_xprt = rqstp->rq_xprt; conn->cn_flags = flags; INIT_LIST_HEAD(&conn->cn_xpt_user.list); return conn; } static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses) { conn->cn_session = ses; list_add(&conn->cn_persession, &ses->se_conns); } static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; spin_lock(&clp->cl_lock); __nfsd4_hash_conn(conn, ses); spin_unlock(&clp->cl_lock); } static int nfsd4_register_conn(struct nfsd4_conn *conn) { conn->cn_xpt_user.callback = nfsd4_conn_lost; return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user); } static __be32 nfsd4_new_conn(struct svc_rqst *rqstp, struct nfsd4_session *ses, u32 dir) { struct nfsd4_conn *conn; int ret; conn = alloc_conn(rqstp, dir); if (!conn) return nfserr_jukebox; nfsd4_hash_conn(conn, ses); ret = nfsd4_register_conn(conn); if (ret) /* oops; xprt is already down: */ nfsd4_conn_lost(&conn->cn_xpt_user); return nfs_ok; } static __be32 nfsd4_new_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_session *ses) { u32 dir = NFS4_CDFC4_FORE; if (ses->se_flags & SESSION4_BACK_CHAN) dir |= NFS4_CDFC4_BACK; return nfsd4_new_conn(rqstp, ses, dir); } /* must be called under client_lock */ static void nfsd4_del_conns(struct nfsd4_session *s) { struct nfs4_client *clp = s->se_client; struct nfsd4_conn *c; spin_lock(&clp->cl_lock); while (!list_empty(&s->se_conns)) { c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession); list_del_init(&c->cn_persession); spin_unlock(&clp->cl_lock); unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user); free_conn(c); spin_lock(&clp->cl_lock); } spin_unlock(&clp->cl_lock); } void free_session(struct kref *kref) { struct nfsd4_session *ses; int mem; ses = container_of(kref, struct nfsd4_session, se_ref); nfsd4_del_conns(ses); spin_lock(&nfsd_drc_lock); mem = ses->se_fchannel.maxreqs * slot_bytes(&ses->se_fchannel); nfsd_drc_mem_used -= mem; spin_unlock(&nfsd_drc_lock); free_session_slots(ses); kfree(ses); } static struct nfsd4_session *alloc_init_session(struct svc_rqst *rqstp, struct nfs4_client *clp, struct nfsd4_create_session *cses) { struct nfsd4_session *new; struct nfsd4_channel_attrs *fchan = &cses->fore_channel; int numslots, slotsize; int status; int idx; /* * Note decreasing slot size below client's request may * make it difficult for client to function correctly, whereas * decreasing the number of slots will (just?) affect * performance. When short on memory we therefore prefer to * decrease number of slots instead of their size. */ slotsize = nfsd4_sanitize_slot_size(fchan->maxresp_cached); numslots = nfsd4_get_drc_mem(slotsize, fchan->maxreqs); if (numslots < 1) return NULL; new = alloc_session(slotsize, numslots); if (!new) { nfsd4_put_drc_mem(slotsize, fchan->maxreqs); return NULL; } init_forechannel_attrs(&new->se_fchannel, fchan, numslots, slotsize); new->se_client = clp; gen_sessionid(new); INIT_LIST_HEAD(&new->se_conns); new->se_cb_seq_nr = 1; new->se_flags = cses->flags; new->se_cb_prog = cses->callback_prog; kref_init(&new->se_ref); idx = hash_sessionid(&new->se_sessionid); spin_lock(&client_lock); list_add(&new->se_hash, &sessionid_hashtbl[idx]); spin_lock(&clp->cl_lock); list_add(&new->se_perclnt, &clp->cl_sessions); spin_unlock(&clp->cl_lock); spin_unlock(&client_lock); status = nfsd4_new_conn_from_crses(rqstp, new); /* whoops: benny points out, status is ignored! (err, or bogus) */ if (status) { free_session(&new->se_ref); return NULL; } if (cses->flags & SESSION4_BACK_CHAN) { struct sockaddr *sa = svc_addr(rqstp); /* * This is a little silly; with sessions there's no real * use for the callback address. Use the peer address * as a reasonable default for now, but consider fixing * the rpc client not to require an address in the * future: */ rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa); clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa); } nfsd4_probe_callback(clp); return new; } /* caller must hold client_lock */ static struct nfsd4_session * find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid) { struct nfsd4_session *elem; int idx; dump_sessionid(__func__, sessionid); idx = hash_sessionid(sessionid); /* Search in the appropriate list */ list_for_each_entry(elem, &sessionid_hashtbl[idx], se_hash) { if (!memcmp(elem->se_sessionid.data, sessionid->data, NFS4_MAX_SESSIONID_LEN)) { return elem; } } dprintk("%s: session not found\n", __func__); return NULL; } /* caller must hold client_lock */ static void unhash_session(struct nfsd4_session *ses) { list_del(&ses->se_hash); spin_lock(&ses->se_client->cl_lock); list_del(&ses->se_perclnt); spin_unlock(&ses->se_client->cl_lock); } /* must be called under the client_lock */ static inline void renew_client_locked(struct nfs4_client *clp) { if (is_client_expired(clp)) { dprintk("%s: client (clientid %08x/%08x) already expired\n", __func__, clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); return; } dprintk("renewing client (clientid %08x/%08x)\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); list_move_tail(&clp->cl_lru, &client_lru); clp->cl_time = get_seconds(); } static inline void renew_client(struct nfs4_client *clp) { spin_lock(&client_lock); renew_client_locked(clp); spin_unlock(&client_lock); } /* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */ static int STALE_CLIENTID(clientid_t *clid) { if (clid->cl_boot == boot_time) return 0; dprintk("NFSD stale clientid (%08x/%08x) boot_time %08lx\n", clid->cl_boot, clid->cl_id, boot_time); return 1; } /* * XXX Should we use a slab cache ? * This type of memory management is somewhat inefficient, but we use it * anyway since SETCLIENTID is not a common operation. */ static struct nfs4_client *alloc_client(struct xdr_netobj name) { struct nfs4_client *clp; clp = kzalloc(sizeof(struct nfs4_client), GFP_KERNEL); if (clp == NULL) return NULL; clp->cl_name.data = kmemdup(name.data, name.len, GFP_KERNEL); if (clp->cl_name.data == NULL) { kfree(clp); return NULL; } clp->cl_name.len = name.len; return clp; } static inline void free_client(struct nfs4_client *clp) { while (!list_empty(&clp->cl_sessions)) { struct nfsd4_session *ses; ses = list_entry(clp->cl_sessions.next, struct nfsd4_session, se_perclnt); list_del(&ses->se_perclnt); nfsd4_put_session(ses); } if (clp->cl_cred.cr_group_info) put_group_info(clp->cl_cred.cr_group_info); kfree(clp->cl_principal); kfree(clp->cl_name.data); kfree(clp); } void release_session_client(struct nfsd4_session *session) { struct nfs4_client *clp = session->se_client; if (!atomic_dec_and_lock(&clp->cl_refcount, &client_lock)) return; if (is_client_expired(clp)) { free_client(clp); session->se_client = NULL; } else renew_client_locked(clp); spin_unlock(&client_lock); } /* must be called under the client_lock */ static inline void unhash_client_locked(struct nfs4_client *clp) { struct nfsd4_session *ses; mark_client_expired(clp); list_del(&clp->cl_lru); spin_lock(&clp->cl_lock); list_for_each_entry(ses, &clp->cl_sessions, se_perclnt) list_del_init(&ses->se_hash); spin_unlock(&clp->cl_lock); } static void expire_client(struct nfs4_client *clp) { struct nfs4_openowner *oo; struct nfs4_delegation *dp; struct list_head reaplist; INIT_LIST_HEAD(&reaplist); spin_lock(&recall_lock); while (!list_empty(&clp->cl_delegations)) { dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt); list_del_init(&dp->dl_perclnt); list_move(&dp->dl_recall_lru, &reaplist); } spin_unlock(&recall_lock); while (!list_empty(&reaplist)) { dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru); unhash_delegation(dp); } while (!list_empty(&clp->cl_openowners)) { oo = list_entry(clp->cl_openowners.next, struct nfs4_openowner, oo_perclient); release_openowner(oo); } nfsd4_shutdown_callback(clp); if (clp->cl_cb_conn.cb_xprt) svc_xprt_put(clp->cl_cb_conn.cb_xprt); list_del(&clp->cl_idhash); list_del(&clp->cl_strhash); spin_lock(&client_lock); unhash_client_locked(clp); if (atomic_read(&clp->cl_refcount) == 0) free_client(clp); spin_unlock(&client_lock); } static void copy_verf(struct nfs4_client *target, nfs4_verifier *source) { memcpy(target->cl_verifier.data, source->data, sizeof(target->cl_verifier.data)); } static void copy_clid(struct nfs4_client *target, struct nfs4_client *source) { target->cl_clientid.cl_boot = source->cl_clientid.cl_boot; target->cl_clientid.cl_id = source->cl_clientid.cl_id; } static void copy_cred(struct svc_cred *target, struct svc_cred *source) { target->cr_uid = source->cr_uid; target->cr_gid = source->cr_gid; target->cr_group_info = source->cr_group_info; get_group_info(target->cr_group_info); } static int same_name(const char *n1, const char *n2) { return 0 == memcmp(n1, n2, HEXDIR_LEN); } static int same_verf(nfs4_verifier *v1, nfs4_verifier *v2) { return 0 == memcmp(v1->data, v2->data, sizeof(v1->data)); } static int same_clid(clientid_t *cl1, clientid_t *cl2) { return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id); } /* XXX what about NGROUP */ static int same_creds(struct svc_cred *cr1, struct svc_cred *cr2) { return cr1->cr_uid == cr2->cr_uid; } static void gen_clid(struct nfs4_client *clp) { static u32 current_clientid = 1; clp->cl_clientid.cl_boot = boot_time; clp->cl_clientid.cl_id = current_clientid++; } static void gen_confirm(struct nfs4_client *clp) { static u32 i; u32 *p; p = (u32 *)clp->cl_confirm.data; *p++ = get_seconds(); *p++ = i++; } static struct nfs4_stid *find_stateid(struct nfs4_client *cl, stateid_t *t) { return idr_find(&cl->cl_stateids, t->si_opaque.so_id); } static struct nfs4_stid *find_stateid_by_type(struct nfs4_client *cl, stateid_t *t, char typemask) { struct nfs4_stid *s; s = find_stateid(cl, t); if (!s) return NULL; if (typemask & s->sc_type) return s; return NULL; } static struct nfs4_client *create_client(struct xdr_netobj name, char *recdir, struct svc_rqst *rqstp, nfs4_verifier *verf) { struct nfs4_client *clp; struct sockaddr *sa = svc_addr(rqstp); char *princ; clp = alloc_client(name); if (clp == NULL) return NULL; INIT_LIST_HEAD(&clp->cl_sessions); princ = svc_gss_principal(rqstp); if (princ) { clp->cl_principal = kstrdup(princ, GFP_KERNEL); if (clp->cl_principal == NULL) { free_client(clp); return NULL; } } idr_init(&clp->cl_stateids); memcpy(clp->cl_recdir, recdir, HEXDIR_LEN); atomic_set(&clp->cl_refcount, 0); clp->cl_cb_state = NFSD4_CB_UNKNOWN; INIT_LIST_HEAD(&clp->cl_idhash); INIT_LIST_HEAD(&clp->cl_strhash); INIT_LIST_HEAD(&clp->cl_openowners); INIT_LIST_HEAD(&clp->cl_delegations); INIT_LIST_HEAD(&clp->cl_lru); INIT_LIST_HEAD(&clp->cl_callbacks); spin_lock_init(&clp->cl_lock); INIT_WORK(&clp->cl_cb_null.cb_work, nfsd4_do_callback_rpc); clp->cl_time = get_seconds(); clear_bit(0, &clp->cl_cb_slot_busy); rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table"); copy_verf(clp, verf); rpc_copy_addr((struct sockaddr *) &clp->cl_addr, sa); clp->cl_flavor = rqstp->rq_flavor; copy_cred(&clp->cl_cred, &rqstp->rq_cred); gen_confirm(clp); clp->cl_cb_session = NULL; return clp; } static void add_to_unconfirmed(struct nfs4_client *clp, unsigned int strhashval) { unsigned int idhashval; list_add(&clp->cl_strhash, &unconf_str_hashtbl[strhashval]); idhashval = clientid_hashval(clp->cl_clientid.cl_id); list_add(&clp->cl_idhash, &unconf_id_hashtbl[idhashval]); renew_client(clp); } static void move_to_confirmed(struct nfs4_client *clp) { unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id); unsigned int strhashval; dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp); list_move(&clp->cl_idhash, &conf_id_hashtbl[idhashval]); strhashval = clientstr_hashval(clp->cl_recdir); list_move(&clp->cl_strhash, &conf_str_hashtbl[strhashval]); renew_client(clp); } static struct nfs4_client * find_confirmed_client(clientid_t *clid) { struct nfs4_client *clp; unsigned int idhashval = clientid_hashval(clid->cl_id); list_for_each_entry(clp, &conf_id_hashtbl[idhashval], cl_idhash) { if (same_clid(&clp->cl_clientid, clid)) { renew_client(clp); return clp; } } return NULL; } static struct nfs4_client * find_unconfirmed_client(clientid_t *clid) { struct nfs4_client *clp; unsigned int idhashval = clientid_hashval(clid->cl_id); list_for_each_entry(clp, &unconf_id_hashtbl[idhashval], cl_idhash) { if (same_clid(&clp->cl_clientid, clid)) return clp; } return NULL; } static bool clp_used_exchangeid(struct nfs4_client *clp) { return clp->cl_exchange_flags != 0; } static struct nfs4_client * find_confirmed_client_by_str(const char *dname, unsigned int hashval) { struct nfs4_client *clp; list_for_each_entry(clp, &conf_str_hashtbl[hashval], cl_strhash) { if (same_name(clp->cl_recdir, dname)) return clp; } return NULL; } static struct nfs4_client * find_unconfirmed_client_by_str(const char *dname, unsigned int hashval) { struct nfs4_client *clp; list_for_each_entry(clp, &unconf_str_hashtbl[hashval], cl_strhash) { if (same_name(clp->cl_recdir, dname)) return clp; } return NULL; } static void gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp) { struct nfs4_cb_conn *conn = &clp->cl_cb_conn; struct sockaddr *sa = svc_addr(rqstp); u32 scopeid = rpc_get_scope_id(sa); unsigned short expected_family; /* Currently, we only support tcp and tcp6 for the callback channel */ if (se->se_callback_netid_len == 3 && !memcmp(se->se_callback_netid_val, "tcp", 3)) expected_family = AF_INET; else if (se->se_callback_netid_len == 4 && !memcmp(se->se_callback_netid_val, "tcp6", 4)) expected_family = AF_INET6; else goto out_err; conn->cb_addrlen = rpc_uaddr2sockaddr(se->se_callback_addr_val, se->se_callback_addr_len, (struct sockaddr *)&conn->cb_addr, sizeof(conn->cb_addr)); if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family) goto out_err; if (conn->cb_addr.ss_family == AF_INET6) ((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid; conn->cb_prog = se->se_callback_prog; conn->cb_ident = se->se_callback_ident; memcpy(&conn->cb_saddr, &rqstp->rq_daddr, rqstp->rq_daddrlen); return; out_err: conn->cb_addr.ss_family = AF_UNSPEC; conn->cb_addrlen = 0; dprintk(KERN_INFO "NFSD: this client (clientid %08x/%08x) " "will not receive delegations\n", clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); return; } /* * Cache a reply. nfsd4_check_drc_limit() has bounded the cache size. */ void nfsd4_store_cache_entry(struct nfsd4_compoundres *resp) { struct nfsd4_slot *slot = resp->cstate.slot; unsigned int base; dprintk("--> %s slot %p\n", __func__, slot); slot->sl_opcnt = resp->opcnt; slot->sl_status = resp->cstate.status; if (nfsd4_not_cached(resp)) { slot->sl_datalen = 0; return; } slot->sl_datalen = (char *)resp->p - (char *)resp->cstate.datap; base = (char *)resp->cstate.datap - (char *)resp->xbuf->head[0].iov_base; if (read_bytes_from_xdr_buf(resp->xbuf, base, slot->sl_data, slot->sl_datalen)) WARN("%s: sessions DRC could not cache compound\n", __func__); return; } /* * Encode the replay sequence operation from the slot values. * If cachethis is FALSE encode the uncached rep error on the next * operation which sets resp->p and increments resp->opcnt for * nfs4svc_encode_compoundres. * */ static __be32 nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args, struct nfsd4_compoundres *resp) { struct nfsd4_op *op; struct nfsd4_slot *slot = resp->cstate.slot; dprintk("--> %s resp->opcnt %d cachethis %u \n", __func__, resp->opcnt, resp->cstate.slot->sl_cachethis); /* Encode the replayed sequence operation */ op = &args->ops[resp->opcnt - 1]; nfsd4_encode_operation(resp, op); /* Return nfserr_retry_uncached_rep in next operation. */ if (args->opcnt > 1 && slot->sl_cachethis == 0) { op = &args->ops[resp->opcnt++]; op->status = nfserr_retry_uncached_rep; nfsd4_encode_operation(resp, op); } return op->status; } /* * The sequence operation is not cached because we can use the slot and * session values. */ __be32 nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp, struct nfsd4_sequence *seq) { struct nfsd4_slot *slot = resp->cstate.slot; __be32 status; dprintk("--> %s slot %p\n", __func__, slot); /* Either returns 0 or nfserr_retry_uncached */ status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp); if (status == nfserr_retry_uncached_rep) return status; /* The sequence operation has been encoded, cstate->datap set. */ memcpy(resp->cstate.datap, slot->sl_data, slot->sl_datalen); resp->opcnt = slot->sl_opcnt; resp->p = resp->cstate.datap + XDR_QUADLEN(slot->sl_datalen); status = slot->sl_status; return status; } /* * Set the exchange_id flags returned by the server. */ static void nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid) { /* pNFS is not supported */ new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS; /* Referrals are supported, Migration is not. */ new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER; /* set the wire flags to return to client. */ clid->flags = new->cl_exchange_flags; } __be32 nfsd4_exchange_id(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_exchange_id *exid) { struct nfs4_client *unconf, *conf, *new; int status; unsigned int strhashval; char dname[HEXDIR_LEN]; char addr_str[INET6_ADDRSTRLEN]; nfs4_verifier verf = exid->verifier; struct sockaddr *sa = svc_addr(rqstp); rpc_ntop(sa, addr_str, sizeof(addr_str)); dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p " "ip_addr=%s flags %x, spa_how %d\n", __func__, rqstp, exid, exid->clname.len, exid->clname.data, addr_str, exid->flags, exid->spa_how); if (exid->flags & ~EXCHGID4_FLAG_MASK_A) return nfserr_inval; /* Currently only support SP4_NONE */ switch (exid->spa_how) { case SP4_NONE: break; case SP4_SSV: return nfserr_serverfault; default: BUG(); /* checked by xdr code */ case SP4_MACH_CRED: return nfserr_serverfault; /* no excuse :-/ */ } status = nfs4_make_rec_clidname(dname, &exid->clname); if (status) goto error; strhashval = clientstr_hashval(dname); nfs4_lock_state(); status = nfs_ok; conf = find_confirmed_client_by_str(dname, strhashval); if (conf) { if (!clp_used_exchangeid(conf)) { status = nfserr_clid_inuse; /* XXX: ? */ goto out; } if (!same_verf(&verf, &conf->cl_verifier)) { /* 18.35.4 case 8 */ if (exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A) { status = nfserr_not_same; goto out; } /* Client reboot: destroy old state */ expire_client(conf); goto out_new; } if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) { /* 18.35.4 case 9 */ if (exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A) { status = nfserr_perm; goto out; } expire_client(conf); goto out_new; } /* * Set bit when the owner id and verifier map to an already * confirmed client id (18.35.3). */ exid->flags |= EXCHGID4_FLAG_CONFIRMED_R; /* * Falling into 18.35.4 case 2, possible router replay. * Leave confirmed record intact and return same result. */ copy_verf(conf, &verf); new = conf; goto out_copy; } /* 18.35.4 case 7 */ if (exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A) { status = nfserr_noent; goto out; } unconf = find_unconfirmed_client_by_str(dname, strhashval); if (unconf) { /* * Possible retry or client restart. Per 18.35.4 case 4, * a new unconfirmed record should be generated regardless * of whether any properties have changed. */ expire_client(unconf); } out_new: /* Normal case */ new = create_client(exid->clname, dname, rqstp, &verf); if (new == NULL) { status = nfserr_jukebox; goto out; } gen_clid(new); add_to_unconfirmed(new, strhashval); out_copy: exid->clientid.cl_boot = new->cl_clientid.cl_boot; exid->clientid.cl_id = new->cl_clientid.cl_id; exid->seqid = 1; nfsd4_set_ex_flags(new, exid); dprintk("nfsd4_exchange_id seqid %d flags %x\n", new->cl_cs_slot.sl_seqid, new->cl_exchange_flags); status = nfs_ok; out: nfs4_unlock_state(); error: dprintk("nfsd4_exchange_id returns %d\n", ntohl(status)); return status; } static int check_slot_seqid(u32 seqid, u32 slot_seqid, int slot_inuse) { dprintk("%s enter. seqid %d slot_seqid %d\n", __func__, seqid, slot_seqid); /* The slot is in use, and no response has been sent. */ if (slot_inuse) { if (seqid == slot_seqid) return nfserr_jukebox; else return nfserr_seq_misordered; } /* Normal */ if (likely(seqid == slot_seqid + 1)) return nfs_ok; /* Replay */ if (seqid == slot_seqid) return nfserr_replay_cache; /* Wraparound */ if (seqid == 1 && (slot_seqid + 1) == 0) return nfs_ok; /* Misordered replay or misordered new request */ return nfserr_seq_misordered; } /* * Cache the create session result into the create session single DRC * slot cache by saving the xdr structure. sl_seqid has been set. * Do this for solo or embedded create session operations. */ static void nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses, struct nfsd4_clid_slot *slot, int nfserr) { slot->sl_status = nfserr; memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses)); } static __be32 nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses, struct nfsd4_clid_slot *slot) { memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses)); return slot->sl_status; } #define NFSD_MIN_REQ_HDR_SEQ_SZ ((\ 2 * 2 + /* credential,verifier: AUTH_NULL, length 0 */ \ 1 + /* MIN tag is length with zero, only length */ \ 3 + /* version, opcount, opcode */ \ XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \ /* seqid, slotID, slotID, cache */ \ 4 ) * sizeof(__be32)) #define NFSD_MIN_RESP_HDR_SEQ_SZ ((\ 2 + /* verifier: AUTH_NULL, length 0 */\ 1 + /* status */ \ 1 + /* MIN tag is length with zero, only length */ \ 3 + /* opcount, opcode, opstatus*/ \ XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \ /* seqid, slotID, slotID, slotID, status */ \ 5 ) * sizeof(__be32)) static __be32 check_forechannel_attrs(struct nfsd4_channel_attrs fchannel) { return fchannel.maxreq_sz < NFSD_MIN_REQ_HDR_SEQ_SZ || fchannel.maxresp_sz < NFSD_MIN_RESP_HDR_SEQ_SZ; } __be32 nfsd4_create_session(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_create_session *cr_ses) { struct sockaddr *sa = svc_addr(rqstp); struct nfs4_client *conf, *unconf; struct nfsd4_session *new; struct nfsd4_clid_slot *cs_slot = NULL; bool confirm_me = false; int status = 0; if (cr_ses->flags & ~SESSION4_FLAG_MASK_A) return nfserr_inval; nfs4_lock_state(); unconf = find_unconfirmed_client(&cr_ses->clientid); conf = find_confirmed_client(&cr_ses->clientid); if (conf) { cs_slot = &conf->cl_cs_slot; status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0); if (status == nfserr_replay_cache) { dprintk("Got a create_session replay! seqid= %d\n", cs_slot->sl_seqid); /* Return the cached reply status */ status = nfsd4_replay_create_session(cr_ses, cs_slot); goto out; } else if (cr_ses->seqid != cs_slot->sl_seqid + 1) { status = nfserr_seq_misordered; dprintk("Sequence misordered!\n"); dprintk("Expected seqid= %d but got seqid= %d\n", cs_slot->sl_seqid, cr_ses->seqid); goto out; } } else if (unconf) { if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) || !rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) { status = nfserr_clid_inuse; goto out; } cs_slot = &unconf->cl_cs_slot; status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0); if (status) { /* an unconfirmed replay returns misordered */ status = nfserr_seq_misordered; goto out; } confirm_me = true; conf = unconf; } else { status = nfserr_stale_clientid; goto out; } /* * XXX: we should probably set this at creation time, and check * for consistent minorversion use throughout: */ conf->cl_minorversion = 1; /* * We do not support RDMA or persistent sessions */ cr_ses->flags &= ~SESSION4_PERSIST; cr_ses->flags &= ~SESSION4_RDMA; status = nfserr_toosmall; if (check_forechannel_attrs(cr_ses->fore_channel)) goto out; status = nfserr_jukebox; new = alloc_init_session(rqstp, conf, cr_ses); if (!new) goto out; status = nfs_ok; memcpy(cr_ses->sessionid.data, new->se_sessionid.data, NFS4_MAX_SESSIONID_LEN); memcpy(&cr_ses->fore_channel, &new->se_fchannel, sizeof(struct nfsd4_channel_attrs)); cs_slot->sl_seqid++; cr_ses->seqid = cs_slot->sl_seqid; /* cache solo and embedded create sessions under the state lock */ nfsd4_cache_create_session(cr_ses, cs_slot, status); if (confirm_me) move_to_confirmed(conf); out: nfs4_unlock_state(); dprintk("%s returns %d\n", __func__, ntohl(status)); return status; } static bool nfsd4_last_compound_op(struct svc_rqst *rqstp) { struct nfsd4_compoundres *resp = rqstp->rq_resp; struct nfsd4_compoundargs *argp = rqstp->rq_argp; return argp->opcnt == resp->opcnt; } static __be32 nfsd4_map_bcts_dir(u32 *dir) { switch (*dir) { case NFS4_CDFC4_FORE: case NFS4_CDFC4_BACK: return nfs_ok; case NFS4_CDFC4_FORE_OR_BOTH: case NFS4_CDFC4_BACK_OR_BOTH: *dir = NFS4_CDFC4_BOTH; return nfs_ok; }; return nfserr_inval; } __be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_bind_conn_to_session *bcts) { __be32 status; if (!nfsd4_last_compound_op(rqstp)) return nfserr_not_only_op; spin_lock(&client_lock); cstate->session = find_in_sessionid_hashtbl(&bcts->sessionid); /* Sorta weird: we only need the refcnt'ing because new_conn acquires * client_lock iself: */ if (cstate->session) { nfsd4_get_session(cstate->session); atomic_inc(&cstate->session->se_client->cl_refcount); } spin_unlock(&client_lock); if (!cstate->session) return nfserr_badsession; status = nfsd4_map_bcts_dir(&bcts->dir); if (!status) nfsd4_new_conn(rqstp, cstate->session, bcts->dir); return status; } static bool nfsd4_compound_in_session(struct nfsd4_session *session, struct nfs4_sessionid *sid) { if (!session) return 0; return !memcmp(sid, &session->se_sessionid, sizeof(*sid)); } __be32 nfsd4_destroy_session(struct svc_rqst *r, struct nfsd4_compound_state *cstate, struct nfsd4_destroy_session *sessionid) { struct nfsd4_session *ses; u32 status = nfserr_badsession; /* Notes: * - The confirmed nfs4_client->cl_sessionid holds destroyed sessinid * - Should we return nfserr_back_chan_busy if waiting for * callbacks on to-be-destroyed session? * - Do we need to clear any callback info from previous session? */ if (nfsd4_compound_in_session(cstate->session, &sessionid->sessionid)) { if (!nfsd4_last_compound_op(r)) return nfserr_not_only_op; } dump_sessionid(__func__, &sessionid->sessionid); spin_lock(&client_lock); ses = find_in_sessionid_hashtbl(&sessionid->sessionid); if (!ses) { spin_unlock(&client_lock); goto out; } unhash_session(ses); spin_unlock(&client_lock); nfs4_lock_state(); nfsd4_probe_callback_sync(ses->se_client); nfs4_unlock_state(); nfsd4_del_conns(ses); nfsd4_put_session(ses); status = nfs_ok; out: dprintk("%s returns %d\n", __func__, ntohl(status)); return status; } static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s) { struct nfsd4_conn *c; list_for_each_entry(c, &s->se_conns, cn_persession) { if (c->cn_xprt == xpt) { return c; } } return NULL; } static void nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd4_conn *c; int ret; spin_lock(&clp->cl_lock); c = __nfsd4_find_conn(new->cn_xprt, ses); if (c) { spin_unlock(&clp->cl_lock); free_conn(new); return; } __nfsd4_hash_conn(new, ses); spin_unlock(&clp->cl_lock); ret = nfsd4_register_conn(new); if (ret) /* oops; xprt is already down: */ nfsd4_conn_lost(&new->cn_xpt_user); return; } static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session) { struct nfsd4_compoundargs *args = rqstp->rq_argp; return args->opcnt > session->se_fchannel.maxops; } static bool nfsd4_request_too_big(struct svc_rqst *rqstp, struct nfsd4_session *session) { struct xdr_buf *xb = &rqstp->rq_arg; return xb->len > session->se_fchannel.maxreq_sz; } __be32 nfsd4_sequence(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_sequence *seq) { struct nfsd4_compoundres *resp = rqstp->rq_resp; struct nfsd4_session *session; struct nfsd4_slot *slot; struct nfsd4_conn *conn; int status; if (resp->opcnt != 1) return nfserr_sequence_pos; /* * Will be either used or freed by nfsd4_sequence_check_conn * below. */ conn = alloc_conn(rqstp, NFS4_CDFC4_FORE); if (!conn) return nfserr_jukebox; spin_lock(&client_lock); status = nfserr_badsession; session = find_in_sessionid_hashtbl(&seq->sessionid); if (!session) goto out; status = nfserr_too_many_ops; if (nfsd4_session_too_many_ops(rqstp, session)) goto out; status = nfserr_req_too_big; if (nfsd4_request_too_big(rqstp, session)) goto out; status = nfserr_badslot; if (seq->slotid >= session->se_fchannel.maxreqs) goto out; slot = session->se_slots[seq->slotid]; dprintk("%s: slotid %d\n", __func__, seq->slotid); /* We do not negotiate the number of slots yet, so set the * maxslots to the session maxreqs which is used to encode * sr_highest_slotid and the sr_target_slot id to maxslots */ seq->maxslots = session->se_fchannel.maxreqs; status = check_slot_seqid(seq->seqid, slot->sl_seqid, slot->sl_inuse); if (status == nfserr_replay_cache) { cstate->slot = slot; cstate->session = session; /* Return the cached reply status and set cstate->status * for nfsd4_proc_compound processing */ status = nfsd4_replay_cache_entry(resp, seq); cstate->status = nfserr_replay_cache; goto out; } if (status) goto out; nfsd4_sequence_check_conn(conn, session); conn = NULL; /* Success! bump slot seqid */ slot->sl_inuse = true; slot->sl_seqid = seq->seqid; slot->sl_cachethis = seq->cachethis; cstate->slot = slot; cstate->session = session; out: /* Hold a session reference until done processing the compound. */ if (cstate->session) { struct nfs4_client *clp = session->se_client; nfsd4_get_session(cstate->session); atomic_inc(&clp->cl_refcount); switch (clp->cl_cb_state) { case NFSD4_CB_DOWN: seq->status_flags = SEQ4_STATUS_CB_PATH_DOWN; break; case NFSD4_CB_FAULT: seq->status_flags = SEQ4_STATUS_BACKCHANNEL_FAULT; break; default: seq->status_flags = 0; } } kfree(conn); spin_unlock(&client_lock); dprintk("%s: return %d\n", __func__, ntohl(status)); return status; } static inline bool has_resources(struct nfs4_client *clp) { return !list_empty(&clp->cl_openowners) || !list_empty(&clp->cl_delegations) || !list_empty(&clp->cl_sessions); } __be32 nfsd4_destroy_clientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_destroy_clientid *dc) { struct nfs4_client *conf, *unconf, *clp; int status = 0; nfs4_lock_state(); unconf = find_unconfirmed_client(&dc->clientid); conf = find_confirmed_client(&dc->clientid); if (conf) { clp = conf; if (!is_client_expired(conf) && has_resources(conf)) { status = nfserr_clientid_busy; goto out; } /* rfc5661 18.50.3 */ if (cstate->session && conf == cstate->session->se_client) { status = nfserr_clientid_busy; goto out; } } else if (unconf) clp = unconf; else { status = nfserr_stale_clientid; goto out; } expire_client(clp); out: nfs4_unlock_state(); dprintk("%s return %d\n", __func__, ntohl(status)); return status; } __be32 nfsd4_reclaim_complete(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_reclaim_complete *rc) { int status = 0; if (rc->rca_one_fs) { if (!cstate->current_fh.fh_dentry) return nfserr_nofilehandle; /* * We don't take advantage of the rca_one_fs case. * That's OK, it's optional, we can safely ignore it. */ return nfs_ok; } nfs4_lock_state(); status = nfserr_complete_already; if (cstate->session->se_client->cl_firststate) goto out; status = nfserr_stale_clientid; if (is_client_expired(cstate->session->se_client)) /* * The following error isn't really legal. * But we only get here if the client just explicitly * destroyed the client. Surely it no longer cares what * error it gets back on an operation for the dead * client. */ goto out; status = nfs_ok; nfsd4_create_clid_dir(cstate->session->se_client); out: nfs4_unlock_state(); return status; } __be32 nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_setclientid *setclid) { struct xdr_netobj clname = setclid->se_name; nfs4_verifier clverifier = setclid->se_verf; unsigned int strhashval; struct nfs4_client *conf, *unconf, *new; __be32 status; char dname[HEXDIR_LEN]; status = nfs4_make_rec_clidname(dname, &clname); if (status) return status; /* * XXX The Duplicate Request Cache (DRC) has been checked (??) * We get here on a DRC miss. */ strhashval = clientstr_hashval(dname); nfs4_lock_state(); conf = find_confirmed_client_by_str(dname, strhashval); if (conf) { /* RFC 3530 14.2.33 CASE 0: */ status = nfserr_clid_inuse; if (clp_used_exchangeid(conf)) goto out; if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) { char addr_str[INET6_ADDRSTRLEN]; rpc_ntop((struct sockaddr *) &conf->cl_addr, addr_str, sizeof(addr_str)); dprintk("NFSD: setclientid: string in use by client " "at %s\n", addr_str); goto out; } } /* * section 14.2.33 of RFC 3530 (under the heading "IMPLEMENTATION") * has a description of SETCLIENTID request processing consisting * of 5 bullet points, labeled as CASE0 - CASE4 below. */ unconf = find_unconfirmed_client_by_str(dname, strhashval); status = nfserr_jukebox; if (!conf) { /* * RFC 3530 14.2.33 CASE 4: * placed first, because it is the normal case */ if (unconf) expire_client(unconf); new = create_client(clname, dname, rqstp, &clverifier); if (new == NULL) goto out; gen_clid(new); } else if (same_verf(&conf->cl_verifier, &clverifier)) { /* * RFC 3530 14.2.33 CASE 1: * probable callback update */ if (unconf) { /* Note this is removing unconfirmed {*x***}, * which is stronger than RFC recommended {vxc**}. * This has the advantage that there is at most * one {*x***} in either list at any time. */ expire_client(unconf); } new = create_client(clname, dname, rqstp, &clverifier); if (new == NULL) goto out; copy_clid(new, conf); } else if (!unconf) { /* * RFC 3530 14.2.33 CASE 2: * probable client reboot; state will be removed if * confirmed. */ new = create_client(clname, dname, rqstp, &clverifier); if (new == NULL) goto out; gen_clid(new); } else { /* * RFC 3530 14.2.33 CASE 3: * probable client reboot; state will be removed if * confirmed. */ expire_client(unconf); new = create_client(clname, dname, rqstp, &clverifier); if (new == NULL) goto out; gen_clid(new); } /* * XXX: we should probably set this at creation time, and check * for consistent minorversion use throughout: */ new->cl_minorversion = 0; gen_callback(new, setclid, rqstp); add_to_unconfirmed(new, strhashval); setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot; setclid->se_clientid.cl_id = new->cl_clientid.cl_id; memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data)); status = nfs_ok; out: nfs4_unlock_state(); return status; } /* * Section 14.2.34 of RFC 3530 (under the heading "IMPLEMENTATION") has * a description of SETCLIENTID_CONFIRM request processing consisting of 4 * bullets, labeled as CASE1 - CASE4 below. */ __be32 nfsd4_setclientid_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_setclientid_confirm *setclientid_confirm) { struct sockaddr *sa = svc_addr(rqstp); struct nfs4_client *conf, *unconf; nfs4_verifier confirm = setclientid_confirm->sc_confirm; clientid_t * clid = &setclientid_confirm->sc_clientid; __be32 status; if (STALE_CLIENTID(clid)) return nfserr_stale_clientid; /* * XXX The Duplicate Request Cache (DRC) has been checked (??) * We get here on a DRC miss. */ nfs4_lock_state(); conf = find_confirmed_client(clid); unconf = find_unconfirmed_client(clid); status = nfserr_clid_inuse; if (conf && !rpc_cmp_addr((struct sockaddr *) &conf->cl_addr, sa)) goto out; if (unconf && !rpc_cmp_addr((struct sockaddr *) &unconf->cl_addr, sa)) goto out; /* * section 14.2.34 of RFC 3530 has a description of * SETCLIENTID_CONFIRM request processing consisting * of 4 bullet points, labeled as CASE1 - CASE4 below. */ if (conf && unconf && same_verf(&confirm, &unconf->cl_confirm)) { /* * RFC 3530 14.2.34 CASE 1: * callback update */ if (!same_creds(&conf->cl_cred, &unconf->cl_cred)) status = nfserr_clid_inuse; else { nfsd4_change_callback(conf, &unconf->cl_cb_conn); nfsd4_probe_callback(conf); expire_client(unconf); status = nfs_ok; } } else if (conf && !unconf) { /* * RFC 3530 14.2.34 CASE 2: * probable retransmitted request; play it safe and * do nothing. */ if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) status = nfserr_clid_inuse; else status = nfs_ok; } else if (!conf && unconf && same_verf(&unconf->cl_confirm, &confirm)) { /* * RFC 3530 14.2.34 CASE 3: * Normal case; new or rebooted client: */ if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred)) { status = nfserr_clid_inuse; } else { unsigned int hash = clientstr_hashval(unconf->cl_recdir); conf = find_confirmed_client_by_str(unconf->cl_recdir, hash); if (conf) { nfsd4_remove_clid_dir(conf); expire_client(conf); } move_to_confirmed(unconf); conf = unconf; nfsd4_probe_callback(conf); status = nfs_ok; } } else if ((!conf || (conf && !same_verf(&conf->cl_confirm, &confirm))) && (!unconf || (unconf && !same_verf(&unconf->cl_confirm, &confirm)))) { /* * RFC 3530 14.2.34 CASE 4: * Client probably hasn't noticed that we rebooted yet. */ status = nfserr_stale_clientid; } else { /* check that we have hit one of the cases...*/ status = nfserr_clid_inuse; } out: nfs4_unlock_state(); return status; } static struct nfs4_file *nfsd4_alloc_file(void) { return kmem_cache_alloc(file_slab, GFP_KERNEL); } /* OPEN Share state helper functions */ static void nfsd4_init_file(struct nfs4_file *fp, struct inode *ino) { unsigned int hashval = file_hashval(ino); atomic_set(&fp->fi_ref, 1); INIT_LIST_HEAD(&fp->fi_hash); INIT_LIST_HEAD(&fp->fi_stateids); INIT_LIST_HEAD(&fp->fi_delegations); fp->fi_inode = igrab(ino); fp->fi_had_conflict = false; fp->fi_lease = NULL; memset(fp->fi_fds, 0, sizeof(fp->fi_fds)); memset(fp->fi_access, 0, sizeof(fp->fi_access)); spin_lock(&recall_lock); list_add(&fp->fi_hash, &file_hashtbl[hashval]); spin_unlock(&recall_lock); } static void nfsd4_free_slab(struct kmem_cache **slab) { if (*slab == NULL) return; kmem_cache_destroy(*slab); *slab = NULL; } void nfsd4_free_slabs(void) { nfsd4_free_slab(&openowner_slab); nfsd4_free_slab(&lockowner_slab); nfsd4_free_slab(&file_slab); nfsd4_free_slab(&stateid_slab); nfsd4_free_slab(&deleg_slab); } int nfsd4_init_slabs(void) { openowner_slab = kmem_cache_create("nfsd4_openowners", sizeof(struct nfs4_openowner), 0, 0, NULL); if (openowner_slab == NULL) goto out_nomem; lockowner_slab = kmem_cache_create("nfsd4_lockowners", sizeof(struct nfs4_openowner), 0, 0, NULL); if (lockowner_slab == NULL) goto out_nomem; file_slab = kmem_cache_create("nfsd4_files", sizeof(struct nfs4_file), 0, 0, NULL); if (file_slab == NULL) goto out_nomem; stateid_slab = kmem_cache_create("nfsd4_stateids", sizeof(struct nfs4_ol_stateid), 0, 0, NULL); if (stateid_slab == NULL) goto out_nomem; deleg_slab = kmem_cache_create("nfsd4_delegations", sizeof(struct nfs4_delegation), 0, 0, NULL); if (deleg_slab == NULL) goto out_nomem; return 0; out_nomem: nfsd4_free_slabs(); dprintk("nfsd4: out of memory while initializing nfsv4\n"); return -ENOMEM; } void nfs4_free_openowner(struct nfs4_openowner *oo) { kfree(oo->oo_owner.so_owner.data); kmem_cache_free(openowner_slab, oo); } void nfs4_free_lockowner(struct nfs4_lockowner *lo) { kfree(lo->lo_owner.so_owner.data); kmem_cache_free(lockowner_slab, lo); } static void init_nfs4_replay(struct nfs4_replay *rp) { rp->rp_status = nfserr_serverfault; rp->rp_buflen = 0; rp->rp_buf = rp->rp_ibuf; } static inline void *alloc_stateowner(struct kmem_cache *slab, struct xdr_netobj *owner, struct nfs4_client *clp) { struct nfs4_stateowner *sop; sop = kmem_cache_alloc(slab, GFP_KERNEL); if (!sop) return NULL; sop->so_owner.data = kmemdup(owner->data, owner->len, GFP_KERNEL); if (!sop->so_owner.data) { kmem_cache_free(slab, sop); return NULL; } sop->so_owner.len = owner->len; INIT_LIST_HEAD(&sop->so_stateids); sop->so_client = clp; init_nfs4_replay(&sop->so_replay); return sop; } static void hash_openowner(struct nfs4_openowner *oo, struct nfs4_client *clp, unsigned int strhashval) { list_add(&oo->oo_owner.so_strhash, &ownerstr_hashtbl[strhashval]); list_add(&oo->oo_perclient, &clp->cl_openowners); } static struct nfs4_openowner * alloc_init_open_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfsd4_open *open) { struct nfs4_openowner *oo; oo = alloc_stateowner(openowner_slab, &open->op_owner, clp); if (!oo) return NULL; oo->oo_owner.so_is_open_owner = 1; oo->oo_owner.so_seqid = open->op_seqid; oo->oo_flags = NFS4_OO_NEW; oo->oo_time = 0; oo->oo_last_closed_stid = NULL; INIT_LIST_HEAD(&oo->oo_close_lru); hash_openowner(oo, clp, strhashval); return oo; } static void init_open_stateid(struct nfs4_ol_stateid *stp, struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_openowner *oo = open->op_openowner; struct nfs4_client *clp = oo->oo_owner.so_client; init_stid(&stp->st_stid, clp, NFS4_OPEN_STID); INIT_LIST_HEAD(&stp->st_lockowners); list_add(&stp->st_perstateowner, &oo->oo_owner.so_stateids); list_add(&stp->st_perfile, &fp->fi_stateids); stp->st_stateowner = &oo->oo_owner; get_nfs4_file(fp); stp->st_file = fp; stp->st_access_bmap = 0; stp->st_deny_bmap = 0; __set_bit(open->op_share_access, &stp->st_access_bmap); __set_bit(open->op_share_deny, &stp->st_deny_bmap); stp->st_openstp = NULL; } static void move_to_close_lru(struct nfs4_openowner *oo) { dprintk("NFSD: move_to_close_lru nfs4_openowner %p\n", oo); list_move_tail(&oo->oo_close_lru, &close_lru); oo->oo_time = get_seconds(); } static int same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner, clientid_t *clid) { return (sop->so_owner.len == owner->len) && 0 == memcmp(sop->so_owner.data, owner->data, owner->len) && (sop->so_client->cl_clientid.cl_id == clid->cl_id); } static struct nfs4_openowner * find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open) { struct nfs4_stateowner *so; struct nfs4_openowner *oo; list_for_each_entry(so, &ownerstr_hashtbl[hashval], so_strhash) { if (!so->so_is_open_owner) continue; if (same_owner_str(so, &open->op_owner, &open->op_clientid)) { oo = openowner(so); renew_client(oo->oo_owner.so_client); return oo; } } return NULL; } /* search file_hashtbl[] for file */ static struct nfs4_file * find_file(struct inode *ino) { unsigned int hashval = file_hashval(ino); struct nfs4_file *fp; spin_lock(&recall_lock); list_for_each_entry(fp, &file_hashtbl[hashval], fi_hash) { if (fp->fi_inode == ino) { get_nfs4_file(fp); spin_unlock(&recall_lock); return fp; } } spin_unlock(&recall_lock); return NULL; } /* * Called to check deny when READ with all zero stateid or * WRITE with all zero or all one stateid */ static __be32 nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type) { struct inode *ino = current_fh->fh_dentry->d_inode; struct nfs4_file *fp; struct nfs4_ol_stateid *stp; __be32 ret; dprintk("NFSD: nfs4_share_conflict\n"); fp = find_file(ino); if (!fp) return nfs_ok; ret = nfserr_locked; /* Search for conflicting share reservations */ list_for_each_entry(stp, &fp->fi_stateids, st_perfile) { if (test_bit(deny_type, &stp->st_deny_bmap) || test_bit(NFS4_SHARE_DENY_BOTH, &stp->st_deny_bmap)) goto out; } ret = nfs_ok; out: put_nfs4_file(fp); return ret; } static void nfsd_break_one_deleg(struct nfs4_delegation *dp) { /* We're assuming the state code never drops its reference * without first removing the lease. Since we're in this lease * callback (and since the lease code is serialized by the kernel * lock) we know the server hasn't removed the lease yet, we know * it's safe to take a reference: */ atomic_inc(&dp->dl_count); list_add_tail(&dp->dl_recall_lru, &del_recall_lru); /* only place dl_time is set. protected by lock_flocks*/ dp->dl_time = get_seconds(); nfsd4_cb_recall(dp); } /* Called from break_lease() with lock_flocks() held. */ static void nfsd_break_deleg_cb(struct file_lock *fl) { struct nfs4_file *fp = (struct nfs4_file *)fl->fl_owner; struct nfs4_delegation *dp; BUG_ON(!fp); /* We assume break_lease is only called once per lease: */ BUG_ON(fp->fi_had_conflict); /* * We don't want the locks code to timeout the lease for us; * we'll remove it ourself if a delegation isn't returned * in time: */ fl->fl_break_time = 0; spin_lock(&recall_lock); fp->fi_had_conflict = true; list_for_each_entry(dp, &fp->fi_delegations, dl_perfile) nfsd_break_one_deleg(dp); spin_unlock(&recall_lock); } static int nfsd_change_deleg_cb(struct file_lock **onlist, int arg) { if (arg & F_UNLCK) return lease_modify(onlist, arg); else return -EAGAIN; } static const struct lock_manager_operations nfsd_lease_mng_ops = { .lm_break = nfsd_break_deleg_cb, .lm_change = nfsd_change_deleg_cb, }; static __be32 nfsd4_check_seqid(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so, u32 seqid) { if (nfsd4_has_session(cstate)) return nfs_ok; if (seqid == so->so_seqid - 1) return nfserr_replay_me; if (seqid == so->so_seqid) return nfs_ok; return nfserr_bad_seqid; } __be32 nfsd4_process_open1(struct nfsd4_compound_state *cstate, struct nfsd4_open *open) { clientid_t *clientid = &open->op_clientid; struct nfs4_client *clp = NULL; unsigned int strhashval; struct nfs4_openowner *oo = NULL; __be32 status; if (STALE_CLIENTID(&open->op_clientid)) return nfserr_stale_clientid; /* * In case we need it later, after we've already created the * file and don't want to risk a further failure: */ open->op_file = nfsd4_alloc_file(); if (open->op_file == NULL) return nfserr_jukebox; strhashval = ownerstr_hashval(clientid->cl_id, &open->op_owner); oo = find_openstateowner_str(strhashval, open); open->op_openowner = oo; if (!oo) { clp = find_confirmed_client(clientid); if (clp == NULL) return nfserr_expired; goto new_owner; } if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) { /* Replace unconfirmed owners without checking for replay. */ clp = oo->oo_owner.so_client; release_openowner(oo); open->op_openowner = NULL; goto new_owner; } status = nfsd4_check_seqid(cstate, &oo->oo_owner, open->op_seqid); if (status) return status; clp = oo->oo_owner.so_client; goto alloc_stateid; new_owner: oo = alloc_init_open_stateowner(strhashval, clp, open); if (oo == NULL) return nfserr_jukebox; open->op_openowner = oo; alloc_stateid: open->op_stp = nfs4_alloc_stateid(clp); if (!open->op_stp) return nfserr_jukebox; return nfs_ok; } static inline __be32 nfs4_check_delegmode(struct nfs4_delegation *dp, int flags) { if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ)) return nfserr_openmode; else return nfs_ok; } static int share_access_to_flags(u32 share_access) { share_access &= ~NFS4_SHARE_WANT_MASK; return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE; } static struct nfs4_delegation *find_deleg_stateid(struct nfs4_client *cl, stateid_t *s) { struct nfs4_stid *ret; ret = find_stateid_by_type(cl, s, NFS4_DELEG_STID); if (!ret) return NULL; return delegstateid(ret); } static bool nfsd4_is_deleg_cur(struct nfsd4_open *open) { return open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR || open->op_claim_type == NFS4_OPEN_CLAIM_DELEG_CUR_FH; } static __be32 nfs4_check_deleg(struct nfs4_client *cl, struct nfs4_file *fp, struct nfsd4_open *open, struct nfs4_delegation **dp) { int flags; __be32 status = nfserr_bad_stateid; *dp = find_deleg_stateid(cl, &open->op_delegate_stateid); if (*dp == NULL) goto out; flags = share_access_to_flags(open->op_share_access); status = nfs4_check_delegmode(*dp, flags); if (status) *dp = NULL; out: if (!nfsd4_is_deleg_cur(open)) return nfs_ok; if (status) return status; open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; return nfs_ok; } static __be32 nfs4_check_open(struct nfs4_file *fp, struct nfsd4_open *open, struct nfs4_ol_stateid **stpp) { struct nfs4_ol_stateid *local; struct nfs4_openowner *oo = open->op_openowner; list_for_each_entry(local, &fp->fi_stateids, st_perfile) { /* ignore lock owners */ if (local->st_stateowner->so_is_open_owner == 0) continue; /* remember if we have seen this open owner */ if (local->st_stateowner == &oo->oo_owner) *stpp = local; /* check for conflicting share reservations */ if (!test_share(local, open)) return nfserr_share_denied; } return nfs_ok; } static void nfs4_free_stateid(struct nfs4_ol_stateid *s) { kmem_cache_free(stateid_slab, s); } static inline int nfs4_access_to_access(u32 nfs4_access) { int flags = 0; if (nfs4_access & NFS4_SHARE_ACCESS_READ) flags |= NFSD_MAY_READ; if (nfs4_access & NFS4_SHARE_ACCESS_WRITE) flags |= NFSD_MAY_WRITE; return flags; } static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfsd4_open *open) { __be32 status; int oflag = nfs4_access_to_omode(open->op_share_access); int access = nfs4_access_to_access(open->op_share_access); if (!fp->fi_fds[oflag]) { status = nfsd_open(rqstp, cur_fh, S_IFREG, access, &fp->fi_fds[oflag]); if (status) return status; } nfs4_file_get_access(fp, oflag); return nfs_ok; } static inline __be32 nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh, struct nfsd4_open *open) { struct iattr iattr = { .ia_valid = ATTR_SIZE, .ia_size = 0, }; if (!open->op_truncate) return 0; if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE)) return nfserr_inval; return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0); } static __be32 nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open) { u32 op_share_access = open->op_share_access; bool new_access; __be32 status; new_access = !test_bit(op_share_access, &stp->st_access_bmap); if (new_access) { status = nfs4_get_vfs_file(rqstp, fp, cur_fh, open); if (status) return status; } status = nfsd4_truncate(rqstp, cur_fh, open); if (status) { if (new_access) { int oflag = nfs4_access_to_omode(op_share_access); nfs4_file_put_access(fp, oflag); } return status; } /* remember the open */ __set_bit(op_share_access, &stp->st_access_bmap); __set_bit(open->op_share_deny, &stp->st_deny_bmap); return nfs_ok; } static void nfs4_set_claim_prev(struct nfsd4_open *open) { open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; open->op_openowner->oo_owner.so_client->cl_firststate = 1; } /* Should we give out recallable state?: */ static bool nfsd4_cb_channel_good(struct nfs4_client *clp) { if (clp->cl_cb_state == NFSD4_CB_UP) return true; /* * In the sessions case, since we don't have to establish a * separate connection for callbacks, we assume it's OK * until we hear otherwise: */ return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN; } static struct file_lock *nfs4_alloc_init_lease(struct nfs4_delegation *dp, int flag) { struct file_lock *fl; fl = locks_alloc_lock(); if (!fl) return NULL; locks_init_lock(fl); fl->fl_lmops = &nfsd_lease_mng_ops; fl->fl_flags = FL_LEASE; fl->fl_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK; fl->fl_end = OFFSET_MAX; fl->fl_owner = (fl_owner_t)(dp->dl_file); fl->fl_pid = current->tgid; return fl; } static int nfs4_setlease(struct nfs4_delegation *dp, int flag) { struct nfs4_file *fp = dp->dl_file; struct file_lock *fl; int status; fl = nfs4_alloc_init_lease(dp, flag); if (!fl) return -ENOMEM; fl->fl_file = find_readable_file(fp); list_add(&dp->dl_perclnt, &dp->dl_stid.sc_client->cl_delegations); status = vfs_setlease(fl->fl_file, fl->fl_type, &fl); if (status) { list_del_init(&dp->dl_perclnt); locks_free_lock(fl); return -ENOMEM; } fp->fi_lease = fl; fp->fi_deleg_file = fl->fl_file; get_file(fp->fi_deleg_file); atomic_set(&fp->fi_delegees, 1); list_add(&dp->dl_perfile, &fp->fi_delegations); return 0; } static int nfs4_set_delegation(struct nfs4_delegation *dp, int flag) { struct nfs4_file *fp = dp->dl_file; if (!fp->fi_lease) return nfs4_setlease(dp, flag); spin_lock(&recall_lock); if (fp->fi_had_conflict) { spin_unlock(&recall_lock); return -EAGAIN; } atomic_inc(&fp->fi_delegees); list_add(&dp->dl_perfile, &fp->fi_delegations); spin_unlock(&recall_lock); list_add(&dp->dl_perclnt, &dp->dl_stid.sc_client->cl_delegations); return 0; } /* * Attempt to hand out a delegation. */ static void nfs4_open_delegation(struct svc_fh *fh, struct nfsd4_open *open, struct nfs4_ol_stateid *stp) { struct nfs4_delegation *dp; struct nfs4_openowner *oo = container_of(stp->st_stateowner, struct nfs4_openowner, oo_owner); int cb_up; int status, flag = 0; cb_up = nfsd4_cb_channel_good(oo->oo_owner.so_client); flag = NFS4_OPEN_DELEGATE_NONE; open->op_recall = 0; switch (open->op_claim_type) { case NFS4_OPEN_CLAIM_PREVIOUS: if (!cb_up) open->op_recall = 1; flag = open->op_delegate_type; if (flag == NFS4_OPEN_DELEGATE_NONE) goto out; break; case NFS4_OPEN_CLAIM_NULL: /* Let's not give out any delegations till everyone's * had the chance to reclaim theirs.... */ if (locks_in_grace()) goto out; if (!cb_up || !(oo->oo_flags & NFS4_OO_CONFIRMED)) goto out; if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE) flag = NFS4_OPEN_DELEGATE_WRITE; else flag = NFS4_OPEN_DELEGATE_READ; break; default: goto out; } dp = alloc_init_deleg(oo->oo_owner.so_client, stp, fh, flag); if (dp == NULL) goto out_no_deleg; status = nfs4_set_delegation(dp, flag); if (status) goto out_free; memcpy(&open->op_delegate_stateid, &dp->dl_stid.sc_stateid, sizeof(dp->dl_stid.sc_stateid)); dprintk("NFSD: delegation stateid=" STATEID_FMT "\n", STATEID_VAL(&dp->dl_stid.sc_stateid)); out: if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS && flag == NFS4_OPEN_DELEGATE_NONE && open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) dprintk("NFSD: WARNING: refusing delegation reclaim\n"); open->op_delegate_type = flag; return; out_free: nfs4_put_delegation(dp); out_no_deleg: flag = NFS4_OPEN_DELEGATE_NONE; goto out; } /* * called with nfs4_lock_state() held. */ __be32 nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open) { struct nfsd4_compoundres *resp = rqstp->rq_resp; struct nfs4_client *cl = open->op_openowner->oo_owner.so_client; struct nfs4_file *fp = NULL; struct inode *ino = current_fh->fh_dentry->d_inode; struct nfs4_ol_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; __be32 status; /* * Lookup file; if found, lookup stateid and check open request, * and check for delegations in the process of being recalled. * If not found, create the nfs4_file struct */ fp = find_file(ino); if (fp) { if ((status = nfs4_check_open(fp, open, &stp))) goto out; status = nfs4_check_deleg(cl, fp, open, &dp); if (status) goto out; } else { status = nfserr_bad_stateid; if (nfsd4_is_deleg_cur(open)) goto out; status = nfserr_jukebox; fp = open->op_file; open->op_file = NULL; nfsd4_init_file(fp, ino); } /* * OPEN the file, or upgrade an existing OPEN. * If truncate fails, the OPEN fails. */ if (stp) { /* Stateid was found, this is an OPEN upgrade */ status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open); if (status) goto out; } else { status = nfs4_get_vfs_file(rqstp, fp, current_fh, open); if (status) goto out; stp = open->op_stp; open->op_stp = NULL; init_open_stateid(stp, fp, open); status = nfsd4_truncate(rqstp, current_fh, open); if (status) { release_open_stateid(stp); goto out; } } update_stateid(&stp->st_stid.sc_stateid); memcpy(&open->op_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); if (nfsd4_has_session(&resp->cstate)) open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; /* * Attempt to hand out a delegation. No error return, because the * OPEN succeeds even if we fail. */ nfs4_open_delegation(current_fh, open, stp); status = nfs_ok; dprintk("%s: stateid=" STATEID_FMT "\n", __func__, STATEID_VAL(&stp->st_stid.sc_stateid)); out: if (fp) put_nfs4_file(fp); if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS) nfs4_set_claim_prev(open); /* * To finish the open response, we just need to set the rflags. */ open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX; if (!(open->op_openowner->oo_flags & NFS4_OO_CONFIRMED) && !nfsd4_has_session(&resp->cstate)) open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM; return status; } void nfsd4_cleanup_open_state(struct nfsd4_open *open, __be32 status) { if (open->op_openowner) { struct nfs4_openowner *oo = open->op_openowner; if (!list_empty(&oo->oo_owner.so_stateids)) list_del_init(&oo->oo_close_lru); if (oo->oo_flags & NFS4_OO_NEW) { if (status) { release_openowner(oo); open->op_openowner = NULL; } else oo->oo_flags &= ~NFS4_OO_NEW; } } if (open->op_file) nfsd4_free_file(open->op_file); if (open->op_stp) nfs4_free_stateid(open->op_stp); } __be32 nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, clientid_t *clid) { struct nfs4_client *clp; __be32 status; nfs4_lock_state(); dprintk("process_renew(%08x/%08x): starting\n", clid->cl_boot, clid->cl_id); status = nfserr_stale_clientid; if (STALE_CLIENTID(clid)) goto out; clp = find_confirmed_client(clid); status = nfserr_expired; if (clp == NULL) { /* We assume the client took too long to RENEW. */ dprintk("nfsd4_renew: clientid not found!\n"); goto out; } status = nfserr_cb_path_down; if (!list_empty(&clp->cl_delegations) && clp->cl_cb_state != NFSD4_CB_UP) goto out; status = nfs_ok; out: nfs4_unlock_state(); return status; } static struct lock_manager nfsd4_manager = { }; static void nfsd4_end_grace(void) { dprintk("NFSD: end of grace period\n"); nfsd4_recdir_purge_old(); locks_end_grace(&nfsd4_manager); /* * Now that every NFSv4 client has had the chance to recover and * to see the (possibly new, possibly shorter) lease time, we * can safely set the next grace time to the current lease time: */ nfsd4_grace = nfsd4_lease; } static time_t nfs4_laundromat(void) { struct nfs4_client *clp; struct nfs4_openowner *oo; struct nfs4_delegation *dp; struct list_head *pos, *next, reaplist; time_t cutoff = get_seconds() - nfsd4_lease; time_t t, clientid_val = nfsd4_lease; time_t u, test_val = nfsd4_lease; nfs4_lock_state(); dprintk("NFSD: laundromat service - starting\n"); if (locks_in_grace()) nfsd4_end_grace(); INIT_LIST_HEAD(&reaplist); spin_lock(&client_lock); list_for_each_safe(pos, next, &client_lru) { clp = list_entry(pos, struct nfs4_client, cl_lru); if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) { t = clp->cl_time - cutoff; if (clientid_val > t) clientid_val = t; break; } if (atomic_read(&clp->cl_refcount)) { dprintk("NFSD: client in use (clientid %08x)\n", clp->cl_clientid.cl_id); continue; } unhash_client_locked(clp); list_add(&clp->cl_lru, &reaplist); } spin_unlock(&client_lock); list_for_each_safe(pos, next, &reaplist) { clp = list_entry(pos, struct nfs4_client, cl_lru); dprintk("NFSD: purging unused client (clientid %08x)\n", clp->cl_clientid.cl_id); nfsd4_remove_clid_dir(clp); expire_client(clp); } spin_lock(&recall_lock); list_for_each_safe(pos, next, &del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) { u = dp->dl_time - cutoff; if (test_val > u) test_val = u; break; } list_move(&dp->dl_recall_lru, &reaplist); } spin_unlock(&recall_lock); list_for_each_safe(pos, next, &reaplist) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); unhash_delegation(dp); } test_val = nfsd4_lease; list_for_each_safe(pos, next, &close_lru) { oo = container_of(pos, struct nfs4_openowner, oo_close_lru); if (time_after((unsigned long)oo->oo_time, (unsigned long)cutoff)) { u = oo->oo_time - cutoff; if (test_val > u) test_val = u; break; } release_openowner(oo); } if (clientid_val < NFSD_LAUNDROMAT_MINTIMEOUT) clientid_val = NFSD_LAUNDROMAT_MINTIMEOUT; nfs4_unlock_state(); return clientid_val; } static struct workqueue_struct *laundry_wq; static void laundromat_main(struct work_struct *); static DECLARE_DELAYED_WORK(laundromat_work, laundromat_main); static void laundromat_main(struct work_struct *not_used) { time_t t; t = nfs4_laundromat(); dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t); queue_delayed_work(laundry_wq, &laundromat_work, t*HZ); } static inline __be32 nfs4_check_fh(struct svc_fh *fhp, struct nfs4_ol_stateid *stp) { if (fhp->fh_dentry->d_inode != stp->st_file->fi_inode) return nfserr_bad_stateid; return nfs_ok; } static int STALE_STATEID(stateid_t *stateid) { if (stateid->si_opaque.so_clid.cl_boot == boot_time) return 0; dprintk("NFSD: stale stateid " STATEID_FMT "!\n", STATEID_VAL(stateid)); return 1; } static inline int access_permit_read(unsigned long access_bmap) { return test_bit(NFS4_SHARE_ACCESS_READ, &access_bmap) || test_bit(NFS4_SHARE_ACCESS_BOTH, &access_bmap) || test_bit(NFS4_SHARE_ACCESS_WRITE, &access_bmap); } static inline int access_permit_write(unsigned long access_bmap) { return test_bit(NFS4_SHARE_ACCESS_WRITE, &access_bmap) || test_bit(NFS4_SHARE_ACCESS_BOTH, &access_bmap); } static __be32 nfs4_check_openmode(struct nfs4_ol_stateid *stp, int flags) { __be32 status = nfserr_openmode; /* For lock stateid's, we test the parent open, not the lock: */ if (stp->st_openstp) stp = stp->st_openstp; if ((flags & WR_STATE) && (!access_permit_write(stp->st_access_bmap))) goto out; if ((flags & RD_STATE) && (!access_permit_read(stp->st_access_bmap))) goto out; status = nfs_ok; out: return status; } static inline __be32 check_special_stateids(svc_fh *current_fh, stateid_t *stateid, int flags) { if (ONE_STATEID(stateid) && (flags & RD_STATE)) return nfs_ok; else if (locks_in_grace()) { /* Answer in remaining cases depends on existence of * conflicting state; so we must wait out the grace period. */ return nfserr_grace; } else if (flags & WR_STATE) return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_WRITE); else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */ return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_READ); } /* * Allow READ/WRITE during grace period on recovered state only for files * that are not able to provide mandatory locking. */ static inline int grace_disallows_io(struct inode *inode) { return locks_in_grace() && mandatory_lock(inode); } /* Returns true iff a is later than b: */ static bool stateid_generation_after(stateid_t *a, stateid_t *b) { return (s32)a->si_generation - (s32)b->si_generation > 0; } static int check_stateid_generation(stateid_t *in, stateid_t *ref, bool has_session) { /* * When sessions are used the stateid generation number is ignored * when it is zero. */ if (has_session && in->si_generation == 0) return nfs_ok; if (in->si_generation == ref->si_generation) return nfs_ok; /* If the client sends us a stateid from the future, it's buggy: */ if (stateid_generation_after(in, ref)) return nfserr_bad_stateid; /* * However, we could see a stateid from the past, even from a * non-buggy client. For example, if the client sends a lock * while some IO is outstanding, the lock may bump si_generation * while the IO is still in flight. The client could avoid that * situation by waiting for responses on all the IO requests, * but better performance may result in retrying IO that * receives an old_stateid error if requests are rarely * reordered in flight: */ return nfserr_old_stateid; } __be32 nfs4_validate_stateid(struct nfs4_client *cl, stateid_t *stateid) { struct nfs4_stid *s; struct nfs4_ol_stateid *ols; __be32 status; if (STALE_STATEID(stateid)) return nfserr_stale_stateid; s = find_stateid(cl, stateid); if (!s) return nfserr_stale_stateid; status = check_stateid_generation(stateid, &s->sc_stateid, 1); if (status) return status; if (!(s->sc_type & (NFS4_OPEN_STID | NFS4_LOCK_STID))) return nfs_ok; ols = openlockstateid(s); if (ols->st_stateowner->so_is_open_owner && !(openowner(ols->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED)) return nfserr_bad_stateid; return nfs_ok; } static __be32 nfsd4_lookup_stateid(stateid_t *stateid, unsigned char typemask, struct nfs4_stid **s) { struct nfs4_client *cl; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) return nfserr_bad_stateid; if (STALE_STATEID(stateid)) return nfserr_stale_stateid; cl = find_confirmed_client(&stateid->si_opaque.so_clid); if (!cl) return nfserr_expired; *s = find_stateid_by_type(cl, stateid, typemask); if (!*s) return nfserr_bad_stateid; return nfs_ok; } /* * Checks for stateid operations */ __be32 nfs4_preprocess_stateid_op(struct nfsd4_compound_state *cstate, stateid_t *stateid, int flags, struct file **filpp) { struct nfs4_stid *s; struct nfs4_ol_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; struct svc_fh *current_fh = &cstate->current_fh; struct inode *ino = current_fh->fh_dentry->d_inode; __be32 status; if (filpp) *filpp = NULL; if (grace_disallows_io(ino)) return nfserr_grace; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) return check_special_stateids(current_fh, stateid, flags); status = nfsd4_lookup_stateid(stateid, NFS4_DELEG_STID|NFS4_OPEN_STID|NFS4_LOCK_STID, &s); if (status) return status; status = check_stateid_generation(stateid, &s->sc_stateid, nfsd4_has_session(cstate)); if (status) goto out; switch (s->sc_type) { case NFS4_DELEG_STID: dp = delegstateid(s); status = nfs4_check_delegmode(dp, flags); if (status) goto out; if (filpp) { *filpp = dp->dl_file->fi_deleg_file; BUG_ON(!*filpp); } break; case NFS4_OPEN_STID: case NFS4_LOCK_STID: stp = openlockstateid(s); status = nfs4_check_fh(current_fh, stp); if (status) goto out; if (stp->st_stateowner->so_is_open_owner && !(openowner(stp->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED)) goto out; status = nfs4_check_openmode(stp, flags); if (status) goto out; if (filpp) { if (flags & RD_STATE) *filpp = find_readable_file(stp->st_file); else *filpp = find_writeable_file(stp->st_file); } break; default: return nfserr_bad_stateid; } status = nfs_ok; out: return status; } static __be32 nfsd4_free_lock_stateid(struct nfs4_ol_stateid *stp) { if (check_for_locks(stp->st_file, lockowner(stp->st_stateowner))) return nfserr_locks_held; release_lock_stateid(stp); return nfs_ok; } /* * Test if the stateid is valid */ __be32 nfsd4_test_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_test_stateid *test_stateid) { /* real work is done during encoding */ return nfs_ok; } __be32 nfsd4_free_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_free_stateid *free_stateid) { stateid_t *stateid = &free_stateid->fr_stateid; struct nfs4_stid *s; struct nfs4_client *cl = cstate->session->se_client; __be32 ret = nfserr_bad_stateid; nfs4_lock_state(); s = find_stateid(cl, stateid); if (!s) goto out; switch (s->sc_type) { case NFS4_DELEG_STID: ret = nfserr_locks_held; goto out; case NFS4_OPEN_STID: case NFS4_LOCK_STID: ret = check_stateid_generation(stateid, &s->sc_stateid, 1); if (ret) goto out; if (s->sc_type == NFS4_LOCK_STID) ret = nfsd4_free_lock_stateid(openlockstateid(s)); else ret = nfserr_locks_held; break; default: ret = nfserr_bad_stateid; } out: nfs4_unlock_state(); return ret; } static inline int setlkflg (int type) { return (type == NFS4_READW_LT || type == NFS4_READ_LT) ? RD_STATE : WR_STATE; } static __be32 nfs4_seqid_op_checks(struct nfsd4_compound_state *cstate, stateid_t *stateid, u32 seqid, struct nfs4_ol_stateid *stp) { struct svc_fh *current_fh = &cstate->current_fh; struct nfs4_stateowner *sop = stp->st_stateowner; __be32 status; status = nfsd4_check_seqid(cstate, sop, seqid); if (status) return status; if (stp->st_stid.sc_type == NFS4_CLOSED_STID) /* * "Closed" stateid's exist *only* to return * nfserr_replay_me from the previous step. */ return nfserr_bad_stateid; status = check_stateid_generation(stateid, &stp->st_stid.sc_stateid, nfsd4_has_session(cstate)); if (status) return status; return nfs4_check_fh(current_fh, stp); } /* * Checks for sequence id mutating operations. */ static __be32 nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid, stateid_t *stateid, char typemask, struct nfs4_ol_stateid **stpp) { __be32 status; struct nfs4_stid *s; dprintk("NFSD: %s: seqid=%d stateid = " STATEID_FMT "\n", __func__, seqid, STATEID_VAL(stateid)); *stpp = NULL; status = nfsd4_lookup_stateid(stateid, typemask, &s); if (status) return status; *stpp = openlockstateid(s); cstate->replay_owner = (*stpp)->st_stateowner; return nfs4_seqid_op_checks(cstate, stateid, seqid, *stpp); } static __be32 nfs4_preprocess_confirmed_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid, stateid_t *stateid, struct nfs4_ol_stateid **stpp) { __be32 status; struct nfs4_openowner *oo; status = nfs4_preprocess_seqid_op(cstate, seqid, stateid, NFS4_OPEN_STID, stpp); if (status) return status; oo = openowner((*stpp)->st_stateowner); if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) return nfserr_bad_stateid; return nfs_ok; } __be32 nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_open_confirm *oc) { __be32 status; struct nfs4_openowner *oo; struct nfs4_ol_stateid *stp; dprintk("NFSD: nfsd4_open_confirm on file %.*s\n", (int)cstate->current_fh.fh_dentry->d_name.len, cstate->current_fh.fh_dentry->d_name.name); status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0); if (status) return status; nfs4_lock_state(); status = nfs4_preprocess_seqid_op(cstate, oc->oc_seqid, &oc->oc_req_stateid, NFS4_OPEN_STID, &stp); if (status) goto out; oo = openowner(stp->st_stateowner); status = nfserr_bad_stateid; if (oo->oo_flags & NFS4_OO_CONFIRMED) goto out; oo->oo_flags |= NFS4_OO_CONFIRMED; update_stateid(&stp->st_stid.sc_stateid); memcpy(&oc->oc_resp_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); dprintk("NFSD: %s: success, seqid=%d stateid=" STATEID_FMT "\n", __func__, oc->oc_seqid, STATEID_VAL(&stp->st_stid.sc_stateid)); nfsd4_create_clid_dir(oo->oo_owner.so_client); status = nfs_ok; out: if (!cstate->replay_owner) nfs4_unlock_state(); return status; } static inline void nfs4_stateid_downgrade_bit(struct nfs4_ol_stateid *stp, u32 access) { if (!test_bit(access, &stp->st_access_bmap)) return; nfs4_file_put_access(stp->st_file, nfs4_access_to_omode(access)); __clear_bit(access, &stp->st_access_bmap); } static inline void nfs4_stateid_downgrade(struct nfs4_ol_stateid *stp, u32 to_access) { switch (to_access) { case NFS4_SHARE_ACCESS_READ: nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_WRITE); nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH); break; case NFS4_SHARE_ACCESS_WRITE: nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_READ); nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH); break; case NFS4_SHARE_ACCESS_BOTH: break; default: BUG(); } } static void reset_union_bmap_deny(unsigned long deny, unsigned long *bmap) { int i; for (i = 0; i < 4; i++) { if ((i & deny) != i) __clear_bit(i, bmap); } } __be32 nfsd4_open_downgrade(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_open_downgrade *od) { __be32 status; struct nfs4_ol_stateid *stp; dprintk("NFSD: nfsd4_open_downgrade on file %.*s\n", (int)cstate->current_fh.fh_dentry->d_name.len, cstate->current_fh.fh_dentry->d_name.name); /* We don't yet support WANT bits: */ od->od_share_access &= NFS4_SHARE_ACCESS_MASK; nfs4_lock_state(); status = nfs4_preprocess_confirmed_seqid_op(cstate, od->od_seqid, &od->od_stateid, &stp); if (status) goto out; status = nfserr_inval; if (!test_bit(od->od_share_access, &stp->st_access_bmap)) { dprintk("NFSD:access not a subset current bitmap: 0x%lx, input access=%08x\n", stp->st_access_bmap, od->od_share_access); goto out; } if (!test_bit(od->od_share_deny, &stp->st_deny_bmap)) { dprintk("NFSD:deny not a subset current bitmap: 0x%lx, input deny=%08x\n", stp->st_deny_bmap, od->od_share_deny); goto out; } nfs4_stateid_downgrade(stp, od->od_share_access); reset_union_bmap_deny(od->od_share_deny, &stp->st_deny_bmap); update_stateid(&stp->st_stid.sc_stateid); memcpy(&od->od_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); status = nfs_ok; out: if (!cstate->replay_owner) nfs4_unlock_state(); return status; } void nfsd4_purge_closed_stateid(struct nfs4_stateowner *so) { struct nfs4_openowner *oo; struct nfs4_ol_stateid *s; if (!so->so_is_open_owner) return; oo = openowner(so); s = oo->oo_last_closed_stid; if (!s) return; if (!(oo->oo_flags & NFS4_OO_PURGE_CLOSE)) { /* Release the last_closed_stid on the next seqid bump: */ oo->oo_flags |= NFS4_OO_PURGE_CLOSE; return; } oo->oo_flags &= ~NFS4_OO_PURGE_CLOSE; release_last_closed_stateid(oo); } static void nfsd4_close_open_stateid(struct nfs4_ol_stateid *s) { unhash_open_stateid(s); s->st_stid.sc_type = NFS4_CLOSED_STID; } /* * nfs4_unlock_state() called after encode */ __be32 nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_close *close) { __be32 status; struct nfs4_openowner *oo; struct nfs4_ol_stateid *stp; dprintk("NFSD: nfsd4_close on file %.*s\n", (int)cstate->current_fh.fh_dentry->d_name.len, cstate->current_fh.fh_dentry->d_name.name); nfs4_lock_state(); status = nfs4_preprocess_seqid_op(cstate, close->cl_seqid, &close->cl_stateid, NFS4_OPEN_STID|NFS4_CLOSED_STID, &stp); if (status) goto out; oo = openowner(stp->st_stateowner); status = nfs_ok; update_stateid(&stp->st_stid.sc_stateid); memcpy(&close->cl_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); nfsd4_close_open_stateid(stp); oo->oo_last_closed_stid = stp; /* place unused nfs4_stateowners on so_close_lru list to be * released by the laundromat service after the lease period * to enable us to handle CLOSE replay */ if (list_empty(&oo->oo_owner.so_stateids)) move_to_close_lru(oo); out: if (!cstate->replay_owner) nfs4_unlock_state(); return status; } __be32 nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_delegreturn *dr) { struct nfs4_delegation *dp; stateid_t *stateid = &dr->dr_stateid; struct nfs4_stid *s; struct inode *inode; __be32 status; if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) return status; inode = cstate->current_fh.fh_dentry->d_inode; nfs4_lock_state(); status = nfsd4_lookup_stateid(stateid, NFS4_DELEG_STID, &s); if (status) goto out; dp = delegstateid(s); status = check_stateid_generation(stateid, &dp->dl_stid.sc_stateid, nfsd4_has_session(cstate)); if (status) goto out; unhash_delegation(dp); out: nfs4_unlock_state(); return status; } #define LOFF_OVERFLOW(start, len) ((u64)(len) > ~(u64)(start)) #define LOCKOWNER_INO_HASH_BITS 8 #define LOCKOWNER_INO_HASH_SIZE (1 << LOCKOWNER_INO_HASH_BITS) #define LOCKOWNER_INO_HASH_MASK (LOCKOWNER_INO_HASH_SIZE - 1) static inline u64 end_offset(u64 start, u64 len) { u64 end; end = start + len; return end >= start ? end: NFS4_MAX_UINT64; } /* last octet in a range */ static inline u64 last_byte_offset(u64 start, u64 len) { u64 end; BUG_ON(!len); end = start + len; return end > start ? end - 1: NFS4_MAX_UINT64; } static unsigned int lockowner_ino_hashval(struct inode *inode, u32 cl_id, struct xdr_netobj *ownername) { return (file_hashval(inode) + cl_id + opaque_hashval(ownername->data, ownername->len)) & LOCKOWNER_INO_HASH_MASK; } static struct list_head lockowner_ino_hashtbl[LOCKOWNER_INO_HASH_SIZE]; /* * TODO: Linux file offsets are _signed_ 64-bit quantities, which means that * we can't properly handle lock requests that go beyond the (2^63 - 1)-th * byte, because of sign extension problems. Since NFSv4 calls for 64-bit * locking, this prevents us from being completely protocol-compliant. The * real solution to this problem is to start using unsigned file offsets in * the VFS, but this is a very deep change! */ static inline void nfs4_transform_lock_offset(struct file_lock *lock) { if (lock->fl_start < 0) lock->fl_start = OFFSET_MAX; if (lock->fl_end < 0) lock->fl_end = OFFSET_MAX; } /* Hack!: For now, we're defining this just so we can use a pointer to it * as a unique cookie to identify our (NFSv4's) posix locks. */ static const struct lock_manager_operations nfsd_posix_mng_ops = { }; static inline void nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny) { struct nfs4_lockowner *lo; if (fl->fl_lmops == &nfsd_posix_mng_ops) { lo = (struct nfs4_lockowner *) fl->fl_owner; deny->ld_owner.data = kmemdup(lo->lo_owner.so_owner.data, lo->lo_owner.so_owner.len, GFP_KERNEL); if (!deny->ld_owner.data) /* We just don't care that much */ goto nevermind; deny->ld_owner.len = lo->lo_owner.so_owner.len; deny->ld_clientid = lo->lo_owner.so_client->cl_clientid; } else { nevermind: deny->ld_owner.len = 0; deny->ld_owner.data = NULL; deny->ld_clientid.cl_boot = 0; deny->ld_clientid.cl_id = 0; } deny->ld_start = fl->fl_start; deny->ld_length = NFS4_MAX_UINT64; if (fl->fl_end != NFS4_MAX_UINT64) deny->ld_length = fl->fl_end - fl->fl_start + 1; deny->ld_type = NFS4_READ_LT; if (fl->fl_type != F_RDLCK) deny->ld_type = NFS4_WRITE_LT; } static bool same_lockowner_ino(struct nfs4_lockowner *lo, struct inode *inode, clientid_t *clid, struct xdr_netobj *owner) { struct nfs4_ol_stateid *lst; if (!same_owner_str(&lo->lo_owner, owner, clid)) return false; lst = list_first_entry(&lo->lo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); return lst->st_file->fi_inode == inode; } static struct nfs4_lockowner * find_lockowner_str(struct inode *inode, clientid_t *clid, struct xdr_netobj *owner) { unsigned int hashval = lockowner_ino_hashval(inode, clid->cl_id, owner); struct nfs4_lockowner *lo; list_for_each_entry(lo, &lockowner_ino_hashtbl[hashval], lo_owner_ino_hash) { if (same_lockowner_ino(lo, inode, clid, owner)) return lo; } return NULL; } static void hash_lockowner(struct nfs4_lockowner *lo, unsigned int strhashval, struct nfs4_client *clp, struct nfs4_ol_stateid *open_stp) { struct inode *inode = open_stp->st_file->fi_inode; unsigned int inohash = lockowner_ino_hashval(inode, clp->cl_clientid.cl_id, &lo->lo_owner.so_owner); list_add(&lo->lo_owner.so_strhash, &ownerstr_hashtbl[strhashval]); list_add(&lo->lo_owner_ino_hash, &lockowner_ino_hashtbl[inohash]); list_add(&lo->lo_perstateid, &open_stp->st_lockowners); } /* * Alloc a lock owner structure. * Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has * occurred. * * strhashval = ownerstr_hashval */ static struct nfs4_lockowner * alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfs4_ol_stateid *open_stp, struct nfsd4_lock *lock) { struct nfs4_lockowner *lo; lo = alloc_stateowner(lockowner_slab, &lock->lk_new_owner, clp); if (!lo) return NULL; INIT_LIST_HEAD(&lo->lo_owner.so_stateids); lo->lo_owner.so_is_open_owner = 0; /* It is the openowner seqid that will be incremented in encode in the * case of new lockowners; so increment the lock seqid manually: */ lo->lo_owner.so_seqid = lock->lk_new_lock_seqid + 1; hash_lockowner(lo, strhashval, clp, open_stp); return lo; } static struct nfs4_ol_stateid * alloc_init_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fp, struct nfs4_ol_stateid *open_stp) { struct nfs4_ol_stateid *stp; struct nfs4_client *clp = lo->lo_owner.so_client; stp = nfs4_alloc_stateid(clp); if (stp == NULL) return NULL; init_stid(&stp->st_stid, clp, NFS4_LOCK_STID); list_add(&stp->st_perfile, &fp->fi_stateids); list_add(&stp->st_perstateowner, &lo->lo_owner.so_stateids); stp->st_stateowner = &lo->lo_owner; get_nfs4_file(fp); stp->st_file = fp; stp->st_access_bmap = 0; stp->st_deny_bmap = open_stp->st_deny_bmap; stp->st_openstp = open_stp; return stp; } static int check_lock_length(u64 offset, u64 length) { return ((length == 0) || ((length != NFS4_MAX_UINT64) && LOFF_OVERFLOW(offset, length))); } static void get_lock_access(struct nfs4_ol_stateid *lock_stp, u32 access) { struct nfs4_file *fp = lock_stp->st_file; int oflag = nfs4_access_to_omode(access); if (test_bit(access, &lock_stp->st_access_bmap)) return; nfs4_file_get_access(fp, oflag); __set_bit(access, &lock_stp->st_access_bmap); } __be32 lookup_or_create_lock_state(struct nfsd4_compound_state *cstate, struct nfs4_ol_stateid *ost, struct nfsd4_lock *lock, struct nfs4_ol_stateid **lst, bool *new) { struct nfs4_file *fi = ost->st_file; struct nfs4_openowner *oo = openowner(ost->st_stateowner); struct nfs4_client *cl = oo->oo_owner.so_client; struct nfs4_lockowner *lo; unsigned int strhashval; lo = find_lockowner_str(fi->fi_inode, &cl->cl_clientid, &lock->v.new.owner); if (lo) { if (!cstate->minorversion) return nfserr_bad_seqid; /* XXX: a lockowner always has exactly one stateid: */ *lst = list_first_entry(&lo->lo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); return nfs_ok; } strhashval = ownerstr_hashval(cl->cl_clientid.cl_id, &lock->v.new.owner); lo = alloc_init_lock_stateowner(strhashval, cl, ost, lock); if (lo == NULL) return nfserr_jukebox; *lst = alloc_init_lock_stateid(lo, fi, ost); if (*lst == NULL) { release_lockowner(lo); return nfserr_jukebox; } *new = true; return nfs_ok; } /* * LOCK operation */ __be32 nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_lock *lock) { struct nfs4_openowner *open_sop = NULL; struct nfs4_lockowner *lock_sop = NULL; struct nfs4_ol_stateid *lock_stp; struct nfs4_file *fp; struct file *filp = NULL; struct file_lock file_lock; struct file_lock conflock; __be32 status = 0; bool new_state = false; int lkflg; int err; dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n", (long long) lock->lk_offset, (long long) lock->lk_length); if (check_lock_length(lock->lk_offset, lock->lk_length)) return nfserr_inval; if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, NFSD_MAY_LOCK))) { dprintk("NFSD: nfsd4_lock: permission denied!\n"); return status; } nfs4_lock_state(); if (lock->lk_is_new) { /* * Client indicates that this is a new lockowner. * Use open owner and open stateid to create lock owner and * lock stateid. */ struct nfs4_ol_stateid *open_stp = NULL; if (nfsd4_has_session(cstate)) /* See rfc 5661 18.10.3: given clientid is ignored: */ memcpy(&lock->v.new.clientid, &cstate->session->se_client->cl_clientid, sizeof(clientid_t)); status = nfserr_stale_clientid; if (STALE_CLIENTID(&lock->lk_new_clientid)) goto out; /* validate and update open stateid and open seqid */ status = nfs4_preprocess_confirmed_seqid_op(cstate, lock->lk_new_open_seqid, &lock->lk_new_open_stateid, &open_stp); if (status) goto out; open_sop = openowner(open_stp->st_stateowner); status = nfserr_bad_stateid; if (!same_clid(&open_sop->oo_owner.so_client->cl_clientid, &lock->v.new.clientid)) goto out; status = lookup_or_create_lock_state(cstate, open_stp, lock, &lock_stp, &new_state); if (status) goto out; } else { /* lock (lock owner + lock stateid) already exists */ status = nfs4_preprocess_seqid_op(cstate, lock->lk_old_lock_seqid, &lock->lk_old_lock_stateid, NFS4_LOCK_STID, &lock_stp); if (status) goto out; } lock_sop = lockowner(lock_stp->st_stateowner); fp = lock_stp->st_file; lkflg = setlkflg(lock->lk_type); status = nfs4_check_openmode(lock_stp, lkflg); if (status) goto out; status = nfserr_grace; if (locks_in_grace() && !lock->lk_reclaim) goto out; status = nfserr_no_grace; if (!locks_in_grace() && lock->lk_reclaim) goto out; locks_init_lock(&file_lock); switch (lock->lk_type) { case NFS4_READ_LT: case NFS4_READW_LT: filp = find_readable_file(lock_stp->st_file); if (filp) get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ); file_lock.fl_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: filp = find_writeable_file(lock_stp->st_file); if (filp) get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE); file_lock.fl_type = F_WRLCK; break; default: status = nfserr_inval; goto out; } if (!filp) { status = nfserr_openmode; goto out; } file_lock.fl_owner = (fl_owner_t)lock_sop; file_lock.fl_pid = current->tgid; file_lock.fl_file = filp; file_lock.fl_flags = FL_POSIX; file_lock.fl_lmops = &nfsd_posix_mng_ops; file_lock.fl_start = lock->lk_offset; file_lock.fl_end = last_byte_offset(lock->lk_offset, lock->lk_length); nfs4_transform_lock_offset(&file_lock); /* * Try to lock the file in the VFS. * Note: locks.c uses the BKL to protect the inode's lock list. */ err = vfs_lock_file(filp, F_SETLK, &file_lock, &conflock); switch (-err) { case 0: /* success! */ update_stateid(&lock_stp->st_stid.sc_stateid); memcpy(&lock->lk_resp_stateid, &lock_stp->st_stid.sc_stateid, sizeof(stateid_t)); status = 0; break; case (EAGAIN): /* conflock holds conflicting lock */ status = nfserr_denied; dprintk("NFSD: nfsd4_lock: conflicting lock found!\n"); nfs4_set_lock_denied(&conflock, &lock->lk_denied); break; case (EDEADLK): status = nfserr_deadlock; break; default: dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err); status = nfserrno(err); break; } out: if (status && new_state) release_lockowner(lock_sop); if (!cstate->replay_owner) nfs4_unlock_state(); return status; } /* * The NFSv4 spec allows a client to do a LOCKT without holding an OPEN, * so we do a temporary open here just to get an open file to pass to * vfs_test_lock. (Arguably perhaps test_lock should be done with an * inode operation.) */ static int nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock) { struct file *file; int err; err = nfsd_open(rqstp, fhp, S_IFREG, NFSD_MAY_READ, &file); if (err) return err; err = vfs_test_lock(file, lock); nfsd_close(file); return err; } /* * LOCKT operation */ __be32 nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_lockt *lockt) { struct inode *inode; struct file_lock file_lock; struct nfs4_lockowner *lo; int error; __be32 status; if (locks_in_grace()) return nfserr_grace; if (check_lock_length(lockt->lt_offset, lockt->lt_length)) return nfserr_inval; nfs4_lock_state(); status = nfserr_stale_clientid; if (!nfsd4_has_session(cstate) && STALE_CLIENTID(&lockt->lt_clientid)) goto out; if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) goto out; inode = cstate->current_fh.fh_dentry->d_inode; locks_init_lock(&file_lock); switch (lockt->lt_type) { case NFS4_READ_LT: case NFS4_READW_LT: file_lock.fl_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: file_lock.fl_type = F_WRLCK; break; default: dprintk("NFSD: nfs4_lockt: bad lock type!\n"); status = nfserr_inval; goto out; } lo = find_lockowner_str(inode, &lockt->lt_clientid, &lockt->lt_owner); if (lo) file_lock.fl_owner = (fl_owner_t)lo; file_lock.fl_pid = current->tgid; file_lock.fl_flags = FL_POSIX; file_lock.fl_start = lockt->lt_offset; file_lock.fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length); nfs4_transform_lock_offset(&file_lock); status = nfs_ok; error = nfsd_test_lock(rqstp, &cstate->current_fh, &file_lock); if (error) { status = nfserrno(error); goto out; } if (file_lock.fl_type != F_UNLCK) { status = nfserr_denied; nfs4_set_lock_denied(&file_lock, &lockt->lt_denied); } out: nfs4_unlock_state(); return status; } __be32 nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_locku *locku) { struct nfs4_ol_stateid *stp; struct file *filp = NULL; struct file_lock file_lock; __be32 status; int err; dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n", (long long) locku->lu_offset, (long long) locku->lu_length); if (check_lock_length(locku->lu_offset, locku->lu_length)) return nfserr_inval; nfs4_lock_state(); status = nfs4_preprocess_seqid_op(cstate, locku->lu_seqid, &locku->lu_stateid, NFS4_LOCK_STID, &stp); if (status) goto out; filp = find_any_file(stp->st_file); if (!filp) { status = nfserr_lock_range; goto out; } BUG_ON(!filp); locks_init_lock(&file_lock); file_lock.fl_type = F_UNLCK; file_lock.fl_owner = (fl_owner_t)lockowner(stp->st_stateowner); file_lock.fl_pid = current->tgid; file_lock.fl_file = filp; file_lock.fl_flags = FL_POSIX; file_lock.fl_lmops = &nfsd_posix_mng_ops; file_lock.fl_start = locku->lu_offset; file_lock.fl_end = last_byte_offset(locku->lu_offset, locku->lu_length); nfs4_transform_lock_offset(&file_lock); /* * Try to unlock the file in the VFS. */ err = vfs_lock_file(filp, F_SETLK, &file_lock, NULL); if (err) { dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n"); goto out_nfserr; } /* * OK, unlock succeeded; the only thing left to do is update the stateid. */ update_stateid(&stp->st_stid.sc_stateid); memcpy(&locku->lu_stateid, &stp->st_stid.sc_stateid, sizeof(stateid_t)); out: if (!cstate->replay_owner) nfs4_unlock_state(); return status; out_nfserr: status = nfserrno(err); goto out; } /* * returns * 1: locks held by lockowner * 0: no locks held by lockowner */ static int check_for_locks(struct nfs4_file *filp, struct nfs4_lockowner *lowner) { struct file_lock **flpp; struct inode *inode = filp->fi_inode; int status = 0; lock_flocks(); for (flpp = &inode->i_flock; *flpp != NULL; flpp = &(*flpp)->fl_next) { if ((*flpp)->fl_owner == (fl_owner_t)lowner) { status = 1; goto out; } } out: unlock_flocks(); return status; } __be32 nfsd4_release_lockowner(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct nfsd4_release_lockowner *rlockowner) { clientid_t *clid = &rlockowner->rl_clientid; struct nfs4_stateowner *sop; struct nfs4_lockowner *lo; struct nfs4_ol_stateid *stp; struct xdr_netobj *owner = &rlockowner->rl_owner; struct list_head matches; unsigned int hashval = ownerstr_hashval(clid->cl_id, owner); __be32 status; dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n", clid->cl_boot, clid->cl_id); /* XXX check for lease expiration */ status = nfserr_stale_clientid; if (STALE_CLIENTID(clid)) return status; nfs4_lock_state(); status = nfserr_locks_held; INIT_LIST_HEAD(&matches); list_for_each_entry(sop, &ownerstr_hashtbl[hashval], so_strhash) { if (sop->so_is_open_owner) continue; if (!same_owner_str(sop, owner, clid)) continue; list_for_each_entry(stp, &sop->so_stateids, st_perstateowner) { lo = lockowner(sop); if (check_for_locks(stp->st_file, lo)) goto out; list_add(&lo->lo_list, &matches); } } /* Clients probably won't expect us to return with some (but not all) * of the lockowner state released; so don't release any until all * have been checked. */ status = nfs_ok; while (!list_empty(&matches)) { lo = list_entry(matches.next, struct nfs4_lockowner, lo_list); /* unhash_stateowner deletes so_perclient only * for openowners. */ list_del(&lo->lo_list); release_lockowner(lo); } out: nfs4_unlock_state(); return status; } static inline struct nfs4_client_reclaim * alloc_reclaim(void) { return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL); } int nfs4_has_reclaimed_state(const char *name, bool use_exchange_id) { unsigned int strhashval = clientstr_hashval(name); struct nfs4_client *clp; clp = find_confirmed_client_by_str(name, strhashval); return clp ? 1 : 0; } /* * failure => all reset bets are off, nfserr_no_grace... */ int nfs4_client_to_reclaim(const char *name) { unsigned int strhashval; struct nfs4_client_reclaim *crp = NULL; dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", HEXDIR_LEN, name); crp = alloc_reclaim(); if (!crp) return 0; strhashval = clientstr_hashval(name); INIT_LIST_HEAD(&crp->cr_strhash); list_add(&crp->cr_strhash, &reclaim_str_hashtbl[strhashval]); memcpy(crp->cr_recdir, name, HEXDIR_LEN); reclaim_str_hashtbl_size++; return 1; } static void nfs4_release_reclaim(void) { struct nfs4_client_reclaim *crp = NULL; int i; for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&reclaim_str_hashtbl[i])) { crp = list_entry(reclaim_str_hashtbl[i].next, struct nfs4_client_reclaim, cr_strhash); list_del(&crp->cr_strhash); kfree(crp); reclaim_str_hashtbl_size--; } } BUG_ON(reclaim_str_hashtbl_size); } /* * called from OPEN, CLAIM_PREVIOUS with a new clientid. */ static struct nfs4_client_reclaim * nfs4_find_reclaim_client(clientid_t *clid) { unsigned int strhashval; struct nfs4_client *clp; struct nfs4_client_reclaim *crp = NULL; /* find clientid in conf_id_hashtbl */ clp = find_confirmed_client(clid); if (clp == NULL) return NULL; dprintk("NFSD: nfs4_find_reclaim_client for %.*s with recdir %s\n", clp->cl_name.len, clp->cl_name.data, clp->cl_recdir); /* find clp->cl_name in reclaim_str_hashtbl */ strhashval = clientstr_hashval(clp->cl_recdir); list_for_each_entry(crp, &reclaim_str_hashtbl[strhashval], cr_strhash) { if (same_name(crp->cr_recdir, clp->cl_recdir)) { return crp; } } return NULL; } /* * Called from OPEN. Look for clientid in reclaim list. */ __be32 nfs4_check_open_reclaim(clientid_t *clid) { return nfs4_find_reclaim_client(clid) ? nfs_ok : nfserr_reclaim_bad; } #ifdef CONFIG_NFSD_FAULT_INJECTION void nfsd_forget_clients(u64 num) { struct nfs4_client *clp, *next; int count = 0; nfs4_lock_state(); list_for_each_entry_safe(clp, next, &client_lru, cl_lru) { nfsd4_remove_clid_dir(clp); expire_client(clp); if (++count == num) break; } nfs4_unlock_state(); printk(KERN_INFO "NFSD: Forgot %d clients", count); } static void release_lockowner_sop(struct nfs4_stateowner *sop) { release_lockowner(lockowner(sop)); } static void release_openowner_sop(struct nfs4_stateowner *sop) { release_openowner(openowner(sop)); } static int nfsd_release_n_owners(u64 num, bool is_open_owner, void (*release_sop)(struct nfs4_stateowner *)) { int i, count = 0; struct nfs4_stateowner *sop, *next; for (i = 0; i < OWNER_HASH_SIZE; i++) { list_for_each_entry_safe(sop, next, &ownerstr_hashtbl[i], so_strhash) { if (sop->so_is_open_owner != is_open_owner) continue; release_sop(sop); if (++count == num) return count; } } return count; } void nfsd_forget_locks(u64 num) { int count; nfs4_lock_state(); count = nfsd_release_n_owners(num, false, release_lockowner_sop); nfs4_unlock_state(); printk(KERN_INFO "NFSD: Forgot %d locks", count); } void nfsd_forget_openowners(u64 num) { int count; nfs4_lock_state(); count = nfsd_release_n_owners(num, true, release_openowner_sop); nfs4_unlock_state(); printk(KERN_INFO "NFSD: Forgot %d open owners", count); } int nfsd_process_n_delegations(u64 num, void (*deleg_func)(struct nfs4_delegation *)) { int i, count = 0; struct nfs4_file *fp, *fnext; struct nfs4_delegation *dp, *dnext; for (i = 0; i < FILE_HASH_SIZE; i++) { list_for_each_entry_safe(fp, fnext, &file_hashtbl[i], fi_hash) { list_for_each_entry_safe(dp, dnext, &fp->fi_delegations, dl_perfile) { deleg_func(dp); if (++count == num) return count; } } } return count; } void nfsd_forget_delegations(u64 num) { unsigned int count; nfs4_lock_state(); count = nfsd_process_n_delegations(num, unhash_delegation); nfs4_unlock_state(); printk(KERN_INFO "NFSD: Forgot %d delegations", count); } void nfsd_recall_delegations(u64 num) { unsigned int count; nfs4_lock_state(); spin_lock(&recall_lock); count = nfsd_process_n_delegations(num, nfsd_break_one_deleg); spin_unlock(&recall_lock); nfs4_unlock_state(); printk(KERN_INFO "NFSD: Recalled %d delegations", count); } #endif /* CONFIG_NFSD_FAULT_INJECTION */ /* initialization to perform at module load time: */ void nfs4_state_init(void) { int i; for (i = 0; i < CLIENT_HASH_SIZE; i++) { INIT_LIST_HEAD(&conf_id_hashtbl[i]); INIT_LIST_HEAD(&conf_str_hashtbl[i]); INIT_LIST_HEAD(&unconf_str_hashtbl[i]); INIT_LIST_HEAD(&unconf_id_hashtbl[i]); INIT_LIST_HEAD(&reclaim_str_hashtbl[i]); } for (i = 0; i < SESSION_HASH_SIZE; i++) INIT_LIST_HEAD(&sessionid_hashtbl[i]); for (i = 0; i < FILE_HASH_SIZE; i++) { INIT_LIST_HEAD(&file_hashtbl[i]); } for (i = 0; i < OWNER_HASH_SIZE; i++) { INIT_LIST_HEAD(&ownerstr_hashtbl[i]); } for (i = 0; i < LOCKOWNER_INO_HASH_SIZE; i++) INIT_LIST_HEAD(&lockowner_ino_hashtbl[i]); INIT_LIST_HEAD(&close_lru); INIT_LIST_HEAD(&client_lru); INIT_LIST_HEAD(&del_recall_lru); reclaim_str_hashtbl_size = 0; } static void nfsd4_load_reboot_recovery_data(void) { int status; nfs4_lock_state(); nfsd4_init_recdir(); status = nfsd4_recdir_load(); nfs4_unlock_state(); if (status) printk("NFSD: Failure reading reboot recovery data\n"); } /* * Since the lifetime of a delegation isn't limited to that of an open, a * client may quite reasonably hang on to a delegation as long as it has * the inode cached. This becomes an obvious problem the first time a * client's inode cache approaches the size of the server's total memory. * * For now we avoid this problem by imposing a hard limit on the number * of delegations, which varies according to the server's memory size. */ static void set_max_delegations(void) { /* * Allow at most 4 delegations per megabyte of RAM. Quick * estimates suggest that in the worst case (where every delegation * is for a different inode), a delegation could take about 1.5K, * giving a worst case usage of about 6% of memory. */ max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT); } /* initialization to perform when the nfsd service is started: */ static int __nfs4_state_start(void) { int ret; boot_time = get_seconds(); locks_start_grace(&nfsd4_manager); printk(KERN_INFO "NFSD: starting %ld-second grace period\n", nfsd4_grace); ret = set_callback_cred(); if (ret) return -ENOMEM; laundry_wq = create_singlethread_workqueue("nfsd4"); if (laundry_wq == NULL) return -ENOMEM; ret = nfsd4_create_callback_queue(); if (ret) goto out_free_laundry; queue_delayed_work(laundry_wq, &laundromat_work, nfsd4_grace * HZ); set_max_delegations(); return 0; out_free_laundry: destroy_workqueue(laundry_wq); return ret; } int nfs4_state_start(void) { nfsd4_load_reboot_recovery_data(); return __nfs4_state_start(); } static void __nfs4_state_shutdown(void) { int i; struct nfs4_client *clp = NULL; struct nfs4_delegation *dp = NULL; struct list_head *pos, *next, reaplist; for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&conf_id_hashtbl[i])) { clp = list_entry(conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash); expire_client(clp); } while (!list_empty(&unconf_str_hashtbl[i])) { clp = list_entry(unconf_str_hashtbl[i].next, struct nfs4_client, cl_strhash); expire_client(clp); } } INIT_LIST_HEAD(&reaplist); spin_lock(&recall_lock); list_for_each_safe(pos, next, &del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); list_move(&dp->dl_recall_lru, &reaplist); } spin_unlock(&recall_lock); list_for_each_safe(pos, next, &reaplist) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); unhash_delegation(dp); } nfsd4_shutdown_recdir(); } void nfs4_state_shutdown(void) { cancel_delayed_work_sync(&laundromat_work); destroy_workqueue(laundry_wq); locks_end_grace(&nfsd4_manager); nfs4_lock_state(); nfs4_release_reclaim(); __nfs4_state_shutdown(); nfs4_unlock_state(); nfsd4_destroy_callback_queue(); }