/* * dscore.c * * Copyright (c) 2004 Evgeniy Polyakov * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include "dscore.h" static struct usb_device_id ds_id_table [] = { { USB_DEVICE(0x04fa, 0x2490) }, { }, }; MODULE_DEVICE_TABLE(usb, ds_id_table); static int ds_probe(struct usb_interface *, const struct usb_device_id *); static void ds_disconnect(struct usb_interface *); int ds_touch_bit(struct ds_device *, u8, u8 *); int ds_read_byte(struct ds_device *, u8 *); int ds_read_bit(struct ds_device *, u8 *); int ds_write_byte(struct ds_device *, u8); int ds_write_bit(struct ds_device *, u8); static int ds_start_pulse(struct ds_device *, int); int ds_reset(struct ds_device *, struct ds_status *); struct ds_device * ds_get_device(void); void ds_put_device(struct ds_device *); static inline void ds_dump_status(unsigned char *, unsigned char *, int); static int ds_send_control(struct ds_device *, u16, u16); static int ds_send_control_mode(struct ds_device *, u16, u16); static int ds_send_control_cmd(struct ds_device *, u16, u16); static struct usb_driver ds_driver = { .owner = THIS_MODULE, .name = "DS9490R", .probe = ds_probe, .disconnect = ds_disconnect, .id_table = ds_id_table, }; static struct ds_device *ds_dev; struct ds_device * ds_get_device(void) { if (ds_dev) atomic_inc(&ds_dev->refcnt); return ds_dev; } void ds_put_device(struct ds_device *dev) { atomic_dec(&dev->refcnt); } static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index) { int err; err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), CONTROL_CMD, 0x40, value, index, NULL, 0, 1000); if (err < 0) { printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n", value, index, err); return err; } return err; } static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index) { int err; err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), MODE_CMD, 0x40, value, index, NULL, 0, 1000); if (err < 0) { printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n", value, index, err); return err; } return err; } static int ds_send_control(struct ds_device *dev, u16 value, u16 index) { int err; err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), COMM_CMD, 0x40, value, index, NULL, 0, 1000); if (err < 0) { printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n", value, index, err); return err; } return err; } static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off) { printk("%45s: %8x\n", str, buf[off]); } static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st, unsigned char *buf, int size) { int count, err; memset(st, 0, sizeof(st)); count = 0; err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100); if (err < 0) { printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err); return err; } if (count >= sizeof(*st)) memcpy(st, buf, sizeof(*st)); return count; } static int ds_recv_status(struct ds_device *dev, struct ds_status *st) { unsigned char buf[64]; int count, err = 0, i; memcpy(st, buf, sizeof(*st)); count = ds_recv_status_nodump(dev, st, buf, sizeof(buf)); if (count < 0) return err; printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count); for (i=0; i= 16) { ds_dump_status(buf, "enable flag", 0); ds_dump_status(buf, "1-wire speed", 1); ds_dump_status(buf, "strong pullup duration", 2); ds_dump_status(buf, "programming pulse duration", 3); ds_dump_status(buf, "pulldown slew rate control", 4); ds_dump_status(buf, "write-1 low time", 5); ds_dump_status(buf, "data sample offset/write-0 recovery time", 6); ds_dump_status(buf, "reserved (test register)", 7); ds_dump_status(buf, "device status flags", 8); ds_dump_status(buf, "communication command byte 1", 9); ds_dump_status(buf, "communication command byte 2", 10); ds_dump_status(buf, "communication command buffer status", 11); ds_dump_status(buf, "1-wire data output buffer status", 12); ds_dump_status(buf, "1-wire data input buffer status", 13); ds_dump_status(buf, "reserved", 14); ds_dump_status(buf, "reserved", 15); } memcpy(st, buf, sizeof(*st)); if (st->status & ST_EPOF) { printk(KERN_INFO "Resetting device after ST_EPOF.\n"); err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); if (err) return err; count = ds_recv_status_nodump(dev, st, buf, sizeof(buf)); if (count < 0) return err; } #if 0 if (st->status & ST_IDLE) { printk(KERN_INFO "Resetting pulse after ST_IDLE.\n"); err = ds_start_pulse(dev, PULLUP_PULSE_DURATION); if (err) return err; } #endif return err; } static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size) { int count, err; struct ds_status st; count = 0; err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]), buf, size, &count, 1000); if (err < 0) { printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]); usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN])); ds_recv_status(dev, &st); return err; } #if 0 { int i; printk("%s: count=%d: ", __func__, count); for (i=0; iudev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000); if (err < 0) { printk(KERN_ERR "Failed to read 1-wire data from 0x02: err=%d.\n", err); return err; } return err; } #if 0 int ds_stop_pulse(struct ds_device *dev, int limit) { struct ds_status st; int count = 0, err = 0; u8 buf[0x20]; do { err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0); if (err) break; err = ds_send_control(dev, CTL_RESUME_EXE, 0); if (err) break; err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf)); if (err) break; if ((st.status & ST_SPUA) == 0) { err = ds_send_control_mode(dev, MOD_PULSE_EN, 0); if (err) break; } } while(++count < limit); return err; } int ds_detect(struct ds_device *dev, struct ds_status *st) { int err; err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); if (err) return err; err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0); if (err) return err; err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40); if (err) return err; err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG); if (err) return err; err = ds_recv_status(dev, st); return err; } #endif /* 0 */ static int ds_wait_status(struct ds_device *dev, struct ds_status *st) { u8 buf[0x20]; int err, count = 0; do { err = ds_recv_status_nodump(dev, st, buf, sizeof(buf)); #if 0 if (err >= 0) { int i; printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err); for (i=0; i 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) { ds_recv_status(dev, st); return -1; } else return 0; } int ds_reset(struct ds_device *dev, struct ds_status *st) { int err; //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE); err = ds_send_control(dev, 0x43, SPEED_NORMAL); if (err) return err; ds_wait_status(dev, st); #if 0 if (st->command_buffer_status) { printk(KERN_INFO "Short circuit.\n"); return -EIO; } #endif return 0; } #if 0 int ds_set_speed(struct ds_device *dev, int speed) { int err; if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE) return -EINVAL; if (speed != SPEED_OVERDRIVE) speed = SPEED_FLEXIBLE; speed &= 0xff; err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed); if (err) return err; return err; } #endif /* 0 */ static int ds_start_pulse(struct ds_device *dev, int delay) { int err; u8 del = 1 + (u8)(delay >> 4); struct ds_status st; #if 0 err = ds_stop_pulse(dev, 10); if (err) return err; err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE); if (err) return err; #endif err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del); if (err) return err; err = ds_send_control(dev, COMM_PULSE | COMM_IM | COMM_F, 0); if (err) return err; mdelay(delay); ds_wait_status(dev, &st); return err; } int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit) { int err, count; struct ds_status st; u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0); u16 cmd; err = ds_send_control(dev, value, 0); if (err) return err; count = 0; do { err = ds_wait_status(dev, &st); if (err) return err; cmd = st.command0 | (st.command1 << 8); } while (cmd != value && ++count < 10); if (err < 0 || count >= 10) { printk(KERN_ERR "Failed to obtain status.\n"); return -EINVAL; } err = ds_recv_data(dev, tbit, sizeof(*tbit)); if (err < 0) return err; return 0; } int ds_write_bit(struct ds_device *dev, u8 bit) { int err; struct ds_status st; err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit) ? COMM_D : 0, 0); if (err) return err; ds_wait_status(dev, &st); return 0; } int ds_write_byte(struct ds_device *dev, u8 byte) { int err; struct ds_status st; u8 rbyte; err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte); if (err) return err; err = ds_wait_status(dev, &st); if (err) return err; err = ds_recv_data(dev, &rbyte, sizeof(rbyte)); if (err < 0) return err; ds_start_pulse(dev, PULLUP_PULSE_DURATION); return !(byte == rbyte); } int ds_read_bit(struct ds_device *dev, u8 *bit) { int err; err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE); if (err) return err; err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_SPU | COMM_D, 0); if (err) return err; err = ds_recv_data(dev, bit, sizeof(*bit)); if (err < 0) return err; return 0; } int ds_read_byte(struct ds_device *dev, u8 *byte) { int err; struct ds_status st; err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff); if (err) return err; ds_wait_status(dev, &st); err = ds_recv_data(dev, byte, sizeof(*byte)); if (err < 0) return err; return 0; } int ds_read_block(struct ds_device *dev, u8 *buf, int len) { struct ds_status st; int err; if (len > 64*1024) return -E2BIG; memset(buf, 0xFF, len); err = ds_send_data(dev, buf, len); if (err < 0) return err; err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len); if (err) return err; ds_wait_status(dev, &st); memset(buf, 0x00, len); err = ds_recv_data(dev, buf, len); return err; } int ds_write_block(struct ds_device *dev, u8 *buf, int len) { int err; struct ds_status st; err = ds_send_data(dev, buf, len); if (err < 0) return err; ds_wait_status(dev, &st); err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len); if (err) return err; ds_wait_status(dev, &st); err = ds_recv_data(dev, buf, len); if (err < 0) return err; ds_start_pulse(dev, PULLUP_PULSE_DURATION); return !(err == len); } #if 0 int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search) { int err; u16 value, index; struct ds_status st; memset(buf, 0, sizeof(buf)); err = ds_send_data(ds_dev, (unsigned char *)&init, 8); if (err) return err; ds_wait_status(ds_dev, &st); value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS; index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8); err = ds_send_control(ds_dev, value, index); if (err) return err; ds_wait_status(ds_dev, &st); err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number); if (err < 0) return err; return err/8; } int ds_match_access(struct ds_device *dev, u64 init) { int err; struct ds_status st; err = ds_send_data(dev, (unsigned char *)&init, sizeof(init)); if (err) return err; ds_wait_status(dev, &st); err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055); if (err) return err; ds_wait_status(dev, &st); return 0; } int ds_set_path(struct ds_device *dev, u64 init) { int err; struct ds_status st; u8 buf[9]; memcpy(buf, &init, 8); buf[8] = BRANCH_MAIN; err = ds_send_data(dev, buf, sizeof(buf)); if (err) return err; ds_wait_status(dev, &st); err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0); if (err) return err; ds_wait_status(dev, &st); return 0; } #endif /* 0 */ static int ds_probe(struct usb_interface *intf, const struct usb_device_id *udev_id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *endpoint; struct usb_host_interface *iface_desc; int i, err; ds_dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL); if (!ds_dev) { printk(KERN_INFO "Failed to allocate new DS9490R structure.\n"); return -ENOMEM; } ds_dev->udev = usb_get_dev(udev); usb_set_intfdata(intf, ds_dev); err = usb_set_interface(ds_dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3); if (err) { printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n", intf->altsetting[0].desc.bInterfaceNumber, err); return err; } err = usb_reset_configuration(ds_dev->udev); if (err) { printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err); return err; } iface_desc = &intf->altsetting[0]; if (iface_desc->desc.bNumEndpoints != NUM_EP-1) { printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints); return -ENODEV; } atomic_set(&ds_dev->refcnt, 0); memset(ds_dev->ep, 0, sizeof(ds_dev->ep)); /* * This loop doesn'd show control 0 endpoint, * so we will fill only 1-3 endpoints entry. */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; ds_dev->ep[i+1] = endpoint->bEndpointAddress; printk("%d: addr=%x, size=%d, dir=%s, type=%x\n", i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize), (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT", endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); } #if 0 { int err, i; u64 buf[3]; u64 init=0xb30000002078ee81ull; struct ds_status st; ds_reset(ds_dev, &st); err = ds_search(ds_dev, init, buf, 3, 0); if (err < 0) return err; for (i=0; irefcnt)) { printk(KERN_INFO "Waiting for DS to become free: refcnt=%d.\n", atomic_read(&dev->refcnt)); if (msleep_interruptible(1000)) flush_signals(current); } usb_put_dev(dev->udev); kfree(dev); ds_dev = NULL; } static int ds_init(void) { int err; err = usb_register(&ds_driver); if (err) { printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err); return err; } return 0; } static void ds_fini(void) { usb_deregister(&ds_driver); } module_init(ds_init); module_exit(ds_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Evgeniy Polyakov "); EXPORT_SYMBOL(ds_touch_bit); EXPORT_SYMBOL(ds_read_byte); EXPORT_SYMBOL(ds_read_bit); EXPORT_SYMBOL(ds_read_block); EXPORT_SYMBOL(ds_write_byte); EXPORT_SYMBOL(ds_write_bit); EXPORT_SYMBOL(ds_write_block); EXPORT_SYMBOL(ds_reset); EXPORT_SYMBOL(ds_get_device); EXPORT_SYMBOL(ds_put_device); /* * This functions can be used for EEPROM programming, * when driver will be included into mainline this will * require uncommenting. */ #if 0 EXPORT_SYMBOL(ds_start_pulse); EXPORT_SYMBOL(ds_set_speed); EXPORT_SYMBOL(ds_detect); EXPORT_SYMBOL(ds_stop_pulse); EXPORT_SYMBOL(ds_search); #endif