#include "sysdef.h" #include "wb35reg_f.h" #include extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency); // true : read command process successfully // false : register not support // RegisterNo : start base // pRegisterData : data point // NumberOfData : number of register data // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4 // NO_INCREMENT - Function will write data into the same register unsigned char Wb35Reg_BurstWrite(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag) { struct wb35_reg *reg = &pHwData->reg; struct urb *urb = NULL; struct wb35_reg_queue *reg_queue = NULL; u16 UrbSize; struct usb_ctrlrequest *dr; u16 i, DataSize = NumberOfData*4; // Module shutdown if (pHwData->SurpriseRemove) return false; // Trying to use burst write function if use new hardware UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest); reg_queue = kzalloc(UrbSize, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC); if( urb && reg_queue ) { reg_queue->DIRECT = 2;// burst write register reg_queue->INDEX = RegisterNo; reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); memcpy( reg_queue->pBuffer, pRegisterData, DataSize ); //the function for reversing register data from little endian to big endian for( i=0; ipBuffer[i] = cpu_to_le32( reg_queue->pBuffer[i] ); dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize); dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE; dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment dr->wIndex = cpu_to_le16( RegisterNo ); dr->wLength = cpu_to_le16( DataSize ); reg_queue->Next = NULL; reg_queue->pUsbReq = dr; reg_queue->urb = urb; spin_lock_irq( ®->EP0VM_spin_lock ); if (reg->reg_first == NULL) reg->reg_first = reg_queue; else reg->reg_last->Next = reg_queue; reg->reg_last = reg_queue; spin_unlock_irq( ®->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start(pHwData); return true; } else { if (urb) usb_free_urb(urb); if (reg_queue) kfree(reg_queue); return false; } return false; } void Wb35Reg_Update(struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue) { struct wb35_reg *reg = &pHwData->reg; switch (RegisterNo) { case 0x3b0: reg->U1B0 = RegisterValue; break; case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break; case 0x400: reg->D00_DmaControl = RegisterValue; break; case 0x800: reg->M00_MacControl = RegisterValue; break; case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break; case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break; case 0x824: reg->M24_MacControl = RegisterValue; break; case 0x828: reg->M28_MacControl = RegisterValue; break; case 0x82c: reg->M2C_MacControl = RegisterValue; break; case 0x838: reg->M38_MacControl = RegisterValue; break; case 0x840: reg->M40_MacControl = RegisterValue; break; case 0x844: reg->M44_MacControl = RegisterValue; break; case 0x848: reg->M48_MacControl = RegisterValue; break; case 0x84c: reg->M4C_MacStatus = RegisterValue; break; case 0x860: reg->M60_MacControl = RegisterValue; break; case 0x868: reg->M68_MacControl = RegisterValue; break; case 0x870: reg->M70_MacControl = RegisterValue; break; case 0x874: reg->M74_MacControl = RegisterValue; break; case 0x878: reg->M78_ERPInformation = RegisterValue; break; case 0x87C: reg->M7C_MacControl = RegisterValue; break; case 0x880: reg->M80_MacControl = RegisterValue; break; case 0x884: reg->M84_MacControl = RegisterValue; break; case 0x888: reg->M88_MacControl = RegisterValue; break; case 0x898: reg->M98_MacControl = RegisterValue; break; case 0x100c: reg->BB0C = RegisterValue; break; case 0x102c: reg->BB2C = RegisterValue; break; case 0x1030: reg->BB30 = RegisterValue; break; case 0x103c: reg->BB3C = RegisterValue; break; case 0x1048: reg->BB48 = RegisterValue; break; case 0x104c: reg->BB4C = RegisterValue; break; case 0x1050: reg->BB50 = RegisterValue; break; case 0x1054: reg->BB54 = RegisterValue; break; case 0x1058: reg->BB58 = RegisterValue; break; case 0x105c: reg->BB5C = RegisterValue; break; case 0x1060: reg->BB60 = RegisterValue; break; } } // true : read command process successfully // false : register not support unsigned char Wb35Reg_WriteSync( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue ) { struct wb35_reg *reg = &pHwData->reg; int ret = -1; // Module shutdown if (pHwData->SurpriseRemove) return false; RegisterValue = cpu_to_le32(RegisterValue); // update the register by send usb message------------------------------------ reg->SyncIoPause = 1; // 20060717.5 Wait until EP0VM stop while (reg->EP0vm_state != VM_STOP) msleep(10); // Sync IoCallDriver reg->EP0vm_state = VM_RUNNING; ret = usb_control_msg( pHwData->WbUsb.udev, usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ), 0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, 0x0,RegisterNo, &RegisterValue, 4, HZ*100 ); reg->EP0vm_state = VM_STOP; reg->SyncIoPause = 0; Wb35Reg_EP0VM_start(pHwData); if (ret < 0) { #ifdef _PE_REG_DUMP_ printk("EP0 Write register usb message sending error\n"); #endif pHwData->SurpriseRemove = 1; // 20060704.2 return false; } return true; } // true : read command process successfully // false : register not support unsigned char Wb35Reg_Write( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue ) { struct wb35_reg *reg = &pHwData->reg; struct usb_ctrlrequest *dr; struct urb *urb = NULL; struct wb35_reg_queue *reg_queue = NULL; u16 UrbSize; // Module shutdown if (pHwData->SurpriseRemove) return false; // update the register by send urb request------------------------------------ UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest); reg_queue = kzalloc(UrbSize, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC); if (urb && reg_queue) { reg_queue->DIRECT = 1;// burst write register reg_queue->INDEX = RegisterNo; reg_queue->VALUE = cpu_to_le32(RegisterValue); reg_queue->RESERVED_VALID = false; dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE; dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16(0x0); dr->wIndex = cpu_to_le16(RegisterNo); dr->wLength = cpu_to_le16(4); // Enter the sending queue reg_queue->Next = NULL; reg_queue->pUsbReq = dr; reg_queue->urb = urb; spin_lock_irq(®->EP0VM_spin_lock ); if (reg->reg_first == NULL) reg->reg_first = reg_queue; else reg->reg_last->Next = reg_queue; reg->reg_last = reg_queue; spin_unlock_irq( ®->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start(pHwData); return true; } else { if (urb) usb_free_urb(urb); kfree(reg_queue); return false; } } //This command will be executed with a user defined value. When it completes, //this value is useful. For example, hal_set_current_channel will use it. // true : read command process successfully // false : register not support unsigned char Wb35Reg_WriteWithCallbackValue( struct hw_data * pHwData, u16 RegisterNo, u32 RegisterValue, s8 *pValue, s8 Len) { struct wb35_reg *reg = &pHwData->reg; struct usb_ctrlrequest *dr; struct urb *urb = NULL; struct wb35_reg_queue *reg_queue = NULL; u16 UrbSize; // Module shutdown if (pHwData->SurpriseRemove) return false; // update the register by send urb request------------------------------------ UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest); reg_queue = kzalloc(UrbSize, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC); if (urb && reg_queue) { reg_queue->DIRECT = 1;// burst write register reg_queue->INDEX = RegisterNo; reg_queue->VALUE = cpu_to_le32(RegisterValue); //NOTE : Users must guarantee the size of value will not exceed the buffer size. memcpy(reg_queue->RESERVED, pValue, Len); reg_queue->RESERVED_VALID = true; dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE; dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16(0x0); dr->wIndex = cpu_to_le16(RegisterNo); dr->wLength = cpu_to_le16(4); // Enter the sending queue reg_queue->Next = NULL; reg_queue->pUsbReq = dr; reg_queue->urb = urb; spin_lock_irq (®->EP0VM_spin_lock ); if( reg->reg_first == NULL ) reg->reg_first = reg_queue; else reg->reg_last->Next = reg_queue; reg->reg_last = reg_queue; spin_unlock_irq ( ®->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start(pHwData); return true; } else { if (urb) usb_free_urb(urb); kfree(reg_queue); return false; } } // true : read command process successfully // false : register not support // pRegisterValue : It must be a resident buffer due to asynchronous read register. unsigned char Wb35Reg_ReadSync( struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue ) { struct wb35_reg *reg = &pHwData->reg; u32 * pltmp = pRegisterValue; int ret = -1; // Module shutdown if (pHwData->SurpriseRemove) return false; // Read the register by send usb message------------------------------------ reg->SyncIoPause = 1; // 20060717.5 Wait until EP0VM stop while (reg->EP0vm_state != VM_STOP) msleep(10); reg->EP0vm_state = VM_RUNNING; ret = usb_control_msg( pHwData->WbUsb.udev, usb_rcvctrlpipe(pHwData->WbUsb.udev, 0), 0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN, 0x0, RegisterNo, pltmp, 4, HZ*100 ); *pRegisterValue = cpu_to_le32(*pltmp); reg->EP0vm_state = VM_STOP; Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue ); reg->SyncIoPause = 0; Wb35Reg_EP0VM_start( pHwData ); if (ret < 0) { #ifdef _PE_REG_DUMP_ printk("EP0 Read register usb message sending error\n"); #endif pHwData->SurpriseRemove = 1; // 20060704.2 return false; } return true; } // true : read command process successfully // false : register not support // pRegisterValue : It must be a resident buffer due to asynchronous read register. unsigned char Wb35Reg_Read(struct hw_data * pHwData, u16 RegisterNo, u32 * pRegisterValue ) { struct wb35_reg *reg = &pHwData->reg; struct usb_ctrlrequest * dr; struct urb *urb; struct wb35_reg_queue *reg_queue; u16 UrbSize; // Module shutdown if (pHwData->SurpriseRemove) return false; // update the variable by send Urb to read register ------------------------------------ UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest); reg_queue = kzalloc(UrbSize, GFP_ATOMIC); urb = usb_alloc_urb(0, GFP_ATOMIC); if( urb && reg_queue ) { reg_queue->DIRECT = 0;// read register reg_queue->INDEX = RegisterNo; reg_queue->pBuffer = pRegisterValue; dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue)); dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN; dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16(0x0); dr->wIndex = cpu_to_le16 (RegisterNo); dr->wLength = cpu_to_le16 (4); // Enter the sending queue reg_queue->Next = NULL; reg_queue->pUsbReq = dr; reg_queue->urb = urb; spin_lock_irq ( ®->EP0VM_spin_lock ); if( reg->reg_first == NULL ) reg->reg_first = reg_queue; else reg->reg_last->Next = reg_queue; reg->reg_last = reg_queue; spin_unlock_irq( ®->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start( pHwData ); return true; } else { if (urb) usb_free_urb( urb ); kfree(reg_queue); return false; } } void Wb35Reg_EP0VM_start( struct hw_data * pHwData ) { struct wb35_reg *reg = &pHwData->reg; if (atomic_inc_return(®->RegFireCount) == 1) { reg->EP0vm_state = VM_RUNNING; Wb35Reg_EP0VM(pHwData); } else atomic_dec(®->RegFireCount); } void Wb35Reg_EP0VM(struct hw_data * pHwData ) { struct wb35_reg *reg = &pHwData->reg; struct urb *urb; struct usb_ctrlrequest *dr; u32 * pBuffer; int ret = -1; struct wb35_reg_queue *reg_queue; if (reg->SyncIoPause) goto cleanup; if (pHwData->SurpriseRemove) goto cleanup; // Get the register data and send to USB through Irp spin_lock_irq( ®->EP0VM_spin_lock ); reg_queue = reg->reg_first; spin_unlock_irq( ®->EP0VM_spin_lock ); if (!reg_queue) goto cleanup; // Get an Urb, send it urb = (struct urb *)reg_queue->urb; dr = reg_queue->pUsbReq; urb = reg_queue->urb; pBuffer = reg_queue->pBuffer; if (reg_queue->DIRECT == 1) // output pBuffer = ®_queue->VALUE; usb_fill_control_urb( urb, pHwData->WbUsb.udev, REG_DIRECTION(pHwData->WbUsb.udev,reg_queue), (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength), Wb35Reg_EP0VM_complete, (void*)pHwData); reg->EP0vm_state = VM_RUNNING; ret = usb_submit_urb(urb, GFP_ATOMIC); if (ret < 0) { #ifdef _PE_REG_DUMP_ printk("EP0 Irp sending error\n"); #endif goto cleanup; } return; cleanup: reg->EP0vm_state = VM_STOP; atomic_dec(®->RegFireCount); } void Wb35Reg_EP0VM_complete(struct urb *urb) { struct hw_data * pHwData = (struct hw_data *)urb->context; struct wb35_reg *reg = &pHwData->reg; struct wb35_reg_queue *reg_queue; // Variable setting reg->EP0vm_state = VM_COMPLETED; reg->EP0VM_status = urb->status; if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove reg->EP0vm_state = VM_STOP; atomic_dec(®->RegFireCount); } else { // Complete to send, remove the URB from the first spin_lock_irq( ®->EP0VM_spin_lock ); reg_queue = reg->reg_first; if (reg_queue == reg->reg_last) reg->reg_last = NULL; reg->reg_first = reg->reg_first->Next; spin_unlock_irq( ®->EP0VM_spin_lock ); if (reg->EP0VM_status) { #ifdef _PE_REG_DUMP_ printk("EP0 IoCompleteRoutine return error\n"); #endif reg->EP0vm_state = VM_STOP; pHwData->SurpriseRemove = 1; } else { // Success. Update the result // Start the next send Wb35Reg_EP0VM(pHwData); } kfree(reg_queue); } usb_free_urb(urb); } void Wb35Reg_destroy(struct hw_data * pHwData) { struct wb35_reg *reg = &pHwData->reg; struct urb *urb; struct wb35_reg_queue *reg_queue; Uxx_power_off_procedure(pHwData); // Wait for Reg operation completed do { msleep(10); // Delay for waiting function enter 940623.1.a } while (reg->EP0vm_state != VM_STOP); msleep(10); // Delay for waiting function enter 940623.1.b // Release all the data in RegQueue spin_lock_irq( ®->EP0VM_spin_lock ); reg_queue = reg->reg_first; while (reg_queue) { if (reg_queue == reg->reg_last) reg->reg_last = NULL; reg->reg_first = reg->reg_first->Next; urb = reg_queue->urb; spin_unlock_irq( ®->EP0VM_spin_lock ); if (urb) { usb_free_urb(urb); kfree(reg_queue); } else { #ifdef _PE_REG_DUMP_ printk("EP0 queue release error\n"); #endif } spin_lock_irq( ®->EP0VM_spin_lock ); reg_queue = reg->reg_first; } spin_unlock_irq( ®->EP0VM_spin_lock ); } //==================================================================================== // The function can be run in passive-level only. //==================================================================================== unsigned char Wb35Reg_initial(struct hw_data * pHwData) { struct wb35_reg *reg=&pHwData->reg; u32 ltmp; u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval; // Spin lock is acquired for read and write IRP command spin_lock_init( ®->EP0VM_spin_lock ); // Getting RF module type from EEPROM ------------------------------------ Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d) Wb35Reg_ReadSync( pHwData, 0x03b4, <mp ); //Update RF module type and determine the PHY type by inf or EEPROM reg->EEPROMPhyType = (u8)( ltmp & 0xff ); // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829 // 16V AL2230, 17 - AL7230, 18 - AL2230S // 32 Reserved // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34) if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) { if( (reg->EEPROMPhyType == RF_MAXIM_2825) || (reg->EEPROMPhyType == RF_MAXIM_2827) || (reg->EEPROMPhyType == RF_MAXIM_2828) || (reg->EEPROMPhyType == RF_MAXIM_2829) || (reg->EEPROMPhyType == RF_MAXIM_V1) || (reg->EEPROMPhyType == RF_AIROHA_2230) || (reg->EEPROMPhyType == RF_AIROHA_2230S) || (reg->EEPROMPhyType == RF_AIROHA_7230) || (reg->EEPROMPhyType == RF_WB_242) || (reg->EEPROMPhyType == RF_WB_242_1)) pHwData->phy_type = reg->EEPROMPhyType; } // Power On procedure running. The relative parameter will be set according to phy_type Uxx_power_on_procedure( pHwData ); // Reading MAC address Uxx_ReadEthernetAddress( pHwData ); // Read VCO trim for RF parameter Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim ); // Read Antenna On/Off of software flag Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet ); // Read TXVGA Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga ); // Get Scan interval setting from EEPROM offset 0x1c Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval ); // Update Ethernet address memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN ); // Update software variable pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff); TxVga &= 0x000000ff; pHwData->PowerIndexFromEEPROM = (u8)TxVga; pHwData->VCO_trim = (u8)VCO_trim & 0xff; if (pHwData->VCO_trim == 0xff) pHwData->VCO_trim = 0x28; reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720 if( reg->EEPROMRegion<1 || reg->EEPROMRegion>6 ) reg->EEPROMRegion = REGION_AUTO; //For Get Tx VGA from EEPROM 20060315.5 move here GetTxVgaFromEEPROM( pHwData ); // Set Scan Interval pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10; if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME; // Initial register RFSynthesizer_initial(pHwData); BBProcessor_initial(pHwData); // Async write, must wait until complete Wb35Reg_phy_calibration(pHwData); Mxx_initial(pHwData); Dxx_initial(pHwData); if (pHwData->SurpriseRemove) return false; else return true; // Initial fail } //=================================================================================== // CardComputeCrc -- // // Description: // Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length. // // Arguments: // Buffer - the input buffer // Length - the length of Buffer // // Return Value: // The 32-bit CRC value. // // Note: // This is adapted from the comments in the assembly language // version in _GENREQ.ASM of the DWB NE1000/2000 driver. //================================================================================== u32 CardComputeCrc(u8 * Buffer, u32 Length) { u32 Crc, Carry; u32 i, j; u8 CurByte; Crc = 0xffffffff; for (i = 0; i < Length; i++) { CurByte = Buffer[i]; for (j = 0; j < 8; j++) { Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01); Crc <<= 1; CurByte >>= 1; if (Carry) { Crc =(Crc ^ 0x04c11db6) | Carry; } } } return Crc; } //================================================================== // BitReverse -- // Reverse the bits in the input argument, dwData, which is // regarded as a string of bits with the length, DataLength. // // Arguments: // dwData : // DataLength : // // Return: // The converted value. //================================================================== u32 BitReverse( u32 dwData, u32 DataLength) { u32 HalfLength, i, j; u32 BitA, BitB; if ( DataLength <= 0) return 0; // No conversion is done. dwData = dwData & (0xffffffff >> (32 - DataLength)); HalfLength = DataLength / 2; for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--) { BitA = GetBit( dwData, i); BitB = GetBit( dwData, j); if (BitA && !BitB) { dwData = ClearBit( dwData, i); dwData = SetBit( dwData, j); } else if (!BitA && BitB) { dwData = SetBit( dwData, i); dwData = ClearBit( dwData, j); } else { // Do nothing since these two bits are of the save values. } } return dwData; } void Wb35Reg_phy_calibration( struct hw_data * pHwData ) { u32 BB3c, BB54; if ((pHwData->phy_type == RF_WB_242) || (pHwData->phy_type == RF_WB_242_1)) { phy_calibration_winbond ( pHwData, 2412 ); // Sync operation Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c ); Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 ); pHwData->BB3c_cal = BB3c; pHwData->BB54_cal = BB54; RFSynthesizer_initial(pHwData); BBProcessor_initial(pHwData); // Async operation Wb35Reg_WriteSync( pHwData, 0x103c, BB3c ); Wb35Reg_WriteSync( pHwData, 0x1054, BB54 ); } }